Quotienting a Monad by Splitting an Idempotent

Ralph Sarkis

June 18, 2021

Abstract

When studying the monad \mathcal{C}^{\downarrow} which appears in a paper of mine. I worked out a very general construction that yields a quotient of a monad starting with a natural family of idempotent homomorphisms. I do not think the result is very surprising, but I think it may have some applications I am not seeing.

Remark 1. You can skip the parts where we discuss \mathcal{C}^{\downarrow} and $\mathcal{C}(-+\mathbf{1})$, this example was simply our starting point.
The following results were motivated by observing that the free $\mathcal{C} \downarrow$-algebra on X can be nicely embedded into the free $\mathcal{C}(\cdot+\mathbf{1})$-algebra on X and thus, there might be a way to view $\mathcal{C} \downarrow$ as a submonad of $\mathcal{C}(\cdot+\mathbf{1})$ or relate their categories of algebras and their presentations. It turns out we will not obtain $\mathcal{C} \downarrow$ as an actual submonad of $\mathcal{C}(\cdot+\mathbf{1})$, but there is still an interesting relation between the two.

What we mean by nicely embedded is that there is an idempotent homomorphism $\mathcal{C}(X+\mathbf{1}) \rightarrow \mathcal{C}(X+\mathbf{1})$ of \perp-closure which splits through $\mathcal{C}^{\downarrow} X$. In the following, we try to use general abstract assumptions similar to this to attain our goal of relating the presentations of the two monads. In particular, what we call K below is supposed to be an operation akin to \perp-closure.

The first restrictions we put on K were not general enough as we later found that \perp-closure did not satisfy them. Still, we start by discussing them because they give another way to see our construction.

1 General Construction

Let (M, η, μ) be any monad on a category \mathbf{C}, the full subcategory of $\operatorname{EM}(M)$ consisting of only free M-algebras can be identified with the Kleisli category C_{M} whose objects are objects of \mathbf{C} and morphisms in $\operatorname{Hom}_{\mathbf{C}_{M}}(X, Y)$ are morphisms in $\operatorname{Hom}_{\mathbf{C}}(X, M Y)$ with composition given by $f \circ_{M} g=\mu_{Y} \circ M f \circ g$.

In this context, a natural family of idempotents like the K_{X} above is just an idempotent natural transformation $K: \operatorname{id}_{\mathbf{C}_{M}} \Rightarrow \operatorname{id}_{\mathbf{C}_{M}}$.
Remark 2. We will soon see that this K induces an idempotent natural transformation $\bar{K}: M \Rightarrow M$ and this may be a better starting point because it is enough for our purposes. However, since \bar{K} does not induce the K described above, we still start from K and at some point we only use \bar{K}.

Let us show some properties of K. First, idempotence says that $K_{X} \circ_{M} K_{X}=K_{X}$, or equivalently,

$$
\begin{equation*}
\mu_{X} \circ M\left(K_{X}\right) \circ K_{X}=K_{X} . \tag{1}
\end{equation*}
$$

Next, we can apply naturality of K to different morphisms in C_{M} to obtain different identities. Let us use squiggly arrows to denote Kleisli morphisms in diagrams.

Now, recall that these diagrams live in \mathbf{C}_{M}, thus, the following equations are derived from each diagram.

$$
\begin{align*}
\mu_{X} \circ M\left(K_{X}\right) \circ \mathrm{id}_{M X} & =\mu_{X} \circ M\left(\mathrm{id}_{M X}\right) \circ K_{M X} \\
\mu_{X} \circ M\left(K_{X}\right) \circ \mu_{X} & =\mu_{X} \circ M\left(\mu_{X}\right) \circ K_{M M X} \\
\mu_{X} \circ M\left(K_{X}\right) \circ \eta_{X} & =\mu_{X} \circ M\left(\eta_{X}\right) \circ K_{X} \\
\mu_{Y} \circ M\left(K_{Y}\right) \circ M f & =\mu_{Y} \circ M M f \circ K_{M X} \tag{3}
\end{align*}
$$

(2)

From this, we will construct a monad M^{K} whose free algebra on X is the image of K applied to the free M-algebra on X. We will also construct a monad map $M \Rightarrow M^{K}$ expressing M^{K} as a quotient of M.
Proposition 3. Defining $\bar{K}_{X}: M X \rightarrow M X=\mu_{X} \circ M\left(K_{X}\right)$, we can show that \bar{K}_{X} is idempotent.

