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1 The Markov property: commutative case

Let (Ω,B, µ) be a measure space, (BF )F∈F–a family of sub–σ–algebras of B
indexed by a family of parts of a set S and with the following properties:

F ⊆ G⇒ BF ⊆ BG (1)

S ∈ F ; BS = B (2)

Denote, for F ∈ F , AF = L∞C (Ω,BF , µ) the algebra of (µ–classes of) bounded
functions on Ω which are BF–measurable. If F ⊆ G, there exists a unique
linear operator Eµ

G,F : AG ⊆ AF , defined by the property:

µG(fF · fG) = µF (fF · Eµ
G,F (fG)) ; ∀ fF ∈ AF ; ∀ fG ∈ AG (3)

(µF denotes the restriction of µ on BF ). The operator Eµ
G,F is called condi-

tional expectation, with respect to µ, from AG to AF .
Let now S be a topological space, F a family of closed subsets of S con-
taining S and for every F ∈ F , the boundary of F , denoted hereinafter
∂F . For any H ⊆ S, denote BH the σ–algebra on Ω spanned by the family
{BF : F ∈ F ,∈ H}.

Definition 1 The conditional expectation Eµ
G,F , F ⊆ G is said to enjoy the

Markov property1 if:
Eµ
G,F (AG\F ) ⊆ A∂F (4)

A measure µ on (Ω,B) will be called a Markov measure with respect to the
family of sub–σ–algebras {BF}F∈F , if for every F ∈ F :

Eµ
S,F (AF c) ⊆ A∂F (5)

(F c denotes the complement of F with respect to A).

Remark that, if µ is a Markov measure with respect to {BF}, then for every
F ⊆ G, Eµ

G,F enjoys the Markov property. Moreover property (5) is easily
seen to be equivalent to:

Eµ
S,F (f|F ) = Eµ

S,∂F (f|F ) ; ∀ f|F ∈ A|F (6)

Equality (6) is the characterization of te Markov property as first formulated
by E. Nelson (see for example [7]).

1A sub–σ–algebra B0 of B will be thought, unless specified the contrary, as a σ–algebra
on Ω, i.e. Ω ∈ B0.
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2 Conditional expectations

Put AS = A, AF = B; if E : A → B is a conditional expectation defined as
in 1), then E enjoys the following properties:

[CE1)] E(a) ≥ 0, if a ≥ 0; a ∈ A [CE2)] E(ba) = b E(a); b ∈ B; a ∈ A
[CE3)] E(a∗) = E(a)∗; a ∈ A; [CE4)] E(1) = 1 [CE5)] ‖E(a)‖ ≤ ‖a‖; a ∈ A
[CE6)] E(a) · E(a)∗ ≤ E(aa∗)

Properties CE1) – CE6) 2 are in fact a characterization of the conditional
expectations (see S.c. Moy ). This fact lies at the root of the following (due
to Umegaki [12]).

Definition 2 Let A, B– C(∗)–algebras, B ≤ A. A conditional expectation
from A to B is a linar map E : A→ B satisfying CE1) – CE6).

Properties CE1) – CE6) are not independent. In fact, the following theorem
holds (Tomijama [11]):

Theorem 1 Every projector of norm 1, E : A→ B enjoys properties CE1)
– CE6). Therefore, by Tomijama’s theorem a conditional expectation from
A to B is a linear norm 1 projection E : A→ B.

3 Quasi–Conditional expectations

The definition of Markov property and Markov measure given in section (1),
does not depend on the structure of the algebras A but only on the property:

F ⊆ G→ AF ⊆ AG (7)

For an arbitrary family {AF}F∈F of C∗–algebras (where F is as in section
(1) and a family of conditional expectations (in the sense of Definition ())
(EG,F ), one could define the Markov property for EG,F by (4), and a Markov
state µ on A as a state for which there exists a family (EG,F ) of conditional
expectations satisfying equality (3).
However, in case of arbitrary C∗–algebras, the mere existence of a family
(EG,F ) of conditional expectations satisfying (3) for a given state µ on AS
undergoes severe restrictions, as one can deduce from a theorem of Takesaki
[10]. Moreover, even if such a family exists, in many cases, the Markov

2Plus the continuity condition: if (ak) is an increasing sequence of positive functions
converging µ–almost everywhere to a, then limE(ak) = E(a), µ–almost everywhere.
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property implies the triviality of these conditional expectations.
Assume for example, that the family {AF} of “local algebras”, satisfies, in
addition to (7), the following relations:

AF c = A′F = {a ∈ AS : ab = ba , ∀ b ∈ AF} (8)

AF ∩ AF c = C · 1 (9)

