Logical Predicates

in Higher-order Mathematical Operational Semantics

Sergey Goncharov, Alessio Santamaria, Lutz Schröder, Stelios Tsampas and Henning Urbat FoSSaCS 2024

Friedrich-Alexander-Universität Erlangen-Nürnberg

Higher-Order Mathematical Operational Semantics (or HO Abstract GSOS)

The setting of Logical Predicates

1. An operational semantics of a higher-order language

- Typically a typed λ-calculus.
- Write $\Lambda_{\tau}(\Gamma)$ for the set $\{t \mid \Gamma \vdash t: \tau\}$ and Λ_{τ} for the set $\{t \mid \varnothing \vdash t: \tau\}$.

The setting of Logical Predicates

1. An operational semantics of a higher-order language

- Typically a typed λ-calculus.
- Write $\Lambda_{\tau}(\Gamma)$ for the set $\{t \mid \Gamma \vdash t: \tau\}$ and Λ_{τ} for the set $\{t \mid \varnothing \vdash t: \tau\}$.

2. A (type-indexed) predicate $P \mapsto \Lambda$, that can't be proven inductively

- Family $\left(P_{\tau} \subseteq \Lambda_{\tau}\right)_{\tau \in \mathrm{Ty}}$
- Strong normalization, type safety etc.

The setting of Logical Predicates

1. An operational semantics of a higher-order language

- Typically a typed λ-calculus.
- Write $\Lambda_{\tau}(\Gamma)$ for the set $\{t \mid \Gamma \vdash t: \tau\}$ and Λ_{τ} for the set $\{t \mid \varnothing \vdash t: \tau\}$.

2. A (type-indexed) predicate $P \hookrightarrow \Lambda$, that can't be proven inductively

- Family $\left(P_{\tau} \subseteq \Lambda_{\tau}\right)_{\tau \in \mathrm{Ty}}$
- Strong normalization, type safety etc.

3. We construct a suitable logical predicate over P, say $\square P$, which implies P.

- Logical in the sense that
"For any term t and s in $\square P$ and of the suitable type, $t \cdot s$ is also in $\square P$ ".

The setting of Logical Predicates

1. An operational semantics of a higher-order language

- Typically a typed λ-calculus.
- Write $\Lambda_{\tau}(\Gamma)$ for the set $\{t \mid \Gamma \vdash t: \tau\}$ and Λ_{τ} for the set $\{t \mid \varnothing \vdash t: \tau\}$.

2. A (type-indexed) predicate $P \longmapsto \Lambda$, that can't be proven inductively

- Family $\left(P_{\tau} \subseteq \Lambda_{\tau}\right)_{\tau \in \mathrm{Ty}}$
- Strong normalization, type safety etc.

3. We construct a suitable logical predicate over P, say $\square P$, which implies P.

- Logical in the sense that
"For any term t and s in $\square P$ and of the suitable type, $t \cdot s$ is also in $\square P$ ".

4. Proceed by induction to prove that (the open extension of) $\square P$ holds.

Strong Normalization

Definition (A standard logical predicate)

$$
\begin{aligned}
\mathrm{SN}_{\text {unit }}(t) & =\Downarrow_{\text {unit }}(t) \\
\mathrm{SN}_{\tau_{1} \rightarrow \tau_{2}}(t) & =\Downarrow_{\tau_{1} \rightarrow \tau_{2}}(t) \wedge\left(\forall s: \tau_{1} \cdot \mathrm{SN}_{\tau_{1}}(s) \Longrightarrow \mathrm{SN}_{\tau_{2}}(t \cdot s)\right)
\end{aligned}
$$

Strong Normalization

Definition (A standard logical predicate)

$$
\begin{aligned}
\mathrm{SN}_{\text {unit }}(t) & =\Downarrow_{\text {unit }}(t) \\
\mathrm{SN}_{\tau_{1} \rightarrow \tau_{2}}(t) & =\Downarrow_{\tau_{1} \rightarrow \tau_{2}}(t) \wedge\left(\forall s: \tau_{1} \cdot \mathrm{SN}_{\tau_{1}}(s) \Longrightarrow \mathrm{SN}_{\tau_{2}}(t \cdot s)\right)
\end{aligned}
$$

