
We aim to make this paper as self-contained as possible, thus we take the pain of providing as much useful back-
ground for readers less familiar with traced symmetric monoidal categories and Hopf monads, as well as introducing
notation. In Section 2, we provide a background section on traced symmetric monoidal categories and provide an
overview of well-known examples. Similarly, Section 3 is a background section which collects some basics on monads
and their algebras, while Section 4 is devoted to bimonads on monoidal categories. In Section 5, we discuss traced
monads. In Section 6, we review symmetric Hopf monads. We then introduce trace-coherent Hopf monads in Section
7, and show that it characterises precisely symmetric Hopf monads which lift traced symmetric monoidal structure.
Finally, in Section 8, we conclude this paper by presenting examples of traced monads which are not Hopf, and Hopf
monads which are not traced.

2 Traced Symmetric Monoidal Categories
In this background section, we review traced symmetric monoidal categories. Traced monoidal categories were
introduced by Joyal, Street, and Verity in [16], and are balanced monoidal categories equipped with a trace operator.
In this paper, we will work with the symmetric version of traced monoidal categories, and so will provide the
definition of traced symmetric monoidal categories as found in [14]. Alternate, but equivalent, axiomatizations of
traced symmetric monoidal categories can be found in [16, Section 2] and [14, Section 2.1]. We also provide numerous
well-known examples of traced symmetric monoidal categories. In particular, we consider three important subclasses
of traced symmetric monoidal categories. The first is compact closed categories, whose trace operator captures the
trace of matrices from linear algebra. The second is traced Cartesian monoidal categories, whose monoidal product are
products and where the trace operator is given by fixed points. The third is traced coCartesian monoidal categories,
whose monoidal product are coproducts and where the trace operator is given by iterations.

2.1 Traced Symmetric Monoidal Categories
As the name suggests, the underlying category of a traced symmetric monoidal category is a symmetric monoidal
category, which are categories equipped with a tensor product. For an in-depth introduction to (symmetric) monoidal
categories, and their axioms written out in commutative diagrams, we refer the reader to [20, Section 3].

Definition 2.1 [20, Section 3.1] A monoidal category is a sextuple (X,⊗, I,α,λ, ρ) consisting of a category X,
a functor ⊗ : X× X −→ X called the monoidal product, an object I called the monoidal unit (or simply unit), a
natural isomorphism αA,B,C : A⊗(B⊗C)

∼=−→ (A⊗B)⊗C called the associativity isomorphism, a natural isomorphism
λA : I ⊗ A

∼=−→ A called the left unit isomorphism, and a natural isomorphism ρA : A ⊗ I
∼=−→ A called the right unit

isomorphism, and such that the following equalities hold:

αA⊗B,C,D ◦ αA,B,C⊗D = (αA,B,C ⊗ 1D) ◦ αA,B⊗C,D ◦ (1A ⊗ αB,C,D) (1A ⊗ λB) ◦ αA,I,B = ρA ⊗ 1B (1)

where the equality on the left is called the pentagon axiom and the equality on the right is called the triangle axiom.

Definition 2.2 [20, Section 3.3 & 3.5] A symmetric monoidal category is a septuple (X,⊗, I,α,λ, ρ,σ) consisting
of a monoidal category (X,⊗, I,α,λ, ρ) and a natural isomorphism σA,B : A ⊗ B

∼=−→ B ⊗ A called the symmetry
isomorphism, such that the following equalities hold:

σB,A ◦ σA,B = 1A⊗B (1B ◦ σA,C) ◦ αB,A,C ◦ (σA,B ⊗ 1C) = αB,C,A ◦ σA,B⊗C ◦ αA,B,C (2)

where the equality on the left is called the self-inverse axiom and the equality on the right called the hexagon axiom.

Throughout this paper, we will also make use of the graphical calculus for (symmetric) monoidal categories, and
we will use more-or-less the same conventions as found in [20]. So in particular, our string diagrams should be read
horizontally from left to right. We will not review in full the graphical calculus here, and we refer the reader to [20]
for an in-depth introduction.

