
Why Horn Formulas Matter in Computer Science:
Initial Structures and Generic Examples

(extended abstract)

,I.A. Makowsky

Department of Computer Science
Technion - Israel Institute of Teclmology

Halfa 32000, Israel
and

Institut far Informatik
Swiss Federal Institute of Technology

CH-8092 Ziirich, Switzerland

Abstract: We introduce the notion of generic examples as a uni t ing principle for various
phenomena in computer science such as initial structures in the area of abstract data types
and Armstrong relations in the area of data bases. Generic examples are also useful in
defining the semantics of logig programming, in the formal theory of program testing and in
complexity theory. We characterize initial structures in terms of their generic properties and
give a syntactic characterization of first order theories admitting initial structtzres. The latter
can be used to explain why Horn formulas have gained a predominant role in various areas
of computer science.

1. Introduct ion

Verification by example has always been alternative to formal deduction. Historically,

in mathematics, it usually also preceeded the development of formal deduction methods.

The Babylonians "knew" that (x-y)2 = x2 + 2xy+~ but they did not have a notational system

which allowed them carry out a formal, i.e. algebraic, proof. Instead they wrote

(3 + 5)2 = 32 + 2x3x5 + 52, from which they immediately concluded all the other instances of

the general formula. The choice of the particular instance x= 3,y= 5 is important here. It is

clear why x= 1,y=2 would confuse the matter, and we informally describe an appropriate

choice of an instance as the finding of a "generic" example. The art of finding "generic"

examples has been pushed to the extreme in Euclidean plane geometry, where we convince

ourselves of many theorems by just drawing one picture of a non-degenerate case. The

generalization of this approach to other areas of reaoning is usually highly non-trivial. In

algebraic geometry, for example, a satisfactory def'mition of"generic points" was only found

in this century.

375

In computer science one is often concerned with the specification and analysis of

algorithms and programs. Methods for formal specification and verification of programs

have been developed intensively without leaving too much impact on the practical

programmers. These methods are all very much in the spirit of formal deduction. The use

of "generic" examples can be observed occasionally with various degrees of explicitness.

Strassen [Str74] and his school have used the generic points of algebraic geometry with

considerable success to obtain lower bounds in algebraic complexity theory. Recent work in

the mathematical foundation of program testing, as presented in the survey edited by B.

Chandrasekaran and S. Radicchi [CR81], focus around various notions of "generic" input.

In data base theory, W. Armstrong [Ar74] has introducted a kind of "generic" relation for

functional dependencies and R. Fagin has investigated the possibilities of generalizing this

for implicational dependencies [Fa82]. Last but not least there is M. Zloof's approach to

data base query languages where queries are specified by giving "generic" examples, an

approach he most recently generalized to operate more complex systems in office

automation [Z182]. It is not surprising that specO~ation and verification by example is more

appealing to the computer engineer than formal deduction. A look at Euclidean geomerxy

can be revealing again: People involved in surveying and drawing plans have, in general,

very little use for formal deductions Euclidean style, but are very much aware of the role of

the "generic" non-generate configurations.

The purpose of this paper is to introduce some variations of notions of "generici~'

which arise in abstract specification of data structures, in relational data bases and in logic

programming. What these three areas of computer science have in common, is the use of

first order logic as its basic specification language. In each of these areas Horn formulas play

an important role. In algebraic specification of abstract data structures one first used pure

equational logic with the semantics of initial structures as a specification language (hence

algebraic). Later one felt the need to extend this to conditional equation~ which are universal

Horn formulas without relation symbols. In relational data bases various specification

languages where introduced, such as the arrow notation between finite sets of attribute

names, to express functional and multivalued dependencies. It was soon realized by R.

Fagin, C. Beeri and others, that implicationai dependencies, which are Horn formulas

without function symbols, could capture all the previously considered cases (cf. [Fa82]). In

logic programming Horn formulas are used both as a specification and a programming

language because, as R. Kowalski put it, the allow a proceduralinterpretation (cf. [Ko79]).