Definition (Open extension of SN)

$$
\begin{aligned}
\stackrel{\mathrm{SN}}{\tau}(t)(\Gamma)= & \text { For any closed substitution }\left(\varnothing \vdash e_{n}: \Gamma(n)\right)_{n \in|\Gamma|} \\
& \text { such that } \forall n \in|\Gamma| \cdot \mathrm{SN}_{\Gamma(n)}\left(e_{n}\right), \text { then } \operatorname{SN}_{\tau}\left(t\left[e_{n} / x_{n}\right]\right)
\end{aligned}
$$

Strong Normalization

One annoying case of the proof is that of λ-abstraction $\Gamma \vdash \lambda x: \tau_{1} \cdot t: \tau_{1} \rightarrow \tau_{2}$. Given a substitution $\left(\varnothing \vdash e_{n}: \Gamma(n)\right)_{n \in|\Gamma|}$ satisftying SN , we have to:

- Push the substitution inside the λ-abstraction, try to prove that the whole term is in SN, for that reason consider what happens when we have terms such as ($\left.\lambda x: \tau_{1} \cdot t^{\prime}\right) \cdot s$ with $\mathrm{SN}_{\tau_{1}}(s)$ for the substituted t^{\prime}, think back to what happens during β-reduction, reflect on properties of substitution etc.

Complex language \Longrightarrow complex argument...

The goal of this talk

I will argue for two directions of abstraction, via Higher-order Abstract GSOS

The goal of this talk

I will argue for two directions of abstraction, via Higher-order Abstract GSOS

Dissecting the logical predicate (1)

$$
\begin{aligned}
\mathrm{SN}_{\text {unit }}(t) & =\Downarrow_{\text {unit }}(t) \\
\mathrm{SN}_{\tau_{1} \rightarrow \tau_{2}}(t) & =\Downarrow_{\tau_{1} \rightarrow \tau_{2}}(t) \wedge\left(\forall s: \tau_{1} \cdot \mathrm{SN}_{\tau_{1}}(s) \Longrightarrow \mathrm{SN}_{\tau_{2}}(t \cdot s)\right)
\end{aligned}
$$

Dissecting the logical predicate (1)

$$
\begin{aligned}
\mathrm{SN}_{\text {unit }}(t) & =\Downarrow_{\text {unit }}(t) \\
\mathrm{SN}_{\tau_{1} \rightarrow \tau_{2}}(t) & =\Downarrow_{\tau_{1} \rightarrow \tau_{2}}(t) \wedge\left(\forall s: \tau_{1} \cdot \mathrm{SN}_{\tau_{1}}(s) \Longrightarrow \mathrm{SN}_{\tau_{2}}(t \cdot s)\right)
\end{aligned}
$$

Idea: Write $t \stackrel{s}{\Rightarrow} t^{\prime}$ if $t \Downarrow \lambda x: \tau_{1} . M$ and $t^{\prime}=M[s / x]$

Dissecting the logical predicate (1)

$$
\begin{aligned}
\mathrm{SN}_{\text {unit }}(t) & =\Downarrow_{\text {unit }}(t) \\
\mathrm{SN}_{\tau_{1} \rightarrow \tau_{2}}(t) & =\Downarrow_{\tau_{1} \rightarrow \tau_{2}}(t) \wedge\left(\forall s: \tau_{1} \cdot \mathrm{SN}_{\tau_{1}}(s) \Longrightarrow \mathrm{SN}_{\tau_{2}}(t \cdot s)\right)
\end{aligned}
$$