Definition 2.3 [10, Definition 2.1] A traced symmetric monoidal category is an octuple (X,⊗, I,α,λ, ρ,σ,Tr)
consisting of a symmetric monoidal category (X,⊗, I,α,λ, ρ,σ) equipped with a trace operator Tr, which is a family
of operators (indexed by triples of objects X,A,B ∈ X), TrXA,B : X(A⊗X,B ⊗X) −→ X(A,B), which is drawn in the
graphical calculus as follows:
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f

f : A⊗X −→ B ⊗X

X

A

X

B '→ f

TrXA,B(f) : A −→ B

A B

such that the following axioms are satisfied:
[Tightening]: For every map f : A⊗X −→ B ⊗X and g : A′ −→ A, the following equality holds:

TrXA′,B

(
f ◦ (g ⊗ 1X)

)
= TrXA,B(f) ◦ g

g
f

=

g
f

(3)

and for every map f : A⊗X −→ B ⊗X and h : B −→ B′, the following equality holds:

TrXA,B′
(
(h⊗ 1X) ◦ f

)
= h ◦ TrXA,B(f)

h
f

=

h
f

(4)

[Sliding]: For every map f : A⊗X −→ B ⊗X ′ and k : X ′ −→ X, the following equality holds:

TrXA,B

(
f ◦ (1A ⊗ k)

)
= TrX

′
A,B

(
(1B ⊗ k) ◦ f

)

k
f

= k
f

(5)

[Vanishing]: For every map f : A⊗ (X ⊗ Y ) −→ B ⊗ (X ⊗ Y ), the following equality holds:

TrX⊗Y
A,B (f) = TrXA,B

(
TrYA,B

(
αB,X,Y ◦ f ◦ α−1

A,X,Y

))

f
=

f

(6)
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[Superposing]: For every map f : A⊗X −→ B ⊗X the following equality holds:

TrXC⊗A,C⊗B

(
αC,A,X ◦ (1C ⊗ f) ◦ α−1

C,A,X

)
= 1C ⊗ TrXA,B(f)

f = f
(7)

[Yanking]: For every object X, the following equality holds:

TrXX,X(σX,X) = 1X

=
(8)

For a map f : A⊗X −→ B ⊗X, the map TrXA,B(f) : A −→ B is called the trace of f .

2.2 Compact Closed Categories
An important class of traced symmetric monoidal categories are compact closed categories, which are particularly
important in categorical quantum foundations [2]. Compact closed categories are symmetric monoidal category where
every object has a dual. Every compact closed category comes equipped with a canonical trace operator that captures
the classical notion of (partial) trace for matrices, which is a fundamental operation for both classical quantum theory
and categorical quantum foundations [3].

Definition 2.4 [20, Section 4.8] A compact closed category is a symmetric monoidal category (X,⊗, I,α,λ, ρ,σ)
such that for every object X, there is a object X∗, called the dual of X, and maps ∪X : X∗ ⊗ X −→ I, called the
cup or evaluation map, and ∩X : I −→ X ⊗X∗, called the cap or coevaluation map, which are drawn in the graphical
calculus as follows:

∪X : X∗ ⊗X → I

∪

∩X : I → X ⊗X∗

∩

such that the following equality holds:

∩
∪

= ∩
∪ =

and these equalities are called the snake equations.

Every compact closed category is a traced symmetric monoidal category, where the trace operator is constructed
using the cups and caps, and where the trace operator axioms follow from the snake equations. Furthermore, compact
closed categories have a unique trace operator.

Proposition 2.5 [16, Proposition 3.1] Let (X,⊗, I,α,λ, ρ,σ) be a compact closed category, with duals (−)∗, caps ∩,
and cups ∪. For a map f : A⊗X −→ B ⊗X, its trace TrXA,B(f) : A −→ B is defined as the following composite: the
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following composite:

TrXA,B(f) :=
A

ρ−1
A !! A⊗ I

1A⊗∩X !! A⊗ (X ⊗X∗)
αA,X,X∗

!! (A⊗X)⊗X∗ f⊗1X∗ !!