Then, if a conditional expectation ES,F : AS → AF enjoys the Markov prop-
erty (see (5)), one easily verifies that

ES,F (AF c) ⊆ C · 1 (10)

i.e. the conditional expectation of every a ∈ AF c is a scalar. In the commu-
tative case this means that the observables in the algebras AF and AF c are
stochastically independent (with respect to the measure µ satisfying (3)).
In the non commutative case if S is discrete (10) implies, that any state µ
satisfying (3) is a product state on AS. Thus for the local algebras {AF} sat-
isfying (7), (8), (9), with S–discrete, the family of “Markov states” obtained
by direct generalization of (3) and (5) to the non–commutative case reduces
to the class of product states. Since systems of “local algebras” of the type
described above are very frequent, for instance, in quantum statistical me-
chanics, it is desirable to have a class of “Markov states” which is strictly
larger, in such systems too, than the class of prodcut states. With this aim
we introduce the following:

Definition 3 Let d(B) ⊆ B ⊆ A, be C∗–algebras. A quasi–conditional
expectation with respect to the triple d(B) ⊆ B ⊆ A, is a linear map
E : A→ B with the following properties:

[i1)] E(a) ≥ 0; if a ≥ 0; a ∈ A [i2)] E(ca) = cE(a); c ∈ d(B); a ∈ A
[i3)] ‖E(c′)‖ ≤ ‖c′‖; c′ ∈ d(B)′

where the symbol ? denotes the commutant with respect to A. A quasi–
conditional expectation will be called normalized if [i4)] E(1) = 1.

If d(B) = C · 1, E is simply a positive linear map A→ B. Every quasi–
conditional expectation, E with respect to the triple d(B) ⊆ B ⊆ A, satisfies:

E(d(B)′ ∩ A) ⊆ d(B)′ ∩B (11)

The relation (11) can be considered as a non–commutative formulation of the
Markov property.
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Example 1 Let {AF}F∈F be a family of local algebras satisfying (7), (8).
Let d : F → d(F ), be a map such that

F ⊆ G→ d(F ) ⊆ d(G) ; d(F ) ⊆ F ; F,G ∈ F .

Then, if ES,F is a quasi–conditional expectation with respect to the triple
Ad(F ) ⊆ AF ⊆ AG, the inclusion (11) takes the form:

ES,F (Ad(F )c) ⊆ Ad(F )c ∩ AF (12)

in particular, if d(F ) =
◦
F = interior of F , and the family {AF} satisfies3

AF ∩ AG = AF∩G (13)

the Markov property for ES,F is expressed by:

ES,F (A
(
◦
F )c

) ⊆ A∂F (14)

In section (5.) we prove that the strengthening (12) (or (13)) of the Markov
property is sufficient, through a non–commutative analogue of (3), to supply
a class of states of rather simple structure and strictly larger than the class
of product states.
In the following section an elementary and meaningful example will be dis-
cussed in some detail in order to show that, in case of matrix algebras, even
if a conditional expectation compatible with a state exists only in case of a
product state, a quasi–conditional expectation compatible with a given state
always exists.

4 The conditional expectation as “transfer

operator”

Let (S,B) be a measurable space, µ0–a measure on (S,B). Then the equality

µ(f) = µ0(E(f)) ; f ∈ L∞(S × S,B × B) (15)

3The local algebras of quantum lattice systems, in particular, the local algebras which
will be considered in section (5.), satisfy (13).

6



establishes a one–to–one correspondence between conditional expectations4

E : L∞(S × S,B × B)→ L∞(S × S, π−1
1 (B)) ≈ L∞(S,B) (16)

and measures µ on S × S, whose restriction to π−1
1 (B) is equal to µ0. This

correspondence reduces the study of all measures on S×S whose restriction
to π−1

1 (B) equals µ0 to the study of the transfer operators

ν ∈ S(B) 7→ ν ◦ E ∈ S(B × B)5

In the non commutative case the above correspondence does not subsist as
one can see from the following, simple, example: let M be a matrix algebra,
ϕ a state on M ⊗M , ϕ0–the restriction of ϕ on M ⊗ 1; then a conditional
expectation E : M ⊗M →M ⊗ 1 satisfying

ϕ(x) = ϕ0(E(x)) ; ∀x ∈M ⊗M (17)

exists if and only if ϕ is a product state, i.e. ϕ = ϕ0 ⊗ ϕ1, for some ϕ1 ∈
S(M)6 and in this one has only the one to one correspondence: conditional
expectations M ⊗ M → M ⊗ 1 → product states on M ⊗ M . Thus one
is led to the following problem: is it possible to define a class of operators
E : M ⊗M → M ⊗ 1 such that when, in equality (17), E runs over this
class the linear functional ϕ scans exactly the set of states on M ⊗M whose
restrictions to M ⊗ 1 coincides with ϕ0?
In our example assuming the state ϕ faithful, such a class always exists and
it is given by all the operators E of the following type:

E(x) = τ 2(K∗xK) ; λ ∈M ⊗M (18)

where τ 2 is the unique linear map M ⊗M →M , with the property

τ 2(a⊗ b) = a · τ(b) , a, b ∈M (19)

(τ is the trace on M) and, if W0 is the density matrix of ϕ0, then K =
W 1/2(W0 ⊗ 1)−1/2 where W is any density matrix such that τ 2(W ) = W0.
Therefore we are led to the following:

4π1 (resp. π2) denotes the natural projection S × S → S onto the first (resp. second)
factor.

5S(B) denotes the set of all probability measures on (S,B).
6S(M) is the set of states on M .
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Definition 4 An operator K ∈ M ⊗M will be called a (square root of a)
conditional density of the state ϕ with respect to the state ϕ0, if

ϕ(x) = ϕ0(E(x))/ϕ0(E(1)) ; ϕ0(E(1)) > 0 (20)

where E is given by (18).

The conditional density K is called “normalized” if

E(1) = 1 (21)

Every conditional expectation gives rise to a normalized conditional density
of the type K = 1⊗H.
Assume now that ϕ is a state on M⊗M whose density matrix W is diagonal
in a system (eij ⊗ fαβ) of matrix units for M ⊗M ; i.e. in such a coordinate
system W = (Pii,jj ·δik ·δjl). Then W0 has coordinates (qii ·δik) in the system
(eij) of matrix units for M , where qii =

∑
j pii,jj.

Therefore, if K is defined as described after (19) one finds K∗ = (W0 ⊗
1)−1/2W 1/2 = (

√
pii,jj/qii · δik · δjl), and, if x = (x(i, j) · δik · δjl) is a diagonal

matrix, then E(x) = (yii · δij): yii =
∑

j x(i, j)pii,jj/qii. That is, if W is
diagonal then, for every diagonal matrix x, E(x) coincides with the classical
conditional expectation of x, even when the corresponding non–commutative
expectation does not exist.
The conditional density K will be called compatible with the state ϕ0 on M ,
if the restriction of the state ϕ, defined by (20) on M ⊗ 1, coincides with ϕ0.
This is the case if and only if

W0 = τ 2(K · (W ⊗ 1) ·K∗) (22)

and, if (22) holds then another conditional density H, compatible with ϕ0,
defines through (20) the same state ϕ as K if and only if

H · (W0 ⊗ 1) ·H∗ = K · (W0 ⊗ 1) ·K∗ (23)

Thus, in general, equality (20) does not determine the conditional density in
a unique way.
The fact that (20) defines a state on M ⊗M even if E is not compatible
with ϕ0, lies at the root of the distinction which will be done, in the non–
commutative case, between Markov states and Markov chains (see section
(5.)). A conditional density is compatible with every state ϕ0 if and only if
the map E defined by (15) is a conditional expectation.
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5 One dimensional Markov states

Let M be q × q matrix algebra on C, denote A =
⊗

NM the tensor product
of N copies of A, jk : M → jk(M) ⊂ A–the natural immersion of M onto
the “k–th factor” of the product

⊗
NM , and M[m,n] the sub–algebra of A

spanned by
⋃n
k=m jk(M). For a quasi–conditional expectation En+1,n with

respect to the triple M[0,n−1] ⊂ M[0,n] ⊆ M[0,n+1], the Markov property is
expressed as;

En+1,n(M[n,n+1]) ⊆M (24)

Let ϕ be a state on A; denote ϕ[0,n] the restriction of ϕ on M[0,n]; it is well
known (see [9]) that ϕ is uniquely determined by the family (ϕ[0,n])n∈N.

Definition 5 A state ϕ on A will be called a Markov state with respect to the
family (M[0,n]), of subalgebras of A, if there exists a family (E[0,n],[0,m]m<n of
quasi–conditional expectations with respect to the triples M[0,m−1] ⊆M[0,m] ⊆
M[0,n] such that

ϕ[0,n] = ϕ[0,m] ◦ E[0,m],[0,m] (25)

Theorem 2 Let ϕ be a Markov state on A. Then ϕ defines a pair {(σn);ϕ0

such that
[i)] ϕ0 is a state on M [ii)] ∀n ∈ N; σn : M → L(M) is a linear mapping

such that the operator a⊗ b ∈M⊗ 7→ σn(a)[b], is qn–positive with norm ≤ 1
[iii)] For every n ∈ N, ai ∈M , 0 ≤ i ≤ n, the equality:

ϕ[0,n](j0(a0) · . . . · jn(an)) = (σn−1(an−1)∗ · . . . · σi(a0)∗ϕ0)(an−1) (26)

(σk(ak)
∗ : M∗ → M∗, denotes the adjoint of σk(ak)), completely defines the

projective family (ϕ[0,n]).