376

From a semantic point of view all these approaches can be described in a similar way:

Instead of thinking of arbitrary models (= algebraic structures, relations or first order

structures resp.) one only considers a r e ~ . . e d class of structures (= initial structures,

Armstrong relations, minimal Herbrand universes). These restricted classes have all in

common some sort of genericity, 3+-generieity, which we shall describe below. Intuitively

3 +-genericity captures rather well the notion of a generic example, here of a 3 +-generic

structure satisfying the required specifications.

Various attempts exist in the literature to explain why Horn formulas are the r/ght class

of formulas to be used in the respective context. B. Mahr and J. Makowsky [MM83] prove

that under certain assumptions for the semantics of algebraic specifications, conditional

equations form the largest specification language satisfying these assumptions. L Makowsky

and M. Vardi [MV84] characterize various classes of data base dependencies in terms of

preservation properties under operations on relations which come from data manipulation.

In logic programming,, it was shown by Tarnlund [Tam77] that Horn logic is enough to

program every recursive function, a result, stated in slightly different form in a different

context, proven already by S. Aanderaa and independently by F_. BSrger. For an excellent

survey see [B584].

Our main result in this paper is a characterization of Horn formulas in terms of the

existence of 3 +-generic structures. It simultaneously extends and unifies results of [MM83],

[Ma84] and [VM84] and remedies objections raised to [MM83] by A. Tarlecki. It states that a

first order theory T admits initial (= 3 + -generic) models iff there is a set of definable partial

functions such that adding functions to the vocabulary of T gives us a theory T 1, which is

equivalent to a universal Horn theory. Additionally, if Tie finite, this set of definable partial

functions can be chosen to be finite, too. In other words, if we want to define a semantic

over 3 + -generic structures only, we can, without loss of generality, conf'me our specification

language to universal first order Horn formulas. Without loss of generality can mean two

things: Given a specification which is not a set of universal Horn formulas, then either we

can find an equivalent set of universal Horn formulas or we have chosen the basic

vocabulary (set of basic symbols) wrongly, and then the theorem tells us that there is a

unambiguous way to correct this.

In detail the paper is organized as follows:

377

In section 2 we introduce the concepts of A-genericity and]+-genericity and relate these

definitions to initiality. We state the basic definability theorem for initial models; we

characterize initial term models as A-generic models and initial models as]+-generic

pseudo-term models.

In section 3 we characterize first order theories which admit initial term models as the

universal Horn theories. This theorem was already proved in [MM83].

In section 4 we establish the intersection property of first order theories admitting

]+-generic structures and review some classical model theoretic results on first order

theories with the intersection property. From this we get that theories admitting

]+-generic models can always be axiomatized by universal-existential sentences. We a~o

state a theorem of M. Rabin [Ra60], which characterizes first order theories with the

intersection property.

In section 5 we state an analogue of Rabin's theorem to obtain our main result. We show

that a first order theory admits initial models iff it is a partially functional V3-Horn theory.

No proofs are presented in this extended abstract, since the editors of these proceedings put

a severe space limit on the papers to be presented. We hope that the complete paper will

appear soon elsewhere.

In section 6 we state some conclusions.

The reader familiar with the introduction to model theory by G. Kreisel and J.L.

Krivine will realize how much, in spirit, this work is influenced by chapter 6 of [KK66]. I am

indebted also to A. Tarlecki for his remarks in our correspondence concerning [MM83], to S.

Shelah, who suggested theorem 2.10 and to B. Mahr for the discussions around [MM83].

2. Initial models and genericity

In this section we deal with first order languages with equality. Vocab~.daries(= similarity

types) are allowed to be many-sorted and may include/unction symbols, rel~ion symbols and

constant symbo/~ Vocabularies are denoted by t,o. A rstnLcmre A is a collection of un~rses

(= sets) A 1 A n, for each sort in t one, together with interpretations for all the fUnction,

relation and constant symbols in t. t-tern~ ~om/c/omm/as and t-forum/as are defined as

usual. If TIS a set of ~--formulas, ~ is a t-formula and A is a t-structure we write A~Ti f the

universal closure of all the formulas ~ in T are true in A. We write T ~ if in every

r-structure A such that A~T we also have that A ~ . We call sets of t-formulas thcor/~

and formulas without flee variables also t-sentences. We call t-structures also modets and

378

denote by Mod(T)the class of t-structures A such that A~T.