Proof. We show that $\mu_{X} \circ M\left(K_{X}\right) \circ \mu_{X} \circ M\left(K_{X}\right)=\mu_{X} \circ M\left(K_{X}\right)$ by paving the following diagram.

(a) Apply M to (1).
(c) Associativity of μ.
(b) Naturality of μ.

Furthermore, since this \bar{K}_{X} is the image of K_{X} under the embedding $\mathbf{C}_{M} \rightarrow$ $\operatorname{EM}(M)$, we obtain that \bar{K}_{X} is an M-algebra homomorphism. This is restated and proven for completeness below.

Lemma 4. For any X, we have $\bar{K}_{X} \circ \mu_{X}=\mu_{X} \circ M\left(\bar{K}_{X}\right)$.

Proof. We pave the following diagram.

(a) Def of \bar{K}_{X} and functoriality of M.
(c) Associativity of μ.
(b) Naturality of μ.
(d) Def of \bar{K}_{X}.

Now, if \mathbf{C} has equalizers, ${ }^{1}$ we can define a subfunctor M^{K} of M as follows. For $X \in \mathrm{C}_{0}$, let $M^{K} X$ be the equalizer of $\bar{K}_{X}, \mathrm{id}_{M X}: M X \rightarrow M X$. Namely, there is (a monic) $\iota_{X}: M^{K} X \rightarrow M X$ satisfying $\bar{K}_{X} \circ \iota_{X}=\iota_{X}$ such that for any $e: Y \rightarrow M X$ satisfying $\bar{K}_{X} \circ e=e$, there is a unique morphism ! : $Y \rightarrow M^{K} X$ making (8) commute.

In order to give the action of M^{K} on morphisms, we need the following lemma.
Lemma 5. \bar{K} is a natural transformation $M \Rightarrow M$.
Proof. We need to show that for any $f: X \rightarrow Y, \bar{K}_{Y} \circ M f=M f \circ \bar{K}_{X}$. We have the following derivation.

$$
\begin{align*}
\bar{K}_{Y} \circ M f & =\mu_{Y} \circ M\left(K_{Y}\right) \circ M f & & \text { def. } \bar{K} \\
& =\mu_{Y} \circ M M f \circ K_{M X} & & \text { by (5) } \\
& =M f \circ \mu_{X} \circ K_{M X} & & \text { naturality of } \mu \\
& =M f \circ \mu_{X} \circ M\left(K_{X}\right) & & \text { by (2) } \tag{2}\\
& =M f \circ \bar{K}_{X} & & \text { def. } \bar{K}
\end{align*}
$$

Remark 6. From this point, we do not have to use any hypothesis about K. Thus, starting with an idempotent natural transformation $\bar{K}: M \Rightarrow M$ such that \bar{K}_{X} : $M X \rightarrow M X$ is an M-algebra homomorphism (with the free algebra structure on $M X$), we can develop the rest of the section. Another very close starting point will be used in the application section.

[^0]Now, for any $f: X \rightarrow Y$, we know that both squares on the R.H.S. of diagram (9) commute (id is trivally a natural transformation).

