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Abstract: This paper uses concepts from sheaf theory to explicate phenomena in concurrent
systems, including object, inheritance, deadlock, and non-interference, as used in computer secu-
rity. The approach is very general, and applies not only to concurrent object oriented systems,
but also to systems of differential equations, electrical circuits, hardware description languges,
and much more. Time can be discrete or continuous, linear or branching, and distribution is
allowed over space as well as time. Concepts from category theory help to achieve this gener-
ality: objects are modeled by sheaves; inheritance by sheaf morphisms; systems by diagrams;
and interconnections by diagrams of diagrams. In addition, behaviour is given by limit, and the
result of interconnection by colimit. The approach is illustrated with many examples, including
a semantics for a simple concurrent object-based programming language.

1 Introduction

Many popular formalisms for concurrent systems are syntactic (or “formal”) in the sense that
they represent systems by expressions, and then reason about systems by manipulating the
corresponding expressions. For example, Milner’s CCS [36], Hoare’s CSP [30] and Bergstra’s ACP
[5] provide process algebras, which represent systems by expressions in which the primitives for
process combination are implicitly defined by sets of equations; a quite different formal approach
to concurrency is Girard’s linear logic [12].

What we call semantic, or model theoretic, approaches, provide complete sets of possible
behaviours for systems. Such approaches have received less attention than syntactic approaches,
but are important as standards against which to test the soundness and completeness of syntac-
tic approaches, and also for defining basic general concepts, such as deadlock and information
flow. Moreover, they are closer to our physical intuition, can often describe examples in simple
and natural ways, and integrate easily with such additional considerations as data structure,
objects and constraints. Trace models, as used in CSP [30] and other process algebras, are a
prototypical example. From this point of view, Petri nets [40], (labelled) transition systems [45],
and synchronisation trees [36] can also be seen as syntactic.

Actually, things are not quite so simple, because the approaches that we have lumped together
as “syntactic” really have varying degrees of semantics. For example, transition systems and
synchronisation trees have been used as semantics for CCS and CSP; also, CSP has a “preferred”
model, based on failures and refusals [30]. Petri nets have been used as models for linear logic
(e.g., [35]), and set theoretic models have been given for Hewitt’s actor approach [1]. Moreover,
CCS expressions have been used as models for temporal logic. One person’s syntax is another
person’s semantics.
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This paper proposes a new model theoretic approach to concurrency based on sheaves. Sheaf
theory developed in mathematics for studying relationships between local and global phenomena,
and has been applied in algebraic geometry, differential geometry, analysis, and even logic. It
has also been given an abstract form using category theory [29, 28], which among other things
provides some general results about limits that are used in this paper. From the point of view of
concurrency theory, it seems suggestive to think of sheaves as a generalisation of trace models.
Sheaves handle real time systems, and variation over space as well as over time, either discrete
or continuous, in fact over any topological space, in a very natural way. The definition of sheaf
involves a generalisation of the prefix closure condition for traces, and introduces an important
new idea, called the sheaf condition.

Our main motivation for using sheaf theory in Computing Science is the desire to give se-
mantics for “new generation” systems, such as object-based concurrent information systems,
programming languages, and operating systems. This approach allows integrating concurrency
with objects, data abstraction, information hiding, etc., and also helps to illuminate the notion
of inheritance. Having such a semantic approach can be a significant help when designing a new
language; for example, a sheaf theoretic approach helped with the design of FUNNEL, a hardware
description language [42].

The approach is declarative and constraint based, and does not require distinguishing inputs
and outputs. This makes it easy to treat applications such as constraint logic programming and
electrical circuits that are essentially relational, in the sense that they involve finding solutions
for a number of simultaneous relations (which are not just functions); in particular, there may be
more than one solution, or no solution. It seems possible that functional input/output thinking
has held back progress in this area, by making it more difficult to treat systems that involve the
interdependent origination of their observed behaviour. Another goal has been to obtain a general
model theoretic framework, within which general concepts such as deadlock and non-interference
can be defined independent of formalism, and within which a wide variety of approaches can be
compared. It may be worth emphasising that true concurrency can be modeled, and that we are
not at all dependent upon interleaving. In particular, Lilius [34] has shown how to model Petri
nets in our sheaf theoretic framework.

