
Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Model Based
Software and Systems Engineering:

Elements of Seamless Development

Manfred Broy

Manfred Broy 2Summer School July 2017

DRAFT WHITE PAPER ON SYSTEMS AND SYSTEMS ENGINEERING DEFINITION

PREPARED BY THE INCOSE FELLOWS’ INITIATIVE ON SYSTEMS ENGINEERING DEFINITION

Draft	white	paper	on	systems	and	systems	engineering	definition	

	

	 Page 2 of 23	 11-Jul-17	

EXECUTIVE	SUMMARY	

STRAW	MAN	FOR	A	NEW	DEFINITION	OF	SYSTEMS	ENGINEERING	

As	a	working	premise	and	basis	for	discussion,	we	consider	the	merits	of	a	short	“straw	man”	definition	of	

Systems	Engineering	as	follows:	

Systems	Engineering	seeks	to	understand	societal	needs	for	technology-enabled	systems,	services,	and	
capabilities,	synthesise	holistic	fit-for-purpose	solutions,	and	facilitate	their	delivery	and	successful	

operation.	

This	definition	seeks	to	state	the	“what”	(as	in	“what	it	DOES”)	and	the	“why”,	without	specifying	the	“how”	or	

the	“who”,	or	indeed	the	“what	it	IS”.		

It	seems	to	be	wide	enough	to	encompass	the	scope	of	the	aspiration	of	INCOSE’s	SE	2025	vision,	which	is	not	

the	case	with	the	current	INCOSE	definition	of	SE.	Moreover,	it	is	non-restrictive,	avoiding	the	inclusion	of	

elements	of	practice	or	process	that	might	become	obsolete	or	irrelevant	in	the	future.	

THE	FOUR	SYSTEMS	OF	INTEREST	TO	SYSTEMS	ENGINEERING	

In	this	White	Paper	we	identify	four	“systems”	of	interest	to	Systems	Engineering,	as	illustrated	in	Fig	2:	

1. The	“Situation	System”,	otherwise	known	as	the	“context”,	“environment”,	“problem	situation”,	or	

“wider	system	of	interest	(WSOI)”;	

2. The	“System	that	does	Systems	Engineering”,	the	project	or	enterprise	charged	with	creating	a	new,	
or	improving	an	existing,	system	to	create	some	desired	improvement	in	the	“situation	system”;	

3. The	“System	that	is	Systems-Engineered”	in	order	to	achieve	the	desired	improvement,	otherwise	

referred	to	as	the	“operational	system”,	or	the	“system	of	interest	(SOI)”;	

4. The	“System	of	Structured	Information”,	otherwise	referred	to	as	the	System	Architecture	or	System	

Model,	that	describes	the	other	three	systems,	and	the	anticipated	and	actual	results	of	inserting	the	

third	into	the	first	–	of	deploying	the	operational	system	into	its	intended	operational	environment.		

UNDERSTANDING	THE	KEY	BENEFIT	PROPOSITIONS	OF	SYSTEMS	ENGINEERING	

Systems	Engineering,	with	its	holistic	approach	to	system	problems,	provides	benefits	in	each	of	the	four	

“systems”	listed	above,	and	globally	in	ensuring	their	successful	integration.	It	follows	that	the	benefits	

proposition	of	Systems	Engineering	can	be	expressed	as	follows,	and	as	illustrated	in	Fig	3.	

1. With	respect	to	the	Situation	System,	SE	provides	techniques,	methods	and	“ways	of	thinking”	to	
understand,	organise	and	prioritise	societal	needs	in	complex	situations,	and	to	conceive	solutions	that	
satisfy	the	priority	needs	and	concerns	of	all	stakeholders	while	avoiding	unintended	adverse	
consequences	for	stakeholders,	society	and	the	environment	(“framing	the	problem”	for	the	rest	of	the	
team)	

2. For	the	system	that	does	systems	engineering,	SE	provides	a	framework	and	methods	to	unify	and	
accomplish	engineering	and	related	activities,	across	the	whole	system	and	through	the	whole	
lifecycle.	

3. With	respect	to	the	system	that	is	systems	engineered,	SE	provides	techniques,	methods,	tools	and	
“ways	of	thinking”	to	synthesise	feasible,	affordable	and	effective	solutions	that	will	provide	the	

Manfred Broy 3Summer School July 2017

DRAFT WHITE PAPER ON SYSTEMS AND SYSTEMS ENGINEERING DEFINITION

PREPARED BY THE INCOSE FELLOWS’ INITIATIVE ON SYSTEMS ENGINEERING DEFINITION

Draft	white	paper	on	systems	and	systems	engineering	definition	

	

	 Page 2 of 23	 11-Jul-17	

EXECUTIVE	SUMMARY	

STRAW	MAN	FOR	A	NEW	DEFINITION	OF	SYSTEMS	ENGINEERING	

As	a	working	premise	and	basis	for	discussion,	we	consider	the	merits	of	a	short	“straw	man”	definition	of	

Systems	Engineering	as	follows:	

Systems	Engineering	seeks	to	understand	societal	needs	for	technology-enabled	systems,	services,	and	
capabilities,	synthesise	holistic	fit-for-purpose	solutions,	and	facilitate	their	delivery	and	successful	

operation.	

