
SEM

SEMANTICS COLUMN
PRAKASH PANANGADEN,
School of Computer Science, McGill University

It is with great sadness that the SIGLOG community learned of the passing away of
Philip J. Scott in December 2023. He was a leader of the community and made major
contributions to type theory, polymorphic �-calculus, bounded linear logic, Geometry
of Interaction and many other topics. He and Jim Lambek wrote the classic textbook,
“Introduction to Higher-order Categorical Logic” which exposed the computer science
community to what were then exotic topics for us: type theory and categories, categor-
ical proof theory and toposes.

For me he was a personal friend as well as an occasional collaborator. In the 1990’s
and early 2000’s I often visited Ottawa and stayed with him and his wife Marcia. He
taught me things, like hyperdoctrines, that I could not find easily in an accessible form.
He had been in Montreal as a post-doctoral fellow of the famous McGill category theory
group in the 1980’s and retained his friendship with many members of that group, par-
ticularly Robert Seely. In his last few months he was struggling with health problems,
as was I at the time, so we shared medical experiences. I was amazed at how upbeat
he was in the face of serious setbacks. As late as November he wrote to me saying,
“perhaps we can meet in Edinburgh next year”. He and I shared a special fondness for
Edinburgh and spent some time there together in 2011. Alas, the Edinburgh reunion
that we were hoping for will never happen now.

I have planned two articles on Phil’s contributions to the computer science commu-
nity. Of course, he made many contributions to the logic and category theory commu-
nity in the time before contacts between these communities became as tight as it is
now. It is impossible to cover all his contributions in one article or indeed even a series
of articles. I have chosen to have more in-depth coverage of a couple of selected topics
rather than attempt a comprehensive coverage.

The following article by Jean-Simon Pascual-Lemay focusses on Geometry of Inter-
action. After a personal dedication, the article gives a beautiful account of the Geome-
try of Interaction from a categorical perspective, unlike the operator algebraic formu-
lation originally presented by Girard. It is written with expository skill which should
allow anyone in the semantics community to read it easily. A second article is planned
for later in the year.

ACM SIGLOG News 3 April 2024, Vol. 11, No. 2

A Brief Survey on the Categorical Semantics
for Geometry of Interaction
In Memory of Phil Scott

Jean-Simon Pacaud Lemay, Macquarie University, Australia

Dedication to Phil Scott (1947 – 2023)
Philip Scott, better known to his friends and colleagues as Phil, was a Professor of
Mathematics at the University of Ottawa (Canada). Sadly, Phil passed away1 after a
long battle with cancer – which he bravely fought till the very end – on 18 December
2023 at the age of 76. Phil was born on 27 December 1947 in Leeds (UK). When Phil
was still a baby, his family moved to North Carolina (USA), where he spent his child-
hood. He went on to study mathematics at the University of North Carolina at Chapel
Hill (USA), before moving to Canada in the 1970s. Phil did his Ph.D. at the University
of Waterloo (Canada), supervised by Denis Higgs, and obtained his doctorate in pure
mathematics in 1976. Phil joined the Mathematics Department at the University of
Ottawa in 1982, eventually becoming Professor Emeritus, and remained there until
his passing.

Phil was an amazing mathematician and had an illustrious career. Phil’s most cel-
ebrated work is most likely his book with Joachim (Jim) Lambek: “Introduction To
Higher-Order Categorical Logic” (1986), which is still to this day highly regarded and
is one of the most essential books in category theory. Upon the news of Phil’s passing,
one of the most recurring comments from mathematicians and computer scientists

1Obituary on the Canadian Mathematics Society Website:
https://notes.math.ca/en/article/in-memoriam-phil-scott-1947-2023/

ACM SIGLOG News 4 April 2024, Vol. 11, No. 2

from various research fields was how Phil and Jim’s book was their introduction to
category theory and categorical logic, shaping careers and research interests. Even as
he was fighting cancer, Phil continued to be an active member in his mathematical
communities.

On top of his research work, Phil was also an outstanding and supportive mentor to
young researchers at all levels, as well as a wonderful teacher. He would always find
the time for students, both those who were struggling in classes and those who were in-
terested in pursuing a career in mathematics. Phil was also always happy discussing
with young researchers about their research and giving many valuable suggestions.
Even till the very end, Phil was supporting the young researchers under his supervi-
sion at Ottawa, demonstrating his dedication to being an excellent supervisor.

On a personal level, as well as being my friend, Phil was an important figure in the
early stages of my academic studies and had quite an impact on the direction of my
research interests. I first met Phil in my first year of undergrad, where he was my
teacher for an introduction to group theory course2. At the time, I was way over my
head and completely lost in my pure math courses: I didn’t know how to do a proof, let
alone what a proof actually was. It wasn’t until Phil helped me that I was finally able
to understand what was going on. I still have a clear memory of Phil taking the time
after class, going through step by step with me on how to do a basic proof. He explained
things so clearly. He genuinely seemed to care that I understood and succeeded. I truly
believe that this was a pivotal moment in my academic career: without Phil’s help, I
would have probably kept on struggling and not learned to love mathematics (let alone
go on to make it my career).

Throughout the rest of my undergrad, I had Phil again as a teacher for several other
courses, such as advanced linear algebra courses and even history of mathematics
courses, which he had lots of fun teaching. Sometime near the end of my undergrad,
I was trying to figure out what field of research I should go work in. Seeking advice
from Phil, I still remember our discussion where I was first introduced to this foreign
concept of “category theory”. As a motivating example, Phil used the concept that a
vector space was not necessarily isomorphic to its double dual. In hindsight, I now
understand that Phil was slowly introducing me to star-autonomous categories and
Linear Logic. I credit Phil with opening the door to the path that led me to become a
category theorist.

After my time at the University of Ottawa, Phil continued to be a mentor: he was al-
ways very supportive and happy to discuss my latest research interests or new results.
I would meet up with Phil many times at the Foundational Methods in Computer Sci-
ence (FMCS) workshop – the unofficial yearly Canadian category theory meetup. Any-
time I passed through Ottawa, Phil would always bring us to his favourite restaurant,
the Green Door – which was a walk or bike ride down the canal from the University of
Ottawa. I also got the chance to spend lots of time with Phil when we both happened
to be visiting the University of Edinburgh (UK) at the same time.

Phil’s passing is a great loss for many communities, including the Canadian math-
ematics community and the category theory community. Phil was incredibly kind, a
fantastic mentor, and a great friend to many of us. Condolences to his loved ones. May
he rest in peace.

Acknowledgements
I would first like to thank Prakash Panangaden for inviting me to write this survey pa-
per in memory of Phil. I’d also like to thank Samson Abramsky, Esfandiar Haghverdi,

2At this point, one should highlight that the University of Ottawa is a bilingual university, teaching courses
in both English and French. As such, Phil taught me and many others in French.

ACM SIGLOG News 5 April 2024, Vol. 11, No. 2

and Masahito Hasegawa for looking over the paper and making sure that my history
was correct. I’d also like to give a big thank you to Prakash Panangaden, Esfandiar
Haghverdi, Rick Blute, Robin Cockett, Chris Heunen, Masahito Hasegawa, and Gor-
don Plotkin for their encouragement and their insights about Phil and his work.

1. INTRODUCTION
Phil Scott had an illustrious career and made many important contributions3 in cat-
egory theory, (linear) logic, and theoretical computer science. Scott is probably best
known for his collaborations with J. Lambek on categorical logic and categorical proof
theory, and, in particular, their all-important landmark book “Introduction To Higher-
Order Categorical Logic” [Lambek and Scott(1988)]. However, another area that Scott
was particularly interested in was the theory of traced monoidal categories [Joyal
et al.(1996)], an area that he and his coauthors significantly contributed to. One as-
pect of traced monoidal categories in particular that Scott was interested in was using
traced monoidal categories to provide a categorical framework for the Geometry of In-
teraction. Scott worked on this mostly with S. Abramsky and E. Haghverdi, the latter
of whom worked on this topic for his thesis [Haghverdi(2000)] as a PhD student of
Scott at the University of Ottawa. In dedication to Phil Scott, we provide an intro-
ductory level brief survey of this story, focusing mainly on the contents of [Abramsky
et al.(2002); Haghverdi and Scott(2006)].

Geometry of Interaction was introduced by J.-Y. Girard in [Girard(1989b)], which he
followed up on in [Girard(1988); Girard(1989a); Girard(1995)], and is a particular in-
terpretation of Linear Logic [Girard(1987)]. The heart of Geometry of Interaction is to
model mathematically the dynamics of cut-elimination. Usually, in a categorical model
of a logic, formulas are interpreted by objects and proofs by morphisms, where these
interpretations are denoted using the brackets J�K. The soundness of the categorical
model means that if a proof ⇧ reduces to another ⇧0 by cut-elimination, then their in-
terpretations must be equal as morphisms in the categorical model, J⇧K = J⇧0K. Thus,
denotational semantics is, in this sense, static, and this kind of interpretation leads
to a somewhat bland notion of invariant for cut-elimination. So with the Geometry of
Interaction, Girard set out to give a way of modelling the dynamics of cut-elimination
with a more meaningful invariant, called the Execution formula. Naively, the dynam-
ical interpretation of proofs can be visually represented as follows. For a proof ⇧ of a
sequence ` [�],�, where � is a sequence of formulas and � is a sequence of cut for-
mulas that have been applied to the proof of ` �, its interpretation J⇧K is graphically
represented by an input-output box:

J⇧K
I I

I I

�I I

3A list of some of Phil Scott’s important papers can be found here on his website:
https://www.site.uottawa.ca/⇠phil/papers/

ACM SIGLOG News 6 April 2024, Vol. 11, No. 2

where � models the cuts in the proof of ` � (i.e. � models �). Then cut-elimination is
given by the Execution formula EX (J⇧K, �), which involves feedback on �:

J⇧K
I I

I I

�J

HN

J

Girard’s first model for the Geometry of Interaction was based on operator algebras
and Hilbert spaces, and thus was expressed using matrices. Later on, Girard also dis-
cussed modelling Geometry of Interaction using von Neumann algebras [Girard(2006);
Girard(2011)]. For a more in-depth introduction to the Geometry of Interaction, see
[Haghverdi(2000), Chapter 5].

