Quotienting a Monad by Splitting an Idempotent

Ralph Sarkis June 18, 2021

Abstract

When studying the monad C^{\downarrow} which appears in a paper of mine, I worked out a very general construction that yields a quotient of a monad starting with a natural family of idempotent homomorphisms. I do not think the result is very surprising, but I think it may have some applications I am not seeing.

Remark 1. You can skip the parts where we discuss C^{\downarrow} and C(-+1), this example was simply our starting point.

The following results were motivated by observing that the free C^{\downarrow} -algebra on X can be nicely embedded into the free $C(\cdot + 1)$ -algebra on X and thus, there might be a way to view C^{\downarrow} as a *submonad* of $C(\cdot + 1)$ or relate their categories of algebras and their presentations. It turns out we will not obtain C^{\downarrow} as an actual submonad of $C(\cdot + 1)$, but there is still an interesting relation between the two.

What we mean by nicely embedded is that there is an idempotent homomorphism $C(X + 1) \rightarrow C(X + 1)$ of \bot -closure which splits through $C^{\downarrow}X$. In the following, we try to use general abstract assumptions similar to this to attain our goal of relating the presentations of the two monads. In particular, what we call *K* below is supposed to be an operation akin to \bot -closure.

The first restrictions we put on *K* were not general enough as we later found that \perp -closure did not satisfy them. Still, we start by discussing them because they give another way to see our construction.

1 General Construction

Let (M, η, μ) be any monad on a category **C**, the full subcategory of EM(M) consisting of only free *M*–algebras can be identified with the Kleisli category **C**_{*M*} whose objects are objects of **C** and morphisms in Hom_{**C**_{*M*}(X, Y) are morphisms in Hom_{**C**}(X, MY) with composition given by $f \circ_M g = \mu_Y \circ Mf \circ g$.}

In this context, a natural family of idempotents like the K_X above is just an idempotent natural transformation $K : id_{\mathbf{C}_M} \Rightarrow id_{\mathbf{C}_M}$.

Remark 2. We will soon see that this *K* induces an idempotent natural transformation $\overline{K} : M \Rightarrow M$ and this may be a better starting point because it is enough for our purposes. However, since \overline{K} does not induce the *K* described above, we still start from *K* and at some point we only use \overline{K} .

Let us show some properties of *K*. First, idempotence says that $K_X \circ_M K_X = K_X$, or equivalently,

$$u_X \circ M(K_X) \circ K_X = K_X. \tag{1}$$

Next, we can apply naturality of *K* to different morphisms in C_M to obtain different identities. Let us use squiggly arrows to denote Kleisli morphisms in diagrams.

Now, recall that these diagrams live in C_M , thus, the following equations are derived from each diagram.

$$\mu_X \circ M(K_X) \circ \mathrm{id}_{MX} = \mu_X \circ M(\mathrm{id}_{MX}) \circ K_{MX} \tag{2}$$

$$\mu_X \circ M(K_X) \circ \mu_X = \mu_X \circ M(\mu_X) \circ K_{MMX}$$
(5)
$$\mu_X \circ M(K_Y) \circ n_Y = \mu_X \circ M(n_Y) \circ K_Y$$
(4)

$$\mu_{X} \circ M(K_{X}) \circ \eta_{X} = \mu_{X} \circ M(\eta_{X}) \circ K_{X}$$
(4)

$$\mu_Y \circ M(K_Y) \circ Mf = \mu_Y \circ MMf \circ K_{MX}$$
(5)

From this, we will construct a monad M^K whose free algebra on X is the image of K applied to the free M-algebra on X. We will also construct a monad map $M \Rightarrow M^K$ expressing M^K as a quotient of M.

Proposition 3. Defining $\overline{K}_X : MX \to MX = \mu_X \circ M(K_X)$, we can show that \overline{K}_X is *idempotent*.

Proof. We show that $\mu_X \circ M(K_X) \circ \mu_X \circ M(K_X) = \mu_X \circ M(K_X)$ by paving the following diagram.

(c) Associativity of μ .

(a) Apply M to (1).

(b) Naturality of μ .

Furthermore, since this \overline{K}_X is the image of K_X under the embedding $\mathbf{C}_M \rightarrow \text{EM}(M)$, we obtain that \overline{K}_X is an *M*–algebra homomorphism. This is restated and proven for completeness below.

Lemma 4. For any *X*, we have $\overline{K}_X \circ \mu_X = \mu_X \circ M(\overline{K}_X)$.

Proof. We pave the following diagram.