This	definition	seeks	to	state	the	“what”	(as	in	“what	it	DOES”)	and	the	“why”,	without	specifying	the	“how”	or	

the	“who”,	or	indeed	the	“what	it	IS”.		

It	seems	to	be	wide	enough	to	encompass	the	scope	of	the	aspiration	of	INCOSE’s	SE	2025	vision,	which	is	not	

the	case	with	the	current	INCOSE	definition	of	SE.	Moreover,	it	is	non-restrictive,	avoiding	the	inclusion	of	

elements	of	practice	or	process	that	might	become	obsolete	or	irrelevant	in	the	future.	

THE	FOUR	SYSTEMS	OF	INTEREST	TO	SYSTEMS	ENGINEERING	

In	this	White	Paper	we	identify	four	“systems”	of	interest	to	Systems	Engineering,	as	illustrated	in	Fig	2:	

1. The	“Situation	System”,	otherwise	known	as	the	“context”,	“environment”,	“problem	situation”,	or	

“wider	system	of	interest	(WSOI)”;	

2. The	“System	that	does	Systems	Engineering”,	the	project	or	enterprise	charged	with	creating	a	new,	
or	improving	an	existing,	system	to	create	some	desired	improvement	in	the	“situation	system”;	

3. The	“System	that	is	Systems-Engineered”	in	order	to	achieve	the	desired	improvement,	otherwise	

referred	to	as	the	“operational	system”,	or	the	“system	of	interest	(SOI)”;	

4. The	“System	of	Structured	Information”,	otherwise	referred	to	as	the	System	Architecture	or	System	

Model,	that	describes	the	other	three	systems,	and	the	anticipated	and	actual	results	of	inserting	the	

third	into	the	first	–	of	deploying	the	operational	system	into	its	intended	operational	environment.		

UNDERSTANDING	THE	KEY	BENEFIT	PROPOSITIONS	OF	SYSTEMS	ENGINEERING	

Systems	Engineering,	with	its	holistic	approach	to	system	problems,	provides	benefits	in	each	of	the	four	

“systems”	listed	above,	and	globally	in	ensuring	their	successful	integration.	It	follows	that	the	benefits	

proposition	of	Systems	Engineering	can	be	expressed	as	follows,	and	as	illustrated	in	Fig	3.	

1. With	respect	to	the	Situation	System,	SE	provides	techniques,	methods	and	“ways	of	thinking”	to	
understand,	organise	and	prioritise	societal	needs	in	complex	situations,	and	to	conceive	solutions	that	
satisfy	the	priority	needs	and	concerns	of	all	stakeholders	while	avoiding	unintended	adverse	
consequences	for	stakeholders,	society	and	the	environment	(“framing	the	problem”	for	the	rest	of	the	
team)	

2. For	the	system	that	does	systems	engineering,	SE	provides	a	framework	and	methods	to	unify	and	
accomplish	engineering	and	related	activities,	across	the	whole	system	and	through	the	whole	
lifecycle.	

3. With	respect	to	the	system	that	is	systems	engineered,	SE	provides	techniques,	methods,	tools	and	
“ways	of	thinking”	to	synthesise	feasible,	affordable	and	effective	solutions	that	will	provide	the	

Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Interfaces and Systems

Manfred Broy

Manfred Broy 5Summer School July 2017

Cyber-physical systems: key properties and challenges

• Physicality
◊ real world awareness
◊ real time
◊ probability
◊ …

• Connectivity
◊ systems of systems
◊ connected to cloud services

• Systems of systems
◊ Sub-system decomposition
◊ Service decomposition

• Interoperability
◊ Service platforms

• Openness
◊ security

• HMI
◊ Human Centric Engineering

• Dynamic systems
◊ Dynamic interfaces
◊ Dynamic architectures
◊ Dynamic change of behavior

(adaptivity)
• Mobile systems
◊ space awareness

Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Modeling Cyber-Physical Systems

Manfred Broy 7Summer School July 2017

Modeling CPS

When modeling CPS we have capture following aspects:
• interaction – exchange of information/material
◊ between system and its operational context
◊ between sub-system within a system architecture
◊ synchronization and orchestrations – protocols

• distribution – structuring systems in architectures with
elements related to locations

• operational context – system’s environment
• real time
• probability
To do that we have to use concepts such
• interfaces – scope and interaction
• state – state transition
• architecture – (de-)composition of systems into subsystems

Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

What is a System

Manfred Broy 9Summer School July 2017

Here’s
the

problem
world

An industrial press system

Here’s
the

machine

a

Press Controller
Architecture

Press
Mechanism

& Doors

Operator
Controls

Lamp &
Switch

Sensorsb

c

d

e

f

Operatorh

g

i

Actuators

A slide due to Michael Jackson

Software

Software

Software

Software

Here’s
the user
interface

Where is “the”
system?