Per [Haghverdi and Scott(2010b)], categorial foundations of the Geometry of In-
teraction were first considered in lectures by Abramsky and by M. Hyland in the
early 1990s. The first formal categorical framework for Geometry of Interaction was
given by Abramsky and R. Jagadeesan in their LICS1992 paper [Abramsky and Ja-
gadeesan(1992b)], with the journal version appearing soon after [Abramsky and Ja-
gadeesan(1994b)]. Here, Abramsky and Jagadeesan give a “structurally isomorphic”
account of the Geometry of Interaction interpretation based on a different underly-
ing model to Girard’s operator algebra model. Abramsky and Jagadeesan’s model’s
setting is instead domain theoretic, so the monoidal structure is given by the prod-
uct rather than the coproduct, and so feedback is interpreted in terms of least fixed
points. Using domain equations, Abramsky and Jagadeesan extend this interpreta-
tion to the whole of Linear Logic. In [Abramsky and Jagadeesan(1992a); Abramsky
and Jagadeesan(1994a)], Abramsky and Jagadeesan introduced game semantics for
Multiplicative Linear Logic, where they also demonstrated how the Geometry of In-
teraction’s Execution formula can be interpreted in the category of sets and partial
injective functions, where now the monoidal structure is given by the coproduct and
the feedback is interpreted by iteration. This showed that there were two different-
looking ways of providing what was essentially structurally the same Geometry of
Interaction. One is the “wave style” version, where the monoidal product is a product
and the feedback is given by a global flow of information through the system. The other
is the “particle style” version, where the monoidal product is a coproduct and feedback
is thought of as a token following paths in a graph.

Many of the ideas for a categorical interpretation of some sort of feedback opera-
tor appear in [Abramsky and Jagadeesan(1992b); Abramsky and Jagadeesan(1994b);
Abramsky and Jagadeesan(1992a); Abramsky and Jagadeesan(1994a)]. The precise
axiomatization of these ideas can be given in terms of traced monoidal categories,
which A. Joyal, R. Street, and D. Verity introduced in [Joyal et al.(1996)]. Motivated by
knot theory, traced monoidal categories were defined initially in the braided monoidal
setting. However, it is instead traced symmetric monoidal categories that give the de-
sired setting for the feedback used in Geometry of Interaction. Indeed, Abramsky pro-
vides the categorical interpretation of the Geometry of Interaction using traced sym-
metric monoidal categories in [Abramsky(1996)], as well as providing numerous exam-
ples. In particular, Abramsky introduced the GOI-construction in [Abramsky(1996)],
which is a construction that yields a compact closed category whose composition is
given by the Execution formula. This formulation of using traced monoidal categories
to provide the categorical semantics of Geometry of Interaction is referred to by Scott
and Haghverdi as the “Abramsky program”. However, the interpretation of the Geom-

ACM SIGLOG News 7 April 2024, Vol. 11, No. 2

etry of Interaction in [Abramsky(1996)] was only done for the multiplicative fragment
of Linear Logic. This left open the problem of interpreting a more expressive fragment,
in particular one capable of encoding the �-calculus.

Following the Abramsky program, Scott, Abramsky, and Haghverdi then introduced
the concept of Geometry of Interaction Situations in [Abramsky et al.(2002)] which are
traced symmetric monoidal categories that have the necessary structure in which to
interpret an algebraic model of the multiplicative and exponential fragments of Linear
Logic, called a linear combinatory algebra. Scott, Abramsky, and Haghverdi’s Geome-
try of Interaction Situations gave the first fully developed categorical axiomatization
for the Geometry of Interaction, covering all known examples as well. Afterwards,
Scott and Haghverdi in [Haghverdi and Scott(2006)] used unique decomposition cat-
egory versions of Geometry of Interaction Situations, which give particle style mod-
els, to recapture Girard’s original operator algebra model of Geometry of Interaction
and Execution formula. In follow-up papers [Haghverdi and Scott(2010a); Haghverdi
and Scott(2010b)], Scott and Haghverdi continued applying unique decomposition cat-
egories to give a deeper analysis of Girard’s construction.

Scott and his coauthors’ contributions to the categorical semantics of the Geometry
of Interaction are important concepts in the theory of traced monoidal categories, influ-
encing and motivating many research topics in the area. We survey the main concepts
of the Abramsky program mentioned above. Of course, for a complete story, we invite
the interested reader to see the two main papers surveyed [Abramsky et al.(2002);
Haghverdi and Scott(2006)], Haghverdi’s thesis [Haghverdi(2000)], an introductory
paper on this story by Scott and Haghverdi [Haghverdi and Scott(2010a)], as well as
some very nicely written notes by M. Shirahata [Shirahata(2003)].

2. TRACED SYMMETRIC MONOIDAL CATEGORIES
Traced monoidal categories were introduced by Joyal, Street, and Verity in [Joyal
et al.(1996)], and were initially defined as balanced monoidal categories equipped with
a trace operator. For the story of Geometry of Interaction, one works in the special case
of a traced symmetric monoidal category, which is instead a symmetric monoidal cate-
gory equipped with a trace operator. In this section, we review the definition of traced
symmetric monoidal categories and their graphical representation.

We assume that the reader is familiar with the basics of monoidal category the-
ory. For an introduction to monoidal category theory, we invite the reader to see
[Blute and Scott(2004); Heunen and Vicary(2019); Selinger(2010)]. For a category C,
we will denote the class of objects as Ob(C) and denote objects using capital letters
A,B,X, Y, etc. 2 Ob(C). Homsets will be denoted as C(X,Y) and maps will be denoted
by minuscule letters f, g, h, etc. 2 C(X,Y). Arbitrary maps will be denoted using an
arrow f : X ! Y , identity maps as 1X : X ! X, and for composition we will use
diagrammatic notation, that is, the composition of f : X ! Y followed by g : Y ! Z

is denoted as f ; g : X ! Z. Following the conventions used in [Abramsky et al.(2002);
Haghverdi and Scott(2006)], for simplicity, we will work with strict monoidal cate-
gories, meaning that the associativity and unit isomorphisms for the monoidal product
are equalities. So for an arbitrary symmetric (strict) monoidal category C, we denote
its monoidal product as ⌦, the monoidal unit as I, and the natural symmetry isomor-
phism as �X,Y : X ⌦ Y

⇠=
�! Y ⌦X. Strictness allows us to write A1 ⌦A2 ⌦ . . .⌦An and

A⌦ I = A = I ⌦A.
Symmetric monoidal categories enjoy a wonderfully practical graphical calculus,

which allows one to write equations of maps in a symmetric monoidal category as
string diagrams. This graphical calculus is extremely useful since it provides a more
visual representation, which often leads to better intuition for definitions, computa-

ACM SIGLOG News 8 April 2024, Vol. 11, No. 2

tions, and proofs. For an in-depth introduction to the graphical calculus of monoidal
categories, we invite the reader to see [Heunen and Vicary(2019); Selinger(2010)].

In this paper, following the conventions in [Abramsky et al.(2002); Haghverdi and
Scott(2006)], our string diagrams are to be read horizontally from left to right. So for
an arbitrary map f : X1⌦ . . .⌦Xn ! Y1⌦ . . .⌦Ym will be denoted as a box with inputs
on the left, one wire for each Xi, and outputs on the right, with one wire for each Yj :

f

Y1X1 II

...
Xi I

...
Xn I

...
YjI

...
YmI

f : X1 ⌦ . . .⌦Xn ! Y1 ⌦ . . .⌦ Ym

When there is no confusion, we often simply omit the object labels on the wires of our
string diagrams. In the special case that one of the inputs or outputs is the monoidal
unit I, we do not draw a wire representing it (which lines up with the idea that we are
working in the strict case). For example:

fX I

f : X ! I

g XI

g : I ! X

h

h : I ! I

Maps of type I ! I, so boxes with no input or output wires, are often called “scalars”.
Composition is written sequentially, while identity maps are simply drawn as a wire

with no box. For example, in the simplest case:

fX I I g ZI

f ; g : X ! Z

IX X

1X : X ! X

Note that the identity for the monoidal unit 1I : I ! I is drawn as nothing. On the
other hand, the monoidal product of maps is written by placing the maps in parallel,
while the symmetry isomorphism is drawn by crossing the wires:

fX I YI

gZ I WI

f ⌦ g : X ⌦ Z ! Y ⌦W

I

I

I

I

X

X

Y

Y

�X,Y : X ⌦ Y ! Y ⌦X

As such, the usual composition is referred to as “sequential composition”, while the
monoidal product is referred to as “parallel composition”. The advantage of a sym-
metric monoidal category is that symmetry allows us to cross wires without having
to worry about which wire passes on top of the other wire. So we may think of the
crossing of wires as the wires passing through each other uninterrupted.

Of course, with all this machinery, we can write out more complex maps in our
symmetric monoidal category. For example for maps f : Y ! A ⌦ B ⌦ C, g :
X ⌦ A ⌦ B ! Z ⌦ W , h : W ! I, and k : Z ⌦ C ! E ⌦ F , the composite

ACM SIGLOG News 9 April 2024, Vol. 11, No. 2

(1X ⌦ f); (g ⌦ 1C); (�Z,W ⌦ 1C); (h⌦ k) : X ⌦ Y ! E ⌦ F is drawn out as follows:

I

I

I

I

h

k

If

g

I

I

I

I

I

I

Finally, with all this setup, we can properly add traces to the story. Graphically
speaking, traces for symmetric monoidal categories add the possibility of looping back
an output wire into an input wire of the same type, which in turn allows loops.

There are many equivalent lists of axioms for a trace operator. Here, we will use
the one presented in [Hasegawa and Lemay(2023), Definition 2.2], though we fol-
low the string diagram conventions used in [Abramsky et al.(2002); Haghverdi and
Scott(2006)]. For other equivalent axiomatizations of the trace operator, see for exam-
ple [Haghverdi and Scott(2010a), Definition 4.1] or [Hasegawa(1997), Definition 2.1]
or [Hasegawa(2009), Section 3].

Definition 2.1. A traced symmetric monoidal category is symmetric monoidal
category C equipped with a trace operator Tr, which is a family of operators (indexed
by triples of objects U,X, Y 2 C):

TrUX,Y : C(X ⌦ U, Y ⌦ U) ! C(X,Y)

f : X ⌦ U ! Y ⌦ U

TrUX,Y (f) : X ! Y

which is drawn in the graphical calculus as follows:

f

X YI I

U I UI

f : X ⌦ U ! Y ⌦ U

7�!

f

YX

J

II

TrUX,Y (f) : X ! Y : X ⌦ U ! Y ⌦ U

II

N H

such that the following axioms are satisfied4 (where the dotted line represents what is
being traced when there is possible confusion):

— [Tightening]:

f

J

II g hI I

II

N H

=
f

J

II g hI I

N H

I I

4For equational versions of these axioms, see [Hasegawa and Lemay(2023), Definition 2.2]

ACM SIGLOG News 10 April 2024, Vol. 11, No. 2

— [Sliding]:

f

J

II

kI I I

N H

=
f

J

I I

k II

N H

I

— [Vanishing]

f

J

II

I

I

I

I

N H

I I

=

f

I

II

J

H HNN

I I

I

J

— [Superposing]

f

J

II

I

N H

I I
=

f

J

II

I

N H

I I

— [Yanking]

J

II

I I

N H

= I

For a map f : X ⌦ U ! Y ⌦ U , the map TrUX,Y (f) : X ! Y is called the trace of f .

