
Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Model Based 
Software and Systems Engineering: 

Elements of Seamless Development

Manfred Broy



Manfred Broy 2Summer School July 2017 

DRAFT WHITE PAPER ON SYSTEMS AND SYSTEMS ENGINEERING DEFINITION 

PREPARED BY THE INCOSE FELLOWS’ INITIATIVE ON SYSTEMS ENGINEERING DEFINITION 

Draft	white	paper	on	systems	and	systems	engineering	definition	

	

	 Page 2 of 23	 11-Jul-17	

EXECUTIVE	SUMMARY	

STRAW	MAN	FOR	A	NEW	DEFINITION	OF	SYSTEMS	ENGINEERING	

As	a	working	premise	and	basis	for	discussion,	we	consider	the	merits	of	a	short	“straw	man”	definition	of	

Systems	Engineering	as	follows:	

Systems	Engineering	seeks	to	understand	societal	needs	for	technology-enabled	systems,	services,	and	
capabilities,	synthesise	holistic	fit-for-purpose	solutions,	and	facilitate	their	delivery	and	successful	

operation.	

This	definition	seeks	to	state	the	“what”	(as	in	“what	it	DOES”)	and	the	“why”,	without	specifying	the	“how”	or	

the	“who”,	or	indeed	the	“what	it	IS”.		

It	seems	to	be	wide	enough	to	encompass	the	scope	of	the	aspiration	of	INCOSE’s	SE	2025	vision,	which	is	not	

the	case	with	the	current	INCOSE	definition	of	SE.	Moreover,	it	is	non-restrictive,	avoiding	the	inclusion	of	

elements	of	practice	or	process	that	might	become	obsolete	or	irrelevant	in	the	future.	

THE	FOUR	SYSTEMS	OF	INTEREST	TO	SYSTEMS	ENGINEERING	

In	this	White	Paper	we	identify	four	“systems”	of	interest	to	Systems	Engineering,	as	illustrated	in	Fig	2:	

1. The	“Situation	System”,	otherwise	known	as	the	“context”,	“environment”,	“problem	situation”,	or	

“wider	system	of	interest	(WSOI)”;	

2. The	“System	that	does	Systems	Engineering”,	the	project	or	enterprise	charged	with	creating	a	new,	
or	improving	an	existing,	system	to	create	some	desired	improvement	in	the	“situation	system”;	

3. The	“System	that	is	Systems-Engineered”	in	order	to	achieve	the	desired	improvement,	otherwise	

referred	to	as	the	“operational	system”,	or	the	“system	of	interest	(SOI)”;	

4. The	“System	of	Structured	Information”,	otherwise	referred	to	as	the	System	Architecture	or	System	

Model,	that	describes	the	other	three	systems,	and	the	anticipated	and	actual	results	of	inserting	the	

third	into	the	first	–	of	deploying	the	operational	system	into	its	intended	operational	environment.		

UNDERSTANDING	THE	KEY	BENEFIT	PROPOSITIONS	OF	SYSTEMS	ENGINEERING	

Systems	Engineering,	with	its	holistic	approach	to	system	problems,	provides	benefits	in	each	of	the	four	

“systems”	listed	above,	and	globally	in	ensuring	their	successful	integration.	It	follows	that	the	benefits	

proposition	of	Systems	Engineering	can	be	expressed	as	follows,	and	as	illustrated	in	Fig	3.	

1. With	respect	to	the	Situation	System,	SE	provides	techniques,	methods	and	“ways	of	thinking”	to	
understand,	organise	and	prioritise	societal	needs	in	complex	situations,	and	to	conceive	solutions	that	
satisfy	the	priority	needs	and	concerns	of	all	stakeholders	while	avoiding	unintended	adverse	
consequences	for	stakeholders,	society	and	the	environment	(“framing	the	problem”	for	the	rest	of	the	
team)	

2. For	the	system	that	does	systems	engineering,	SE	provides	a	framework	and	methods	to	unify	and	
accomplish	engineering	and	related	activities,	across	the	whole	system	and	through	the	whole	
lifecycle.	