Manfred Broy 10Summer School July 2017

An industrial press system

a

Press Controller
Architecture

Press
Mechanism

& Doors

Operator
Controls

Lamp &
Switch

Sensorsb

c

d

e

f

Operatorh

g

i

Actuators

Finding the scope

Software

Software

Software

Software

Is the
hardware/software
“the” system?

Manfred Broy 11Summer School July 2017

An industrial press system

a

Press Controller
Architecture

Press
Mechanism

& Doors

Operator
Controls

Lamp &
Switch

Sensorsb

c

d

e

f

Operatorh

g

i

Actuators

Finding the scope

Software

Software

Software

Software

Is the software “the”
system?

Manfred Broy 12Summer School July 2017

An industrial press system

a

Press Controller
Architecture

Press
Mechanism

& Doors

Operator
Controls

Lamp &
Switch

Sensorsb

c

d

e

f

Operatorh

g

i

Actuators

Finding the scope

Software

Software

Software

Software

Is the mechanical
device “the” system?

Manfred Broy 13Summer School July 2017

An industrial press system

a

Press Controller
Architecture

Press
Mechanism

& Doors

Operator
Controls

Lamp &
Switch

Sensorsb

c

d

e

f

Operatorh

g

i

Actuators

Finding the scope

Software

Software

Software

Software

Is the electronics “the”
system?

Manfred Broy 14Summer School July 2017

An industrial press system

a

Press Controller
Architecture

Press
Mechanism

& Doors

Operator
Controls

Lamp &
Switch

Sensorsb

c

d

e

f

Operatorh

g

i

Actuators

Finding the scope

Software

Software

Software

Software

Is the mechanical system
with its electronics “the”
system?

Manfred Broy 15Summer School July 2017

System and its operational context

Manfred Broy 16Summer School July 2017

Basic System Notion: What is a discrete system (model)

A system has
• a system boundary that determines

◊ what is part of the systems and
◊ what lies outside (called its context)

• an interface (determined by the system boundary), which determines,
◊ what ways of interaction (actions) between the system und its context are

possible (static or syntactic interface)
◊ which behavior the system shows from view of the context (interface behavior,

dynamic interface, interaction view)
• a structure and distribution addressing internal structure, given

◊ by its structuring in sub-systems (sub-system architecture)
◊ by its states und state transitions (state view, state machines)

• quality profile
• the views use a data model
• the views may be documented by adequate models

Manfred Broy 17Summer School July 2017

System Views

• Operational Context View (OC)
◊ Behavior of the operational context

• Interface View: System Interface Behavior (SIB)
◊ Functional View: Interface Behavior
◊ Functional features: hierarchy and feature interaction

• Interaction between OC and SIB:
◊ Observable behavior: process

• Architectural View
◊ Hierarchical decomposition in sub-systems
◊ Sub-system behavior

• State View
◊ State space
◊ State transition

Manfred Broy 18Summer School July 2017

Process

Operational Context (OC)

User Interface

Physical
and

technical
context

System under Consideration (SuC)

External
Incident

Context
observations (CO)

A safety view
onto a system
and its context

No Hazard:

OC Ù SuC Þ No_Incident(CO)

Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Basic System Modeling Concepts:
Interface View:

Modeling Syntactic Interfaces and Interface Behavior

Manfred Broy 20Summer School July 2017

Discrete systems - interfaces: the modeling theory

Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

See: M. Broy: A Logical Basis for Component-
Oriented Software and Systems Engineering. The
Computer Journal: Vol. 53, No. 10, 2010, S. 1758-
1782

Manfred Broy 21Summer School July 2017

The Basic Behaviour Model: Timed Streams and Channels

C set of channels

Type: C → TYPE type assignment

x : C → (IN\{0} → Μ∗) channel history for messages of type M

€

C or IH[C] set of channel histories for channels in C

Manfred Broy 22Summer School July 2017

I O
Component interface

System interface behaviour - causality

 (I ! O) syntactic interface with set of
 input channels I and of output channels O

 F :

I → ℘(

O) semantic interface for (I ! O)

 with timing property addressing strong causality
 let x, z ∈

I , y ∈

O , t ∈ IN):

x↓t = z↓t ⇒ {y↓t+1: y ∈ F(x)} = {y↓t+1: y ∈ F(z)}

 x↓t prefix of history x of length t

A system shows a total behavior

Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Specification of Interface Behavior

Manfred Broy 24Summer School July 2017

Example: System interface specification

A transmission component TMC

TMC
 in x: T
 out y: T
 x ~ y

x ~ y ≡ (∀ m ∈ T: m#x = m#y)