[Tighetening] says that the trace operator is natural in the X and Y arguments,
meaning that we can pull maps in and out of the trace operator if they have no interac-
tion with the argument U that’s being traced. In other words, anything that happens
on the wires that are not being traced does not affect the trace. [Sliding] says that the
trace operator is instead dinatural in the U argument, and this corresponds to the fa-
mous cyclic property of the trace from linear algebra (which we will discuss more about
below). [Vanishing] says that if we trace out U1 ⌦ U2, its the same thing as tracing
out U2 first then tracing out U1. Keen-eyed readers will note that in other versions of
the axioms, such as in [Abramsky et al.(2002); Haghverdi and Scott(2006)], there is a
second part to the vanishing axiom which says that for a map f : X ! Y , if seen as a
map f : X ⌦ I ! Y ⌦ I, then tracing out the monoidal unit does nothing, TrIX,Y (f) = f .
It turns out that this is, in fact, provable from the other axioms [Hasegawa(2009),
Appendix A], and since graphically there is nothing to draw, we have omitted it here
in the above definition. [Superposing] says that if there is a part that is completely
disconnected from what is being traced, then it can be taken out of the trace. Finally,
[Yanking] tells us what the trace of the symmetry is, and essentially says that there
are no knots in this framework.

Before we consider examples, let’s first observe that we can also take traces of endo-
morphisms to give us actual loops. Indeed, note that an endomorphism f : U ! U can

ACM SIGLOG News 11 April 2024, Vol. 11, No. 2

be viewed as a map of type f : I ⌦ U ! I ⌦ U . As such, we may take its trace to obtain
the scalar TrUI,I(f) : I ! I. Graphically, this is drawn as a loop with a box:

J

I I

N H

f

When taking the trace of the identity 1U : U ! U , we obtain a scalar which is drawn
as an actual loop:

J

I

N H

and this is often called the “dimension” of the object U . A simple observation is that
we can recapture the famous cyclic property of the trace for matrices in linear algebra.
This shows that we can slide endomorphisms around the loop.

LEMMA 2.2. In a traced symmetric monoidal category, the following equality holds:

J

I I

N H

f gI

=

J

I I

N H

g fI

PROOF. This is just a special case of [Sliding].
Let’s now review how the trace operation for matrices gives us an example of a traced

symmetric monoidal category.
Example 2.3. Let R be a commutative ring. Let MAT(R) be the category of matrices

over R, that is, the category whose objects are natural numbers n 2 N and where
a map A : m ! n is an m ⇥ n matrix A with coefficients in R, with composition
given by matrix multiplication and identity maps given by identity matrices. MAT(R)
is a trace symmetric monoidal category whose trace operator is the standard partial
trace of matrices from linear algebra. The monoidal product for MAT(R) is defined on
objects by multiplication m ⌦ n = mn, and on maps as the usual tensor product of
matrices. For the trace operator, first recall that for square n⇥ n matrix A, its trace is
equal to the sum of its diagonal coefficients, Tr(A) =

nP
i=1

Ai,i. Now observe that a map

A : m⌦ k ! n⌦ k, which is an mk ⇥ nk matrix A, can be expressed in terms of square
matrices as follows:

A =

2

664

A(1, 1) A(1, 2) . . . A(1, n)
A(2, 1) A(2, 2) . . . A(2, n)

...
...

. . .
...

A(m, 1) A(m, 2) . . . A(m,n)

3

775

where A(i, j) are square k ⇥ k matrices (with 1 i m and 1 j n). Then the trace
Trkm,n(A) : m ! n is the m⇥ n matrix Trkm,n(A) whose coefficients are the traces of the
square matrices:

Trkm,n(A) =

2

664

Tr (A(1, 1)) Tr (A(1, 2)) . . . Tr (A(1, n))
Tr (A(2, 1)) Tr (A(2, 2)) . . . Tr (A(2, n))

...
...

. . .
...

Tr (A(m, 1)) Tr (A(m, 2)) . . . Tr (A(m,n))

3

775

ACM SIGLOG News 12 April 2024, Vol. 11, No. 2

Now note that an endomorphism A : n ! n is precisely a square n ⇥ n matrix A.
Therefore, in this case, since the monoidal unit is I = 1, we get that the trace operator
for endomorphisms gives us back precisely the usual trace for square matrices, that is,
Trn1,1(A) = Tr(A). So Lemma 2.2 corresponds precisely to the all-famous identity that
Tr(AB) = Tr(BA).

There are many other interesting examples of traced symmetric monoidal cate-
gories, see [Haghverdi and Scott(2010a), Examples 4.5 & 4.6] for lists of more ex-
amples. In particular, below we will review two important classes of traced symmetric
monoidal categories: compact closed categories and traced unique decomposition cat-
egories. Other important examples worth mentioning are when the monoidal product
is a product, coproduct, or even a biproduct. For products, trace operators capture the
notion of feedback via fixpoints, and in fact, to give a trace operator for products is
equivalent to providing a special kind of fixpoint operator (called a Conway operator)
[Hasegawa(1997), Theorem 3.1]. On the other hand, for coproducts, trace operators
capture the notion of feedback via iteration, and similarly, to give a trace operator for
coproducts is equivalent to giving a special kind of iteration operator [Selinger(2010),
Proposition 6.8]. For biproducts, to give a trace operator is equivalent to giving a rep-
etition operator on endomorphisms [Selinger(2010), Proposition 6.11]. Scott and his
coauthors often liked to refer to traces for compact closed categories and products as
“product or wave style traces” [Haghverdi and Scott(2010a), Examples 4.5], and traces
for unique decomposition categories and coproducts as “sum or particle style traces”
[Haghverdi and Scott(2010a), Examples 4.5]. Briefly, the intuition is that a product
style trace can be understood as passing information in a global information wave,
while a sum style trace is interpreted by streams of particles or tokens flowing around
a network – see [Abramsky(1996); Abramsky et al.(2002)] for more explanation on
these ideas.

An important identity in a traced symmetric monoidal category is that sequential
composition can be reformulated in terms of parallel composition using the trace.

THEOREM 2.4. [Abramsky et al.(2002), Proposition 2.4] In a traced symmetric
monoidal category, the following equality holds:

— [Generalized Yanking]

I If gI =

J

II

I

N H

I

I

f

gI

PROOF. To demonstrate the usefulness of working with string diagrams, let’s prove
this using the graphical calculus. So we compute:

I If gI
=

[Yanking]

I If g

J

II

I I

N H

ACM SIGLOG News 13 April 2024, Vol. 11, No. 2

=
[Tightening]

I If g

J

II

I I

N H

=
Nat. of Symmetry

J

II

I

N H

I

I

f

gI

We invite the reader to compare these computations with the equational version of this
computation found in the proof of [Abramsky et al.(2002), Proposition 2.4].

It is also possible to axiomatize trace operators with [Generalized Yanking] as an
axiom instead, see [Haghverdi(2000), Proposition 2.1.21]. Moreover, using [General-
ized Yanking], we get a normal form theorem for maps in traced symmetric monoidal
categories.

THEOREM 2.5. [Abramsky et al.(2002), Theorem 2.5] Let T be a set of maps in a
traced symmetric monoidal category C. Then any expression E built from maps in T

built from using the monoidal product, composition, and trace can be expressed as
Tr(⇡;F ; ⌧) where F consists of a monoidal product of maps in T , and ⇡ and ⌧ are per-
mutations (i.e. maps constructed from symmetry and identity maps using monoidal
product and composition).

Essentially, from the point of view of the graphical calculus, this normal form theo-
rem says we can always re-draw a map in such a way that we don’t have any sequential
composition of boxes, and only have parallel composition of boxes.

3. COMPACT CLOSED CATEGORIES
An important class of traced symmetric monoidal categories are compact closed cate-
gories, which are particularly important in categorical quantum foundations [Abram-
sky and Coecke(2004); Heunen and Vicary(2019)]. Compact closed categories are sym-
metric monoidal categories where every object has a dual. Every compact closed cate-
gory comes equipped with a canonical trace operator that captures the classical notion
of (partial) trace for matrices, which is a fundamental operation for both classical quan-
tum theory and categorical quantum foundations [Abramsky and Coecke(2005)]. For
a more in-depth introduction to compact closed categories, we invite the reader to see
[Selinger(2010), Section 4.8] or [Heunen and Vicary(2019), Chapter 3].

Definition 3.1. A compact closed category is a symmetric monoidal category
such that for every object X, there is an object X

⇤, called the dual of X, and maps
[X : X⇤

⌦ X ! I, called the cup, and \X : I ! X ⌦ X
⇤, called the cap, which are

drawn in the graphical calculus as follows:

X

X
⇤

[X : X⇤
⌦X ! I

J

I

X

X
⇤

\X : I ! X ⌦X
⇤

J

I

such that the following equality holds:

X I

X

J

I

= IX X

X
⇤J

X
⇤

I

J

= JX
⇤

X
⇤

ACM SIGLOG News 14 April 2024, Vol. 11, No. 2

and these equalities are called the snake equations.

Every compact closed category is a traced symmetric monoidal category, where the
trace operator is constructed using the cups and caps, and where the trace operator
axioms follow from the snake equations. Furthermore, compact closed categories have
a unique trace operator.

PROPOSITION 3.2. [Joyal et al.(1996), Proposition 3.1] A compact closed category is
a traced symmetric monoidal category where the trace operator is defined as follows:

f

YX

J

II

II

N H

: =

J

I

f

YX

I

II

I

J

Furthermore, this is the unique trace operator on a compact closed category
[Hasegawa(2009), Section 3.2].

It is also worth mentioning that, as their name suggests, compact closed categories
are also symmetric monoidal closed categories. In fact, compact closed categories are
also star-autonomous categories. It is also interesting to note that the converse is
also true, that is, traced star-autonomous categories are compact closed [Hajgató and
Hasegawa(2013), Theorem 3.6].

There are many interesting examples of compact closed categories. In fact, we have
already encountered one, as the category of matrices from Example 2.3 is a compact
closed category. However, for a more intuitive example, let’s review how finite dimen-
sional vector spaces form a compact closed category.

