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Abstract

When studying the monad C↓ which appears in a paper of mine, I worked
out a very general construction that yields a quotient of a monad starting with a
natural family of idempotent homomorphisms. I do not think the result is very
surprising, but I think it may have some applications I am not seeing.

Remark 1. You can skip the parts where we discuss C↓ and C(−+ 1), this example
was simply our starting point.
The following results were motivated by observing that the free C↓–algebra on X
can be nicely embedded into the free C(·+ 1)–algebra on X and thus, there might
be a way to view C↓ as a submonad of C(·+ 1) or relate their categories of algebras
and their presentations. It turns out we will not obtain C↓ as an actual submonad of
C(·+ 1), but there is still an interesting relation between the two.

What we mean by nicely embedded is that there is an idempotent homomor-
phism C(X + 1)→ C(X + 1) of ⊥–closure which splits through C↓X. In the follow-
ing, we try to use general abstract assumptions similar to this to attain our goal of
relating the presentations of the two monads. In particular, what we call K below is
supposed to be an operation akin to ⊥–closure.

The first restrictions we put on K were not general enough as we later found that
⊥–closure did not satisfy them. Still, we start by discussing them because they give
another way to see our construction.

1 General Construction

Let (M, η, µ) be any monad on a category C, the full subcategory of EM(M) consist-
ing of only free M–algebras can be identified with the Kleisli category CM whose ob-
jects are objects of C and morphisms in HomCM (X, Y) are morphisms in HomC(X, MY)
with composition given by f ◦M g = µY ◦M f ◦ g.

In this context, a natural family of idempotents like the KX above is just an
idempotent natural transformation K : idCM ⇒ idCM .
Remark 2. We will soon see that this K induces an idempotent natural transformation
K : M ⇒ M and this may be a better starting point because it is enough for our
purposes. However, since K does not induce the K described above, we still start
from K and at some point we only use K.

Let us show some properties of K. First, idempotence says that KX ◦M KX = KX ,
or equivalently,

µX ◦M(KX) ◦ KX = KX . (1)

Next, we can apply naturality of K to different morphisms in CM to obtain different
identities. Let us use squiggly arrows to denote Kleisli morphisms in diagrams.

1

https://arxiv.org/abs/2012.00382


MX X

MX X

idMX

KMX KX

idMX

(2)
MMX X

MMX X

KMMX

µX

KX

µX

(3)

X X

X X

KX

ηX

KX

ηX

(4)
MX Y

MX Y

M f

KMX KY

M f

(5)

Now, recall that these diagrams live in CM, thus, the following equations are derived
from each diagram.

µX ◦M(KX) ◦ idMX = µX ◦M(idMX) ◦ KMX (2)
µX ◦M(KX) ◦ µX = µX ◦M(µX) ◦ KMMX (3)
µX ◦M(KX) ◦ ηX = µX ◦M(ηX) ◦ KX (4)

µY ◦M(KY) ◦M f = µY ◦MM f ◦ KMX (5)

From this, we will construct a monad MK whose free algebra on X is the image of
K applied to the free M–algebra on X. We will also construct a monad map M⇒ MK

expressing MK as a quotient of M.

Proposition 3. Defining KX : MX → MX = µX ◦ M(KX), we can show that KX is
idempotent.

Proof. We show that µX ◦ M(KX) ◦ µX ◦ M(KX) = µX ◦ M(KX) by paving the fol-
lowing diagram.

MX MMX

MMX MMMX

MX MMX MX

M(KX)

M(KX)

(a)
µX

µX

MM(KX)

(b)

M(µX)

µMX

(c)

M(KX) µX

(6)

(a) Apply M to (1).

(b) Naturality of µ.

(c) Associativity of µ.

Furthermore, since this KX is the image of KX under the embedding CM →
EM(M), we obtain that KX is an M–algebra homomorphism. This is restated and
proven for completeness below.

Lemma 4. For any X, we have KX ◦ µX = µX ◦M(KX).
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Proof. We pave the following diagram.

MMX MMX

MMMX

MMX

MX MX

µX

KX

µX

M(KX)

M(KX) µX

M(µX)

µMX

MM(KX)
(a)

(b) (c)

(d)

(7)

(a) Def of KX and functoriality of M.

(b) Naturality of µ.

(c) Associativity of µ.

(d) Def of KX .

Now, if C has equalizers,1 we can define a subfunctor MK of M as follows. For
X ∈ C0, let MKX be the equalizer of KX , idMX : MX → MX. Namely, there is (a
monic) ιX : MKX → MX satisfying KX ◦ ιX = ιX such that for any e : Y → MX
satisfying KX ◦ e = e, there is a unique morphism ! : Y → MKX making (8) commute.

