Model Based
Software and Systems Engineering:

Elements of Seamless Development

Manfred Broy

Technische Universitat Minchen EZ¥Yy
Institut flr Informatik gg &
D-80290 Munich, Germany 1

DRAFT WHITE PAPER ON SYSTEMS AND SYSTEMS ENGINEERING DEFINITION

PREPARED BY THE INCOSE FELLOWS' INITIATIVE ON SYSTEMS ENGINEERING DEFINITION

STRAW MAN FOR A NEW DEFINITION OF SYSTEMS ENGINEERING

As a working premise and basis for discussion, we consider the merits of a short “straw man” definition of
Systems Engineering as follows:

Systems Engineering seeks to understand societal needs for technology-enabled systems, services, and
capabilities, synthesise holistic fit-for-purpose solutions, and facilitate their delivery and successful
operation.

Summer School July 2017 Manfred Broy T|_|T| | 2

DRAFT WHITE PAPER ON SYSTEMS AND SYSTEMS ENGINEERING DEFINITION

PREPARED BY THE INCOSE FELLOWS' INITIATIVE ON SYSTEMS ENGINEERING DEFINITION

THE FOUR SYSTEMS OF INTEREST TO SYSTEMS ENGINEERING

In this White Paper we identify four “systems” of interest to Systems Engineering, as illustrated in Fig 2:

n u n u

1. The “Situation System”, otherwise known as the “context”, “environment”, “problem situation”, or
“wider system of interest (WSOI)”;

2. The “System that does Systems Engineering”, the project or enterprise charged with creating a new,
or improving an existing, system to create some desired improvement in the “situation system”;

3. The “System that is Systems-Engineered” in order to achieve the desired improvement, otherwise
referred to as the “operational system”, or the “system of interest (SOI)”;

4. The “System of Structured Information”, otherwise referred to as the System Architecture or System
Model, that describes the other three systems, and the anticipated and actual results of inserting the

third into the first — of deploying the operational system into its intended operational environment.

Summer School July 2017 Manfred Broy T|_|T| | 3

Interfaces and Systems

Manfred Broy

Technische Universitat Minchen 2y
Institut fur Informatik M
D-80290 Munich, Germany X3

Cyber-physical systems: key properties and challenges

* Physicality * Openness
O real world awareness O security
¢ real time e HMI
¢ probability © Human Centric Engineering
Vo * Dynamic systems
* Connectivity © Dynamic interfaces
v systems of systems o Dynamic architectures
0 connected to cloud services % Dynamic change of behavior
* Systems of systems (adaptivity)
' Sub-system decomposition * Mobile systems
¢ Service decomposition ¢ space awareness

* Interoperability
¢ Service platforms

Summer School July 2017 Manfred Broy TI.ITI |

Modeling Cyber-Physical Systems

Technische Universitat Minchen 2y
Institut fur Informatik M
D-80290 Munich, Germany X3

Modeling CPS

When modeling CPS we have capture following aspects:

* interaction — exchange of information/material
O between system and its operational context
O between sub-system within a system architecture
¢ synchronization and orchestrations — protocols

e distribution — structuring systems in architectures with
elements related to locations

* operational context — system’s environment

* real time

* probability

To do that we have to use concepts such

* interfaces — scope and interaction

* state — state transition

* architecture — (de-)composition of systems into subsystems

Summer School July 2017 Manfred Broy TI.I'I1 |

What is a System

Technische Universitat Mlinchen E2%%
Institut fur Informatik 13T
D-80290 Munich, Germany A%

A slide due to Michael Jackson

Here’s
the _ _
machine | An industrial press system Here’s
the user
X« interface
Press Controller
Architecture Actuators .
// \ Press
a f Mechanism
Software] _— & Doors 9
Sensors
Software // \
h Operator
C Operator /
Controls i
d
Software Lamp &
i = .\ 17/
Software i Where is “the
war
system?
Here's /
the
problem
world

Summer School July 2017 Manfred Broy T|.|T| |

Finding the scope

An industrial press system

Press Controller
Architecture

Software

Software

Is the
hardware/software
“the"” system?

Summer School July 2017 Manfred Broy

Finding the scope

An industrial press system

Press Controller
Archite S

Software

Software

n

Is the software “the

system?

Summer School July 2017 Manfred Broy

11

Finding the scope

An industrial press system

Actuators

Sensors

Press
Mechanism
& Doors

Operator
Controls

Lamp &
Switch

Is the mechanical
device “the” system?