Example 3.3. Let k be a field, and let FVECk be the category of finite dimensional
k-vector spaces and k-linear transformations between them. FVECk is a compact closed
category, where the monoidal product is the standard algebraic tensor product of vector
spaces, so in particular I = k, and where the dual of a k-vector space U is given by its
algebraic dual, that is, U⇤ = {� : U ! k| � is k-linear}. The cup [U : U⇤

⌦ U ! k is
defined by evaluation:

[U (�⌦ x) = �(x)

To define the cap, let {e1, . . . , en} be a basis of U , which induces a basis {e
⇤
1, . . . , e

⇤
n} for

U
⇤. Then the cap \U : k ! U ⌦ U

⇤ is defined as:

\U (1) =
nX

i=1

ei ⌦ e
⇤
i

For a k-linear map f : V ⌦ U ! W ⌦ U , its trace is the k-linear map TrUV,W (f) : V ! W

defined as:

TrUV,W (f)(m) =
nX

i=1

(1W ⌦ e
⇤
i) (f(m⌦ ei))

Note that the definitions of the cap and trace are independent of the choice of basis.
In particular, when k = C, the field of complex numbers, then FVECC is equivalent to
the category of finite dimensional Hilbert spaces, which is also compact closed and the
fundamental category of study in categorical quantum foundations.

ACM SIGLOG News 15 April 2024, Vol. 11, No. 2

On the other hand, not every traced symmetric monoidal category is a compact closed
category. That said, every traced symmetric monoidal category embeds fully and faith-
fully into a compact closed category via the INT-construction [Joyal et al.(1996), Section
4]. The name INT-construction comes from the fact that when you apply this construc-
tion to the natural numbers N you get the integers Z [Haghverdi and Scott(2010a), Ex-
ample 4.13]. Abramsky introduced another way of constructing a compact closed cate-
gory from a traced symmetric monoidal category via the so-called “Geometry of Interac-
tion construction” [Abramsky(1996), Section 3], or simply GOI-construction for short. It
turns out that the resulting compact closed categories from the INT-construction and
the GOI-construction are isomorphic [Haghverdi(2000), Proposition 2.3.6]. However,
it is the GOI-construction that better isolates the fundamental properties of Girard’s
original ideas for Geometry of Interaction, where, in particular, the composition in this
compact closed category corresponds to Girard’s Execution formula. As such, it is the
GOI-construction that plays a more central role in the categorical approaches to Ge-
ometry of Interaction in [Abramsky(1996); Abramsky et al.(2002); Haghverdi(2000);
Haghverdi and Scott(2010a)].

Definition 3.4. For a traced symmetric monoidal category C, define the compact
closed category G(C) as follows:

(i) The objects are pairs of objects of C, so O (G(C)) = O(C) ⇥O(C). We will sugges-
tively denote objects of G(C) as pairs (X+

, X
�), though this is simply notation

and there is no relationship between X
+ and X

�.
(ii) The homsets are G(C) ((X+

, X
�), (Y +

, Y
�)) = C(X+

⌦ Y
�
, X

�
⌦ Y

+). So a map
f : (X+

, X
�) ! (Y +

, Y
�) in G(C) is a map of type f : X+

⌦ Y
�
! X

�
⌦ Y

+ in C.

f

I I

I I

X
+

Y
�

X
�

Y
+

(iii) Composition is defined as follows:
0

B@ f

I I

I I

X
+

Y
�

X
�

Y
+

1

CA ;

0

B@ g

I I

I I

Y
+

Z
�

Y
�

Z
+

1

CA

:=

f

g

IX
+

X
�

IZ
�

Z
+

I

J

J

I

N
N H

H

I I

I

I I

II

I

I

I

I

(iv) The identity map 1(X+,X�) : (X+
, X

�) ! (X+
, X

�) is the symmetry map in C,
that is, 1(X+,X�) = �X+,X� :

I

I

I

I

X
+

X
+

X
�

X
�

ACM SIGLOG News 16 April 2024, Vol. 11, No. 2

(v) On objects, the monoidal product is defined as the pointwise monoidal product of
pairs (X+

, X
�)⌦ (Y +

, Y
�) = (X+

⌦ Y
+
, X

�
⌦ Y

�), while on maps, the monoidal
product is defined as follows:

0

B@ f

I I

I I

X
+

Y
�

X
�

Y
+

1

CA⌦

0

B@ g

I I

I I

W
+

Z
�

W
�

Z
+

1

CA

:=

g

I

I

I I

W
+

Z
�

W
�

Z
+

f

I I

I

I

X
+

Y
�

X
�

Y
+

(vi) The monoidal unit is the pair (I, I);
(vii) The symmetry �(X+,X�),(Y +,Y �) : (X

+
, X

�)⌦ (Y +
, Y

�) ! (Y +
, Y

�)⌦ (X+
, X

�) is
the permutation X

+
⌦ Y

+
⌦ Y

�
⌦X

�
! X

�
⌦ Y

�
⌦ Y

+
⌦X

+:

I

I

I

I

Y
+

Y
+

Y
�

Y
�

I

I

I

I

X
+

X
+

X
�

X
�

A more intuitive way of understanding the composition in G(C) is by slightly abusing
the flexibility of the wires in the graphical calculus and drawing composition as follows:

f

I

IX
+

X
�

g

I

IZ
�

Z
+

I

H

H

I I

I

N

N

Drawn like this, we see that composition in G(C) is given by symmetric feedback. More-
over, observe that the composition in G(C) only depends on the parallel composition of
boxes, similar to that of [Generalized Yanking]. As mentioned above, G(C) is a com-
pact closed category, where it turns out that the cups and caps are simply given by the
symmetry maps. Furthermore, we can also embed C into G(C), and this embedding
preserves the traced symmetric monoidal structure strictly.

PROPOSITION 3.5. [Abramsky et al.(2002), Proposition 2.8] For a traced symmetric
monoidal category C, G(C) is compact closed where:

(i) The dual of (X+
, X

�) is (X+
, X

�)⇤ = (X�
, X

+)
(ii) The cup [(X+,X�) : (X

�
, X

+)⌦ (X+
, X

�) ! (I, I) and the cap \(X+,X�) : (I, I) !
(X+

, X
�) ⌦ (X�

, X
+), which are both maps of type X

�
⌦ X

+
! X

+
⌦ X

� in C,

ACM SIGLOG News 17 April 2024, Vol. 11, No. 2

are given by the symmetry map in C, that is, [(X+,X�) = \(X+,X�) = �X�,X+ :
I

I

I

I

X
�

X
�

X
+

X
+

(iii) The induced traced of a map f : (X+
, X

�) ⌦ (U+
, U

�) ! (Y +
, Y

�) ⌦ (U+
, U

�),
which is a map of type f : X+

⌦U
+
⌦Y

�
⌦U

�
! X

�
⌦U

�
⌦Y

+
⌦U

+ in C, is the
double trace of f in C, that is, Tr(U

+,U�)
(X+,X�),(Y +,Y �)(f) : (X

+
, X

�) ! (Y +
, Y

�), which
is drawn on the right as follows:

X
+

Y
�

f
U

+

U
�

X
�

U
�

Y
+

U
+

I

I

I

I

I

I

I

I

7�!

f

I

I

I

I

I

I

I

I I

J

HN

I I

II

H

J

N

X
+

Y
�

X
�

Y
+

Moreover, there is a full and faithful embedding functor N : C ! G(C) which is de-
fined on objects as N (X) = (X, I) and on maps as N (f) = f . Furthermore, N pre-
serves the traced symmetric monoidal structure strictly, so in particular we have that
N (TrUX,Y (f)) = TrN (U)

N (X),N (Y)(N (f)).

Some explicit descriptions of the GOI-construction applied to certain traced sym-
metric monoidal categories are described in [Abramsky(1996), Section 4]. In partic-
ular, when applying the GOI-construction to the category of partial injections or a
certain subcategory of Hilbert spaces, it recaptures Girard’s original model of Geom-
etry of Interaction. Also, as mentioned above, we have an isomorphism of compact
closed categories G(C) ' INT (C), where the latter is the INT-construction over C.
As such, the GOI-construction is also the free compact closed category over C in an
appropriate bicategorical sense [Haghverdi and Scott(2010a), Proposition 4.14]. For
more details on the INT-construction, and its comparision to the GOI-construction, see
[Haghverdi(2000), Section 2.2 & 2.3].

4. UNIQUE DECOMPOSITION CATEGORIES
Another important sort of traced symmetric monoidal category that Scott and
Haghverdi studied for the categorical interpretations of Geometry of Interaction were
traced unique decomposition categories [Haghverdi and Scott(2006); Haghverdi and
Scott(2010a)]. In particular, in [Haghverdi and Scott(2006)], Scott and Haghverdi
explain how traced unique decomposition categories provide the correct categorical
framework which properly captures Girard’s original Hilbert space model of Geometry
of Interaction.

Unique decomposition categories (UDC) were originally introduced by Haghverdi in
their PhD thesis [Haghverdi(2000), Chapter 4], and are generalizations of Manes and
Arbib’s partially additive categories [Manes and Arbib(2012), Section 3.2]. Briefly, a
UDC is a symmetric monoidal category with an appropriate notion of countable sums
and a matrix representation for maps. This countable sum property is captured by the
fact that the homsets of a UDC are ⌃-monoids, which are generalizations of partially
additive monoids [Manes and Arbib(2012), Section 3.1] by dropping the so-called limit
axiom. So a ⌃-monoid is a non-empty set M equipped with a partial operation ⌃
called the partial infinitary sum on countable families of elements of M satisfying
a partition-associativity axiom and a unary sum axiom. For a countable family {xi}i2I

ACM SIGLOG News 18 April 2024, Vol. 11, No. 2

we denote its image as ⌃i2Ixi and say that {xi}i2I is summable if ⌃i2Ixi is defined.
Then, the two necessary axioms of a ⌃-monoid are:

(i) Partitition-Associativity Axiom: If {xi}i2I is a countable family and if {Ij}j2J

is a countable partition of I, then {xi}i2I is summable if and only if {xi}i2Ij is
summable for every j 2 J and {

P
i2IJ

xi}j2J is summable. Moreover, in this caseP
i2I xi =

P
j2J

P
i2Ij

xi.
(ii) Unary Sum Axiom: Every singleton {x} is summable and

P
i2I xi = x where

{x} is seen as an I = {i} indexed set.