TMC
x ~ y

x:T y:T

Input channel

Output channel

Specifying interface assertion

Spec name

See: M. Broy, K. Stølen: Specification and
Development of Interactive Systems: Focus
on Streams, Interfaces, and Refinement.
Springer 2001

Manfred Broy 25Summer School July 2017

Verification: Proving properties about specified systems

From the interface assertions we can prove

• Safety properties

m#y > 0 Ù y Î TMC(x) Þ m#x > 0

• Liveness properties

m#x > 0 Ù y Î TMC(x) Þ m#y > 0

Manfred Broy 26Summer School July 2017

Verification: adding and taking advantage of causality

From the interface assertion we can derive by causality
" m Î T: y Î TMC(x) Þ " t Î Time: m#(y↓t+1) ≤ m#(x↓t)

Specification:
y Î TMC(x) Þ (" m Î T: m#x = m#y)

Strong causality:
x↓t = z↓t Þ {y↓t+1: y∈TMC(x)} = {y↓t+1: y∈TMC(z)}

From which we deduce the hypothesis by choosing z such that

" m Î T: m#(zt) = 0

Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Interfaces and Systems:

Timing

Manfred Broy

Manfred Broy 28Summer School July 2017

Specification of Timing Properties

TMC
 in x: T
 out y: T
" t Î IN: " m Î T:
m#(y¯t+delay) ≤ m#(x¯t) ≤ m#(y¯t+delay+deadline)

TMCx:T y:TExample: TMC with Timing
Restrictions

Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Extending the Model of Interface Behavior:

Probabilistic System Interface Models

Manfred Broy 30Summer School July 2017

Specification of Probabilities

TMC
 in x: T
 out y: T
∀ t ∈ IN: ∀ m ∈ T:
P(m#(x↓t) ≤ m#(y↓t+delay+deadline)) ≥ 0.8

TMCx:T y:T
Example:
TMC with Probability Restrictions

Manfred Broy 31Summer School July 2017

Discrete systems: the modeling theory - probability

Sets of typed channels

 I = {x1 : T1, x2 : T2, ... }

 O = {y1 : T’1, y2 : T’2, ... }

syntactic interface

(I O)

data stream of type T

STREAM[T] = {IN\{0} → T*}

valuation of channel set C

IH[C] = {C → STREAM[T]}

interface behaviour for syn. interface (I O)

[I O] = {IH[I] → PD[℘(IH[O])] }

interface specification

p: I∪O → IB

represented as interface assertion S
logical formula with channel names as variables for streams

Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

See: P. Neubeck: A Probabilitistic Theory of Interactive
Systems. PH. D. Dissertation, Technische Universität
München, Fakultät für Informatik, December 2012

Set of all probability
distributions over sets of
output histories

Manfred Broy 32Summer School July 2017

Extensions of the model: Probability

• Probabilistic views
◊ Interface behavior: a probability distribution is given for the set of

possible histories
◊ Architectural view: probability distributions for the sub-systems of the

architecture
◊ State view: a probability distribution is given for the set of possible

state transitions
• Then the model covers
◊ certain “non-functional properties” (safety, reliability, …)
◊ Example: integrated fault trees

See: P. Neubeck: A Probabilitistic Theory of Interactive
Systems. PH. D. Dissertation, Technische Universität
München, Fakultät für Informatik, December 2012

Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Architecture and State

Manfred Broy 34Summer School July 2017

From the external to the internal view

• So far we treated the interface view.
• Now we move forward to the internal view!
A system has
• a system boundary that determines

◊ what is part of the systems and
◊ what lies outside (called its context)

• an interface (determined by the system boundary), which determines,
◊ what ways of interaction (actions) between the system und its context are possible (static

or syntactic interface)
◊ which behavior the system shows from view of the context (interface behavior, dynamic

interface, interaction view)
• a structure and distribution addressing internal structure, given

◊ by its structuring in sub-systems (sub-system architecture)
◊ by its states und state transitions (state view, state machines)

• quality profile
• the views use a data model
• the views may be documented by adequate models

Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Architecture - Structure:
Composition and Decomposition