3. With	respect	to	the	system	that	is	systems	engineered,	SE	provides	techniques,	methods,	tools	and	
“ways	of	thinking”	to	synthesise	feasible,	affordable	and	effective	solutions	that	will	provide	the	
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Cyber-physical systems: key properties and challenges

• Physicality
◊ real world awareness
◊ real time
◊ probability
◊ …

• Connectivity
◊ systems of systems
◊ connected to cloud services

• Systems of systems
◊ Sub-system decomposition
◊ Service decomposition

• Interoperability
◊ Service platforms

• Openness
◊ security

• HMI
◊ Human Centric Engineering

• Dynamic systems
◊ Dynamic interfaces
◊ Dynamic architectures
◊ Dynamic change of behavior 

(adaptivity)
• Mobile systems
◊ space awareness
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Modeling CPS

When modeling CPS we have capture following aspects:
• interaction – exchange of information/material
◊ between system and its operational context
◊ between sub-system within a system architecture
◊ synchronization and orchestrations – protocols

• distribution – structuring systems in architectures with 
elements  related to locations

• operational context – system’s environment
• real time
• probability
To do that we have to use concepts such 
• interfaces – scope and interaction
• state – state transition
• architecture – (de-)composition of systems into subsystems
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System and its operational context
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Basic System Notion: What is a discrete system (model)

A system has
• a system boundary that determines 

◊ what is part of the systems and 
◊ what lies outside (called its context)

• an interface (determined by the system boundary), which determines, 
◊ what ways of interaction (actions) between the system und its context are 

possible (static or syntactic interface)
◊ which behavior the system shows from view of the context (interface behavior, 

dynamic interface, interaction view)
• a structure and distribution addressing internal structure, given

◊ by its structuring in sub-systems (sub-system architecture)
◊ by its states und state transitions (state view, state machines)

• quality profile
• the views use a data model
• the views may be documented by adequate models
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System Views

• Operational Context View (OC)
◊ Behavior of the operational context

• Interface View: System Interface Behavior (SIB)
◊ Functional View: Interface Behavior
◊ Functional features: hierarchy and feature interaction

• Interaction between OC and SIB: 
◊ Observable behavior: process

• Architectural View
◊ Hierarchical decomposition in sub-systems
◊ Sub-system behavior

• State View
◊ State space
◊ State transition



Manfred Broy 18Summer School July 2017 

Process

Operational Context (OC)

User Interface

Physical
and

technical
context

System under Consideration (SuC)

External 
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Context 
observations (CO)

A safety view 
onto a system 
and its context

No Hazard:

OC Ù SuC Þ No_Incident(CO)
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Discrete systems - interfaces: the modeling theory

Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

See: M. Broy: A Logical Basis for Component-
Oriented Software and Systems Engineering. The 
Computer Journal: Vol. 53, No. 10, 2010, S. 1758-
1782 
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The Basic Behaviour Model: Timed Streams and Channels

 

 
C     set of channels 
 
Type: C → TYPE  type assignment 
 
x : C → (IN\{0} → Μ∗) channel history for messages of type M 
 

    

€ 

 
C  or IH[C]   set of channel histories for channels in C 
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I O
Component interface

System interface behaviour - causality

 (I ! O) syntactic interface with set of  
 input channels I and of output channels O 
 
 F :   
 
I  → ℘(  

 
O ) semantic interface for (I ! O)  

 with timing property addressing strong  causality 
 let x, z ∈   

 
I , y ∈   

 
O , t ∈ IN):  

x↓t = z↓t ⇒ {y↓t+1: y ∈ F(x)} = {y↓t+1: y ∈ F(z)} 

          x↓t        prefix of history x of length t              

A system shows a total behavior
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Example: System interface specification

 
A transmission component TMC 
 

TMC 
  in    x: T 
  out  y: T 
  x ~ y 

 
x ~ y ≡ (∀ m ∈ T: m#x = m#y) 

TMC
x ~ y

x:T y:T

Input channel

Output channel

Specifying interface assertion

Spec name

See: M. Broy, K. Stølen: Specification and 
Development of Interactive Systems: Focus 
on Streams, Interfaces, and Refinement. 
Springer 2001 
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Verification: Proving properties about specified systems

From the interface assertions we can prove

• Safety properties

m#y > 0 Ù y Î TMC(x) Þ m#x > 0 

• Liveness properties

m#x > 0 Ù y Î TMC(x) Þ m#y > 0 
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Verification: adding and taking advantage of causality

From the interface assertion we can derive by causality
" m Î T: y Î TMC(x) Þ " t Î Time: m#(y↓t+1) ≤ m#(x↓t)