Summer School July 2017

Manfred Broy

m |

12

Finding the scope

An industrial press system

Press Controller
Architecture Actuators

Sensors

Software

Software

Is the electronics “the”
system?

Summer School July 2017 Manfred Broy T|.|T| |

Finding the scope

An industrial press system

Press Controller
Architecture Actuators

Software

Software

Software

Software

Is the mechanical system

with its electronics “the”
system?
Summer School July 2017 Manfred Broy TUT | 14

System and its operational context

operational
i HM| context

Cyberspace
Services
&

Data

Summer School July 2017

Manfred Broy TuTl |

15

Basic System Notion: What is a discrete system (model)

A system has

a system boundary that determines
¢ what is part of the systems and
¢ what lies outside (called its context)
an interface (determined by the system boundary), which determines,

¢ what ways of interaction (actions) between the system und its context are
possible (static or syntactic interface)

¢ which behavior the system shows from view of the context (interface behavior,
dynamic interface, interaction view)

a structure and distribution addressing internal structure, given
O by its structuring in sub-systems (sub-system architecture)
O by its states und state transitions (state view, state machines)

quality profile
the views use a data model
the views may be documented by adequate models

Summer School July 2017 Manfred Broy T|_|T| | 16

System Views

* Operational Context View (OC)
¢ Behavior of the operational context
* Interface View: System Interface Behavior (SIB)

¢ Functional View: Interface Behavior
¢ Functional features: hierarchy and feature interaction

* Interaction between OC and SIB:
¢ Observable behavior: process

* Architectural View
¢ Hierarchical decomposition in sub-systems
O Sub-system behavior

* State View

¢ State space
¢ State transition

Summer School July 2017 Manfred Broy TI.I'I1 |

17

Process

Operational Context (OC)

A safety view
onto a system
and its context

Physical Context
and observations (CO)
technical >
context
/ External
User Interface "= Incident
No Hazard:

OC A SuC = No_Incident(CO)

System under Consideration (SuC)

Summer School July 20 Mlanfred Broy T|_|T| | 18

Basic System Modeling Concepts:
Interface View:
Modeling Syntactic Interfaces and Interface Behavior

Technische Universitat Minchen EZ¥Yy
Institut fur Informatik g g § ¢
D-80290 Munich, Germany

Discrete systems - interfaces: the modeling theory

Sets of typed channels

[={X;: Ty, X2: Ty ... }
O={y1:T,y2:T% ...} %2 T i Ts | Yt Th
syntactic interface x;: T, | System Y, i T5
 —— —
1 » 0) T,
data stream of type T
—
STREAM[T] = {IN\{0} — T*} y3: T
valuation of channel set C Ya T"l [X5 i Ts

IH[C] = {C — STREAM[T]}

interface behaviour for syn. interface (I » O) See: M. Broy: A Logical Basis for Component-

[I » O] = {IH[I] — @ (IH[O]} Oriented Software and Systems Engineering. The
Computer Journal: Vol. 53, No. 10, 2010, S. 1758-
interface specification 1782
p: IUO — IB

represented as interface assertion S
logical formula with channel names as variables for streams

Summer School July 2017 Manfred Broy T|_|T| | 20

The Basic Behaviour Model: Timed Streams and Channels

C set of channels

Type: C — TYPE type assignment

X : C — (N0} — M*) channel history for messages of type M
C or IH[C] set of channel histories for channels in C

Summer School July 2017 Manfred Broy T|_|T| | 21

System interface behaviour - causality

(I » O) Syntactic interface with set of
input channels | and of output channels O

F: 1 — go(f)) semantic interface for (I » Q)
with t/m/ng propen‘y addressing strong causality

ImszIyEOtEN)

X |t prefix of history x of length t

Ii To

total Component interface

Summer School July 2017 Manfred Broy T|_|T| | 22

Specification of Interface Behavior

Technische Universitat Mlinchen 2y
Institut fir Informatik L
D-80290 Munich, Germany X

Example: System interface specification

y: T

A tH'ansmission comionent TMC
See: M. Broy, K. Stglen: Specification and

Development of Interactive Systems: Focus
on Streams, Interfaces, and Refinement.
Springer 2001

T: m#xX = mity)