(B ⊗X)⊗X∗
α−1
B,X,X∗

!! B ⊗ (X ⊗X∗)
1B⊗σX,X∗

!! B ⊗ (X∗ ⊗X)
1B⊗∪X !! B ⊗ I

ρB !! B

which is drawn the graphical calculus as follows:

f =
∩ ∪

f

Then (X,⊗, I,α,λ, ρ,σ,Tr) is a traced symmetric monoidal category. Furthermore, Tr is the unique trace operator on
(X,⊗, I,α,λ, ρ,σ) [13, Section 3.2].

Here are now some examples of compact closed categories and their canonical trace operators.

Example 2.6 Let Z be the set of integers. Let Z≤ be the standard poset category, that is, the category whose
objects are integers n ∈ Z, where there is a map n −→ m if and only if n ≤ m. Z≤ is a compact closed category where
the monoidal product is given by addition, so n⊗m = n+m and I = 0, the dual is given by the negative n∗ = −n,
the cap is the equality 0 = n+ (−n), and the cup is the equality (−n) + n = 0. The induced trace operator records
the fact that if n+ x ≤ m+ x then n ≤ m.

Example 2.7 Let R be a commutative ring. Let MAT(R) be the category of matrices over R, that is, the category
whose objects are natural numbers n ∈ N and where a map A : m −→ n is an m× n matrix A with coefficients in R.
MAT(R) is a compact closed category where the monoidal product is given by multiplication, so m ⊗ n = mn and
I = 1, the dual of n is itself, so n∗ = n, the cup ∪n is the nn × 1 matrix where the ni-th coefficient is 1 ∈ R and the
rest are 0 ∈ R, and where the cap ∩n is the 1× nn matrix is the transpose of the cup. The resulting trace operator
captures the standard partial trace of matrices from linear algebra. Indeed, recall that for square n×n matrix A, its
trace is equal to the sum of its diagonal coefficients, Tr(A) =

n∑
i=1

Ai,i. Now observe that a map A : m⊗ k −→ n⊗ k,
which is an mk × nk matrix A, can be expressed in terms of square matrices as follows:

A =





A(1, 1) A(1, 2) . . . A(1, n)
A(2, 1) A(2, 2) . . . A(2, n)

...
...

. . .
...

A(m, 1) A(m, 2) . . . A(m,n)





where A(i, j) are square k × k matrices (with 1 ≤ i ≤ m and 1 ≤ j ≤ n). Then the trace of A, Trkm,n(A) : m −→ n, is
the m× n matrix Trkm,n(A) whose coefficients are the traces of the square matrices:

Trkm,n(A) =





Tr
(
A(1, 1)

)
Tr

(
A(1, 2)

)
. . . Tr

(
A(1, n)

)

Tr
(
A(2, 1)

)
Tr

(
A(2, 2)

)
. . . Tr

(
A(2, n)

)

...
...

. . .
...

Tr
(
A(m, 1)

)
Tr

(
A(m, 2)

)
. . . Tr

(
A(m,n)

)





Example 2.8 The above example generalises to finite dimensional modules. Let R be a commutative ring, and let
fdMOD(R) be the category of finite dimensional modules over R and R-linear morphisms between them. fdMOD(R)
is a compact closed category, where the monoidal product is the standard algebraic tensor product of modules, so
in particular I = R, and where the dual of R-module M is given by its algebraic dual, that is, the R-module of
R-linear maps from M to R, X∗ = {φ : X −→ R| f is R-linear}. The cup ∪X : X∗ ⊗X −→ R is defined by evaluation,
∪X(φ⊗ x) = φ(x). To define the cap, let {e1, . . . , en} be a basis of X, which induces a basis {e∗1, . . . , e∗n} be a basis
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of X∗. Then the cap ∩X : R −→ X⊗X∗ is defined as ∩X(1) =
n∑

i=1
ei ⊗ e∗i . For an R-linear map f : M ⊗X −→ N ⊗X,

its trace is the R-linear map TrXM,N (f) : M −→ N defined as:

TrXM,N (f)(m) =
n∑

i=1

(1N ⊗ e∗i )
(
f(m⊗ ei)

)

Note that the definitions of the cap and trace are independent of the choice of basis. In particular, when R = C, the
field of complex number, then fdMOD(C) is equivalent to the category of finite dimensional Hilbert spaces, which is
also compact closed and the fundamental category of study in categorical quantum foundations.