2.1. Defintions:

(i) Let K be a class of r-structures closed under isomorphisms and A E K. We say that k is

initial in K (is an initial mode/for K) if for every structure B E K there is a un/que

homomorphism hB:k -,]8.

(ii) I f K is of the form Mo~T), where T is some first order theory, we also say that A is/n/t/a/

forT.
(iii) A r-structure A is a term model (reachable model) if for every a E k there is r- term t such

that its interpretation k(O in k is the element a.

Next we introduce the concept of gener/c structures for first order theories and relate it

to initial structures.x

2.2. Definitions: Let K be a class of r-structures closed under isomorphisms and AEK.

Let ~: be a set of first order sentences (i.e. formulas without free variables).

(i) We say that k / s generic in K for z if fo r every ~ £ r. we have that k ~ iff B ~ for every

BEK.

(ii) I f Y. is the set of atomic r-formulas we say A-generic instead of generic for Y,.

(iii) Let 3 + be the set of ~--formulas of the form 3xAn ~l with each ~t an atomic formula,

x= (Xl,X 2 xn); and 3 be the set of ~,-formulas of the form : lx~ x) with ~ quantifier free.

(iv) I f Y. is the set of 3 +-sentences we say 3 + -generic instead of generic for Z.

2.3. Remarks:

(i) I f r. 0 C Y. and A is ~:-generic then A is also r~-generic.

(ii) I f A is a A-generic term model then A is an initial term model.

2.4. Theorem (3 +-genericity):

Let K be a class of r-structures closed under isomorphisms and A I be initial for K. Then AI

is 3 +-generic.

2.5. Corollary: Let K be a class of r-structures closed under isomorphisms and AEK.

Then A is an initial term model for K iff A is A-generic.

379

2.6. Definitions: Let T be a set of r-sentences, let A be a r-structure and a£A be an

element of the universe of A.

(i) a is definable over A if there is a r-formula Va(X) with x the only free variable of ~ such

that A ~ a (a) and if A~q,a(b) for any bEA then Ama=b. We call ~a the def'ming formula of

(ii) a is 3 + -definable (]-definable, atomically definable) over A if a is definable over A and the

defining formula is an 3 +-formula O-formula, conjunction of atomic formulas).

(iii) a is definable over T if there is a r-formula q~a(X) with x the only free variable of qPa such

that A ~ , a (a) and T~=VxVy(~a(X)Aq~a(v)=* x= y).

(iv) a is 3 +-definable (3-definable, atomically defv2able) over T if a is definable over T and the

defining formula is an 3 +-formula O-formula, conjunction of atomic formulas).

(v) We say that A~TIS a pseudo termmodelofTifevery element a E A is 3 + -definable.

The following theorem shows that in an initial model of a theory T is always a pseudo

term model.

2.7. Theorem (3 + -definability): Let T be a first order theory and let A I be an initial

model of T. Then every a £ A is definable over T by a 3 + - formula ¢Pa. In other words A I is a

pseudo term model.

We now are in a position to characterize initial models as pseudo term models which

are 3 +-generic.

2.8. Theorem: Let T be a first order theory and let A be a model of T. Then A is initial

(for T) iff A is a 3 +-generic pseudo-term model

3. Characterizing first order theories which admit initial term models

In this section we characterize first order theories which admit initial term models.

Such a characterization was first given in [MM83], based on a theorem duo to Mal'c~v

[Mal56]. In [Mal56] there is a minor mistake as pointed out by [3/1o59], which propagated

inot [MM83] in as far as one had to assume that every first order theory admitting initial

380

/.3.1. Multiple physical clocks

The objective is also to obtain a unique physical time frame within the

system so that consistent schedules may be derived from a total

chronological ordering of actions occurring in the system. When several

clocks are used it is not enough for the clocks individually to run at

approximately the same rate. They must be kept synchronized so that the

relative drifting of any two clocks is kept smaller than a predictable

constant. In [Lamport78j a solution to accomplish this is given. The

system under consideration is modelled after a strongly connected graph ot

processes with diameter d. Every process is provided with a clock and every

t, a synchronization (sync) message is sent over every arc. A sync message

contains a physical timestamp T. Upon receiving a sync message, if needed,

a process should set forward its local clock to be later than the timestamp

value contained in the incoming message. It is assumed that both a lower

bound u and an upper bound u + z are known for interprocess message transit

delays. Let k be the intrinsic accuracy of each clock (e.g. k < 10^-6) and

e the allowed drifting of any two clocks. If e/(l-k) <= u and e << t then

it is possible to compute the approximate value of e which is d(2kt + z).

