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Lecture 1.

Some questions in algebraic geometry: 8/29/18

Office hours are Fridays from 11-1, in room 9.164 (at least for now). Today we’ll talk about some questions
(and some answers, too!) relating to algebraic geometry and why one might find it interesting. We’re going
to focus on concreteness.

Broadly speaking, algebraic geometry studies zero sets of polynomials. These could be polynomials over
Q, or R, or C, or finite fields, or more. The first question you might ask is, are there solutions? This is an
arithmetic question: in arithmetic situations, there might not be solutions.

Example 1.1 (Taylor-Wiles, 1994). If n ≥ 3, the polynomial xn + yn = 1 has no solutions over Q when
x, y 6= 0. (

You might recognize this as a reformulation of Fermat’s last theorem.
Another form of the same question is can you parameterize solutions of the equation? For example, let’s

try it with x2 + y2 = 1, which we know has solutions. In this case, it is possible to parameterize solutions,
via the one-parameter family

(1.2) x = λ2 − 1
λ2 + 1 , y = 2λ

λ2 + 1 .

These kinds of questions are called rationality questions. One can also ask these questions over C (or over
other algebraically closed fields), where they can feel a bit different.

There is a general result that any quadratic hypersurface with a rational point is rational. What this
means is that if you assume the existence of one solution (x0, y0) to a degree-2 polynomial in x and y over,
say, Q, then you can use that one solution to parameterize all other solutions. If you plot the solutions in
the xy-plane, the parameter of another solution (x1, y1) is the slope of the line between (x0, y0) and (x1, y1).
Indeed, in (1.2), the parameter λ is this slope. Because the equation is a quadric, one expects such a line to
intersect in exactly two points, the first solution and another one. This is all extremely explicit, to the point
that you could explain why you care to a middle schooler.

There are a few other rationality results.

Theorem 1.3 (Segre, 1940s; Manin, 1970s; Kollár, 2000). Smooth cubics in at least three variables are
rational.

So x3 + y3 = 1 isn’t rational, but x3 + y3 + z3 = 1 is. However, this doesn’t give you everything.

Theorem 1.4 (Clemens-Griffiths, 1974). There are cubics in at least four variables which are unirational
but not rational, i.e. that one cannot parameterize all solutions in a one-to-one manner.

This was a hard theorem. How would you prove something like this?
Recent work (2012-15) by many people (Voisin, Colliot-Thèlene, Pirutka, Totaro1) generalizes this.

Theorem 1.5. For cubics in at least five variables, one can also not parameterize solutions in a one-to-one
way, even by adding additional “dummy variables.”

For four-variables cubics, this is open.

1If you like pictures of cats, check out Totaro’s math blog: https://burttotaro.wordpress.com/.

https://burttotaro.wordpress.com/
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Schemes. Though this result is stated completely explicitly, it was studied using some very abstract-looking
machinery. In this course, we’ll also work with this abstract machinery, namely the language of schemes.
These are things like solutions to systems of polynomials, but not quite — they encode among other things
the equivalence of such systems under changes of coordinates, which doesn’t really change the underlying
geometry of the solution set. Classification problems with this perspective are a big area of research, and
Birkar just won a Fields medal for work in this area from 2006.

Algebraic geometry over C. A third thing you could care about is specific stuff about algebraic geometry
over your favorite field (typically C, but not always). In many cases (such as C), you have topology around,
and you can ask how it interacts with the algebraic geometry we’ve been talking about.

For example, if q ∈ C× isn’t a root of unity, then there’s a cubic equation y2 = x2 + ax + b whose
solutions are parameterized by C×/qZ. This may be a bit surprising, and indicates a way in which analytic or
topological information can be useful: now we can learn about the universal cover of the solution space, and
other topological invariants. Then you might ask whether something like this is true in positive characteristic,
which tends to be harder.

More generally, one can study the topology of algebraic varieties over C.

Theorem 1.6. The odd Betti numbers of smooth proper varieties are even.

The proof uses the study of the Hodge Laplacian operator on a variety X. This needs a metric, but
projective means that X embeds in some CPn, and we can borrow its metric. There is a purely algebro-
geometric proof of this, but first you need to come up with the right notion of Betti numbers (so étale
cohomology, which is hard), and then invoke Deligne’s proof of the Weil conjectures (also hard). Nonetheless,
it’s true in characteristic p.

More generally, the cohomology of a complex projective variety has more structure, and is much richer
than that of a random manifold.2

Conjecture 1.7 (Hodge conjecture, imprecise statement). The differential topology of a projective algebraic
variety over C knows everything about its algebraic geometry.

This is a Millennium Prize problem, meaning it comes with a $1 million reward. You can infer that it’s
hard.

Algebraic geometry over Z. If you work over Z instead of over C, meaning your polynomial has integer
coefficients, then you can reduce mod p and solve it there. This is the first thing anyone does in number
theory, because it often simplifies the problem to a finite question. This naturally leads one to ask, how do
the systems of equations at different primes p relate to each other?

There’s a lot to say about this, beginning with quadratic reciprocity, which is very classical yet a little
weird, and continuing all the way to the Langlands program.

Supposing X encodes the system of solutions to your polynomial with Z coefficients. Then one can define
a zeta function, reminiscent of the Riemann zeta function, as follows:

(1.8) ζX(s) :=
∏

p prime
exp
(∑ 1

n
(number of solutions in Fpn)p−ns

)
.

For X = SpecZ, corresponding to solutions to an empty set of polynomials, this recovers the usual Riemann
zeta function.

For any particular X, one conjectures this is meromorphic (and almost entire, in some sense), and that
the analogue of the Riemann hypothesis holds; for some X, this is known due to Deligne. There are some
other related conjectures related to this known as Sato-Tate conjectures.

Cohomology theories. Over C, you have topology, and therefore can invoke algebraic topology to compute
cohomology of algebraic varieties. Over other fields or rings, you might not have these techniques, and there
are several other approaches.

• Over an algebraically closed field, one has étale cohomology, whose ideas are built from covering space
theory, has Z` coefficients, where ` is a prime that’s not the characteristic of the field.

2This doesn’t require smoothness per se, but it’s more difficult to formulate in the singular case.
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• Over any field k, there’s de Rham cohomology, which uses the idea that dz/z understands C× isn’t
simply connected (since

∮
dz/z 6= 0). This has coefficients in k.

There are others, too. One wants these to all be the same, or at least closely related; if k = Qp and ` = p
(Qp has characteristic zero!), then these two are related by p-adic Hodge theory. This is related to deep
and recent work by Fontaine, Scholze, and others, and relates to Scholze’s Fields medal work. In 2016,
Bhatt-Morrow-Scholze showed that one can sometimes interpolate between different cohomology theories.
See Scholze’s ICM address for more on this. The ultimate question in this corner of algebraic geometry is
whether there’s some universal cohomology theory interpolating between everything we have, and which is
also the source of the ζ-functions mentioned above.

Degenerations. We get additional power by studying solutions in families. For example, we can degenerate
x2 + y2 = 1 to x2 + y2 = 0, which is much simpler. One asks questions such as, what invariants are preserved
under degenerations? Therefore one might be able to use a degeneration to reduce a harder problem to an
easier problem.

Computations. This subfield of algebraic geometry tries to make these abstract invariants concrete, by
writing good algorithms to compute these invariants for explicit systems of polynomials.

Geometric complexity theory. This is another way to relate algebraic geometry and computer science.
The goal of this field is to approach another Millennium Prize problem, P vs. NP, using algebraic geometry
techniques. This roughly involves studying certain varieties and analyzing whether they’re as complicated as
they seem. Algebraic geometry has lots of techniques which might help, but on the other hand they haven’t
yet.

Probably the best way to learn algebraic geometry is to have an application or research focus in mind that
you can apply the things you learn to. This method of learning tends to produce algebraic geometers.

Lecture 2.

Defining schemes, I: 8/31/18

The goal of today’s lecture is to define a scheme, first heuristically and then rigorously.

“Definition” 2.1. A scheme is a “space” that is a Zariski sheaf which admits an “open cover” by affine
schemes.

Of course, in order to do this, we need to know what all of these words — spaces, Zariski sheaves, affine
schemes, and open covers — mean in this setting.

Remark 2.2. There’s another approach to schemes using the formalism of locally ringed spaces, which is
followed by Hartshorne, Vakil, and many others. It’s more concrete, but it makes it harder to think about
what a specific scheme, such as projective space, is supposed to be. (

The motivation for ‘‘Definition” 2.1 is that a scheme should be something which is locally defined by
algebraic equations. For example, let’s look at the Fermat equation Xn = {xn + yn = zn}. Fermat was
interested in solutions in Z, but the set of solutions makes sense in any commutative ring. This suggests our
definition of space, which is not the same as a topological space.

Definition 2.3. A space is a functor X : CommRing → Set.

Concretely, this means that for every ring A, we get a set X(A), and for every map of commutative rings
f : A→ B, we get a map of sets X(f) : X(A)→ X(B), and these morphisms should compose well (meaning
that X(f ◦ g) = X(f) ◦X(g) and X(id) = id). For example, we could let Xn(A) denote the set of solutions
to the Fermat equation in the ring A; then, if we’ve solved it in A, we can map the solution into B via
f : A→ B, and we’ll obtain a solution in B, so this defines a space Xn.

We should also say how spaces interact.
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Definition 2.4. A morphism of spaces f : X → Y is data of, for all commutative rings A, a map fA : X(A)→
Y (A) such that for all ring homomorphisms g : A→ B, the diagram

X(A) fA //

X(g)
��

Y (A)

Y (g)
��

X(B) fB // Y (B)
commutes.

Schemes are special examples of spaces, in a way that feels surprisingly down-to-Earth.
Our first example of a space is the solutions to the Fermat equation in A, as discussed above. Here’s

another example.

Example 2.5. Let A be a commutative ring. We’ll define the space SpecA to be the functor (SpecA)(B) =
Hom(A,B); given a ring homomorphism ϕ : B → C, we use the map Hom(A,B) → Hom(A,C) given by
postcomposition with ϕ. (

Definition 2.6. An affine scheme is a space of the form SpecA for some A.

You don’t have to be a commutative algebra expert to learn algebraic geometry, but you can see that
commutative algebra is built into the definitions of algebraic geometry, so some commutative algebra knowledge
is helpful.

Example 2.7. The space Xn sending A to the solutions of the Fermat equation in A is an affine scheme;
explicitly,

Xn
∼= SpecZ[x, y, z]/(xn + yn − zn).

This is because a ring homomorphism Z[x, y, z]/(xn+yn−zn)→ A is exactly the data of x, y, z ∈ A satisfying
the relation xn + yn − zn = 0. (

Lemma 2.8 (Yoneda lemma). For all spaces X, HomSpaces(SpecA,X) ∼= X(A).

Proof sketch. First we define a map from HomSpaces(SpecA,X) to X(A). Specifically, a map f : SpecA→ X
is the data of for all commutative rings B, Spec(A)(B)→ X(B). Take B = A; then, Spec(A)(A) = Hom(A),
so take the image of the identity. It remains to check this is an equivalence. �

Corollary 2.9. HomSpaces(SpecA,SpecB) ∼= HomCommRing(B,A).

It’s interesting that the direction reverses!

Proof. By the Yoneda lemma, HomSpaces(SpecA,SpecB) = Spec(B)(A) = Hom(B,A). �

This tells you that as long as you make sure to reverse the arrows, anything you can do with commutative
rings, you can do with affine schemes, and vice versa.

Fiber products. This is a categorical construction which we’re going to use a lot.

Definition 2.10. Let X, Y , and Z be sets and f : X → Z and g : Y → Z be set maps. Then the fiber
product of X and Y over Z is
(2.11) X ×Z Y := {(x, y) ∈ X × Y | f(x) = g(y)}.
If X, Y , and Z are spaces, and f and g are maps of spaces, then the fiber product of X and Y over Z is the
space defined by
(2.12) (X ×Z Y )(A) := X(A)×Z(A) Y (A).

Technically, the notation should include f and g, but in practice there’s usually no ambiguity.

Example 2.13. Suppose we’re given commutative rings A, B, and C and maps SpecB → SpecC and
SpecA→ SpecC (which are equivalent data to maps ϕ : C → A and ψ : C → B). Then

SpecA×SpecC SpecB ∼= Spec(A⊗C B),
where C acts on A, resp. B, through ϕ, resp. ψ. It’s worth working through this one on your own, though
it’s not extremely hard. (
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We’ll define some properties of affine schemes with geometric names, but the definitions will rest on
algebraic properties of rings. One of the real miracles of algebraic geometry is that this really works to define
geometry, and even extends geometric intuition to places such as finite fields that are otherwise very hard to
reason about.
Definition 2.14. A morphism SpecB → SpecA is a closed embedding if the induced map A → B is
surjective.

Equivalently, B = A/I for some ideal I of A.
The geometric idea behind defining SpecA is that geometric objects have a ring of functions on them, e.g.

a smooth manifold M has a ring C∞(M) of smooth R-valued functions, and a map of manifolds M → N
induces a map in the other direction by pullback: C∞(N)→ C∞(M). Functional analysis results such as
the Gelfand-Naimark theorem tell you what data you need to add to C∞(M) to recover M as a topological
space, and we’re trying to imitate this in a more abstract algebraic setting.

This context allows us to explain why Definition 2.14 deserves to be called a closed embedding: let
I = (f1, f2, . . . ), so
(2.15) SpecA/I = {fi = 0 for all i} = {f = 0 for all f ∈ I}.
So we think of SpecB as some kind of closed subspace of SpecA, and I as the ideal of functions on SpecA
which vanish on SpecB. This intuition can be turned into something precise.

Using fiber products, we can extend this to all spaces.
Definition 2.16. A map X → Y of spaces is a closed embedding if for all maps SpecA→ Y , the “pullback”
ϕ in the fiber product diagram

(2.17)
SpecA×Y X

ϕ //

��

SpecA

��
X // Y

is a closed embedding of affine schemes. In particular, we require SpecA×Y X to be an affine scheme, which
is not always satisfied.

For a quick consistency check, we should ask that Definitions 2.14 and 2.16 agree on affine schemes, and
indeed, if I ⊂ A is an ideal, and SpecB → SpecA is a closed embedding in the sense of Definition 2.14,
then (2.17) looks like

(2.18)

Spec(A/I ⊗A B) //

��

SpecB

��
Spec(A/I) // SpecA,

and since A/I ⊗A B ∼= B/BI, this is a closed embedding in the more general sense as well.
We’d also like to know what an open embedding is. We’d like to say that it’s something whose complement

is a closed embedding. Let’s make this precise.
Definition 2.19. Let Z ↪→ X be a closed embedding of spaces. The complement X \ Z of Z in X is the
space with (X \ Z)(A) the set of x ∈ X(A) = HomSpaces(SpecA,X) such that the diagram

(2.20)

∅ //

��

Z

��
SpecA x // X

is a fiber product diagram. Here ∅ = Spec(0), which sends every ring to the empty set.3

Definition 2.21. If X = SpecA is an affine scheme, an open embedding is a map of spaces j : U → X such
that U = X \ Z for some closed embedding Z ↪→ X.

3Caution: this is only true if we work with functors on nonzero rings. However, ∅ = Spec 0 still counts as affine. There are
other ways to correct this issue, but this is among the fastest and cheapest.
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Example 2.22. Letting X = SpecA, if f ∈ A and Z = Spec(A/f), the map A � A/f induces a closed
embedding Z ↪→ X. Its complement is SpecA[f−1], the localization of A at f , so SpecA[f−1]→ SpecA is
an open embedding. (

The intuition is that f generates the ideal of functions that vanish precisely on the closed subset Z.
Therefore on the complement of Z, they should be invertible, so we adjoin an inverse to f .
Lemma 2.23. Let X = SpecA and Z = SpecA/I. Then maps SpecB → X \ Z correspond bijectively to
maps A→ B such that B · I = B.
Proof. The diagram (2.20) specializes to

(2.24)

∅ //

��

Spec(A/I)

��
SpecB // SpecA,

and this fiber product is Spec(B ⊗A A/I) = Spec(B/IB) = ∅, which is equivalent to IB = B. �

Example 2.25. Affine n-space over Z is the affine scheme AnZ := SpecZ[x1, . . . , xn], and 0 ↪→ AnZ is the
closed embedding corresponding to the ideal (x1, . . . , xn). The complement AnZ \ 0 is not affine for n > 1!
We’ll prove that later when we have more tools. (

Exercise 2.26. Show that AnZ \ 0 is the space which maps a ring A to the set of n-tuples (x1, . . . , xn) ∈ An
such that the equation

∑
xiyi = 1 has a solution.

Lecture 3.

Open covers: 9/5/18

We’ve been talking about functors as if they were honest geometric objects. And they are: the crucial
reason is that we’re defining open and closed subspaces of affine schemes. You can picture these as akin to
open or closed sets in a topological space, and they will allow us to make sense of geometry by giving us
notions of locality.

Recall that Z ↪→ X = SpecA is a closed embedding means that this embedding is of the form Spec(A/I)→
SpecA induced by the map A� A/I, and that open embeddings are complements of closed ones. You might
think of the complement as (X \Z)(B) = X(B) \Z(B), but this is wrong: it’s not even functorial! Instead,
we want to say (X \ Z)(B) = {SpecB → X \ Z}. What this means is maps SpecB → X such that the
pullback SpecB ×X Z = ∅. Geometrically, this fiber product is telling you the intersection of the image of
SpecB with X.

Last time, we also talked about A1 (also A1
Z if you want to specify the base), which is by definition SpecZ[t].

It would be nice to think of this as a line, in the sense you can draw; but it behaves more like a complex line
(that is, a plane). For example, A1 minus a point is connected. So thinking of it as a complex line is good,
but for drawing pictures you’ll run out of dimensions, so the picture of a real line is also helpful.

If B is a commutative ring, A1(B) = {SpecB → A1}, i.e. Hom(Z[t], B) = B, because the map is determined
by where it sends t. This makes precise the notion that the ring of functions on SpecB is B. This is another
avatar of geometry as we know it: functions on a geometric object (say, a complex manifold) are functions to
a complex line, and in this setting we replace the complex line by A1.

Consider the embedding 0 ↪→ A1
Z, where 0 denotes the locus where t = 0, i.e. SpecZ[t]/(t). As an affine

scheme, this is isomorphic to SpecZ, because Z[t]/(t) ∼= Z, but this defines a particular closed embedding
0 ↪→ A1

Z. Last time, we discussed A1 \ 0. A map SpecB → A1 \ 0 is a function that avoids zero, which means
that it’s invertible.
Exercise 3.1. Show that (A1 \ 0)(B) = B×, and therefore that A1 \ 0 ∼= SpecZ[t, t−1].

If we did this with A2 \ 0 instead of A1 \ 0, we’d obtain a nonaffine scheme.
Open coverings are another important geometric notion, and they exist in this setting too.

Definition 3.2. If X = SpecA is an affine scheme, a (Zariski) open covering of X is a collection of open
embeddings U = {(U, iU : U ↪→ X)} such that for every nonempty S = SpecB and f : S → X, there’s some
(U, iU ) ∈ U such that U ×X S 6= ∅.
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This is the first notion of open covering in algebraic geometry; there are some others around.
The intuition behind open coverings is that points of X are given by maps SpecB → X, and we want

every point in X to intersect some open embedding in the cover.
Proposition 3.3. Let X = SpecA and U = {(U, iU : U → X)} be a collection of open embeddings. The
following are equivalent:

(1) U is an open covering.
(2) U has a finite subset V ⊂ U which is also an open covering of X.
(3) For all fields k and maps x : Spec k → X, there’s some (U, iU ) ∈ U such that x factors through iU .
(4) Letting U = X \ ZU for each U ∈ U, and writing ZU = Spec(A/IU ), then∑

U∈U

IU = A.

Point (2) is very weird coming from topology, where the open covering {(i− 1, i+ 1) | i ∈ Z} is an open
cover of R with no finite subcover. In other words, affine schemes feel like compact spaces from the perspective
of open coverings!

The idea behind (3) is that points are affine schemes of the form Spec k for k a field. There are different
fields, and therefore different kinds of points. The reason for including (4) is that it’s very useful for checking
in practice. It has a similar feel to partitions of unity in manifold topology, but if you don’t know what that
is, that’s OK.

Proof. We’ll first show (1) =⇒ (4). Suppose U is an embedding for which (4) does not hold. Then let

(3.4) B := A/
∑
U∈U

IU .

By hypothesis, B 6= 0, and we have a closed embedding SpecB ↪→ SpecA. We’ll show that SpecB×X U = ∅
for all U ∈ U.
Lemma 3.5. Let Z = SpecA/I ↪→ SpecA = X be a closed embedding and f : SpecB → X be a map. Then

(SpecB) \ f−1(Z) = SpecB ×X (X \ Z).
This is more or less a tautology.
Returning to the claim, SpecB×XU is the complement of ZU×XSpecB = Spec(B/BIU ). But B/BIU = B,

so the complement of ZU ×X SpecB is the empty set.
Next, we’ll show (4) =⇒ (3). Let k be a field, and x : Spec k → X be a map. We want to show this map

factors through some U . Since X = SpecA, x corresponds to a map ϕ : A→ k. We claim there’s a U ∈ U
with ϕ(IU ) 6= 0; otherwise ϕ(

∑
IU ) = 0, and therefore ϕ(A) = 0. However, ϕ(1) = 1, so this is impossible.

By Lemma 2.23, since ϕ(IU ) 6= 0, k · ϕ(IU ) = k, and therefore x : Spec k → X factors through U .
Next we’ll show (3) =⇒ (1). Let B be as in (3.4) and f : S = SpecB → X be a map. We want to show

that S ×X U 6= 0 for some U ∈ U. Since B 6= 0, it has a maximal ideal m, and B/m is a field k (TODO: to
be continued. . . )

�

Lecture 4.

Defining schemes, II: 9/7/18

“I’ll let Fun(Y ), which is such a fun notation, denote. . . ”
Last time, we talked about open embeddings and open covers for affine schemes; today, we’ll generalize this
to spaces.
Definition 4.1. Let X be a space.

(1) A map U → X of spaces is an open embedding if for all affine schemes S = SpecA and maps
f : S → X of spaces, the pullback g : U ×X S → S arising in the diagram

U ×X S //

g

��

U

��
S

f // X
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is an open embedding (since we’ve already define open embeddings where the target is affine).
(2) A Zariski open covering of X is the same as in Definition 3.2, but for open embeddings of spaces,

rather than affine schemes.

In this case, Proposition 3.3 need not hold: there are open coverings of some spaces X (such as an infinite
disjoint union of points) which have no finite subcoverings.

Definition 4.2. A space X is a Zariski sheaf if for all S = SpecA and open coverings U of S, the map
Hom(S,X) −→ {(fU : U → X for all U) ∈ U | fU |U∩V = fV |U∩V for all U, V ∈ U}

is an isomorphism. (Here U ∩ V = U ×X V .)

Not everything is a Zariski sheaf, but the things that aren’t are terrible, and you shouldn’t worry too much
about them.

Now we have all the definitions at hand to define schemes!

Definition 4.3. A scheme is a space which is a Zariski sheaf and admits an open cover U such that all U ∈ U
are affine schemes.

Exercise 4.4. Let X be the space with
X(A) = {t ∈ A | t ∈ A× or (1− t) ∈ A×}.

Show that X is not a Zariski sheaf. Also, if you know what sheafification is, show that the sheafification of X
is A1.

Proposition 4.5. If X is an affine scheme, then it’s a scheme.

Obviously X admits an open cover by affines, given by id : S → S; the meat of the proof (or, if you prefer,
tofu) is that it’s a Zariski sheaf. Unlike EGA, we will start with a special case and use it to bootstrap to the
general case.

Let X = A1.

Definition 4.6. A function on a space Y is a map to A1. We’ll let Fun(Y ) := Hom(Y,A1).

We’re explicitly trending towards geometric notation and intuition for things: one of the key processes of
learning scheme theory is to start thinking geometrically rather than with commutative algebra – except
when you need to prove something.

We want to show that for all affine schemes S and open coverings U of S, the map
(4.7) Fun(S) −→ {(fU ∈ Fun(U)) | fU |U∩V = fV |U∩V }
is an isomorphism.

First we’ll prove this for a nice class of open covers.

Lemma 4.8. Let A be a commutative ring and f1, . . . , fn ∈ A. Let D(fi) := SpecA \ Spec(A/(fi)). Then
(1) D(fi) = SpecA[f−1

i ], and
(2) {D(fi)} is an open cover iff {fi} generates the unit ideal.