Summer School July 2017 Manfred Broy T|_|T| | 24

Verification: Proving properties about specified systems

From the interface assertions we can prove
* Safety properties

m#Yy >0Ay e TMC(X) = m#x >0
* Liveness properties

M#X >0 Ay e TMC(X) = m#y > 0

Summer School July 2017 Manfred Broy T|.|T| |

25

Verification: adding and taking advantage of causality

From the interface assertion we can derive by causality
VvmeT:y e TMC(X) = V t € Time: m#(yJdt+1) < m#(XxLt)

Specification:
y € TMC(X) = (V m e T: m#x = m#y)
Strong causality:

Xt =zt = {ylt+1l: yeTMC(X)} = {yJt+1: yeTMC(2)}

From which we deduce the hypothesis by choosing z such that

vmeT: m#@ETt) =0

Summer School July 2017 Manfred Broy T|_|T| | 26

Interfaces and Systems:

Timing

Manfred Broy

Technische Universitat Minchen 2y
Institut fur Informatik g g g g
D-80290 Munich, Germany ‘

Specification of Timing Properties

Example: TMC with Timing T
Restrictions '

TMC
in x:T

out y: T
VteIN: VmeT:
m#(yi«t+delay) < m#(xdt) < m#(y\l/t+delay+deadline)

Summer School July 2017 Manfred Broy T|_|T| | 28

Extending the Model of Interface Behavior:

Probabilistic System Interface Models

Technische Universitat Minchen EZ¥Yy
Institut fur Informatik g g £ ¢
D-80290 Munich, Germany

Specification of Probabilities

Example:

TMC with Probability Restrictions x:1

TMC
in x:T
out y: T
VteIN: VmeT:
P(m#(x | t) <= m#(y | t+delay+deadline)) = 0.8

Summer School July 2017 Manfred Broy TUT | 30

Discrete systems: the modeling theory - probability

Sets of typed channels
I = {X1 . T1, X . Tz, }
O={y;:T,y2:T5 ... } X3 TZl X3 Tal Nyl P T
syntactic interface

(I »0O) —

data stream of type T

STREAM[T] = {IN\{0} — T*}
valuation of channel set C

IH[C] = {C — STREAM[T]}
interface behaviour for syn. interfac

[I » O] = {IH[I] — PD[@ (IH[O]) | }

Set of all probability <
distributions over sets of '
output histories

interface specification See: P. Neubeck: A Probabilitistic Theory of Interactive
p: [lUO — IB Systems. PH. D. Dissertation, Technische Universitat

Miinchen, Fakultat fur Informatik, December 2012
represented as interface assertion S
logical formula with channel names as variables for streams

Summer School July 2017 Manfred Broy TI.ITI |

31

Extensions of the model: Probability

* Probabilistic views

¢ Interface behavior: a probability distribution is given for the set of
possible histories

O Architectural view: probability distributions for the sub-systems of the
architecture

¢ State view: a probability distribution is given for the set of possible
state transitions
* Then the model covers
¢ certain “non-functional properties” (safety, reliability, ...)
O Example: integrated fault trees

See: P. Neubeck: A Probabilitistic Theory of Interactive
Systems. PH. D. Dissertation, Technische Universitat
Mlnchen, Fakultat fur Informatik, December 2012

Summer School July 2017 Manfred Broy TI.ITI |

32

Architecture and State

Technische Universitat Minchen EZ¥Yy
Institut fir Informatik $3%:
D-80290 Munich, Germany 188

From the external to the internal view

* So far we treated the interface view.

* Now we move forward to the internal view!
A system has

¢

a structure and distribution addressing internal structure, given
O by its structuring in sub-systems (sub-system architecture)
O by its states und state transitions (state view, state machines)

Summer School July 2017 Manfred Broy TI.ITI |

34

Architecture - Structure:
Composition and Decomposition

Technische Universitat Minchen 2y
Institut fur Informatik g g g g
D-80290 Munich, Germany '

Modularity: Rules of compositions for interface specs

x1
FI®F2 z12 y2
< | F2 .

yl S1 z21| S§2 X2
< <+ <

F1 F2

in x1,z21: T in x2,z12: T
out yl,z12: T out y2,z21: T

S1 S2

FI1®F2
in x1,x2:T

out yl,y2: T
d2z12,z21: S1 A S2

Summer School July 2017 Manfred Broy TI.ITI |

Architecture

* Composition F = C;® C,® G5 X; : T3\ ‘y3 LT,
T Yg: T's G,
X2+ 12 —
Xg : Tg
x0Ty [C yg: T's ,
. Y71 T [X%7: Ty
Xg: Tg