Y

MKX MX MX

e
!

ιX

KX

idMX

(8)

In order to give the action of MK on morphisms, we need the following lemma.

Lemma 5. K is a natural transformation M⇒ M.

Proof. We need to show that for any f : X → Y, KY ◦M f = M f ◦ KX . We have the
following derivation.

KY ◦M f = µY ◦M(KY) ◦M f def. K
= µY ◦MM f ◦ KMX by (5)
= M f ◦ µX ◦ KMX naturality of µ

= M f ◦ µX ◦M(KX) by (2)

= M f ◦ KX def. K

Remark 6. From this point, we do not have to use any hypothesis about K. Thus,
starting with an idempotent natural transformation K : M ⇒ M such that KX :
MX → MX is an M–algebra homomorphism (with the free algebra structure on
MX), we can develop the rest of the section. Another very close starting point will
be used in the application section.

1I am pretty sure it is enough if idempotents split in C.
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Now, for any f : X → Y, we know that both squares on the R.H.S. of diagram (9)
commute (id is trivally a natural transformation).

MKX MX MX

MKY MY MY

ιX

MK f

KX

idMX
M f M f

ιY

KY

idMY

(9)

From this, we can infer that M f ◦ ιX equalizes KY and idMY. Indeed, we have

KY ◦M f ◦ ιX = M f ◦ KX ◦ ιX

= M f ◦ idMX ◦ ιX

= idMY ◦M f ◦ ιX .

Then, from the universality of MKY, there is a unique morphism MK f : MKX →
MKY making (9) commute. The uniqueness of MK f in (9) also shows that MK( f ◦
g) = MK f ◦MKg, thus MK is a functor C→ C.

Proposition 7. The family {ιX | X ∈ C0} is a natural transformation ι : MK ⇒ M with
monic components, so MK is a subfunctor of M.

Proof. The naturality follows trivially from the commutativity of left square in (9).
The monicity comes from the standard result that equalizers are monic.

Observe that by idempotence, KX also equalizes KX and idMX , so we get the
following diagram.

MX

MKX MX MX

KXK̂X

ιX

KX

idMX

(10)

In the sequel, we will denote by K̂X the unique morphism satisfying ιX ◦ K̂X = KX .

Lemma 8. For any X ∈ C0, K̂X ◦ ιX = idMK X .

Proof. Using the definitions of K̂X and ιX , we have

ιX ◦ K̂X ◦ ιX = KX ◦ ιX = idMX ◦ ιX = ιX ◦ idMK X .

The lemma follows by monicity of ιX .

Remark 9. One way to summarize this is to say that ιX ◦ K̂X is the splitting of the
idempotent KX .

Proposition 10. The family {K̂X | X ∈ C0} is a natural transformation with epic compo-
nents K̂ : M⇒ MK.

Proof. First, we claim that for any f : X → Y, MK f ◦ K̂X = K̂Y ◦M f . We have the
following derivation.

ιY ◦MK f ◦ K̂X = M f ◦ ιX ◦ K̂X naturality of ι

= M f ◦ KX def of K̂X
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= KY ◦M f naturality of K

= ιY ◦ K̂Y ◦M f def of K̂Y

The claim follows since ιY is a monomorphism. The components K̂X are epimor-
phisms because they have ιX as a right inverse by Lemma 8.

1.1 Monadicity of MK

Next, we want to show that MK is a monad with unit ηK := K̂ · η and multiplication
µK := K̂ · µ · (ι � ι).2 We divide the proof in multiple lemmas.

Lemma 11. For any X ∈ C0, µX ◦M(ιX) = KX ◦ µX ◦M(ιX).

Proof. We pave the following diagram.

MMX MX

MMKX MMMX MMX

MMX MX

µX

MM(KX)

M(KX)

(c) M(KX)

M(ιX)

M(ιX)

(a) (b) µMX

M(µX)
(d) µX

µX

(11)

(a) By defintion of MK.

(b) Functoriality of M and def of KX .

(c) By naturality of µ.

(d) Associativity of µ.

Lemma 12. Anagolously to (2), we also have µX ◦M(KX) = µX ◦ KMX .

Proof. We pave the following diagram.

MMX MMMX MMX

MMMX

MMX MX

M(KX)

MM(KX)

M(KMX)

KMX

M(µX)

(a)
µX(b)

M(µX)

µMX
(c)

µX

(12)

(a) Apply M to (2).

(b) Def of K.

(c) Associativity of µ.