Idea: Write $t \stackrel{s}{\Rightarrow} t^{\prime}$ if $t \Downarrow \lambda x: \tau_{1} . M$ and $t^{\prime}=M[s / x]$

$$
\begin{aligned}
\Downarrow_{\text {unit }}(t) & =\Downarrow_{\text {unit }}(t) \\
\Downarrow_{\tau_{1} \rightarrow \tau_{2}}(t) & =\Downarrow_{\tau_{1} \rightarrow \tau_{2}} t \wedge\left(\forall s: \tau_{1} \cdot t \stackrel{s}{\Rightarrow} t^{\prime} \wedge \Downarrow_{\tau_{1}}(s) \Longrightarrow \Downarrow_{\tau_{2}}\left(t^{\prime}\right)\right)
\end{aligned}
$$

Dissecting the logical predicate (1)

$$
\begin{aligned}
\mathrm{SN}_{\text {unit }}(t) & =\Downarrow_{\text {unit }}(t) \\
\mathrm{SN}_{\tau_{1} \rightarrow \tau_{2}}(t) & =\Downarrow_{\tau_{1} \rightarrow \tau_{2}}(t) \wedge\left(\forall s: \tau_{1} \cdot \mathrm{SN}_{\tau_{1}}(s) \Longrightarrow \mathrm{SN}_{\tau_{2}}(t \cdot s)\right)
\end{aligned}
$$

Idea : Write $t \stackrel{s}{\Rightarrow} t^{\prime}$ if $t \Downarrow \lambda x: \tau_{1} . M$ and $t^{\prime}=M[s / x]$

$$
\begin{aligned}
\Downarrow_{\text {unit }}(t) & =\Downarrow_{\text {unit }}(t) \\
\Downarrow_{\tau_{1} \rightarrow \tau_{2}}(t) & =\Downarrow_{\tau_{1} \rightarrow \tau_{2}} t \wedge\left(\forall s: \tau_{1} \cdot t \stackrel{s}{\Rightarrow} t^{\prime} \wedge \Downarrow_{\tau_{1}}(s) \Longrightarrow \Downarrow_{\tau_{2}}\left(t^{\prime}\right)\right)
\end{aligned}
$$

Idea : Abstract away from the predicate \Downarrow

Dissecting the logical predicate (2)

$$
\begin{aligned}
\square P_{\text {unit }}(t) & =P_{\text {unit }}(t) \\
\square P_{\tau_{1} \rightarrow \tau_{2}}(t) & =P_{\tau_{1} \rightarrow \tau_{2}} t \wedge\left(\forall s: \tau_{1}, t \stackrel{s}{\Rightarrow} t^{\prime} \wedge \square P_{\tau_{1}}(s) \Longrightarrow \square P_{\tau_{2}}\left(t^{\prime}\right)\right)
\end{aligned}
$$

Dissecting the logical predicate (2)

$$
\begin{aligned}
\square P_{\text {unit }}(t) & =P_{\text {unit }}(t) \\
\square P_{\tau_{1} \rightarrow \tau_{2}}(t) & =P_{\tau_{1} \rightarrow \tau_{2}} t \wedge\left(\forall s: \tau_{1} \cdot t \stackrel{s}{\Rightarrow} t^{\prime} \wedge \square P_{\tau_{1}}(s) \Longrightarrow \square P_{\tau_{2}}\left(t^{\prime}\right)\right)
\end{aligned}
$$

Idea: Move one from \Rightarrow to the more fundamental \rightarrow

Dissecting the logical predicate (2)

$$
\begin{aligned}
\square P_{\text {unit }}(t) & =P_{\text {unit }}(t) \\
\square P_{\tau_{1} \rightarrow \tau_{2}}(t) & =P_{\tau_{1} \rightarrow \tau_{2}} t \wedge\left(\forall s: \tau_{1}, t \stackrel{s}{\Rightarrow} t^{\prime} \wedge \square P_{\tau_{1}}(s) \Longrightarrow \square P_{\tau_{2}}\left(t^{\prime}\right)\right)
\end{aligned}
$$