From this, we can infer that $M f \circ \iota_{X}$ equalizes \bar{K}_{Y} and id ${ }_{M Y}$. Indeed, we have

$$
\begin{aligned}
\bar{K}_{Y} \circ M f \circ \iota_{X} & =M f \circ \bar{K}_{X} \circ \iota_{X} \\
& =M f \circ \operatorname{id}_{M X} \circ \iota_{X} \\
& =\operatorname{id}_{M Y} \circ M f \circ \iota_{X} .
\end{aligned}
$$

Then, from the universality of $M^{K} Y$, there is a unique morphism $M^{K} f: M^{K} X \rightarrow$ $M^{K} Y$ making (9) commute. The uniqueness of $M^{K} f$ in (9) also shows that $M^{K}(f \circ$ $g)=M^{K} f \circ M^{K} g$, thus M^{K} is a functor $\mathbf{C} \rightarrow \mathbf{C}$.
Proposition 7. The family $\left\{\iota_{X} \mid X \in \mathbf{C}_{0}\right\}$ is a natural transformation $\iota: M^{K} \Rightarrow M$ with monic components, so M^{K} is a subfunctor of M.

Proof. The naturality follows trivially from the commutativity of left square in 9 . The monicity comes from the standard result that equalizers are monic.

Observe that by idempotence, \bar{K}_{X} also equalizes \bar{K}_{X} and $\mathrm{id}_{M X}$, so we get the following diagram.

$$
\begin{equation*}
M^{K} X \underset{\iota_{X}}{\substack{\iota_{X}}} M X \underset{\mathrm{id}_{M X}}{\stackrel{\bar{K}_{X}}{\longrightarrow}} M X \tag{10}
\end{equation*}
$$

In the sequel, we will denote by \widehat{K}_{X} the unique morphism satisfying $\iota_{X} \circ \widehat{K}_{X}=\bar{K}_{X}$.
Lemma 8. For any $X \in \mathrm{C}_{0}, \widehat{K}_{X} \circ \iota_{X}=\mathrm{id}_{M^{K} X}$.
Proof. Using the definitions of \widehat{K}_{X} and ι_{X}, we have

$$
\iota_{X} \circ \widehat{K}_{X} \circ \iota_{X}=\bar{K}_{X} \circ \iota_{X}=\operatorname{id}_{M X} \circ \iota_{X}=\iota_{X} \circ \operatorname{id}_{M^{K} X}
$$

The lemma follows by monicity of t_{X}.
Remark 9. One way to summarize this is to say that $\iota_{X} \circ \widehat{K}_{X}$ is the splitting of the idempotent \bar{K}_{X}.

Proposition 10. The family $\left\{\widehat{K}_{X} \mid X \in \mathbf{C}_{0}\right\}$ is a natural transformation with epic components $\widehat{K}: M \Rightarrow M^{K}$.

Proof. First, we claim that for any $f: X \rightarrow Y, M^{K} f \circ \widehat{K}_{X}=\widehat{K}_{Y} \circ M f$. We have the following derivation.

$$
\begin{aligned}
\iota_{Y} \circ M^{K} f \circ \widehat{K}_{X} & =M f \circ \iota_{X} \circ \widehat{K}_{X} & & \text { naturality of } \iota \\
& =M f \circ \bar{K}_{X} & & \text { def of } \widehat{K}_{X}
\end{aligned}
$$

$$
\begin{array}{ll}
=\bar{K}_{Y} \circ M f & \text { naturality of } \bar{K} \\
=\iota_{Y} \circ \widehat{K}_{Y} \circ M f & \text { def of } \widehat{K}_{Y}
\end{array}
$$

The claim follows since ι_{Y} is a monomorphism. The components \widehat{K}_{X} are epimorphisms because they have ι_{X} as a right inverse by Lemma 8

1.1 Monadicity of M^{K}

Next, we want to show that M^{K} is a monad with unit $\eta^{K}:=\widehat{K} \cdot \eta$ and multiplication $\mu^{K}:=\widehat{K} \cdot \mu \cdot(\iota \diamond \iota){ }^{2}$ We divide the proof in multiple lemmas.
Lemma 11. For any $X \in \mathbf{C}_{0}, \mu_{X} \circ M\left(\iota_{X}\right)=\bar{K}_{X} \circ \mu_{X} \circ M\left(\iota_{X}\right)$.
Proof. We pave the following diagram.

