
Sheaf Semantics for Concurrent Interacting ObjectsJoseph A. Goguen�Dept. of Computer Science & EngineeringUniversity of California at San DiegoAbstract: This paper uses concepts from sheaf theory to explicate phenomena in concurrentsystems, including object, inheritance, deadlock, and non-interference, as used in computer secu-rity. The approach is very general, and applies not only to concurrent object oriented systems,but also to systems of di�erential equations, electrical circuits, hardware description languges,and much more. Time can be discrete or continuous, linear or branching, and distribution isallowed over space as well as time. Concepts from category theory help to achieve this gener-ality: objects are modeled by sheaves; inheritance by sheaf morphisms; systems by diagrams;and interconnections by diagrams of diagrams. In addition, behaviour is given by limit, and theresult of interconnection by colimit. The approach is illustrated with many examples, includinga semantics for a simple concurrent object-based programming language.1 IntroductionMany popular formalisms for concurrent systems are syntactic (or \formal") in the sense thatthey represent systems by expressions, and then reason about systems by manipulating thecorresponding expressions. For example, Milner's CCS [36], Hoare's CSP [30] and Bergstra's ACP[5] provide process algebras, which represent systems by expressions in which the primitives forprocess combination are implicitly de�ned by sets of equations; a quite di�erent formal approachto concurrency is Girard's linear logic [12].What we call semantic, or model theoretic, approaches, provide complete sets of possiblebehaviours for systems. Such approaches have received less attention than syntactic approaches,but are important as standards against which to test the soundness and completeness of syntac-tic approaches, and also for de�ning basic general concepts, such as deadlock and informationow. Moreover, they are closer to our physical intuition, can often describe examples in simpleand natural ways, and integrate easily with such additional considerations as data structure,objects and constraints. Trace models, as used in CSP [30] and other process algebras, are aprototypical example. From this point of view, Petri nets [40], (labelled) transition systems [45],and synchronisation trees [36] can also be seen as syntactic.Actually, things are not quite so simple, because the approaches that we have lumped togetheras \syntactic" really have varying degrees of semantics. For example, transition systems andsynchronisation trees have been used as semantics for CCS and CSP; also, CSP has a \preferred"model, based on failures and refusals [30]. Petri nets have been used as models for linear logic(e.g., [35]), and set theoretic models have been given for Hewitt's actor approach [1]. Moreover,CCS expressions have been used as models for temporal logic. One person's syntax is anotherperson's semantics.�Thanks also to the Programming Research Group, Oxford University. The research reported in this paper hasbeen supported in part by grants from the Science and Engineering Research Council, and the Fujitsu Corporation.1



This paper proposes a new model theoretic approach to concurrency based on sheaves. Sheaftheory developed in mathematics for studying relationships between local and global phenomena,and has been applied in algebraic geometry, di�erential geometry, analysis, and even logic. Ithas also been given an abstract form using category theory [29, 28], which among other thingsprovides some general results about limits that are used in this paper. From the point of view ofconcurrency theory, it seems suggestive to think of sheaves as a generalisation of trace models.Sheaves handle real time systems, and variation over space as well as over time, either discreteor continuous, in fact over any topological space, in a very natural way. The de�nition of sheafinvolves a generalisation of the pre�x closure condition for traces, and introduces an importantnew idea, called the sheaf condition.Our main motivation for using sheaf theory in Computing Science is the desire to give se-mantics for \new generation" systems, such as object-based concurrent information systems,programming languages, and operating systems. This approach allows integrating concurrencywith objects, data abstraction, information hiding, etc., and also helps to illuminate the notionof inheritance. Having such a semantic approach can be a signi�cant help when designing a newlanguage; for example, a sheaf theoretic approach helped with the design of funnel, a hardwaredescription language [42].The approach is declarative and constraint based , and does not require distinguishing inputsand outputs. This makes it easy to treat applications such as constraint logic programming andelectrical circuits that are essentially relational , in the sense that they involve �nding solutionsfor a number of simultaneous relations (which are not just functions); in particular, there may bemore than one solution, or no solution. It seems possible that functional input/output thinkinghas held back progress in this area, by making it more di�cult to treat systems that involve theinterdependent origination of their observed behaviour. Another goal has been to obtain a generalmodel theoretic framework, within which general concepts such as deadlock and non-interferencecan be de�ned independent of formalism, and within which a wide variety of approaches can becompared. It may be worth emphasising that true concurrency can be modeled, and that we arenot at all dependent upon interleaving. In particular, Lilius [34] has shown how to model Petrinets in our sheaf theoretic framework.This paper builds on a much earlier paper [15] which used sheaf theory as part of a researchprogramme on \Categorical General Systems Theory" [13, 14, 18]. My interest in this area wasrevived by the desire to give a semantics for foops (a Functional Object Oriented ProgrammingSystem) [22, 25] and for the Rewrite Rule Machine, a multi-grain hierarchical massively parallelgraph rewriting machine (see [19] and [17]).The main points made in this paper about the relationship between sheaves and objects arethe following:� objects give rise to sheaves;� inheritance relations correspond to sheaf morphisms;� systems are diagrams of sheaves; and� the behaviour of a system is given by the limit of its diagram.Here \diagram" and \limit" are to be understood in the sense of category theory. We also treatthe interconnection of systems using colimits. Although this paper tries to give some philosophicalmotivation for these points, it does not attempt a serious philosophical treatment.This paper has more de�nitions and examples than results. But the variety of examples maybe surprising, and some of them illustrate a simple new approach to an important application2



area, the semantics of distributed concurrent (possibly object oriented) systems. Some of thede�nitions may also be surprising for their generality, including a notion of security that gen-eralises the Goguen-Meseguer non-interference approach [20, 21]; indeed, this seems to be themost general such de�nition in the literature, and it applies, for example, to the security of realtime distributed concurrent (possibly object oriented) databases. A de�nition of deadlock is alsogiven, which again seems more general than anything in the literature.Category theory has by now been used in many studies of concurrency; for example, see[45, 35, 11]. But as far as I know, only Monteiro and Pereira [37] have previously studiedconcurrency using sheaves; however, their approach does not seem to be closely related to thepresent paper.Prerequisites and NotationBasic category theory and some intuition for concurrency are needed to read this paper. Theformer can be found many places, including [32], which requires some mathematical sophistica-tion, and [26], which may be especially recommended because it discusses sheaves, though in adi�erent formulation from ours, and because it begins rather gently. An introduction to categorytheory for computing scientists is [3]. Some underlying intuitions for basic categorical conceptsare given in [16], and an overview of the Computing Science categorical literature is given in [39].A basic introduction to concurrency using CSP is [30].We will use semicolon (\;") to denote composition of functions, so that (f ; g)(x) = g(f(x));more generally, we let semicolon denote composition in any category, and we let 1A denote theidentity morphism at the object A. In set theory, we let ! denote the set of natural numbers,f0; 1; 2; :::g, and we let #S denote the cardinality of a set S.AcknowledgementsSpecial thanks to Rod Burstall for \active listening" at the Dôme Caf�e in Oxford while I triedto explain these ideas in preparation for a lecture on this subject at the UK-Japan Workshop onConcurrency, in September 1989. Thanks also to Hans-Dieter Ehrich, Amilcar Sernadas, Jos�eFiadeiro, Felix Costa, Tom Maibaum and others in the esprit sponsored iscore project (e.g., see[8, 9, 10]) for reawakening my interest in this area, and for their encouraging comments. Thanksto Susanna Schwab (ne�e Ginali) for a number of very useful suggestions, thanks to Jeremy Jacoband David Wolfram for noticing a number of bugs and infelicities in an earlier draft, and thanksto David Benson for showing me drafts of a paper in preparation, and the MSc thesis of RakeshDubey, both of which inuenced the �nal draft of this paper. Thanks to R�azvan Diaconescu forseveral valuable suggestions, especially the proof of Theorem 29. Thanks also to Frances Pageand Joan Arnold for help with preparation of the manuscript, and especially with the diagrams.This paper is dedicated with a�ection to Professor Erwin Engeler, and was given as a lectureon the occasion of his sixtieth birthday, in March 1990.2 Sheaves and ObjectsLet us begin by asking how it is that we come to know about ordinary everyday objects. Considera comfortable leather armchair C. Perhaps you see it briey through a doorway, with only its leftpro�le visible. Perhaps you later see it from the front. Maybe you eventually sit in it and noticeits leathery smell, but perhaps you never see its back or bottom, and most likely you have noidea how it is stu�ed. In fact, what you have is a collection of observations of certain attributes3