Xp 0 T X.: T T’
Ye- Tlel [XG : Te 2 2\ 3 31 [y3 3

Xy o1 F
1 1
Ye- Il6l [XG: I6 Y7 - |’7l NX7: I7

C YaiTly
’ Ya i Ty
— >
X4'T4 < T
X4t Ty
Xs i Ts Ys: T's ’
X5 & Tsg ys i T's
v

Summer School July 2017 Manfred Broy T|_|T| | 37

Forming Architectures

C,®C,®C,

A
X7 . Tz X3 . T3 Y3 . T’3
\ 4 \ 4
Xy 0T yg: T’
1 1’C1 8 8> G,
[
Xg : Tg
Ye: T's TX6:T6 y;: T7 TX75T7
\ 4 \ 4
C3 Ya - “
<—
Xq : Tgq
X5:T5 Y5:T’5
v

Summer School July 2017 Manfred Broy

38

Forming Architectures

Architecture Behaviour

X> : 1o X3 : T3 Ty3 : T3 SF1®SF2®SF3
Xyt Ty > SF1 Ys - T’8> SFZ
S e
v T T Tyt T . Architecture Spec
SF, Va: T . Cl/\Cz/\C3
C3 Xq4: T

X5:T5

ys : T's
j Architecture Correctness
CiACAC; = SysSpec

Summer School July 2017

Manfred Broy T|_|T| | 39

Specification of a Car”s Architecture

act_speed : Real

-

Car

V t: = doors_closed(t) = act_speed(t) = 0

Motor

-

Watch-Dog

ready : Bool Y t: = doors_closed(t) = - ready(t)

WatchDog

ready : Bool

doors_closed

doors_closed : Bool

act_speed : Real

: Bool

<

Motor

Y t: = ready(t) = act_speed(t) = O |«

ready : Bool

Summer School July 2017

Manfred Broy T|_|T| |

40

Implementation: Systems as State Machines

The State View

Technische Universitat Minchen EZ¥Yy
Institut fur Informatik § g g ¢
D-80290 Munich, Germany

System and States

* Systems have states
* A state is an element of a state space

* We characterize state spaces by
O a set of state attributes together with their types

O Example:
State space for a three dimensional position:
x1, x2, x3: Var Real
State space for a cruise comtrol:
speed, set_speed: Var Real, engine_on, activated: Var Bool

* The behaviour of a system with states can be described by its
state transitions

Summer School July 2017 Manfred Broy TI.ITI |

State model for systems/components

A System can be imp|emented by 3 state M- Broy: From States to Histories: Relating

States and History Views onto Systems. In:

MaChine T. Hoare, M. Broy, R Steinbriiggen (eds.):
Engineering Theories of Software

T Construction. Springer NATO ASI Series,
2 set Of States, mltlal state G C 2 Series F: Computer and System Sciences,

Vol. 180, I0S 2001, 149-186
State transition function:

A (2 x (1> M) > pE x (0> M)

State transition diagram:
x:d/-{q =q «d} {d=ftq} x:®/y:d {rtgq=q'}
x:d/-{q' =q«d}

Nonempty
q= <

{g=«d}x:®/y:d{q' =<}

Summer School July 2017 Manfred Broy T|_|T| | 43

State Machines in general

A state machine (A, A) consists of
* aset > of states - the state space
* aset A C s of initial states
* a state transition function or relation A
¢ in case of a state machine with input/output:
events (inputs E) trigger the transitions and events (outputs A) are
produced by them respectively:
A:2xXE—>2ZxA
in the case of nondeterministic machines:

A:IXE-> p(ZxA)
* Given a syntactic interface with sets I and O of input and output channels:
E=1-—> M*
A=0—-> M*

Summer School July 2017 Manfred Broy TUTI | 44

Computations of a State Machine with Input/Output

A state machine (A, A) defines for each initial state
O & A

and each sequence of inputs

e, €, €63 ... € E
a sequence of states

Oy, Oy, 03, .. & 2
and a sequence of outputs

dy, @y, 3z, ... €A
through

(Oir1s Air1) € Aoy, €144)

Summer School July 2017 Manfred Broy T|.|T| |

Computations of a State Machine with Input/Output

In this manner we obtain computations of the form

aq/b a»n /b a2 /b
o, 1/ 01 >0, 2 /b2 >0, 3/03 >0

For each initial state c0 = X we define a function

F,o:1— 9(O)
with
Foo(X) = {y: 3 0;: 60 = 6 A Vi € IN: (0114, Vir1) = B(0y Xi11)}

F_, denotes the interface behavior of the transition function A for the initial
state o0.