In any ⌃-monoid, the empty family is summable, which we denote as 0, and it is an
additive unit. A ⌃-monoid morphism is a function f : M ! M

0 between the underlying
sets which preserves summability and the partial infinitary sums, that is, if {xi}i2I is
summable in M then {f(xi)}i2I is summable in M

0 and f
�P

i2I xi

�
=
P

i2I f(xi).
Now ⌃-monoids and ⌃-monoid morphisms form a symmetric monoidal closed cat-

egory ⌃MON. Therefore, we may consider categories enriched in ⌃MON. Explicitly, a
⌃MON-category is a category C such that each homset is a ⌃-monoid where compo-
sition preserves the partial infinitary sums, that is, if {fi}i2I is a summable family
of maps in C(X,Y), then for any suitable maps we also have that {g; fi;h}i2I is also
summable and:

g;

X

i2I

fi

!
;h =

X

i2I

g; fi;h

Note that a ⌃MON-category has non-empty homsets since the sum of the empty set
gives us the map 0X,Y : X ! Y , which is in fact an actual zero morphism in the
categorical sense. Now a symmetric monoidal ⌃MON-category is a symmetric monoidal
category C which is also a ⌃MON-category such that the monoidal product preserves
the partial infinitary sums, that is, if {fi}i2I and {gi}j2J are summable family of maps,
then {fi ⌦ gj}(i,j)2I⇥J is also a summable family of maps and:

X

i2I

fi

!
⌦

0

@
X

j2J

gj

1

A =
X

i2I

X

j2J

fi ⌦ gj

Then a UDC is a symmetric monoidal ⌃MON-category which comes equipped with
quasi-injections and quasi-projections that satisfy analogues of the axioms for biprod-
ucts.

Definition 4.1. A unique decomposition category (UDC) is a symmetric
monoidal ⌃MON-category such that for all finite family of objects {X1, . . . , Xn} and
every 1 j n there are maps ◆j : Xj ! X1 ⌦ . . . ⌦Xn, called the quasi-injections,
and maps ⇢j : X1 ⌦ . . .⌦Xn ! Xj , called the quasi-projections, such that:

(i) ◆j ; ⇢j = 1Xj and ◆j l⇢i = 0Xi,Xj if i 6= j

(ii)
nP

j=1
◆j ; ⇢j = 1X1⌦...⌦Xn

It is important to note that these quasi-injections and quasi-projections do not make
the monoidal product a biproduct. Nevertheless, with these quasi-injections and quasi-
projections, we can give a matrix representation for maps in a UDC [Haghverdi(2000),
Proposition 4.0.6] similar to the matrix representation we can give for maps in a cat-
egory with finite biproducts [Heunen and Vicary(2019), Section 2.2.4]. Indeed, for a
f : X1⌦ . . .⌦Xn ! Y1⌦ . . .⌦Ym, there exists a unique summable finite family of maps

ACM SIGLOG News 19 April 2024, Vol. 11, No. 2

{fi,j : Xi ! Yj}i2I,j2J such that:

f =
X

i2I,j2J

⇢i; fi,j ; ◆j

Explicitly, the maps fi,j are given by pre-compositing and post-composing f by the
appropriate quasi-injection and quasi-projection respectively, that is, fi,j := ◆i; f ; ⇢j .
As such, we may represent f as an n ⇥ m matrix with (i, j)-component the map
fi,j : Xi ! Yj :

f =

2

64
f1,1 . . . f1,m

...
. . .

...
fn1 . . . fn,m

3

75

This matrix representation is particularly useful since composition in a UDC then
corresponds to matrix multiplication.

Now, since maps in a UDC have a matrix representation like in a category with
biproducts, it is natural to ask if an analogue of the well-known trace formula for
countable biproducts gives a trace for UDC. If the necessary sum is always defined,
then the answer is yes! As such, we say that a UDC is traced if for every map of type
f : X ⌦ U ! Y ⌦ U , which in matrix form is:

f :=

f1,1 : X ! Y f1,2 : X ! U

f2,1 : U ! Y f2,2 : U ! U

�

the sum f1,1+
P

n2N f1,2; fn
2,2; f2,1 exists, which is a map of type X ! Y . This then gives

us the standard trace formula for a trace operator, justifying the name traced UDC.

THEOREM 4.2. [Haghverdi(2000), Proposition 4.0.11] A traced UDC is a traced
symmetric monoidal category with trace operator defined on a map f : X ⌦ U ! Y ⌦ U

as follows:

TrUX,Y (f) = f1,1 +
X

n2N
f1,2; f

n
2,2; f2,1

We note that the matrix representation greatly simplifies the proof of showing that
the standard trace formula does indeed give a trace operator. It is also worth mention-
ing that a (traced) UDC could have another trace operator which is not given by the
standard trace formula. However, when talking about a traced UDC, we are referring
to the trace operator given above by the standard trace formula.

The two main examples of traced UDC are the category of partial injections and a
certain subcategory of Hilbert spaces. These two examples, especially the latter, cap-
ture Girard’s operator algebra model of Geometry of Interaction.

Example 4.3. Let PINJ be the category of sets and partial injections between them.
Then PINJ is a traced UDC [Haghverdi and Scott(2006), Example 8] where:

(i) The monoidal product is given by the disjoint union of sets, X ⌦ Y = X t Y :=
({1}⇥X) [({2}⇥ Y), while the monoidal unit is the empty set, I = ;;

(ii) PINJ(X,Y) is a ⌃-monoid where a countable family of partial injections
{fi : X ! Y }i2I is summable if they have pairwise disjoint domains and
codomains, and in this case, their sum is given as follows:

X

i2I

fi

!
(x) =

⇢
fj(x) if x 2 dom(fj) for some j 2 I

undefined o.w.

ACM SIGLOG News 20 April 2024, Vol. 11, No. 2

(iii) The quasi-injection ◆j : Xj ! X1 t . . . t Xn inserts Xj into the disjoint union,
while the quasi-projection ⇢j : X1 t . . . tXn ! Xj is only defined on the Xj part:

◆j(x) = (j, x) ⇢j(i, x) =

⇢
x if i = j, so x 2 Xj

undefined if i 6= j

(iv) For a partial injection f : X t U ! Y t Y , its induced trace is worked out to be
the partial injection TrUX,Y (f) : X ! Y defined as follows:

TrUX,Y (f)(x) =

8
>>>>>>>>><

>>>>>>>>>:

y if f(1, x) = (1, y)

if 9 n 2 N 9 u0, u1, . . . , un 2 U s.t.
yn+1 f(1, x) = (2, u0) and f(2, u0) = (2, u1) and

. . . and f(2, un) = (1, yn+1)

undefined o.w.

More intuitively, the trace starts by taking an x 2 X, applying f and if f(1, x) is
defined, checking if the second component of f(1, x) is in Y or in U . If it’s in Y ,
then we are done and output the Y component. If it’s in U , then we apply f again,
and if f(2, f(1, x)) is defined, then we check again if its second component is in Y

or U . If it’s in Y , we are done and output the Y component. Otherwise, if it’s in U ,
we repeat the process again. We do this until if after a finite number of iterations,
we land in Y and then output the result. Otherwise, the trace is undefined.

Example 4.4. Let HILB be the category of Hilbert spaces and linear contractions
(with norm 1). Now while HILB is a symmetric monoidal category, where the
monoidal product is the usual tensor product of Hilbert spaces, it is not a traced
UDC. To obtain a UDC, we must instead consider a subcategory of HILB. So for a
set X, let `2(X) be the set of complex-valued functions a : X ! C such that the sumP

x2X |a(x)|2 is finite (or equivalently the set of square summable X-indexed fami-
lies). Then `2(X) is a Hilbert space with inner product ha, bi =

P
x2X a(x)b(x) and

induced norm kak =
�P

x2X |a(x)|2
� 1

2 . This induces a contravariant faithful functor
`2 : PINJ ! HILB [Barr(1992), Section 3] which maps a set X to `2(X), and maps a
partial injection f : X ! Y to the linear contraction `2(f) : `2(Y) ! `2(X) defined as
follows:

`2(f)(a)(y) =

⇢
a(f(x)) if x 2 dom(f)
0 if x /2 dom(f)

Note that `2(f) is in fact a partial isometry. In fact, `2 sends certain special maps in
PINJ to important kinds of maps in HILB, such as the fact total bijections get mapped
to unitaries in HILB – see [Haghverdi and Scott(2006)] for more details. Heunen also
studies the functor `2 in more detail in [Heunen(2013)]. Now consider the image of `2,
that is, define HILB2 := `2(PINJ) to be the category whose objects are Hilbert spaces of
the form `2(X) for some set X and whose maps are of the form `2(f) for some partial
injection f . Then HILB2 is naturally equivalent to PINJ, and therefore HILB2 is a traced
UDC [Haghverdi and Scott(2006), Example 9] whose structure is induced from the one
of PINJ. Explicitly, the traced UDC structure of HILB2 is given as follows:

(i) The monoidal product is given by the biproduct � of Hilbert spaces since we have
that:

`2(X t Y) ⇠= `2(X)� `2(Y)

ACM SIGLOG News 21 April 2024, Vol. 11, No. 2

However, it is important to note that this is not a biproduct in HILB2. The
monoidal unit is the zero Hilbert space, `2(;) = {0};

(ii) HILB2(`2(Y), `2(X)) is a ⌃-monoid where a countable family
{`2(f)i : `2(Y) ! `2(X)}i2I is summable if and only if {fi : X ! Y }i2I is
summable in PINJ. In this case, their sum is:

`2

X

i2I

fi

!
:= `2

X

i2I

fi

!

(iii) The quasi-injection/projections are the quasi-projections/injections from PINJ, so
we have that `2(⇢j) : `2(Xj) ! `2(X1 t . . . t Xn) are the quasi-injections and
similarly that `2(◆j) : `2(X1 t . . . tXn) ! `2(Xj) are the quasi-projections. From
another perspective, the quasi-injections are the usual injections for the biprod-
uct `2(Xj) ! `2(X1) � . . . � `2(Xn), while the quasi-projections are the usual
projections for the biproduct `2(X1)� . . .� `2(Xn) ! `2(Xj).

(iv) For a map `2(f) : `2(Y t U) ! `2(X t U), its trace is the image of the trace of its
associated partial injection f : X t U ! Y t U in PINJ:

Tr`2(U)
`2(Y),`2(X)(`2(f)) := `2

⇣
TrUX,Y (f)

⌘

Other examples of traced UDC can be found in [Haghverdi(2000), Example 4.0.15]
and [Haghverdi and Scott(2010a), Example 4.11], which include partially additive cat-
egories and categories with countable biproducts.

5. GEOMETRY OF INTERACTION SITUATIONS
Traced symmetric monoidal categories and the GOI-construction only account for the
Geometry of Interaction interpretation of the multiplicative fragment of Linear Logic.
One of the main objectives of [Abramsky et al.(2002)] was to provide the categorical
semantics for the Geometry of Interaction interpretation of the exponential fragment
of Linear Logic as well. As such, towards this goal, Scott, Abramsky, and Haghverdi
introduced Geometry of Interaction Situations [Abramsky et al.(2002), Definition 4.1],
which are in particular traced symmetric monoidal categories equipped with a traced
symmetric monoidal functor and various structural maps, which is used to interpret
the exponential modality ! and its rules in the GOI-construction.