The proof will be left as an exercise.
In the case (2) holds, the open cover {D(fi)} is called a basic open cover. It’s really nice because it’s an

affine open cover; we’ll see that there are a lot of these coverings, and enough that we will eventually be able
to reduce to this case.

One can alternately characterize D(fi) as the pullback

(4.9)

D(fi) //

��

SpecA

��
A1 \ 0 // A1.

Lemma 4.10. Let f : M → N be a map of A-modules. Then f is injective (resp. surjective, resp. bijective)
iff for all i, the map M [f−1

i ]→ N [f−1
i ] is injective (resp. surjective, resp. bijective).

Recall that M [f−1
i ] := M ⊗A A[f−1

i ].
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Remark 4.11. Let’s review some facts about localization. If M is a Z[t]-module, which is equivalent data to
an abelian group with an endomorphism t : M →M , then we can form M [t−1] := M ⊗Z[t] Z[t, t−1]. Then:

• This construction is exact; that is, it preserves kernels and cokernels.
• There’s a natural map M → M [t−1], and its kernel is the submodule of m ∈ M with tnm = 0 for

some n.
The way you prove all of this is to write Z[t, t−1] as the union of t−nZ[t] for all n, or as the colimit of the
multiplication-by-t map on Z[t]. These are all free modules, hence flat, and one can prove that filtered
colimits of flat modules are flat without too much angst. (

Now we can get back to the lemma.

Proof of Lemma 4.10. For injectivity, let’s compare kerϕ with ker(ϕ[f−1
i ]). By Remark 4.11, (kerϕ)[f−1

i ] =
ker(ϕ[f−1

i ]), so we can reduce to showing that M = 0 iff M [f−1
i ] = 0 for all i. One direction is immediate, of

course; conversely, if M [f−1
i ] = 0 for all i, then for all m ∈ M and all fi, then fni

i m = 0 for some ni � 0.
There are finitely many fi, so we can let N be the biggest one, and then fNi m = 0 for all i.

Lemma 4.12. (f1, . . . , fn) = A iff (fN1 , . . . , fNn ) = A.

Proof. There’s a naïve argument which isn’t too bad, but the geometric reason is that fi is a function, and fi
vanishes on the same locus where fNi vanishes, and therefore D(fNi ) = D(fi). Therefore {D(fNi )} is also an
open cover, which by (4.8) means (fN1 , . . . , fNn ) = A.

If this proof feels sketchy, here’s a more careful one (which unfortunately masks the geometry): if
(fN1 , . . . , fNn ) ( A, then it’s contained in some maximal ideal m. Therefore for all i, fNi = 0 in A/m, and
therefore fi = 0 in m, because A/m is a field; hence fi ∈ m, which is a contradiction. �

Now, using Lemma 4.12, there are some g1, . . . , gn with
∑
i gif

N
i = 1, and therefore

(4.13) M =
∑
i

fif
N
i ·M = 0.

The proof of surjectivity is similar, but using cokernels instead of kernels. �

This lemma is a bridge between the geometry of schemes and the linear algebra of modules. You should
think of inverting fi as restricting to D(fi); we will return to this idea.

Proof of Proposition 4.5, special case. Now we’ll prove that an affine scheme is a Zariski sheaf for basic open
covers {D(fi)}. We want to show that (4.7) is an isomorphism, and by Lemma 4.10 it suffices to show this
after inverting fi.

Let gi ∈ Fun(D(fi)) be a collection of functions that agree on overlaps. . . TODO: I missed the last part. �

Lecture 5.

A1 is a Zariski sheaf: 9/10/18

Today, we’re going to continue proving Proposition 4.5, that affine schemes are schemes. We’re still working
on the special case that A1 is a scheme; the key piece of the proof is showing that it’s a Zariski sheaf.

Definition 5.1. Let S be a space and U be an open cover of S. A refinement of U is an open covering V of
S such that for all U ∈ U, VU := {V ∈ V | V ⊂ U} is an open covering of U .

The Zariski sheaf condition for maps X → S is a constraint on compatible functions on all open covers of
S. If we only ask about a specific open cover U, we say “the Zariski sheaf property for X with respect to U.”

Lemma 5.2. Let X and S be spaces, U be an open cover of S, and V be a refinement of U. Suppose the
Zariski sheaf property holds for X with respect to V, and for each U ∈ U with respect to VU , then it holds
with respect to U.

After you unwind all the definitions, this is a definition check which isn’t very hard.

Remark 5.3. One corollary of Lemma 5.2 is that in the definition of the sheaf property, we may replace “for
all affine schemes S” with “for all spaces S.” All of the definitions were built from the beginning to favor
affine schemes as important or special, and this is one consequence. (



Arun Debray December 10, 2018 11

Definition 5.4. A big basic open covering of an affine scheme S is an open covering by sets of the form
D(fi) as in Lemma 4.8, but over a possibly infinite indexing set.

This is only a temporary definition. The Zariski sheaf property for X and every basic open covering of an
affine scheme S implies the Zariski sheaf for all big basic open coverings.

Proposition 5.5. Let S be an affine scheme and U be an open cover of S. Then there’s a big basic open
covering of S refining U.

Proof. Write S = SpecA and for each U ∈ U, let ZU := S \ U ; the inclusion ZU ↪→ S is a closed embedding,
so ZU = Spec(A/IU ) for some ideal IU ⊂ A. Recall from Proposition 3.3 that since U is an open covering,

(5.6)
∑
U∈U

IU = A,

and this is an equivalent condition. Consider the big basic open cover
(5.7) V := {D(f) | f ∈ IU \ 0 for some U ∈ U}.
That this is a big basic open cover is because an ideal is generated by its elements. It’s also a refinement of U,
which follows from a more general lemma.

Lemma 5.8. Let U = S \ Z, where S = SpecA and Z = Spec(A/I). Then {D(f) | f ∈ I \ 0} is an open
cover of U .

Proof. We want to show that for all T = SpecB and maps g : T → U , the set Vg := {g−1(D(f)) | f ∈ I \ 0}
is an open cover of T .4 Then. . . TODO �

Thus we’ve proven the proposition. �

Corollary 5.9. Let S be an affine scheme with an open covering U. Then there’s a big basic open covering
V refining U and with the property that for all U ∈ U, {V ∈ V | V ⊂ U} is a big basic open covering of U .

This is the technical proposition that lets us reduce to algebra.

Remark 5.10. Corollary 5.9 also tells us that a big basic open covering of a space X is an open covering U of
X such that for all maps of affine schemes to X, the pullback of U is also a big basic open covering. (

Corollary 5.11. A1 is a Zariski sheaf.

Proof. We showed that A1 is a Zariski sheaf with respect to all basic open covers of affine schemes, hence for
all big basic open covers of affine schemes, hence by Remark 5.10 with respect to all spaces with big basic
open covers, hence by Proposition 5.5 any affine scheme and any open cover, and therefore any space and any
open cover. �

Corollary 5.12. Let I be a set and let AI := SpecZ[{xi | i ∈ I}]. Then AI is a Zariski sheaf.

Proof. The sheaf property is preserved under arbitrary products. �

If I is an n-element set, then AI is also written An.

Proof sketch of Proposition 4.5. We can use this to show that if X = SpecA is an affine scheme, then it’s a
Zariski sheaf. Let I be a generating set for A and J ⊂ Z[{xi | i ∈ I}] be the ideal of relations; then, the quotient
map Z[{xi | i ∈ I}]� A defines a closed embedding X ⊆ AI cut out by X = {x | f(x) = 0 for all f ∈ J}.

One then has to check that the sheaf property is preserved under closed embeddings, which is formal. �

We’ll spend the next lecture giving examples of schemes, but here are a few to start with.
• As we just showed, affine schemes are schemes.
• A quasi-affine scheme is an open subset of an affine scheme, such as A2 \ 0. These are indeed schemes
(though not always affine): if U is the complement of Spec(A/I) ⊂ A, then U admits a covering by
{D(f) | f ∈ I \ 0}.

We can use this to prove A2 \ 0 isn’t affine.

4The preimage is defined to be g−1(D(f)) := D(f)×U T .
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Lecture 6.

Relative algebraic geometry: 9/12/18

One of the advantages of algebraic geometry is the ability to work relative to a given space, which
generalizes choosing a base field (or ring).

Definition 6.1. Let S be a space. A scheme over S is a space X with a map X → S, often just written
X/S, such that for all affine schemes T and maps T → S, X ×S T is a scheme. A morphism of schemes over
S is a morphism of schemes which commutes with the two maps to S.

In the same way one can define affine schemes over S. If S = SpecA, for A a ring, we might write X/A
instead of X/S and say schemes over A; often A will be a field.

We defined spaces as functors CommRing → Set, and there’s a similar description for schemes over A.

Proposition 6.2. Let A be a commutative ring. There’s an equivalence of categories between spaces over A
and functors CommAlgA → Set (where we ignore the zero algebra).

Proof sketch. Given X : CommAlgA → Set, we can define a functor on all commutative rings by sending B
to the set of pairs of (i, x) where i : A→ B is an A-algebra structure on B and x ∈ X(B). Then the forgetful
map (i, x) 7→ i defines the desired map to SpecA.

In the other direction, let p : X → SpecA be a scheme over A. We’ll define a functor on commutative
A-algebras by sending (B, i : A→ B) to the set of maps ϕ : SpecB → X for which the diagram

(6.3)

X

p

��
SpecB i∗ //

ϕ

99

SpecA
commutes. �

Example 6.4. Complex conjugation is Z-linear (and even R-linear) but not C-linear, and therefore induces
a map of schemes SpecC→ SpecC which is a map of schemes over R, but not of schemes over C. (

Proposition 6.5. Let X, Y , and Z be schemes together with maps X → Z and Y → Z. Then X ×Z Y is a
scheme.

Proof. If X = SpecA, Y = SpecB, and Z = SpecC are affine, this is certainly true: the pullback is
SpecA⊗C B. Now we’ll show more general cases reduce to this one.

If Y and Z are affine but X isn’t, then X admits an open cover U by affines, and {U ×Z Y | U ∈ U} is an
affne open cover of X ×Z Y . In the same way, we may assume only that X and Z are affine.

Therefore if you only assume Z is affine, you can pick affine open covers of X and Y called U and V,
respectively. Then {U ×Z V | U ∈ U, V ∈ V} is an affine open cover of X ×Z Y .

Next, we assume X and Y are affine, but Z might not be.5 Let W be an affine open cover of Z, and
W ∈W. By definition, the map
(6.6) X ×Z W −→ X

is an open embedding, and this implies that X ×Z W is a scheme (we called these quasi-affine): it’s the
complement of a closed embedding SpecA/I → X = SpecA, and is covered by {D(f)} where {f} generates
I. Anyways, then X ×Z Y is covered by
(6.7) W′ := {(X ×Z W )×W (Y ×Z W ) |W ∈W}.
Since W is affine, this is a scheme by one of the earlier cases. Therefore X ×Z Y is covered by schemes, so it
must be a scheme (choose an affine cover of each element of W′, and check this is an affine open cover of
X ×Z Y ).

Finally, we assume none of them are affine. This is the same as the case where X and Y are affine, but
now we can use the previous step to show that if U is an open cover of X, V is an open cover of Y , U ∈ U,
and V ∈ V, then U ×Z V is a scheme.

5From here, the proof was finished up in Friday’s lecture.
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We’ve ignored the Zariski sheaf property, but it’s relatively simple to show that it’s preserved by fiber
products. �

Corollary 6.8. If S is a scheme, schemes over S are the same thing as schemes with a map to S.

Proof. We can check the definition on an affine open cover of S; Proposition 6.5 tells us that pulling back to
T preserves scheminess. �

If S is a space that’s not a space, Corollary 6.8 isn’t necessarily true.

Quasicoherent sheaves and/or linear algebra. In commutative algebra, one often studies a ring by
studying its modules; these are linear-algebraic in nature, which can make them easier to reason about. The
analogue for schemes is quasicoherent sheaves.

Definition 6.9. Let X be a scheme. A quasicoherent sheaf (QC sheaf) F on X is data of, for all maps
f : SpecA→ X, an A-module Ff , and for every map g : SpecB → SpecA, an isomorphism

(6.10) αf,g : Fg◦f
∼=→ Ff ⊗A B

of B-modules, and such that a cocycle condition holds: given a triple

(6.11) SpecC h // SpecB g // SpecA f // X,

αf,g◦h = αf◦g,h as maps Ff◦g◦h ∼= (Ff⊗AB)⊗BC, using the natural isomorphism (Ff⊗AB)⊗BC ∼= Ff⊗AC.6
A morphism of quasicoherent sheaves F → G is data of maps of A-modules Ff → Gf for all f : SpecA→ X,
such that all induced diagrams commute. The category of QC sheaves on X is denoted QCoh(X).

Remark 6.12. The word “quasicoherent” isn’t really great unless you’re playing Scrabble. It grew out of a
generalization of coherent sheaves, which originally came from the analytic setting, where the name was more
reasonable. You should think of analogues of modules when you hear QC sheaves. (

This is a lot of data! So we’re going to find a way to express a quasicoherent sheaf with less data.

Proposition 6.13. If X = SpecA, the functor Γ: QCoh(X) → ModA sending F 7→ Fid is an equivalence
of categories, with inverse sending an A-module M to the sheaf FM defined by (FM )f := M ⊗A B for all
f : SpecB → X.

Example 6.14. For any scheme X, there’s a quasicoherent sheaf OX , called the structure sheaf of X, defined
to send f : SpecA→ X to (OX)f = A. The maps are what you think they are. (

Lecture 7.

Quasicoherent sheaves: 9/14/18

“You know when you’re looking for your phone and it was in your hand the whole time?
This proof was like that.”

Here are two exercises we’ve been sort of implicitly using, and are good to do to get some comfort with this
language.

Exercise 7.1.
(1) Let U → X be a map of schemes and U has an open cover V such that for all V ∈ V, V → X is an

open embedding. Then U → X is an open embedding.
(2) If V → U and U → X are open embeddings, their composition V → U is an open embedding.
Now back to quasicoherent sheaves. On an affine scheme X = SpecA, these are a lot like A-modules (in

fact, exactly like A-modules, according to Proposition 6.13).

Definition 7.2. Let f : X → Y be a map of schemes and F ∈ QCoh(Y ). The pullback of F, denoted
f∗F ∈ QCoh(X), is the quasicoherent sheaf given by the following data: for every map g : SpecA → X,
(f∗F)g := Ff◦g.

6The cocycle condition can be expressed more concisely by asking that F is a functor from the category of affine schemes to
abelian groups.



14 M392c (Algebraic geometry) Lecture Notes

One must check the compatibility conditions, but these aren’t so bad.
If S = SpecA is affine, then an A-module M defines a quasicoherent sheaf M by sending f : SpecB →

SpecA to Mf := M ⊗A B. The pullback of M along f is exactly the quasicoherent sheaf defined by the
module M ⊗A B.

Since we understand quasicoherent sheaves on affine schemes, let’s next see how they behave on open
covers. We’ll start with a different-looking definition, then show it’s equivalent. This second definition will be
useful because it involves substantially less data.

Definition 7.3. Let X be a scheme and U be an open cover of X. Let QCoh(X;U) denote the category of
tuples of FU ∈ QCoh(U) for all U ∈ U together with, for all intersecting U, V ∈ U, isomorphisms

(7.4) αUV : FU |U∩V
∼=−→ FV |U∩V

satisfying a cocycle condition on triple intersections.

This is what’s sheafy about quasicoherent sheaves: they are determined from compatible local data.
There’s a functor Φ: QCoh(X)→ QCoh(X;U) which takes a quasicoherent sheaf and produces its pullback

on all U ∈ U.

Theorem 7.5 (Serre). The functor Φ is an equivalence of categories.

Proof sketch. This will look a lot like what we did before. The first step is to reduce to the case where
X = SpecA is affine and U is a basic open cover, using a similar argument to the one from two lectures ago.
The second step is similar to the proof that A1 is a Zariski sheaf.

Explicitly, after we’ve reduced to X = SpecA and U = {D(fi) | (f1, . . . , fn) = A}, then a quasicoherent
sheaf on D(fi) is (equivalent data to) an A[f−1

i ]-module Mi, together with the natural isomorphisms
αij : Mi[f−1

j ]
∼=→Mj [f−1

i ] as A[(fifj)−1]-modules.
Given this data, we want to functorially build an A-module. The answer will be

(7.6) M := {si ∈Mi, 1 ≤ i ≤ n | in Mi[f−1
j ] ∼= Mj [f−1

i ], si = sj}.

Now the proof is the same as in the A1-setting, though there we only worried about functions, not sections.
The other way is simple once one invokes the flatness of A[f−1

i ]. �

We might not have defined it yet, but for a field k, A2
k = Spec k[x, y]. This is slightly nicer to work

with for some applications than A2
Z. Let X := A2

k \ 0, our favorite non-affine scheme, with its open cover
U := A1 × (A1 \ 0) and V := (A1 \ 0)× A1. Then Theorem 7.5 says a quasicoherent sheaf on A2

k \ 0 is the
data of

• a k[x, x−1, y]-module M ,
• a k[x, y, y−1]-module N , and
• an isomorphism α : M [y−1] ∼= N [x−1] of k[x, x−1, y, y−1]-modules.

Modules can be big, so it will be useful to have some finiteness hypotheses.

Definition 7.7. Let X be a scheme and F ∈ QCoh(X). Then F is locally finitely generated (l.f.g.) if for all
open embeddings j : SpecA→ X, j∗F is a finitely generated A-module.

Theorem 7.8 (Nakayama’s lemma). Let F be a locally finitely generated QC sheaf on a scheme X, k be a
field, and x : Spec k → X be such that x∗F = 0. Then there’s an open j : U ↪→ X containing x (i.e. x factors
through j) and such that j∗F = 0.

Geometrically, this is saying that if an l.f.g. sheaf vanishes at a point, it also vanishes in a neighborhood of
that point.

Proof. First we’ll reduce to the affine case: we know there’s an affine open V ⊆ X such that x factors through
V (geometrically, the point x lies in V ), so we’ll replace X by V (and call it X). Let X = SpecA, so that F
corresponds to a finitely generated A-module M , and x corresponds to a map ϕ : A → k. Our hypothesis
means that M ⊗A k = 0.

Let’s induct on the number of generators of M . If M is generated by zero elements, we’re done, so assume
we know it for all modules generated by n elements. . . we’ll finish this Monday. �
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Lecture 8.

Quasicoherent sheaves, II: 9/17/18

We’re in the middle of proving Nakayama’s lemma, Theorem 7.8. We’re proving it by induction on the
number of generators of the A-module M , and the base case is trivial. So let’s assume it’s true for all modules
generated by n elements.7

Remark 8.1. Let’s pause to ask what a finitely generated A-module looks like. If it has one generator, it’s
isomorphic to A/I for some ideal I. If it has two generators, it’s an extension of A/I by A/J for some ideals
I and J of A. More generally, a module M with m generators is an extension 0 → N → M → A/I → 0,
where N has m− 1 generators.

This means some specific subcases of Nakayama’s lemma, such as that for local rings, are close to trivial.8
You could prove Theorem 7.8 by reducing to the local case, though we’re using a different approach.

The fact that finitely generated modules have quotients which look like A/I is the catalyst of the proof:
it’s untrue for modules which aren’t finitely generated, such as Q as a Z-module, which has no quotients of
the form Z/n. (

So M is an extension of an A-module N generated by n elements by A/I:

(8.2) 0 // N // M // A/I // 0.

By assumption, M ⊗A k = 0, which means that, since tensor product is right exact,
(8.3) (A/I)⊗A k ∼= k/Ik = 0.
Recall that we had data of a map ϕ : A→ k; since k is a field, this and (8.3) imply there’s some f ∈ I wth
ϕ(f) 6= 0. Let’s localize at f ; the map ϕ : A→ k passes to a map ϕ̃ : A[f−1]→ k, and since localization is
exact, (8.2) induces a short exact sequence

(8.4) 0 // N [f−1] // M [f−1] // (A/I)[f−1] // 0,

but since A[f−1] = 0, N [f−1] ∼= M [f−1], which (crucially) is generated by n elements as an A[f−1]-module.
Since ϕ(f) 6= 0, then x ∈ D(f), so there’s an open U ⊂ D(f) containing x such that (F|D(f))|U = 0 by the
inductive hypothesis, and that’s exactly what we wanted to prove.

Definition 8.5. Let M be an A-module. Then its annihilator Ann(M) := {f ∈ A | f ·M = 0}, which is an
ideal of A.

Corollary 8.6. Let X be a scheme and F ∈ QCoh(X) be locally finitely generated. Then the subset
UF := {f : SpecB → X | f∗F = 0} is an open subscheme of X. In particular, if X = SpecA is affine, then
UF is the complement of the locus of X on which all f ∈ Ann(F) vanish.

That is, the locus where F vanishes is open. This fits into your intuition: if you’re on SpecA and F

corresponds to A/(f), then F vanishes wherever f doesn’t.

Proof. It suffices to prove the affine statement, and this is a matter of unwinding its definition: let X = SpecA
and F be an A-module. Given ϕ : A→ B, it suffices to prove the following are equivalent: Ann(F) ·B = B
and F ⊗A B = 0.

First, the forward implication: we know there are fi ∈ Ann(F) and gi ∈ B such that

(8.7)
n∑
i=1

ϕ(fi)gi = 1.

Therefore 1 acts by 0 on F ⊗A B, so that module must be the zero module.
The reverse direction is a bit harder. Suppose for a contradiction that Ann(F) ·B ( B, so it’s contained

in some maximal ideal m; let k := B/m, which is a field. Then
(8.8) F ⊗A k = (F ⊗A B)⊗B k = 0.

7The theorem is true for non-affine schemes, but we’ve already reduced to the affine case.
8There are many different things called Nakayama’s lemma; ours is not the most general one.
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Hence, by Theorem 7.8, there’s a U ⊂ SpecA containing Spec k such that F|U = 0. We can assume U = D(f)
for some f ∈ A, so we’re assuming F[f−1] = 0. Because F is finitely generated, this means fNF = 0 for
some N � 0, or fN ∈ Ann(f). Since ϕ(Ann(F)) ⊂ m, then ϕ(fN ) = 0 mod m, so ϕ(f) = 0 mod m, which
contradicts the assumption that Spec k ∈ U . �

You can draw a picture of this: given a locally finitely generated sheaf F, Ann(F) has a vanishing locus; if
F corresponds to the module A/I (here we should be on an affine scheme), then this is also the closed subset
SpecA/I ↪→ SpecA.
Exercise 8.9. Deduce every other version of Nakayama’s lemma that you know (e.g. the one in Matsumara)
from these versions.
Definition 8.10. A vector bundle on a scheme X is a quasicoherent sheaf E ∈ QCoh(X) which is locally
finitely generated and locally projective, i.e. for some (equivalently any) affine open cover U of X, for every
U = SpecA ∈ U, the pullback of E to U is a projective A-module.
Proposition 8.11. Let E ∈ QCoh(X). The following are equivalent:

(1) E is a vector bundle.
(2) There is an affine open cover U of X such that for all U ∈ U, E|U is a finitely generated free module.

Lecture 9.

Vector bundles: 9/19/18

“It’s not a good exercise; it’s an exercise.”
Today we’re going to continue talking about vector bundles, which are an absolutely crucial concept in algebraic
geometry. First we’ll prove Proposition 8.11, equating two definitions of vector bundles: quasicoherent sheaves
which are locally projective and those which are locally free of finite rank, i.e. locally isomorphic to O⊕rU . This
r is called the rank of the vector bundle over U .
Remark 9.1. The rank of a vector bundle is locally constant, but doesn’t have to be constant. (

Lemma 9.2. Let X = SpecA and U be a collection of open subsets of X. Then U is an open cover of X iff
for all maximal ideals m of A, there’s a U ∈ U such that Spec(A/m) ↪→ SpecA factors through U .

The idea is that a closed point is an embedding Spec k ↪→ X, where k is a field. So a collection of opens is
an open cover if it contains every closed point, which is nice. Affineness is important here: there are general
schemes with no closed points!

Proof of Proposition 8.11. The thing we want to prove is local, so we can immediately reduce to the case
where X = SpecA is affine, and therefore E corresponds to an A-module, which we also denote E. For the
forward direction, we assume E is finitely generated and projective.

