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1 Introduction

The purpose of this document is to figure out exactly what is going on with Cramer's theorem, and the
difference in sign conventions of the partition function in probability and in statistical mechanics.

2 Cramer's Theorem

From [2] we have the following statement of Cramer's theorem

THEOREM 1. (CRAMER'S THEOREM) Let X1,X2, . . . be i.i.d. random variables with finite logarithmic
moment generating function

Λ(t )≔ log𝔼[etX1]
Let

Λ∗(x)≔ sup
t∈ℝ

(t x−Λ(t ))

be the Legendre transform of Λ. Then for every x≥𝔼[X1],

lim
n→∞

1
n logℙ[[[[[[[[[[[[[[[[�

j=1

n

Xj≥xn]]]]]]]]]]]]]]]]=−Λ∗(x)

In statistical mechanics, we use a different convention for our “partition function”; we define

Λ(β)≔ log𝔼[e−βH ]

where H is a random variable giving the energy of the system. We will show how to adopt Cramer's
theorem to this situation.
Let Y1,Y2, . . . be i.i.d. random variables distributed as H , and let Xi=−Yi. Then we can apply Cramer's

theorem to the Xi to get that for every x≥𝔼[X1],

lim
n→∞

1
n logℙ[[[[[[[[[[[[[[[[�

j=1

n

Xj≥xn]]]]]]]]]]]]]]]]=−Λ∗(x)

Now, suppose that x ≤𝔼[Y1], so that −x≥𝔼[X1]. Then

ℙ[[[[[[[[[[[[[[[[�
j=1

n

Yj≤xn]]]]]]]]]]]]]]]]=ℙ[[[[[[[[[[[[[[[[�
j=1

n

Xj≥ (−x)n]]]]]]]]]]]]]]]]
Thus,

lim
n→∞

1
n logℙ[[[[[[[[[[[[[[[[�

j=1

n

Yj≤xn]]]]]]]]]]]]]]]]=−Λ∗(−x)

If we expand out the definition of −Λ∗(−x), we get

−Λ∗(−x) = −sup
t∈ℝ

(t (−x)−Λ(t ))

= −sup
t∈ℝ

(−t x−Λ(t ))

= inf
t∈R

(t x+Λ(t ))



as when we move the negative sign across the supremum it becomes an infimum. Thus, we can state an
alternative, statistical mechanical version of Cramer's thereom, adding in a purely cosmetic replacement
of t with β and x with u. This is the version that [1] uses.

THEOREM 2. (CRAMER'S THEOREM, STATISTICAL MECHANICAL VERSION) Suppose that Y1,Y2, . . . are i.i.d.
random variables, all distributed as H . Let Φ(β) be the logarithmic partition function, defined by

Φ(β)= log𝔼[e−βH ]

Define the (not quite Legendre transform of Φ) by

φ(u)=− inf
β∈ℝ

(βu+Λ(β))
Then, for every u<𝔼[H],

lim
n→∞

1
n logℙ[[[[[[[[[[[[[[[[�

j=1

n

Yj≤un]]]]]]]]]]]]]]]]=−φ(u)

3 Relation to Classical Thermodynamics
We now try and investigate exactly what Φ and φ mean in the context of classical thermodynamics. Let
𝔛 be a countable set, and let H :𝔛→ℝ be any function. Then let X be a variable taking values in 𝔛, with
distribution

ℙ(X = i)= e−βH (i)

Z (β)
where

Z (β)= �
i∈𝔛

e−βH (i)

is called the partition function. Surprisingly, the log of partition function,

Φ(β)= logZ (β)

can be used to calculate quantities related to the system fairly easily. For instance,
∂Φ
∂β = ∂

∂β logZ (β)

=
∑i∈𝔛

∂
∂β e−βH (i)

Z (β)

= �
i∈𝔛

−H (i) e−βH (i)

Z (β)

= −�
i∈𝔛

H (i)ℙ(X = i)

= −𝔼[H (X )]

In physics, we osten write this last quantity as −⟨H⟩.
We can also calculate the entropy using the partition function

S(β) = −�
i∈𝔛

Pi log Pi

= −�
i∈𝔛

e−βH (i)

Z (β) log(((((((((((e−βH (i)

Z (β) )))))))))))
= −�

i∈𝔛
−βH (i)Pi+ �

i∈𝔛
Pi log(Z (β))

= β ⟨H⟩+Φ(β)

We can now see if this matches up with the classical definition of entropy for the Gibbs ensemble. Clas-
sically, entropy is given by the formula

F =U −TS
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where F is the “free energy”. We want to identify F with − log(Z (β))
β =−T log(Z (β)), let's see if that ends

up agreeing with our calculation for entropy above.

S = β⟨H⟩+Φ(β)
TS = ⟨H⟩+T Φ(β)
TS = ⟨H⟩−F
F = ⟨H⟩−TS

It does!
Now, if we instead make S a function of u, by letting β =β(u), then we get

S(β(u))=β(u)u+Φ(β(u))

To find this β , we are looking for β such that ∂Φ
∂β =−u. This β is the minimizer of

βu+Φ(β)
Thus, we have an expression

S(u)= inf
β
{βu+Φ(β)}

So, φ(u)=−S(u).
However, this is not as much of a direct connection as one might hope. This is because in Cramer's

thereom, we begin with a random variable H that is given to us, and its distribution can be anything. In
the canonical ensemble on the other hand, we assume that the distribution is something specific.
To understand what's going on, we must shist our perspective on the statistical mechanics. Suppose

that we are given some variable H . We think of the distribution of H as the distribution of our system in
the infinite-temperature limit. Now, consider an i.i.d. sequence of variables Y1,Y2,. . ., and let μ̂N ∈M (ℝ)
be the empirical distribution observed of the first N variables, whereM (ℝ) is the space of measures on ℝ.
The first question that we ask is: conditional on observing that ∑n=1

N Yn≤NU , what is μ̂N? The theory
of large deviations (need citation) should say something like

lim
N→∞

𝔼[[[[[[[[[[[[[[μ̂N (W )|||||||||||||�n=1

N

Yn≤NU ]]]]]]]]]]]]]]=
∫W e−βudPH (u)
∫ℝ e−βudPH (u)

(1)

where β is such that
�

ℝ
u e−βudPH (u)=U

Define the measure μ̂ by

μ̂(W )= lim
N→∞

𝔼[[[[[[[[[[[[[[μ̂N (W )|||||||||||||�n=1

N

Yn≤NU ]]]]]]]]]]]]]]
Then using Eq. 1, we get

dμ̂
dPH

(u)= e−βu

∫ℝ e−βudPH (u)

If dPH is absolutely continuous with respect to Lebesgue measure, with Radon-Nikodym derivative

dPH
dλ (u)=Ω(u)

then this gives us
dμ̂
dλ = Ω(u)e−βu

Z (β)

which is familiar as the pdf of a canonical distribution.
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