Idea : Move one from \Rightarrow to the more fundamental \rightarrow
greatest subset of $\Lambda_{\tau_{1} \rightarrow \tau_{2}} \square P_{\text {unit }}(t)=P_{\text {unit }}(t)$

$$
\square P_{\tau_{1} \rightarrow \tau_{2}}(t) \Longrightarrow P_{\tau_{1} \rightarrow \tau_{2}}(t) \wedge \begin{cases}\square P_{\tau_{1} \rightarrow \tau_{2}}\left(t^{\prime}\right) & \text { if } t \rightarrow t^{\prime} \\ \square P_{\tau_{1}}(s) \Longrightarrow \square P_{\tau_{2}}\left(t^{\prime}\right) & \text { if } t \rightarrow t^{\prime}\end{cases}
$$

Induction up to \square on STLC

Theorem

Let $P \rightharpoondown \Lambda$ be any predicate on closed terms. Then P is true if all of the following are true:

1. the unit expression e: unit satisfies $\boxminus_{\text {unit }} P P_{\text {unit }}$,
2. for all closed application terms $t s$ such that $\square_{\tau_{1} \rightarrow \tau_{2}} P(t)$ and $\square_{\tau_{1}} P(s)$, we have $\square_{\tau_{2}} P(t s) P_{\tau_{2}}(t s)$, and
3. for all λ-abstractions $\lambda x: \tau_{1}, t: \tau_{1} \rightarrow \tau_{2}$, such that $\lambda x: \tau_{1}, t$ is in the open extension of $\square P$ and given a substitution \vec{e} that satisfies $\square P,\left(\lambda x: \tau_{1} \cdot t\right)[\vec{e} / \vec{x}]$, we have that $\left(\lambda x: \tau_{1}, t\right)[\vec{e} / \vec{x}]$ is in $\boxminus P, P$.

Proof.

Instantiate Th. 36 with $(\operatorname{Th} 36 . P)_{\tau}(\varnothing)=P_{\tau}$ and $(\operatorname{Th} 36 . P)_{\tau}(\Gamma \neq \varnothing)=T$.

Let's try this out!

Proving strong normalization for STLC

1. $\Downarrow_{\text {unit }}(\mathrm{e})$;
2. $\Downarrow_{\tau_{2}}(t s)$ with $\square_{\tau_{1} \rightarrow \tau_{2}} \Downarrow(t)$ and $\square_{\tau_{1}} \Downarrow(s)$;
3. $\Downarrow_{\tau_{1} \rightarrow \tau_{2}}\left(\lambda x: \tau_{1}, t\right)$ (what t can do is irrelevant in this case).

Let's try this out!

Proving strong normalization for STLC

1. $\Downarrow_{\text {unit }}(\mathrm{e})$;
2. $\Downarrow_{\tau_{2}}(t s)$ with $\square_{\tau_{1} \rightarrow \tau_{2}} \Downarrow(t)$ and $\square_{\tau_{1}} \Downarrow(s)$;
3. $\Downarrow_{\tau_{1} \rightarrow \tau_{2}}\left(\lambda x: \tau_{1}, t\right)$ (what t can do is irrelevant in this case).

Proof.

(1) and (3) are trivial, (2) is straightforward once you realize that $\square Q$ is an invariant w.r.t. \rightarrow for all Q.

Objective Complete

Let's explore the other direction

Objective Complete

Let's explore the other direction

The (vanilla) abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

2. A (type-indexed) predicate $P \hookrightarrow \mu \Sigma$ is given.

3. We construct a suitable logical predicate over P, say $\square P$, which implies P.

The (vanilla) abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given. Concrete/Abstract

- (The model generated by) Operational Rules $\frac{t \rightarrow t^{\prime}}{t \cdot s \rightarrow t^{\prime} \cdot s}$

2. A (type-indexed) predicate $P \hookrightarrow \mu \Sigma$ is given.
3. We construct a suitable logical predicate over P, say $\square P$, which implies P.

The (vanilla) abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

2. A (type-indexed) predicate $P \rightharpoondown \mu \Sigma$ is given.
3. We construct a suitable logical predicate over P, say $\square P$, which implies P.