Let m be a maximal idea of A. Then E/m is a finitely-generated A/m-module; since A/m is a field, E/m
is free, so it has a basis s1, . . . , sn. We lift this to s1, . . . , sn ∈ E, which define a map τ : A⊕n → E which is
surjective mod m. We’d like to show this is an isomorphism on some open U containing Spec(A/m).

Since E is a finitely generated A-module, so too is coker(τ) = E/τ(A⊕n), and since modding out by m is
right exact, coker(τ)|Spec(A/m) = 0. Therefore by Theorem 7.8, there is some U0 ⊂ X containing Spec(A/m)
such that coker(τ)|U0 = 0; without loss of generality, we can take U0 to be affine, i.e. τ is surjective on U0.
Let’s replace X by U0 and continue.

Because E is projective, the map τ : A⊕n � E splits; let σ : E→ A⊕n be a section. This means ker(τ) is
finitely generated, and therefore ker(τ)|Spec(A/m) = 0. Now we use Nakayama’s lemma again and conclude
that τ is an isomorphism on some open U1 containing Spec(A/m).

The converse isn’t immediately trivial: if U is an affine cover of SpecA and M is an A-module such that
M |U is projective for all U ∈ U, why is M necessarily projective? Since A need not be Noetherian, we also
need to show M is finitely generated and presented given that its localizations are. This is not a super
important point, so it’s left as an exercise. Once M is finitely presented, you can show that for any f ∈ A,
(9.3) HomA(M,N)[f−1] = HomA[f−1](M [f−1], N [f−1]).
This is definitely false if you don’t assume finite presentation of M ! Anyways, using this, you can recover
projectivity on SpecA from projectivity on a basic affine open cover. �
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Next we’ll turn to constructions with quasicoherent sheaves, and something not quite as related, affine
morphisms.

Definition 9.4. Let F and G be quasicoherent sheaves on a scheme X and τ : F → G be a morphism. Then
we can define sheaves ker(τ), coker(τ) ∈ QCoh(X), such that for all affine opens U ⊂ X, ker(τ)|U = ker(τ |U )
and coker(τ)|U = coker(τ |U ).

For this to make sense, we need to invoke Serre’s theorem that this data actually defines a quasicoherent
sheaf, along with the fact that A→ A[f−1] is flat, which means kernels and cokernels are preserved under
pullback by an open embedding, so that gluing works.

Definition 9.5. With notation as before, there is a quasicoherent sheaf F ⊗OX
G such that on every affine

open U = SpecA ↪→ X, (F⊗OX
G)|U = F|U ⊗A G|U , and on any open V ↪→ X, (F⊗OX

G)|V = F|V ⊗OV
G|V .

Checking that this is well-defined is easier than for the kernel and cokernel; you don’t have to invoke
Serre’s theorem.

Definition 9.6. Let X be a space. A map f : Y → X is affine if for all affine schemes S and maps S → X,
the pullback S ×X Y is affine.

Example 9.7.
(1) Any map of affine schemes is affine, which is a rebranding of the theorem that fiber products preserve

affine schemes.
(2) Closed embeddings are also affine.
(3) Not all open embeddings are affne: the standard counterexample is A2 \ 0→ A2, because its fiber

product with the identity map A2 → A2 gives us back A2 \ 0, which isn’t affine. (

Affine morphisms are nice because they have nice algebraic descriptions. Specifically, affine maps Y → X,
where X is a scheme, correspond to commutative algebras in QCoh(X).

Lecture 10.

Affine morphisms and projective space: 9/21/18

Last time, we defined affine morphisms Y → X, which are those such that if you pull back by an affine
scheme SpecA→ X, Y ×X SpecA is also affine. We claimed these are equivalent to commutative algebras in
QCoh(X), akin to how affine schemes are commutative rings, but working relatively (i.e. over a scheme).

Definition 10.1. Let X be a scheme. A commutative algebra in QCoh(X) is a quasicoherent sheaf together
with an associative, commutative multiplication map m : A⊗OX

A→ A with a unit ε : OX → A.

Definition 10.2. Given a commutative algebra A ∈ QCoh(X), we can define a scheme SpecX(A) together
with an affine map to X. If B is a commutative ring, we let (SpecX(A))(B) be the set of pairs x : SpecB → X
together with maps ρ : SpecB → Specx∗(A) which are sections of the canonical map arising from the B-
algebra structure on x∗(A).

Forgetting the section defines a map to X. This map is affine because if x : SpecB → X is a map, then

(10.3) SpecX(A)×X SpecB = Spec(x∗(A)).

Definition 10.4. Let π : Y → X be an affine map of schemes and F ∈ QCoh(Y ). We will define a pushforward
π∗F ∈ QCoh(X) as follows: given any map x : SpecB → X, the pullback Y ×X SpecB is affine, isomorphic
to y : SpecC → Y for some C. Then we define x∗(π∗(F)) := y∗(F): this is a priori a C-module, but picks up
a B-module structure by the map B → C.

Exercise 10.5. π∗ and π∗ are adjoint functors, i.e. for any affine map π : X → Y , F ∈ QCoh(Y ), and
G ∈ QCoh(X), there’s a canonical isomorphism

HomQCoh(X)(G, π∗(F)) ∼= HomQCoh(Y )(π∗(G),F).

Proposition 10.6. If π : Y → X is affine, then Y = SpecX(A) for some algebra A in QCoh(X).
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Proof sketch. The key is that π∗(OY ) is a commutative algebra in QCoh(X): by Exercise 10.5, the multipli-
cation map is equivalent data to a map
(10.7) π∗(π∗(OY )⊗OX

π∗(OY )) = π∗π∗OY ⊗OY
π∗π∗OY −→ OY .

The unit of the adjunction is a map π∗π∗OY → OY , so we can pass to OY and then multiply.
We then claim that as schemes overX (i.e. with a map toX), Y → X is isomorphic to SpecX(π∗(OY ))→ X,

which one has to check. �

Exercise 10.8. Let X be a scheme. Show that closed subschemes Z ⊆ X are equivalent to ideal sheaves
I→ OX , i.e. quasicoherent sheaves I with vanishing kernel.

Projective space. Projective space Pn is a scheme designed to parametrize lines in An+1. If you try this in
A2

R, you notice that you get a circle; if you do this in A2
C, you get a sphere (harder). But in general it looks

different.
We’ll describe Pn via its functor of points. The idea is that a map S = SpecA→ Pn should be a line L

together with an embedding L→ An+1, but we have to make this precise.

Definition 10.9. Let S be a scheme. A line bundle on S is a vector bundle of rank 1, i.e. a quasicoherent
sheaf L on S locally isomorphic to OS .

When S is affine, these correspond to rank-1 projective A-modules. If S = Spec k, this exactly covers
1-dimensional k-vector spaces, and this is the right generalization to commutative rings (or even to schemes).

Now we want to embed the line in An+1, which we can think of as a map i : L→ O
⊕(n+1)
S ; “embedding”

means we want i 6= 0.

Proposition 10.10. The following are equivalent for a vector bundle E→ S and a map i : L→ E where L

is a line bundle.
(1) For all affine schemes T and maps f : T → S, f∗(L)→ f∗(E) is nonzero.
(2) (Will be done Monday)
(3) (Will be done Monday)

Definition 10.11. If the conditions in Proposition 10.10 hold, i is called everywhere nonvanishing.

Definition 10.12. Projective n-space Pn is the space whose functor of points sends an affine scheme S to
the set of isomorphism classes of data (L, i) where L is a line bundle on S and i : L→ O

⊕(n+1)
S is everywhere

nonvanishing.

There’s something to be said about morphisms, but given a map f : T → S, we can pull back L and i, and
obtain a line bundle with an everywhere nonvanishing embedding.

We need to take isomorphism classes to ensure we get a set, not a category. This also ensures that we’ve
modded out by rescaling (since that’s an isomorphism L→ L). We’ll show this is a scheme, but is usually
not affine.

Lecture 11.

Projective n-space and projectivizations: 9/24/18

“These scare quotes should be less scary than those scare quotes.”
Last time, we defined projective n-space, Pn, whose functor of points sends A to the set of isomorphism
classes of data (L, i), where L→ SpecA is a line bundle and i : L→ O

⊕(n+1)
SpecA is an everywhere nonvanishing

map.

Definition 11.1. More generally, if X is a scheme and E is a vector bundle on X, then we can define a
space P(E), the projectivization of E: if A is a commutative ring, P(E)(A) is the set of isomorphism classes
of data (L, x, i), where L is a line bundle on SpecA, x : SpecA→ X is a map (“an A-valued point”), and
i : L→ x∗(E) is everywhere nonvanishing.

To recover Pn, let X = SpecZ and E = Z⊕(n+1).

Remark 11.2. Right now, schemes and line and vector bundles probably feel very abstract. That’s OK; soon
enough we will see many, many examples of line bundles over curves, and make them very concrete. (
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Example 11.3. Consider the quasicoherent sheaf given by k[t]/(t) over A1
k := Spec k[t]. This is not a vector

bundle: it’s not locally free, because in a sense it’s nonzero over the point 0 (a one-dimensional vector space)
but vanishes everywhere else. (

Proposition 11.4. Let S be a scheme, L be a line bundle on S, E be a vector bundle on S, and i : L→ E.
The following are equivalent:

(1) The induced map Θ(i) : Θ(L)→ Θ(E) is a closed embedding.
(2) For all affine schemes T and maps α : T → S, α∗(i) is nonzero.
(3) For all fields k and maps α : Spec k → S, α∗(i) is nonzero.
(4) For all affine open subschemes U ⊆ S such that L|U ∼= OU and E|U ∼= O⊕rU , if the induced map

OU → O⊕rU sends 1 7→ (f1, . . . , fr), then (f1, . . . , fr) generates the unit ideal in Fun(U).
(5) The dual map i∨ : E∨ → L∨ is an epimorphism (i.e. its cokernel is zero).9
(6) coker(L→ E) is a vector bundle.

To make sense of this, we have to define Θ, a way of turning vector bundles into schemes. If P∨ is
unfamiliar for an A-module P , it simply means HomA(P,A).

Exercise 11.5. Let P be a finitely generated, projective A-module.
(1) Show that for all A-modules M , HomA(P,M) ∼= P∨ ⊗AM .
(2) Show that P∨ is projective.
(3) Describe a natural isomorphism P → P∨∨.

Definition 11.6. If E is a vector bundle over a scheme S, its dual vector bundle E∨ (sometimes also written
E∗) is the quasicoherent sheaf attaching to every affine open i : U → S the dual projective module of i∗E.

By Exercise 11.5, part (1), E∨ is indeed a quasicoherent sheaf.

Example 11.7. If E = O⊕rX , then E∨ ∼= O⊕rX as well, albeit not canonically. (

Duality is contravariantly functorial: a map f : F → E of vector bundles induces a dual map f∨ : E∨ → F∨

(do this on affines, where it’s precomposition for the corresponding modules).

Definition 11.8. Let E be a vector bundle on X. Its total space is the scheme

(11.9) Θ(E) := SpecX(SymOX
(E∨)).

Here, SymOX
(E) is the OX -module

(11.10) SymOX
(E) :=

⊕
n≥0

Symn
OX

(E),

where Symn
OX

(E) := (E⊗OX
n)Sn

, where the symmetric group Sn acts by permuting the elements; more
explicitly, we allow the elements in an n-tensor to be arbitrarily shuffled, which you can do with a quotient.

Example 11.11. Let X = Spec k and E = k⊕n be a k-vector space with basis e1, . . . , en. Let e1, . . . , en

denote the dual basis. Then Symn V is the vector space of degree-n homogeneous polynomials in e1, . . . , er,
and SymV = k[e1, . . . , er]. (

Lecture 12.

More vector bundles: 9/26/18

Today we’re in the business of proving Proposition 11.4.

Lemma 12.1. Let X be a scheme and A,B ∈ QCoh(X) be commutative algebras together with a map
f : A→ B of algebras. Then SpecX(B)→ SpecX(A) is a closed embedding iff f is an epimorphism.

9In many situations, “epimorphism” means “surjective,” but these are quasicoherent sheaves, so we don’t have elements to
ask about preimages of.
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This is a relative version of the definition of closed embeddings of affine schemes we gave awhile ago.
We also need to define the what taking the total space Θ does to morphisms. Ultimately this is because

(–)∨, SymOX
, and SpecX are all functors, so we know what they do on morphisms; two are contravariant and

one is covariant, so we get a covariant functor.
In part (1) of Proposition 11.4, Lemma 12.1 tells us this is equivalent to SymOX

E∨ → SymOX
L∨ is an

epimorphism. This is a Z-graded sheaf, and it suffices to show this for Symd
OX

for each d.

Exercise 12.2. Show that if E∨ → L∨, then Symd E∨ → Symd L∨ is too.
Proof of Proposition 11.4, (5) ⇐⇒ (4). We know condition (5) is equivalent to coker(i∨) = 0. This can
be checked on an open cover U, such as an affine open cover which trivializes E and L, as in (4). In this
case, for each U in U, i|U : OU → O⊕rU is determined by a row vector (f1, . . . , fr)T, and i∨|U : O⊕rU → OU
is the column vector (f1, . . . , fr). Its image is the ideal generated by (f1, . . . , fr), so the cokernel is 0 iff
(f1, . . . , fr) = Fun(U). �

Proof of Proposition 11.4, (4) =⇒ (6). We can again assume without loss of generality that U = SpecB is
affine, and now we have maps

(12.3) B

[
f1

...
fr

]
// B⊕r

[g1,...,gr]// B,

where
∑
figi = 1. Since the composition is the identity, the map is split, and so the cokernel is a direct

summand, in particular is a direct summand of a free module, and must be free. �

Exercise 12.4. Conversely, show that in Proposition 11.4, (6) =⇒ (4).
Since (2) tautologically implies (3), it suffices to show (3) =⇒ (5) and (5) =⇒ (2); (1) is addressed by

one of the exercises above, I think (TODO: I probably just missed it.)
Since coker(i) is locally finitely generated, Nakayama’s lemma applies: if V denotes the complement of

the support of coker(i), then V is open, and S = SpecA→ X factors through V iff coker(i)|S = 0. So (5) is
equivalent to V = X.

Proof of Proposition 11.4, (3) =⇒ (5). To show V = X, it suffices to show any map x : Spec k → X factors
through V , since V is open. One can show that x∗ commutes with cokernels: since Spec k is affine, it arises as
a tensor product, and tensor products are right exact.10 Therefore it suffices to show that x∗(coker(i∨)) = 0.
If x∗(i∨) is nonzero, then x∗(E)→ x∗(L) is a nonzero map to a 1-dimensional vector space, hence surjective,
and therefore the cokernel is zero. �

Proof of Proposition 11.4, (5) =⇒ (2). Let x : T → X be a map, where T if affine. As before, x∗ is right
exact, hence commutes with cokernels. By assumption, coker(i∨) = 0, so x∗(i∨) : x∗(E∨) → x∗(L∨) is an
epimorphism. This is the dual map to x∗(i), so if T 6= ∅, this means x∗(i) : x∗(L)→ x∗(E) is nonzero. �

These equivalent conditions are all examples of the nicest possible maps of vector bundles. It’s good to
have all of these different perspectives partly because they provide flexibility in the nice case, but also because
it will be useful to know what happens when things go bad. When we study projective varieties, several of
these conditions will come up. For example, it will be useful for showing Pn is a scheme!

Lecture 13.

Line bundles on Pn: 9/28/18

Theorem 13.1. Pn is a scheme.
Proof. First we need to check that Pn is a Zariski sheaf. The basic idea is that line bundles glue: if you have
line bundles on each open of an open cover, together with isomorphisms on intersections satisfying a cocycle
condition, you can glue them.

Next we need to cover it by affines. For i = 0, . . . , n, the locus {si 6= 0} ⊂ Pn is isomorphic to An. We
could say QED here, but let’s explain what’s going on.

10More generally, x∗ is a left adjoint, even not on affines; this automatically means it’s right exact.
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Let Ui := {si = 0} be defined by saying what it means for a map S → Pn factors through Ui. Specifically,
the map S → Pn is equivalent to (an isomorphism class of) data of a line bundle L on S and a map
(s0, . . . , sn+1)T : L→ O

⊕(n+1)
S which is everywhere nonvanishing. Thus the map is described by s∨0 , s∨n ; we

say the map factors through Ui if s∨i is nonvanishing.11

First let’s check that for all i, Ui ⊂ Pn is open. Intuitively this makes sense: we’re asking for something to
not vanish, which is an open condition. More precisely, we want to show that for every affine scheme S with
a map S → Pn, the pullback Ui ×Pn S → S is open. So let S → Pn be such a map (in particular, S is affine).
This is equivalent data to a line bundle L on S and s0, . . . , sn+1 : L→ OS . That is, there are sections of the
map Θ(L∨)→ S. Then you can check that Ui = S ×Θ(L∨) Θ(L∨) \ S, where the first map S → Θ(L∨) is by
si and the second map is by the zero section.

The other claim we want to check is that Ui ∼= An. The proof is that a map S → Ui is equivalent data to
the maps s0, . . . , si−1, si+1, . . . , sn : L→ OS , since we know si : L→ OS is an isomorphism. Each sj , j 6= i,
is equivalent to a function on S: since si is nonvanishing, there are no further conditions on the remaining
maps. Thus a map to Ui is equivalent to n functions, and this is natural in S, so Ui ' An.

Finally, we need to show that U0, . . . , Un is a cover of Pn, i.e. that it pulls back to a Zariski open cover
on all affines. So once again let S → Pn be a map from an affine, so we have a line bundle L and (n+ 1)
maps s0, . . . , sn : L→ OS which collectively are nonvanishing. Without loss of generality, we can assume L

is trivial, since it’s locally trivial, and we can check that it’s an open cover locally. So it suffices to show
that S ×Pn Ui is a Zariski open cover of S, which is more or less equivalent to s0, . . . , sn being everywhere
nonvanishing, in view of what we did last lecture. �

Typically, people only use functions, rather than sections of a line bundle, to provide a first naïve definition
of Pn. In this case, the Zariski sheaf property fails: you can glue trivial line bundles to obtain something
nontrivial.

Corollary 13.2. Let E be a vector bundle on a scheme X. Then P (E) is a scheme.

Proof. X has an affine open cover U such that E|U is trivial for all U ∈ U. Then P(E) ×X U ∼= Pn × U as
schemes. �

Pn has an important line bundle called OPn(1) (sometimes just O(1) if Pn is implicit).

Definition 13.3. The line bundle OPn(1) ∈ QCoh(Pn) is the line bundle which, given a map f : S → Pn
which is a line bundle L on S and the maps s0, . . . , sn, defines f∗(OPn(1)) := L∨.

For any n ∈ Z, we define OPn(m) := OPn(1)⊗m. If m = 0, we interpret the empty tensor product as OPn ,
the sheaf of functions; if m < 0, we interpret this as ((OPn(1))∨)⊗(−m).

Definition 13.4. Let X be a scheme and F ∈ QCoh(X). The sections of X, denoted Γ(X,F), is the abelian
group HomQCoh(X)(OX ,F).

That is, a section is compatible data, for all affines S and maps x : S → X, of σx ∈ x∗F regarded as a
module.

The sections Γ(X,OX) = Fun(X), and if X = SpecA, Γ(X,F) is canonically the A-module associated to
F (which we’ve just been calling F again).

Definition 13.5. If A is a commutative ring, we let PnA := Pn × SpecA.

Proposition 13.6. For r ≥ 0, Γ(PnA,O(r)) is the A-module of homogeneous degree-r polynomials with A
coefficients in n+ 1 variables.

For r = 1, a map A⊕(n+1) → Γ(PnA,O(1)) is definedc by n+ 1 maps OPn
A
→ OPn

A
(1), i.e. for all f : S → PnA,

i.e. line bundles L with s0, . . . , sn, compatible maps OS → f∗(O(1)) which identify f∗(O(1)) ∼= L∨, and the
ith section is identified with si ∈ L∨. Following your nose with the formal stuff provides a complete proof.

Over the next few days we’ll discuss finite conditions: the nicest possible schemes are smooth projective
curves, and we’ll discuss these soon.

11That is, the collection (s0, . . . , sn)T is always nonvanishing, but we’re asking specifically about si, which is stronger.
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Lecture 14.

Finiteness hypotheses: 10/1/18

Today, we will discuss various finiteness hypotheses one can put on a scheme.

Definition 14.1. A scheme X is quasicompact if it has a finite affine open cover.

Quasicompactness refers to the usual definition of compactness with respect to the Zariski topology, but
without any Hausdorff condition. On the other hand, this has nothing to do with compactness in the “usual”
topological sense. For example, the line A1 is quasicompact. The analogue of compactness in the usual sense
(e.g. manifold topology) is known as properness.

Example 14.2. Pn is quasicompact, since it has a cover by n+ 1 opens, as we saw on Friday. (

Proposition 14.3. If A is a commutative ring and I ⊂ A is an ideal, then SpecA\Spec(A/I) is quasicompact
if I is finitely generated.

The converse is false.

Example 14.4. Let A∞k := Spec k[x1, x2, x3, . . . ]. Then A∞k \ 0 is a scheme which is not quasicompact. (

Remark 14.5. More generally, a morphism f : X → Y is said to be quasicompact if for all affine schemes S
and maps S → Y , X ×Y S is quasicompact. This reduces to the notion of quasicompactness for schemes
when Y = SpecZ, because a map to SpecZ is no data at all. (

Definition 14.6. A scheme X is quasiseparated if the intersection of two affine opens in X is quasicompact.

Equivalently, the diagonal map ∆: X → X ×X is a quasicompact morphism. Therefore one may more
generally say a quasiseparated morphism f : X → Y is one for which the diagonal ∆f : X → X ×Y X is
quasicompact.

Example 14.7. The idea is that separatedness is kind of like the Hausdorff property in topology. As such,
we can import the standard counterexample, A1 with two origins. The idea is to take two copies of A1, say
with coordinates t and u, and glue them together along A1 \ 0 via the identification t↔ u. (This is different
from P1, which is separated, where we identified t↔ u−1.) (

Exercise 14.8. Quasicompact, quasiseparated morphisms are exactly those where the pushforward of
quasicoherent sheaves is well-behaved. Specifically, given a map f : X → Y and a quasicoherent sheaf F on
X, we define its pushforward f∗F on Y as follows: given an affine open subscheme j : U ↪→ Y , we specify

j∗f∗F := Γ(X ×Y U,F|X×Y U ).

Show that this is quasicoherent if f is quasicompact and quasiseparated. (TODO: converse?)

Even when we restrict to quasicompact, quasiseparated things, we’re still looking at extremely general
objects, considerably moreso than are studied in classical algebraic geometry. So here are some more finiteness
hypotheses.

Definition 14.9. Let f : X → Y be a map of schemes.
(1) Suppose Y = SpecA. Then f is locally of finite type (LFT) if for all affine opens SpecB ⊂ X, the

induced map of rings A→ B makes B into a finitely generated algebra, i.e. B ∼= A[x1, . . . , xn]/I for
some ideal I ⊂ A[x1, . . . , xn].

(2) If in addition X is quasicompact, then f is called finite type.
(3) For general Y , f is locally finite type (resp. finite type) if for all affine opens V ⊆ Y , the map

X ×Y V → V is locally finite type (resp. finite type).

These properties roughly mean that you’re covered by finite type algebras. It’s not hard to prove that
when Y is affine, these definitions coincide.
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Theorem 14.10 (Hilbert’s basis theorem). Suppose A is a Noetherian ring amd B is a finitely generated
A-algebra. Then there is a fiber product square

SpecB //

��

AnA

��
0 // AmA .

Here AkA := SpecA[x1, . . . , xk].

This will be highly noncanonical.

Remark 14.11. This is telling us that SpecB is the zero locus of m polynomials in n variables with coefficients
in A, or that more generally, a finite type Noetherian scheme is exactly one which locally admits such a
description. Since this was one of our motivations for studying algebraic geometry from the beginning, this is
an excellent hypothesis to have. (

Though you’ve probably already seen the proof if you know what a Noetherian ring is, it’s still good to go
over.

Definition 14.12. Let V be an abelian group. A filtration on V is a sequence

(14.13) F0V ⊆ F1V ⊆ · · · ⊆ V,

such that

(14.14)
⋃
n≥0

FnV = V.