Conversely, every such a pair defines a unique Markov state on A.
The proof of Theorem (2) is purely algebraic. The main point is the positiv-
ity of the linear functional defined by (26), and this is an almost immediate
consequence of positivity properties of the operators σk.
The operators σk are connected with the quasi–conditional expectations
Ek+1,k = E[0,k+1,[0,k], by the equalities:

Ek+1,k(jk(ak)jk+1(ak+1)) = jk(σk(ak)[ak+1]) (27)

Ek+1,k(j0(a0)·. . .·jk(ak)) = j0(a0)·. . .·jk(ak)·Ek+1,k(jk(ak)·Ek+1,k(jk(ak)·jk+1(ak+1))
(28)
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and the state ϕ defined by the family (ϕ[0,n]) will be such that

ϕ(j0(a0)·. . .·jn(an)) = ϕ0(E1,0(j0(a0)·E2,1(. . .·E2,1(. . .·En,n+1(jn−1(an−1)jn(an)

that is:
ϕ[0,n] = ϕ0 · E1,0 · . . . · En,n−1 (29)

Moreover, the projectivity condition (iii) insures that the quasi–conditional
expectation Ek,k+1 is compatible with ϕ[0,k], in the sense that

ϕ[0,k] = ϕ[0,k] ◦ Ek,k−1|M[0,k]
(30)

Condition (30) shows that, starting from an arbitrary pair {ϕ0, (Jn)} satisfy-
ing i), ii) of Theorem (2) the family of positive linear functionals defined by
(26) in general is not projective. However a little analysis of the projectivity
condition (26) shows that:

Lemma 1 Let {ϕ0, (σn)} be a pair satisfying i) and ii) of Theorem (2).
Assume that there is a sequence (bn) of positive operators in M such that
ϕ0(b0) > 0 and:

σn(1)[bn+1] = bn (31)

Then the equality:

ϕ[0,n](J0(a0) · . . . · Jn(an)) =
1

ϕ0(b0)
· (σn(an)∗ · . . . · σ0(a0)∗ϕ0)(bn+1) (32)

defines a projective family of states (ϕ[0,n]).

Definition 6 A Markov chain on A :=
⊗

N M is a triple {ϕ0, (σn), (bn)}
which satisfies the conditions of Lemma (1). The state ϕ on A, uniquely
determined by such a triple by means of formula (32) will also be called a
Markov chain.

Remark. The most frequent Markov chains are those for which either of the
following conditions is satisfied.

bn = 1 , ∀n ∈ N (33)

bn = b > 0 ; ∀n ∈ N (34)

the former corresponds to normalized quasi–conditional expectations. Later
on we shall give examples of Markov chains corresponding to both situations,
see sections 7)–8). The connection between quasi–conditional expectations
of Markov states and conditional densities (see section 4) is given by the
following:

10



Lemma 2 Let ϕ = {ϕ0, (jn)} be a Markov state. Assume that, for every
n ∈ N there is a Kn ∈M ⊗M , ‖kn‖ ≤ 1 such that:

σn(a)[b] = τ 2(K∗n(a⊗ b)Kn) (35)

Then, denoting W[0,n] the density matrix of ϕ[0,n] and

K[0,n] = 1⊗ . . .⊗ 1︸ ︷︷ ︸
n−1

⊗Kn ∈M[n−1,n] (36)

the family (K[0,n]) is an agreeing family of conditional densities compatible
with ϕ0. Conversely every such a family defines, through (35), a unique
Markov state.

The Lemma above characterizes Markov states as those states ϕ ≡ (ϕ[0,n])
such that for each n there exists a conditional density K[0,n] of ϕ[0,n], com-
patible with ϕ[0,n−1] and such that K[0,n] ∈M[n−1,n]. In particular every state
such that

W
1/2
[0,n] · (W[0,n−1] ⊗ 1)−1/2 ∈M[n−1,n]

is a Markov state.