Now, if **C** has equalizers,¹ we can define a subfunctor M^K of M as follows. For $X \in \mathbf{C}_0$, let $M^K X$ be the equalizer of \overline{K}_X , $\mathrm{id}_{MX} : MX \to MX$. Namely, there is (a monic) $\iota_X : M^K X \to MX$ satisfying $\overline{K}_X \circ \iota_X = \iota_X$ such that for any $e : Y \to MX$ satisfying $\overline{K}_X \circ e = e$, there is a unique morphism $! : Y \to M^K X$ making (8) commute.

$$\begin{array}{c}
Y \\
\downarrow \\
M^{K}X \xrightarrow{e} MX \xrightarrow{\overline{K}_{X}} MX \\
\xrightarrow{\iota_{X}} MX \xrightarrow{\overline{id_{MX}}} MX
\end{array}$$
(8)

In order to give the action of M^K on morphisms, we need the following lemma.

Lemma 5. \overline{K} is a natural transformation $M \Rightarrow M$.

Proof. We need to show that for any $f : X \to Y$, $\overline{K}_Y \circ Mf = Mf \circ \overline{K}_X$. We have the following derivation.

$\overline{K}_Y \circ Mf = \mu_Y \circ M(K_Y) \circ Mf$	def. \overline{K}
$= \mu_Y \circ MMf \circ K_{MX}$	by (5)
$= Mf \circ \mu_X \circ K_{MX}$	naturality of μ
$= Mf \circ \mu_X \circ M(K_X)$	by (2)
$= Mf \circ \overline{K}_X$	def. \overline{K}

Remark 6. From this point, we do not have to use any hypothesis about *K*. Thus, starting with an idempotent natural transformation $\overline{K} : M \Rightarrow M$ such that $\overline{K}_X : MX \to MX$ is an *M*–algebra homomorphism (with the free algebra structure on *MX*), we can develop the rest of the section. Another very close starting point will be used in the application section.

¹I am pretty sure it is enough if idempotents split in **C**.

Now, for any $f : X \rightarrow Y$, we know that both squares on the R.H.S. of diagram (9) commute (id is trivally a natural transformation).

From this, we can infer that $Mf \circ \iota_X$ equalizes \overline{K}_Y and id_{MY} . Indeed, we have

$$K_{Y} \circ Mf \circ \iota_{X} = Mf \circ K_{X} \circ \iota_{X}$$
$$= Mf \circ id_{MX} \circ \iota_{X}$$
$$= id_{MY} \circ Mf \circ \iota_{X}.$$

Then, from the universality of $M^{K}Y$, there is a unique morphism $M^{K}f : M^{K}X \to M^{K}Y$ making (9) commute. The uniqueness of $M^{K}f$ in (9) also shows that $M^{K}(f \circ g) = M^{K}f \circ M^{K}g$, thus M^{K} is a functor $\mathbf{C} \to \mathbf{C}$.

Proposition 7. The family $\{\iota_X \mid X \in \mathbf{C}_0\}$ is a natural transformation $\iota : M^K \Rightarrow M$ with monic components, so M^K is a subfunctor of M.

Proof. The naturality follows trivially from the commutativity of left square in (9). The monicity comes from the standard result that equalizers are monic. \Box

Observe that by idempotence, \overline{K}_X also equalizes \overline{K}_X and id_{MX} , so we get the following diagram.

In the sequel, we will denote by \hat{K}_X the unique morphism satisfying $\iota_X \circ \hat{K}_X = \overline{K}_X$.

Lemma 8. For any $X \in \mathbf{C}_0$, $\widehat{K}_X \circ \iota_X = \mathrm{id}_{M^K X}$.

Proof. Using the definitions of \widehat{K}_X and ι_X , we have

$$\iota_X \circ K_X \circ \iota_X = K_X \circ \iota_X = \mathrm{id}_{MX} \circ \iota_X = \iota_X \circ \mathrm{id}_{M^K X}.$$

The lemma follows by monicity of ι_X .

Remark 9. One way to summarize this is to say that $\iota_X \circ \widehat{K}_X$ is the splitting of the idempotent \overline{K}_X .

Proposition 10. The family $\{\hat{K}_X \mid X \in \mathbf{C}_0\}$ is a natural transformation with epic components $\hat{K} : M \Rightarrow M^K$.

Proof. First, we claim that for any $f : X \to Y$, $M^K f \circ \hat{K}_X = \hat{K}_Y \circ M f$. We have the following derivation.

$$\iota_{Y} \circ M^{K} f \circ \hat{K}_{X} = M f \circ \iota_{X} \circ \hat{K}_{X}$$
 naturality of ι
= $M f \circ \overline{K}_{X}$ def of \hat{K}_{X}

$$= \overline{K}_{Y} \circ Mf \qquad \text{naturality of } \overline{K}$$
$$= \iota_{Y} \circ \widehat{K}_{Y} \circ Mf \qquad \text{def of } \widehat{K}_{Y}$$

The claim follows since ι_Y is a monomorphism. The components \widehat{K}_X are epimorphisms because they have ι_X as a right inverse by Lemma 8.