This paper builds on a much earlier paper [15] which used sheaf theory as part of a research
programme on “Categorical General Systems Theory” [13, 14, 18]. My interest in this area was
revived by the desire to give a semantics for FOOPs (a Functional Object Oriented Programming
System) [22, 25] and for the Rewrite Rule Machine, a multi-grain hierarchical massively parallel
graph rewriting machine (see [19] and [17]).

The main points made in this paper about the relationship between sheaves and objects are
the following:

e objects give rise to sheaves;

e inheritance relations correspond to sheaf morphisms;

e systems are diagrams of sheaves; and

e the behaviour of a system is given by the limit of its diagram.

Here “diagram” and “limit” are to be understood in the sense of category theory. We also treat

the interconnection of systems using colimits. Although this paper tries to give some philosophical
motivation for these points, it does not attempt a serious philosophical treatment.

This paper has more definitions and examples than results. But the variety of examples may
be surprising, and some of them illustrate a simple new approach to an important application



area, the semantics of distributed concurrent (possibly object oriented) systems. Some of the
definitions may also be surprising for their generality, including a notion of security that gen-
eralises the Goguen-Meseguer non-interference approach [20, 21]; indeed, this seems to be the
most general such definition in the literature, and it applies, for example, to the security of real
time distributed concurrent (possibly object oriented) databases. A definition of deadlock is also
given, which again seems more general than anything in the literature.

Category theory has by now been used in many studies of concurrency; for example, see
[45, 35, 11]. But as far as I know, only Monteiro and Pereira [37] have previously studied
concurrency using sheaves; however, their approach does not seem to be closely related to the
present paper.

Prerequisites and Notation

Basic category theory and some intuition for concurrency are needed to read this paper. The
former can be found many places, including [32], which requires some mathematical sophistica-
tion, and [26], which may be especially recommended because it discusses sheaves, though in a
different formulation from ours, and because it begins rather gently. An introduction to category
theory for computing scientists is [3]. Some underlying intuitions for basic categorical concepts
are given in [16], and an overview of the Computing Science categorical literature is given in [39].
A basic introduction to concurrency using CSP is [30].

We will use semicolon (“;”) to denote composition of functions, so that (f;g)(z) = g(f(x));
more generally, we let semicolon denote composition in any category, and we let 14 denote the
identity morphism at the object A. In set theory, we let w denote the set of natural numbers,
{0,1,2,...}, and we let #S denote the cardinality of a set S.
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2 Sheaves and Objects

Let us begin by asking how it is that we come to know about ordinary everyday objects. Consider
a comfortable leather armchair C'. Perhaps you see it briefly through a doorway, with only its left
profile visible. Perhaps you later see it from the front. Maybe you eventually sit in it and notice
its leathery smell, but perhaps you never see its back or bottom, and most likely you have no
idea how it is stuffed. In fact, what you have is a collection of observations of certain attributes



over certain regions of space-time; you never “have” the object as a whole. We can formalise
such observations as functions f: U — A from some domain (of space-time) to some set A of
attributes. If attributes Aq,..., A,, are observed, then we have A = A; x ... x A,. Note that
this is a semantic approach, based on direct observation of behaviour, rather than a syntactic
approach, based on some sort of description or abstraction of behaviour.

The possible domains U are partially ordered by inclusion, and typically are closed under
finite intersections and arbitrary unions, i.e., they form what is called a topological space. But
for most of this paper, the following assumption about domains for observation is sufficient:

Definition 1: A base for observation is a family of sets partially ordered by inclusion. O

The following examples describe some typical bases for observations that are of interest in
Computing Science.