Specification:
y Î TMC(x) Þ (" m Î T: m#x = m#y)

Strong causality:
x↓t = z↓t Þ {y↓t+1: y∈TMC(x)} = {y↓t+1: y∈TMC(z)}

From which we deduce the hypothesis by choosing z such that

" m Î T: m#(zt) = 0
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Specification of Timing Properties

 
 

TMC  
  in    x: T 
  out  y: T 
" t Î IN: " m Î T:  
m#(y¯t+delay) ≤ m#(x¯t) ≤ m#(y¯t+delay+deadline) 

 

TMCx:T y:TExample: TMC with Timing 
Restrictions
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Specification of Probabilities

  
TMC  
  in    x: T 
  out  y: T 
∀ t ∈ IN: ∀ m ∈ T:  
P(m#(x↓t) ≤ m#(y↓t+delay+deadline)) ≥ 0.8 
 

 

TMCx:T y:T
Example: 
TMC with Probability Restrictions
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Discrete systems: the modeling theory - probability

Sets  of typed channels 

 I = {x1 : T1, x2 : T2, ... } 

 O = {y1 : T’1, y2 : T’2, ... } 

syntactic interface 

(I  O) 

data stream of type T 

STREAM[T] = {IN\{0} → T*}  

valuation of channel set C 

IH[C] = {C → STREAM[T]} 

interface behaviour for syn. interface (I  O) 

[I  O] = {IH[I] → PD[℘(IH[O]) ] } 

interface specification 

p: I∪O   → IB 

represented as interface assertion S  
logical formula with channel names as variables for streams 

Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

See: P. Neubeck: A Probabilitistic Theory of Interactive 
Systems. PH. D. Dissertation, Technische Universität 
München, Fakultät für Informatik, December 2012 

Set of all probability 
distributions over sets of 
output histories
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Extensions of the model: Probability

• Probabilistic views
◊ Interface behavior: a probability distribution is given for the set of 

possible histories
◊ Architectural view: probability distributions for the sub-systems of the 

architecture
◊ State view:  a probability distribution is given for the set of possible 

state transitions
• Then the model covers
◊ certain “non-functional properties” (safety, reliability, …)
◊ Example: integrated fault trees

See: P. Neubeck: A Probabilitistic Theory of Interactive 
Systems. PH. D. Dissertation, Technische Universität 
München, Fakultät für Informatik, December 2012 
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From the external to the internal view

• So far we treated the interface view.
• Now we move forward to the internal view!
A system has
• a system boundary that determines 

◊ what is part of the systems and 
◊ what lies outside (called its context)

• an interface (determined by the system boundary), which determines, 
◊ what ways of interaction (actions) between the system und its context are possible (static 

or syntactic interface)
◊ which behavior the system shows from view of the context (interface behavior, dynamic 

interface, interaction view)
• a structure and distribution addressing internal structure, given

◊ by its structuring in sub-systems (sub-system architecture)
◊ by its states und state transitions (state view, state machines)

• quality profile
• the views use a data model
• the views may be documented by adequate models
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Modularity: Rules of compositions for interface specs

   
F1 
  in    x1, z21: T 
  out  y1, z12: T 
  S1 

 

   
F2 
  in    x2, z12: T 
  out  y2, z21: T 
  S2 

 

  
F1⊗F2 

x2 

y2 z12 

z21 y1 

x1 
F1 

 
 

S1 

F2 
 
 

S2 

   
F1⊗F2 
  in    x1, x2: T 
  out  y1, y2: T 
 

 

   
F1⊗F2 
  in    x1, x2: T 
  out  y1, y2: T 
∃ z12, z21: S1 ∧ S2 
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Architecture

• Composition F = C1Ä C2Ä C3

C3

x1 : T1

y6: T’6

x4 : T4

x3 : T3x2 : T2

x6 : T6

y3 : T’3

y4 : T’4

x8 : T8

y8 : T’8 C2C1

y7 : T’7 x7 : T7

x5 : T5 y5 : T’5

x1 : T1

y6: T’6

x2 : T2

x6 : T6

x8 : T8

y8 : T’8C1

x3 : T3 y3 : T’3

x8 : T8

y8 : T’8 C2

y7 : T’7 x7 : T7

C3

y6: T’6

x4 : T4

x6 : T6

y4 : T’4

y7 : T’7 x7 : T7

x5 : T5 y5 : T’5

F
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Forming Architectures

C1ÄC2ÄC3
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Forming Architectures