Depending on the requirements as regards clocks" relative drifting and

the validity of the assumptions as regards transit delay boundaries, one

may decide:

* either to take the risk o~ missing some sync

messages from time to time, because of some

excessively large message transit delays, thus

achieving what could be called probabilistic

synchronization.

* or not to take this risk. Then, if the upper

381

bound chosen for message transit delays has to

be rather large~ one should evaluate the conse-

quences as regards performance. The key parameter

here is the ratio z/u. For example in Arpanet~

z and u are In the order o~ several hundreds of

milliseconds.

The use ot timestamps to obtain orderings o~ actions in

system was suggested first in [Thomas76J.

a distributed

7.3.2. Multiple logical clocks

A logical clock as described in [Lamport78] should be viewed as a

function C which assigns a number to any action initiated locally. Such

logical clocks may be implemented by counters. In a system where each

producer owns a logical elock~ the problem is to guarantee that the system

of clocks satisfies some condition F so that a particular ordering may be

built on the set of actions initiated by producers. For example, using the

irreflexive partial ordering introduced in section 3, condition F would be

as follows: for any actions a (in i) and b (in j), if a -> b then C(i,a) <

C(j,b). In order to meet condition F, the following rules must be obeyed

by producers.

Rule i: each producer i increments C(i) between any two successive

actions.

Rule 2: if action a is the sending of a message m by producer i, then

the message m contains a timestamp T(m) = C(i,a). Upon receiving a

message m, producer j sets C(j) greater than or equal to its present

value and greater than T(m).

382

Any system o~ logical clocks satisfying condition F can be used to place a

total ordering, denoted by <<, on any set of actions. It is only necessary

to use any arbitrary total ordering < of the producers (e.g. by using their

names). The ordering << is defined as follows: a << b if and only if

either C(i,a) < C(j,b) or C(i,a) = C(j,b) and i < j. The synchronization

mechanism defined by rules 1 and 2 and the total ordering << allow for the

building of consistent schedules of actions. The ordering << is not unique

and it may not be equivalent to a chronological ordering. This is why it

may be necessary to implement such a system of logical clocks on a system

of several physical clocks (see previous section).

General comments

Synchronization mechanisms built out o~ several physical or logical

clocks have the common characteristic that they are not based on mutual

exclusion. This may be particularly advantageous in distributed systems.

7.3.3. Utilization of a circulating privilege

Synchronization mechanisms may take advantage of the fact that

producers are given unique and permanent names. This defines a total

ordering on the set ot producers. Such an ordering may be used to view

producers as being organized as on a chain or as on a loop. Each producer

has a unique predecessor and a unique successor. Such a logical

structuring does not imply any particular physical topology.

Pair-wise shared variables: A synchronization mechanism based on the

concept of a logical ring has been presented in [Dijkstra74]. Possession

of a control privilege may be inferred by every producer from the

observation of a variable shared with one of its two neighbours.

383

The next theorem, due to Rabin ~ab60], characterizes theories with the Intersection

Property. For this let ~x,y) be a t ' ~ t order formula with free variables x = xl ,x 2 x t and

Y=Yl,Y2,...Yn and let k be a natural number. We denote by N(k,y,~x,y)) the first order

formula which says that there are exactly k different n-tuples satisfying the formula ~(x,y).

4.7. Theorem: (Rabin [Rab60]) A necessary and sufficient condition for a f'n~t order

theory T to have the Intersection Property is that for every v3-sentence vx3y~(x,y) which is

a consequence of T, there exist two sequences of quantifier-free formulas

ol(X,U),o2(x, tO.....oFfx, u) arld 81(x,y,z),82(x,y,z),....,SF(x,y,z)

and a sequence of natural numbers kl, k 2 k~ such that

and for l < i < ~

TI==V ~VUal(X,u)VVUa2(X,~V...VVUaF(x,U))

T~Vx(VUai(X, tt)~N(ki,Y3g~(x,Y) A Oi(x,Y,O)).