6 The transfer matrix

Let ϕ ≡ {ϕ0, (σn)} be a Markov chain on A =
⊗

NM , where M is a q × q
complex matrix algebra. Assume the σn–normalized, that is:

σn(1)[1] = 1 (37)

and let ψ be the state on A defined, according to Lemma (5.3), by

ψ[0,n](j0(a0) · . . . · jn(an)) = (σn(an)∗ · . . . · σ0(a0)∗ϕ0)(1) (38)

Define, for every n, the operator Zn : M →M , by

Zn(a) = σn(1)[a] (39)

Lemma 3 For every n, Zn is a qn–positive linear map of M into itself such
that Zn(1) = 1. If (eij), (fij), (fαβ) are systems of matrix units for M and

11



(ξ
(n)
ij,αβ) are the coefficients of Zn, considered as a linear map from (M, (fαβ))

(M, (eij)), then

ξ
(n)
ij,αβ = ξ(n)

ji,βα (40)∑
α

ξ
(n)
ij,ii = δij (41)∑

ij,αβ

ξ
(n)
ij,αβaibαajbβ ≥ 0 ; ∀ (a1, . . . , aj), (b1, . . . , by) ∈ Cq (42)

Conversely every family (ξ
(n)
ij,αβ) satisfying (40), (41), (42), defines a positive

linear map S : M →M , such that S(1) = 1.

In the commutative case a stochastic matrix P is defined as one which maps
positive vectors into positive and such that P1 = 1. Therefore the matrices
Zn defined above are the natural non commutative analogous of the stochastic
matrices. Moreover, if ψ is a Markov state, then

ψn+1 = ψn ◦ Zn = Z∗nψn (43)

which is the analogue of the well known “evolution equation” wn+1 = P ∗nwn,
for the one–dimensional densities of a Markov measure.
However we stress here two main differences between commutative and non
commutative Markov chains:
1) In the commutative case, a Markov chains is completely determined by the
initial distribution w0 and the sequence (Pn) of transfer matrices. In the non
commutative case this is not true because one needs to know the sequence
(σn).
2) Equation (43) in the non commutative case holds only if ψ is a Markov
state. If ψ is only a Markov chain (see Def. (6)) one can only assert that:

ψn+1 = ϕn · Zn

ψn(a) = ψn(σn(a)[1])

On the algebra A the shift operator is the algebra–endomorphism T defined
by the property T ◦ jk = jk+1, k ≥ 0. A state ϕ on A is called stationary if
ϕ · T = ϕ.

Lemma 4 A Markov state ϕ is stationary if and only if it is determined by
a pair {ϕ0, σ}; i.e. σn = σ, for each n, and

Z∗ϕ0 = ϕ0 ; Z = σ(1) (44)

12



In the commutative case the eigenvalues of the transfer matrix determine the
ergodic behaviour of a stationary Markov chain. The same is true in the non
commutative case.

Theorem 3 Let ϕ = {ϕ0, σ} be a stationary Markov chain with transfer
matrix σ(1) = Z. Then if 1 is the only unitary eigenvalue of Z and simple,
ϕ is a factor state. Conversely, if ϕ is a factor state, then

lim
k→∞

Zk = 1⊗ ϕ0 ; ((1⊗ ϕ0)(a) = 1 · ϕ0(a)) (45)

the lmit in the left hand side of (45) being assumed in a certain topology on
(M) which depends only on ϕ0 and σ.

Define inductively S0 = σ(M)[1]; Sn+1 = σ(M)[Sn]; T0 = σ(M)∗[ψ0]; Tn+1 =
σ(M)∗[Tn].
Put S =

⋃
n Sn; T =

⋃
n Tn. Then the limit (45) must be understood in the

sense that:

lim
k→∞

χ(Zk(a)) = χ(1) · ϕ0(a) ; ∀χ ∈ T ; ∀ a ∈ S

7 Examples of Markov chains

In this section we show that every classical Markov chain admits infinitely
many non commutative extensions.
Consider the family of linear functionals on

⊗
NM = A defined by:

ψ[0,n](j0(a0) · . . . · jn(an)) = (σn(an)∗ · . . . · σ0(a0)∗ϕ0)(1) (46)

σn(a)[b] = τ 2(K∗n(a⊗ b)Kn) (47)

Kn =
∑
i

eii ⊗Wi(n)1/2 (48)

where (eij) is a system of matrix units for M and, for every i and n, Wi(n)
is a density matrix. One has:

σn(a)[b] =
∑
ij

eiiaejj · τ(Wi(n)1/2 · b ·Wj(n)1/2) (49)

13



in particular

Zn(b) = σn(1)[b] =
∑
i

eii · τ(Wi(n)1/2bWi(n)1/2) (50)

Zn(1) = 1 (51)

Since the right hand side of (7) defines a completely positive linear map,
the pair {ϕ0, (σn)} defines a Markov chain. Now assume that the Wi(n) are
diagonal

[Wi(n)]jj = P
(n)
ij (52)

then clearly, (P
(n)
ij ) is a stochastic matrix for every n and the conditional

density Kn is completely determined by the stochastic matrix Pn = (P
(n)
ij ).