The associated graded is a graded abelian group gr•(V ) :=
⊕

n≥0 grnV , where grnV := FnV/Fn−1V , and we
declare F−1V := 0.

Filtrations are more general than gradings, but are really nice to have, and can make some arguments a
lot cleaner.

Definition 14.15. If (V, Fn) and (W,F ′n) are filtrations, a morphism of filtered abelian groups is a map
f : V →W such that f(FnV ) ⊆ F ′nW .

Exercise 14.16. Show that if gr•(f) : gr•(V )→ gr•(W ) is injective (resp. surjective, resp. bijective), then f
is injective (resp. surjective, resp. bijective).

This is a major tool in working with filtrations, especially in the (common) case where the filtered objects
are complicated, but their associated gradeds are simpler.

Definition 14.17. A filtered algebra is an algebra A filtered as an abelian group such that multiplication
carries FnA× FmA ⊆ Fn+mA.

Example 14.18. The algebra A = k[x] is filtered by degree: we let FnA denote the polynomials of degree
at most n. (

If A is a filtered abelian group, FnA is also an abelian group, but if A is an algebra, FnA is generally not
a subalgebra, as in the above example.

If A is a filtered algebra, we can make sense of the notion of filtered A-modules, where the filtrations given
by the A-action and the module are compatible in the least surprising way.

Lemma 14.19. If M is a filtered A-module and gr•(M) is a finitely generated gr•(A)-module, then M is a
finitely generated A-module.

Proof. Let x1, . . . , xn ∈ gr•M be a generating set. We can assume they’re homogeneous, i.e. each xi lives in
some grki

M . Lift xi to some xi ∈ FikM ; then the map ϕ : A⊕n → M sending the standard basis element
ei 7→ xi is surjective after passing to the associated graded, hence by Exercise 14.16 is surjective, and therefore
{x1, . . . , xn} generates M . �
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Proof of Theorem 14.10. By induction, it suffices to show that if A is Noetherian, then A[x] is too. Filter
A[x] by degree, and if I ⊆ A is an ideal, let FnI := I ∩ FnA[x].

We claim gr•I is finitely generated over gr•A[x]. To see this, note that the multiplication-by-x map
griI → gri+1I is an injection for all i, and furthermore its image in A corresponds to the inclusion of an
ideal. Therefore, by Noetherianness of A, this chain must stabilize at some N ∈ N, and therefore gr•I is
generated by

⊕N
i=0 griI. Because A is Noetherian, each griI is a finitely generated A-module as well, showing

the claim. �

Lecture 15.

Connected and irreducible components: 10/3/18

I wasn’t in class for this lecture; these notes were generously provided by Tom Gannon.

Definition 15.1. A scheme X is locally Noetherian if it admits an open cover by affine open sets of the form
SpecA for Noetherian A. If X is also quasicompact, we say X is Noetherian.

Remark 15.2. Note that if U is a subset of a Noetherian scheme X, then U is quasicompact. To see this, pick
an affine open cover by Noetherian rings SpecAi for i ∈ {1, . . . ,m}; then U c is given by a finitely generated
ideal. This also shows that U is Noetherian. (

Lemma 15.3. A scheme X is Noetherian if and only if it is topologically Noetherian, that is, for all chains
of closed Zi ⊂ X, i.e. Z0 ⊃ Z1 ⊃ . . . , the Zi stabilize.

The affine case is just rewriting the definition, and the general case just follows from compactness (exercise!).
This shows one odd feature of the Zariski topology — we certainly don’t have that C with the standard
topology is Noetherian! An informal way of stating the above lemma is that taking a nontrivial closed subset
is a big deal.

Remark 15.4. The equivalent conditions above yield the increasing chain condition for open sets but the
increasing chain condition on open sets does not imply X is Noetherian (for example, X = Spec k[xi]i∈N/(x2

i )).
This example also shows that there is not a bijection between closed subschemes and open subschemes,
although the dual numbers also shows this. (

Definition 15.5. A scheme X is connected if for all open covers X = U ∪ V such that U ∩ V = ∅, either
U = X or V = X.

Lemma 15.6. If X is a Noetherian scheme, then X can be written as the disjoint union of finitely many
connected components of X, i.e. open and closed connected subschemes.

This involves writing the definition of a disjoint union of schemes
∐n
i=1Xi, which we will leave as an

exercise, but essentially any solution that isn’t the functor (
∐n
i=1Xi) :=

∐n
i=1Xi(A) will likely work.

Proof. If x is a field valued point, then by Noetherianness there is a minimal Ux ⊂ X which is closed and
open and contains x. By minimality, Ux is connected and {Ux}x is an open cover, where x varies over all
the field valued points, so because quasicompactness implies Zariski topology compactness (since every open
cover of an affine admits a finite refinement), there are only finitely many Ux. �

Definition 15.7. For a quasicompact quasiseparated (qcqs) morphism f : X → Y (for example, f finite
type–most importantly this is the setting where pushforward is defined on quasicoherent sheaves), we obtain
by adjunction a map OY → f∗OX with some kernel I. This corresponds to a closed subscheme of Y , which
we will denote f(X) and will call the scheme-theoretic image.

Exercise 15.8. If X = SpecA→ SpecB = Y corresponds to a ring map φ : A→ B, we can factor φ as a
composite of a surjection and an injection A→ φ(A)→ B.

The picture to have in mind here is that X → f(X) ⊂ Y , where X → f(X) is dominant:

Definition 15.9. We say a qcqs morphism f : X → Y is dominant if f(X) = Y .

Equivalently, f is dominant if OY → f∗OX is a monomorphism. The idea here is that if you have a point in
the closure of the image there is a function realizing this, and we have a rough equivalent between a function
being dominant and the associated map on functions being injective.
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Example 15.10. The map A1 \ 0→ A1 is dominant.

Definition 15.11. A quasicompact U ⊂ X is dense if U = X.

As an exercise, you can look up the relationship between density and associated primes for a ring A.

Definition 15.12. A Noetherian scheme X is irreducible if for every closed Z ⊂ X with Z 6= X, X \ Z is
dense.

Remark 15.13. Other textbooks often refer to this as a scheme being integral. (

Example 15.14. The scheme Spec k[s, t]/(st) is not irreducible, which can be seen by setting Z = {t = 0}.

Example 15.15. The scheme Spec k[ε]/(ε2) is not irreducible since the closed subscheme Spec k has empty
complement (which is in particular not dense).

Exercise 15.16. We have that SpecA is irreducible if and only if A is an integral domain.

Exercise 15.17. If X = SpecA, then the irreducible closed subschemes of X correspond to primes of A.

Definition 15.18. An irreducible component of X is a maximal irreducible subscheme.

Lemma 15.19. If X is Noetherian, then there are only finitely many irreducible components and every field
valued point factors through each one.

We’ll prove this next time.

Lecture 16.

Irreducibility: 10/5/18

Today we’re going to discuss a way to describe schemes as decomposed into simpler parts. One way to do
this is to use connected components, but there’s another notion, called reducibility, which is more general,
and which we’ll use more frequently. The idea is that Spec k[x, y]/(xy), the x- and y-axes inside A2

k, is a
union of two A1

ks, so we want to call it reducible.

Lemma 16.1. Let Z ⊆ X be an irreducible component and f be a function on X with f |Z = 0. Then there’s
a g ∈ Fun(X) with g|Z 6= 0 and fNg = 0 for N � 0.

Proof. For X affine, Z is equivalent data to a prime ideal p because Z is irreducible, and minimal because Z
is a component, and f must be in p. The localization Ap is a local ring with the image of f contained in the
maximal ideal, and Ap[f−1] = 0.

In general, if you’re localizing at a multiplicative set and obtain zero, then some element of the set is zero.
We localized with respect to sfN for N ≥ 0 and s 6∈ p, so we conclude that there’s some g ∈ A \ p (so a global
function on X nonvanishing on Z), and such that gfN = 0 for some N . �

Remark 16.2. Localization has a geometric interpretation. Suppose X = SpecA and B = A/p, so B is an
integral domain. Let k denote its fraction field; if Z = SpecB, then Spec k ↪→ Z is the generic point of Z,
in the sense that in the Zariski topology, its closure contains all other points. This is perhaps a bit bizarre,
but it allows for some useful constructions: the localization SpecAp admits the geometric description of the
intersection12 of all opens U ⊆ X which contain the generic point Spec k. (

Lemma 16.3. Let X be an affine Noetherian scheme and Z ⊆ X be an irreducible component. Then there’s
a function g on X with g|Z 6= 0 and g|X\Z = 0.

Proof. Writing X = SpecA, Z corresponds to a prime ideal p, necessarily finitely generated because X is
Noetherian: p = (f1, . . . , fr). By Lemma 16.1, we can choose an N > 0 and g1, . . . , gr ∈ Fun(X) such that
gif

N
i = 0 and gi|Z 6= 0. Letting g =

∏
gi, it’s nonzero on Z, because Z is Spec of a domain.

We claim g|X\Z = 0. This is because X \Z is covered by D(fi) = {fi 6= 0}i=1,...,r, so it’s enough to see on
each D(fi); since gfNi = 0, then g|D(fi) = 0. �

Corollary 16.4. If Z ⊆ X is an irreducible component, then X \ Z isn’t dense in X.
12Well, actually an inverse limit, not an intersection. But in reasonable situations, these are the same thing.
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Proof. We can easily reduce to X affine. Then pick a g with g|Z 6= 0 and g|X\Z = 0. This means
X \ Z ⊆ {g = 0} ( X, since its complement D(g) is an open subscheme of X. �

Corollary 16.5. If X is a Noetherian scheme, it has only finitely many irreducible components.

Proof. Let {Zi}i∈I be the set of irreducible components of X, and let

(16.6) Yi := X \ (Z1 ∪ · · · ∪ Zi).
We claim Zi ( Yi but Zi+1 ⊆ Yi — we’ll prove this in just a sec, but assuming the claim we obtain a
decreasing sequence Y1 ) Y2 ) · · · if closed subschemes, so since X is Noetherian, |I| must be finite.

Now the claim. We saw that the generic point of Zi isn’t in X \ Zi in Corollary 16.4, and by definition
X \ Zi ⊇ Yi. Since Zi+1 ⊆ Yi and
(16.7) Zi+1 ∩X \ (Z1 ∪ · · · ∪ Zi) 6= ∅,

because the components Zi are distinct, then by irreducibility, Zi+1 is contained in the closure of X \
(Z1 ∪ · · · ∪ Zi). �

Definition 16.8. The Krull dimension dimX of a scheme X is the largest integer d such that there is a
chain Z0 ( Z1 ( · · · ( Zd of irreducible subschemes of X. If there is no such integer, we say the dimension is
infinite.

There’s one main result in dimension theory.

Theorem 16.9. Let X and Y be finite type, irreducible k-schemes. If f : Y → X is a morphism, then there’s
a dense open U ⊆ X (equivalently, U is nonempty), such that either Y ×X Y = ∅ or for every field-valued
point x ∈ U , dim f−1(x) = dim Y − dimX.

Here f−1(x) := Y ×X {x}, as usual. A field-valued point is data of a field k and a map x : Spec k → U .
We’ll prove this next time, and spend the rest of today’s lecture on some corollaries.

Corollary 16.10. If X is irreducible and U ⊆ X is dense, then dimU = dimX.

Corollary 16.11. If X is irreducible and f : Y → X is dominant, then dimY ≥ dimX.

Recall that dominant means it’s injective on the level of functions. This means that when we tensor with
the fraction field of X, we get something nonzero, and therefore the fiber over the generic point is nonempty.

There are nice situations in which these theorems aren’t true. For example, let A be a discrete valuation
ring, such as k[t](t) or k[[t]]. Then k := A[t−1] is the fraction field of A, and Spec k ↪→ SpecA is a nonempty
open which is zero-dimensional, but SpecA is one-dimensional. So we really have to use the fact that we’re
finite type over a field.

Lecture 17.

Noether normalization: 10/8/18

It will be useful to have some examples to carry around.

Example 17.1. The reason for irreducibility in the hypothesis of Theorem 16.9 is that dimension behaves
poorly for reducible schemes: consider Z = {xz = 0, yz = 0} ⊂ A3

k. Geometrically, this is the union of
the xy-plane and the z-axis, which clearly has two irreducible components, and Z is two-dimensional. But
Z \ {xy = 0} is open in Z and has dimension 1. We would like the dimension of open subsets to be the same
as that of the entire scheme, forcing us to consider irreducibility. (

Example 17.2. For a typical, useful example, consider the map A2 → A2 sending (x, y) 7→ (x, xy).13 The
fiber at a field-valued point (x, y) with x 6= 0 is a point. The fiber at (0, y) is empty for y 6= 0, and at the
origin, the fiber is an A1.

So on A2 \ 0, which is an open, dense set, we get that the fibers are either empty or have the correct
dimension; otherwise they could be “too big.” (

13This is called the blowup of the plane at 0, and fits into a more general theory of blowups.
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The main tool in our proof of Theorem 16.9 is the theory of finite morphisms, and in fact we’ll end up
reducing to Nakayama’s lemma.

Exercise 17.3. As a warm-up for this kind of argument, use Nakayama’s lemma to show that if F is a
locally finitely generated QC sheaf on an irreducible scheme, then there exists a nonempty open U such that
F|U is a vector bundle.

Definition 17.4. A morphism of schemes f : Y → X is finite if it’s affine and for every affine open
U = SpecA ⊆ X, if Y ×X U = SpecB, then B is a finitely generated A-module.

This is very strong: finite type was asking about finite generation as an algebra: k[x] is a finitely-generated
k-algebra but not a finitely generated k-module. Therefore A1

k isn’t finite over Spec k!

Remark 17.5. If f is an affine morphism, we showed that there’s a sheaf of QC algebras A with X = SpecY (A).
Then, f is finite iff A is locally finitely generated as a quasicoherent sheaf (

Example 17.6.
(1) The best example to have in mind is to fix a field k, and let B be a finite-dimensional k-algebra.

Then Y = SpecB is finite over Spec k. This implies B is Artinian (which is a good exercise). So, for
example, SpecC over SpecR, or the dual numbers or other nilpotent things.

(2) A closed embedding is finite, because A/I is generated as an A-module by 1A. (

Proposition 17.7. Let A be a ring and X := SpecA. Let Y ⊂ X×A1
A be a closed subscheme, corresponding

to an ideal I of A[x], let and f : Y → X be the restriction of the projection map. Then f is finite iff I contains
a monic polynomial.

Proof. First assume f is finite, so there are ϕ1, . . . , ϕN ∈ A[t] which generate A[t]/I as an A-module. Choose
d such that d > deg(ϕi) for all i. Then there exist a1, . . . , aN ∈ A such that

(17.8) td =
N∑
i=1

aiϕi mod I,

so

(17.9) td −
N∑
i=1

aiϕi

is in I and is monic.
The converse is basically the same logic, but in reverse order: take your monic polynomial and lift it to get

generators. �

Finite morphisms are great because Nakayama’s lemma applies to them. We’ll see this in the proof of
Theorem 16.9. We’ll also need another tool, Noether normalization.

Theorem 17.10 (Noether normalization). Let X ( An+1
k be a closed subscheme. Then there’s a finite field

extension k ↪→ k′ and a projection map An+1
k′ → Ank′ such that the induced map f : Xk′ → Ank′ is finite. If

moreover X is the zero locus of a single polynomial, then f is dominant.

Here Xk′ := X ×Spec k Spec k′. By a projection, we mean a map induced by a linear surjection (k′)n+1 →
(k′)n.

Remark 17.11. Suppose k isn’t a finite field. Then we don’t need to pass to k′. (This will be evident from
the proof.) (

Example 17.12. For example, consider the map A1\0 ↪→ A2 induced from the map t 7→ (t, t−1). Algebraically,
we get k[t] ↪→ k[t, t−1], which is not finite at the level of algebras (since we can take t−N for arbitrarily large
N). Geometrically, you can use Nakayama’s lemma to show that fibers of dominant maps over field-valued
points must be nonempty, but the fiber over 0 is empty.

But you can project along any other line (except the y-axis), such as the diagonal, then the map is in fact
finite. (
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Lecture 18.

Proof of Noether normalization: 10/10/18

Last time, we discussed finite morphisms and Noether normalization. The following exercise might provide
some useful intuition about finite morphisms.

Exercise 18.1. Let f : X → Y be a finite, dominant map. Then for all field-valued points x ∈ X, f−1(x) is
nonempty and zero-dimensional. Also show that dimX = dimY .

Hint: Nakayama’s lemma.
We then discussd Example 17.12, about {xy = 1} ⊂ A2. It doesn’t project onto every line through the

origin in A1, but everything but the x- and y-axes is good. One interesting way to think about this is that
there’s a P1 “at infinity” of A2, where, imprecisely speaking, we think of P1 as a circle of very large radiyus
(though we need to identify antipodal points); a line is sent to its point of intersection with the circle. Then,
we have an open subset of P1 (again, everything except the x- and y-axes) where the projection is finite and
dominant.

More generally, suppose X ⊆ An+1. We can embed An+1 ⊂ Pn+1 as an open subscheme; let X be the
closure of X in Pn+1. The complement of An+1 inside Pn+1 is a Pn, and we let Asym(X) := X ∩ Pn; we can
think of this as where X is going “at infinity.”

If X 6= An+1, then Asym(X) 6= Pn. We claim there exists a finite extension k ↪→ k′ and a k′-point of Pn
not in Asym(X), and that projecting away from this line `, the map is finite. By “projecting away from the
line,” we mean that there’s a projection π : An+1

k′ → Ank′ such that ker(π) = `.

Proof of Theorem 16.9. More explicitly, first we can reduce to the case where X = {f = 0}, for some nonzero
and nonconstant f . Since X ( A1, so we can choose such an f vanishing on X. Then X ↪→ {f = 0} is a
closed embedding, hence a finite morphism. It’s easy to see that finite maps are closed under compositions, so
the map {f = 0} ↪→ An+1 � An is finite, and therefore the theorem for {f = 0} implies the theorem for X.

Now we have f ∈ k[x, y1, . . . , yn] and X = {f = 0}, which in particular is nonempty. Write

(18.2) f =
d∑
i=0

fi,

such that each fi is homogeneous of degree i and fd is nonzero.

Example 18.3. If f(x) = x3 + 2x2y, then f is homogeneous of degree 3. For f(x) = x3 + 1, we’d let f0 = 1,
f1 = f2 = 0, and f3 = x3. (

Exercise 18.4. Show that if X = {f = 0}, Asym(X) = {fd = 0} ⊆ Pn. Here we’re thinking of fd as a
section of OPn(d).

Exercise 18.5. Show that there exists a finite extension k ↪→ k′ and some v ∈ (k′)n+1 such that fd(v) 6= 0.
Moreover, if k is infinite, we can choose k′ = k.

This is a general fact about nonconstant polynomials. We will now write k = k′ for ease of notation.
Moreover, up to a linear change of coordinates, we can assume v = (1, 0, . . . , 0), which doesn’t affect
homogeneity.

If
(18.6) fd = axd + bxd1y1 + cxd−1y2 + · · · ,
then fd(1, 0, . . . , 0) = a, and up to scaling, we can assume a = 1. (We know a 6= 0 because fd(v) 6= 0).

We can write f =
∑d
i=0 gix

i for gi ∈ k[y1, . . . , yn]; by construction, gd = 1. Therefore, as a polynomial
in x, f is monic, and therefore by last time, k[y1, . . . , yn][x]/(f) is finite over k[y1, . . . , yn] (specifically,
1, x, . . . , xd−1 generate it). And since d > 0, k[y1, . . . , yn] ↪→ k[y1, . . . , yn][x]/(f), which implies dominance.
Therefore we’ve proven the theorem. �

Corollary 18.7 (Nullstellensatz). Let X be a finite-type affine scheme over k. Then there’s a finite extension
k ↪→ k′ and a finite dominant map Xk′ → Ank′ for some n. If k is infinite, we can take k′ = k.

There are other theorems called the Nullstellensatz, but they’re all related to each other and to this one.



Arun Debray December 10, 2018 29

Proof. We know Xk′ ( Ank′ for some n, and we have a finite dominant map π : Ank′ → An−1
k′ ; if π(X) = An+1

k′ ,
we’re done; otherwise we can repeat.

TODO: then something else happened, which I didn’t quite follow. �

In particular, the ring of functions on Xk′ is finite-dimensional over k′.

Corollary 18.8. dimk Ank = n.

Proof. We can induct: n = 0 is clear, so assume it for Ank , and we’ll show it for An+1
k . Let Z ( An+1 be a

closed, irreducible NTS; then dimZ ≤ n. Since Z ⊂ {f = 0} for some f , then it admits a finite dominant
map to Ank , so dim{f = 0} = n ≥ dimZ by induction. �

Lecture 19.

More cool facts from dimension theory: 10/12/18

Today we’ll continue deducing stuff from Theorems 16.9 and 17.10. For example, at the end of the last
class, we showed that dimAn is n, so if f ∈ k[x1, . . . , xn] is nonconstant, then {f = 0} is (n− 1)-dimensional,
and this is true for all irreducible components of X.

Definition 19.1. An irreducible scheme X is caternary if for all closed subschemes Z ( X, there’s a closed
subscheme Z ′ ⊆ X containing Z as a closed subscheme and such that dimZ ′ = dimX − 1.

We basically proved the following while proving Theorem 17.10.

Corollary 19.2. An is catenary.

Remark 19.3. The word catenary comes from the word for “chain” in a Romance language (e.g. in Italian,
it’s catena), presumably because it gives us chains of closed subschemes. (

More generally:

Corollary 19.4. If X is an irreducible finite-type scheme over an infinite field k, then X is catenary.

Proof. We can quickly reduce to the case where X is affine. Noether normalization means we may choose
a finite dominant map π : X → Ank ; hence dimX = n. Let Z ( X be maximal under closed irreducible
subschemes contained in X. We want to show dimZ = n− 1.

The restriction π|Z : Z → π(Z) is also finite dominant, so it suffices to show dim π(Z) = n− 1. If this is
not the case, then since Ank is catenary, we can choose an (n− 1)-dimensional irreducible Z ′ ⊂ Ank and strictly
containing π(Z).

The theory of finite morphisms (more specifically, going-up and going-down theorems applied to X → An),
Z is not an irreducible component of π−1(Z ′), which is a contradiction. �

This is an important result that’s easy to take for granted — it is one of the facts about dimension that
is an ansatz about any theory of dimension in geometry: all k-points look the same in a variety over k. If
something like this were not true, there would have to be a different theory of dimension. It’s not so surprising
it reduces to studying Ank , with its large symmetry group.

There are two major ways to induct on dimension for varieties over fields: project onto a lower-dimensional
subscheme, and take the intersection with a hyperplane. We used the former for this proof.

Remark 19.5. The proof of Corollary 19.4 strongly depends on the Nullstellensatz, and in particular, is not
true over more general rings: if A is a DVR, then SpecA[x] isn’t catenary. But dimension is set up to behave
well over fields, so maybe this isn’t so sad. (

Corollary 19.6. If X is irreducible and finite type over k, and U ⊆ X is a nonempty open, then dimU =
dimX.

Proof sketch. Without loss of generality, we can assume X = SpecA is affine. Let x ∈ U be a closed point,
hence Spec k′ for some extension k ↪→ k′, and we have data of a surjective map A→ k′ (and, if U = SpecB,
data of a surjective map B → k′). There’s a closed, irreducible subscheme Z ( X containing x and such that
dimZ = dimX − 1.



30 M392c (Algebraic geometry) Lecture Notes

The intersection Z ∩U is a nonempty, irreducible, proper closed subscheme of U , and is an open subscheme
of Z. Inducting on dimX,
(19.7) dimZ ∩ U = dimZ = dimX − 1,
so dimU > dimX − 1, hence dimU ≥ dimX. The other inequality is easy: take closures. �

Lemma 19.8. If X is irreducible and Y is a closed subscheme of X × A1, then either
• Y is X × A1, or
• there’s a nonempty open U ⊆ X such that Y ×X U → U is finite.

The idea is best illuminated when working over a field and X = Spec k. There, the lemma that closed
subsets of A1 that aren’t A1 are just finitely many points.

Proof. As usual we can assume X = SpecA is affine, so Y = SpecA[t]/I for an ideal I ⊆ A[t]. The first
option is I = 0, so we assume I 6= 0, so there’s a nonzero f ∈ I, and f =

∑d
i=0 ait

i for ai ∈ A with ad 6= 0.
If U = {ad 6= 0}, then U is a nonempty open subscheme of X. One can show that I contains a monic
polynomial over U , and we saw this is equivalent to Y ×X U → U being finite. �

Lecture 20.