(a) By defintion of M^{K}.
(c) By naturality of μ.
(b) Functoriality of M and def of \bar{K}_{X}.
(d) Associativity of μ.

Lemma 12. Anagolously to (2), we also have $\mu_{X} \circ M\left(\bar{K}_{X}\right)=\mu_{X} \circ \bar{K}_{M X}$.
Proof. We pave the following diagram.

(a) Apply M to (2).
(b) Def of \bar{K}.
(c) Associativity of μ.

[^1]Now we can prove one side of the unit diagram for the monad M^{K} commutes.
Lemma 13. For any $X \in \mathbf{C}_{0}, \mu_{X}^{K} \circ M^{K}\left(\eta_{X}^{K}\right)=\mathrm{id}_{M^{K} X}$.
Proof. We will show that $\iota_{X} \circ \mu_{X}^{K} \circ M^{K}\left(\eta_{X}^{K}\right)=\iota_{X}$ from which the result follows by monicity of ι_{X}. We pave the following diagram.

(a) Naturality of ι.
(f) $\bar{K}_{X} \circ \iota_{X}=\iota_{X}$.
(b) Naturality of ι.
(g) Lemma 4
(c) Monadicity of (M, η, μ).
(d) Apply M to $\bar{K}_{X}=\iota_{X} \circ \widehat{K}_{X}$.
(h) Lemma 4
(e) Apply M to $\bar{K}_{X} \circ \iota_{X}=\iota_{X}$.
(i) Def of \widehat{K}.

Now for the other side of the unit diagram.
Lemma 14. For any $X \in \mathbf{C}_{0}, \mu_{X}^{K} \circ \eta_{M^{K} X}^{K}=\mathrm{id}_{M^{K} X}$.
Proof. Alternatively, we pave the following diagram.

(a) Naturality of η.
(d) Monadicity of (M, μ, η).
(b) Naturality of \widehat{K}.
(e) Lemma ??.
(c) Lemma 8
(f) Definition of $\widehat{K}_{M X}$.

Lastly, we show that μ^{K} is associative.
Lemma 15. For any $X \in \mathbf{C}_{0}, \mu^{K} \circ M^{K} \mu^{K}=\mu^{K} \circ \mu^{K} M^{K}$.
Proof. We pave the following diagram.

(a) Naturality of ι.
(f) Lemma 11 acted on the left by M.
(b) Naturality of l.
(g) Lemma 11 acted on the right by M^{K}.
(c) Naturality of ι.
(h) Naturality of μ.
(d) Def of \widehat{K}.
(i) Associativity of μ.
(e) Naturality of ι.
(j) Def of $\widehat{K}_{M^{K} X}$.

Theorem 16. The triple $\left(M^{K}, \eta^{K}, \mu^{K}\right)$ is a monad.
Proof. We have to show the following diagrams commute.

$$
\begin{align*}
& \left(M^{K}\right)^{3} \xrightarrow{M^{K} \mu^{K}}\left(M^{K}\right)^{2} \tag{15}
\end{align*}
$$

Lemmas 13,14 and 15 respectively show the commutativity of the L.H.S. of 15 , the R.H.S. of (15) and (16).

1.2 Relating M-algebras and M^{K}-algebras

We already have natural transformations ι and \widehat{K} between M and M^{K} in both directions, but it is not enough to relate their algebras. For that, we would need for ι and \widehat{K} to be monad maps. Unfortunatley, while \widehat{K} is a monad map as shown below, we have to proceed differently for the other direction.

Theorem 17. The natural transformation $\widehat{K}: M \Rightarrow M^{K}$ is a monad map.
Proof. We have to show the following diagrams commute.