In the next section we want to give a similar characterization for first order theories

admitting initial models. Our next goal is to show the existence of initial models for certain

theories which have the Intersection Property and which are preserved under products. For

this we need some more definitions.

4.8. Definitions: Let T be a first order theory with the Intersection Property. A model

A0 of T is a core model if there is no proper submodel Bc A 0 such that B~T. I f k is a model

of T and AoCA , A0~ Tis a core model we say that A 0 is a T-core of A.

4.9. Lemma: Let T be a first order theory with the Intersection Property. Then every

model A of Thas a T-core A 0.

4.10. Proposition: Let T be a f£rst order theory with the Intersection Property. Then

every core model of Tis an 3-term model.

384

4.11. Definition: A first order theory T is pseudo algebraic if T is preserved under

products, has the Intersection Property and if every core model of TIS a pseudo term model.

4.12. Theorem: A pseudo algebraic first order theory Thas an initial model AI.

A converse of theorem 4.12 will proved in the next section.

5. Charcterizing first order theories which admit initial models

The purpose of this section is to characterize f'h~t order theories which admit initial

models. We fwst want to show that such a theory is equivalent to an v3-Horn theory.

5 1 Theorem: Let Tbe a first order theory which admits initial models. Then:

(i) Tis equivalent to an v3-Hom theory TV]H •

(ii) If Tis finite, so is TV3 H .

Next we want to state an analogue of Rabin's theorem (theorem 4.7) for theories which

admit initial models.

5,7,. Theorem: Let The a first order theory which admits initial models. Then for every

v3-scntence vx3y~(xy) which is a consequence of T, there exist two sequences of formulas

.l(x,u),o~(x,u),...~,~,¢x,u) and el(x,y,2),e2(x,y,~,....,e~,(x,y,~,

where oi are quantifier free formulas and 0i- are 3 +-formulas, such that

Tlffi: V ~(WaTI(X,~V VUo2(X,U)V...V ¥ ~/L(X,~)

and for l_<i_<~

T~ V :x(Vu¢i(x,~=~ 3! y(32(q~ x,y) A 0j(.r.,y,2)))

5.3. Definition: We call a f'LrSt order theory which satisfies the conclusion of theorem 5.2

385

partiallyflznctionaL This is justified since theorem 5.2 says that every ¥'l-formula which is a

consequence of Tcan be $kolemized with finitely many partial functions.

5.4. Corollary: Let T be a first order theory which admits initial models. Then every

3-term model A is a pseudo term model

We need another well lmown result from model theory, see e.g. ([CK73D:

5.5. Theorem: Let Tbe an v3-Horn theory. Then Tls preserved under products.

Putting everything together we obtain:

5.6. Theorem: (Main theorem) Let T be a ten'st order theory.

equivalent:

(i) T admits initial models;

(ii) TIs equivalent to a partially functional v3-Horn theory.

C~ii) Tls pseudo algebraic.

The following are

6. Conclusions

We have given a characterization of universal Horn theories in terms of the existence

of initial, or equivalently, A-generic term models (theorem 3.9) and a characterization of

partially functional v3-Horn theories in terms of the existence of initial, or equivalently

3 +-generic pseudo term models (theorem 5.6). The latter essentially says that a first order

theory which admits initial models which are not term models does so by oversight: The

vocabulary (similarity type) was badly chosen, such as not to allow that all elements are

denoted by some term. This can be almost remedied: Either by adding definable partial

Skolem functions or by allowing pseudo terms, i.e. elements uniquely definable by

3 +-formulas.

The paper also sheds more light into the question why in [ADJ75] Initial structures

were proposed as the framework for abstract data types. We have given in theorem 2.13 a

characterization of initial structures as 3 +-generic pseudo term models. For somebody not

familiar with category theory this may be more appealing since it relates directly to or

concept of verification by example. However, this characterization has also its technical

386

merits for it provides the missing link between the category theoretic concept and the model

theoretic tools needed to prove 5.9.