The main theorem of dimension theory: 10/15/18

I wasn’t in class for this lecture; these notes were generously provided by Tom Gannon.
Today, we’ll prove the main theorem of dimension theory.

Proof. By taking an affine open subset of X realizing its dimension, we can assume that X is affine. Similarly,
we may then take an affine open subset of Y and assume that Y is also an irreducible affine scheme. Then by
our finite type assumptions we may write Y as a closed subscheme of X × An for some n.

Define pi : X × Ai → X × Ai−1 to be projection onto the first factor, Yn := Y , and for i ∈ {0, ..., n− 1}
iteratively take Yi := pi+1(Yi+1) and πi : Yi → Yi−1. This is summarized in the commutative diagram below,
which made me have new found respect for Arun because I am reasonably sure he could have produced this
during class:

Y = Yn
� � //

πn

��

X × An

pn

��
Yn−1

� � //

πn−1��

X × An−1

pn−1��
...

π1

��

...

p1

��
X = Y0

� � // X

Note that πi : Yi → Yi−1 embeds into the situation of the lemma. Descending inductively, we will set
Ui ⊂ Yi with the property that Y = Yn → Yi has fibers of the expected dimension over Ui. Then taking
U = U0 we will be done, once we show that such Ui exist. Note by the irreducibility of Y , we can take our
“base case” Un = Y .

floop
TODOFinish this proof. (This is also proven in Ravi Vakil’s notes–Theorem 11.4.1) �

Remark 20.1. The idea here is to make our map Y → X as a close as possible to the projection map
X ×A1 → X, a situation we can study well. A key step here is that each open has the correct dimension. (

Remark 20.2. It is also true (Chevalley) that if f : Y → X is a dominant map between irreducible finite type k
-schemes and x is a field valued point then dim(Yx) ≥ dim(Y )− dim(X). We saw this in our (x, y)→ (x, xy)
example. Furthermore, if f is flat (the algebro-geometric generalization of a flat morphism of rings), all
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nonempty fibers are nonempty dimension. There is even a converse when X and Y are smooth. We will
discuss what smoothness means now. (

The idea behind smoothness is that we can formally compute derivatives of polynomials over any field. In
other words, calculus and differentials make sense formally, although some strange things occur. One main
thing that comes up is that d

dt t
p = 0 in characteristic p.

Definition 20.3. For an A module M , a (k-linear) derivation is a k-linear map δ : A→M satisfying the
product rule.

Example 20.4. If A = k[t], then d
dt : A→ A is a derivation. More generally, d

dti : k[t1, ..., tn]→ k[t1, ..., tn]
is a derivation. (

These derivations are best thought of as derivations along some vector field, at least when M = A. In
general, it’s not a terrible simplification to think of M as a vector bundle and that a derivation can produce
vector fields.

Lecture 21.

Differentials and derivations: 10/17/18

“It’s not a field, but it’s psychologically a field.”
Today we’re going to talk about differentials and derivations, which are pretty important. For this lecture,

X = SpecA is an affine scheme over a field k.

Definition 21.1. If M is an A-module, a derivation δ : A→M is an A-linear map satisfying the Leibniz
rule

δ(fg) = fδ(g) + gδ(f).
The set of derivations from A to M is denoted DerA(A,M); it is naturally an A-module.

A vector field is a derivation δ : A→ A.

In differential geometry, a vector field gives you a way to differentiate functions.
Derivations are corepresented by a particular A-module (i.e. quasicoherent sheaf on X) Ω1

X : that is, it’s
equipped with a derivation d: OX → Ω1

X such that for all A-modules M , restriction along d defines an
A-linear isomorphism

(21.2) HomA(Ω1
X ,M)

∼=−→ DerA(A,M).
The proof is a contruction: let Ω1

X be generated as an A-module by elements {df | f ∈ A} with relations
d(fg) = f dg + g df for all f, g ∈ A(21.3a)
d(λf) = λ df for all λ ∈ k.(21.3b)

Lemma 21.4. If f ∈ A and n ≥ 1, then d(fn) = nfn−1 df ∈ Ω1
X .

Proof. Induct on n: it’s clear for n = 1, and assuming it for n, it follows for n+ 1 using the Leibniz rule on
fn+1 = (fn)(f). �

As a corollary, d(1) = 0, as d(1n) = d(1).

Example 21.5. For X = A1
k = Spec k[t], we have dt ∈ Ω1

A1
k
. We claim Ω1

A1
k
is freely generated by dt, i.e.

Ω1
A1

k

∼= OA1
k
· dt.

The proof is that, given a k[t]-module M and a derivation δ : k[t]→M , if f =
∑
ait ∈ k[t], then in M ,

(21.6) δ(f) =
∑
i≥1

aiit
i−1δ(t) ∈M.

so it’s spanned by dt. Conversely, given an element δ(t) ∈M , there’s a unique derivation δ : k[t]→M sending
t 7→ δ(t), by the universal property, so k[t]-linear maps Ω1

X → M are uniquely determined by where they
send dt. (

So if you boil off the abstraction, all you need is to know the derivative of a polynomial. Hopefully this is
reassuring.
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Example 21.7. Now take X = Ank = Spec k[t1, . . . , tn]. Now Ω1
An

k
is a free k[t1, . . . , tn]-module of rank n,

with a basis dt1, . . . ,dtn, and

(21.8) df =
n∑
i=1

∂f

∂ti
dti.

The proof is essentially the same as for Example 21.5: once you know where t1, . . . , tn go, everything else is
forced by linearity and the Leibniz rule. (

For a general finite type affine X = SpecA, there’s a general algorithm to compute Ω1
X : first let f1, . . . , fr

generate A as a k-algebra, and write
(21.9) A ∼= k[t1, . . . , tr]/(g1, . . . , gs)
for some g1, . . . , gs encoding the relations between the fi. Then Ω1

X is generated by df1, . . . , dfr with relations
dgi|X = 0 for i = 1, . . . , s.

What’s going on here? Well a map ϕ : Y → X of affine k-schemes induces a map of A-modules dϕ : Ω1
X →

ϕ∗Ω1
Y : take the universal differential dY : OY → Ω1

Y and push it forward to X: ϕ∗dY : ϕ∗OY → ϕ∗Ω1
Y . Then

precompose with ϕ∗ : OX → OY (pullback of functions); this is a differential OX → ϕ∗Ω1
Y , hence corresponds

uniquely to an A-module map Ω1
X → ϕ∗Ω1

Y . Somewhat more explicitly, the characteristic formula is
(21.10) dϕ(f dg) = (fϕ) d(gϕ).

Remark 21.11. Often, Ω1
X is denoted Ω1

X/k: k-linearity is made more explicit. For example, nothing we’ve
done so far requires k to be a field, so we could work with affine schemes over a ring B and study the module
of differentials Ω1

X/B . (

Suppose i : X ↪→ Y is a closed embedding of affine schemes over k. Then one can show that the induced
map i∗Ω1

Y → Ω1
X is surjective; if I denotes its kernel, then I ⊆ OY is an ideal.

Example 21.12. Ω1
X isn’t always free; for example, suppose k has characteristic zero andX = Spec(k[t]/(tn)).

Using the above algorithm, one can show Ω1
X is torsion. (

Lecture 22.

Smoothness: 10/19/18

“I’ll stick to the party line.”

Lemma 22.1. Let k be a field, A be a k-algebra, and f ∈ A. If j : U ↪→ X = SpecA denotes the locus where
f 6= 0, then restriction defines an isomorphism j∗Ω1

X

∼=→ Ω1
U .

Proof. Let M be an A[f−1]-module, which is the same thing as a quasicoherent sheaf on U . Thinking of M
as an A-module (i.e. j∗M), a derivation δ : A→M is the same thing as a map j∗Ω1

X →M by adjunction.
Then δ extends uniquely to a derivation δ̃ on A[f−1], because we know what it has to be on f−1 by the
Leibniz rule:
(22.2) δ̃(f−n) = −nf−n−1δ̃(f).

This is a quick inductive argument: we know δ̃(1) = 0, so

(22.3) 0 = δ̃(f−nfn) = fnδ̃(f−n) + f−nδ̃(fn) = fnδ̃(f−n) + nf−1δ̃(f).
Now, given an arbitrary element g/fn ∈ A[f−1], we define

(22.4) δ̃

(
g

fn

)
= g(−n)f−n−1δ(f) + f−nδ(g).

It’s fairly straightforward to check this is well-defined, and that it gives a derivation. �

As a corollary, we can define Ω1
X as a quasicoherent sheaf on any k-scheme X: using Serre’s theorem, it

suffices to describe it on any open affine j : U ↪→ X, where it’s just Ω1
U . The above lemma guarantees this

behaves correctly on intersections.

Definition 22.5. A k-scheme X is smooth if
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(1) X is locally of finite type over k,
(2) Ω1

X is a vector bundle, and
(3) for all irreducible components Z ⊆ X, the rank of Ω1

X |Z is equal to dimZ.

Remark 22.6. In practice, X will generally be finite type. (

It is a nontrivial fact that if X is smooth, every irreducible component is a connected component.

Remark 22.7. Our definition of irreducible is slightly more restrictive than the standard definition, which
allows things such as Spec k[ε]/(ε2). What we call irreducible is generally called integral. Fortunately, it
doesn’t make a difference in Definition 22.5, though this isn’t obvious. (

Example 22.8.
(1) Ank is smooth, because Ω1

An
k
is free of rank n.

(2) Pnk is also smooth, because it has a cover by copies of Ank , which is smooth.
(3) If n ≥ 2, then X = Spec k[t]/(tn) is not smooth: it’s zero-dimensional, but Ω1

X 6= 0.
(4) Consider the coordinate axes in A2

k, X := SpecA, where A := k[x, y]/(xy). This is not smooth. It’s
one-dimensional, and as an A-module,

(22.9) Ω1
X = A[dx, dy]/(xdy + y dx).

We have a resolution of this module defining generators and relations:

(22.10) A
1 7→x dy+y dx// A⊕2 (dx,dy) // Ω1

X
// 0.

Restricting to (0, 0) ∈ X, we get

(22.11) k
0 // k⊕2 ∼= // Ω1

X |(0,0) // 0,

so here it has rank 2, which is not the dimension of X. Therefore X isn’t smooth (it turns out Ω1
X

isn’t a vector bundle, which is often the problem).
(5) Let f ∈ k[x] be a separable polynomial, meaning it has no repeated roots over the algebraic closure k

of k, and consider the scheme X = Spec k[x, y]/(y2 − f(x)).14 From dimension theory, it’s clear this
is a curve (i.e. 1-dimensional); we’ll show it’s smooth.

This time, in the resolution of Ω1
X

(22.12) A
f // A⊕2 g // Ω1

X
// 0,

f(1) = d(y2 − f(x)) = 2y dy − f ′(x) dx, so if we have a field K and x, y ∈ K satisfying y2 = f(x),
then if 2y dy = f ′(x) dx, then y = 0 and f ′(x) = 0. Then x is a root of f and f ′, but since we
assumed f is separable, this cannot happen. Therefore Ω1

X is a vector bundle.
The picture is that restricting the projection A2 → A1 sending (x, y) 7→ x to X defines a map

whose fiber at x ∈ A1 is the square roots to f(x) if f(x) 6= 0.
(6) Our last example is an important pathology to be aware of. Suppose k has characteristic p > 0, and

suppose λ ∈ k is not a pth power (in particular, k is infinite; a typical example is k = Fp(λ), the field
of rational functions in λ). Let k′ := k[t]/(tp − λ), adjoining a pth root of λ; tp − λ is irreducible, so
this is a field.

Then Spec k′ is zero-dimensional over k, but Ω1
Spec k′ 6= 0, so this point is not smooth, which

is weird. This is because Ω1
Spec k′ = k′ · dt/d(tp − λ), but d(tp − λ) = ptp−1 = 0, so Ω1

Spec k′ is
one-dimensional.

Spec k′ is, of course, smooth over itself, i.e. as a k′-scheme; smoothness is relative. The related
notion of regularity is intrinsic, but smoothness is always with respect to a base. Said a different way,
smoothness is a property of morphisms. (

14If deg f ≥ 5, this is called a hyperelliptic curve.
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Lecture 23.

Zero-dimensional smooth varieties: 10/22/18

“This lemma existed 100 years ago, and will exist 100 years following. We’re not a part of
it.”

Today we’ll classify smooth, zero-dimensional varieties over a field.

Theorem 23.1. Let X be a smooth, zero-dimensional finite-type scheme over a field k. Then

(23.2) X ∼=
n∏
i=1

ki,

where each k ↪→ ki is a separable field extension.

Remark 23.3. Recall that a field extension k ↪→ k′ is separable if for all x ∈ k′, the minimal polynomial of x
over k has no repeated roots. (

First, one ingredient we’ll need in the proof, and which will also be useful later.

Definition 23.4. Let k be a field and V be a vector space over k. The split square-zero extension associated
to this data is the commutative k-algebra A = k ⊕ V with the multiplication
(23.5) (λ, v) · (µ,w) := (λ+ µ, µ · v + λ · w).

In particular, (0, v) · (0, w) = 0 and (λ, 0) · (0, v) = (0, λv). If V is one-dimensional, this recovers the dual
numbers; you can think of split square-zero extensions as generalizations of the dual numbers.

Proof of Theorem 23.1. We can assume X = SpecA is affine. Since X is zero-dimensional, A is Artinian;
from the theory of Artinian rings, A is a product of Artinian local rings; since X is finite type, this is a finite
product. That is,

(23.6) A =
n∏
i=1

Ai,

where Ai is an Artinian local ring. Therefore we can reduce to the case where A itself is an Artinian local
ring, with maximal ideal m.

For the next step, we assume A = k′ is a finite separable extension of k; we’ll show that X = Spec k′ is
smooth, which in this setting is equivalent to showing that Ω1

X/k = 0. Ω1
X/k is generated by the elements dx

for x ∈ k′; given such an x, let fx(t) ∈ k[t] denote the minimal polynomial of x over k. Then, f(x) = 0, so
(23.7) df(x) = f ′(x) dx = 0.
Since f ′(x) 6= 0 by separability, then dx = 0.

Now let A = k ⊕ V be a split square-zero extension. The projection map A→ k is a ring map. The other
projection map A→ V is a derivation, which is a quick thing to check. Therefore, in particular, A is a field if
and only if V = 0.

Next, we’ll show that if A is an Artinian local k-algebra with nonzero maximal ideal m such that m2 = 0
and with a separable residue field k′ := A/m, then Ω1

SpecA/k 6= 0. In this setting, m acts trivially on itself,
hence the A-module structure on m passes to a k′-vector space structure.

We claim that A is isomorphic to the split square-zero extension k′ ⊕m; then this step will follow from
the previous step. We’ll show this by showing that the projection π : A→ A/m = k′ splits canonically as an
algebra map. Specifically, if x ∈ k′, let f(t) ∈ k[t] be its minimal polynomial and x̃ ∈ A be a lift of x across
π. Then, there’s a unique σ(x) ∈ A such that f(σ(x)) = 0 and π(σ(x)) = 0.

If v ∈ m, then
(23.8) f(x̃+ v) = f(x̃) + f ′(x) · v,
which you can prove by reducing to the case where f(t) = tn and check directly using the binomial theorem
and the face that v2 = 0. Therefore π(f(x̃)) = f(x) = 0, so f(x̃) ∈ m. Therefore

(23.9) v = − 1
π(f ′(x̃)) · f(x) ∈ m.
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Because f is separable, π(f ′(x̃)) 6= 0.
So we’ve shown that if A = k′ ⊕ m is a split square-zero extension, then Ω1

SpecA/k 6= 0; next we’ll show
that if A is a local k-algebra (not a field) with spearable residue field, then Ω1

SpecA/k 6= 0. Now assume that
A is a local ring with nonzero maximal ideal m with separable residue field but not necessarily assuming
m2 = 0. Note that the ring map π : A→ A/m2 is a surjection, which implies that we have a closed embedding
i : SpecA/m2 → SpecA. This closed embedding yields a surjection i∗Ω1

SpecA/k → Ω1
(SpecA/m2)/k, which we

argued last class, and because i∗Ω1
SpecA/k surjects onto something nonzero, i∗Ω1

SpecA/k is nonzero, and thus
Ω1

SpecA/k is nonzero as well. Next class, we will discuss the inseparable case. �

Lecture 24.

The local structure of smooth curves: 10/24/18

TODO: I may have missed stuff at the beginning. We’re still proving the same theorem from last time.

Lemma 24.1. Let X → Spec k be a smooth scheme over a field k. If k ↪→ L is any field extension, then
XL := X ×Spec k SpecL is also smooth.

Proof sketch. By Noether normalization, dimension is preserved under field extensions. If π : XL → X is the
map induced on the pullback, then

�(24.2) Ω1
XL/L

∼= π∗Ω1
X/k
∼= Ω1

X/k ⊗k L.

Next we’ll provide a useful criterion for separability.

Lemma 24.3. Suppose k ↪→ k′ is a finite, inseparable field extension, and let k be the algebraic closure of k.
Then B := k′ ⊗k k isn’t reduced.

Proof. Since B is an Artinian k-algebra, it’s reduced iff it’s a finite product of fields, which would mean

(24.4) B ∼=
dimk k

′∏
i=1

k.

Assuming this, the map k′ → B ∼=
∏
k gives (dimk k

′)-many distinct embeddings of k′ into k, which means
k′ is separable over k. �

Corollary 24.5. If Spec k′ isn’t smooth as a scheme over k, then (Spec k′)k isn’t smooth over k.

In this setting, (Spec k′)k is a product of Artinian rings which are not all fields (but their residue fields are
all k).

Finally, now suppose A is an Artinian local ring over k with nonzero maximal ideal m. We want to show
that Ω1

A/k 6= 0. We’ve showed it already if A/m is separable over k; otherwise Ω1
A/k surjects onto Ω1

(A/m)/k,
and we already know this is nonzero.

B ·C

Now we’ll study the local structure of smooth curves. The intuition is that, just like one-dimensional
manifolds locally look like R, a smooth curve over a field k will locally look like A1

k.

Definition 24.6. A curve over a field k is a one-dimensional, finite type scheme over k.

We may add more hypotheses later. For now, let’s throw in the assumptions that X = SpecA is affine
and smooth.

Here’s a useful definition with somewhat weird notation, but everyone uses this notation, so it’s worth
getting used to.

Definition 24.7. Let X = SpecA be a smooth curve and x be a closed point of X. Then the ideal sheaf of
x is denoted OX(−x).

If X = SpecA is affine, x = Spec k′ and the embedding determines a surjective map A� k′. In this case,
OX(−x) is the module Mx := ker(A� k′).

Theorem 24.8. OX(−x) is a line bundle.
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Remark 24.9. Assuming Theorem 24.8, we can define more line bundles OX(nx) := OX(−x)⊗−n, i.e.
(OX(−x)∨)⊗n. (

In particular, we have lots of line bundles on curves!
If X is a smooth curve, we know Ω1

X is a line bundle. Locally we can trivialize it.

Lemma 24.10. For every x ∈ X, there’s an open U ⊂ X containing X and a map s : U → A1
k such that

θU · ds ∼= Ω1
U .

Proof. The general setup is to suppose L is a line bundle on Y , and that we have sections s1, . . . , sn ∈ Γ(Y,L)
which define an epimorphism O⊕nY � L. Then {si 6= 0}ni=1 is an open cover of Y .

In our setting, we know there’s a neighorhood U0 containing x on whiche Ω1
X is trivial, generated say by

some ω =
∑
fi dsi. As in the general case, there’s an i such that {dsi 6= 0} is an open neighborhood of x. If

U = {dsi 6= 0}, then dsi generates Ω1
U . �

Remark 24.11. If you want to apply this to higher-dimensional smooth schemes, you should replace Ω1
X with

ΛtopΩ1
X . (

Proof of Theorem 24.8. The theorem is a local statement, so we can without loss of generality find an
s : X → A1

k with ds generating Ω1
X .

If k is algebraically closed, then x is a k-point of X, so s(x) ∈ A1
k = k, which means it’s a “number,” in

that nothing weird could happen. In this case, t := s− s(x) ∈ OX(−x) is a uniformizer: it trivializes this line
bundle in an open neighborhood of x.15

For more general k, x ∈ X(k′), where k ↪→ k′ is a finite field extension. In this case we compose with the
minimal polynomial. . . �

Lecture 25.

OX(−x) is a line bundle: 10/26/18

Throughout today’s lecture, X is a smooth curve (this means its irreducible components all have dimension
1) over a field k. Let x = Spec k′ be a closed point; we are in the middle of proving that O(−x), the ideal
sheaf of x, is a line bundle. We finished the proof in the case when k is algebraically closed (in which case
k′ = k).

In the general case, we constructed a t ∈ O(−x), after possibly replacing X with an open U ⊂ X. The
claim is that there exists a neighborhood V ⊂ U of x such that multiplication by t is an isomorphism
OU |V

∼=→ OU (−x)|V . This suffices, because OX(−x)|X\x ∼= OX\x.
Recall that we defined t by first choosing an s : U → A1

k such that Ω1
U = OX · ds (in words, ds trivializes

Ω1
U ); then s(x) ∈ A1

k is a closed point, so here’s an irreducible polynomial g : A1
k → A1

k with g(s(x)) = 0, and
we defined t := g ◦ s.

We first claim that t is an epimorphism in a neighborhood of x. Consider the diagram

(25.1)

t−1(0) //

��

U

s

��
s(x) //

��

A1
k

g

��
0 // A1

k.

The top square is a pullback square (that’s how we defined the preimage), and the bottom square is also
a pullback square. Therefore the outer rectangle is also a pullback square (this is formal), which suffices
because TODO.

Next, we’ll show that t−1(0) is smooth over Spec k′, again by abstract nonsense.

15This is the same thing as a uniformizer in a DVR, which (TODO) I have yet to puzzle out.
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Remark 25.2. The definition of Ω1
S/k makes sense if you replace k by a more general ring, or even in much

greater generality: for any map of schemes f : S → T , we can define a sheaf of relative differentials Ω1
S/T .

This has two important properties.
(1) Given a map T → Spec k, we obtain an exact sequence

(25.3) f∗Ω1
T/k

df // Ω1
S/k

// Ω1
S/T

// 0,

which encodes the fact, given a map of rings ϕ : B → A, that a differential δ : A→M is a B-linear
iff δ(Im(ϕ)) = 0.

(2) Suppose we have a pullback square

(25.4)

S2
g //

f

��

S1

f1

��
T2 // T1.

Then there’s an isomorphism g∗(Ω1
S1/T1

) ∼= Ω1
S2/T2

. One can prove this in the affine case, by looking
at differentials for a pushout of rings. (

Applying (25.3) to our situation, we have

(25.5) s∗Ω1
A1/k

−1 7→ds // Ω1
U/k

// Ω1
U/A1 // 0.

Since Ω1
U/A1 = 0, then s∗Ω1

A1/k
∼= Ω1

U/k. By base change (the second property), Ω1
t−1(0)/k′ = 0, so t−1(0) is

smooth over k′.16 Therefore t−1(0) ⊆ U is a smooth closed subscheme, so it’s Spec of a product of fields
which are separable over k′, or it’s a disjoint union of finitely many distinct closed points. We can then let V
be U minus those points, and we’re done.

In algebra, (t) = mx, so that multiplication by t is a map A→ m; geometrically, this means OV → OV (−x)
is an epimorphism.

We have just one step left: we need to show t isn’t a zero divisor, so that OV → OV (−x) is injective. If
V = SpecA< then t ∈ A and (t) = m.

Lemma 25.6. mn/mn+1 is a one-dimensional A/m-vector space generated by tn.

Proof. mn is clearly generated by tn, so it’s at most one-dimensional. Consider the sequence

(25.7) A/m
t // m/m2 t // · · ·

The only potential failure is if mn = mn+1 = · · · , which is impossible by Nakayama’s lemma. �

The next step is that, because A is Noetherian, the maps

(25.8) A
t // // m

t // // m2 t // // · · ·

must stabilize: each is A mod an ideal, and these ideals get bigger, hence must stabilize. Therefore for some
n� 0, multiplication by t is an isomorphism mn → mn+1. Now consider the pair of short exact sequences:

(25.9)

0 // mn //

t

��

A //

t

��

A/mn //

t

��

0

0 // mn+1 // m // m/mn+1 // 0.