over certain regions of space-time; you never \have" the object as a whole. We can formalisesuch observations as functions f : U ! A from some domain (of space-time) to some set A ofattributes. If attributes A1; :::; An are observed, then we have A = A1 � ::: � An. Note thatthis is a semantic approach, based on direct observation of behaviour, rather than a syntacticapproach, based on some sort of description or abstraction of behaviour.The possible domains U are partially ordered by inclusion, and typically are closed under�nite intersections and arbitrary unions, i.e., they form what is called a topological space. Butfor most of this paper, the following assumption about domains for observation is su�cient:De�nition 1: A base for observation is a family of sets partially ordered by inclusion. 2The following examples describe some typical bases for observations that are of interest inComputing Science.Example 2: For discrete time systems, the base consisting of intervals of natural numbersstarting from an initial time 0 is often appropriate. Intuitively, 0 might represent the time whenthe system was created, or �rst observed, and the various intervals starting from 0 might representperiods of continuous observation of the system. Thus,I0(!) = f;; f0g; f0; 1g; f0; 1; 2g; :::g [ f!g;where the set ! of all natural numbers is the domain for observations over a complete (in�nite)life cycle. The notation [n] = f0; :::; n� 1g for n > 0, and [0] = ;, is often convenient when usingthis base. 2Example 3: Let If0 (!) = I0(!)� f!gm i.e., the �nite intervals starting from 0. 2Example 4: The base consisting of semi-open intervals of real numbers starting at time 0 isoften appropriate for real time systems,I0(R+) = f[0; r) j r � 0g [ fR+g;where R+ denotes the non-negative real numbers. 2Example 5: A base consisting of certain unions of rectangles may be useful for describing thebehaviour of certain systems distributed over one dimension in space and one dimension in time.In this example, I is the set of all subsets U � ! � ! that satisfy the following two conditions:1. For t 2 !, let h(U; t) = #fh j (t; h) 2 Ug; then for each t 2 !, we require that h(U; t) is�nite, and that fh j (t; h) 2 Ug = [h(U; t)].2. Given t; t0 2 ! such that jt� t0j = 1, then jh(U; t) � h(U; t0)j � 1.These conditions say that each set in the base is a union of 1-by-n rectangles (for n � 0),such that the heights of two adjacent rectangles always di�ers by at most one; see Figure 1. Weleave it to the reader to check that this base actually is a topological space. 2The bases of Examples 2 and 4 are topological spaces, while the base of Example 3 is not,because it is not closed under arbitrary unions.4
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Figure 1: An Open SetExample 6: If P is a preordered set (i.e., a set with a given relation � that is reexive andtransitive), then the downclosed sets of P form a topological space, where a set D � P isdownclosed i� d 2 D and d0 � d imply d0 2 D. This generalises Example 2 above. Let usdenote this topology by T (P ). An intuition that often works for this topology is that d0 � dmeans that \if you are now at d then you must have been at d0"; for example, this works whenD is time. 2For example, this construction can be used to de�ne bases that reect branching (non-linear)time, as used in temporal logic.Any base can be embedded in a unique least topological space, by closing under �nite in-tersections and arbitrary unions. Hence, little is lost by assuming that the base is a topologicalspace. Also, it will be important for future discussions to note that any base can be regarded asa subcategory of the category Set of sets, with the domains as its objects, and their inclusionsas its morphisms.Given any inclusion U � V and any observation f : V ! A, we can form the restriction of fto U , denoted f j�U ; this is a function U ! A which has the same values as f , but is only de�nedon the points in U .Given an object (in the intuitive sense) O, we let O(U) denote its set of observations over U ,and given an inclusion i : U ,! V , we let O(i) : O(V ) ! O(U) denote the function that mapseach f : V ! A to its restriction f j�U . Then O satis�es the following two equations:O(i; j) = O(j);O(i)where j : V ,!W is another inclusion and where \;" indicates the composition of functions; andO(1U ) = 1O(U)where 1U denotes the identity function on U . These two equations say that O is a contravariantfunctor on the base T viewed as a category with inclusions as its morphisms. Since each O(U)is a set, we can view O as a set-valued functor O : T op ! Set, where T op denotes the oppositecategory to T . Although set-valued functors are often especially convenient (e.g., because onecan apply the Yoneda lemma), the above formulation also suggests a natural generalisation, inwhich attributes might have other structure, such as that of a vector space, topological space, orBanach space. This is described in the following:De�nition 7: A presheaf is a functor O : T op ! C, where T is called its base categoryand C its structure category. If i : U ,! V is in T , then O(i) : O(V ) ! O(U) is called the5



restriction morphism induced by i. Given a preobject O, the notation f j�U is usually clearerthan O(i)(f), where f 2 O(V ) and i : U ,! V , and this notation is much used in the following.2This de�nition encapsulates the insight that observations are closed under restriction; this is ageneralisation of the pre�x closure condition of trace models. The fact that this condition can beformulated as functoriality allows the natural application of a number of basic results in categorytheory.In all of our examples, the elements of each O(U) are functions, and in most of our examples,the structure category C is the category Set of sets. Section 2.2 below describes some modest(but somewhat more sophisticated) assumptions that allow us to handle other structures.This approach can handle distribution over space, which is useful for studying multi-processorcomputer systems, and it can also take account of continuity, linearity, or other special structurethat observations may have, by appropriate choice of T and C. In fact, all of the presheaves inthe examples of this paper arise in the following way:De�nition 8: A preobject O over a base T with attribute object A = A1 � ::: � An is apresheaf of the formO(U) = fh : U ! A1 � :::�An j K(h)g;where the morphisms O(i) are restriction maps, and the relation K expresses some propertyof functions, embodying the \laws" that O satis�es; the elements of A may be called states,attributes or events, depending on the context. 2For example, K might arise from the laws de�ning a logic gate, an electronic device, or thedistribution of heat on a sphere.When T = I0(!), the elements of O(f0; :::; ig) can be thought of as traces of the behaviour ofO over U . (The states in these traces may be sets of more elementary states, or may have someother complex structure.) Intuitively, if U � V and h 2 O(U) and h0 2 O(V ), then h = h0j�Umeans that the states in h0 can evolve from those in h.Sheaf theory suggests that the following additional condition may be quite fundamental forsome applications:De�nition 9: An object is a preobject O such that its base T is a topological space, andsuch that given Ui 2 T and fi 2 O(Ui) for all i 2 I such that U = Si2I Ui and such thatfij�(Ui \ Uj) = fjj�(Ui \ Uj) for all i; j 2 I, then there is a unique f 2 O(U) such that f j�Ui = fifor all i 2 I. This condition is called the sheaf condition. If the index set I is restricted to be�nite, then the corresponding condition is called the �nite sheaf condition. 2The sheaf condition says that any set of pairwise consistent local observations can be \fused"together into a unique observation over the union of their domains. A deterministic input/outputsystem has a subset of attributes (its inputs and/or states) such that knowing their values at somepoint in time uniquely determines the values of the other attributes (the outputs). However, thesheaf condition does not exclude non-determinism, in either the weak sense that there is morethan one f 0 2 O(V ) such that f 0j�U = f for some given f 2 O(U) with U � V , or in thestronger sense that there is no subset of the attributes which is su�cient to determine all ofeach f : U ! A in O(U). Note that non-determinism is not being modeled by sets of valuesin this discussion, although that could certainly be done for some applications if desired. Also,notice that if T is a compact topological space, then the �nite and in�nite sheaf conditions areequivalent; however, compactness does not seem to be very common in the applications.6