Manfred Broy 36Summer School July 2017

Modularity: Rules of compositions for interface specs

F1
 in x1, z21: T
 out y1, z12: T
 S1

F2
 in x2, z12: T
 out y2, z21: T
 S2

F1⊗F2

x2

y2 z12

z21 y1

x1
F1

S1

F2

S2

F1⊗F2
 in x1, x2: T
 out y1, y2: T

F1⊗F2
 in x1, x2: T
 out y1, y2: T
∃ z12, z21: S1 ∧ S2

Manfred Broy 37Summer School July 2017

Architecture

• Composition F = C1Ä C2Ä C3

C3

x1 : T1

y6: T’6

x4 : T4

x3 : T3x2 : T2

x6 : T6

y3 : T’3

y4 : T’4

x8 : T8

y8 : T’8 C2C1

y7 : T’7 x7 : T7

x5 : T5 y5 : T’5

x1 : T1

y6: T’6

x2 : T2

x6 : T6

x8 : T8

y8 : T’8C1

x3 : T3 y3 : T’3

x8 : T8

y8 : T’8 C2

y7 : T’7 x7 : T7

C3

y6: T’6

x4 : T4

x6 : T6

y4 : T’4

y7 : T’7 x7 : T7

x5 : T5 y5 : T’5

F

Manfred Broy 38Summer School July 2017

Forming Architectures

C1ÄC2ÄC3

Manfred Broy 39Summer School July 2017

Forming Architectures

SF3

C3

x1 : T1

y6: T’6

x4 : T4

x3 : T3 x2 : T2

x6 : T6

y3 : T’3

y4 : T’4

x8 : T8

y8 : T’8 SF2
C2

SF1
C1

y7 : T’7 x7 : T7

x5 : T5 y5 : T’5

Architecture Behaviour
SF1ÄSF2ÄSF3

Architecture Spec
C1ÙC2ÙC3

Architecture Correctness
C1ÙC2ÙC3 Þ SysSpec

Manfred Broy 40Summer School July 2017

Specification of a Car´s Architecture

Car
∀ t: ¬ doors_closed(t) ⇒ act_speed(t) = 0

ready : Bool

doors_closed : Bool

Motor WatchDog
act_speed : Real

Watch-Dog

∀ t: ¬ doors_closed(t) ⇒ ¬ ready(t)

ready : Bool

doors_closed : Bool

Motor

∀ t: ¬ ready(t) ⇒ act_speed(t) = 0

act_speed : Real ready : Bool

Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Implementation: Systems as State Machines

The State View

Manfred Broy 42Summer School July 2017

System and States

• Systems have states
• A state is an element of a state space
• We characterize state spaces by
◊ a set of state attributes together with their types
◊ Example:

State space for a three dimensional position:
x1, x2, x3: Var Real

State space for a cruise comtrol:
speed, set_speed: Var Real, engine_on, activated: Var Bool

• The behaviour of a system with states can be described by its
state transitions

Manfred Broy 43Summer School July 2017

A system can be implemented by a state – a generalized Mealy
Machine
S set of states, initial state s Í S

State transition function:

State transition diagram:

D: (S ´ (I ® M*)) ®Ã(S ´ (O ® M*))

State model for systems/components

 x: d / - {q' = qˆ‹d›}
 x: d / - {q' = qˆ‹d›}

 {q = ‹d›} x: ® / y: d {q' = ‹›}

 Nonempty
q ≠ ‹›

 x: ® / y: ® {q' = ‹›}
 {d = ft.q} x: ® / y: d {rt.q = q'}

Empty
 q = ‹›

M. Broy: From States to Histories: Relating
States and History Views onto Systems. In:
T. Hoare, M. Broy, R Steinbrüggen (eds.):
Engineering Theories of Software
Construction. Springer NATO ASI Series,
Series F: Computer and System Sciences,
Vol. 180, IOS 2001, 149-186

Manfred Broy 44Summer School July 2017

State Machines in general

A state machine (Δ, Λ) consists of
• a set Σ of states - the state space
• a set Λ ⊆ Σ of initial states
• a state transition function or relation Δ
◊ in case of a state machine with input/output:

events (inputs E) trigger the transitions and events (outputs A) are
produced by them respectively:

Δ : Σ ´ Ε → Σ ´ Α
in the case of nondeterministic machines:

Δ : Σ ´ Ε → Ã(Σ ´ Α)

• Given a syntactic interface with sets I and O of input and output channels:
E = I → M*
A = O → M*

Manfred Broy 45Summer School July 2017

Computations of a State Machine with Input/Output

A state machine (Δ, Λ) defines for each initial state
σ0 ∈ Λ

and each sequence of inputs
e1, e2, e3, ... ∈ E

a sequence of states
σ1, σ2, σ3, ... ∈ Σ

and a sequence of outputs
a1, a2, a3, ... ∈ A

through
(σi+1, ai+1) ∈ Δ(σi, ei+1)

Manfred Broy 46Summer School July 2017

Computations of a State Machine with Input/Output

In this manner we obtain computations of the form

For each initial state σ0 ∈ S we define a function

with
Fσ0(x) = {y: $ σi: σ0 = σ0 Ù " i ∈ IN: (σi+1, yi+1) = Δ(σi, xi+1)}

Fσ0 denotes the interface behavior of the transition function D for the initial
state σ0.
Furthermore we define

Abs((Δ, Λ)) = FL
where:

FL(x) = {y ∈ Fσ(x) : y ∈ Fσ(x) Ù σ∈ Λ}
FL is called the interface behavior of the state machine (Δ, Λ) .

€

σ0
a1 / b1# → # # σ1

a2 / b2# → # # σ2
a3 / b3# → # # σ3 ...