(17) is trivial because that is the definition of η^{K}. For (18), we pave the following diagram.

(a) Def of $\widehat{K}_{M X}$.
(e) Lemmas 4 and 12
(b) Def of \widehat{K}_{X}.
(f) Lemma 12
(c) Idempotence of $\widehat{K}_{M X}$.
(g) Paths are equal.
(d) Naturality of ι.
(h) Lemma 8 and $\bar{K}_{X}=\iota_{X} \circ \widehat{K}_{X}$.

From a standard result, we obtain a functor $U^{K}: \operatorname{EM}\left(M^{K}\right) \rightarrow \operatorname{EM}(M)$ that sends an algebra (A, α) to $\left(A, \alpha \circ \widehat{K}_{A}\right)$ and acts trivially on morphisms. It is fully faithful because \widehat{K} has epic components.

To go in the other direction, our first attempt was to use the embedding $\iota: M^{K} \Rightarrow$ M in the following way. Given an M-algebra $\alpha: M A \rightarrow A$, we expected that the composition $M^{K} A \xrightarrow{\iota_{A}} M A \xrightarrow{\alpha} a$ was the natural M^{K}-algebra on A corresponding to α.

However, in general $\alpha \circ \iota_{A}$ is not an M^{K}-algebra because it might not satisfy the unit law, that is,

$$
\alpha \circ \iota_{A} \circ \eta^{K}=\operatorname{id}_{A} .
$$

In other words, ι is possibly not a monad map (as we will see in the application in to \mathcal{C}^{\downarrow}).

2 Constructing $\mathcal{C} \downarrow$

Let $M=\mathcal{C}(\cdot+\mathbf{1})$ be the monad of non-empty finitely generated convex sets of subdistributions, we will show that the monad $\mathcal{C} \downarrow$ can be constructed with the procedure detailed above. The main idea is that the operation of \perp-closure satisfies the properties of \bar{K}.
Definition 18. Let X be a set and let $S \in \mathcal{C}(X+\mathbf{1})$. We say that S is \perp-closed if for all $\varphi \in S$,

$$
\{\psi \in \mathcal{D}(X+\mathbf{1}) \mid \forall x \in X, \psi(x) \leq \varphi(x)\} \subseteq S
$$

For a set X, we define $K_{X}: X \rightarrow \mathcal{C}(X+\mathbf{1})=x \mapsto c c\left(\left\{\delta_{x}, \delta_{\star}\right\}\right)$. We will first show that $\bar{K}_{X}=\mu_{X} \circ \mathcal{C}\left(K_{X}+1\right)$ is the operation of \perp-closure, then that \bar{K}_{X} satisfies the properties described in the previous sections and finally detail the monad we obtain.

Lemma 19. Let X be a set, for any $S \in \mathcal{C}(X+1), \bar{K}_{X}(S)$ is the smallest \perp-closed set containing S.

Proof. See Theorem 35 here
Lemma 20. The family $K_{X}: X \rightarrow \mathcal{C}(X+\mathbf{1})$ is natural.
Proof. For any $f: X \rightarrow Y$, we have

$$
\left.K_{Y}(f(x))=c c\left(\left\{\delta_{f(x)}, \delta_{\star}\right\}\right)=\mathcal{C}(f+\mathbf{1})\left(c c\left(\left\{\delta_{x}, \delta_{\star}\right\}\right)\right)=\mathcal{C}(f+\mathbf{1})\left(K_{X}(x)\right)\right)
$$

Lemma 21. The family $\bar{K}_{X}: \mathcal{C}(X+\mathbf{1}) \rightarrow \mathcal{C}(X+\mathbf{1})$ satisfies the following properties:

1. it is natural,
2. each component is idempotent, and
3. each component is a homomorphism between the free $\mathcal{C}(\cdot+\mathbf{1})$-algebras.