The sheaf condition appears to be satis�ed by the behaviours of all naturally arising systemsfrom Computing Science. This \Sheaf Hypothesis" is similar to the so-called Church (or Church-Turing) thesis, that all intuitively computable functions are computable in the precise senseof (say) Turing machines. Indeed, the claim of Scott and others that computable functions arecontinuous can be seen as a special case of our claim (see Section 3.3 for some related discussion).However, the sheaf condition is not satis�ed by certain properties of systems, when they areexpressed as presheaves. For example, we will see in Example 16 that the property of fairnessgives a presheaf that is not a sheaf. However, the �nite sheaf condition is satis�ed by suchexamples, and seems to be satis�ed by all naturally arising properties of systems in ComputingScience. Such property presheaves also satisfy the so-called separation condition, which is thesheaf condition with \there exists a unique" replaced by just \there exists a".Summing up the above discussion, our �rst main principle, which has much support frommathematical experience with many di�erent kinds of geometrical object, as well as strong intu-itions from concurrency theory in Computing Science, is thatOBJECTS GIVE RISE TO SHEAVES.Sheaves can be thought of as a kind of \phase space" for objects. This sense of \object" mightbetter be called an \object template" or \ideal object," because it describes all possible be-haviours. When an object is actually part of a system, it may not exhibit all of its potentialbehaviours, because some of these may be inconsistent with constraints imposed by other objects.Also, objects in the present sense do not have unique identi�ers; we will see later on that whenpart of a system, an object acquires a unique identi�er (it will be the node that the object labelsin the diagram of the system).2.1 Some ExamplesThis subsection gives a number of examples illustrating the above de�nitions; some come fromComputing Science, while others come from Electrical Engineering. Some more sophisticatedexamples are given in Section 4.Example 10: (Invertor): For the discrete time case, T = I0(!), and when there is no delay,the behaviour of an invertor is described by the following sheaf,O(I) = ff : I ! 2� 2 j i 2 I and f(i) = ht; t0i imply t0 = :tg;where I 2 T , 2 = f0; 1g, and : denotes negation (i.e., :t = 1� t). The traditional picture is��HH�If we impose a unit delay, we get instead the following:O(I) = ff : I ! 2� 2 j i; i+ 1 2 I and f(i) = ht; t0i imply f(i+ 1) = ht00;:tig:2Example 11: (Gates): More generally, if L(f1; :::; fn) is any Boolean-valued function of Booleanvariables f1; : : : ; fn then we can form a discrete time \L-gate" as follows, again for I 2 T = I0(!):O(I) = ff : I ! 2n+1 j i 2 I implies fn+1(i) = L(f1(i); :::; fn(i))g;7



where f(i) = hf1(i); :::; fn+1(i)i. For example, an invertor arises by taking L(t) = :t, an AND-gate arises from L(t; t0) = t ^ t0, and an OR-gate arises from L(t; t0) = t _ t0.For the unit delay case, we instead de�ne, for I 2 I0(!),O(I) = ff : I ! 2n+1 j i; i + 1 2 I implies fn+1(i+ 1) = L(f1(i); :::; fn(i))g:For example, a unit delayor arises by taking L(t) = t. 2Example 12: (Automata): More generally still, we can use automata to model dynamicdigital circuits whose behaviour depends on state as well as on input. The \ADJ diagram1" (i.e.,algebraic signature2) given below describes deterministic (not necessarily �nite state) automatawith initial state �, transition function �, and output function �. Such an automaton A consistsof three sets, AX , AS , and AY whose elements are called inputs, states and outputs respectively,plus an element A� 2 AS and functions A� : AS ! AY and A� : AX�AS ! AS , called the outputand state transition functions, respectively. When just one automaton is under consideration andthere is no danger of confusion, we will write X;S; Y for AX ; AS ; AY , and �; �; � for A�; A�; A�respectively.
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Here again time is discrete, so we let T = I0(!). The sheaf for this system is given, for I 2 T ,by O(I) = 8><>: f : I ! X � S � Y ������� f2(0) = �f3(i) = �(f2(i)) for all i 2 If2(i+ 1) = �(f1(i+ 1); f2(i)) for all i; i+ 1 2 I 9>=>;where f1; f2; f3 respectively denote the X;S; Y components of f . Automata can be used, forexample, to de�ne digital devices that have internal states, such as ip-ops. 2Example 13: (Non-deterministic Automata): The only di�erence between deterministicand non-deterministic automata is that the transition function has the form � : X � S ! 2Sinstead of � : X � S ! S; that is, it returns a set of states rather than a single state. To get thesheaf for such a system, we replace the last line of the de�nition of O(I) in Example 12 above byf2(i+ 1) 2 �(f1(i+ 1); f2(i)) for all i; i+ 1 2 IBecause �(f1(i+ 1); f2(i)) can be empty, it may happen that there is no h0 2 O([i+ 1]) suchthat h0j�[i] = h for some given h 2 O([i]); even for deterministic automata, it can happen thatthere is more than one such h0, but for non-deterministic automata, there can be multiple h0having the same input components. 21This name was suggested by Cli� Jones for a kind of diagram introduced by Goguen, Thatcher, and Wagner[24] in their study of abstract data types. (The reason for the name \ADJ" is that the set fGoguen, Thatcher,Wagner, Wrightg called itself ADJ at that time.)2A many sorted signature � consists of a set S of sorts and a family of sets �w;s of operation symbols, onefor each w 2 S� and s 2 S; we say that � 2 �w;s has arity w and value sort s. An operation symbol � 2 �w;sis interpreted as an operation A� : Aw ! As, where Aw = As1 � ::: � Asn when w = s1:::sn. See [24] for moredetails. 8



We can also model electrical components, using the real time base I(R+). For example:Example 14: (Capacitor): Here, for I 2 I(R+),O(I) = (f : I !R3 ����� f is C1 on I, andf3 = F � ddt (f1 � f2) ) ;where F is the capacitance, f3 is the current, f1; f2 are voltages, and where a C1 function hascontinuous derivatives of every order on its domain. The following is the traditional picture:
Ff1 f2Classical electrical engineering, which encompasses only linear devices, such as capacitors, in-ductors, and resistors, leads to systems of �rst order linear di�erential equations, of the generalform a1 dx1dt + a2 dx2dt + � � �+ andxndt + b1x1 + b2x2 + � � �+ bnxn = c :In this setting, we could choose to exploit a more sophisticated structure category: because thedi�erential equations involved are linear, the spaces of solutions are vector spaces; and becausethey also have a topological structure, we could let C be the category of topological vectorspaces; an even better choice would be the category of Banach spaces (See [46] for information onfunctional analysis, including Banach spaces, and Section 2.2 below for an approach to handlingsuch additional structure.) 2In much the same way, we could look at an object of solutions to some partial di�erentialequation on a smooth manifold, for example, describing the ow of heat on the surface of asphere. This would involve a 3-dimensional space3, say embedded in 4-dimensional Euclideanspace. See [15] for further examples along similar lines. We now return to discrete time.Example 15: (Networks): Networks are usually built from sites and links4. Clearly the sitescan be regarded as objects, and for many purposes it is also convenient to regard the links asobjects. For example, it is not possible to send arbitrary signals over a real link, because ithas a certain bandwidth, certain conventions about how signals are represented, certain physicalproperties, etc. Thus, we represent a network by a graph whose nodes include both the sitesand the links of the network, and whose edges represent a connection from a node to a link.For example, consider a network with four sites, labelled P1; P2; P3; P4, and four links, labelledF1; F2; F3; F4, as in the �gure of Example 40. We can regard such a graph as de�ning a preorder ,with n > n0 i� there is a link from n to n0. For example, P1 > F1. The downclosed sets thengive a topology, in which an open neighborhood N is a collection of sites and links such that ifa site is in N , then all the links connected to it are also in N . The topologies of various SIMDand MIMD multi-processor architectures can be handled in this way.3The third dimension is for time.4The words \node" and \edge" would perhaps be clearer, but would conict with the use of these words inconnection with graphs later in this discussion. 9