Example 2.9 Let REL be the category of sets and relations, that is, the category whose objects are sets and where
a map R : X −→ Y is a subset of the Cartesian product of X and Y , R ⊆ X × Y . REL is a compact closed category
where the monoidal product is given by the Cartesian product of sets, so X ⊗ Y = X × Y and I = {∗}, the dual
of set X is itself, so X∗ = X, and where the cups and caps are the relations which relate the singleton’s element to
diagonal pairs:

∩X = {
(
∗, (x, x)

)
| ∀x ∈ X} ⊂ {∗}× (X ×X) ∪X = {

(
(x, x), ∗

)
| ∀x ∈ X} ⊂ (X ×X)× {∗}

For a map R : A×X −→ B×X, which is a subset R ⊆ (A×X)× (B×X), its trace TrXA,B(R) : A −→ B, is the subset
TrXA,B(R) ⊆ A×B defined as follows:

TrXA,B(R) =
{
(a, b)| ∃x ∈ X s.t.

(
(a, x), (b, x)

)
∈ R

}

It is important to note that the Cartesian product × is not the categorical product and the singleton {∗} is not the
terminal object in REL.

Every traced symmetric monoidal category embeds fully and faithfully into a compact closed category via the
INT-construction [16, Section 4]. That said, not every traced symmetric monoidal category is compact closed. Indeed,
there are many interesting examples of non-compact closed traced symmetric monoidal categories that are especially
important in computer science, some of which we review below. Here is a simple example of a traced symmetric
monoidal category that is not compact closed:

Example 2.10 Let N be the set of natural numbers. Let N≤ be the standard poset category, that is, the category
whose objects are natural numbers n ∈ N, where there is a map n −→ m if and only if n ≤ m. N≤ is a symmetric
monoidal category where the monoidal product is given by addition n ⊗ m = n + m and the unit is zero I = 0.
Furthermore, N≤ is also a traced symmetric monoidal category where the trace operator records the fact that if
n + x ≤ m + x then n ≤ m. However, N≤ is not compact closed, since this would mean that for every n there is a
n∗ such that n∗ + n ≤ 0 and 0 ≤ n+ n∗, which implies that n+ n∗ = 0, but this is not case for all n 0= 0. Applying
the INT-construction on N≤ results in the compact closed category Z≤ from Example 2.6.

2.3 Traced Cartesian Monoidal Categories and Fixed Point Operators
Any category with finite products is a symmetric monoidal category, called a Cartesian monoidal category. In a
traced Cartesian monoidal category, the trace operator captures the notion of feedback via fixed points. In fact,
for Cartesian monoidal categories, trace operators are in bijective correspondence with Conway operators, which are
special kinds of fixed point operators (which is a result proved by Hyland and the first author independently [10]).

There are multiple equivalent ways to define a category with finite products. Since we are interested in their
induced symmetric monoidal structure, we will define a category with finite products from this perspective, that is,
as a symmetric monoidal whose monoidal product is a product and whose monoidal unit is a terminal object. Of
course, any category with finite products is a Cartesian monoidal category, where the symmetric monoidal structure is
derived using the universal property of the product, and conversely, every Cartesian monoidal category is a category
with finite products. Alternatively, a Cartesian monoidal category can be defined as a symmetric monoidal category
with natural copy and delete maps satisfying the axioms found in [20, Table 7].

Definition 2.11 [20, Section 6.1 & Section 6.4] A Cartesian monoidal category is a symmetric monoidal category
(X,×,1,α,λ, ρ,σ) whose monoidal structure is a given by finite products, that is:
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(i) The monoidal unit 1 is a terminal object, that is, for every object A there exists a unique map tA : A −→ 1;
(ii) For every pair of objects A and B, A × B a product of A and B with projection maps π0 : A × B −→ A and

π1 : A×B −→ B defined as following composites:

π0 := A×B
1A×tB !! A×1

ρA !! A π1 := A×B
tA×1B !! 1×B

λB ! ! B

that is, for every pair of maps f0 : C −→ A and f1 : C −→ B, there is a unique map 〈f0, f1〉 : C −→ A×B, called
the pairing of f0 and f1, such that π0 ◦ 〈f0, f1〉 = f0 and π1 ◦ 〈f0, f1〉 = f1.