A traced symmetric monoidal endofunctor [Abramsky et al.(2002), Section 2]
is an endofunctor on a traced symmetric monoidal category which preserves the traced
symmetric monoidal structure up to isomorphism. So for a symmetric monoidal cate-
gory C, recall that an endofunctor T : C ! C is said to be strong symmetric monoidal if
it has natural isomorphisms T(X⌦Y) ⇠= T(X)⌦T(Y) and T(I) ⇠= I which are compati-
ble with the symmetric monoidal structure. In the graphical calculus, we will draw the
application of the strong symmetric monoidal functor using a dotted functor box. That
T preserves the monoidal structure up to isomorphism allows us to draw wires coming
in and out of the box without any issues. So for a map f : X1⌦ . . .⌦Xn ! Y1⌦ . . .⌦Ym,
the composite:

T(X1)⌦ . . .⌦ T(Xn)
⇠=
�! T (X1 ⌦ . . . Xn)

T(f)
���! T (Y1 ⌦ . . . Ym)

⇠=
�! T(Y1)⌦ . . .⌦ T(Ym)

ACM SIGLOG News 22 April 2024, Vol. 11, No. 2

is drawn as follows:
T

I

f

T(X1) I

...
T(Xi) I

...
T(Xn) I

I

I

...

...

I T(Y1)I

...
T(Yj)I

...
T(Ym)I

I

I

...

...

Then if C is a traced symmetric monoidal category, a traced symmetric monoidal end-
ofunctor is a strong symmetric monoidal endofunctor T : C ! C which also preserves
the trace in the sense that the following equality holds:

T

f

J

II

II

N H

I I

I I
=

T

f

J

I I

I

N H

I I

I

Another key part of the definition of a Geometry of Interaction Situation are retrac-
tion pairs. Using the same notation as in [Abramsky et al.(2002)], a retraction pair
will be denoted by f : X / Y : g to mean that X is a retract of Y via f and g, that is,
f ; g = 1X .

Definition 5.1. A Geometry of Interaction Situation (GoI Situation) is a triple
(C,T, U) where C is a traced symmetric monoidal category, T : C ! C is a traced sym-
metric monoidal endofunctor, and U 2 O(C) is an object, called the reflexive object,
such that T comes equipped with the following retraction pairs of monoidal natural
transformations:

— [Digging]: eX : TT(X) / T(X) : e0X
— [Dereliction]: dX : X / T(X) : d0X
— [Contraction]: cX : T(X)⌦ T(X) / T(X) : c0X
— [Weakening]: wX : I / T(X) : w0

X

and also that U comes equipped with the following retraction pairs:
j : U ⌦ U / U : k a : I / U : b u : T(U) / U : v

As mentioned above, the trace symmetric monoidal functor of a GoI Situation will
be used to interpret the exponential modality. So, as their names suggest, the four
retraction pairs of monoidal natural transformations correspond to the four main rules
of the exponential from Linear Logic. The reflexive object will be used to build an
algebraic model of Linear Logic.

The two main examples of a GoI Situation are PINJ and HILB2, and these can both
be seen as capturing the main essence of Girard’s original model of Geometry of Inter-
action.

Example 5.2. PINJ is a GoI Situation where the endofunctor is T(�) = N⇥� and the
reflexive object is N [Abramsky et al.(2002), Proposition 5.2]. The necessary retraction
pairs are given as follows:

(i) For m,n 2 N let hm,ni = (m+n+1)(m+n)
2 + n be Cantor’s pairing function (which

recall is a bijection). Then eX : N ⇥ N ⇥ X ! N ⇥ X is defined as eX (m,n, x) =

ACM SIGLOG News 23 April 2024, Vol. 11, No. 2

(hm,ni, x), and e0X : N⇥X ! N⇥ N⇥X is defined as e0X(n, x) = (n1, n2, x) where
hn1, n2i = n (which is well-defined since n1 and n2 exists and are unique);

(ii) For some fixed n0 2 N, dX : X ! N⇥X and d0X : X ! N⇥X are defined as follows:

dX(x) = (n0, x) dX(n, x) =

⇢
x if n = n0

undefined o.w.

(iii) cX : (N⇥X) t (N⇥X) ! N⇥X and c0X : N⇥X ! (N⇥X) t (N⇥X) are defined
respectively as follows:

cX(i, n, x) =

⇢
(2n, x) if i = 1
(2n+ 1, x) if i = 2

c0X(n, x) =

⇢
(1, n

2 , x) if n is even
(2, n�1

2 , x) if n is odd

(iv) wX : ; ! N ⇥ X and w0
X : N ⇥ X ! ; are the empty partial functions which are

nowhere defined.
(v) j : N t N ! N and k : N ! N t N are defined respectively as follows:

j(i, n) =

⇢
2n if i = 1
2n+ 1 if i = 2

k(n) =

⇢
(1, n

2) if n is even
(2, n�1

2) if n is odd

Note that j and k are, up to isomorphism, c{⇤} and c0{⇤} for a singleton {⇤}.
(vi) a : ; ! N and b : N ! ; are the empty partial functions which are nowhere

defined. Again, note that a and b are, up to isomorphism, w{⇤} and w0
{⇤} for a

singleton {⇤}.
(vii) u : N ⇥ N ! N is defined as u(m,n) = hm,ni and v : N ! N ⇥ N is its inverse

v = u�1, so v(n) = (n1, n2) where hn1, n2i = n. Similarly, note again that u and v
are, up to isomorphism, e{⇤} and e0{⇤} for a singleton {⇤}.

Example 5.3. HILB2 is a GoI Situation where the endofunctor is defined as
T(`2(�)) = `2 (N⇥�) and the reflexive object is `2(N) [Haghverdi and Scott(2006),
Proposition 22]. Note that we can also express the endofunctor in terms of the tensor
product of Hilbert spaces since `2 (N⇥X) ⇠= `2(N) ⌦ `2(X). The necessary retraction
pairs are given by applying `2 to the GoI Situation structure from PINJ. So, up to nat-
ural isomorphism, we may write the retraction pairs as follows:

`2(eX) : `2(N)⌦ `2(N)⌦ `2(X) / `2(N)⌦ `2(X) : `2(e
0
X)

`2(dX) : `2(X) / `2(N)⌦ `2(X) : `2(d
0
X)

`2(cX) : (`2(N)⌦ `2(X))� (`2(N)⌦ `2(X)) / `2(N)⌦ `2(X) : `2(c
0
X)

`2(wX) : `2(;) / `2(N)⌦ `2(X) : `2(w
0
X)

`2(j) : `2(N)� `2(N) / `2(N) : `2(k)
`2(a) : `2(;) / `2(N) : `2(b)

`2(u) : `2(N)⌦ `2(N) / `2(N) : `2(v)
In particular, in [Haghverdi and Scott(2006), section 6], Scott and Haghverdi explain
how Girard’s C

⇤-algebra model of Geometry of Interaction is perfectly captured using
this GoI Situation HILB2.

Multiple other examples of GoI Situations can be found in [Abramsky et al.(2002),
Section 5].

Usually, a categorical model of the multiplicative and exponential fragments of Lin-
ear Logic (MELL), sometimes called a linear category, is a symmetric monoidal closed
category equipped with a symmetric monoidal comonad, which interprets the expo-
nential modality, that comes equipped with extra natural transformations, which in-

ACM SIGLOG News 24 April 2024, Vol. 11, No. 2

terpret the rules for the exponential. For full details of the categorical semantics of
Linear Logic, see [Blute and Scott(2004)]. However, the GOI-construction on a GoI Sit-
uation will not necessarily result in a linear category. Instead, Scott, Abramsky, and
Haghverdi introduced the notion of a weak linear category [Abramsky et al.(2002),
Definition 3.1], which is similar to a linear category but with weaker axioms that are
nevertheless still sufficient to obtain a Geometry of Interaction interpretation of MELL.
Briefly, a weak linear category is a symmetric monoidal closed category C, equipped
with a symmetric monoidal functor ! : C ! C, and the following monoidal pointwise
natural transformations:

digX : !(X) ! !!(X) derX : X ! !(X) conX : !(X) ! !(X)⌦ !(X) weakX : !(X) ! I

By pointwise natural, we mean natural only with respect to points, i.e., maps of type
I ! X. See [Abramsky et al.(2002), Appendix II] and [Shirahata(2003), Section 5] for
discussions on why pointwise naturality is sufficient in this context. Applying the GOI-
construction to a GoI Situation results in a weak linear category.

PROPOSITION 5.4. [Abramsky et al.(2002), Proposition 4.2.(i)] Let (C,T, U) be a GoI
Situation. Then G(C) is a weak linear category where:

(i) The endofunctor ! : G(C) ! G(C) is defined on objects as:

!(X+
, X

�) := (T(X+),T(X�))

and for a map f : (X+
, X

�) ! (Y +
, Y

�), !(f) : !(X+
, X

�) ! !(Y +
, Y

�), which is a
map of type T(X+)⌦ T(Y �) ! T(X�)⌦ T(Y +) in C, is defined as follows:

!(f) :=

T

f

I I

I I

T(X+)

T(Y �)

T(X�)

T(Y +)

II

I I

(ii) The digging dig(X+,X�) : !(X+
, X

�) ! !!(X+
, X

�), which is a map of type
T(X+)⌦ TT(X�) ! T(X�)⌦ TT(X+) in C, is defined as:

dig(X+,X�) :=

II

I

I

I

e0X+

eX�I

T(X�)

TT(X+)

T(X+)

TT(X�)

(iii) The dereliction der(X+,X�) : (X+
, X

�) ! !(X+
, X

�), which is a map of type
X

+
⌦ T(X�) ! X

�
⌦ T(X+) in C, is defined as:

der(X+,X�) :=

II

I

I

I

d0X+

dX�I

X
�

T(X+)

X
+

T(X�)

ACM SIGLOG News 25 April 2024, Vol. 11, No. 2

(iv) The contraction con(X+,X�) : !(X
+
, X

�) ! !(X+
, X

�)⌦ !(X+
, X

�), which is a map
of type T(X+)⌦ T(X�)⌦ T(X�) ! T(X�)⌦ T(X+)⌦ T(X+) in C, is defined as:

con(X+,X�) :=

I c0X+T(X+)

cX�

T(X�)

T(X�)

T(X+)

T(X+)

T(X�)

I

I

I

I

I

I

I

I

(v) The weakening weak(X+,X�) : !(X+
, X

�) ! (I, I), which is a map of type
T(X+) ! T(X�) in C, is defined as:

weak(X+,X�) := I Iw0
X+ wX� T(X�)T(X+)

Scott, Abramsky, and Haghverdi also introduced the notion of a linear combina-
tory algebra [Abramsky et al.(2002), Definition 3.4] which briefly is a set A equipped
with applicative structure ·, a unary operator ! : A ! A, and eight distinguished ele-
ments of A which satisfy various axioms. The idea is that a linear combinatory algebra
is an algebraic model of MELL. Moreover, in a weak linear category, if V is a special
kind of reflexive object in the sense of [Abramsky et al.(2002), Definition 3.2], then the
homset C(I, V) can be made into a linear combinatory algebra [Abramsky et al.(2002),
Theorem 3.5]. We can apply this to GoI Situations. So for a GoI Situation (C,T, U),
(U,U) will be a reflexive object with the necessary properties in the weak linear cat-
egory G(C). As such, we get that G(C) ((I, I), (U,U)) is a linear combinatory algebra.
However, note that a map of type (I, I) ! (U,U) in G(C) corresponds to a map of type
U ! U in C. Therefore, we have that C(U,U) is in fact a linear combinatory algebra.