Proof. 1. This is a corollary of $K: \operatorname{id}_{\text {Set }} \Rightarrow \mathcal{C}(\cdot+\mathbf{1})$ being natural as shown in the following derivation. We need to show that for any $f: X \rightarrow Y$, we have $\bar{K}_{Y} \circ \mathcal{C}(f+\mathbf{1})=\mathcal{C}(f+\mathbf{1}) \circ \bar{K}_{X}$. This follows from the following derivation.

$$
\begin{aligned}
\bar{K}_{Y} \circ \mathcal{C}(f+\mathbf{1}) & =\mu_{Y} \circ \mathcal{C}\left(K_{Y}+\mathbf{1}\right) \circ \mathcal{C}(f+\mathbf{1}) & & \text { def of } \bar{K}_{Y} \\
& =\mu_{Y} \circ \mathcal{C}(\mathcal{C}(f+\mathbf{1})+\mathbf{1}) \circ \mathcal{C}\left(K_{X}+\mathbf{1}\right) & & \text { nat of } K \\
& =\mathcal{C}(f+\mathbf{1}) \circ \mu_{X} \circ \mathcal{C}\left(K_{X}+\mathbf{1}\right) & & \text { nat of } \mu \\
& =\mathcal{C}(f+\mathbf{1}) \circ \bar{K}_{X} & & \text { def of } \bar{K}_{X}
\end{aligned}
$$

2. Since $\bar{K}_{X}(S)$ is \perp-closed, it is the smallest \perp-closed containing itself, thus $\bar{K}_{X}\left(\bar{K}_{X}(S)\right)=\bar{K}_{X}(S)$.
3. This holds because \bar{K}_{X} is the image of K_{X} (seen as a Kleisli morphism) under the embedding of the Kleisli category of $\mathcal{C}(\cdot+\mathbf{1})$ into $\operatorname{EM}(\mathcal{C}(\cdot+\mathbf{1}))$.

Remark 22. Apart from the second point, the above proof is very general. Namely, it shows that starting from a natural transformation $K: \operatorname{id}_{\mathbf{C}} \Rightarrow M$ such that \bar{K} is idempotent, we can derive all the previous sections.

We find that \mathcal{C}^{\downarrow} is the monad of non-empty finitely generated \perp-closed convex sets of subdistributions with the unit being $x \mapsto K_{X}(x)=\bar{K}_{X} \circ \eta_{X}$. For the multiplication, there is a slight surprise; it turns out that the multiplication of \perp-closed sets is already \perp-closed, so there is no need to apply \perp-closure again as in the general case.

In particular, this means the inclusion $\iota: \mathcal{C} \downarrow \Rightarrow \mathcal{C}(\cdot+\mathbf{1})$ is not a monad map only because it does not commute with the units of the two monads.

3 Conclusion

Let (M, η, μ) be a monad on a category \mathbf{C} where idempotents split. If you have a natural family of idempotent homomorphisms of free M-algebras $M X \rightarrow M X$ given in either of the following ways, then you obtain a monad M^{K} by splitting these idempotents.

- An idempotent natural transformation $K: \operatorname{id}_{\mathrm{C}_{M}} \Rightarrow \mathrm{id}_{\mathrm{C}_{M}}$.
- An natural transformation $\bar{K}: M \Rightarrow M$ such that \bar{K}_{X} is a homomorphism ${ }^{3}$
- A natural transformation $K: \operatorname{id}_{\mathrm{C}} \Rightarrow M$ such that $\mu \circ M K$ is idempotent.

[^2]
[^0]: ${ }^{1}$ I am pretty sure it is enough if idempotents split in \mathbf{C}.

[^1]: ${ }^{2}$ We write \diamond for the horizontal composition of natural tranformations.

[^2]: ${ }^{3}$ Equivalently, a natural transformatin $F^{M} \Rightarrow F^{M}$, where F^{M} is the free algebra functor.