A traced Cartesian monoidal category is a traced symmetric monoidal category (X,×,1,α,λ, ρ,σ,Tr) whose
underlying symmetric monoidal category (X,×,1,α,λ, ρ,σ) is a Cartesian monoidal category.

Traced Cartesian monoidal categories can equivalently be defined as a Cartesian monoidal category equipped with
a Conway operator. Here we provide the Conway operator axiomatization found in [10], but equivalent alternative
axiomatizations can be found in [12, 22].

Definition 2.12 [10, Theorem 3.1] A Conway operator on a Cartesian monoidal category (X,×,1,α,λ, ρ,σ) is a
family of operators FixXA : X(A×X,X) −→ X(A,X) such that:
[Parametrized Fixed Point] For every map f : A×X −→ X the following equality holds:

FixXA (f) = f ◦
〈
1A,Fix

X
A (f)

〉
(9)

[Naturality] For every map f : A×X −→ X and every map g : A′ −→ A the following equality holds:

FixXA
(
f ◦ (g × 1X)

)
= FixXA′ (f) ◦ g (10)

and for every map f : A×X −→ X ′ and every map k : X ′ −→ X the following equality holds:

FixXA (k ◦ f) = k ◦ FixX
′

A

(
f ◦ (1A × k)

) (11)

[Bekič Lemma] For every map f : A× (X × Y ) −→ X and g : A× (X × Y ) −→ Y the following equality holds:

FixX×Y
A (〈f, g〉) = 〈π1,Fix

Y
A×X(g ◦ α−1

A,X,Y )〉 ◦
〈
1A,Fix

X
A

(
f ◦ α−1

A,X,Y ◦ 〈1A×X ,FixYA×X(g ◦ α−1
A,X,Y )〉

)〉
(12)

For a map f : A×X −→ X, FixXA (f) : A −→ X is called the parametrized fixed point of f .

Proposition 2.13 [10, Theorem 3.1] Let (X,×,1,α,λ, ρ,σ) be a Cartesian monoidal category:
(i) Let Fix be a Conway operator on (X,×,1,α,λ, ρ,σ). Then for a map f : A × X −→ B × X, its trace

TrXA,B(f) : A −→ B is defined as follows:

TrXA,B(f) := A
〈1A,FixXA (π1◦f)〉 !! A×X

f !! B ×X
π0 !! B

Then (X,×,1,α,λ, ρ,σ,Tr) is a traced Cartesian monoidal category.
(ii) Let (X,×,1,α,λ, ρ,σ,Tr) be a Cartesian monoidal category. For a map f : A×X −→ X, its parametrized fixed

point FixXA (f) : A −→ X is defined as follows:

FixXA (f) := TrXA,X(〈f, f〉)

Then Fix is a Conway operator on (X,×,1,α,λ, ρ,σ).
Furthermore, these constructions are inverses of each other.

Here is now an example of a traced Cartesian monoidal category, which is particularly important in domain
theory:

9



Example 2.14 Let ω-CPPO be the category whose objects are ω-complete partial orders with bottom element (ω-
cppo) and whose maps are (Scott) continous functions between them. ω-CPPO is a traced Cartesian (closed) monoidal
category where the monoidal product is given by the Cartesian product, X ⊗ Y = X × Y and I = {⊥}, and where
the Conway operator and trace operator are induced by the parametrized Tarski least fixed-point operator. Indeed,
for any continous function f : X −→ X, there exists a least fixed point for f , that is, there exists an fix(f) ∈ X such
that f

(
fix(f)