PROPOSITION 5.5. [Abramsky et al.(2002), Proposition 4.2.(ii)] Let (C,T, U) be a
GoI Situation. Then C(U,U) is a linear combinatory algebra where:

(i) For a map f : U ! U , !f : U ! U is defined as follows:

!f :=

T

I Iv fU u I UI II

(ii) For maps f : U ! U and g : U ! U , f · g : U ! U is defined as follows:

f · g :=

I

fj k
gI

I I

I I

H

J

N

I UU

and the eight distinguished elements are defined as in [Abramsky et al.(2002), Section
4].

Moreover, by standardization [Abramsky et al.(2002), Theorem 3.7], every linear
combinatory algebra gives rise to a combinatory algebra in the usual sense [Abramsky
et al.(2002), Definition 3.6]. So for a GoI Situation (C,T, U), we also get that C(U,U) is
a combinatory algebra.

ACM SIGLOG News 26 April 2024, Vol. 11, No. 2

6. GEOMETRY OF INTERACTION INTERPRETATIONS
In [Haghverdi and Scott(2006)], Scott and Haghverdi pushed this idea of using GoI Sit-
uations for the categorical semantics of the Geometry of Interaction interpretation of
MELL further by considering UDC-GoI Situations. In particular, one of the main objec-
tives of [Haghverdi and Scott(2006)] was to recapture precisely Girard’s original model
and matrix intuition for Geometry of Interaction, as well as the Execution formula, in
the framework of a certain UDC-GoI Situation. For a review on Linear Logic, we re-
fer the reader to see [Haghverdi and Scott(2010a), Section 3] and [Haghverdi(2000),
Chapter 2].

By a UDC-GoI Situation, we mean a GoI Situation (C,T, U) where C is a traced
UDC and T is also an additive functor in the sense of preserving the partial infinitary
sums. Then one can provide a Geometry of Interaction interpretation for MELL without
units in a UDC-GoI Situation (C,T, U). Formulas are interpreted as certain subsets of
C(U,U), proofs are interpreted in C(U,U), and cut-elimination is interpreted by the
Execution formula, which uses the trace operator. For the remainder of this section,
we assume that we are working in a UDC-GoI Situation (C,T, U).

Starting with the interpretation of formulas, we first need to define an orthogonality
relation. Now a map f : U ! U is nilpotent if there is some k 2 N such that fk = 0U,U .
Then we say that maps f : U ! U and g : U ! U are orthogonal if their composite g; f
(or equivalently f ; g) is nilpotent. We write f ? g to say that f and g are orthogonal.
Now given a subset X ✓ C(U,U), define X

?
✓ C(U,U) as the subset of all maps U ! U

which are orthogonal to those in X, that is:

X
? = {f : U ! U | 8g 2 X. f ? g}

Then a type [Haghverdi and Scott(2006), Definition 14] is a subset X ✓ C(U,U) such
that X?? = X. Note that types are always inhabited since the zero map is orthogonal
to every map, so if X is a type then 0U,U 2 X.

We will then use types to interpret MELL formulas in our UDC-GoI Situation. To do
so, we will make use of our GoI Situation retraction pairs. So recall that we have maps
u : T(U) ! U and v : U ! T(U), as well as j : U ⌦ U ! U and k : U ! U ⌦ U , and also
u : T(U) ! U and v : U ! T(U). Moreover, since we are also in a UDC, j and k also
have matrix representations:

j =

j1 : U ! U

j2 : U ! U

�
k = [k1 : U ! U k2 : U ! U]

Now let A be a MELL formula. Then the Geometry of Interaction interpretation
[Haghverdi and Scott(2006), Definition 15] of A, denoted as ⇥A, is defined inductively
as follows:

(i) If A ⌘ ↵ an atom, then ⇥A = X where X is a type;
(ii) If A ⌘ ↵

?, where ↵ is an atom, then ⇥A = X
? where ⇥↵ = X;

(iii) If A ⌘ B ⌦ C, then ⇥A = Y
?? where Y = {k1; b; j1 + k2; c; j2| b 2 ⇥B and c 2 ⇥C};

(iv) If A ⌘ B ` C, then ⇥A = Y
? where Y = {k1; b; j1 + k2; c; j2| b 2 (⇥B)? and c 2

(⇥C)?};
(v) If A ⌘ !B, then ⇥A = Y

?? where Y = {v;T(b); u| b 2 ⇥B and c 2 ⇥C};
(vi) If A ⌘ ?B, then ⇥A = Y

? where Y = {v;T(b); u| b 2 (⇥B)? and c 2 ⇥C}.

It follows from the definition that (⇥A)? = ⇥A
?.

Now we turn towards understanding interpretations of proofs in our UDC-GoI Situa-
tion. For simplicity, let us denote the tensor product of n-copies of U as Un = U⌦. . .⌦U ,
where by convention U

0 = I. Now every MELL (without units) formula will be of the
form ` [�],� where � is a sequence of formulas and � is a sequence of cut formu-

ACM SIGLOG News 27 April 2024, Vol. 11, No. 2

las that have been applied to the proof of ` �. Suppose that � consists of n formulas
and � consists of 2m formulas. Therefore, a proof ⇧ of ` [�],� will be interpreted by
a map of type J⇧K : Un+2m

! U
n+2m. Since we have that U ⌦ U / U , a map of type

U
n+2m

! U
n+2m corresponds to a map of type U ! U . As such, the interpretation

of our proof is in C(U,U). However, following [Haghverdi and Scott(2006)], it will be
much more convenient to work with interpreting proofs in C(Un+2m

, U
n+2m). Also, we

slightly abusing notation and denote � for U
n and � for U

2m. As such, we get that the
interpretation of our proof is a map of type J⇧K : �⌦� ! �⌦�, which is drawn as on
the left below, and since we are in a UDC, also has a matrix representation given by a
2⇥ 2-matrix as on the right below:

J⇧K
� �I I

� I �I

J⇧K =

⇧1,1 : � ! � ⇧1,2 : � ! �
⇧2,1 : � ! � ⇧2,2 : � ! �

�

So let ⇧ be a proof of ` [�],�. Then the Geometry of Interaction interpretation
[Haghverdi and Scott(2006), Section 4] of ⇧, denoted as J⇧K : �⌦� ! �⌦�, is defined
inductively on the length of ⇧ as follows:

(i) If ⇧ is an axiom:

` A,A
?

then its interpretation J⇧K is the symmetry map:
I

I

I

I

A

A

A
?

A
?

(ii) If ⇧ is obtained using the cut rule:

⇧0....
` [�0],�0

, A

⇧00....
` [�00], A?

,�00

`
⇥
�,�0

, A,A
?⇤

,�,�0 (CUT)

then its interpretation J⇧K is drawn as follows:

J⇧0K

J⇧00K

I�0

I�00

I

I

I

I

I

I

A

A
?

�0

�00
I

I

I

I

I �0

I �00

I

I

I

I A

A
?

�0

�00
I

I

I

I

(iii) If ⇧ is obtained using the exchange rule:

⇧0....
` [�],�1, A,B,�2

` [�],�1, B,A,�2
(EXCH.)

ACM SIGLOG News 28 April 2024, Vol. 11, No. 2

then its interpretation J⇧K is drawn as follows:

J⇧0K

I

I

I

I

I

I

I

I

I

I

I

I

�1

B

A

�2

I� I

�1

B

A

�2

�

(iv) If ⇧ is obtained using the ` rule:

⇧0....
` [�],�, A,B

` [�],�, A`B
(`)

then its interpretation J⇧K is drawn as follows:

J⇧0K

�1

A`B

�

I

k
I

I

�1

A`B

�

I

j

I

I

I I

II

(v) If ⇧ is obtained using the ⌦ rule:

⇧0....
` [�0],�0

, A

⇧00....
` [�00],�00

, B

` [�0
,�00],�0

,�00
, A⌦B

(⌦)

then its interpretation J⇧K is drawn as follows:

J⇧0K

J⇧00K

I�0

I�00 I

I

I

�0

�00
I

I

I

A⌦B

I

k
I

I

I �0

I �00I

I

I

�0

�00
I

I

I

A⌦B

I

j

I

I

(vi) If ⇧ is obtained using the ! rule:

⇧0....
` [�], ?�, A

` [�], ?�, !A
(!)

ACM SIGLOG News 29 April 2024, Vol. 11, No. 2

then its interpretation J⇧K is drawn as follows:

J⇧0K

?�

A

�

v

v

v

I

I

I I

I

I e0U I

T

u II

I

I

u

u

u

I

I

II

I

IeUIv I

I

I

I

�

A

?�

(vii) If ⇧ is obtained using the dereliction rule:

⇧0....
` [�],�, A

` [�],�, ?A
(DER.)

then its interpretation J⇧K is drawn as follows:

J⇧0K

�

?A

�

d0U

I

I I

I

�

?A

�

dU

I

II

I

(viii) If ⇧ is obtained using the weakening rule:

⇧0....
` [�],�

` [�],�, ?A
(WEAK.)

then its interpretation J⇧K is drawn as follows:

J⇧0K

�

?A

�

w0
U

I

II

I

v

�

?A

�

wU

I

I I

I

u

(ix) If ⇧ is obtained using the contraction rule:

⇧0....
` [�],�, ?A, ?A

` [�],�, ?A
(CON.)