The (vanilla) abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.
Concrete/Abstract

(The model generated by)	i. Coalgebra $\gamma: \mu \Sigma \rightarrow B(\mu \Sigma, \mu \Sigma)$,
Operational Rules $\frac{t \rightarrow t^{\prime}}{t \cdot s \rightarrow t^{\prime} \cdot s}$	ii. on initial algebra $\iota: \Sigma \mu \Sigma \rightarrow \mu \Sigma$.

2. A (type-indexed) predicate $P \hookrightarrow \mu \Sigma$ is given.
3. We construct a suitable logical predicate over P, say $\square P$, which implies P.

The (vanilla) abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

- (The model generated by)	i. Coalgebra $\gamma: \mu \Sigma \rightarrow B(\mu \Sigma, \mu \Sigma)$,
Operational Rules $\frac{t \rightarrow t^{\prime}}{t \cdot s \rightarrow t^{\prime} \cdot s}$	ii. on initial algebra $\iota: \Sigma \mu \Sigma \rightarrow \mu \Sigma$.

2. A (type-indexed) predicate $P \hookrightarrow \mu \Sigma$ is given.

- Family $\left(P_{\tau} \subseteq \Lambda_{\tau}\right)_{\tau \in \mathrm{Ty}}$

3. We construct a suitable logical predicate over P, say $\square P$, which implies P.

The (vanilla) abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

2. A (type-indexed) predicate $P \rightharpoondown \mu \Sigma$ is given.

- Family $\left(P_{\tau} \subseteq \Lambda_{\tau}\right)_{\tau \in \mathrm{Ty}}$
- Monomorphism $P \mapsto \mu \Sigma$

3. We construct a suitable logical predicate over P, say $\square P$, which implies P.

The (vanilla) abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

Concrete/Abstract

- (The model generated by) Operational Rules $\frac{t \rightarrow t^{\prime}}{t \cdot s \rightarrow t^{\prime} \cdot s}$
i. Coalgebra $\gamma: \mu \Sigma \rightarrow B(\mu \Sigma, \mu \Sigma)$,
ii. on initial algebra $\iota: \Sigma \mu \Sigma \rightarrow \mu \Sigma$.

2. A (type-indexed) predicate $P \rightharpoondown \mu \Sigma$ is given.

- Family $\left(P_{\tau} \subseteq \Lambda_{\tau}\right)_{\tau \in \mathrm{Ty}}$
- Monomorphism $P \mapsto \mu \Sigma$

3. We construct a suitable logical predicate over P, say $\square P$, which implies P.

- Empirical, mysterious, problemspecific logical predicate SN

The (vanilla) abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

Concrete/Abstract

- (The model generated by) Operational Rules $\frac{t \rightarrow t^{\prime}}{t \cdot s \rightarrow t^{\prime} \cdot s}$
i. Coalgebra $\gamma: \mu \Sigma \rightarrow B(\mu \Sigma, \mu \Sigma)$,
ii. on initial algebra $\iota: \Sigma \mu \Sigma \rightarrow \mu \Sigma$.

2. A (type-indexed) predicate $P \hookrightarrow \mu \Sigma$ is given.

- Family $\left(P_{\tau} \subseteq \Lambda_{\tau}\right)_{\tau \in \mathrm{Ty}}$
- Monomorphism $P \hookrightarrow \mu \Sigma$

3. We construct a suitable logical predicate over P, say $\square P$, which implies P.

- Empirical, mysterious, problemspecific logical predicate SN
- Generic predicate transformer $\square^{\gamma, \bar{B}}: \operatorname{Pred}_{\mu \Sigma}(\mathcal{C}) \rightarrow \operatorname{Pred}_{\mu \Sigma}(\mathcal{C})$

(Vanilla) Logical Predicates proof method in the abstract

Assuming the following:

1. An initial algebra (object of terms) $\Sigma \mu \Sigma \xrightarrow{\iota} \mu \Sigma$,
2. an "operational semantics" morphism $\mu \Sigma \rightarrow B(\mu \Sigma, \mu \Sigma)$ for some bifunctor $B: \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \rightarrow \mathcal{C}$,
3. and logical predicates $\square(-)$,
the proof method of logical predicates amount to the following:

Fundamental Property

As initial algebras have no proper subalgebras, then

$$
\bar{\Sigma}(\square P) \leq \iota^{\star}[\square P] \Longrightarrow \square P \cong \mu \Sigma \Longrightarrow P \cong \mu \Sigma
$$

Categorical machinery

$$
\begin{aligned}
& B(X, Y): \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \rightarrow \mathcal{C} \quad \gamma: \mu \Sigma \rightarrow B(\mu \Sigma, \mu \Sigma) \\
& B(X, Y)=Y+Y^{X} \quad \gamma(t)=t^{\prime} \text { if } t \rightarrow t^{\prime} \text { and } \gamma(\lambda x . M)=(e \mapsto M[e / x])
\end{aligned}
$$

Categorical machinery

$$
\begin{aligned}
& B(X, Y): \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \rightarrow \mathcal{C} \quad \gamma: \mu \Sigma \rightarrow B(\mu \Sigma, \mu \Sigma) \\
& B(X, Y)=Y+Y^{X} \quad \gamma(t)=t^{\prime} \text { if } t \rightarrow t^{\prime} \text { and } \gamma(\lambda x . M)=(e \mapsto M[e / x])
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Pred}(\mathcal{C})^{\text {op }} \times \operatorname{Pred}(\mathcal{C}) \xrightarrow{\bar{B}} \operatorname{Pred}(\mathcal{C})
\end{aligned}
$$

Categorical machinery

$$
\begin{aligned}
& B(X, Y): \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \rightarrow \mathcal{C} \quad \gamma: \mu \Sigma \rightarrow B(\mu \Sigma, \mu \Sigma) \\
& B(X, Y)=Y+Y^{X} \quad \gamma(t)=t^{\prime} \text { if } t \rightarrow t^{\prime} \text { and } \gamma(\lambda x . M)=(e \mapsto M[e / x])
\end{aligned}
$$

For example, $\bar{B}(P, Q) \subseteq \mu \Sigma+\mu \Sigma^{\mu \Sigma}$ is the disjoint union of (i) the set $\{t \mid Q(t)\}$ and (ii) the set of functions $f \in \mu \Sigma^{\mu \Sigma}$ that map inputs in P to outputs in Q.

Logical Predicates

Relative invariant

Let $c: Y \rightarrow B(X, Y)$ be a $B(X,-)$-coalgebra. Given predicates $S \hookrightarrow X, P \mapsto Y$, we say that P is an S-relative (\bar{B}-)invariant (for c) if

$$
P \leq c^{\star}[\bar{B}(S, P)] .
$$

Logical Predicate

A predicate $P \hookrightarrow \mu \Sigma$ is logical (for γ) if it is a P-relative \bar{B}-invariant.

Logical Predicates

Relative invariant

Let $c: Y \rightarrow B(X, Y)$ be a $B(X,-)$-coalgebra. Given predicates $S \hookrightarrow X, P \mapsto Y$, we say that P is an S-relative (\bar{B}-)invariant (for c) if

$$
P \leq c^{\star}[\bar{B}(S, P)] .
$$

Logical Predicate

A predicate $P \hookrightarrow \mu \Sigma$ is logical (for γ) if it is a P-relative \bar{B}-invariant.
A predicate P is logical if for all $t \in \mu \Sigma, P(t)$ implies:

Logical Predicates

Relative invariant

Let $c: Y \rightarrow B(X, Y)$ be a $B(X,-)$-coalgebra. Given predicates $S \mapsto X, P \mapsto Y$, we say that P is an S-relative (\bar{B}-)invariant (for c) if

$$
P \leq c^{\star}[\bar{B}(S, P)]
$$

Logical Predicate

A predicate $P \hookrightarrow \mu \Sigma$ is logical (for γ) if it is a P-relative \bar{B}-invariant.
A predicate P is logical if for all $t \in \mu \Sigma, P(t)$ implies:

1. If $t \rightarrow t^{\prime}$, then $P\left(t^{\prime}\right)$ (with ND: if $\exists t$. $t \rightarrow t^{\prime}$, then $P\left(t^{\prime}\right)$).