€

Fσ0 :

I →℘(

O)

Manfred Broy 47Summer School July 2017

Moore Machines

• A Mealy machine (Δ, Λ) with
Δ : Σ ´ Ε → Ã(Σ ´ Α)

is called Moore machine if for all states σ ∈ Σ and inputs e ∈ E the set
out(σ, e) = {a ∈ A: (σ, a) = Δ(σ, e) }

does not depend on the input e but only on state σ.

• Formally: then for all e, e’ ∈ E we have
out(σ, e) = out(σ, e’)

Theorem: If is (Δ, Λ) a Moore machine the FΛ is strong causal.

Manfred Broy 48Summer School July 2017

Constructing state machines

• Specification:
◊ Specify the syntactic interface
◊ Specify the interface behavior (say by an interface assertion)

• Construction:
◊ Construct the state space: define the attributes and their data types
◊ Define the state transitions (e.g.: choose control states and state

transitions: labeled state transition diagram)
• Verification:
◊ Prove that state machine shows the specified interface behavior

Manfred Broy 49Summer School July 2017

Interface Abstraction for State Machines

• For a given state machine with input and output we define the interface
through
◊ its syntactic interface (signature)
◊ its interface behavior

• We call the step from the state machine to its interface the interface
abstraction.

Verification/derivation of interface assertions for state machines
• similar to program verification (find an invariant)
• needs sophisticated techniques

Manfred Broy 50Summer School July 2017

Observable Equivalence

• Two systems modelled by state machines
(D1, L1) and (D2, L2)

are observably equivalent iff they fulfil the equation
Abs((D1, L1)) = Abs((D2, L2))

Manfred Broy 51Summer School July 2017

Conclusion Systems as State Machines

• Each state machines defines an interface behaviour
• Each interface behaviour represents a state machine
• State machines can be described
◊ mathematically by their state transition function
◊ graphically by state machine diagrams
◊ structured by state transition tables
◊ by programs

• State machines define a kind of operational semantics
• Systems given by state machines can be simulated
• From state machines we can generate code
◊ state machines can represent implementations

• From state machines we can generate test cases

Manfred Broy 52Summer School July 2017

Composition of the two state machines

Consider Moore machines Mk = (Dk, Lk) (k = 1, 2):
Dk: Sk ´ (Ik ® M*) ® Ã(Sk ´ (Ok ® M*))

We define the composed state machine
D: S ´ (I ® M*) ® Ã(S ´ (O ® M*))

as follows
S = S1 ´ S2

for x Î I and (s1, s2) Î S we define:

D((s1, s2), x) = {((s1’, s2’), z|O): x = z|I Ù " k: (sk’, z|Ok) Î Dk(sk, z|Ik) }

This definition is based on the fact that we consider Moore machines.
We write

D = D1 || D2
M = M1 || M2 = (D1 || D2 , L1 ´ L2)

Manfred Broy 53Summer School July 2017

An example of an essential property ...

Interface abstraction distributes for state machines
over composition

Abs((D1, s1) || (D2, s2)) =
Abs((D1, s1)) Ä Abs((D2, s2))

Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Functional View: Functional Decomposition

Manfred Broy 55Summer School July 2017

Combining Functions

Given two functions F1 and F2 in isolation

We want to combine them into a function F1 Ä F2

Manfred Broy 56Summer School July 2017

Combining Functions

Their isolated combination

O2 O1

I2 I1

F1 F2
F1 ⊗ F2

Manfred Broy 57Summer School July 2017

Combining Functions

If services F1 and F2 have feature interaction we get:

We explain the functional combination F1 Ä F2 as a
refinement step

Manfred Broy 58Summer School July 2017

The steps of function combination

Given the isolated function F1

We construct a refinement F’1

And combine F’1 with a refinement F’2 of F2

F1 ⊗ F2

O2 O1

I2 I1

F´1 F´2

See: M. Broy: Multifunctional Software
Systems: Structured Modeling and
Specification of Functional Requirements.
Science of Computer Programming 75
(2010), S. 1193–1214

Manfred Broy 59Summer School July 2017

Sub-types between interfaces

For syntactic interfaces (I ! O) and (I’ ! O’) where

I’ ⊆ I and O’ ⊆ O

we call (I’"O’) a sub-type of (I ! O) and write:

 (I’ ! O’) ⊆ (I ! O)

Manfred Broy 60Summer School July 2017

From overall syntactic system interfaces …

F: Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

Manfred Broy 61Summer School July 2017

to …

F: Systemx1 : T1

y4 : T’4

x4 : T4

x3 : T3x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

Manfred Broy 62Summer School July 2017

sub-interfaces

F: Systemx1 : T1

x4 : T4

x2 : T2

y2 : T’2

y3 : T’3

Manfred Broy 63Summer School July 2017

Projection

Given:

 (I’ ! O’) ⊆ (I ! O)

define for a behavior function F ∈ [I"O] its projection

F†(I’"O’) ∈ [I’"O’]

to the syntactic interface (I’"O’) by (for all x’ ∈

I ’):