  

SF3 

C3 

x1 : T1 

y6: T’6 

x4 : T4 

x3 : T3 x2 : T2 

x6 : T6 

y3 : T’3 

y4 : T’4 

x8 : T8 

y8 : T’8 SF2 
C2 

SF1 
C1 

y7 : T’7 x7 : T7 

x5 : T5 y5 : T’5 

Architecture Behaviour
SF1ÄSF2ÄSF3

Architecture Spec 
C1ÙC2ÙC3

Architecture Correctness 
C1ÙC2ÙC3 Þ SysSpec
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Specification of a Car´s Architecture
  

Car 
∀ t: ¬ doors_closed(t) ⇒ act_speed(t) = 0 
 

ready : Bool 

doors_closed : Bool 

Motor WatchDog 
act_speed : Real 

 

 

  
Watch-Dog 
 
∀ t: ¬ doors_closed(t) ⇒ ¬ ready(t) 
 

ready : Bool 

doors_closed : Bool  

  
Motor 
 
∀ t: ¬ ready(t) ⇒ act_speed(t) = 0  
 

act_speed : Real ready : Bool 
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The State View
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System and States

• Systems have states
• A state is an element of a state space
• We characterize state spaces by 
◊ a set of state attributes together with their types
◊ Example:

State space for a three dimensional position: 
x1, x2, x3: Var Real

State space for a cruise comtrol: 
speed, set_speed: Var Real, engine_on, activated: Var Bool 

• The behaviour of a system with states can be described by its 
state transitions
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A system can be implemented by a state – a generalized Mealy 
Machine
S set of states, initial state s Í S

State transition function:

State transition diagram: 

D: (S ´ (I ® M*)) ®Ã(S ´ (O ® M*))

State model for systems/components

 

 x: d / - {q' = qˆ‹d›} 
 x: d / - {q' = qˆ‹d›} 

 {q = ‹d›} x: ® / y: d {q' = ‹›} 

 Nonempty 
q ≠ ‹› 

 x: ® / y: ® {q' = ‹›} 
 {d = ft.q}   x: ® / y: d    {rt.q = q'} 

Empty 
 q = ‹› 

M. Broy: From States to Histories: Relating 
States and History Views onto Systems. In: 
T. Hoare, M. Broy, R Steinbrüggen (eds.): 
Engineering Theories of Software 
Construction. Springer NATO ASI Series, 
Series F: Computer and System Sciences, 
Vol. 180, IOS 2001, 149-186 
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State Machines in general

A state machine (Δ, Λ) consists of
• a set Σ of states - the state space
• a set Λ ⊆ Σ of initial states
• a state transition function or relation Δ
◊ in case of a state machine with input/output: 

events (inputs E) trigger the transitions and events (outputs A) are 
produced by them respectively:

Δ : Σ ´ Ε → Σ ´ Α
in the case of nondeterministic machines:

Δ : Σ ´ Ε → Ã(Σ ´ Α)

• Given a syntactic interface with sets I and O of input and output channels:
E = I → M*
A = O → M*
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Computations of a State Machine with Input/Output

A state machine (Δ, Λ) defines for each initial state
σ0 ∈ Λ

and each sequence of inputs
e1, e2, e3, ... ∈ E

a sequence of states
σ1, σ2, σ3, ... ∈ Σ

and a sequence of outputs
a1, a2, a3, ... ∈ A

through
(σi+1, ai+1) ∈ Δ(σi, ei+1)
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Computations of a State Machine with Input/Output

In this manner we obtain computations of the form

For each initial state σ0 ∈ S we define a function

with
Fσ0(x) = {y: $ σi: σ0 = σ0 Ù " i ∈ IN: (σi+1, yi+1) = Δ(σi, xi+1)}

Fσ0 denotes the interface behavior of the transition function D for the initial 
state σ0.
Furthermore we define 

Abs((Δ, Λ)) = FL
where:

FL(x) = {y ∈ Fσ(x) : y ∈ Fσ(x) Ù σ∈ Λ}
FL is called the interface behavior of the state machine (Δ, Λ) .

  

€ 

σ0
a1 / b1# → # # σ1

a2 / b2# → # # σ2
a3 / b3# → # # σ3 ...