Furthermore we define
Abs((a, N)) = F,
where:
FAX) ={y € F(X) 1y € Fo(X) A0 € A}
F, is called the interface behavior of the state machine (4, A) .

Summer School July 2017 Manfred Broy T|_|T| | 46

Moore Machines

* A Mealy machine (A, A) with
A:IXE-> p(ExA)
is called Moore machine if for all states ¢ € 3 and inputs e € E the set
out(o, e) = {a € A: (0, a) = A(o, €) }
does not depend on the input e but only on state o.

* Formally: then for all e, €' € E we have
out(o, e) = out(o, €)

Theorem: If is (A, A) a Moore machine the F, is strong causal.

Summer School July 2017 Manfred Broy TI.ITI |

47

Constructing state machines

* Specification:

O Specify the syntactic interface

O Specify the interface behavior (say by an interface assertion)
* Construction:

¢ Construct the state space: define the attributes and their data types

O Define the state transitions (e.g.: choose control states and state
transitions: labeled state transition diagram)

* Verification:
O Prove that state machine shows the specified interface behavior

Summer School July 2017 Manfred Broy TI.I'I1 |

48

Interface Abstraction for State Machines

* For a given state machine with input and output we define the interface
through

¢ its syntactic interface (signature)
O its interface behavior

* We call the step from the state machine to its interface the interface
abstraction.

Verification/derivation of interface assertions for state machines
* similar to program verification (find an invariant)
* needs sophisticated techniques

Summer School July 2017 Manfred Broy TI.ITI |

49

Observable Equivalence

* Two systems modelled by state machines
(A1, Al) and (A2, A2)
are observably equivalent iff they fulfil the equation
Abs((A1, A1)) = Abs((A2, A2))

Summer School July 2017 Manfred Broy T|.|T| |

50

Conclusion Systems as State Machines

* Each state machines defines an interface behaviour
* Each interface behaviour represents a state machine

* State machines can be described
¢ mathematically by their state transition function
¢ graphically by state machine diagrams
¢ structured by state transition tables
O by programs

* State machines define a kind of operational semantics
* Systems given by state machines can be simulated

* From state machines we can generate code
¢ state machines can represent implementations

* From state machines we can generate test cases

Summer School July 2017 Manfred Broy T|_|T| | 51

Composition of the two state machines

Consider Moore machines M, = (A, Ay) (k =1, 2):
A Zp x (I, > M) - o (2 x (O, > M))

We define the composed state machine
AZx(I->M)—> p(Ex(0—->M))

as follows
X=X X 2,

forx e ITand (s, S;) € X~ we define:

A((Sll SZ)I X) = {((51’1 SZI)I Z|O): X = ZlI AV K (Sk’I Zlok) < Ak(sk/ ZlIk) }

This definition is based on the fact that we consider Moore machines.
We write

A=Al A
M=M; [| My= (A [| Az, Ay xAy)

Summer School July 2017 Manfred Broy T|.|T| |

52

An example of an essential property ...

Interface abstraction distributes for state machines
over composition

Abs((Al, c1) || (A2, 62)) =
Abs((Al, c1)) ® Abs((A2, c2))

Summer School July 2017 Manfred Broy T|.|T| |

53

Functional View: Functional Decomposition

Technische Universitat Minchen 2y
Institut fur Informatik g g g g
D-80290 Munich, Germany '

Combining Functions

Given two functions F; and F, in isolation

ln

F

v

O,

llz

loz

We want to combine them into a function F;, ® F,

Summer School July 2017

Manfred Broy

m |

Combining Functions

Their isolated combination

Il 12
| 4 v
F F 3 .
1O F,
O, O,
4 A 4

Summer School July 2017

Manfred Broy

56

Combining Functions

If services F, and F, have feature interaction we get:

F,®F, —¥ Y
F, - F,
—
0, 0,
4 \ 4

We explain the functional combination F, ® F, as a

refinement step

Summer School July 2017

Manfred Broy T|_|T| |

The steps of function combination

ill Given the isolated function F;

F
1 lll We construct a refinement F/,

|

And combine F’; with a refinement F’, of F,

F,®F, —Y y

See: M. Broy: Multifunctional Software
Systems: Structured Modeling and t—
Specification of Functional Requirements.
Science of Computer Programming 75

(2010), S. 1193-1214
O, O,

4 \ 4

Summer School July 2017 Manfred Broy T|_|T| | 58

Sub-types between interfaces

For syntactic interfaces (I » O) and (I' » O") where
I'CIland O'CO

we call (I'»O") a sub-type of (I » O) and write:
(I'» O) C (I» O)

Summer School July 2017 Manfred Broy T|.|T| |

59

From overall syntactic system interfaces ...