F†(I’"O’)(x’) = {y|O’: ∃ x ∈

I : x’ = x|I’ ∧ y ∈ F(x)}

The projection is called faithful, if for all x ∈ dom(F)

F(x)|O’ = (F†(I’"O’))(x|I’)

Manfred Broy 64Summer School July 2017

Example: Component interface specification – Airbag Controller

 An air bag controller

AB_Cont
 in x: AB_I
 out y: AB_O
 x »200» y

x »200» y ≡ (∀ t ∈ Time:

 crash_sig ∈ x(t) ⇔ act_airbag ∈ y(t+200))

AB_Cont
x »200» y

x:{crash_sig} y:{act_airbag}

Manfred Broy 65Summer School July 2017

Example: Component interface specification – Airbag Controller

 An air bag controller

AB_Cont
 in x: AB_I, m: {on, off}
 out y: AB_O
 x »200|m» y

x »200|m» y ≡ (∀ t ∈ Time:
(ON(m, t+199) ∧ crash_sig ∈ x(t)) ⇔ act_airbag ∈ y(t+200)

AB_Cont
x »200|m» y

x:{crash_sig} y:{act_airbag}

m:{on, off}

ON(m, t) = if t = 0 then false elif on Î m(t) then true
elif off Î m(t) then false else ON(m, t-1) fi

Manfred Broy 66Summer School July 2017

Feature interaction in the architecture view
4.3. Study Results

Table 4.2: Extent of dependencies in the vehicle function graph

MAN System
(n = 55 b=100%)

BMW System
(n = 94 b=100%)

Vehicle functions. . . Number Ratio Number Ratio

with incoming dependencies 36 65.5% 81 86.2%

with outgoing dependencies 29 52.7% 72 76.6%

with incoming and outgoing
dependencies

27 49.1% 68 72.3%

without dependencies 17 31.0% 9 9.6%

The evaluation of RQ 4 is based on interviews with function experts from the BMW
Group. In order to get representative results from the interview partners we selected
one expert from each area within the domain of driving dynamics and driver assis-
tance. These areas are: lateral, longitudinal and vertical dynamics as well as driver
assistance features. The experts were responsible for a number of 12–46 vehicle func-
tions.

4.3 Study Results

In this section the results of the study are presented. They are structured according
to the defined research questions.

4.3.1 Extent of Dependencies (RQ 1)

Table 4.2 summarizes the results of the analysis on the extent of dependencies in the
two analyzed systems. Analyzing the vehicle function graph of the MAN system, we
found 133 dependencies between the 55 vehicle functions. 17 out of the 55 vehicle
functions were completely independent from any other vehicle function and did also
not have any influence on other vehicle functions. 36 vehicle functions were depen-
dent on another vehicle function (i.e., they had incoming dependencies) and 29 ve-
hicle functions had an influence on another vehicle function (i.e., they had outgoing
dependencies). There were 135 different data channels that caused the dependencies.

Analyzing the vehicle function graph of the BMW system, we found 1,451 depen-
dencies between the 94 vehicle functions. Only 9 out of the 94 vehicle functions were
completely independent from any other vehicle function. 81 vehicle functions were
dependent on another vehicle function and 72 vehicle functions had an influence
on another vehicle function. There were 234 different data channels that caused the
dependencies.

46

Taken from:
A. Vogelsang: Model-based Requirements Engineering for
Multifunctional Systems. PH. D. Dissertation, Technische
Universität München, Fakultät für Informatik, 2014

Manfred Broy 67Summer School July 2017

Functional features

Manfred Broy 68Summer School July 2017

Functional features

5.4. Case Study: Property-driven Requirements Engineering

Onboard

Train Door
Function

Propulsion
Function

PSD Door
Function

HMI Status
Function

Door
Supervision

 Function

openDoorCommand doorReleaseStatus

authorizePSDOpening doorMode
doorReleaseStatus

Door Mode
Function

Door Open
Function

Door Release
Function

doorMode doorReleaseStatus
releaseEnforced

PSD
Authorization

Function

PSD Control
Function

Supervision
Mode

Function

Supervision
Control

Function

trainSupervision

Figure 5.38: Function hierarchy of the onboard subsystem.

Figure 5.39: Function hierarchy of the wayside subsystem.

99

Manfred Broy 69Summer School July 2017

Modes5.4. Case Study: Property-driven Requirements Engineering

Onboard Mode Model
[Train Doors]

[PSD Doors]

[Operation Modes]

[Train Supervision]

closed released

opened

opening not
authorized

opening
authorized

[Release Options]

[Door Mode]

Deactivated Activated

Automatic
Release

Enforced
Release

ManOpen
ManClose

AutOpen
ManClose

AutOpen
AutClose

Figure 5.40: Mode model of the onboard subsystem represented by a statechart.

is active at a time (e.g., in the figure, the status of the Train Doors is independent from
the status of the Train Supervision mode).

