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Abstract
Tetration is the process of recurrsive exponentiation of complex num- d d.

bers. as exponentiation is generated from recurrsive multiplication. THe” Q’ﬁ Fals r\()
tettatioreof a complex number by a second complex numbers is defined.

This is for tetrationial analog of the Euler identity for exponentiation. The

construction of a Lie algebra for any mapping containing a limit point is

given. The map f(z) = a” demonstrates chaotic properties: containing

limit points. limit cycles. and strange attractors: depending on the value

of a.

1 Introduction

Tetration [1] is the fourth operation in the series: addition. multiplication. expo-
nentiation, tetration. and pentation. The word tetration is used interchangeable
with the exponential map. In the same manner that two complex numbers may
be added together: two complex numbers may be “tetrated” together. One of
the main currents of mathematical history is the progressive exploration and ab-
straction of the processes of addition. multiplication, and exponentiation. The
addition of tetration as a well defined process may provide fertile ground for
abstracting new mathematical concepts: particularly in the area of chaos. As
the first chaotic Ackerman General function. tetration may be able to provide
unique insights into chaos. An example would be using the tetrationial analog of
the Fourier transform for examining the chaotic structure of different processes.
Many new questions can be posed. What are the properties of tetrationial
spinors? Do tetrationial physical processes exist? See (4] for a complimentary
exposition of the Julia sets of exponential dynamics.

The examples of the notational form [1] for tetrationial expressions are in
Figure 1. The author independently developed the same notation. Exponential
expressions are evaluated from the upper right towards the lower left. This is
due to the fact that exponentiation is not commutative. The equation (a")C
simplifies to a®*.
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Figure 1: Tetrationial Notation

It should be understood that all equations in this paper implicitly take into
account the orientation on the Riemann surface. An example is the preceding
identity (a")c = a**. Without considering the orientation on the Riemann
surface, problems can arise as follows:

i (_L)\/z = (_”2(1/43 = (_1)2‘“ =jl¥=,
This is obviously not true. Then problem arises because (—1)? is equivalent to
a unary 360 degree rotation. while 1 is not rotated at all. When considering
Riemann surfaces. the equation (—1)* = 1 is incorrect.
The most obvious attribute of tetration is its ability is generate large num-
bers. An example is the relationship

210 < googol = 10*%° < 310 < googolpler = 101" < *10.

Examples of limit points. limit cycles. and strange attractors exist in tetra-
tion. In other words: the sequence =g, f(z0), f(f(0)). f(f(f(0))). ... can gener-
ate limit points. limit cycles. or strange attractors: when f(z) = a°, where a is
a complex number. Contrasting the size of numbers that tetration can produce.
there are many cases where ®a is finite. Limit points of the map f(z) =a® will
be denoted by capital letters; A in this example. The generators of the limit
points (a in the previous example), are expressed with lower case letters. They
relate as follows:

at=4 (1)

20, = 4. (2)

Each limit point of a exponential map (including Fiemann branch) has a
unique generator. For example the limit point ¢7i/2 of a recurrsive exponential
series has a different generator than the limit point ¢371/2 Since the natural
logarithms of both limit points and their generators are used regularly. and
they also denote the Riemann branch; the following expressions are utilized.

a = Ln(a) (3)
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A= Ln(4) (4)

A=ad (5)

Both a and A contain information on the Riemann branch of a and .4 respec-
tively. For example. in Equation (6): it will be implicitly understood that
AV/A = (e9)H/4 = ¢a/4 The Riemann branches used with X are independent
of the Riemann branch of a.

It is only due to the existence of limit points in the exponential map that
it is possible to give meaningful values to expressious as: 52 and 2. When
exponential dynamics are viewed from the perspective of a limit point: the
algebraic structure undergoes a simplification. In the neighborhood of the limit
point the exponential map becomes a logarithmic spiral descending into the
limit point. The logarithmic spiral is of the form A*. A universal property of
the exponential map is that the logarithmic spiral is dependent on the position
of the limit point (including Riemann branch), regardless of the generator a.

2 Attractors

The exponential map contains examples of limit points. limit cycles. and strange
attractors. Repellors found through recurrsive logarithms taken on a the same
Riemann branch. exist on the same branch as the generating logarithm.