The vertical maps are all surjections; for dimensional reasons, the rightmost vertical arrow is an isomorphism,
and if n� 0, the leftmost vertical arrow is too; therefore the middle one is an isomorphism.

16TODO: I might have this argument slightly out of order, but this is what I think happened.
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Lecture 26.

Rational functions: 10/29/18

Last time, we showed that if x ∈ X is a field-valued point, where X is a smooth curve over a field k, then
OX(−x) is a vector bundle.

Lemma 26.1. Let x ∈ X be a closed point and f : X → A1 be such that f ∈
⋂
n≥0 O(−n · x). Then there is

an open U ⊂ X containing x such that f |U = 0.

Proof. Without loss of generality, we have a uniformizer t for O(−x) in a neighborhood of X: OX(−x) ∼= OX ·t.
Therefore, since f ∈ OX(−x), there’s a unique (f/t) ∈ OX with t · (f/t) = f . Applying this for all n, we
recover a unique f/tn for each n, hence a sequence of ideals

(26.2) (f) ⊆
(
f

t

)
⊆
(
f

t2

)
⊆ . . .

which must stabilize for some n� 0. Therefore f/tn+1 = gf/tn, so f(1− tg) = 0. Let U := {1− tg 6= 0};
then x ∈ U , and U is the open neighborhood we wanted. �

Corollary 26.3. The following are equivalent:
(1) X has an open cover by irreducible schemes.
(2) Every connected component of f is irreducible.

Definition 26.4. If either of the equivalent conditions in Corollary 26.3 holds, X is called locally irreducible.

Proof of Corollary 26.3. Both of these are equivalent to the condition that, for all opens in X and functions
f, g : X → A1 with f · g = 0, there is an open cover U of X such that for all U ∈ U, f |U = 0 or g|U = 0.

If x ∈ X is a closed point, it suffices to show there’s a neighborhood U of x such that f |U = 0 or g|U = 0,
and we can assume there’s a uniformizer t near x. By Lemma 26.1, either f equals 0 in a neighborhood of
x, or there’s an n such that f ∈ OX(−nx) and f 6∈ OX(−(n+ 1)x). That is, f = tnf0, and f0(x) 6= 0. Our
desired open is U := {f0 6= 0}, which contains x, and 0 = fg = tnf0g; since tn isn’t a zerodivisor, f0g = 0;
since f0 is a unit, then g = 0 on U . �

We will now adopt the convention that curves are smooth and irreducible (hence also connected).

Definition 26.5. If X is a curve over k, the field of rational functions on X, denoted k(X), is the fraction
field of A, where U = SpecA any nonempty affine open in X.

Think about why this is well-defined. On A1
k, this is k(x), the field of rational functions in one variable,

which is something you’ve seen before.
If x ∈ X is a closed point, we can define a map vx : k(X)× → Z called valuation at x: specifically, for

all f ∈ k(X)×, there’s a unique vx(f) ∈ Z such that t−vx(f) · f ∈ A×mx
, where U = SpecA is an affine open

neighborhood of x and mx is the maximal ideal corresponding to the closed point x. This vx(f) is thought of
as the order of vanishing of x: vx(t) = 1, and vx(tn) = n for all t ∈ Z (a pole corresponds to a negative order
of vanishing). We will sometimes use the convention that vx(0) =∞.

Here’s why this is true. If f 6= 0, f = g1/g2 for g1, g2 ∈ Fun(X), and such that g1 ∈ OX(−nx),
g1 6∈ OX(−(n+ 1)x), g2 ∈ OX(−mx), and g2 6∈ OX(−(m+ 1)x). Then vx(f) := n−m. This behaves well
with respect to localization, hence extends well to non-affine schemes.

Remark 26.6. A few properties of the valuation: vx(fg) = vx(f)+vx(g), and vx(f+g) ≥ min{vx(f), vx(g)}. (

Lemma 26.7. If f ∈ k(X), then f ∈ Fun(X) ⊆ k(X) iff vx(f) ≥ 0 for all closed points x in X.

The idea is that if f has no poles, it’s really a function.

Proof. Let x ∈ X be an arbitrary closed point. It suffices to show that there’s an open neighborhood U
of x with f ∈ Fun(U). We may therefore assume X = SpecA is affine, so f = g1/g2 for gi ∈ Fun(X), and
vx(g1) ≥ vx(g2). We can assume vx(g2) = 0 by clearing out factors of the uniformizer t near x; therefore
g2(x) 6= 0, so x ∈ {g2 6= 0}, and f is defined as a function on this open subset. �

We conclude with an important corollary.



Arun Debray December 10, 2018 39

Corollary 26.8. If X = SpecA is affine, then A is integrally closed in k(X).

(proof TODO)

Lecture 27.

The valuative criterion for properness: 10/31/18

Today we’ll say some more nice things about curves.

Definition 27.1. A quasicoherent sheaf E on a Noetherian scheme X is coherent if it’s locally finitely
generated. Coherent sheaves form an abelian subcategory of QCoh(X) denoted Coh(X).

Lemma 27.2. Let X be a smooth curve and E ∈ Coh(X). Then E is a vector bundle iff it’s locally torsion-free,
i.e. there is some cover U of X such that if U ∈ U, s ∈ Γ(U,E), and f ∈ Γ(U,OU ) satisfy f · s = 0, then s = 0
or f = 0.

Remark 27.3. One can prove this in a more general context: using commutative algebra, a torsion-free module
is flat, and Nakayama shows that a flat coherent sheaf is a vector bundle. But we’ll do a shorter proof.

A general coherent sheaf might not feel like a sheaf of functions; sometimes your intuition is better spent
thinking of it as a sheaf of measures, because of things such as delta “functions” in a sheaf. (

Proof of Lemma 27.2. Let x ∈ X be a closed point. Then x∗E is a vector space, hence has a basis s1, . . . , sn.
If X is affine, which we can assume without loss of generality, these lift to s1, . . . , sn ∈ Γ(X,E), and define a
morphism

(27.4) (s1, . . . , sn)T : OX −→ E

whose cokernel is 0. Therefore by Nakayama’s lemma, there’s an affine open neighborhood U of x such that
s1, . . . , sn generate Γ(U,E), and such that there’s a uniformizer t on U . We claim the restriction of (27.4) to
U , O⊕nU → E|U is an isomorphism. Clearly it’s an epimorphism, so we prove it’s a monomorphism.

Suppose f1, . . . , fn ∈ Γ(U,OU ) are such that
∑
fisi = 0. Restricting to x,

(27.5)
n∑
i=1

fi(x)si = 0,

but since the elements si are linearly independent, fi(x) = 0 for all i, which is equialent to fi ∈ t·OU = OU (−x).
Therefore

(27.6)
n∑
i=1

t

(
fi
t

)
si = 0,

so by torsion-freeness,
∑

(fi/t)si = 0. Iterating, we can show that each fi vanishes to infinite order, but that
can only happen when fi = 0. �

Theorem 27.7 (Valuative criterion of properness). Let U ⊆ X be a nonempty open in an irreducible smooth
curve X. Then any map U → Pn extends uniquely to X.

Remark 27.8. This is very false in higher dimensions: for example, consider the map A2 \ {0} → P1 which
sends a point to the line it’s on. There’s no way to extend this to A2. (

Proof of Theorem 27.7. By uniqueness, we can reduce to the case where X = SpecA and U = {f 6= 0} ⊂ X
for some f ∈ A. The map U → Pn is equivalent to a line bundle LU on U , which is equivalent to an
A[f−1]-module, which we also denote LU , together with (n+ 1) sections s0, . . . , sn everywhere nonzero, which
correspond to generators over A[f−1].

Now let LX := A · s0 + · · · + A · sn ⊆ LU , which defines a quasicoherent sheaf on X, and since it’s a
submodule of LU , it’s torsion-free. Hence, by Lemma 27.2, it’s a vector bundle, and since it’s rank 1 on a
dense subset, it’s a line bundle. Since it comes with generators s0, . . . , sn, we get a map X → Pn, which
clearly extends the map from U .

For uniqueness, suppose we have another extension, which is data of LX and nonvanishing sections
σ0, . . . , σn. Then σi 7→ si deifnes an isomorphism LX ∼= j∗LU . �
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Remark 27.9. The argument formally extends to yield the same conclusion with Pn replaced with any
projective k-scheme, i.e. a k-scheme Z with a closed embedding to Pn for some n: compose with the map to
Pn, apply the theorem, then restrict to Z. (

Next we’ll discuss some variations on smoothness.

Definition 27.10. A curve X is regular if OX(−x) is a line bundle for every closed point x of X.

Definition 27.11. An affine scheme SpecA is normal if A is integrally closed in its fraction field.

The point of normality is that a finite map X ′ → X which is generically an isomorphism is an isomorphism
if X is normal. The counterexample to keep in mind is (TODOpicture).

Last class we showed that (for curves) smooth implies regular, and then that regular implies normal.

Proposition 27.12. For X a curve, normal implies regular, and if the ground field k is perfect, then smooth,
normal, and regular are equivalent.

It’s crucial that we’re in dimension 1.

Proof. We assume A is integrally closed in its fraction field k(X), and want to prove regularity. Choose a
maximal ideal m ⊂ A (corresponding to some OSpecA(−x), with x ∈ SpecA a closed point), and choose some
f ∈ m \m2. Then A/f is a zero-dimensional ring, and without loss of generality we may assume it’s local.
Therefore mn = 0 for some n� 0 in A/f , so mn ⊂ (f) in A. We’ll choose n minimal, and will show n = 1
(maybe after a further localization).

Hence, assume n ≥ 2. . . TODO �

Lecture 28.

The normalization of a curve: 11/2/18

Last time, we stated that over a perfect base field k, a curve is smooth iff it’s normal iff it’s regular.

Lemma 28.1. If X is finite type over k, k ↪→ k′ is a separable field extension, and x ∈ X(k′) is a closed
point corresponding to the maximal ideal mx, then the map mx/m

2
x → x∗Ω1

X is an isomorphism.

This map arises in the following way: we have a map d: OX → Ω1
X → x∗Ω1

X , and this map factors through
a map OX/m

2
x → x∗Ω1

X ; then we precompose with the map mx/m
2
x → OX/m

2
x.

Remark 28.2. m/m2 is called the Zariski cotangent space, and is often one’s first definition of the cotangent
space. However, the definition x∗Ω1

X has better base change properties. Of course, by the lemma, they’re
equivalent. (

Proof of Lemma 28.1. The first step is to assume X = SpecA is affine. Since k′ is separable, A/m2
x =

k′ ⊕mx ⊕m2
x is a square-zero extension, giving rise to a map δ : A→ mx/m

2
x; it’s easy to check that δ is a

k-linear derivation. This gives rise to a map Ω1
X → mx/m

2
x, hence a map x∗Ω1

X → mx/m
2
x, and you can check

this is the inverse map. �

Why does the lemma imply our claim about normal/regular implying smooth? Well, if we have a regular
curve X, a finite extension k ↪→ k′, and x ∈ X(k′) closed, then mx/m

2
x is one-dimensional; since k′ is separable

then x∗Ω1
X is one-dimensional, so X is smooth.

Example 28.3. Separability isn’t a very restrictive hypothesis: it holds in characteristic zero, as well as for
all finite fields and all algebraically closed fields. But suppose k is not a perfect field and λ ∈ k isn’t a pth

power. Then, consider the closed point x = {tp = λ} ⊂ A1
k. If k′ is the residue field of x, then k ↪→ k′ is an

inseparable field extension.
The maximal ideal corresponding to x is mx = (tp − λ). The map (tp − λ)/(tp − λ)2 → k′ · dt is d = 0, so

Lemma 28.1 doesn’t hold in this setting. (

It is nonetheless useful to consider imperfect fields. “Experimental evidence” suggests that if you care
about varieties, you’ll probably only define them over perfect fields. But sometimes you’ll want to consider
families of varieties parameterized by some data, which can be thought of as a variety over some function
field, and this function field need not be perfect.



Arun Debray December 10, 2018 41

Nevertheless, we now assume k is perfect. We now give a construction of smooth projective curves. Start
with a smooth affine curve X ⊆ An. Choose one of the coordinate charts An ⊆ Pn; we can thus regard X as
a subscheme of Pn and take its closure X. This is projective, but it might not be smooth.

Thus we will take the normalization of X, which will yield a smooth projective variety.

Remark 28.4. Let Y = SpecA, where A is an integral domain of finite type over k. Let k(Y ) denote the
fraction field of A. If A denotes the integral closure of A in k(Y ), let Y nm := Spec(A), which is called the
normalization of Y .

The normalization has a few nice properties (which we’re not going to prove here): Y nm is finite type
over k, and hence the natural map Y nm → Y is finite, and an isomorphism on some open subscheme of Y ′.
Moreover, normalization localizes well on Y : if U ⊂ Y is an affine open, then Unm = Y nm ×Y U . Therefore
normalization generalizes to irreducible k-schemes of finite type. (

So we can take the normalization (X)nm, which is finite over X. It’s easy to see that the composition of a
finite morphism then a projective morphism is projective: more generally, using the Segre embedding, one
can show that the composition of two projective morphisms is projective.

Example 28.5. Assume char(k) 6= 2 and let f(t) ∈ k[t] be a separable polynomial. LetX = {y2 = f(t)} ⊆ A2.
Then X ⊂ P2 is not smooth if deg f ≥ 4. (

Since we care more about (X)nm than about X, we’re going to make the normalization implicit.

Corollary 28.6. If X is a smooth affine curve over k, there’s a smooth projective curve X and an embedding
X ↪→ X; this data is unique up to unique isomorphism.

We sometimes call X the compactification of X.

Proof. Suppose X1 and X2 are both compactifications of X. Because X1 is smooth, it admits a map to X2
(TODO: I think this is because we have a map X → X2 and X is a dense subscheme of X1), and in the same
way we have a map X2 → X1. The compositions of these maps are the identity on a dense subscheme, hence
must be the identity. �

Remark 28.7. Another way to think of X is the initial projective scheme recieving a map from X. This
follows by the valuative criterion. (

One reasonable question is to what extent this generalizes.

Definition 28.8. A scheme S is separated if the diagonal map ∆: S → S × S is a closed embedding.

This is the analogue of the Hausdorff condition in differential topology — and, just as in differential
topology, the standard counterexample is the line with two origins.

Example 28.9. The line with two origins is the space X whose functor of points assigns to SpecA the set of
(isomorphism classes of) open covers {U, V } of SpecA together with maps f : U → A1 and g : U → A1 such
that f and g coincide when they’re nonzero.

If you figure out what the closed point are, there’s one for every closed point of A1, except there are two
points corresponding to the origin. (

Affine schemes are separated, because the multiplication map m : A⊗A→ A is surjective.

Example 28.10. Show that Pn is separated. Or, more generally, any projective scheme (even any quasipro-
jective scheme17) is surjective. Hint: you’ll want to go back to the definition of Pn. (

Separability is a global, not local condition. As such, it can be more subtle than one expects.

Lemma 28.11. Suppose S is a separated scheme and f, g : T ⇒ S. Then the equalizer {f = g} is closed in
T .

Proof. {f = g} = T ×S×S S, and the inclusion from this to T is the base change of the diagonal, and the
pullback of a closed morphism is closed. �

17A scheme is quasiprojective if it’s an open subscheme of a projective scheme.
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Corollary 28.12. Suppose S is an irreducible separated scheme with an open cover U, and T is an affine
scheme.18 Suppose we have a map S → T such that for each U ∈ U, the induced map U → T is an open
embedding. Then S → T is an open embedding.

Again, the standard counterexample is the map from the affine line with two origins to A1.
Assuming Corollary 28.12, we can deduce a nice generalization of normalizations.

Corollary 28.13. Let X be a separable smooth curve over k. Then there’s a smooth projective curve X
together with an open embedding X ↪→ X, and this data is unique up to unique isomorphism.

Proof. Cover X by nonempty affines Ui; then we have embeddings Ui ↪→ U i; if Ui and Uj intersect, then
Ui = Ui ∩ Uj = Uj . Therefore X = U i for any i. All of the map Ui → X coincide on the intersection, so
X ↪→ X is an open embedding. �

Lecture 29.

Maps between curves: 11/5/18

Let k be a perfect field and X be a smooth curve over k. Last time we saw that X is separable iff it’s
quasiprojective (i.e. an open subscheme of a projective scheme). More specifically, we constructed a smooth
projective curve X and an open embedding X ↪→ X.

Today, we’ll discuss morphisms over curves.

Proposition 29.1. Let X and Y be smooth, projective curves with function fields k(X), resp. k(Y ). Then
the natural map IsomSch/k(X,Y )→ IsomAlgk

(k(X), k(Y )) is an isomorphism.

An isomorphism k(X)→ k(Y ) is (equivalent data to) what’s called a birational equivalence X 99K Y ; this
says that all birational equivalences of curves come from actual isomorphisms. This fails drastically in higher
dimensions, largely because the valuative criterion doesn’t generalize. The associated field is known as the
minimal model program. It also fails if you remove the hypotheses on smoothness or projectivity.

Proof. The inverse map is given as follows. Given some isomorphism ι : k(X)→ k(Y ), there is a unique map
Y → X which restricts to ι on the generic point. This can be proven by slightly modifying the proof of the
valuative criterion for properness (which related to extending by open sets) to apply to the generic point. �

Proposition 29.2. Let X be a separated, smooth curve. Then the map U 7→ Fun(U) is an injective map
from from nonempty open affine subschemes of X to integrally closed, infinite-dimensional, finitely generated
k-subalgebras A ⊆ k(X) with field of fractions k(X) is injective. If furthermore X is projective, this map is a
bijection.

Proof. We’ll prove the statement for projective curves. Let A ⊆ k(X) and U := SpecA. We claim U is a
smooth curve over k: it’s clearly finite type, and is irreducible, because A is an integral domain. To see
that U is a curve, notice that its field of functions is k(X) again. It’s smooth because k is perfect and A is
integrally closed.

Therefore we have a unique smooth projective curve U containing U as an open subscheme. Then
k(U) ∼= k(X) canonically, so there’s a canonical isomorphism X ∼= U , so we get an open embedding
U ↪→ X. �

Definition 29.3. Let X and Y be finite-type schemes over k. A map f : X → Y is constant if its scheme-
theoretic image is a closed point of Y .

That is, we want there to be a finite field extension k ↪→ k′ and f to factor through maps X → Spec k′
and Spec k′ → Y .19

Proposition 29.4. If X and Y are smooth projective curves, a map f : X → Y is either constant or
dominant.

Proof. The scheme-theoretic image of f is a closed, irreducible subscheme of Y , hence either a closed point
or all of Y . �

18It might be possible to remove the affine hypothesis.
19In fact, the Nullstellensatz implies that k ↪→ k′ is finite.
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Furthermore, any nonconstant map of curves induces a map on function fields, which can be seen by
checking affine-locally.

Now we can generalize Proposition 29.1.

Proposition 29.5. Let X and Y be smooth projective curves. The map from the set of nonconstant functions
f : X → Y to HomAlgk

(k(Y ), k(X)) is an isomorphism.

The proof is the same, using the valuative criterion.

Theorem 29.6. Any nonconstant morphism of smooth projective irreducible curves is finite.

In particular, this says that any nonconstant morphism of smooth projective irreducible curves is affine,
which isn’t obvious.

Remark 29.7. The projectivity assumption can’t be removed–consider the map A1 \ 0→ A1. Similarly, the
separatedness is also essential–the map from P1 with the doubled origin to P1 shows this. (

Since constant maps are negligible, this says morphism of curves are basically field extensions.

Proof of Theorem 29.6. Given a nonconstant morphism f : X → Y of smooth projective curves, let U =
SpecA be an affine open subset of Y . Then define B to be the integral closure of A in the fraction field
k(X). We claim that SpecB = f−1(U) and that Frac(B) = k(X). Assuming these two claims, latter gives
that SpecB is an affine open subset of X and there’s a general fact from commutative algebra which implies
that B is a finite A module, which shows that f is finite.

To see that SpecB = f−1(U), note that for any affine open i : SpecC ⊂ X where fi factors through U ,
we obtain a map of rings A→ C to an integrally closed subring of k(X). This implies there’s a unique map
of rings B → C, which implies the claim.

To see that Frac(B) = k(X), first note that k(X)/k(Y ) is a finite extension, which is a fact about dominant
morphisms between irreducible finite type k-schemes of the same dimension, which can be proven by generic
finiteness or the “base times A1 or finite argument,” noting that the former would increase dimension.

Now assume f ∈ k(X). By above, we have an equation fn + a1f
n−1 + · · · + an = 0 for ai ∈ k(Y ).

Since Frac(A) = k(Y ), we can choose a nonzero g ∈ A for which gai ∈ A for all i. But this implies that
(gf)n + ga1(gf)n−1 + · · ·+ gnan = 0, so gf ∈ B (the integral closure of A in k(X)), so f ∈ Frac(B). �

Lecture 30.

Complexes of abelian groups: 11/7/18

We have left over to prove the following lemma: TODO.

Proof. First, k(X)/k(Y ) is a finite extension. This is a general fact about dominant morphisms between
irreducible finite type k-schemes of the same dimension; dimension theory guarantees the map is generically
finite, for example.

TODO: missed what comes next.
Anyways, we get that

(30.1) (gf)n + ga1(gf)n−1 + · · ·+ gna0 = 0,
with each giai ∈ A, so gf is integral over A. Therefore gf ∈ B, so f ∈ B[1/g] ⊆ Frac(B). �

Remark 30.2. It also follows that any nonconstant map f : X → Y of smooth projective curves is flat. This
is because we can check locally, where it boils down to a question about k-algebras: if we’ve reduced to
SpecA ⊆ Y with scheme-theoretic inverse image SpecB ⊆ X (guaranteed because we know f is affine), then
B is an integral domain, so B is a torsion-free A-module. This means it’s projective, hence flat. (

Since f is affine, f∗OX is a vector bundle on Y .

Corollary 30.3. Any smooth projective curve admits a finite flat map to A1.

Proof. Let U ⊆ X be an open affine and f : U → A1 be a finite map (though we only really need it to be
nonconstant). Therefore there exists a unique map g : X → P1 by (I think?) Noether normalization which
extends U → A1, and since f is nonconstant, g is necessarily finite and flat. �
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So morphisms of smooth projective curves are really nice. One great example is the map A1 → A1 induced
from multiplication by n; of course A1 isn’t projective, but you can turn this into a map P1 → P1

B ·C

Our next goal is the Riemann-Roch theorem; we will therefore need some sheaf cohomology. This is a lot
of structure to take in, and we don’t need all of it, so there will be a crash course in the homological algebra
that we need.

Definition 30.4. A complex of abelian groups F (also F•) is data of an abelian group Fi for each i ∈ Z
together with maps di : Fi → Fi+1 such that di+1di = 0 (usually written d2 = 0).

For example, an abelian group A defines a complex F “concentrated in degree zero” i.e. with F0 = A and
Fi = 0 for all nonzero i.

We will adopt the principle that an “element” of F is an x ∈ F0 with d(x) = 0.

Remark 30.5. Though these look and feel like abelian groups so far, they behave very differently, in a manner
reminiscent of category theory or homotopy theory. In the same way that it would be weird to ask whether
two vector spaces are equal, but instead you’d want to exhibit an isomorphism between them, given elements
x and y of F (i.e. in ker(d0)), a homotopy between them is an element h ∈ F−1 with d(h) = x− y. (

Now we define a few useful constructions.

Definition 30.6. Let F and G be chain complexes. Their tensor product F ⊗ G is the chain complex with

(30.7) (F ⊗ G)i :=
⊕
j∈Z

Fj ⊗ Gi−j ,

together with the differential
(30.8) di(x⊗ y) = dx⊗ y + (−1)i−|x|x⊗ dy.
Here we need to explain this definition: every element of (F⊗ Gi) is a finite sum of homogeneous pure tensors
x⊗ y, where x ∈ Fi and y ∈ Fj ; then we write |x| = i and |y| = j (the degrees of these elements). We define
the differential on such elements and use linearity to extend it to all elements.

Exercise 30.9. Show that d2 = 0, and that the sign factor is necessary: if d′(x⊗ y) = dx⊗ y + x⊗ dy, then
(d′)2 6= 0.

For example, regarding Z as a complex concentrated in degree zero, F ⊗ Z ∼= F.