Formal Verification. Out of the 39 interface assertions, we were able to verify for 31
(ca. 80%) that they are not violated by the associated function specification. In cases,
in which the verification failed this was either due to incompleteness or inconsistency
of the original requirements provided by Siemens, or due to disability of the tool we
used for this case study.9

Benefits

Resolved Inconsistencies. Through the formalization and verification of require-
ments, we revealed requirements that, at least, needed further discussion with the
different stakeholders. We found that some requirements lacked information or as-
sumed certain properties of the context. For example, conflicting requirements of one
function were revealed when in the verification process either one interface assertion

9Tool support is discussed separately at the end of this chapter.

100

Manfred Broy 70Summer School July 2017

Function Hierarchy

Manfred Broy 71Summer School July 2017

An interpreted feature tree

 F1, ..., n

 F1, 2 ... Fk, k+1 ... Fn-1, n

 F1 F2 ... Fk Fk+1 ... Fn-1 Fn

Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Model Integration

Manfred Broy 73Summer School July 2017

Integrating modeling concepts

• An architecture can be abstracted into an interface behavior
◊ Proof techniques for architecture verification

• A state machine can be abstracted into an interface behavior
◊ Proof techniques for implementation verification

• Integration of further modeling concepts
◊ Scenarios and interaction diagrams (MSCs)
◊ Processes and process diagrams
◊ Services
◊ …

!

C3

x1 : T1

y6: T’6

x4 : T4

x3 : T3 x2 : T2

x6 : T6

y3 : T’3

y4 : T’4

x8 : T8

y8 : T’8 C2
C1

y7 : T’7 x7 : T7

x5 : T5 y5 : T’5

 x: d / - {q' = qˆ‹d›}
 x: d / - {q' = qˆ‹d›}

 {q = ‹d›} x: ® / y: d {q' = ‹›}

 Nonempty
q ≠ ‹›

 x: ® / y: ® {q' = ‹›}
 {d = ft.q} x: ® / y: d {rt.q = q'}

Empty
 q = ‹›

interface

architecture state
machine

interface
abstraction

interface
abstraction

C3

x1 : T1

y6: T’6

x4 : T4

x3 : T3 x2 : T2

x6 : T6

y3 : T’3

y4 : T’4

x8 : T8

y8 : T’8 C2
F

x5 : T5 y5 : T’5

M. Broy: The Semantic and Methodological
Essence of Message Sequence Charts.
Science of Computer Programming, SCP
54:2-3, 2004, 213-256

Technische Universität München
Institut für Informatik

D-80290 Munich, Germany

Modular Model Based System Development

Manfred Broy 75Summer School July 2017

System Specification

Sx1 : T1

y4 : T’4

x4 : T4

x3 : T3x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

Validation

Informal
requirements

System delivery

System verification
R Þ S

Rx1 : T1

y4 : T’4

x4 : T4

x3 : T3x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

Integration

R = R1ÄR2ÄR3

architecture
design

architecture
verification
S Ü C1ÄC2ÄC3

components implementation

Verification R1 Þ C1 R2 Þ C2 R3 Þ C3

C1 C2 C3

S

C1 C2 C3C2

Manfred Broy 76Summer School July 2017

What did we get?

• A complete and precise modeling approach
◊ Mathematical models – denotational semantics
◊ Logical representation – for specifcation and reasoning
◊ Graphical (and tabular) representation – for structured representation

• Semantic coherence

!

C3

x1 : T1

y6: T’6

x4 : T4

x3 : T3 x2 : T2

x6 : T6

y3 : T’3

y4 : T’4

x8 : T8

y8 : T’8 C2
C1

y7 : T’7 x7 : T7

x5 : T5 y5 : T’5

 x: d / - {q' = qˆ‹d›}
 x: d / - {q' = qˆ‹d›}

 {q = ‹d›} x: ® / y: d {q' = ‹›}

 Nonempty
q ≠ ‹›

 x: ® / y: ® {q' = ‹›}
 {d = ft.q} x: ® / y: d {rt.q = q'}

Empty
 q = ‹›

interface

architecture state
machine

interface
abstraction

interface
abstraction

C3

x1 : T1

y6: T’6

x4 : T4

x3 : T3 x2 : T2

x6 : T6

y3 : T’3

y4 : T’4

x8 : T8

y8 : T’8 C2
F

x5 : T5 y5 : T’5

Manfred Broy 77Summer School July 2017

What can we do with it?

• Systems and software engineering?
◊ Capturing properties and concepts of systems
◊ Tools

• Formal methods?
◊ Proofs

• Foundational framework?
◊ Making concepts clear
◊ Proving methods correct

Manfred Broy 78Summer School July 2017

The power of generalizing ideas, of
drawing comprehensive conclusions
from individual observations, is the
only acquirement, for an immortal
being, that really deserves the name
of knowledge.

“Mary Wollstonecraft (1759–1797),
British feminist. A Vindication of the
Rights of Woman, ch. 4 (1792)