X1

o

xz:Tzl x3:T3l[y1:T’1

F: System

Y4:T’4\ [XE;:TS

Summer School July 2017

Manfred Broy

m |

60

to ...

xz:Tzl x3:T3l[y1:T’1

Xy i Ty
e ——

Y4:T’4\ [Xs:TS

F: System

Y, i T,

»

X4t Ty

[
»

y;: T3

Summer School July 2017

Manfred Broy

m |

61

sub-interfaces

X, 1 Ty
X; 1 Ty F: System Y1 T
—— >
X4t Ty
y;:1 T3

Summer School July 2017

Manfred Broy

m |

62

Projection

Given:
(I'» O") C (I» O)
define for a behavior function F € [I» O] its projection
FT(I'»O") e [I'» O]

to the syntactic interface (I'»0Q’) by (for all X' € 1):
FHI'»ON(x) = {y|0:3aAxE |:x =Xx|I" Ay E F(X)}

The projection is called faithful, if for all x € dom(F)
FOOIO" = (F(I'»0))(X|I)

Summer School July 2017 Manfred Broy TUT | 63

Example: Component interface specification — Airbag Controller

y:{act airbag}

>

x:{crash sig}

An air bag controller

AB_Cont

in x:AB I
out y: AB_O
X »200» Yy

X »200» y = (V t € Time:
crash_sig € x(t) < act_airbag € y(t+200))

Summer School July 2017 Manfred Broy T|_|T| | 64

Example: Component interface specification — Airbag Controller

x:{crash sig} y:{act airbag}
>

An air bag controller

AB_Cont

in x: AB_I, m: {on, off} T m:{on, off]
out y: AB_O

X »200lm>» Yy

X »200im» y = (V t € Time:
(ON(m, t+199) A crash_sig € x(t)) < act_airbag € y(t+200)

ON(m, t) = if t = 0 then false elif on € m(t) then true
elif off € m(t) then false else ON(m, t-1) fi

Summer School July 2017 Manfred Broy TUT | 65

Feature interaction in the architecture view

Table 4.2: Extent of dependencies in the vehicle function graph

A |
I
| T LG, LC —»> : MAN System BMW System
/F- =55= =94=
(VF | . s b 4 l (n = 55=100%) (n =94=100%)
\ ." ‘ / ’ X !/
‘_\"\ LG, B Vehicle functions... Number | Ratio | Number | Ratio
__________________ L/_,,_ i },:/‘ with incoming dependencies 36 65.5% 81 86.2%
' with outgoing dependencies 29 52.7% 72 76.6%
: > LC. LC: > |
VF, : with incoming and outgoin 27 49.1% 68 72.3%
...... L —————— . T— g g g
dependencies
without dependencies 17 31.0% 9 9.6%

Taken from:

A. Vogelsang: Model-based Requirements Engineering for
Multifunctional Systems. PH. D. Dissertation, Technische
Universitat Minchen, Fakultat fir Informatik, 2014

Summer School July 2017 Manfred Broy

66

Functional features

(1] Mode Model
“mvi \| “mv2
A ’ ey
(M2]
i M3)
\mV3 | i mve
R
(mv4J \ g ,
\
-
Mode list
Mode Name | Description Mode Values
M1 mvl, mv2
M2 mv3, mv4, M3
M3 mv6, mv7

Figure 5.7: The modes contained in the mode list are structured in a mode model.

Summer School July 2017 Manfred Broy T|_|T| | 67

Functional features

Onboard

Door
Supervision
Function

PSD Door HM| Status

Train Door
Function

Propulsion

Function : Function Function
|

L___*

authorizePSDOpening

|

|

|

l [59

: doorMode
I doorReleaseStatus
|

openDoorCommand doorReleaseStatus

Supervision
Mode
Function

PSD Control
Function

Door Mode Door Open Door Release

Authorization

. Function
Function

Function Function

Supervision
Control
Function

doorMode doorReleaseStatus trainSupervision

releaseEnforced

Figure 5.38: Function hierarchy of the onboard subsystem.