Assume that ϕ0 too has a diagonal density matrix W0 = (δijwi). Then, if

ak =
∑
ij

a
(k)
ij · eij ; 0 ≤ k ≤ n

one finds

ψ[0,n](j0(a0)·. . .·jn(an)) =
∑
i0,...,in

a
(0)
i0i0
·a(1)
i1i1
·. . .·a(n)

inin
·wi0 ·P

(1)
i0i1
·. . .·P (n)

in−1in
(53)

In case of diagonal matrices ak, the right hand side of equality (53) is nothing
but the expectation value of the function a0 ⊗ . . . ⊗ an, with respect to the
Markov chain {w0, (pn)}. Summing up:

Proposition 1 Given a Markov chain µ ≡ {w0, (Pn)} there exists a non
commutative Markov chain ψ ≡ {ψ0, (σn)} on A =

⊗
NM , such that its

restriction to any preassigned algebra B =
⊗

ND of diagonal matrices coin-
cides with µ. If µ is a stationary chain, the same holds for ϕ. If µ = {w0, P}
and P > 0, then ϕ is a factor state.

8 One–dimensional nearest neighbour Ising

model

In this section we prove that some (very simple) Gibbs states are Markov
chains. For a one–dimensional quantum lattice system one A =

⊗
NM ,
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given the finite volume hamiltonians H[0,n] ∈ M[0,n], the Gibbs state at the
finite volume [0, n] is defined by

ϕ[0,n](Q[0,n]) = τ[0,n](e
−2H[0,n] ·Q[0−k])/τ[0,n](e

−2H[0,n]) (54)

Denoting, as above, T the shift endomorphism in
⊗

NM , and jn the natural
immersion of M into the “n–th factor” of

⊗
NM , we shall consider hamilto-

nians of the following type:

H[0,n] =
n−1∑
i=0

T ′(Φ[0,1]) (55)

were φ[0,1] is such that:

Φ[0,1] = (j0 ⊗ j1)(Φ) ; Φ = Φ∗ ∈M ⊗M (56)

[Φ[0,1] , TΦ[0,1]] = 0 (57)

where [·, ·] denotes the commutator.
These hypotheses are verified in the Ising model with nearest neighbour in-
teraction (for which Φ = h⊗ h; h = h∗ ∈M).
Applying to such states Araki’s non–commutative modification of the trans-
fer matrix method, one finds, using (57), the following expression for ϕ[0,n]

ϕ[0,n] (j0(a0) · . . . · jk(ak)) = ; (k ≤ n)

= τ(L(a0 ⊗ L(a1 ⊗ . . .L(ak ⊗ Sn−k(1)) . . .)/τ(Sn(1)) (58)

where we have used the notations (see (19)):

L(x) = τ 2(e−Φ · x · e−Φ) ; x ∈M ⊗M (59)

S(a) = L(1⊗ a) ; a ∈M (60)

Using a slight modification of a theorem of L. Gross (see [5]) one deduces
the existence of a real λ > 0, ab ∈M , b > 0, and a (faithful) state ϕ0 on M ,
such that

S(b) = λb ; S∗ϕ0 = λϕ0 (61)

and:
lim
k→∞
‖λ−kSk − b⊗ ϕ0‖ = 0 ; ((b⊗ ϕ0)(a) := b · ϕ0(a))
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lim
n→∞

ψ[0,n](j0(a0) · . . . · jk(ak)) = τ

(
L
λ

(
a0 ⊗ . . .⊗

L
λ

(ak ⊗ b) . . .
))

/τ(b)

(62)
Defining ψ0 = τ/τ(b); σ(a)[c] = L

λ
(a ⊗ c) the triple {ψ0, σ, b} enjoys the

properties listed in Lemma (5.3), and therefore the formula

ψ[0k](j0(a0) · . . . · jk(ak)) = (σk(ak)
∗ · . . . · σ0(a0)∗ψ0)(b) (63)

defines a non commutative Markov chain on
⊗

NM .
Summing up: the infinite volume limit of the Gibbs states (54) with Hamil-
tonian satisfying (55), (56), (57), is a non commutative Markov chain, whose
explicit expression is given by (63), where B and are uniquely determined by
(61).

9 Approximation of Gibbs states with Markov

chains

For one–dimensional quantum lattice systems with finite potentials, the infi-
nite volume Gibbs state always exists, as proven in [2]. In the commutative
case every Gibbs state is limit in nor Markov chains. In the non–commutative
case the situation is essentially the same, at least in the one–dimensinal case.