Theorem 2.1 If A =a? then
a=AY4 (6)

Proof. AY/4 = (a)/* =a. @

2.1 Limit Points

If 4 # 0 then a**% = 4+ \d=: thus A+ d= = A+ Adz. If [A < 1 then dis
the limit point of an attractor. If |A| > 1 then A is the limit point of a repellor.
If [A| = 1 then 4 is the center of a limit cycle. By using different Riemann
branches. an infinite family of ~*°a can be generated for any value of a.

Theorem 2.2 Given A, and Ao as limit points of the seme generator a. then
44 = 4 h )

Proof. .Axl/"l‘ = A,1/42 Therefore 4,47 = TR |
Experimental plots of the logarithmic map in a given base a show the ex-
istence of an infinite number of attractors. One for each value of min a =
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In(a) + 27mi. where m is an integer. Any set R of j Riemann branches. (as
m = [0.3.-1.2]) used cyclicly in the logarithmic mapping; converge to a set
of j points [41. A2, . ... 4;]. which sequentially map into the next point of the
set. If only each j** point is plotted in the neighborhood of one of these limit
points, the points will lie on the logarithmic spiral [T2, A is formed. Computer
simulations quickly converge to a set of limit points allowing for the creation
of codes. By providing an appropriate single complex number. a fixed num-
ber of Riemann branches can be cyclicly traversed: with the Riemann branches
indicating the a decoded sequence.

2.2 Limit Cycles

Theorem 2.3 The locti of the center of limit cycles of the erponential map
f(z) = a’ s guven by

2mix

A=e¢ (3)
0zp>1,

Proof. For limit cycles |A| = 1A = €?™ where 0 > ¢ > 1. Using equation 4
In(A) = A = €27, therefore A = ¢’

Theorem 2.4 The equation for the generators of lumut cycles of the exponential
map f(z)=a’ s

L2mir—etTIE

a‘: e . (9)

Proof. Substitute Equation 8 into Equation 6. ®

2.3 Strange Attractors

Strange attractors in the exponential map can be experimentally shown to exist
for cases of |A| > 1 where a is not a positive real number. Specific strange
attractors of the exponential map can be generated with.

"a=1la#l (10)

. e : PR S :
where n is a positive integer. An exampleis aln(a) = 27 for 2a = 1. A solution

-is 2(2.2136 + 3.1140i) = 1.

3 Tetrationial Algorithms

Two methods are discussed for tetrating numbers.



Theorem 3.1 The Sum of Products gves "a. where n ts a posuive mteger. and

mg = 1.
~ n
i
Ty = ——p i, (11)
mil it
i
my,...ma Li=l
Proof. -
s 1 y
ot = Z aMn 2Mn (12)
mp!
ma=1

Given f(1.z) = a*, f(n.z) = a/"1*) and

0 n-1 1
fln=1,2)= Z [H mml"_'L a""':\ i - (13)

MhgeeiMn=d, LA=1

then substituting Equation 12 into = in Equation 13 gives:

e n-1 1 ~ 1
- I l | — e, ™ E a™ (mp-p2)™"
fin.z) L1 =t my!
y Li=

l\/].

HYoseos Mnp- i=1 ma=l
0 n 1
- Z —mty el 3, (14)
A4 =k
m;!
my,...mn Li=1
Set = = 1 giving Equation 11. B

3.1 The Perspective Theorem

For the mapping of an arbitrary function containing at least one limit point.
the existence of the regions of order in the neighborhood of limit points enable
the existence of continuous functions viewed from the perspective of the limit
points.

5 = fl(Q=é

& o= 1)

6 = MR

o= (67

1 '
An E <
on -0

A;;n S (An)m

where A and A, are undefined.