ACM SIGLOG News 30 April 2024, Vol. 11, No. 2

then its interpretation J⇧K is drawn as follows:

J⇧0K

�

?A

�

c0U

I

II

I

v

I

I

u

u

I

I

�

?A

�

cU

I

I I

I

u

I

I

v

v

I

I

Finally, the last thing that remains to be interpreted is cut-elimination. The Geom-
etry of Interaction interpretation of cut-elimination is given by the Execution formula,
which, as mentioned above, is defined using the trace operator. So consider a proof ⇧
of ` [�],�, so with interpretation J⇧K : �⌦� ! �⌦�. While in theory we can already
take the trace of J⇧K and trace out �, in order to get the correct formula, we will need
some extra permutations. So let �U : U2m

! U
2m be the tensor product of m-copies of

the symmetry map, so �U = �U,U ⌦ . . .⌦�U,U . We may write this permutation as a map
of type �U : � ! �. Then �U represents the cuts in the proof ` �, or in other words, �U
models �. This permutation is necessary since it rearranges the cut-formulas so that
when we close loops (i.e. take the trace), every cut-formula gets connected to its dual
formula.

Then for a proof ⇧ of ` [�],�, the Execution formula [Haghverdi and Scott(2006),
Section 4.1] is defined as follows:

EX (J⇧K, �U) :=
J⇧K

I I

I I �U J

H

I

N

Since we are in UDC, we can also use the standard trace formula to express the Exe-
cution formula as follows:

EX (J⇧K, �U) = ⇧1,1 +
X

n2N
⇧1,2; �; (⇧2,2; �)

n;⇧2,1

This standard trace formula version of the Execution formula allowed Scott and
Haghverdi to show that the Execution formula in HILB2 is the same as Girard’s orig-
inal execution formula for the operator algebra model [Haghverdi and Scott(2006),
Proposition 23].

The main result of [Haghverdi and Scott(2006)] is, of course, the soundness of this
Geometry of Interaction interpretation of MELL in a UDC-GoI Situation. In this case,
soundness can be described as saying that if a proof is reduced via cut-elimination to
its cut-free form, then applying the Execution formula to the starting proof gives a
finite sum and results in the interpretation of the cut-free form. In other words, if we
run the result of the Execution formula, then it terminates after finitely many steps
(so a finite sum) and yields a datum (a cut-free proof).

THEOREM 6.1. [Haghverdi and Scott(2006), Theorem 21] Let ⇧ be a proof of ` [�],�.
Then:

(i) EX (J⇧K, �U) is a finite sum.
(ii) If ⇧ reduces to ⇧0 by any sequence of cut-elimination steps and � does not contain

any fomrulas of the form ?A, then EX (J⇧K, �U) = EX (J⇧0K, �0U). So EX (J⇧K, �U) is
an invariant of reduction.

ACM SIGLOG News 31 April 2024, Vol. 11, No. 2

(iii) In particular if ⇧0 is any cut-free proof obtained from ⇧ by cut-elimination, then
we have that EX (J⇧K, �U) = J⇧0K.

In [Haghverdi and Scott(2005)], Scott and Haghverdi also explain how to construct
a denotational model for MELL (without units), and thus provide a more direct relation
between the Geometry of Interaction semantics to the denotational semantics in the
case of MELL. Moreover, they also construct star-autonomous categories from a UDC-
GoI Situation via an orthogonality construction [Haghverdi and Scott(2005), Section
5] or via a double glueing construction [Haghverdi and Scott(2005), Section 6.1].

7. FURTHER READING
Scott and his coauthors continued to work on traced monoidal categories and de-
velop other important concepts in the area. In [Haghverdi and Scott(2010b)], Scott
and Haghverdi developed a typed version of Geometry of Interaction and its categor-
ical semantics. To do so, they introduced the concept of partially traced categories,
which are a generalization of traced monoidal categories where the trace operator is
now only partially defined. The theory of partially traced categories was developed
further by Scott, Malherbe, and Selinger in [Malherbe et al.(2012)]. In [Hamano and
Scott(2018)], Scott and Hamano also developed a Geometry of Interaction for Polarized
Linear Logic, as well as a polarized version of GoI Situations.

REFERENCES
S. Abramsky. 1996. Retracing some paths in process algebra. In International Conference on Concurrency

Theory. Springer, Berlin, Heidelberg, 1–17.
S. Abramsky and B. Coecke. 2004. A categorical semantics of quantum protocols. In Proceedings of the

19th Annual IEEE Symposium on Logic in Computer Science, 2004. IEEE, Turku, Finland, 415–425.
DOI:https://doi.org/10.1109/LICS.2004.1319636

S. Abramsky and B. Coecke. 2005. Abstract physical traces. Theory and Applications of Categories 14, 6
(2005), 111–124.

S. Abramsky, E. Haghverdi, and P. Scott. 2002. Geometry of Interaction and Linear Com-
binatory Algebras. Mathematical Structures in Computer Science 12, 5 (2002), 625–665.
DOI:https://doi.org/10.1017/S0960129502003730

S. Abramsky and R. Jagadeesan. 1992a. Games and full completeness for multiplicative linear logic. In
International Conference on Foundations of Software Technology and Theoretical Computer Science.
Springer, Berlin, Heidelberg, 291–301.

S. Abramsky and R. Jagadeesan. 1992b. New foundations for the geometry of interaction. In [1992] Pro-
ceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science. IEEE, Turku, Finland,
211–222. DOI:https://doi.org/10.1109/LICS.1992.185534

S. Abramsky and R. Jagadeesan. 1994a. Games and full completeness for multiplicative linear logic. The
Journal of Symbolic Logic 59, 2 (1994), 543–574.

S. Abramsky and R. Jagadeesan. 1994b. New foundations for the geometry of interaction. Inf. Comput. 111,
1 (may 1994), 53–119. DOI:https://doi.org/10.1006/inco.1994.1041

M. Barr. 1992. Algebraically compact functors. Journal of Pure and Applied Algebra 82, 3 (1992), 211–231.
R. Blute and P. Scott. 2004. Category theory for linear logicians. Linear logic in computer science 316 (2004),

3–64.
J.-Y. Girard. 1987. Linear logic. Theoretical computer science 50, 1 (1987), 1–101.
J.-Y. Girard. 1988. Geometry of interaction 2: Deadlock-free algorithms. In International Conference on Com-

puter Logic. Springer, Berlin, Heidelberg, 76–93.
J.-Y. Girard. 1989a. Geometry of interaction 1: Interpretation of System F. Studies in Logic and the Founda-

tions of Mathematics 127 (1989), 221–260.
J.-Y. Girard. 1989b. Towards a geometry of interaction. Contemp. Math. 92, 69-108 (1989), 6.
J.-Y. Girard. 1995. Geometry of interaction III: accommodating the additives. London Mathematical Society

Lecture Note Series , (1995), 329–389.
J.-Y. Girard. 2006. Le point aveugle. Cours de logique 1 (2006).

ACM SIGLOG News 32 April 2024, Vol. 11, No. 2

J.-Y. Girard. 2011. Geometry of interaction V: logic in the hyperfinite factor. Theoretical Computer Science
412, 20 (2011), 1860–1883.

E. Haghverdi. 2000. A categorical approach to linear logic, geometry of proofs and full completeness. Ph. D.
Dissertation. University of Ottawa (Canada).

E. Haghverdi and P. Scott. 2005. From geometry of interaction to denotational semantics. Electronic Notes
in Theoretical Computer Science 122 (2005), 67–87.

E. Haghverdi and P. Scott. 2006. A Categorical Model for the Geometry of Interaction. Theoretical Computer
Science 350, 2-3 (2006), 252–274.

E. Haghverdi and P. Scott. 2010a. Geometry of Interaction and the Dynamics of Proof Reduction: a tutorial.
New Structures for Physics 813 (2010), 357–417.

E. Haghverdi and P. Scott. 2010b. Towards a typed geometry of interaction. Mathematical Structures in
Computer Science 20, 3 (2010), 473–521.

T. Hajgató and M. Hasegawa. 2013. Traced star-autonomous categories are compact closed. Theory and
Applications of Categories 28, 7 (2013), 206–212.

M. Hamano and P. Scott. 2018. On geometry of interaction for polarized linear logic. Mathematical Struc-
tures in Computer Science 28, 10 (2018), 1639–1694.

M. Hasegawa. 1997. Recursion from cyclic sharing: traced monoidal categories and models of cyclic
lambda calculi. In Typed Lambda Calculi and Applications. Springer, Berlin, Heidelberg, 196–213.
DOI:https://doi.org/10.1007/3-540-62688-3 37

M. Hasegawa. 2009. On traced monoidal closed categories. Mathematical Structures in Computer Science
19, 2 (2009), 217–244. DOI:https://doi.org/10.1017/S0960129508007184

M. Hasegawa and J.-S. P. Lemay. 2023. Traced Monads and Hopf Monads. Compositionality 5 (Oct. 2023),
1–34. Issue 10. DOI:https://doi.org/10.32408/compositionality-5-10

C. Heunen. 2013. On the functor `2. In Computation, Logic, Games, and Quantum Foundations. The Many
Facets of Samson Abramsky: Essays Dedicated to Samson Abramsky on the Occasion of His 60th Birth-
day. Springer, Berlin, Heidelberg, 107–121.

C. Heunen and J. Vicary. 2019. Categories for Quantum Theory: an introduction. Oxford University Press,
Oxford, UK. DOI:https://doi.org/10.1093/oso/9780198739623.001.0001

A. Joyal, R. Street, and D. Verity. 1996. Traced Monoidal Categories. Mathematical Proceedings of the Cam-
bridge Philosophical Society 119, 3 (1996), 447–468. DOI:https://doi.org/10.1017/S0305004100074338

J. Lambek and P. Scott. 1988. Introduction to higher-order categorical logic. Vol. 7. Cambridge University
Press, Cambridge, UK.

O. Malherbe, P. Scott, and P. Selinger. 2012. Partially traced categories. Journal of Pure and Applied Algebra
216, 12 (2012), 2563–2585.

E. G. Manes and M. A. Arbib. 2012. Algebraic approaches to program semantics. Springer Science & Business
Media, Berlin, Heidelberg.

P. Selinger. 2010. A survey of graphical languages for monoidal categories. In New Structures for Physics.
Springer, Berlin, Heidelberg, 289–355. DOI:https://doi.org/10.1007/978-3-642-12821-9 4

Ma. Shirahata. 2003. Geometry of Interaction explained. Surikaisekikenkyusho Kokyuroku 1318 (2003),
160–187. https://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/43041 Algebra, Logic and Geometry
in Informatics (Kyoto, 2002).

ACM SIGLOG News 33 April 2024, Vol. 11, No. 2