Logical Predicates

Relative invariant

Let $c: Y \rightarrow B(X, Y)$ be a $B(X,-)$-coalgebra. Given predicates $S \mapsto X, P \mapsto Y$, we say that P is an S-relative (\bar{B}-)invariant (for c) if

$$
P \leq c^{\star}[\bar{B}(S, P)]
$$

Logical Predicate

A predicate $P \hookrightarrow \mu \Sigma$ is logical (for γ) if it is a P-relative \bar{B}-invariant.
A predicate P is logical if for all $t \in \mu \Sigma, P(t)$ implies:

1. If $t \rightarrow t^{\prime}$, then $P\left(t^{\prime}\right)$ (with ND: if $\exists t$. $t \rightarrow t^{\prime}$, then $P\left(t^{\prime}\right)$).
2. For all s, if $t \xrightarrow{s} t^{\prime}$ and $P(s)$, then $P\left(t^{\prime}\right)$.

One logical predicate to rule them all

The \square

Under certain conditions, the most important being that the predicate lifting \bar{B} is predicate-contractive, for every predicate $P \hookrightarrow X$ on the state space of our coalgebra $X \rightarrow B(X, X)$ (i.e. a program property), there exists a certain "large" predicate $\square P$ such that:

1. $\square P \leq P$
2. $\square P \leq c^{\star}[\bar{B}(\square P, \square P)]$ (i.e. $\square P$ is logical)
3. $\square P$ is the largest $\square P$-relative invariant.

One logical predicate to rule them all

The

Under certain conditions, the most important being that the predicate lifting \bar{B} is predicate-contractive, for every predicate $P \hookrightarrow X$ on the state space of our coalgebra $X \rightarrow B(X, X)$ (i.e. a program property), there exists a certain "large" predicate $\square P$ such that:

1. $\square P \leq P$
2. $\square P \leq c^{\star}[\bar{B}(\square P, \square P)]$ (i.e. $\square P$ is logical)
3. $\square P$ is the largest $\square P$-relative invariant.

Conclusion/translation: The lifting being defined inductively on types is sufficient for the existence of this magical, suitable logical predicate.

Induction up to \square

The definition of logicality and \square systematizes the logical predicates proof method, but where is the "efficient reasoning"?

Induction up to \square

The definition of logicality and \square systematizes the logical predicates proof method, but where is the "efficient reasoning"?

Induction up to

For a certain class of higher-order GSOS laws, instead of laboriously showing $\bar{\Sigma}(\square P) \leq \iota^{\star}[\square P]$, it suffices to show the much simpler $\bar{\Sigma}(\square P) \leq \iota^{\star}[P]$.

Induction up to \square

The definition of logicality and \square systematizes the logical predicates proof method, but where is the "efficient reasoning"?

Induction up to

For a certain class of higher-order GSOS laws, instead of laboriously showing $\bar{\Sigma}(\square P) \leq \iota^{\star}[\square P]$, it suffices to show the much simpler $\bar{\Sigma}(\square P) \leq \iota^{\star}[P]$.

Note: Things are a bit more complex in languages with binding and substitution due to contractivity considerations, but the principle is the same.

Induction up to \square

The definition of logicality and \square systematizes the logical predicates proof method, but where is the "efficient reasoning"?

Induction up to

For a certain class of higher-order GSOS laws, instead of laboriously showing $\bar{\Sigma}(\square P) \leq \iota^{\star}[\square P]$, it suffices to show the much simpler $\bar{\Sigma}(\square P) \leq \iota^{\star}[P]$.

Note: Things are a bit more complex in languages with binding and substitution due to contractivity considerations, but the principle is the same. This explains the need to extend the predicate to open terms.

Induction up to \cdot

For a certain class of λ-laws, instead of laboriously showing $\bar{\Sigma}(\square P) \leq \iota^{\star}[\square P]$, it suffices to show the much simpler $\bar{\Sigma}(\square P) \leq \iota^{\star}[P]$.

Thank you!