Definition 7 Let d be a natural integer ≥ 0. An inverse d–Markov chain
on the algebra A =

⊗
NM , is a triple {ϕ[0,d], σ, ρ} such that

[i)] ϕ[0,d] is a state on M[0,d], [ii)] σ : M → L(M[0,d]) is a linear map such
that the operator

a⊗ a[0,d] ∈M ⊗M[0,d] → σ(a)[a[0,d]] ∈M[0,d]

is a completely positive linear contraction [iii)] ρ : M[0,d] → M[0,d] is a com-
pletely positive linear map such

ϕ[0,d](ρ(1)) > 0

[iv)] σ(1)∗ϕ[0,d] = ϕ[0,d]

Proposition 2 An inverse d–Markov chain on A =
⊗

NM uniquely deter-
mines a state ψ = (ψ[0,n]) on A by means of the equalities:

ψ[0,n] (J0(a0) · . . . · Jn(an)) =

=
1

ϕ[0,d](ρ(1))
(σ(ad+1)∗ · . . . · σ(an)∗ϕ[0,d])(ρ[J0(a0) · . . . · Jd(ad)])(64)
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Putting, in (64), d = 0, and comparing the result thus obtained with (32),
it is clear in which sense (64) defines an “inverse” Markov chain. A detailed
analysis of the appearence of inverse Markov chains requires the conept of
non–commutative conditional Gibbs distribution and will be done in an-
other paper. Roughly speaking, the situation is the following: in classical
probability theory, the parameter t ∈ N is interpreted as “time” and the con-
ditioning goes from the past (inside), to the future (outside) therefore the
family of local algebras on which one takes the conditioning is (M[0,n]) i.e.
the one considered in Definition (6). In statistical mechanics, the parameter
t ∈ N is interpreted as a “position”, and the conditioning takes place from
the outside to the inside; therefore the appropriate family of local algebras is
(M[n,+∞[). But, for each n, there is a natural isomorphism T

(n)
c : M[n,+∞[ → A

which allows to consider the quasi–conditinal expectations not as mappings
E : A → M[n,+∞[, but as maps T

(n)
c E : A → A. By means of these con-

siderations one can give a definition of an “inverse Markov state”, similar
to Def. (5.1), and prove (see [1]), Theorem (4.)) that the structure of an
inverse d–Markov state is given by (64) with ρ–the identity operator and
ϕ[0,d] = ψ[0,d].

Theorem 4 Every one–dimensional Gibbs state in the sense of Araki [2] is
limit, in norm, of inverse (d)–Markov states for d→∞.

10 Markov chains: continuous time

Let (Mt)t∈R+ a family of type I factors (Mt is a factor of type Iqt with
qt ∈ N or q = +∞), let A =

⊗
R+
M , Jt : Mt → A, the natural immersion,

and for I ⊆ R

MI =
∨
t∈I

jt(M) = sub-algebra of A spanned by the jt(M), t ∈ I (65)

A state ϕ on A will be called a Markov state with respect to the family
(M[0,t]) if there exists a family (Et,s)s<t of quasiconditional expectations with
respect to the triples M[0,s[ ⊆M[0,s] ⊆M[0,t], such that

ϕ[0,t](a[0,t]) = ϕ[0,s](Et,s(a[0,t])) ; ∀ a[0,t] ∈M[0,t] (66)

in such cases the Markov property is expressed by:

Et,s(M[s,t]) ⊆M s = js(Ms) (67)

17



Theorem 5 Every Markov state ϕ on A defines a pair {ϕ0, (σ
t
s)} such that

[i)] ϕ0 is a state on M [ii)] for every s < t, σts : M s → L(M t,M s) is a
linear map such that the map
at ·as ∈Ms∨Mt → σts(as)[at] extends to a completely positive linear contrac-
tion from M s ∨M t to M s [iii)] The linear extensions of the maps

ϕ{t0,...,tn}(a0 · . . . · atn) = (σtntn−1
(atn−1)

∗ · . . . · σt00 (a0)∗ϕ0)(atn) (68)

completely define the projective family of states {ϕt0,...,tn}t0<...<tn. Con-
versely, each such a pair uniquely defines a Markov state on A.

Also in the continuous case we distinguish between Markov states and Markov
chains. A Markov chain on A is a triple {ϕ0, (σ

t
s), (bs)}, where ϕ0 and (σts)

satisfy respectively i) and ii) in Theorem (10.1), and (bs) is a family of oper-
ators such that

bs ∈M s ; bs > 0 ; σsr(1)[bs] = br ; r < s ; ϕ0 (b0) > 0 (69)

σtr(ar) = σsr(ar) · σts(1) ; r < s < t (70)

Under the conditions above the family

ψ[t0,...,tn](a0 · . . . · atn)− (σttn(atn)∗ · . . . · σt00 (a0)∗ϕ0)(bt)/ϕ0(b0) (71)

0 < t0 < . . . < tn, is a projective family of states on A =
⊗

t∈R+
Mt and

therefore defines a unique state ψ on A.
Let now all Mt be isomorphic to a single type I factor M . Then R+ has
a natural action T by endomorphisms on A, determined by the property
Ts ◦ Jt = Js+t. A state on A, is called stationary if it is invariant under this
action. For a stationary Markov chain one has:

σts = σt−s ; bt = b ; s < t , s, t ∈ R+ (72)

Stationary Markov chains with continuous time posses very strong ergodic
properties.