Real networks are dynamic in the sense that some sites and/or links may sometimes be \down"and other times be \up." Some networks \dynamically recon�gure" themselves. It might seemthat such networks cannot be modeled with the �xed topologies discussed above. However, theycan be, by �xing in advance all potential communication links, and including \up/down" as partof the state of each node. For example, if the potential sites are fSi j i 2 !g, and if there is apotential link Li;j between each pair (i; j) of sites, then we letN = fSi j i 2 !g [ fLi;j j i; j 2 !gwhere Li;j < Si; Sj for all i; j 2 !. Similarly, for a \star" topology, we would letN = fSi j i 2 !g [ f?gwhere ? denotes the central node, with ? < Si for each i 2 !. 2If P is a totally ordered set (i.e., for all d; d0 2 P either d � d0 or d0 � d (or both)), then the�nite sheaf condition is automatically satis�ed in the downclosed topology T (P ). It follows fromthis that any presheaf over the base If0 (!) is a sheaf, because any non-trivial in�nite union wouldhave union !, which has been excluded. However, not all presheaves over I0(!) and I0(R+) aresheaves, because interesting phenomena can appear \at in�nity" that do not appear in the �niteapproximations, as shown in the following:Example 16: (Fair Scheduler): We use the base I0(!), and consider a \fair scheduler" Ffor two events a; b. What we mean by fairness here is that if an a occurs, then eventually a bmust occur, and if a b occurs, then eventually an a must occur. This means thatF(!) = (a+b+ + b+a+)!;which is a concatenation of strings, the �rst consisting of some a's followed by some b's or elsesome b's followed by some a's, and so on forever. It is interesting now to notice that for eachn 2 !,F([n]) = fa; bgn;i.e., any behaviour is possible on each �nite interval f0; :::; n � 1g, including all a's, and all b's.If we now suppose that F is a sheaf, then the sheaf condition implies thatF(!) = fa; bg! ;i.e., that any behaviour is also possible in the limit. But this contradicts the de�nition of F ;therefore F is not a sheaf. However, it does satis�es the �nite sheaf and gluing conditions. 2Example 17: (Stacks): We can give an implementation for a stack that is distributed inspace, as well as in time, using the base of Example 5, by de�ningO(U) = ff : U ! ! j h 2 h(U; t) \ h(U; t+ 1)) f(t; h) = f(t+ 1; h)g:(It might not appear so at �rst, but this example does satisfy the in�nite sheaf condition.) 2
10



2.2 Structure CategoriesThis subsection presents some assumptions on the structure category C that will make everythingwork just as well as in the set case. (This material can be skipped on a �rst reading, as it requiressomewhat more sophisticated category theory.)Because De�nition 8 involves an attribute object A = A1 � ::: � An, we must assume thatstructure categories have �nite products. In fact, we will see later that we need limits overall small (or at least �nite) diagrams, i.e., we need (�nite) completeness. All of the proposedstructure categories mentioned so far in fact satisfy these assumptions, so they are not veryrestrictive in practice.De�nition 18: A structure category is a (�nitely) complete category C together with afunctor U : C ! Set, called its forgetful functor, that has a left adjoint F : Set! C, called itsfree functor. 2For example, if C is the category of vector spaces, then U gives the underlying set of a vectorspace, and F gives the free vector space using a given set as basis. In this connection, De�nition 9should be made more precise, by replacing \u : U ! A1� :::�An" by \u : U ! U(A1� :::�An)".Proposition 19: If C is a structure category, then its forgetful functor U preserves products,and more generally, all limits.Proof: It is well known that right adjoints preserve limits; e.g., see [32] or [26]. 2This means that the underlying set of a product object in C can be taken to be the product ofthe underlying sets of the component objects; for example, we can get a product of two vectorspaces by giving a vector space structure to the product of their underlying sets. In the followingsection, we will see that limits give the behaviour of systems; hence they are quite basic to ourapproach.Here is how the de�nition of object looks in the present general setting:De�nition 20: A preobject O : T op ! C with structure category C and with base T a topo-logical space satis�es the �nite sheaf condition i� the following is an equalizer diagram inC, O(U [ V ) �! O(U)�O(V ) �!�! O(U \ V )for all U; V 2 T , where the �rst arrow is the tupling of the restrictions to U and V , and the nexttwo are �1; j�(U \ V ) and �2; j�(U \V ). O is a sheaf i� the following is an equalizer diagram in C,O(U) �! �j O(Uj) �!�! �j;j0 O(Uj \ Uj0):whenever U = Sj Uj , where the �rst arrow is the tupling of the restrictions, and the next twoare given as compositions of projections with restrictions. This is called the sheaf condition.2 It seems worth noting at this point that every presheaf is contained in a least sheaf, calledits enveloping sheaf; more precisely, there is a left adjoint to the inclusion functor of sheaves intopresheaves, called the shea��cation functor; see [44] for some further details.
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3 System, Behaviour and InterconnectionThe previous section presented objects as coherent collections of possible observations. This sec-tion considers systems of such objects, and in particular, it considers how their joint behaviouris determined by the behaviours of their components. It also considers relationships of inheri-tance between objects, and how to interconnect systems. A very general compositionality resultis proved for these notions. This approach seems especially convenient for systems that arehighly concurrent, such as electrical circuits (whose component objects are capacitors, resistors,inductors, etc.) and digital circuits (whose components are ip ops, invertors, AND gates, etc.).3.1 SystemsThis subsection argues that systems can be modeled by diagrams of sheaves. In order to considersystems as diagrams, we need an appropriate notion of morphism between objects; these mustbe able to express the kinds of relationships between objects that arise when they are connectedtogether to form systems; we argue that such relationships can be regarded as instances ofinheritance. We use preobject morphisms to express relationships between component objects ina system, de�ned as follows:De�nition 21: Given preobjects O and O0 over the same base T , a morphism ' : O ! O0 isa family 'U : O(U) ! O0(U) of maps, one for each U 2 T , such that for each i : U ! V in T ,the diagram
? ?--O(i)O(U)O(V ) O0(V )O0(U)

'V'U O0(i)
commutes in C. When O and O0 are objects, we may also call ' an object morphism or asheaf morphism. This gives rise to categories PreObj(T ; C) and Obj(T ; C) of preobjects andobjects, respectively, over a given base T and structure category C. 2Actually, such a ' is just a natural transformation from the functor O to the functor O0.Lemma 22: Given preobjects O and O0 with attribute objects A and A0 respectively, and givena : A ! A0, then de�ning aU : [U ! A] �! [U ! A0] by f 7! f ; a, i.e., by aU (f) = f ; a, gives amorphism i� U 2 T and f 2 O(U) imply f ; a 2 O0(U). 2De�nition 23: Given preobjects O and O0 with attribute objects A = Qj2J Aj and A0 =Qj2J 0 Aj , respectively, with J 0 � J , if a : A ! A0 sending haj j j 2 Ji to haj j j 2 J 0i induces amorphism by the method of Lemma 22, then it is called a projection morphism. 2For example, if J = f1; :::; ng and J 0 = f1; :::;mg with m < n, then we may think of the pro-jection map O ! O0 as \forgetting" the attributes Am+1; :::; An of O, or in a dual but perhapsmore suggestive language, as expressing the inheritance by O of the attributes A1; :::; Am fromO0, with Am+1; :::; An added as its own local attributes. All of the morphisms that occur inthe examples of this paper are projections. Non-projection morphisms describe a kind of gen-eralised inheritance that may involve combining attributes and changing representation. Theseconsiderations motivate our second main principle, that12



MORPHISMS REPRESENT INHERITANCE.In particular, O inherits from O0 i� ' : O ! O0 (the apparent reversal of direction here arisesfrom the duality between \forgetting" and inheritance mentioned above).In much the same way, multiple inheritance arises from multiple morphisms, as illustrated bythe following diagram,
O���� O1����......On�������������1PPPPPPPPPqwhich we describe by saying that O inherits from O1; :::;On.Now let us return to the question of how objects form systems: in order for two objects tointeract, they must each inherit something (some attributes and behaviour) from a third object;i.e., they must share a \common language" before they can speak to each other. This may bepictured as follows: O1���� O2����E����@@@@@R �����	Let us call this a \valley" or \V" diagram. In many cases, the shared \language" E consists ofall possible behaviours having states in some attribute object, that is, it has the formE(I) = ff : I ! A jM(f)gfor each I 2 T , where the relation M may, for some application areas, express some minimalconditions (such as being linear, bounded, or continuously di�erentiable) and where A containsthe states of some communication medium, such as the real numbers or an appropriate alphabetof events. It is common that M(f) holds for all f , and in general we expect M to be such thatJ � I and M(f) imply M(f j�J); the latter condition is su�cient for E to be a functor. It mayhelp to think of E as the general object of all possible event streams or traces.Another common case is that some relationship holds between two languages. This may bepictured as follows:
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E1���� E2����
O����@@@@@R�����	Let us call this a \peak" diagram. For example, an invertor is a relation between two objects ofdiscrete time Boolean valued event streams. Similarly, AND an OR gates are relations betweenthree such objects.A more general way for two objects to communicate is for there to be a \boundary object"that can translate between their languages, or at least pass along some information, based on theexistence of a relationship between the two languages. The system diagram for this is a \doublevalley" or \W" diagram, as follows:@@@@@@R ������� HHHHHHj ������	����

���� ���� ����
����O1

E1 R E2
O2

in which Oi has language E i (for i = 1; 2) and R is a relation between these languages. Forexample, E1 might be all streams over discrete time and E2 all streams over continuous time,with R ! E1 and R ! E2 giving the translation of a discrete time interval f0; 1; :::; ng to acontinuous time interval [0; n + 1). Similarly, R might translate between two di�erent clocks,thus allowing for asynchronous communication. For another example, R might represent thesummarisation of complex data in O1 to simple statistics in O2. O1 and O2 can be thought ofas two di�erent perspectives on a more complex object R or as providing a form of non-strictinheritance. What is called \overriding" in object oriented programming can probably be handledin this way. (These ideas were inspired by work of Leigh Star [41] on \boundary objects" in thesociology of science.)Example 24: Now let us consider the system that in traditional notation would be describedby the following diagram, ���������� ���� HH�� -�ABC ^̂ _ Dwhere ^;_ label AND and OR gates, respectively, corresponds to the following diagram in thecategory of objects over I0(!): 14



E����̂��
�����/ SSSw��������

�����1�̂������/ SSSwXXXXXXXXzE���� E���� E����E����
E���� E����_����@@@I ���	 - :����JJ]������9A B C D2 These considerations motivate our third main principle, thatSYSTEMS ARE DIAGRAMS.In line with our attempt to keep the category theoretic prerequisites of this paper to a minimum,we may explain the above with the following:De�nition 25: A system S consists of a graph with nodes n 2 N labelled by (pre)objects Snand with edges e : n! n0 labelled by morphisms 'e : Sn ! Sn0 . 2All of the (pre)objects and morphisms in S are assumed to have the same base and the samestructure category. (We will later give a more sophisticated de�nition of system.)3.2 BehaviourThis subsection argues that the behaviour of a system is given by the limit of its diagram. Letus begin by constructing an object that describes all the possible behaviours of a system. So letus assume a system S with objects Sn for n 2 N , and let us choose some �xed domain I 2 T .Then a possible behaviour of the system over I is a choice of one behaviour for each object,say fn : I ! An in Sn(I), such that this family fn is mutually consistent, in the sense that foreach morphism 'e : Sn ! Sn0 we have 'e(fn) = fn0. Let us call such a family ffn j n 2 Ng aconsistent net of points in S.Thus, the object of behaviours of the system has, for each I 2 T ,L(I) = ( ffn j n 2 Ng ����� fn 2 Sn(I) and 'e : Sn ! Sn0imply 'e(fn) = fn0 ) ;that is, it contains all of the consistent nets of points over I.When the structure category C is Set, it is well known (e.g., [32, 26]) that L(I) is (a con-struction for) the limit of the diagram S(I) in which each node n is labelled by Sn(I) and eachedge e : n ! n0 is labelled by 'e : Sn(I) ! Sn0(I). (One might say that the limit is \trying tomake the diagram commute".)We now draw upon another general result from category theory, showing that limits of di-agrams of preobjects are computed \pointwise," i.e., we have the following, in which limn Sndenotes the limit of a system S of objects Sn, including their morphisms:15



Proposition 26: Any diagram S of presheaves with values in a structure category C has alimit, and in fact, for each U 2 T ,�limn Sn� (U) = limn (Sn(U)) :Proof: This follows directly from a well known result about limits in functor categories thatis proved, for example, in [32] and [26], using the assumption that the structure category haslimits. 2This motivates our fourth main principle, thatBEHAVIOUR IS LIMIT.Proposition 26 and our assumption that C has limits imply that every system has a behaviourobject L. But this does not mean that every system actually exhibits behaviour over every I 2 T ;for example (assuming C = Set), it is possible that L(I) = ; for some, or even for all, I 2 T .To illustrate this principle, the parallel composition of two objects, O1 k O2, is the sheafgiven by their product, O1 �O2, and their synchronised parallel connection is given by thelimit of a valley diagram, where synchronising events occur in the bottom object.The relationship between global and local behaviour that arises between a system and itscomponent objects should be distinguished from the global/local relationship stated in the sheafcondition of De�nition 9. The �rst concerns the behaviour of multi-object systems, throughdiagrams and their limits, while the second concerns \glueing together" behaviour over domains.3.3 InterconnectionThe principles that objects are sheaves, systems are diagrams, and behaviour is limit are all takenfrom some earlier work in categorical General System Theory [13, 14, 18]. Another principlefrom this work is that interconnecting systems corresponds to taking colimits in the category ofsystems, where sharing is indicated by inclusion maps from shared parts into the systems thatshare them. The papers [13, 14, 18] develop some very general results in this setting, includingthe so-called Interconnection and Behaviour Theorems, which are given below5. We apply thismaterial to show that the behaviour of a sheaf at a limit point is the limit of its behavioursat approximating points. (This is more technical than most of the rest of the paper, and somereaders may wish to skip it on a �rst reading.)In order to have a category of systems, we �rst need to de�ne morphisms of systems. It isconvenient to do this in the general setting of diagrams over an arbitrary category6 S, as follows:De�nition 27: A diagram in a category S is a functor D : B ! S from some base categoryB. Given diagrams D0 : B0 ! S and D1 : B1 ! S, a morphism from D0 to D1 consists of afunctor F : B0 ! B1 and a natural transformation � : F ;D1 ) D0.Given three diagrams, Di : Bi ! S for i = 0; 1; 2, the composition of the morphismshF1; �1i : D0 ! D1 and hF2; �2i : D1 ! D2 is a morphism hF1;F2; (F1 � �2); �1i : D0 ! D2. 25Actually, the results given here are somewhat more general than those in [13, 14, 18], because the restrictionto so-called interconnection morphisms has been removed.6In particular, the objects of S need not be sheaves or presheaves.
16



Here the operation \;" on natural transformations is their vertical composition, whereas \�" istheir horizontal composition; e.g., see [32]. Although De�nition 25 de�ned a system to be akind of labelled graph, it is not di�cult to see that any such labelled graph extends uniquelyto a functor with source the category of paths in the given graph; and conversely, any functorcan be considered a labelling of the underlying graph of its source category. So De�nition 27 isconsistent with De�nition 25.The direction of the arrows �n : D1(F (n))! D0(n) may seem counter-intuitive at �rst, but,for example, in the common case of an inclusion from a one node diagram into a system, itcorresponds to need for translating the language of an object in the system into that of theobject in the one node diagram.It is not di�cult to check the following:Fact 28: Composition of diagram morphisms is associative and has identities, so that we havea category of diagrams in S, denoted Dgm(S). 2The following basic result guarantees that in the setting of this paper, where the category Sof systems in complete, we can always interconnect systems. (The elegant proof is due to R�azvanDiaconescu.)Theorem 29: (Interconnection Theorem) If S is (�nitely) complete, then Dgm(S) is also(�nitely) cocomplete, i.e., has all (�nite) colimits.Proof: First, we de�ne a functor P : Catop ! Cat byP (B) = [B ! S]op for any category B, andP (F ) = [F ! S]op : [B1 ! S]op ! [B0 ! S]op for any functor F : B0 ! B1.Noting that P is a (strict) indexed category (in the sense of [43]), and that Dgm(S) = Flat(P )(again, see [43] for this notation), we can use Theorem 2 of [43] to show the (�nite) cocompletenessof Flat(P ) by checking the hypotheses of that theorem:1. Cat is cocomplete.2. [B ! S]op is (�nitely) cocomplete for any category B because S is assumed (�nitely)complete.3. P is locally reversible because (SF )op : [B1 ! S]op ! [B0 ! S]op has a left adjoint, becauseSF : [B0 ! S]! [B1 ! S] has a right adjoint, because any functor B0 ! S has a right Kanextension along any functor R : B0 ! B1 by the Kan Extension Theorem (see Theorem 1on page 233 of [32]) because S is assumed complete.2 Taking colimits in the category Dgm(S) corresponds to interconnecting systems. For exam-ple, interconnecting two relations (represented by \peak" diagrams) over a common object givesa \double peak" diagram, whose behaviour (i.e., limit) gives the relation which is the compositionof the two given relations, as illustrated in Figure 2.We may summarise the above discussion in the following principle, from [13, 14, 18] (see also[16]): INTERCONNECTION IS COLIMIT.17
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Figure 2: The Composition of Two RelationsWe will soon need the following result about limits:Proposition 30: Given a complete category S, then \limit of" is a functorLim : Dgm(S)op �! Swhich is right adjoint to the functord e : S �! Dgm(S)opwhich sends each object C to the diagram consisting of just one node labelled C.Proof: This is just a reformulation of the universal property of limits. In particular, note thatthe functor category Dgm(S)[D; dCe] is the category of all cones � : dCe ) D over D. 2Intuition about systems suggests that one can calculate the behaviour of a system from thebehaviours of its components. This intuition is actually a precise theorem in the present formalsetting, stated as follows:Theorem 31: (Behaviour Theorem) Let D : I ! Dgm(S)op be a (small) diagram ofdiagrams (i.e., systems) over a complete category S. Then (in a hopefully suggestive notation)Lim(colim D) = lim(D; Lim):Proof: As noted in the proof of Proposition 19, right adjoints preserve limits; also, limits inDgm(S)op are colimits in Dgm(S). 2This result is a very general \Compositionality Theorem," in the sense of giving very generalconditions under which behaviours of parts can be composed to give the behaviour of the whole.Let us consider a special case, where I is the discrete base with just two nodes, say 0,1. Thena functor D : I ! Dgm(S)op consists of just two diagrams, D0 and D1. If we denote their colimitin Dgm(S) by D0 +D1, then we have the following formula:lim(D0 +D1) = lim(D0)� lim(D1):It may be amusing, and perhaps surprising, that Theorem 31 can be used to prove that thebehaviour of a sheaf at a \limit point" is the limit of the behaviours leading up to it. Given a18