Exercise 30.10. Exhibit a canonical isomorphism F ⊗ G ∼= G⊗ F.

Lemma 30.11. Let F and G be complexes. Then there is a complex Hom(F,G), unique up to unique
isomorphism, such that for all complexes H,
(30.12) HomCpx(Ab)(H,Hom(F,G)) ∼= HomCpx(Ab)(F ⊗H,G),
and this isomorphism is functorial in H.

We haven’t defined morphisms of complexes, but they are what you would think they are: maps Fi → Gi

that commute with differentials.
We’re not going to prove this lemma, but here’s the explicit construction:

(30.13) Homi(F,G) =
∏
j∈Z

HomAb(Fj ,Gi+j),

so maps which increase the degree by j (though there’s nothing about differentials yet).

Exercise 30.14. Given an f ∈ Hom0(F,G), show that f defines a map of complexes iff df = 0 in Hom1(F,G).

The idea is to express df = 0 as f commuting with the differential. You have to figure out what the
differential is, but it’s uniquely characterized by this property.

Corollary 30.15. An element of Hom(F,F) is a morphism of complexes.

Definition 30.16. Therefore we define a homotopy between two maps f, g ⇒ F → G is an element
h ∈ Hom−1(F,G) such that dh = f − g.
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You can define a homotopy between homotopies by iterating this, producing an element in degree −2, and
can interate this construction further and have a lot of fun.

We will think of two maps of complexes to be “the same” if there is a homotopy between them. But that
doesn’t mean the homotopy itself is unimportant.

Next we’d like to define something like kernels and cokernels, but more homotopically.

Definition 30.17. Let f : F → G be a map of complexes. Then there is a complex hCoker(f), the homotopy
cokernel of f , such that for all complexes H, HomCpx(Ab)(hCoker(f),H) is equal to the set of pairs (g,H)
where g : G → H is a map of complexes and H is a nullhomotopy of gf . Then hCoker(f) is unique up to
unique isomorphism.

The idea is that we don’t want to take things which are equal to zero, but instead things which are
homotopic to zero, and encode this homotopy as part of the data.

Again, we will provide the construction instead of the proof: hCoker(f)i = Gi ⊕ Fi+1, and the differential
is

(30.18)
(
dG f
0 −dF

)
,

and using this data, you can check what data of a map to H is, and why the extra data gives a nullhomotopy
of the composition

Lecture 31.

More homological algebra: 11/9/18

Today we’re doing more homological algebra. Some references can be found at https://web.ma.utexas.
edu/users/sraskin/cft/index.html, specifically psets 5 and 6.

Last time, we defined the homotopy cokernel hCoker(f) of a map f : F → G of chain complexes of abelian
groups, which is universal for the data of a structure map G → hCoker(f) and of a nullhomotopy of the
composition F → G→ hCoker(f). Explicitly, its ith term is Gi ⊕ Fi+1, and the differential sends x ∈ Gi to
(x, 0) ∈ hCokeri(f), and y ∈ Fi to (f(x), 0).

Dually, we can define the homotopy kernel hKer(f) by a similar universal property: hKer(f) has a map
hKer(f) → F and a nullhomotopy of the composition hKer(f) → F → G, and is universal for this data.
Explicitly, hKer(f)i = Gi−1 ⊕ Fi, with some differential similar to that for hCoker(f).

Definition 31.1. Let n ∈ Z. The shift of a complex F by n, denoted F[n], is the complex whose ith abelian
group is Fn+i, and whose maps are what you would expect.

In this language, we have the following miracle:
(31.2) hKer(f)[1] ∼= hCoker(f).

Example 31.3. Let f : A→ B be a map of abelian groups, regarded as a map of chain complexes in degree
zero. Then its homotopy cokernel is

(31.4) · · ·−20 //// −1A
f // 0B // 10 // · · ·

and the homotopy kernel is

((31.5) · · ·−10 //// 0A
f // 1B // 12 // · · ·

One nice consequence of the miracle is that it makes commutative algebra nicer: there are lots of functors
on abelian groups (or modules) which commute with kernels or cokernels, but not both. In this derived
setting, there’s not much of a difference between (homotopy i.e. better versions of) kernels and cokernels, so
more things commute with each other up to a shift, which is nice.

Now, given a map f : F → G of complexes, let π : G → hCoker(f) be the induced map. We also have a
nullhomotopy of the map π ◦ f : F → hCoker(f), so by the universal property obtain a map F → hKer(π).

Exercise 31.6. Show that this map F → hKer(π) is a homotopy equivalence, i.e. there is a map hKer(π)→ F

such that the compositions in both directions are homotopic to the identity.

https://web.ma.utexas.edu/users/sraskin/cft/index.html
https://web.ma.utexas.edu/users/sraskin/cft/index.html
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This is also a very important fact.
Recall that an element of a complex F is an element x ∈ F0 with dx = 0.

Definition 31.7. The zeroth homology group of F, denoted H0(F), is the abelian group of elements of F
modulo homotopy, i.e. ker(d0)/ Im(d−1).

Lemma 31.8. If f : F → G is a map of complexes, then the sequence

(31.9) H0(hKer(f)) // H0(F) // H0(G)
is exact.

That is, the image of the first map is exactly the kernel of the second. Figuring out the details of this
exercise is a good way to become more familiar with cohomology.

Corollary 31.10. If f : F → G is a map of complexes, the following sequence is long exact:
(31.11)
· · · // H−1(hCoker(f)) // H0(F) // H0(G) // H0(hCoker(f)) // H1(F) // H1(G) // · · ·

Here Hi(F) := H0(F[i]) for any i ∈ Z.

Proof sketch. We can produce this sequence by gluing together sequences from Lemma 31.8: the first few
terms come from the observation that H−1(hCoker(f)) = H0(hKer(f)); then we invoke Lemma 31.8. The
next three terms come from the fact that F is canonically homotopic to the homotopy kernel of the map
G → hCoker(f), then applying the lemma again. Then we apply that again and again to shifts of F and
G. �

In addition to homotopy equivalence of complexes, there’s another notion of equivalence.

Definition 31.12. A quasi-isomorphism (sometimes abbreviated qis) of chain complexes is a map f : F → G

such that the induced map f∗ : Hi(F)→ Hi(G) is an isomorphism for all i ∈ Z.

Remark 31.13. This is equivalent to asking for hCoker(f) to be acyclic, i.e. to have trivial cohomology groups.
This follows from Corollary 31.10. (

Importantly, a quasi-isomorphism need not have an inverse map, unlike a homotopy equivalence. For
example, consider the map of complexes

(31.14)

· · · // 0 //

��

Z

��

·2 // Z

��

// 0 // · · ·

· · · // 0 // 0 // Z/2 // 0 // · · · .

You can check this is a quasi-isomorphism, but clearly there can be no map in the other direction. This
is weird, especially because there are many contexts in which quasi-isomorphism is the right notion of
equivalence. We have a weaker statement, which is that if f : F → G is a quasi-isomorphism, there must exist
a suitable inverse map H→ F and a quasi-isomorphism H→ G.

Sheaf cohomology. We now have all of the homological background needed to define sheaf cohomology.
Specifically, given a complex F of quasicoherent sheaves on a quasicompact separated scheme X, we will
define a complex of abelian groups RΓ(X,F), well-defined up to canonical quasi-isomorphisms. Here the
notation R means this will have cohomology only in nonnegative degrees (“to the right” of zero).

This complex isn’t completely well-defined — we will need to make choices, and then argue that it doesn’t
really depend on those choices in a precise sense. So let U be a finite affine open cover of X, which exists
because X is quasicompact; because X is separated, U ∩ V is affine for all U, V ∈ U, and this extends to
higher-fold intersections.

Now we inductively define the complex RΓ((X,U),F), inducting on n := |U|. When n = 1, X = SpecA
is affine, so we define RΓ(X,F) := Γ(X,F), using the fact that F is in particular a complex of A-modules,
hence abelian groups.

When n = 2 and U = {U, V }, we define
(31.15) RΓ((X,U),F) := RΓ(U,F|U )×hRΓ(U∩V,F|U∩V ) RΓ(V,F|V ).
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Here, the notation ×h denotes the homotopy fiber product of complexes: given maps f : F1 → F3 and
g : F2 → F3,
(31.16) F1 ×hF3

F2 := hKer(f − g : F1 ⊕ F2 → F3).
This is universal with respect to data of a homotopy between the two maps from this homotopy fiber product
to F3 going through F1 and F2.

Lecture 32.

Sheaf cohomology: 11/12/18

Recall that we were defining sheaf cohomoloy RΓ(U,F) inductively, where F is a finite affine open cover of
a quasicompact separated scheme X and F ∈ QCoh(X). For n = 1, F is a module over A if X = SpecA, and
we let RΓ = Γ in degree 0 and 0 elsewhere. The general definition is TODO.

Lemma 32.1. If X is affine and U is a finite open cover of X by affines with U1 ∈ U equal to X, then the
natural map
(32.2) Γ(X,F) = RΓ(X,F) −→ RΓ(U,F)
is a homotopy equivalence.

Proof. We’ll induct on n; for n = 1 this is vacuous. If n > 1, let U′ = U \ U1; then
(32.3) RΓ(U,F) := RΓ(U′,F)×hRΓ({V ∩U1|V ∈U′},F) RΓ(U1,F),
which is just
(32.4) RΓ(X,F)×hRΓ(U1,F) RΓ(U1,F),

which is homotopy equivalent to RΓ(X,F). �

Now let’s remove the hypothesis that X ∈ U.

Proposition 32.5. Let X be an affine scheme and U a finite cover by affines. Then ε : RΓ(X,F)→ RΓ(U,F)
is a quasi-isomorphism.

Proof. Let X = SpecA, so that both sides are complexes of A-modules. For each U ∈ U, write U = SpecBU ;
we therefore have maps A → BU for each U . We claim that ε is a quasi-isomorphism iff it is one after
tensoring with BU for all U ∈ U. Certainly, since each BU is flat over A, tensor product with BU preserves
quasi-isomorphisms, and in fact, from Serre’s theorem,
(32.6) Hj(X,F)⊗A Bi ∼= Hj(F ⊗A Bi).
Moreover a complex of A-modules is acyclic iff it’s acyclic after tensor product with Bi for all i. So it suffices
to prove the proposition on each U ∈ U, but there it reduces to Lemma 32.1. �

Acyclicity is closely related to quasi-isomorphisms: ε is a quasi-isomorphism iff its homotopy cokernel is
acyclic.

Corollary 32.7. Let U and V be finite open covers by affines of a quasicompact, separated scheme X. Then
there is a canonical quasi-isomorphism RΓ(U,F)→ RΓ(V,F).

Therefore as long as we only care about its definition up to quasi-isomorphism, we’ll let RΓ(X,F) :=
RΓ(U,F) for any finite affine open cover U of X. Then we will let Hi(X,F) := Hi(RΓ(X,F)).

Proof. Given a U ∈ U and V ∈ V, let WUV := U ∩ V , and let W := {WUV }. We therefore have two open
covers RΓ(U,F) → RΓ(W,F) and RΓ(V,F) → RΓ(W,F). Both of these are quasi-isomorphisms, which
follows from Proposition 32.5 and the fact that homotopy fiber products preserve quasi-isomorphisms. �

It’s a good exercise to work out the details of the proof that a refinement induces a quasi-isomorphism on
cohomology in the case where U and V each have two opens.

Remark 32.8. There are definitions of cohomology for a scheme which isn’t separated or even quasicompact,
but they’re less nice, ultimately requiring some sort of infinite construction. Thanks to our hypotheses, we
only need to take a finite number of cones, allowing for these nice inductive proofs. (
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Example 32.9. Let F be an abelian group regarded as a complex in degree zero. Then H0(X,F) =
Γ(X,F). (

Theorem 32.10. Let X be a smooth, separated curve and F ∈ QCoh(X) be a complex concentrated in degree
zero. Then

(1) Hi(X,F) = 0 for i 6= 0, 1.
(2) If F is coherent and X is projective, then Hi(X,F) is a finite-dimensional vector space over k.
Projectivity is really important for the second point! For example,

(32.11) RΓ(A1,OX) = k[t].

Proof of (1). We’ll first show that any smooth curve X has a cover by two open affines. Choose a (the)
smooth compactification X and let f : X → P1 be a nonconstant map; then let f := f |X . Then f is finite,
hence affine.

The embedding j is also affine: there are closed points x1, . . . , xn such that X = X \ {x1, . . . , xn}, and
therefore

(32.12) OX(x1 + · · ·+ xn) :=
n⊗
i=1

OX(xi)

has a section, namely 1, and X is precisely the nonvanishing locus of this section.
Now, P1 has an open cover by two affines, namely A1 = P1 \ ∞ and A1 = P1 \ 0; pull these back via f ,

which is affine, to recover an affine open cover of X. �

The second part is more complicated, so we’ll start with an example (and probably give the general proof
next time).
Proposition 32.13. We claim H0(P1;OP1) = k and H1(P1;OP1) = 0. That is, the map k → RΓ(P1,OP1) is
a quasi-isomorphism.
Proof. Let {U, V } be our favorite affine open cover of P1. Then we can just calculate

(32.14)
RΓ(P1,OP1) = hKer(Γ(U,OU )⊕ Γ(V,OV ) −→ Γ(U ∩ V,OU∩V ))

= hKer
(
(f, g) 7−→ f − g : k[t]⊕ k[t−1]→ k[t, t−1]

)
.

So in degree 0 we get the kernel, given by the constant functions in both factors, and in degree 1 we get the
cokernel. This map is surjective, though, since any Laurent polynomial is a sum of a polynomial in t and a
polynomial in t−1. �

Lecture 33.

Divisors on curves: 11/14/18

TODO: about 10 to 12 minutes of divisor theory on curves. Everything today is explicitly over curves.
Remark 33.1. OX(D) is trivialized away from the support of D, i.e. the union of the xi with nonzero
multiplicity in D, because 1 ∈ Γ(X \ supp(D),OX(D)). (

Proposition 33.2. This gives a bijection between the set of divisors on X and the set of isomorpism classes
of line bundles L on X together with nonzero section s of L|ηX

, sending D 7→ (OX(D), 1).
Proof. We’ll construct the inverse: given a line bundle L on X with a nonzero s ∈ Γ(ηX ,L), we will define a
divisor D =

∑
nixi, where ni is the order of the pole of s at xi.

If L is trivial, we can choose a trivialization s, which is the same as a nonzero rational function f on X.
Let x1, . . . , xn be the zeros of f , and define

(33.3) D :=
n∑
i=1

vxi
(f)xi.

This is independent of the choice of trivialization, because any two trivializations differ by an invertible
function on X, which doesn’t change valuations (the invertible function has no zeros and no poles).

Since divisors are compatible with restriction, we can generalize this construction to nontrivial line bundles.
Now you should check this is actually an inverse to the map defined in the proposition statement. �
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Corollary 33.4. Any line bundle is of the form OX(D) for some divisor D.

Definition 33.5. A divisor D is principal if D is the divisor of some nonzero rational function f , i.e.
D =

∑
vxi

(f)xi.

Equivalently, OX(D) is trivial.

Corollary 33.6. The set of isomorphism classes of line bundles on X is in bijection with the set of divisors
on X modulo principal divisors, is isomorphic to the cokernel of the map k(X)× → Div(X).

Remember, our broader-scope goal is to show that sheaf cohomology for smooth projective curves is
finite-dimensional.

Proposition 33.7. Suppose (X,OX) satisfies (*).20 Then (X,L) does for all line bundles L on X.

Proof. By the divisor theory above, it suffices to prove this for (X,L(x)), where L(x) := L⊗OX
OX(x). This

is because if D = 2x− y for distinct points x, y ∈ X, we’ll show that the property for (X,OX) implies it for
(X,OX(x)), then (X,OX(2x)), then (X,OX(D)). This is because we have a short exact sequence

(33.8) 0 // L(−x) // L // L/L(−x) // 0,

where L(−x) := mx ⊗ L, and L/L(−x) ∼= ix∗i
I
xL = ix∗Ox.

A general fact about sheaf cohomology is that it preserves homotopy kernels and cokernels. In fact, it’s
difficult to write down functors that don’t. Moreover, sheaf cohomology preserves quasi-isomorphisms, which
isn’t super surprising, and follows from the fact that it preserves acyclicity. Moreover, given a short exact
sequence

(33.9) 0 // F
f // G // G/F // 0,

the natural map hCoker(f)→ G/F is a quasi-isomorphism (which you can check with the explicit formula).
The upshot of all this is that we obtain a long exact sequence in cohomology:
(33.10)
0 // H0(X,F) // H0(X,G) // H0(X,G/F) // H1(X,F) // H1(X,G)H1(X,G/F) //// · · ·

Now we apply this to Equation (33.8):
(33.11)
0 // H0(X,L(−x)) // H0(X,L) // H0(X,L/L(−x)) // H1(X,L(−x)) // H1(X,L) // H1(X,L/L(−x)) // 0

Let k′ := OX/mx, which is a finite field extension of k; thenH0(X,L/L(−x)) ∼= k′. Moreover,H1(X,L/L(−x)) =
0, because of another general fact about sheaf cohomology: if f : X → Y is affine, RΓ(X,F) is quasi-isomorphic
to RΓ(Y, f∗F). One can prove this directly by pulling back an affine cover. �

Lecture 34.

Finite-dimensionality of cohomology: 11/16/16

Let X be a smooth projective curve over k. We continue with the proof of the finite-dimensionality of
cohomology of X valued in a coherent sheaf. So far, we’ve showed that it holds for P1 and OP1 , and that
(X,L) satisfies it iff (X,OX) does (here L is a line bundle).

Proposition 34.1. If (X,L) satisfies finite-dimensionality of cohomology for all line bundles L, then so
does (X,E) for all vector bundles E.

Before we can prove this, we need a lemma.

Lemma 34.2. Let X be a smooth curve, E → X be a vector bundle, and U ⊂ X be a nonempty open.
Suppose LU → E|U is a morphism of quasicoherent sheaves that is everywhere nonzero, where LU is a line
bundle on U . Then there’s a unique extension of LU to X together with a nonvanishing map to E (where
uniqueness is up to isomorphism of this data).

20TODO: what’s (*)?
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Proof. Let P(E) be the projectivization of E; the natural map P(E)→ X is projective. The map LU → E|U
defines a map U → P(E); by the valuative criterion, this extends uniquely to X. �

Of course, since we’re using the valuative criterion, this doesn’t generalize to higher-dimensional schemes!

Proof of Proposition 34.1. We induct on the rank r of E; for r = 1, E is a line bundle, and we’ve already
done this case.

In general, choose a U ⊆ X and an isomorphism E|U ∼= O⊕rU . The first coordinate defines a map OU → E|U ,
which by Lemma 34.2 extends uniquely to an everywhere nonzero embedding L→ E on X. Therefore E/L is
a vector bundle, and we have a short exact sequence

(34.3) 0 // L // E // E/L // 0.

Since L is rank 1 and E/L is rank r−1, both have finite-dimensional cohomology, by the inductive assumption.
Therefore E must too, using the long exact sequence in cohomology associated to (34.3). �

And here’s the big fish.

Corollary 34.4. If (X,E) has finite-dimensional cohomology for every vector bundle E→ X, then (X,F)
does for all coherent sheaves F on X.

Proof. Let U = SpecA be an affine open in X; then F|U is coherent, meaning it is a finitely generated
A-module. Let Fτ ⊆ F be the maximal torsion module; explicitly,
(34.5) Fτ = {s ∈ F | There exists f ∈ A \ 0 such that fs = 0.}
Then F/Fτ is a vector bundle. We know that on curves, vector bundles are equivalent to torsion-free coherent
sheaves. If s ∈ F/Fτ is a torsion element, there’s an f ∈ A \ 0 with fs = 0, so lift s to some s̃ ∈ F; then
fs ∈ Fτ , so there’s a g ∈ A \ 0 with fgs̃ = 0. Then fg 6= 0, so s̃ is torsion. This construction globalizes,
hence makes sense for non-affines.

Therefore we have a short exact sequence

(34.6) 0 // Fτ // F // F/Fτ // 0.

We know F/Fτ is a vector bundle, hence has finite-dimensional cohomology, so it suffices to show that
Fτ , which is a torsion coherent sheaf, has finite-dimensional cohomology. It’s an exercise to show that a
torsion coherent sheaf is isomorphic to a finite direct sum of skyscraper sheaves, namely those of the form
OX/OX(−nx) for x ∈ X and n ≥ 0; then you can check directly these have finite-dimensional cohomology, so
we’re done. �

Exercise 34.7. As suggested in the proof, show that a torsion coherent sheaf on X is isomorphic to a finite
direct sum of skyscraper sheaves OX/OX(−nx) for x ∈ X. (On A1, this is the Jordan decomposition of a
finitely generated k[t]-module.)

The following exercise isn’t directly necessary for the proof, but it’s really good.

Exercise 34.8. Let S be a Noetherian scheme. Then a coherent sheaf F → S is flat iff it’s a vector bundle.
(Hint: Nakayama’s lemma.)

Now we can prove the general theorem.

Proof of theorem TODO. We know the theorem for P1. If X is a smooth projective curve, it has a finite, flat
morphism f : X → P1. Then f∗OX is a coherent sheaf on P1 (in fact, even a vector bundle by ??). Last time,
we showed that for an affine morphism f , RΓ(P1, f∗F) ∼= RΓ(X,F), so the theorem follows for OX from the
theorem for f∗OX . �

Now, we will place an additional assumption on our curves X: that k is algebraically closed in k(X). That
is, if k′ ⊂ k(X) is a finite extension of k, then k′ = k. The idea is to rule out curves which really are over
finite extensions of k. This condition is called geometric irreducibility, and is typically formulated differently,
that if k is an algebraic closure of k, then X ×Spec k Spec k is irreducible. This is a technical assumption you
don’t have to think too strongly about; when X is smooth and projective, this is equivalent to asking that
H0(X,OX) (i.e. Fun(X)) is isomorphic to k.
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Exercise 34.9. Show that if k ↪→ k′ is a finite extension and k is an algebraic closure of k′ (hence also of k),
then Spec k′ ×Spec k Spec k is a disjoint union of n points, where n = [k′ : k].

Definition 34.10. The genus of a smooth projective curve X, denoted g = g(X), is dimH1(X,OX).

Example 34.11. The genus of P1 is zero, because we showed H1(P1;OP1) = 0. (

Corollary 34.12. Let X be a smooth projective curve and x ∈ X be a closed point. Then X \ x is affine.

Proof. Let g := g(X) and consider H0(X;OX((g + 1)x)). These are functions with a pole of order at most
g at x, and has dimension at least 2. (TODO: I missed why.) This means it has at least one nonconstant
function f : X \ x→ A1. By the valuative criterion, f extends uniquely to a rational map f̃ : 99K P1 with
f−1(A1) = X \ x. Since f is affine, f−1(A1) is an affine scheme. �

Lecture 35.

: 11/19/18

Lecture 36.

: 11/26/18

Lecture 37.

Riemann-Roch (is in the house tonight): 11/28/18

Today we’re going to discuss the Riemann-Roch theorem (which is a special case of a more general theorem,
Serre duality, in the case of curves).

Theorem 37.1 (Riemann-Roch). Let X be a smooth projective curve and E→ X be a vector bundle. There
is a quasi-isomorphism

(37.2) RΓ(X,E)∨[−1] ' RΓ(X,E∨ ⊗ Ω1
X)

functorial in E.

First we need to say what the dual of a complex is.

Definition 37.3. If V is a complex of vector spaces over k, its dual complex is V ∨ := Hom(V, k).

If the cohomology of V is concentrated in finitely many degrees and is finite-dimensional, there is a natural
quasi-isomorphism V

'→ (V ∨)∨ and Hi(V ∨) = Hi(V )∨.
We don’t yet have the tools to prove this, but we’ll get to that. Today we’ll discuss some applications.

Corollary 37.4. We have H0(X,E)∨ ∼= H1(X,E∨ ⊗Ω1
X) and H1(X,E)∨ ∼= H0(X,E∨ ⊗Ω1

X). In particular,
H0(X,Ω1

X) ∼= H1(X,OX)∨.

Corollary 37.5. The genus of a smooth projective curve is h0(Ω1
X). Moreoger, H1(Ω1

X) ∼= H0(X,OX)∨ =
k∨ = k, so h1(Ω1

X) = 1 and χ(Ω1
X) = g − 1.