2We write � for the horizontal composition of natural tranformations.
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Now we can prove one side of the unit diagram for the monad MK commutes.

Lemma 13. For any X ∈ C0, µK
X ◦MK(ηK

X) = idMK X .

Proof. We will show that ιX ◦ µK
X ◦MK(ηK

X) = ιX from which the result follows by
monicity of ιX . We pave the following diagram.

MKX MK MX MK MK

MX MMX MMKX

MMX MMX

MX MX

MX MKX

MK(ηX) MK(K̂X)

ιMK X

M(ιX)

µX

K̂X

ιX

ιX

KX

µX

M(KX)

M(ιX)

ιX

M(ηX) M(K̂X)

ιMX

M(KX)

KX

µXidMX

MK(ηK
X)

µK
X(f)

(a) (b)

(c)

(d)

(e)

(g)

(h)

(i)

(13)

(a) Naturality of ι.

(b) Naturality of ι.

(c) Monadicity of (M, η, µ).

(d) Apply M to KX = ιX ◦ K̂X .

(e) Apply M to KX ◦ ιX = ιX .

(f) KX ◦ ιX = ιX .

(g) Lemma 4.

(h) Lemma 4.

(i) Def of K̂.

Now for the other side of the unit diagram.

Lemma 14. For any X ∈ C0, µK
X ◦ ηK

MK X = idMK X .

Proof. Alternatively, we pave the following diagram.

MKX MMKX MK MKX

MX MMX MMX MK MX

MKX MX MMX

ηMK X

ιX

idMK X

(a)

K̂MK X

M(ιX)
M(ιX) (b) MK(ιX)

(c)

idMX

ηMX

(d)
µX

(e)

K̂MX

KMX

(f)
ιMX

K̂X
µX

(14)
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(a) Naturality of η.

(b) Naturality of K̂.

(c) Lemma 8.

(d) Monadicity of (M, µ, η).

(e) Lemma ??.

(f) Definition of K̂MX .

Lastly, we show that µK is associative.

Lemma 15. For any X ∈ C0, µK ◦MKµK = µK ◦ µK MK.

Proof. We pave the following diagram.

MK MK MK MK MMK MK MM MK M MK MK

MMK MK MMMK MMM MM MK M

MMMK MMM MM

MMK M

MK MK MMK MM M MK

(ι�ι)MK

µMK

K̂MK

ι�ι

µ K̂

MK(ι�ι)

MKµ MK K̂

ι�ι

µ

K̂

ιMK MK

MιMK

MK ιMK MK Mι

ιMK Mι

MιMK

ιMMK

MMι

ιMM

Mµ

ιM MK ι

ιM

MKK

MK

KMK

µMK

MMι

µM

Mµ

(a) (b) (c)

(g)

(h)

(j)

(d)

(e)

(f)

(i)

(a) Naturality of ι.

(b) Naturality of ι.

(c) Naturality of ι.

(d) Def of K̂.

(e) Naturality of ι.

(f) Lemma 11 acted on the left by M.

(g) Lemma 11 acted on the right by MK.

(h) Naturality of µ.

(i) Associativity of µ.

(j) Def of K̂MK X .

Theorem 16. The triple (MK, ηK, µK) is a monad.

Proof. We have to show the following diagrams commute.

MK (MK)2 MK

MK
1MK

MηK

µK
1MK

ηK MK

(15)

(MK)3 (MK)2

(MK)2 M

µK MK

MKµK

µK

µK

(16)

Lemmas 13, 14 and 15 respectively show the commutativity of the L.H.S. of (15), the
R.H.S. of (15) and (16).
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1.2 Relating M–algebras and MK–algebras

We already have natural transformations ι and K̂ between M and MK in both direc-
tions, but it is not enough to relate their algebras. For that, we would need for ι and
K̂ to be monad maps. Unfortunatley, while K̂ is a monad map as shown below, we
have to proceed differently for the other direction.

Theorem 17. The natural transformation K̂ : M⇒ MK is a monad map.

Proof. We have to show the following diagrams commute.

idC M

MK
ηK

η

K̂ (17)

M2 (MK)2

M MK

µ

K̂�K̂

µK

K̂

(18)

(17) is trivial because that is the definition of ηK. For (18), we pave the following
diagram.

MMX MK MX µK
X

MMX MK MX

MMX MMX

MX MMX

MX MKX
K̂X

KMX

K̂X
KX

µX

KMX

KMX

K̂MX

ιMX

MK(K̂X)

MK(ιX)

ιMX

MK(KX)

M(KX)

µX

K̂X

µX

µK
X

K̂�K̂

µX

(e)

(a) (b)

(c) (d)

(f)

(g)

(h)

(19)

(a) Def of K̂MX .