    

€ 

Fσ0 :
 
I →℘(

 
O )
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Moore Machines

• A Mealy machine (Δ, Λ) with 
Δ : Σ ´ Ε → Ã(Σ ´ Α)

is called Moore machine if for all states σ ∈ Σ and inputs e ∈ E the set
out(σ, e) = {a ∈ A: (σ, a) = Δ(σ, e) }

does not depend on the input e but only on state σ.

• Formally: then for all e, e’ ∈ E we have
out(σ, e) = out(σ, e’)

Theorem: If is (Δ, Λ) a Moore machine the FΛ is strong causal.
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Constructing state machines

• Specification: 
◊ Specify the syntactic interface
◊ Specify the interface behavior (say by an interface assertion)

• Construction:
◊ Construct the state space: define the attributes and their data types
◊ Define the state transitions (e.g.: choose control states and state 

transitions: labeled state transition diagram)
• Verification:
◊ Prove that state machine shows the specified interface behavior
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Interface Abstraction for State Machines

• For a given state machine with input and output we define the interface 
through
◊ its syntactic interface (signature)
◊ its interface behavior

• We call the step from the state machine to its interface the interface 
abstraction.

Verification/derivation of interface assertions for state machines
• similar to program verification (find an invariant)
• needs sophisticated techniques
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Observable Equivalence

• Two systems modelled by state machines 
(D1, L1) and (D2, L2)

are observably equivalent iff they fulfil the equation
Abs((D1, L1)) = Abs((D2, L2))
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Conclusion Systems as State Machines

• Each state machines defines an interface behaviour
• Each interface behaviour represents a state machine
• State machines can be described
◊ mathematically by their state transition function
◊ graphically by state machine diagrams
◊ structured by state transition tables
◊ by programs

• State machines define a kind of operational semantics
• Systems given by state machines can be simulated
• From state machines we can generate code
◊ state machines can represent implementations

• From state machines we can generate test cases
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Composition of the two state machines

Consider Moore  machines Mk = (Dk, Lk) (k = 1, 2):
Dk: Sk ´ (Ik ® M*) ® Ã(Sk ´ (Ok ® M*) )

We define the composed state machine
D: S ´ (I ® M*) ® Ã(S ´ (O ® M*) )

as follows
S = S1 ´ S2

for x Î I and (s1, s2) Î S we define: 

D((s1, s2), x) = {((s1’, s2’), z|O):  x = z|I Ù " k: (sk’, z|Ok) Î Dk(sk, z|Ik) }

This definition is based on the fact that we consider Moore machines.
We write

D = D1 || D2
M = M1 || M2 = (D1 || D2 , L1 ´ L2)
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An example of an essential property ...

Interface abstraction distributes for state machines 
over composition

Abs((D1, s1) || (D2, s2) ) =
Abs((D1, s1)) Ä Abs((D2, s2))



Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Functional View: Functional Decomposition
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Combining Functions

Given two functions F1 and F2 in isolation

We want to combine them into a function F1 Ä F2
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Combining Functions

Their isolated combination

  

O2 O1 

I2 I1 

F1 F2 
F1 ⊗ F2 
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Combining Functions

If services F1 and F2 have feature interaction we get:

We explain the functional combination F1 Ä F2 as a
refinement step
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The steps of function combination

Given the isolated function F1

We construct a refinement F’1

And combine F’1 with a refinement F’2 of F2

  

F1 ⊗ F2 

O2 O1 

I2 I1 

F´1 F´2 

See: M. Broy: Multifunctional Software 
Systems: Structured Modeling and
Specification of Functional Requirements. 
Science of Computer Programming 75 
(2010), S. 1193–1214
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Sub-types between interfaces

For syntactic interfaces (I ! O) and (I’ ! O’) where 

I’ ⊆ I and O’ ⊆ O 

we call (I’"O’) a sub-type of (I ! O) and write: 

 (I’ ! O’) ⊆ (I ! O) 
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From overall syntactic system interfaces …

F: Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3
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to …

F: Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3
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sub-interfaces

F: Systemx1 : T1

x4 : T4

x2 : T2

y2 : T’2

y3 : T’3
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Projection

Given: 

 (I’ ! O’) ⊆ (I ! O) 

define for a behavior function F ∈ [I"O] its projection  

F†(I’"O’) ∈ [I’"O’]  

to the syntactic interface (I’"O’) by (for all x’ ∈ 

I ’ ): 