o
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Proposition 3.1 For any recurrswely defined funciion f(z) welh at least one

limit pownt Q. a separate Lie group funciion can be gerér ted for each lumut
point. This allows f™(z) to be defined with n as a compler n= .
M (= B 6™ — ) (15
1 :
+ 2—!53_},3Lﬂ =0
B ;—'[(63_\3 + 305 L Ag)0Y 307"
— (5323 % 383 Xo N3 Y= 303 A8 ]
= o v
Lemma 3.1
Df"(Q):(f'(Q))", (16)
Proof. Using the Chain Rule:
Df(z) = FUPYENDF )
= [Irumen
Atz = Q. fA(Q) = Q: therefore Df"(Q) = (f(2))". W
Lemma 3.2
9 Q) ! 2 / n -
D2f*(Q) = ————"——[(f(Q)*" = (f(Q))"]. (17)
Q) 7o) —f’(Q)LU( )) LF ]
Proof.
D*f*(z) = DI EnDr i)
= U, THE + FUTTHED TR
= QDN+ FQD TR
= f”(Q)(f’(Q))Q"'z $ f’(Q)DZf"—L(Z)
Let f(n) = 22"+ + of(n — 1), f(0) = 0. f(1) # 0: then
t xb+':—1 o o ' 5
f(n):xb_L_l[rb Ligh]. (18)

Lemma 3.3 The higher derivatives of f*(z) can be decomposed into lower
derivatives of fP=Y(z) which are known and a single derivative of f2-4z) of
equal degree to the original dervative which s solved as a geometrical progres-

sion.



From inspection of Lemma 3.2 it can e seen that after substituting Q for
f7-1(z), the Chain rule expansion of D* f"(z) contains no derivatives greater
than the second derivative; and only one derivative of the second degree. Given

D™ f*(z) = g(z) + h(z)D" it £5F

then
D™ fr(z) = ¢/(2) + H(2)D™ frTH(E) + h()DTE )

Take m = 2: then after substituting Q for f"~'(z) it is seen that g(=) and h(z)
only contain derivatives of less than degree m or 2. Therefore in D™ f7(2);
g'(z) and h’(z) only contain derivatives of less than degree m + 1 or 3. Using
the principle of induction, Lemma 3.3 is proved. B

Since %" has the same coefficient as —z". all calculations of the second
derivative and greater are composed of these terms. This is due to f2(z) = =
being linear.

Lemma 3.4 For any recurrsively defined function f"(=) with at least one limat
point Q: a solution of the Perspective equation. (eq. 13), can be generated for
each limit point; defined with n as any whole number.

From the definition of the Taylor series the constant must equal Q. Lemma
3.1 gives the linear term, Lemma 3.2 the quadratic term. and Lemma 3.3 show
how to develop all higher terms. ®

Lemma 3.5 The Perspective equation. (eq. 135). can be generated for each limit
point; defined with n as any integer.

Since a specific limit point defines the Riemann branch used. the Perspective
equation is as valid for g™ (=), where g(z) = f=(z). as for f7(z). Therefore the
Perspective equation is valid for (). m

Theorem 3.2 A solution to the Perspective equation can be generated for each
limit point. defined with n as a complex number.

The evaluation of f*(=) where n is a non-integer number is made by deter-
mining a j, where j is an integer: such that f7(=) is in the neighborhood of the
“limit point. This gives f7(z) = Q+(f'(Q)) ( = Q). In the neighborhood of the
limit point, f*(z) may be defined where s is a complex number. such that s is a
close to j and s — n is an integer. This is due to fi(z) sweeping out a logarith-
mic spiral. Finally f*(z) can be determined by a projection of f*(z). Since the
Perspective equation handles integer values of n everywhere. complex values of
n in the neighborhood of the limit point: it is capable of directly computing
f™(z) where n is complex. B
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Table 1 lists dynamical derivative operators. The notation provided ex-
presses

Dafn(:) = /u [D f" 1 ]3
+f” ms[Df" (D))
+ f(QD° f"” l(-)]

as D® =[3]+3(1,1]+[0.0.1]. A second example is:
243.0) = fOR)D o7 (D2 7 ) D R (D TN

The coefficient f(1°)(Q) is the tenth derivative because 10 =2+4+3+ 1.
The symbolic denvauon of D3 fm(z) follows:

D® = [3]+3(1.1]+[0.0.1]
= 58D 45,80 = )]
(62 2o(6% 771 — 8" =1 4+ 6 D% f17H(2)
= (83+3632,)8%7°
— 363006772 4 D? f17(2)
= (6303 + 362 2035)8%" — 3632367
— (633 + 362225 — 383A3)8"

Table 1: Dynamical Derivatives

L
L

]
2)+(0.1]

3]+3(1.1]+(0.0.1]
{4]+6[2.1]+4[1,0.1]+3(0.2]+[0.0.0

(s R
e

21+
[
{

=[5]+10(3,1]+15[1.2]+10(2,0.1]+1 0[ LL1]+5[1.0.0.1]+0.0.0.0 1]