Theorem 6 Let ψ ≡ {ψ0, (σs), b} be a stationary Markov chain on A =⊗
R+
M where M is a type Iq–factor (q < ∞). Then if for each s, Z(s) is

self–adjoint (as an operator from L2(M, τ) into itself) and the eigenvalue 1
is simple, then ψ is a factor state.
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11 Kolmogorov and Schrödinger equations

Let us consider a Markov chain ψ ≡ {ϕ0, (σ
t
s), 1}, i.e. a Markov chain with

normalized quasi–conditional expectations. Define, for s ∈ R+

ϕs = Z(0, s)∗ϕ0 (73)

where σts(1) = Z(s, t). Then

ϕt = Z(s, t)∗ϕs ; s < t (74)

Z(r, t) = Z(r, s) · Z(s, t) ; r < s < t (75)

equations (74), (75) are the non commutative analogue respectively of the
evolution equation and the Chapman–Kolmogorov equation for a classical
Markov chain. The well known isomorphism between the predual M∗ of M
and the trace class operators TC on H, (see [9], pg. 39) induces an action of
Z(s, t) on T (H) which will be denoted v ∈ T (H)→ V · Z(s, t) ∈ T (H).
Let us assume that the following limits, both in the weak topology for the
duality 〈M∗,M〉, exist (J being a projection operator in (M)):

lim
ε→0+

Z(t, t+ ε) = J (76)

lim
ε→0+

1

ε
(Z(t, t+ ε)− J) = S(t) (77)

Under these assumptions one easily verifies that the density matrix Wt of ϕt
satisfies the equation (the derivative in the left–hand side is a weak derivative
for the duality above).

d

dt
Wt = Wt · S(t) (78)

in the sense that the left hand side exists and the quality holds.
Equation (78) is the non–commutative forward Kolmogorov equation.
Remark that, as V 7→ V ·Z(s, t) maps density matrices into density matrices,
V 7→ V · S(t) maps hermitian operators (in T (H)) into hermitians with null
trace.
More precisely we have that Z(s, t) is the “Green function” of eq. (78) thus,
since V 7→ V · Z(s, t) maps density matrices into density matrices, then if
the initial data of (78) is a density matrix, the whole trajectory lies in the
convex set M(H) of the density matrices on H.
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Conversely, if the equation (78) has the property above, then its Green func-
tion maps density matrices into density matrices.
Every operator S(t) with the property that the Green function of (78) maps
M(H) into itself will be called a “Kolmogorov operator” (see Doob [4]). In
particular, if H(t) is a hermitian operator on H, then the operator

V 7→ V · S(t) = i[V,H(t)] = i(V ·H(t)−H(t) · V ) (79)

is a Kolmogorov operator. Thus

d

dt
Wt = i[Wt, H(t)] (80)

is a particular case of (78). We thus conclude that the Schrödinger equation
(80) can be considered as a particular case of the non commutative forward
Kolmogorov equation.
However, we again remark that, while in the classical case the Kolmogorov
equation (and the initial distribution) completely determine the Markov mea-
sure, in the non commutative case, the initial state ϕ0 and the transfer ma-
trices (Z(s, t)) are not sufficient, in general to determine the Markov chain
{ϕ0, (σ

t
s); 1} not even in the stationary case.

However, let us consider the case when Z(s, t) = Z(t− s), and the non com-
mutative forward Kolmogorov equation is given by (80). In such a case the
operator S(t) and, therefore, H(t) does not depend on t, and the Green func-
tion of equation (80) is a semigroup of inner automorphisms which clearly
mapsM(H) into itself. In this case the transfer semigroup (Z(t)) completely
determines the state, once given the density matrix at time t = 0, due to the
following:

Proposition 3 Let ψ be a Markov chain with transfer matrices (Z(s, t)).
Then Z(s, t) is invertible for every s and t if and only if ψ factor into

ψ =
⊗
t∈R+

ϕt ; ϕt = Z(s, t)∗ϕs

In particular, the hypothesis of Proposition (11.1) is satisfied when Z(s, t) =
Z(t− s) and, for s→ 0, Z(s) tends to the identity matrix.
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