)
= fix(f) and for every x ∈ X such that f(x) = x, we have that fix(f) ≤ x. So for a continous function

g : A×X −→ X, its parametrized fixed point FixXA (g) : A −→ X is defined as the least fixed point of the curry of g, that
is, FixXA (g)(a) = fix

(
g(a,−)

)
. Then for a continous function h : A×X −→ B×X, where h(a, x) =

(
h0(a, x)B , h1(a, x)

)

for continous functions h0 : A×X −→ B and h1 : A×X −→ X, its trace TrXA,B(h) : A −→ B is defined as follows:

TrXA,B(h)(a) = h0

(
a, fix

(
h1(a,−)

))

A Cartesian monoidal category is compact closed if and only if it degenerate, that is, every object is isomorphic
to the terminal object. Therefore, non-degenerate traced Cartesian monoidal categories (such as the above example)
are examples of traced symmetric monoidal categories that are not compact closed.

2.4 Traced CoCartesian Monoidal Categories and Iterations
Any category with finite coproducts is a symmetric monoidal category, called a coCartesian monoidal category.
Traced coCartesian monoidal categories are the dual notion of traced Cartesian monoidal categories, in the sense
that the opposite category of one is a form of the other. In a traced coCartesian monoidal category, the trace operator
captures the notion of feedback via iteration. In fact, for coCartesian monoidal categories, trace operators are in
bijective correspondence with iteration operators, which are the dual notion of Conway operators.

As for the product case, we are interested in the symmetric monoidal structure induced by finite coproducts. So we
will define coCartesian monoidal categories as symmetric monoidal categories whose monoidal product is a coproduct
and whose monoidal unit is an initial object. Once again, any category with finite coproducts is a coCartesian
monoidal category where the symmetric monoidal structure can be fully derived from the couniversal property of the
coproduct, and conversely, every coCartesian monoidal category is a category with finite coproducts.

Definition 2.15 [20, Section 6.2 & Section 6.4] A coCartesian monoidal category is a symmetric monoidal
category (X,⊕,⊥,α,λ, ρ,σ) whose monoidal structure is a given by finite coproducts, that is:

(i) The monoidal unit ⊥ is an initial object, that is, for every object A there exists a unique map iA : ⊥ −→ A.
(ii) For every pair of objects A and B, A⊕ B a coproduct of A and B with injection maps ι0 : A −→ A⊕ B and

ι1 : B −→ A⊕B defined as following composites:

ι0 := A
ρ−1
A !! A⊕⊥

1A×iB !! A⊕B ι1 := B
λ−1
B !! ⊥⊕A

iA×1B !! A⊕B

that is, for every pair of maps f0 : A −→ C and f1 : B −→ C, there is a unique map [f0, f1] : A⊕B −→ C, called
the copairing of f0 and f1, such that [f0, f1] ◦ ι0 = f0 and [f0, f1] ◦ ι1 = f1.

A traced coCartesian monoidal category is a traced symmetric monoidal category (X,⊕,⊥,α,λ, ρ,σ,Tr) whose
underlying symmetric monoidal category (X,⊕,⊥,α,λ, ρ,σ) is a coCartesian monoidal category.

As mentioned above, a traced coCartesian monoidal category can equivalently be characterised as a coCartesian
monoidal category X equipped with a iteration operator, which is a family of operators IterXA : X(X,A⊕X) −→ X(X,A),
such that the dual axioms of a Conway operator hold. Since iteration operators do not play a crucial role in this
paper, we will not review the full definition here and invite curious readers to see [20, Section 6.4]. That said, here
are now some examples of coCartesian traced monoidal categories which show how the trace is given by iteration.