=[6]+45(2.2]+20(3.0.1]+15[4.1]+15[2.0.0.1]+60(1.1.1]
+15(0,3]+6(1.0,0.0,1]+15{0,1.0.1]+10{0.0.2]+(0.0.0.0.0.1]

D7 =[7]+21(5.1]+35(4,0.1]+105(3.2}+35(3.0.0.1]+210(2.1.1]+105(1 .3]

+21[2.0,0.0.1]+105(1.1.0.1]470(1.0.2]+105(0.2.1]+7(1.0.0.0.0.1 ]

+21[0,1,0,0,1]+35(0.0.1,1]+{0.0.0,0.0.0.1] »

Uat’oti



3.2 The Transexponential Function

T7(z) denotes the transexponential function with the following identities:

TeoTi(z) = To*%(:)
) "= &
1) = exp(s)
Trt(s) = In(z)
sy = & using eq.(4)
TNy = og (5] on the appropriate Riemann branch
Ti1) = ‘a

For convenience a new expression is defined:

Ly = L ’ (19)
m = T_—/\,,; *

Theorem 3.3

THz) = A+ (z=4)+ %{LV\ZH — L")z —.-{)2
+ %[(L2+13L1L3))\3—:3L§,\3" (20)
F(3LY 5 Ly = 3L La)A")(2 = AP
heip (21)

Proof. The derivation is the same as that of the Perspective Theorem. The
specific calculations are carried out for the sake of clarity.

The transexponential version of Lemma 3.1 is: T (<) can be approximated
by the Taylor series at z = A.

DTP(z) = aT2(z) DTP~H=) = o [[ TU(=)
j=1
If : = A. then T}(A) = A; thus DT} (A4) = at AR = AP,
As per Lemma 3.2:

DT} (z) = D[aT}(z) DT;f‘(:)] = o TP (2)[DTP ™ (5) +aT} (:) D? 0%

therefore
D? TP(4) = ad?=1 4 AD? T 7H(A).
For Lemma 3.3: Let f(n) = A™*¢ + Af(n = 1), f(0) = 0, f(1) # 0; then

AbFe=1

fln) = ey (A - A7),

D* TR () = g [A = 27).

1990.nb
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In practice f(n) will always equal A" ="*!' + Af(n = ). Therefore f(n) =
Lb—x[/\b" — A"]. Together with the following notation. the calculation of the
symbolic terms of the transexponential function can be expedited.

Theorem 3.4 The transexponential function can be used fo tetrate one compler
number by a second compler number:
TH1)="a (22)

Substitute %a for z; since Sa=1,all " = 1.

The transexponential function indicates that where ) is not an integer, the
tetrated number is actually No multi-valued. Each of the values of a number
corresponds to one of the Rq limit points.

4 Experimental Results

Computers are not only invaluable. but necessary for a thorough study of tetra-
tion. Equations 6. 8, and 9 are verified in examples:

A= % 3920+ 46201, (23)
with i
a=et T x 03005 + 1.73922i (24)
and
A=e""" x 7911+ 1.1087i (25)
with N
a= ee;’“"'{* ~ 1.96514 + 441244, (26)

The saddle node bifurcation (2] on the real line sets + = 0 in Equations 3. and
9: giving
A=ef =e, (27)
with
a=e " =¢lle (28)

The transexponential function. Equation 20 has been primarily researched

“for the case T;%(z — A); using the Mc Clurant series at = = 4 ~ .31813150520 +

1.33723570142:.

The function T}® is the hemi-exponential function: hmexp(=); such that
hmexp(hmexp(z)) = exp(z). The coefficients for the hemi-exponential function
are listed in Figure 4.

10
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5 Future Directions
At this time, the author is investigating four line of research.

1. The development of computer algorithms for computing and confirming
the existence of the transexponential function.

2. The inverse of the tetrationial function.
3. The generalization of the Perspective Theorem for periodic limit points.

4. The Tetrationial Hypothesis: the idea that tetration is the basis of quan-
tum field theory. This is predicated on the existence of the Perspective
Theorem for periodic limit points, and replacing the Feynman Path Inte-
gral with the transexponential function.
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