presheaf O : T op ! C with C complete, let U = Sj2J Uj in T , for some index set J . Let I havethe shapef0g  � � f1gWe will now de�ne a diagram D in Dgm(O) with base I. Let D0 be the diagram with base theset J and with j 2 J labelled by O(Uj); let D1 be the diagram with base J � J and with hj; j0ilabelled by O(Uj \ Uj0). Next, de�ne d : D1 ! D0 as follows: on the bases, dF is the projectionhj; j0i 7! j; and on the objects, (d�)hj;j0i is the restriction morphism O(Uj)! O(Uj \Uj0). De�ned0 : D1 ! D0 similarly: on the bases, d0F is the projection hj; j0i 7! j0; and on the objects,(d0�)hj;j0i is the restriction morphism O(Uj0)! O(Uj \ Uj0).If we apply the limit functor Lim to this diagram D (of diagrams) with base I, and then takeits limit, we get the following diagram in C,L �! �j O(Uj) �!�! �j;j0 O(Uj \ Uj0):The equaliser formulation of the sheaf condition (De�nition 20) says that O is a sheaf i� L �= O(U)whenever U = Sj Uj, and the Behaviour Theorem says that L is the limit of the following diagram@@@@R@@R ��	 @@R ��	����	O(U1) O(U2) O(U3)O(U1 \ U2) O(U2 \ U3)O(U1 \ U3) : : :: : :: : :where all arrows are restriction morphisms. From this, we conclude that O is a sheaf i� itsbehaviour O(U) at U is the limit of its behaviours O(Uj) at Uj , whenever U = Sj Uj . Forexample, if T = I0(!) and Uj = [n], then we have ! = Sn[n], so that O(!) is the limit of theO([n]).3.4 DiscussionWe have considered systems at three di�erent levels: (1) objects, as collections of possible obser-vations; (2) systems, as collections of interacting objects; and (3) interconnections, as systems ofinteracting systems. A wide variety of systems can be treated in this way, including digital hard-ware, electrical circuits, and (as shown in the next section) concurrent programming languages.Concepts from category theory have helped achieve this generality: we model objects as sheaves;systems as diagrams; and interconnections as diagrams of diagrams. In addition, behaviour isgiven by limit, and the result of interconnection by colimit. Although we have not done so here,it is possible to iterate these constructions to obtain hierarchical systems of arbitrary depth; see[13, 14, 18].Our approach to systems is declarative or constraint based in the sense that behaviour arisesthrough \mutual e�ects" or \interdependent origination" rather than through the propagationof causes and e�ects; in particular, we do not assume that all devices have inputs and outputs,and hence we are not limited to simple functional devices7. In this setting, what it means for asystem to satisfy a speci�cation (i.e., a presheaf representing some property, such as fairness) isthat if we interconnect that property with the system, then the resulting behaviour is the sameas (i.e., is isomorphic to) the behaviour of the original system.7Of course, ours is not the only approach with this property. For example, Gordon [27] has used higher orderrelations to study digital circuits. But the point does seem worth a bit of emphasis.19



It is interesting to look at so-called \internal choice" and \external choice" in the context oflimits of diagram of sheaves. We have already noted that non-determinism simply correspondsto there being more than one function to choose from in some set On(U). When On participatesin some larger system, some of these elements may no longer be consistent with overall systembehaviour { i.e., they may not be in the n component of any consistent net of points for thesystem. More interestingly, the n component may be completely determined by the behaviourof the rest of the system. In this case, we may say that \external choice" is being exerised. Butif several values for the nth component remain, then we may say that On has \internal choice".Under a constraint oriented view of systems, the distinction between internal and external choiceappears somewhat arti�cial, and may depend on the point of view taken. (Formulating theabove discussion for an arbitrary structure category requires some additional concepts that arediscussed in Section 4.2.)It is worth noting that the sheaves that arise from some particular model of concurrency, suchas some kind of transition system, typically form a complete subcategory of the category of allsheaves over the appropriate base; in general, there will be some sheaves that do not correspondto any system of the given kind.4 Semantics and Properties of SystemsNow that we have stated, motivated and illustrated all four of the main principles of this paper,let us apply them to some examples of more immediate interest to Computing Science. Thissection shows how to give semantics for a simple concurrent language executing in a distributedenvironment.The objects considered in the previous sections were closed , in the sense that their attributescan be divided into inputs and outputs such that the values on the inputs uniquely determinethose on the outputs. But modern programming requires open systems, the objects of which onlyconstrain what happens under certain conditions, and leave the rest unconstrained. (Of course,non-determinism, where outputs are only partially constrained, is also possible.) Openness inthis sense is similar to what happens when a number of objects are connected to an Ethernet,and each responds only to those messages addressed to it.The syntax of our simple concurrent programming language is given by the (order sorted)signature8 � of the following ADJ diagram:
������ SSSo HHHHHHHY AAAAAA ���	XXX ���� QQQQQk6�����

��������
������������ � ��� �� ��:=Pgm VarExp NatUid

+,*skip
k; ;�

@@@R
Here Uid is the sort for object names, Var for variables, Nat for natural numbers, Exp forexpressions, and Pgm for programs. Also, + and * are operations on expressions, while ; and k8An order sorted signature has, in addition to the data of a many sorted signature, a partial ordering on theset S of sorts, and some assumptions about the consistency of overloaded operation symbols. This ADJ diagramis therefore augmented to indicate subsort relationships with \hooked" arrows. (See [23] for details of order sortedalgebra.) 20