Summer School July 2017 Manfred Broy T|.|T| |

68

Modes

(Onboard Mode Model

~
[Train Doors]

H closed H released j

[PSD Doors]

opening not opening
authorized authorized

[Operation Modes]

(R
[Release Options] /.

Automatic Enforced
Release Release

[Door Mode]
AutOpen
ManClose

ManOpen
ManClose

AutOpen
AutClose

[Train Supervision]

‘%[Deactivated] [Activated]

_ J

Figure 5.40: Mode model of the onboard subsystem represented by a statechart.

Summer School July 2017

Manfred Broy

m |

69

Function Hierarchy

<—ub Subservice relation

------------ > channels of mode types

Summer School July 2017 Manfred Broy TI.I'I1 |

An interpreted feature tree

Fo | ol Fe | Frr | Fo | F
B»] T T » Bz R > Bk aaap mnaag ka+1 T N T an_1 LR ST
€ " <"1 <€ <"1 € " < € " < € " <"

<—qub Subservice relation

------------ » channels of mode types

Summer School July 2017 Manfred Broy T|.|T| |

Model Integration

Technische Universitat Minchen EZ2XYy
Institut far Informatik 898
D-80290 Munich, Germany 188

Integrating modeling concepts

* An architecture can be abstracted into an interface behavior
O Proof techniques for architecture verification

* A state machine can be abstracted into an interface behavior
O Proof techniques for implementation verification

interface
X : T, X32T3l y3: T3
X;: Ty F l 'T
Ya:Ts
interface e interface
abstraction abstraction
M. Broy: The Semantic and Methodological
Tl X3'T3”y3'“ Essence of Message Sequence Charts.
a0 fG REALN et cdi-@=qay W=t xevd ma=q Science of Computer Programming, SCP
«— ®/y:®{ }
X i To - 54:2-3, 2004, 213-256
Ye: T' H y;: T
G
v (4=} x:®/y:d{q = o}
Xs:Ts| |ys:T’s
architecture ” state
machine

Summer School July 2017 Manfred Broy Tm | 73

Modular Model Based System Development

Technische Universitat Minchen 2y
Institut fur Informatik g g g g
D-80290 Munich, Germany '

S /System delivery o T{ o nl T v)
% X, Ty R . y,: T,
—_— RSEAFIEN | 2 2,
—
Xq: Ty
N
C, N ety
X1 T x\ A
v | J
X1 Ty S %
A . ’ > -
Q\/t*%/;’/ X i

-
-

&
Ya: Ty xs: T N
\ lI T &% ’ Ye: T's| X6 : Te y7:To| po i Ty
A A

R; ya: T

/ _ PE—

architecture X i
deSIgn R = R1®R2®R3 j,éoo ‘ Xs : TSYIYS T

X1 : Ty R Q{b /A\'
7\) compone © ementation \
: : Iye, 1T Ve: T's sz : Ts y;: T TX7 1Ty
. ys: T’ . ys: T > R2 R3 Ya: Ty >
architecture — e

’ TXS 1 Te Y7 . T

ys:T's

verification T . o o [
\S = CRC,RC; v / _ Verification Ry = C; R, =G, Ry =G,)

Summer School July 2017 Manfred Broy Tm | 75

What did we get?

* A complete and precise modeling approach
¢ Mathematical models — denotational semantics
O Logical representation — for specifcation and reasoning
¢ Graphical (and tabular) representation — for structured representation

* Semantic coherence riereee ol I |

F

interface . TEUYS o interface
abstraction abstraction

. Xs : Tsl Iys i Ts
architecture state
machine

Summer School July 2017 Manfred Broy T|_|T| | 76

What can we do with it?

* Systems and software engineering?
¢ Capturing properties and concepts of systems
O Tools

* Formal methods?
O Proofs

* Foundational framework?
¢ Making concepts clear
¢ Proving methods correct

Summer School July 2017 Manfred Broy

m |

77

The power of generalizing ideas, of
drawing comprehensive conclusions
from individual observations, is the
only acquirement, for an immortal
being, that really deserves the name
of knowledge.

“Mary Wollstonecraft (1759-1797),
British feminist. A Vindication of the
Rights of Woman, ch. 4 (1792)

Summer School July 2017

Manfred Broy T|_|T| | 78