(b) Def of K̂X .

(c) Idempotence of K̂MX .

(d) Naturality of ι.

(e) Lemmas 4 and 12.

(f) Lemma 12.

(g) Paths are equal.

(h) Lemma 8 and KX = ιX ◦ K̂X .

From a standard result, we obtain a functor UK : EM(MK)→ EM(M) that sends
an algebra (A, α) to (A, α ◦ K̂A) and acts trivially on morphisms. It is fully faithful
because K̂ has epic components.

To go in the other direction, our first attempt was to use the embedding ι : MK ⇒
M in the following way. Given an M–algebra α : MA → A, we expected that the

composition MK A MA a
ιA α was the natural MK–algebra on A corre-

sponding to α.
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However, in general α ◦ ιA is not an MK–algebra because it might not satisfy the
unit law, that is,

α ◦ ιA ◦ ηK = idA.

In other words, ι is possibly not a monad map (as we will see in the application in
to C↓).

2 Constructing C↓

Let M = C(· + 1) be the monad of non-empty finitely generated convex sets of
subdistributions, we will show that the monad C↓ can be constructed with the pro-
cedure detailed above. The main idea is that the operation of ⊥–closure satisfies the
properties of K.

Definition 18. Let X be a set and let S ∈ C(X + 1). We say that S is ⊥–closed if for
all ϕ ∈ S,

{ψ ∈ D(X + 1) | ∀x ∈ X, ψ(x) ≤ ϕ(x)} ⊆ S.

For a set X, we define KX : X → C(X + 1) = x 7→ cc ({δx, δ?}). We will first
show that KX = µX ◦ C(KX + 1) is the operation of ⊥–closure, then that KX satisfies
the properties described in the previous sections and finally detail the monad we
obtain.

Lemma 19. Let X be a set, for any S ∈ C(X + 1), KX(S) is the smallest ⊥–closed set
containing S.

Proof. See Theorem 35 here.

Lemma 20. The family KX : X → C(X + 1) is natural.

Proof. For any f : X → Y, we have

KY( f (x)) = cc
({

δ f (x), δ?
})

= C( f + 1)(cc ({δx, δ?})) = C( f + 1)(KX(x))).

Lemma 21. The family KX : C(X + 1)→ C(X + 1) satisfies the following properties:

1. it is natural,

2. each component is idempotent, and

3. each component is a homomorphism between the free C(·+ 1)–algebras.

Proof. 1. This is a corollary of K : idSet ⇒ C(· + 1) being natural as shown in
the following derivation. We need to show that for any f : X → Y, we have
KY ◦ C( f + 1) = C( f + 1) ◦ KX . This follows from the following derivation.

KY ◦ C( f + 1) = µY ◦ C(KY + 1) ◦ C( f + 1) def of KY

= µY ◦ C(C( f + 1) + 1) ◦ C(KX + 1) nat of K
= C( f + 1) ◦ µX ◦ C(KX + 1) nat of µ

= C( f + 1) ◦ KX def of KX

2. Since KX(S) is ⊥–closed, it is the smallest ⊥–closed containing itself, thus
KX(KX(S)) = KX(S).
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3. This holds because KX is the image of KX (seen as a Kleisli morphism) under
the embedding of the Kleisli category of C(·+ 1) into EM(C(·+ 1)).

Remark 22. Apart from the second point, the above proof is very general. Namely,
it shows that starting from a natural transformation K : idC ⇒ M such that K is
idempotent, we can derive all the previous sections.

We find that C↓ is the monad of non-empty finitely generated ⊥–closed convex
sets of subdistributions with the unit being x 7→ KX(x) = KX ◦ ηX . For the multipli-
cation, there is a slight surprise; it turns out that the multiplication of ⊥–closed sets
is already ⊥–closed, so there is no need to apply ⊥–closure again as in the general
case.

In particular, this means the inclusion ι : C↓ ⇒ C(·+ 1) is not a monad map only
because it does not commute with the units of the two monads.

3 Conclusion

Let (M, η, µ) be a monad on a category C where idempotents split. If you have
a natural family of idempotent homomorphisms of free M–algebras MX → MX
given in either of the following ways, then you obtain a monad MK by splitting
these idempotents.

• An idempotent natural transformation K : idCM ⇒ idCM .

• An natural transformation K : M⇒ M such that KX is a homomorphism.3

• A natural transformation K : idC ⇒ M such that µ ◦MK is idempotent.

3Equivalently, a natural transformatin FM ⇒ FM , where FM is the free algebra functor.
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