are operations on programs, := is assignment, skip is the instruction that does nothing, and ,!indicates a subsort relation (based on order-sorted algebra [23]). We also assume that the sortsUid, Var and Nat are populated by a countably in�nite number of mutually disjoint constants.Typical elements of sort Uid are Tom, Dick and Harry, and of Var are X;Y;Z, while the elementsof sort Nat are of course 0,1,2,... . We let j�j denote the set of all symbols in �; hence j�j� denotesthe set of all �nite strings of elements from �. Unless otherwise indicated, variables w;w0; w1,etc. range over j�j�.Our language is the algebra T� of all �-terms, constructed just like the order sorted termalgebra in [23], except that in order to simplify the transition rules to be given below, we willuse reverse Polish (i.e., Polish post�x, or  Lukasiewicz) notation for the terms of sort Pgm, whichwill represent programs. For example, the programX := Y + 2 k Y := X + 2appears in T�;Pgm as the stringk := X +Y 2 := Y +X 2To simplify the notation, we will sometimes write u 2 Uid instead of u 2 T�;Uid and similarly forX 2 Var and the other sorts. So n 2 Nat i� n 2 !. Also, we abbreviate T�;Pgm by P�.For simplicity, we will use discrete time in this example, so that T = I0(!). Then theappropriate event stream object E is given, for I 2 T , byE(I) = ff j f : I ! P�g:Next, we give the objects that de�ne the semantics of the various features of the language.For this purpose, we will use the following \transition notation" in de�ning objects O over thebase I0(!): if A is the attribute object of O, then a 7! a0 (for a; a0 2 A) means that if f(i) = afor some f 2 O(I), then there are some I 0 � I and f 0 2 O(I 0) such that i + 1 2 I 0 and f 0j�I = fand f 0(i + 1) = a0. (This implies that each basic operation takes unit time; but it is easy torede�ne 7! so that di�erent operations take di�erent times, or so that operations may take aslong as they like.) In general, a and a0 in the notation a 7! a0 are not elements of A, but rathermay be patterns that de�ne a set of transitions. For example,w+nmw0 7! wkw0 if n;m 2 ! and k = n + mmeans that if there exist strings w;w0 2 j�j� and some numbers n;m such that f(i) = w+nmw0,then there is some f 0 such that f 0(i) = w+nmw0 and f 0(i + 1) = wkw0 where k = n + m. Also,we will let7! aindicate that the initial state is a, i.e., that if f 2 O(I) is de�ned at 0, then f(0) matches thepattern a; usually a is just a single attribute in this notation.The object O de�ned by a set of transition relations is then the least family9 O(U) � E(U)of sets of term-valued functions, for each U 2 T , satisfying the transition relations and closedunder restriction, i.e., such that if U � V and f 2 O(V ) then f j�U 2 O(U).We now de�ne a series of objects, one for each feature of the language, which when puttogether give a system whose semantics is that of the language.9This exists because the conditions de�ning it are all positive, i.e., they are Horn clauses.21



Example 32: (Parallel Composition) This feature is de�ned by an object denoted P havingattribute object P� and satisfyingw1 k skip w w2 7! w01 w w02w1 k w skip w2 7! w01 w w02for w1; w01; w;w0; w2; w02 2 P�. This just says that when either of the two parallel programs iscompleted, the parallel constructor can be eliminated; computation by the other program canproceed in parallel with the elimination. Note that this object is a subobject of E ; we will usethe resulting inclusion morphism to relate it to other objects. 2Example 33: (Sequential Composition) This object is denoted Q, has attribute object P�again, and is de�ned byw1 ;w2 w3 w4 7! w01 ;w02 w3 w04 if w1 6= skipw1 ;skip w3 w4 7! w01 w3 w04This says that the �rst program must be completed before the execution of second can begin. Itdoes not constrain what can be done by the �rst program. Again, its projection is the inclusion.2Example 34: (Assign) Assignment is de�ned by a family of objects GX , one for each X 2 Var.GX has attribute object ! � P� and is de�ned by the following:7! h0; wihm;w := Xnw0i 7! hn;w00skipw000ihn;wpXw0i 7! hn;w00pnw000i if p 6= :=where n 2 ! and p 2 �. This says the each variable initially has value 0, that an assignmentof n to X causes the object GX to remember n, and that the variable X can be replaced by itsvalue, unless it occurs just after :=. The projection is from the second component of the pair inthe state. 2Example 35: (Adder) Let !? = ! [ f?g and let !? � P� be the attribute object. Then atypical adder object, AFred for Fred 2 Uid, may be de�ned as follows:hs; w1Fredw2i 7! h?; w01sw02i if s 6= ?h?; w1+nmw2i 7! hs; w01Fredw02i where s is the number n+mhs; wi 7! hs; w0i if w;w0 2 P��Fredwhere n;m 2 !. This says that Fred performs just one addition at a time, and allows otheroperations to occur concurrently. If additions are ready to be performed, then he must performone; he replaces the chosen expression +nm by his name and memorises the sum. When he seeshis name, he replaces it by the number he has memorised, forgets that number, and becomesready to do another sum. Notice that Fred also prohibits anyone else (to whom he communicates)from using his name. Again, projection is from the second component of the pair in the state. 2Example 36: (Multiplier) A typical multiplier, say MTom for Tom 2 Uid, is de�ned just likethe adder Fred, except that + is replaced by * and Fred is replaced by Tom . 2We have now de�ned all the features of the language. Unfortunately, what we have still allowsunprogrammed transitions to occur. However, we can introduce a \frame object" to keep thingsthe same unless they are deliberately changed:22



Example 37: (Frame) This object is denoted F , has attribute object P�, and is de�ned byw1:::wn 7! w01:::w0n wherewi = w0i for i = 1; :::; n unlesswi 2 Uid or w0i 2 Uid or wi 2 f:=; k; ;; skipg;where wi; w0i are here in �� rather than in P�. 2Finally, in order to \close" the system, we can add a \shop steward" who disallows unregis-tered workers:Example 38: (Union) This object denoted U is de�ned, for I 2 T , byU(I) = ff j f : I ! P��(Uid�W )g ;where W is the set of union members, which might for example be fFred; Tomg. 2So our system looks as follows,
AFred����PPPPPPPqMTom����@@@@@R

Q����? P����������/ F�������������
:::::::GX�����������1GY��������

��
GZ����
6E���� U�����

and the limit of this diagram evaluates programs in our little language. In the limit object, ateach instant of time, each object has a copy of the same program, and possibly some internalstate, such as the value of a variable. As time progresses, the program is simpli�ed as workerobjects process its parts. This processing is concurrent and distributed. Moreover, the objectsfor variables are true objects in the sense of object oriented programming, although very simpleones. The consistent nets of points in the limit object can be seen as the run time states of thecomputation. If we add more workers, then programs can be executed more quickly. Note thatthese objects can be seen as (in�nite state) automata.Of course, this is a simple example. But seems clear that the same techniques will extend tomuch more complex languages. For example, it is easy to add more language constructs, suchas loops. Another interesting feature to add would be abort. Also, it seems that the semanticsof the functional and object oriented language foops [22, 25] and of the Rewrite Rule Machine(see [19] and [17]) can be developed in a similar way, and I hope these will be discussed in futurepapers. See [7] for some other applications of sheaf theory to concurrent systems.
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4.1 DeadlockIt is important that many real systems should be deadlock free, in the sense that they do not getinto dead states. De�nitions of deadlock in the literature tend to be syntactic, and as far as I amaware, there is no de�nition that is su�ciently general to encompass all of the kinds of systemconsidered in this paper. The following proposes one:De�nition 39: If L is the limit object of a system, then the system has deadlock at h 2 L(U)i� for all U 0 � U and all h0 2 L(U 0) such that h0j�U = h, we have h0(i) = h0(i0) for all i; i0 2 U 0�U .Furthermore, the system terminates at h 2 L(U) i� (8U 0 � U)(8h0 2 L(U 0)) h0j�U 6= h. 2Deadlock at h says that if the system has evolved through the events in h, then evolution intoa di�erent state is impossible. Terminating at h is a more drastic form of deadlock in whichthere is no possible future behaviour of the system that extends h. For example, consider a shortcircuited 6 volt battery: it cannot have both a 6 and a 0 volt potential di�erence between itsterminals. Thus, a discrete time system in a state where in the next instant a switch will bethrown that produces a short circuit is terminal at that state. (Of course, a more realistic modelwould show a large current ow followed by the decay of either the battery and/or the wiring, butin the simple model chosen for this example, a short circuit is an inconsistency which precludesany future behaviour.)The following is a common example in the Computing Science literature on concurrency:Example 40: (Dining Philosophers): This somewhat fanciful situation involves four philoso-phers supported in a research institute with a circular table, the center of which always contains aplate of food. This food must be eaten seated at the table with one fork in each hand. The tablehas four forks, one between each two adjacent chairs. Philosophers are asynchronous processesthat think and eat.Let us now construct a formal model of this situation: Let P = fP1; P2; P3; P4g be thenames of the four philosophers, and let F = fF1; F2; F3; F4g be names for the four forks. Thenthe following is a diagram for this situation as a system:P1���� F4���� P4����F1���� F3����P2���� F2���� P3����
PPPPPPPq �������)BBBBBN������

����� BBBBBM�������1 PPPPPPPiThe fork object between philosophers P and P 0 has states s 2 fP; P 0;?g with the followingtransitions,s 7! s? 7! ss 7! ? 24