Recall that if F is a coherent sheaf on a curve X, χ(F) := h0(F) − h1(F), and this is called the Euler
characteristic.

Corollary 37.6. deg(Ω1
X) = 2g − 2

This is because

(37.7) deg(Ω1
X) = χ(Ω1

X)− χ(OX) = g − 1− (1− g) = 2g − 2

Example 37.8. Let’s consider X = P1, so that deg(Ω1
X) = −2. Though the degree of a line bundle is defined

cohomologically, you can work around that using divisors: suppose L→ X is a line bundle and s is a nonzero
section on an open subscheme of X. Then

(37.9) L ∼= OX

(∑
vx(s) · x

)
,
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so
(37.10) degL =

∑
vx(s) · deg(x).

Let’s put this into action for P1. A simple choice for s is dt on the open A1, which trivializes Ω1
A1 . Therefore

vx(dt) = 0 for all x ∈ A1. Near the point at infinity, we have an affine open Spec k[t−1]. Since d(t−1) = −t−2 dt,
then away from 0 and ∞, −t2d(t−1) = dt. Therefore t−1 is a uniformizer around ∞, so we have a pole of
order 2 at ∞. Therefore
(37.11) deg(Ω1

P1) =
∑

vx(dt) · deg x = −2 deg(∞) = −2,

which is a nice, explicit sanity check. (

Recall that if L is a line bundle on X, we saw that for n� 0, H1(L(nx)) = 0. You might wonder how big
n has to be, but wonder no longer.

Corollary 37.12. If degL > 2g− 2, then H1(L) = 0, and therefore we need n deg(x) + degL > 2g− 2, and
this bound is sharp.

To see sharpness, let L = Ω1
X , which has degree 2g − 2, and H1(Ω1

X) is one-dimensional.

Exercise 37.13. Show that this is in a sense the only such example: if degL = 2g − 2 and H1(L) 6= 0, then
L ∼= Ω1

X .

Proof of Corollary 37.12. Since H1(L)∨ = H0(L∨ ⊗ Ω1
X), then deg(L∨ ⊗ Ω1

X) = deg(Ω1
X) − degL = 2g −

2− degL < 0. But a section of L∨ ⊗ Ω1
X is equivalent data to a map ΩX → L∨ ⊗ Ω1

X ; this is a map from a
degree-0 line bundle to a negative-degree line bundle, so, as we showed last time, this map must be zero. �

And now for something completely different. Recall that we considered the hyperelliptic curve Xf :=
{y2 = f(x)} ⊆ A2; assuming that k isn’t characteristic 2 and f is separable implies Xf is smooth, hence has
a normalization Xf .

If you were wondering whether curves of all genera exist, well, let d := deg f ; then g(Xf ) = dd/2e − 1. So
you can get any positive number. This is difficult to compute, in part because Xf isn’t the closure of Xf in
P2.

Lecture 38.

: 11/30/18

TODO: I missed the first part.

Lemma 38.1. k[[t]] is a DVR, i.e. both a local ring and a PID. Moreover, f ∈ k[[t]] is a unit iff f(0) 6= 0.

Exercise 38.2. Let B be a commutative ring and I ⊆ B be an ideal with In = 0. Then f ∈ B is a unit iff
f mod I is.

Proof. First, we’ll prove the second part. Clearly f is a unit iff it maps to a unit in each k[t]/(tn), using
Exercise 38.2.

For the first part, let I ⊆ k[[t]] be an ideal. If it’s nonzero, there’s an f ∈ I \ 0, so f = tnu, where u is a
unit. Choose f such that n is minimal; then you can show that I = (tn). �

Let X = SpecA and x be a closed point of X, corresponding to a maximal ideal mx of A. We define
Ox := limnA/m

n
x .

Proposition 38.3. If t is a uniformizer at x, and k′ := A/mx is the residue field at x, then there is a
canonical isomorphism Ox

∼=→ k′[[t]].

Proof. We have compatible, surjective maps A/mnx → k′, and we’d like the surjection to split. We can do this,
in fact in a unique way, because k ↪→ k′ is separable, k is perfect, and mx is nilpotent in A/mnx . Therefore we
get a map k′ → Ox. Since t is a uniformizer at x, we have a map k′[t]→ A, and sending tn 7→ 0 is quotienting
out by mnx . That is, we have maps k′[t] → A/mnx given by sending tn 7→ 0, and these are compatible as n
varies. Hence k′[t]/(tn)

∼=→ A/mnx , and their limits also agree. �
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The map A→ Ox can be thought of as a “power series expansion” around x. If g ∈ A is nonzero at x (i.e.
g mod mx 6= 0), then g maps to a unit in Ox. Therefore for all neighborhoods U ⊂ X containing x, we also
get maps Fun(U)→ Ox.

These maps are injective! Indeed, g ∈ Fun(U) maps to 0 iff g ∈ mnx for all n, which implies g = 0. This is
akin to the idea that on a connected domain in C, a function is determined by its Taylor series near a point.
We can take lim−→U

Fun(U), which is the ring of germs at x, and this injects into Ox.
Let Kx := Frac(Ox). A choice of uniformizer t defines an isomorphism

(38.4) Kx
∼= k′((t)) := k′[[t]]

[
1
t

]
= {

∞∑
n�−∞

ant
n | an ∈ k′}.

This is called the field of Laurent series with coefficients in k′. Akin to Taylor expansion, we have a Laurent
expansion map k(X)→ Kx.

Remark 38.5. Ox is complete with respect to an I-adic topology, because it’s an inverse limit; Kx is not,
because it has no ideals. This occasionally causes confusion. (

A variant of this construction: if E is a vector bundle on X, we can form

EOx
:= lim

n
E/mnx

∼= E⊗A Ox(38.6a)

EKx
:= EOx

[
1
t

]
= E⊗A Kx.(38.6b)

Typically we’ll do this for E = Ω1
X , in which case we’ll think of them as k[[t]] dt and k((t)) dt — but these are

not the differentials on Ox and Kx! There’s a continuity condition.
We will use this setup to discuss a local version of the Riemann-Roch theorem.

Theorem 38.7 (Local Riemann-Roch). There’s a canonical isomorphism (Kx)∨ ∼= Ω1
Kx

, with duality given
by residues.

We’ll discuss what “residues” means in this setting. Also, importantly, K∨x is the continuous dual. We’ll
also explain what this means.

Definition 38.8. A Tate vector space over a field k is a topological k-vector space V which is the direct sum
of a profinite-dimensional vector space and a discrete vector space. Here, a profinite-dimensional vector space
is an inverse limit (as topological vector spaces) of finite-dimensional vector spaces with the discrete topology.

We want this to be the smallest class of topological vector spaces containing finite-dimensional, discrete
vector spaces and their inverse limits.

Keep in mind that if k usually has a topology, such as C or Qp, we’re currently not using it.

Example 38.9. C = k((t)) is a Tate vector space. The topology is set up such that tn → 0 as n→∞. More
precisely, V = k[[t]]⊕ k((t))/k[[t]]; the former is the inverse limit of k[t]/(tn), and the latter is discrete, with
a basis t−1, t−2, etc. (

The awesome thing about Tate vector spaces is that they have duality.

Definition 38.10. Let V be a discrete k-vector space. We define its continuous dual to be V ∨ :=
lim←−W⊆V f.d. W

∨ (i.e. W ranges over all finite-dimensional subspaces of V ).

The topology on V ∨ is essentially the same thing as the weak-∗ topology in functional analysis.

Definition 38.11. If V := lim←−Vi, where each Vi are discrete and finite-dimensional, and the maps between
them are surjective, then we say V is a lattice. In this case, we define V ∨ := lim−→V ∨i , which is exactly the
space of continuous maps V → k.

Therefore for a general Tate vector space, we define V ∨ to be the space of continuous maps V → k.

Because it’s true for discrete vector spaces and for latices, the natural map V → V ∨∨ is a continuous
isomorphism for any Tate vector space V . Tate vector spaces are the smallest class of vector spaces where we
have this double-duality as well as discrete vector spaces.
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Returning to local Riemann-Roch, let’s do a plausibility check: K = K((t)) and O = k[[t]]; then
O∨ ∼= k((t))/k[[t]],
(38.12) K = O ⊕ k((t))/k[[t]] = lim−→(k[t]/(tn))∨.
Therefore K∨ = k((t))/k[[t]]⊕O = K, which is suggestive. If you don’t choose a coordinate t, you’ll have to
twist by one-forms, which is what the theorem statement says.

Lecture 39.

Traces on Tate vector spaces: 12/3/18

Today, our goal is to construct the residue map res : Ω1
k → k. Let x be a k′-valued point, t be a uniformizer,

and K := k′((t)) be the field of Laurent series at x.
If k′ = k, then t trivializes Ω1

k near x, and

(39.1) res
( ∞∑
n=−N

ant
n

)
:= a−1.

If k′ ) k, then we let res(
∑
ant

n) := trk′/k(a−1).

Proposition 39.2. This construction is independent of the coordinate t.

As a basic sanity check, let’s test scale-invariance: if t 7→ λt, for λ ∈ k×, Laurent series change by

(39.3)
∑

ait
i 7−→

∑ ai
λi+1 (λt)id(λt),

and you can directly see that the (−1)-terms are the same.
If char(k) = 0, there’s a quick proof of Proposition 39.2. We first claim that d: K → Ω1

K has a codimension-
1 image, dt/t gives a basis element, and Ω1

K/ Im(d) ∼= k with the projection map given by the residue. Then
the proof is pretty easy: for n 6= −1,

(39.4) tn dt = d
(
tn+1

n+ 1

)
.

This definition of the residue map is nice for one’s intuition, but not as good for proving theorems. Next we’ll
provide an alternate construction, due in general to Tate, which is opaque but much better for proving stuff.

First, though, a toy model. Let A be a k-algebra acting on a finite-dimensional k-vector space V . This
defines a trace map tr : A→ k: the action is a map A→ Endk(V ), and then we compose with the usual trace
map tr : Endk(V )→ k.

We will generalize this as follows: if A is now a commutative A-algebra acting on a Tate vector space
V , we’ll obtain a residue map resV : Ω1

A → k. The natural action of K on itself will define the residue map
(ignoring some continuity issues that we’ll have to eventually address).

Definition 39.5. Let V be a Tate vector space. A lattice in V is an open profinite-dimensional vector space
Λ ⊆ V .

Good examples include k[[t]] ⊂ k((t)), or, more generally, tnk[[t]] for any n ∈ Z.

Remark 39.6. If Λ ⊂ V is a lattice, it’s always possible to split V as V = V/Λ⊕ Λ. Moreover, a topological
vector space is Tate iff it has a lattice. Also, a lattice gives a basis for the topology of V . (

Exercise 39.7. Let Λ,Λ′ ⊂ V be lattices. Show that
(1) Λ + Λ′ is a lattice,
(2) Λ ∩ Λ′ is a lattice, and
(3) the quotient (Λ + Λ′)/(Λ ∩ Λ′) is finite-dimensional.

Defining the trace will be tricky, because if V is an infinite-dimensional vector spaces, traces might not
make any sense at all: consider the identity map id : `2 → `2. So we have to restrict to certain classes of
operators, imposing the following restrictions.

• We will only consider continuous operators T : V → V . This implies in particular that for all lattices
Λ ⊆ W , T−1(Λ) contains a lattice in V . (It might not be a lattice, e.g. if T = 0.) The space of
continuous operators T →W is denoted Homcts(V,W ).
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• We say that a continuous map T : V → W of Tate vector spaces has bounded image if Im(T ) is
contained in a lattice. The space of maps V →W with bounded image is denoted Hom[(V,W ).

• Next, we let Hom](V,W ) denote the maps T : V →W with open kernel.
• A trace-class operator is one in both Hom[(V,W ) and Hom](V,W ). We denote the space of these
operators Homtr(V,W ).

When V and W are infinite-dimensional, trace-class operators are fairly rare.

Definition 39.8. There exists a canonical trace map tr : Endtr(V ) = Homtr(V, V ) → k, given by the
following construction. Since T is trace-class, Im(T ) is contained in some lattice Λ, and there is some other
lattice Λ′ ⊂ ker(V ). Then T induces a map

(39.9) T ′ : (Λ + Λ′)/(Λ ∩ Λ′) −→ (Λ + Λ′)/(Λ ∩ Λ′)

essentially by restriction; this factors through the quotient because Λ ∩ Λ′ ⊂ Λ′ ⊂ ker(T ).
Using Exercise 39.7, since Λ+Λ′ is a lattice and Λ∩Λ′ is a lattice, then (39.9) realizes T ′ as an endomorphism

of a finite-dimensional vector space, so we let tr(T ) := tr(T ′).

Exercise 39.10. Show that this definition does not depend on our choices of Λ and Λ′.

In view of this, it’s useful to know how to produce trace-class operators.

Exercise 39.11. If V is a Tate vector space, End[(V ) and End](V ) are two-sided ideals inside Endcts(V ),
and therefore Endtr(V ) is also a two-sided ideal.

Exercise 39.12. Show that if T : V → V is trace-class and S : V → V is continuous, then [S, T ] := ST −TS
is trace-class, and tr([T, S]) = 0.

Lemma 39.13. Let T : V → W be continuous. Then there exist T [ ∈ Hom[(V,W ) and T ] ∈ Hom](V,W )
such that T = T [ + T ].

Proof. Let Λ ⊆ W be a lattice, and choose a decomposition W ∼= Λ ⊕W/Λ. Let πΛ : W → W be the
projection onto Λ; then let T [ := πΛ ◦ T and T ] := T − T [.

Clearly T [ ∈ Hom[(V,W ); why does T ] have open kernel? This follows from the fact that T−1(Λ) is open,
by continuity, and is contained in ker(T ]). �

Recall that if A is an algebra, an A-bimodule (also called an (A,A)-bimodule) is a vector space with
commuting left and right actions of A. It’s often better to think of this as an A⊗k Aop-module, and that will
be a useful perspective today.

Suppose A is a commutative algebra and that we have an extension of A-bimodules

(39.14) 0 // M // E // A // 0.

This induces an A-module map

(39.15) δ : Ω1
A →M ⊗A⊗A A = M/[A,M ] = M/{am−ma | a ∈ A,m ∈M}.

Example 39.16. For example, if E = A⊗A and its map to A is multiplication m, then M = I = ker(m),
so we get a map

(39.17) Ω1
A −→ I/[A, I] = I/I2.

We claim this is an isomorphism. (

The construction of the map in (39.15) goes as follows: lift 1 ∈ A to some 1̃ ∈ E. If f ∈ A, define
δ(f) := f · 1̃− 1f̃ ∈M , which by the universal property of Ω1

A passes to the desired map

(39.18) δ : Ω1
A →M �M/[A,M ].

You can check that this doesn’t depend on the choice of 1̃.
Definition of trace: TODO.
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Lecture 40.

Residues: 12/5/18

Warning: there may be a sign error in today’s lecture.
Suppose A is a commutative k-algebra acting on a Tate vector space V by continuous maps. We would

like to define a residue map resV : Ω1
A/k → k, and first have to define the trace of a trace-class operator (since

V may be infinite-dimensional, and often will be in our applications). Last time, we described a canonical
decomposition of a continuous operator T : V → V as T = T [ + T ], where T [ has bounded image and T ] has
open kernel.

This definition of residues follows Tate.

Definition 40.1. The residue of a differential f dg is resV (f dg) := tr[g, f [] ∈ k.

Since End[(V ) is a two-sided ideal in the algebra of continuous endomorphisms on V , then [g, f [] ∈ End[(V ).
Letting f ] := f−f [, there’s a lattice Λ ⊂ V with f ](Λ) = 0, hence a v ∈ Λ with f(v) = f [(v). If v ∈ Λ∩g−1(Λ),
then

(40.2) [g, f [](v) = gf [(v)− f [(g(v)) = [g, f ](v) = 0.

Therefore [g, f [] also has open kernel, hence is trace-class, and Definition 40.1 makes sense.
Suppose that V = A = k[[t]], and A acts by left multiplication. Then we have another, more concrete (and

coordinate-dependent) definition of residues, familiar from complex analysis, and, fortunately, Definition 40.1
agrees with this definition.

Exercise 40.3. Let T ∈ End[(V ) and S ∈ End](V ). Then [T, S] is trace-class and has trace zero.

Lemma 40.4. If f ∈ A, then for all n ≥ 0, resV (fn df) = 0.

Proof. Write f = f [ + f ] as usual. Then fn = (f [)n + g where g has open kernel, i.e. (fn)[ = (f [)n. Choose
a lattice Λ ⊂ V and a v ∈ Λ with f(v) = f [(v); then

(40.5) v ∈
n−1⋂
i=1

f−i(Λ).

Therefore

(40.6) (f [)n(v) = (f [)n−1f [(v) = (f [)n−1f(v) = (f [)n−2f2(v) = · · · = fn(v).

Using Exercise 40.3,

(40.7) resV (f dg) := trV [g, f [] = tr[g[, f [] + tr[g], f [] = tr[g[, f [],

because tr[g], f [] = 0.
Therefore

(40.8) resV (fn df) = trV [f [, (fn)[] = tr[f [, (f [)n] = 0,

because these two operators commute. �

The point is: when n is nonnegative, the residue behaves the way we think it should.

Definition 40.9. Let Λ1 and Λ2 be lattices in a Tate vector space V . The relative dimension of Λ1 and Λ2 is

rel dim(Λ1,Λ2) := dim(Λ1/(Λ1 ∩ Λ2))− dim(Λ2/(Λ1 ∩ Λ2)).

This can be interpreted as an index. The quotient of a lattice by a sublattice is open and discrete in V ,
hence finite-dimensional, so this gives you an integer.

Lemma 40.10. Suppose T : V → V is an invertible, continuous operator. Then trV [T−1, T [] = rel dim(T−1(Λ),Λ)
for any lattice Λ.

Two takeaways: first, that this number doesn’t depend on Λ, only on T ; and second, this will be a source
of nonzero residues.
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Proof. Choose a decomposition V = Λ⊕V/Λ, and let πΛ : V → V be the projection onto Λ, so that T [ = πΛT
by definition. Therefore

(40.11) [T−1, T [] = [T−1, πΛT ] = T−1πΛT − πΛTT 1 = πT−1Λ − πΛ,

which has trace equal to dim(T−1(Λ)/Λ ∩ T−1(Λ))− dim(Λ/Λ ∩ T−1(Λ)). �

We bring this to the geometric setting.

Corollary 40.12. Let X be a smooth curve and x ∈ X be a closed point. Under the natural action of
A := Fun(X \ x) on the Tate vector space Kx, for an f ∈ A,

(40.13) resx
(

df
f

)
= −deg(x)vx(f),

For example, the residue of dt/t = −1, where t is a uniformizer at x.

Proof. We’ll use the lattice Ox ⊂ Kx. Lemma 40.10 applied for T := f−1 says that res(f−1 df) =
rel dim(Ox, f(Ox)). If vx(f) ≥ 0, then f(Ox) ⊂ Ox, so the relative dimension is just dimOx/f(Ox) =
deg(x)·vx(f); if vx(f) ≤ 0, then f(Ox) ⊃ Ox, so the relative dimension is −dim f(Ox)/Ox = deg(x)·vx(f). �

TODO: this computation is correct, so everything else is off by a minus sign. The sign in the corollary is
accurate.

In this setting, the residue resx : Ω1
X\x → k extends by continuity to Ω1

Kx
.

Lecture 41.

: 12/7/18

Lecture 42.

: 12/10/18

Today, we’ll prove the Riemann-Roch theorem. TODO: I missed the first part. I think AX denotes the
ring of adeles of X, but I don’t know what that means yet, so hello from the other side.

. . . here, LA := Γ(X \ x,L) ⊗Fun(X,x) AX . Since H1(X,ΩX) ∼= Ω1
AX
/(ΩOA + Ω1

k(X)), we get an induced
residue map from H1(Ω1

X) to the ground field k: it’s clear that resA(Ω1
OA

) = 0, and last time, we showed that
resA(Ω1

k(X)) = 0.
Now let E be a vector bundle on X. Then we can produce a sequence of maps

(42.1)

RΓ(X,E)⊗RΓ(X,E∨ ⊗ Ω1
X)[1] ϕ // RΓ(X,E⊗ E∨ ⊗ Ω1)[1] ψ // RΓ(X,Ω1)[1] χ // H1(Ω1) res // k,

where
• ϕ is induced from the tensor product as an instance of a more general map RΓ(X,E1)[m] ⊗
RΓ(X,E2)[n]→ RΓ(X,E1 ⊗ E2)[m+ n];
• ψ is induced from the evaluation map E⊗ E∨ → OX ; and
• χ exists because RΓ(X,Ω1

X) is concentrated in degrees 1 and 2, so has a natural quotient map to
H1(X,Ω1

X).

Theorem 42.2 (Riemann-Roch, more precise formulation). The map (42.1) is a perfect pairing.

So: the cohomology groups aren’t just dual; we’ve exhibited an explicit duality between them.

Proof. For notational simplicity, we will let E = OX ; ultimately because E is locally trivial, the general
case can be reduced to this one, and the notation is much nicer. The proof will pass through the local
Riemann-Roch theorem.

Since AX is a Tate vector space, there’s a canonical isomorphism (AX)∨ ∼= Ω1
AX

via the pairing AX⊗Ω1
AX
→

k sending f ⊗ ω 7→ res(fω). Recall that AX has the structure

(42.3) 0 // OAX
// AX // AX/OAX

// 0,
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where OAX
↪→ AX is a lattice, and the quotient is discrete, hence a direct sum

⊕
xKx/Ox over closed points

x. In this setting, we get a “self-duality” phenomenon: a canonical isomorphism
(42.4) (OAX

)∨ ∼= Ω1
AX
/Ω1

OAX
.

There is another short exact sequence

(42.5) 0 // k(X) // AX // AX/k(X) // 0,

and this time k(X) ↪→ AX is discrete, and the quotient is profinite-dimensional. Analogous to (42.4), there is
a map
(42.6) Ω1

k(X) −→ (AX/k(X))∨.

Lemma 42.7. The map (42.6) is an isomorphism.

This will be the key lemma in the proof. First, we’ll show how to use it to prove the full Riemann-Roch
theorem; then we’ll go back and prove it.

Let L be a line bundle on X; then we have a quasi-isomorphism

(42.8) RΓ(X,L) '−→ hKer
(
Lk(X) ⊕ LOAX

→ LAX

)
.

Hence, in particular,

(42.9) RΓ(X,OX) '−→ hKer(k(X)⊕OAX
→ AX),

and, thanks to some formal isomorphisms,
RΓ(X,OX)∨ ' hCoker((AX)∨ → k(X)∨ ⊕ (OAX

)∨)(42.10a)

' hCoker
(

Ω1
AX
→ (Ω1

AX
/Ω1

k(X))⊕ (Ω1
AX
/Ω1

OAX
)
)

(42.10b)

' hCoker
(

Ω1
k(X) ⊕ Ω1

OAX
→ Ω1

AX

)
(42.10c)

' hKer
(

Ω1
k(X) ⊕ Ω1

OAX
→ Ω1

AX

)
[1](42.10d)

A similar analysis works for any vector bundle E; the upshots are canonical isomorphisms
(42.11) (EKx

)∨ ∼= E∨Kx
⊗Kx

Ω1
Kx

and
(42.12) (Kx)∨ ∼= Ω1

Kx
.

We’ve now reduced to proving Lemma 42.7. The preliminary observation is that both sides are already
k(X)-vector spaces, and Ω1

k(X) is one-dimensional.
First, we claim the map (42.6) is nonzero. Let ω be a nonzero one-form, x ∈ X be a closed point, and tx

be a uniformizer at x. If n := vx(ω), then t−n−1
x ∈ Kx ↪→ AKx

, so ω is sent to the functional sending
(42.13) t−n−1

x 7−→ resx(t−n−1
x ω) 6= 0.

Since the map is nonzero and the domain is one-dimensional, it’s injective. It now suffices to show that the
codomain is also one-dimensional.

Recall that
(42.14) AX/k(X) = lim←−

D

H1(X,OX(−D)),

and therefore dually,
(42.15) (AX/k(X))∨ = lim−→

D

H1(X,OX(−D))∨.

Suppose λ, µ ∈ (AX/k(X))∨ are linearly independent. We can assume these arise from H1(X;OX(−D))∨ for
a divisor D; we’ll use this to show some other H1 is too big.

Choose a closed point x ∈ X, and consider the pairing. . . TODO. �
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