Example 2.16 Let PAR be the category of sets and partial functions. PAR is a traced coCartesian monoidal category
where the monoidal product is given by the disjoint union of sets, so A⊕B = X 6Y and ⊥ = ∅, and where the trace
operator is induced from the natural feedback operator. Indeed, given a partial function f : A 6 X −→ B 6 X, its
trace TrXA,B(f) : A −→ B is the partial function defined as follows:

TrXA,B(f)(a) =






f(a) if f(a) ∈ B

b if ∃ n ∈ N ∃ x0, x1, . . . , xn ∈ X s.t. f(a) = x0 and f(x0) = x1 and . . . and f(xn) = b

undefined o.w.
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Example 2.17 Let REL be the category of sets and relations as defined in Example 2.9. REL is a traced coCartesian
monoidal category where this time (unlike Example 2.9) the monoidal product is given by the disjoint union of sets,
so X ⊗ Y = X 6 Y and ⊥ = ∅, and where for a map R : A 6X −→ B 6X, which is a subset R ⊆ (A 6X)× (B 6X),
its trace TrXA,B(R) : A −→ B, is the subset TrXA,B(R) ⊆ A×B defined as follows:

TrXA,B(R) =
{
(a, b)| (a, b) ∈ R or ∃ n ∈ N ∃ x0, x1, . . . , xn ∈ X s.t. (a, x0), (x0, x1), . . . , (xn, b) ∈ R

}
⊆ A×B

In this example, note that the monoidal product 6 is also a (bi)product, so REL is also a traced Cartesian monoidal
category in this way.

Example 2.18 The above two examples both fall in the same class of traced coCartesian monoidal categories called
partially additive categories [9, Definition 2.16]. Briefly, a partially additive category is a category with countable
coproducts (and therefore a symmetric monoidal category) with suitable partially defined countable (possibly in-
finite) sums. Every partially additive category is a traced symmetric monoidal category where the trace operator
is defined via a well-defined infinite sum formula [9, Proposition 2.20]. In a partially additive category, a map
f : A⊗X −→ B ⊗X is uniquely decomposed into four map f1 : A −→ B, f2 : A −→ X, f3 : X −→ B, and f4 : X −→ X,
and so its trace TrXA,B(f) : A −→ B is defined as follows:

TrXA,B(f) = f1 +
∞∑

n=0

f3 ◦ f4 ◦ . . . ◦ f4︸ ︷︷ ︸
n-times

◦f2

Both PAR and REL are partially additive categories [9, Example 2.3], and their induced traces are precisely those
described in the examples above. Slightly more generally, partially additive categories are examples of unique decom-
position categories [9, Definition 2.4], which under mild assumptions are also traced symmetric monoidal categories
[9, Proposition 2.21].

A coCartesian monoidal category is compact closed if and only if it degenerate, that is, every object is isomorphic
to the initial object. Therefore, non-degenerate traced Cartesian monoidal categories (such as the above examples)
are examples of traced symmetric monoidal categories that are not compact closed.

3 Monads
In this section we review monads and their algebras, which form a category called the Eilenberg-Moore category
of the monad. As discussed, in this paper we are interested in lifting structure from the base category up to the
Eilenberg-Moore category, specifically lifting traced symmetric monoidal structure, which we discuss in the sections
below. We also discuss the main examples of monads we will consider thorughout this paper. These include monads
induced by monoids, whose algebras are the modules over the monoids, and idempotent monads, whose algebras form
a subcategory of the base category. We refer the reader to [6, Chapter 4] for a detailed introduction to monads.

3.1 Monads and their Algebras
Monads are endofunctors with some extra structure that satisfy associativity and unit axioms.

Definition 3.1 [6, Definition 4.1.1] A monad on a category X is a triple (T, µ, η) consisting of a functor T : X −→ X,
a natural transformation µA : TT (A) −→ T (A), called the monad multiplication, and a natural transformation
ηA : A −→ T (A), called the unit multiplication, such that the following equalities hold:

µA ◦ T (ηA) = 1T (A) = µA ◦ ηT (A) µA ◦ T (µA) = µA ◦ µT (A) (13)

We now review algebras of a monad, which were called modules of a monad in [7, 8].

Definition 3.2 [6, Definition 4.1.2] Let (T, µ, η) be a monad on a category X. A T -algebra is a pair (A, a) consisting
of an object A and a map a : T (A) −→ A of X, called the T -algebra structure, such that the following equalities hold:

a ◦ ηA = 1A a ◦ µA = a ◦ T (a) (14)

Among the algebras of the monad are the free algebras, where the algebra structure is the monad multiplication.
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