That is, a fork can remain as it is, can be picked up, and can be put down.Each philosopher P has states s = hl; n; ri for l; r 2 P? = P [ f?g and n 2 ft; eg (t and estand for \thinking" and \eating"10 respectively), and has the following transitions:7! h?; t;?ihl; n; ri 7! hl0; n; r0i if l; l0; r; r0 6= Phl; t; ri 7! hl0; e; r0i if l; l0; r; r0 6= Phl; e;?i 7! hl0; e; P i if l; l0 6= Phl; e; P i 7! hl0; e; P i if l; l0 6= Ph?; e; P i 7! hl; e; P ihP; e; P i 7! h?; t;?iThe �rst rule says that philosophers are born thinking, without forks. The second rule says thatif a philosopher has no forks, then he can continue in his present state, without constraining theactions of his two neighboring philosophers. The third rule says if he has no forks and is thinking,then he may become hungry, again without constraining his neighbors. The fourth rule says thatif he has no forks, then he can pick up his right fork if it is available, without constraining hisleft neighbor (note that, by the second rule, he need not do so). The �fth rule says that he canremain in the state of having just a right fork, without constraining his left neighbor (but hedoes not need to so remain, because l can be any fork state). The sixth rule says that if he hasa right fork, then he can pick up his left fork, if it is available. The last rule says that if he hasboth forks and is eating, then he can put them both down and think. (A slightly more accuratemodel might add a rule saying that if he has both forks he can continue to hold them and eat;under the above rules, he has only one unit of time in which to eat.)The object for each philosopher has two projections, from its �rst and third components, asshown in the diagram above.Let L denote the limit of this system, and let I = f0; :::; ig 2 I0(!). Then o�cially, theelements of L(I) are 8-tuples of functions on I, four of them 3-tuples for the philosophers, andfour of them elements of P?, for the forks. However, it is equivalent to consider 16-tuple valuedfunctions on I, by attening the 3-tuples. In fact, these 16-tuples have a lot of redundancy,due to the constraints imposed by their representing consistent nets of points, and it su�ces toconsider 8-tuples of the forms = hf1; f2; f3; f4; p1; p2; p3; p4iwith fi 2 P? and pi 2 ft; eg, where fi is the state of the ith fork and pi is the middle componentof the state of the ith philosopher. Hereafter, we will feel free to call pi \the state of Pi" andto call such 8-tuples \states of the system". Notice that when the system is in state s, theneach philosopher Pi (for i = 1; 2; 3; 4) is in the state hfi�1; pi; fi+1i, where the subscripts areunderstood modulo 4.There is a unique state of the system in which each philosopher is in his initial state, namelyh?;?;?;?; t; t; t; tiand we will call this the \initial state of the system".It is now easy to see that the state in which each philosopher holds his right fork is a reachabledeadlock state. To see that it is reachable, it su�ces to give a sequence transitions from the initialstate to it. In fact, two parallel transitions are enough: in the �rst, each philosopher becomeshungry, and in the second, each philosopher picks up his right fork:h?;?;?;?; t; t; t; ti 7! h?;?;?;?; e; e; e; ei 7! hP1; P2; P3; P4; e; e; e; ei :10A more accurate description would be \hungry and in a process that may lead to eating."25



Let us denote this last state by x. To see that it is a deadlock state, we note that only the secondrule applies to x. This is checked by seeing which lefthand sides of rules match hPi�1; e; Pi+1i,where the subscripts are again understood modulo 4. Therefore, the only possible transitionsfrom x return the system to state x, because the corresponding righthand side of the second ruleis again hPi�1; e; Pi+1i. This analysis also shows that the system is not terminal.It is possible to modify this example to use real time, by giving a slightly di�erent interpre-tation for the transition notation 7!; however, we omit this. 2Deadlock can also arise when testing to see if some system satis�es some property by inter-connecting the system with the property and taking the limit: if the property is inconsistentwith the system, in the sense that the system has no states with the given property, then theinterconnected system exhibits deadlock.4.2 Information Flow and SecurityAnother important property of real systems is security : we may want to be sure that access tocertain con�dential information is protected, and that certain unauthorised actions are prevented.For example, we don't want an electronic bank robber to be able to discover which are the largestaccounts, and then withdraw funds from them. It is now rather well recognised that \non-interference" assertions can be used to express security properties of (monolithic) sequentialsystems [20, 21]. An active research topic is the extension of such assertions to more generalclasses of system. De�nition 43 below extends non-interference to a much wider class of system,such as distributed object oriented databases, and appears to be more general than anything elsein the literature. (But see [31, 38] for two other very general approaches.) First, we need someauxiliary material:De�nition 41: Let ' : O ! O0 be a morphism of set valued presheaves. Then the imagepresheaf of ', denoted '(O) � O0, is de�ned by '(O)(U) = 'U (O(U)); note that '(O)(U) �O0(U) for each U 2 T . 2This de�nition can be generalised to a suitable structure category C, and is used in the lastequation of De�nition 43 below. But �rst note the following:Fact 42: The image of a morphism of sheaves is a sheaf. 2Now the main concept:De�nition 43: Given a system S with objects Sn for n 2 N , with morphisms 'e : Sn ! Sn0for e : n ! n0, and with behaviour (i.e., limit) L having projections �n : L ! Sn, then Sm isnon-interfering with Sk, written Sm 6; Sk, i� the following holds:let L0 be the limit of the subsystem of S from which Sm and all morphisms to andfrom Sm have been omitted; let �0n : L0 ! Sn be its projections, for n 2 N � fmg;then �k(L) = �0k(L0).2What this says11 is that the behaviour of the system looks the same from the object Sk withthe object Sm omitted as it does with the object Sm present; i.e., there is no ow of information11It may help to think of \k" as a \crook" and \m" as a \market analyst" whose information k seeks to steal.26



from Sm to Sk. This de�nition is general enough to apply to data dependency analysis forcompilers of concurrent languages onto distributed systems, and to the ow of information innatural language conversation, along the lines suggested by situation semantics [4] and the workof Dretske [6]. Indeed, it seems possible that sheaf theory could help in providing a naturalsemantics for situation theory.5 ConclusionsOur sheaf approach provides a semantic, i.e., model theoretic, foundation for concurrent dis-tributed computing by (possibly active) objects, without commitment to any particular notationor conceptualisation for concurrency. In general, such an approach should be closer to our physicalintuition, and can provide standards against which to measure the soundness and completenessof syntactic systems.Sheaf theory has been used in mathematics to study relationships between local and globalphenomena, for example, in algebraic geometry, di�erential geometry, and even logic; the subjecthas also been developed in an abstract form using category theory. The theory of topoi, originallydeveloped by Lawvere and Tierney (see [33], [26], [2]) is perhaps the most exciting developmentin this respect. An interesting topic for future research is to see what the theory of topoi cantell us about concurrency. For example, one should be able to reason about a system using theinternal intuitionistic logic of the corresponding topos of sheaves.Concepts from category theory have helped us achieve generality: objects have been mod-eled by sheaves; inheritance by sheaf morphisms; systems by diagrams; and interconnections bydiagrams of diagrams. In addition, behaviour is given by limit, and the result of interconnectionby colimit. The approach is illustrated with many examples, including a semantics for a simpleconcurrent object-based programming language.The de�nitions, examples and results in this paper are just a beginning. Yet the variety ofexamples may be surprising. Moreover, one example illustrates an important class of applications,namely the semantics of concurrent, distributed object oriented systems. Some of the de�nitionsmay also be surprising for their generality, including a notion of security that generalises theGoguen-Meseguer non-interference approach [20, 21] from sequential systems to (for example)real time distributed concurrent object oriented databases. A very general de�nition of deadlockis also given. It is interesting that these concepts are so easily stated in a purely semantic form.References[1] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT, 1986.[2] Michael Barr and Charles Wells. Toposes, Triples and Theories. Springer, 1984. Grundlehrender mathematischen Wissenschafter, Volume 278.[3] Michael Barr and Charles Wells. Category Theory for Computing Science. Prentice-Hall,1990.[4] Jon Barwise and John Perry. Situations and Attitudes. MIT, 1983. Bradford Books.[5] Jan Bergstra and Jan Willem Klop. Process algebra for synchronous communication. Infor-mation and Control, 60:190{137, 1984.[6] Fred Dretske. Knowledge and the Flow of Information. MIT, 1981. Bradford Books.27
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