1.1 Monadicity of M^K

Next, we want to show that M^K is a monad with unit $\eta^K := \widehat{K} \cdot \eta$ and multiplication $\mu^K := \widehat{K} \cdot \mu \cdot (\iota \diamond \iota)$.² We divide the proof in multiple lemmas.

Lemma 11. For any $X \in \mathbf{C}_0$, $\mu_X \circ M(\iota_X) = \overline{K}_X \circ \mu_X \circ M(\iota_X)$.

Proof. We pave the following diagram.

Lemma 12. Anagolously to (2), we also have $\mu_X \circ M(\overline{K}_X) = \mu_X \circ \overline{K}_{MX}$. *Proof.* We pave the following diagram.

- (a) Apply *M* to (2).
- (b) Def of \overline{K} .
- (c) Associativity of μ .

²We write \diamond for the horizontal composition of natural tranformations.

Now we can prove one side of the unit diagram for the monad M^K commutes.

Lemma 13. For any $X \in \mathbf{C}_0$, $\mu_X^K \circ M^K(\eta_X^K) = \mathrm{id}_{M^K X}$.

Proof. We will show that $\iota_X \circ \mu_X^K \circ M^K(\eta_X^K) = \iota_X$ from which the result follows by monicity of ι_X . We pave the following diagram.

Now for the other side of the unit diagram. **Lemma 14.** For any $X \in \mathbf{C}_0$, $\mu_X^K \circ \eta_{M^K X}^K = \mathrm{id}_{M^K X}$. *Proof.* Alternatively, we pave the following diagram.

(a) Naturality of η .

(d) Monadicity of (M, μ, η) .

(b) Naturality of \widehat{K} .

(e) Lemma ??.

(f) Definition of \widehat{K}_{MX} .

(c) Lemma 8.

Lastly, we show that μ^{K} is associative.

Lemma 15. For any $X \in \mathbf{C}_0$, $\mu^K \circ M^K \mu^K = \mu^K \circ \mu^K M^K$.

Proof. We pave the following diagram.

Theorem 16. *The triple* (M^K, η^K, μ^K) *is a monad.*

Proof. We have to show the following diagrams commute.

Lemmas 13, 14 and 15 respectively show the commutativity of the L.H.S. of (15), the R.H.S. of (15) and (16). $\hfill \Box$

1.2 Relating *M*-algebras and *M^K*-algebras

We already have natural transformations ι and \widehat{K} between M and M^K in both directions, but it is not enough to relate their algebras. For that, we would need for ι and \widehat{K} to be monad maps. Unfortunatley, while \widehat{K} is a monad map as shown below, we have to proceed differently for the other direction.

Theorem 17. The natural transformation $\hat{K} : M \Rightarrow M^K$ is a monad map.

Proof. We have to show the following diagrams commute.

$$\operatorname{id}_{\mathbf{C}} \xrightarrow{\eta} M \qquad \qquad M^{2} \stackrel{\widehat{K} \circ \widehat{K}}{\Longrightarrow} (M^{K})^{2} \\ \downarrow_{\eta^{K}} \qquad \qquad \downarrow_{\widehat{K}} \qquad \qquad \mu \downarrow \qquad \downarrow_{\mu^{K}} \qquad (18) \\ M \stackrel{K}{\Longrightarrow} M^{K} \qquad \qquad M \stackrel{R}{\Longrightarrow} M^{K}$$

(17) is trivial because that is the definition of η^{K} . For (18), we pave the following diagram.

From a standard result, we obtain a functor $U^K : EM(M^K) \to EM(M)$ that sends an algebra (A, α) to $(A, \alpha \circ \widehat{K}_A)$ and acts trivially on morphisms. It is fully faithful because \widehat{K} has epic components.

To go in the other direction, our first attempt was to use the embedding $\iota: M^K \Rightarrow M$ in the following way. Given an *M*–algebra $\alpha: MA \to A$, we expected that the composition $M^KA \xrightarrow{\iota_A} MA \xrightarrow{\alpha} a$ was the natural M^K –algebra on *A* corresponding to α .

However, in general $\alpha \circ \iota_A$ is not an M^K –algebra because it might not satisfy the unit law, that is,

$$\alpha \circ \iota_A \circ \eta^K = \mathrm{id}_A.$$

In other words, ι is possibly not a monad map (as we will see in the application in to C^{\downarrow}).

2 Constructing C^{\downarrow}

Let $M = C(\cdot + 1)$ be the monad of non-empty finitely generated convex sets of subdistributions, we will show that the monad C^{\downarrow} can be constructed with the procedure detailed above. The main idea is that the operation of \bot -closure satisfies the properties of \overline{K} .