Last but not least we have yet added another explanation as to why Horn formulas

play such an important role in various branches of computer science. We have shown that

universal Horn theories (partially functional v3-theories) are exactly the framework in

which the notion of a generic example can be applied. This should prevent other researchers

from trying to generalize Logic Programming or the semantics abstract data types to larger

classes of first order formulas. If it has to be generalized then the direction chosen by R.M.

Burstall and J.A. Goguen in [GB84] seems to be much more appropriate.

References

[ADJ75] Ooguen, J.A., Thatcher, J.W., Wagner, E.G. and Wright, J.A.; Abstract data
types as initial algebras and the correctness of data representations, Prec. of
Conf. on Computer Graphics, Pattern Recognition and Data Structures, 1975,
pp. 89-93.

[All4] Armstrong, W.W.; Dependency structures of database relationships Prec. IFIP
74, North Holland 1974, pp. 580-583.

[Bo84] BSrger, E.; Decision problems in predicate logic, in: Logic Colloquium '82, O.
Lolli, G. Longo and Am Marcia eds., North Holland 1984, pp. 263-302.

[CK73] Chang, C.C. and Keisler, H.J.; ModelTheory, North Holland 1973.

[cg81] Chandrasekaran, B. and Radiechi, S.; Computer Program Testing, North Holland
1981.

[Fa82] Fagin, R.; Horn Clauses and data base dependencies, J.ACM vol. 29 (1982) pp.
252-285.

[GB84] Goguen, LA. and Burstall, R.M., Introducing institutions, in Prec. of Logic
Programming Workshop, E Clarke ed., Lecture Notes of Computer Science
1984, to appear.

[KK66] Kreisel, G. and Krivine, J.L; Elements de logique mathematique, Dunod 1966.

[Ko79] Kowalski,R.; Logic for Problem solving, North Holland 1979.

[McK43] McKinsey, J.C.C.; The decision problem for some classes of sentences without
quantifiers, Journal of Stub. Logic vol. 8 (1943) pp. 51-75.

387

~al56]

[MM83]

[My84]

[Ma84]

[uo59]

[Ra60]

[Ra62]

[Rob63]

[8m84]

[st741

 a52]

[Tar84]

[Tam77]

[zi82]

Mal'cev, A.; Quasi primitive classes of abstract algebras, in: The
Metamathematics of algebraic systems, collected papers of A.I. Mal'cev, North
Holland 1971, pp. 27-31.

Mahr, B. and Makowsky, J.A.; Characterizing specification languages which
admit initial semantics, Prec. of 8th CAAP, Springer LNCS vol. 159 (1983) pp.
300-316.

Makowsky, J.A. and Vardi, M.Y.; On the expre~ive power of data
dependencies, submitted 1984.

Makowsky, J.A.; Model theoretic issues in Computer Science, Part I: Relational
data bases and abstract data types, in: Logic Colloquium '82, G. Lolli, G. Longo
and A. Marcia eds., North Holland 1984, pp. 303-344.

Mostowski, A.; Review of [Ma156], Journal of Symb. Logic vol. 24 (1959) p. 57.

Rabin, M.; Characterization of convex systems of axioms, Notices AMS,
Abstract 571-65 (1960) p. 505.

Rabin M.; Classes of models and sets of sentences with the intersection
property, Ann.Fac.Sci. Universite de Clermont, vol. 7.1 (1962) pp. 39-53.

Robinson, A.; Introduction to model theory and the Metamathematies of algebr~
North Holland 1963.

Smorynski, C.; Lectures on non-standard models of arithmetic, in Logic
Colloquium '82, Lolli, G. Longo, G. and Marcia, A. ed&, North Holland 1984,
pp. 1-70.

Strassen, V.; Polynomials with rational coefficients which are hard to compute,
SIAM J.CompuL vol. 3.2 (1974) pp. 128-149.

Tarski, A.; Some notions arid methods on the borderline of algebra and
metamathematics, Proc.Int.Congr.of Mathe., Cambridge, MA vol. 1 (1952) pp.
705-720.

Tarlecki, A.; Free constructions in abstract algebraic institutions, draft
February 1984.

Tarnlund, S.A.; Horn clause computability, BIT vol. 17 (1977) pp. 215-226.

Zloof, M.M.; Office-by-example: A business language that unifies data and
word processing and electronic mail, IBM SystJ. vol. 21.3 (1982) pp. 272-304.