 
F†(I’"O’)(x’) =  {y|O’: ∃ x ∈ 


I : x’ = x|I’ ∧ y ∈ F(x)} 

 
The projection is called faithful, if for all x ∈ dom(F)  

F(x)|O’ = (F†(I’"O’))(x|I’) 
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Example: Component interface specification – Airbag Controller

 An air bag controller 
 

AB_Cont 
  in    x: AB_I 
  out  y: AB_O 
  x »200» y 

 
x »200» y ≡ (∀ t ∈ Time:   

     crash_sig ∈ x(t) ⇔ act_airbag ∈ y(t+200)) 

AB_Cont
x »200» y 

x:{crash_sig} y:{act_airbag}
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Example: Component interface specification – Airbag Controller

 An air bag controller 
 

AB_Cont 
  in    x: AB_I, m: {on, off} 
  out  y: AB_O 
  x »200|m» y 

 
x »200|m» y ≡ (∀ t ∈ Time:   
(ON(m, t+199) ∧ crash_sig ∈ x(t)) ⇔ act_airbag ∈ y(t+200) 

AB_Cont
x »200|m» y 

x:{crash_sig} y:{act_airbag}

m:{on, off}

ON(m, t) = if t = 0 then false elif on Î m(t) then true 
elif off Î m(t) then false else ON(m, t-1) fi
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Feature interaction in the architecture view
4.3. Study Results

Table 4.2: Extent of dependencies in the vehicle function graph

MAN System
(n = 55 b=100%)

BMW System
(n = 94 b=100%)

Vehicle functions. . . Number Ratio Number Ratio

with incoming dependencies 36 65.5% 81 86.2%

with outgoing dependencies 29 52.7% 72 76.6%

with incoming and outgoing
dependencies

27 49.1% 68 72.3%

without dependencies 17 31.0% 9 9.6%

The evaluation of RQ 4 is based on interviews with function experts from the BMW
Group. In order to get representative results from the interview partners we selected
one expert from each area within the domain of driving dynamics and driver assis-
tance. These areas are: lateral, longitudinal and vertical dynamics as well as driver
assistance features. The experts were responsible for a number of 12–46 vehicle func-
tions.

4.3 Study Results

In this section the results of the study are presented. They are structured according
to the defined research questions.

4.3.1 Extent of Dependencies (RQ 1)

Table 4.2 summarizes the results of the analysis on the extent of dependencies in the
two analyzed systems. Analyzing the vehicle function graph of the MAN system, we
found 133 dependencies between the 55 vehicle functions. 17 out of the 55 vehicle
functions were completely independent from any other vehicle function and did also
not have any influence on other vehicle functions. 36 vehicle functions were depen-
dent on another vehicle function (i.e., they had incoming dependencies) and 29 ve-
hicle functions had an influence on another vehicle function (i.e., they had outgoing
dependencies). There were 135 different data channels that caused the dependencies.

Analyzing the vehicle function graph of the BMW system, we found 1,451 depen-
dencies between the 94 vehicle functions. Only 9 out of the 94 vehicle functions were
completely independent from any other vehicle function. 81 vehicle functions were
dependent on another vehicle function and 72 vehicle functions had an influence
on another vehicle function. There were 234 different data channels that caused the
dependencies.

46

Taken from: 
A. Vogelsang: Model-based Requirements Engineering for
Multifunctional Systems. PH. D. Dissertation, Technische 
Universität München, Fakultät für Informatik, 2014 
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Functional features
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Functional features

5.4. Case Study: Property-driven Requirements Engineering

Onboard

Train Door 
Function

Propulsion 
Function

PSD Door 
Function

HMI Status 
Function

Door 
Supervision

 Function

openDoorCommand doorReleaseStatus

authorizePSDOpening doorMode
doorReleaseStatus

Door Mode 
Function

Door Open 
Function

Door Release 
Function

doorMode doorReleaseStatus
releaseEnforced

PSD 
Authorization 

Function

PSD Control 
Function

Supervision 
Mode 

Function

Supervision 
Control 

Function

trainSupervision

Figure 5.38: Function hierarchy of the onboard subsystem.