Definition 18. Let *X* be a set and let $S \in C(X + 1)$. We say that *S* is \perp -closed if for all $\varphi \in S$,

$$\{\psi \in \mathcal{D}(X+1) \mid \forall x \in X, \psi(x) \le \varphi(x)\} \subseteq S.$$

For a set *X*, we define $K_X : X \to C(X + 1) = x \mapsto cc(\{\delta_x, \delta_\star\})$. We will first show that $\overline{K}_X = \mu_X \circ C(K_X + 1)$ is the operation of \perp -closure, then that \overline{K}_X satisfies the properties described in the previous sections and finally detail the monad we obtain.

Lemma 19. Let X be a set, for any $S \in C(X + 1)$, $\overline{K}_X(S)$ is the smallest \perp -closed set containing S.

Proof. See Theorem 35 here.

Lemma 20. The family $K_X : X \to C(X + 1)$ is natural.

Proof. For any $f : X \to Y$, we have

$$K_{Y}(f(x)) = cc\left(\left\{\delta_{f(x)}, \delta_{\star}\right\}\right) = \mathcal{C}(f+1)(cc\left(\left\{\delta_{x}, \delta_{\star}\right\}\right)) = \mathcal{C}(f+1)(K_{X}(x))).$$

Lemma 21. The family $\overline{K}_X : \mathcal{C}(X + 1) \to \mathcal{C}(X + 1)$ satisfies the following properties:

- 1. *it is natural*,
- 2. each component is idempotent, and
- *3. each component is a homomorphism between the free* $C(\cdot + 1)$ *–algebras.*
- *Proof.* 1. This is a corollary of $K : id_{Set} \Rightarrow C(\cdot + 1)$ being natural as shown in the following derivation. We need to show that for any $f : X \to Y$, we have $\overline{K}_Y \circ C(f + 1) = C(f + 1) \circ \overline{K}_X$. This follows from the following derivation.

$$\overline{K}_{Y} \circ \mathcal{C}(f+1) = \mu_{Y} \circ \mathcal{C}(K_{Y}+1) \circ \mathcal{C}(f+1) \qquad \text{def of } \overline{K}_{Y}$$

$$= \mu_{Y} \circ \mathcal{C}(\mathcal{C}(f+1)+1) \circ \mathcal{C}(K_{X}+1) \qquad \text{nat of } K$$

$$= \mathcal{C}(f+1) \circ \mu_{X} \circ \mathcal{C}(K_{X}+1) \qquad \text{nat of } \mu$$

$$= \mathcal{C}(f+1) \circ \overline{K}_{X} \qquad \text{def of } \overline{K}_{X}$$

2. Since $\overline{K}_X(S)$ is \perp -closed, it is the smallest \perp -closed containing itself, thus $\overline{K}_X(\overline{K}_X(S)) = \overline{K}_X(S)$.

3. This holds because \overline{K}_X is the image of K_X (seen as a Kleisli morphism) under the embedding of the Kleisli category of $\mathcal{C}(\cdot + \mathbf{1})$ into $\text{EM}(\mathcal{C}(\cdot + \mathbf{1}))$.

Remark 22. Apart from the second point, the above proof is very general. Namely, it shows that starting from a natural transformation $K : id_{\mathbb{C}} \Rightarrow M$ such that \overline{K} is idempotent, we can derive all the previous sections.

We find that C^{\downarrow} is the monad of non-empty finitely generated \bot -closed convex sets of subdistributions with the unit being $x \mapsto K_X(x) = \overline{K}_X \circ \eta_X$. For the multiplication, there is a slight surprise; it turns out that the multiplication of \bot -closed sets is already \bot -closed, so there is no need to apply \bot -closure again as in the general case.

In particular, this means the inclusion $\iota : C^{\downarrow} \Rightarrow C(\cdot + 1)$ is not a monad map *only* because it does not commute with the units of the two monads.

3 Conclusion

Let (M, η, μ) be a monad on a category **C** where idempotents split. If you have a natural family of idempotent homomorphisms of free *M*-algebras $MX \rightarrow MX$ given in either of the following ways, then you obtain a monad M^K by splitting these idempotents.

- An idempotent natural transformation $K : id_{C_M} \Rightarrow id_{C_M}$.
- An natural transformation $\overline{K}: M \Rightarrow M$ such that \overline{K}_X is a homomorphism.³
- A natural transformation $K : id_{\mathbb{C}} \Rightarrow M$ such that $\mu \circ MK$ is idempotent.

³Equivalently, a natural transformatin $F^M \Rightarrow F^M$, where F^M is the free algebra functor.