Figure 5.39: Function hierarchy of the wayside subsystem.
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Modes5.4. Case Study: Property-driven Requirements Engineering

Onboard Mode Model
[Train Doors]

[PSD Doors]

[Operation Modes]

[Train Supervision]

closed released

opened

opening not 
authorized

opening 
authorized

[Release Options]

[Door Mode]

Deactivated Activated

Automatic 
Release

Enforced 
Release

ManOpen 
ManClose

AutOpen 
ManClose

AutOpen 
AutClose

Figure 5.40: Mode model of the onboard subsystem represented by a statechart.

is active at a time (e.g., in the figure, the status of the Train Doors is independent from
the status of the Train Supervision mode).

Formal Verification. Out of the 39 interface assertions, we were able to verify for 31
(ca. 80%) that they are not violated by the associated function specification. In cases,
in which the verification failed this was either due to incompleteness or inconsistency
of the original requirements provided by Siemens, or due to disability of the tool we
used for this case study.9

Benefits

Resolved Inconsistencies. Through the formalization and verification of require-
ments, we revealed requirements that, at least, needed further discussion with the
different stakeholders. We found that some requirements lacked information or as-
sumed certain properties of the context. For example, conflicting requirements of one
function were revealed when in the verification process either one interface assertion

9Tool support is discussed separately at the end of this chapter.
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Function Hierarchy
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An interpreted feature tree

 F1, ..., n 

 

 F1, 2          ... Fk, k+1          ... Fn-1, n 

 

 F1 F2          ... Fk Fk+1          ... Fn-1 Fn 



Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Model Integration
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Integrating modeling concepts

• An architecture can be abstracted into an interface behavior
◊ Proof techniques for architecture verification

• A state machine can be abstracted into an interface behavior
◊ Proof techniques for implementation verification

• Integration of further modeling concepts
◊ Scenarios and interaction diagrams (MSCs)
◊ Processes and process diagrams
◊ Services
◊ …

!

 

C3 

x1 : T1 

y6: T’6 

x4 : T4 

x3 : T3 x2 : T2 

x6 : T6 

y3 : T’3 

y4 : T’4 

x8 : T8 

y8 : T’8 C2 
C1 

y7 : T’7 x7 : T7 

x5 : T5 y5 : T’5 

 

 x: d / - {q' = qˆ‹d›} 
 x: d / - {q' = qˆ‹d›} 

 {q = ‹d›} x: ® / y: d {q' = ‹›} 

 Nonempty 
q ≠ ‹› 

 x: ® / y: ® {q' = ‹›} 
 {d = ft.q}   x: ® / y: d    {rt.q = q'} 

Empty 
 q = ‹› 

interface 

architecture state 
machine 

interface 
abstraction 

interface 
abstraction 

 

C3 

x1 : T1 

y6: T’6 

x4 : T4 

x3 : T3 x2 : T2 

x6 : T6 

y3 : T’3 

y4 : T’4 

x8 : T8 

y8 : T’8 C2 
F 

x5 : T5 y5 : T’5 

M. Broy: The Semantic and Methodological
Essence of Message Sequence Charts. 
Science of Computer Programming, SCP 
54:2-3, 2004, 213-256 



Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Modular Model Based System Development
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System Specification

Sx1 : T1

y4 : T’4

x4 : T4

x3 : T3x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

Validation

Informal 
requirements

System delivery

System verification
R Þ S

Rx1 : T1

y4 : T’4

x4 : T4

x3 : T3x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

Integration

R = R1ÄR2ÄR3

architecture  
design

architecture  
verification
S Ü C1ÄC2ÄC3

components implementation

Verification R1 Þ C1 R2 Þ C2 R3 Þ C3

C1 C2 C3

S

C1 C2 C3C2
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What did we get?

• A complete and precise modeling approach
◊ Mathematical models – denotational semantics
◊ Logical representation – for specifcation and reasoning
◊ Graphical (and tabular) representation – for structured representation

• Semantic coherence

!
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What can we do with it?

• Systems and software engineering?
◊ Capturing properties and concepts of systems
◊ Tools

• Formal methods?
◊ Proofs

• Foundational framework?
◊ Making concepts clear
◊ Proving methods correct
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The power of generalizing ideas, of 
drawing comprehensive conclusions 
from individual observations, is the 
only acquirement, for an immortal 
being, that really deserves the name 
of knowledge. 

“Mary Wollstonecraft  (1759–1797), 
British feminist. A Vindication of the 
Rights of Woman, ch. 4 (1792)