Example 2: For discrete time systems, the base consisting of intervals of natural numbers
starting from an initial time 0 is often appropriate. Intuitively, 0 might represent the time when
the system was created, or first observed, and the various intervals starting from 0 might represent
periods of continuous observation of the system. Thus,

To(w) = {0,{0},{0,1},{0, 1,2}, ...} U{w},

where the set w of all natural numbers is the domain for observations over a complete (infinite)
life cycle. The notation [n] = {0,...,n — 1} for n > 0, and [0] = (), is often convenient when using
this base. O

Example 3: Let I({(u)) = Tp(w) — {w}m i.e., the finite intervals starting from 0. O

Example 4: The base consisting of semi-open intervals of real numbers starting at time 0 is
often appropriate for real time systems,

To(RT) = {[0,r) | r > 0} U{R"},
where R" denotes the non-negative real numbers. O

Example 5: A base consisting of certain unions of rectangles may be useful for describing the
behaviour of certain systems distributed over one dimension in space and one dimension in time.
In this example, 7 is the set of all subsets U C w X w that satisfy the following two conditions:

1. For t € w, let h(U,t) = #{h | (t,h) € U}; then for each ¢t € w, we require that h(U,t) is
finite, and that {h | (t,h) € U} = [h(U,1)].

2. Given t,t' € w such that [t —¢'| = 1, then |h(U,t) — h(U,t")| < 1.

These conditions say that each set in the base is a union of 1-by-n rectangles (for n > 0),
such that the heights of two adjacent rectangles always differs by at most one; see Figure 1. We
leave it to the reader to check that this base actually is a topological space. O

The bases of Examples 2 and 4 are topological spaces, while the base of Example 3 is not,
because it is not closed under arbitrary unions.
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Figure 1: An Open Set

Example 6: If P is a preordered set (i.e., a set with a given relation < that is reflexive and
transitive), then the downclosed sets of P form a topological space, where a set D C P is
downclosed iff d € D and d' < d imply d' € D. This generalises Example 2 above. Let us
denote this topology by 7 (P). An intuition that often works for this topology is that d’ < d
means that “if you are now at d then you must have been at d'”; for example, this works when
D is time. O

For example, this construction can be used to define bases that reflect branching (non-linear)
time, as used in temporal logic.

Any base can be embedded in a unique least topological space, by closing under finite in-
tersections and arbitrary unions. Hence, little is lost by assuming that the base is a topological
space. Also, it will be important for future discussions to note that any base can be regarded as
a subcategory of the category Set of sets, with the domains as its objects, and their inclusions
as its morphisms.

Given any inclusion U C V and any observation f: V — A, we can form the restriction of f
to U, denoted f]U; this is a function U — A which has the same values as f, but is only defined
on the points in U.

Given an object (in the intuitive sense) O, we let O(U) denote its set of observations over U,
and given an inclusion i: U — V, we let O(i): O(V) — O(U) denote the function that maps
each f: V — A to its restriction f]U. Then O satisfies the following two equations:

O(i;5) = 0(7); O()

where j: V — W is another inclusion and where “;” indicates the composition of functions; and

O(lv) = Llow)

where 17 denotes the identity function on U. These two equations say that O is a contravariant
functor on the base T viewed as a category with inclusions as its morphisms. Since each O(U)
is a set, we can view O as a set-valued functor O: T — Set, where T°P denotes the opposite
category to 7. Although set-valued functors are often especially convenient (e.g., because one
can apply the Yoneda lemma), the above formulation also suggests a natural generalisation, in
which attributes might have other structure, such as that of a vector space, topological space, or
Banach space. This is described in the following:

Definition 7: A presheaf is a functor O: T — C, where T is called its base category
and C its structure category. If i: U — V isin 7T, then O(i): O(V) — O(U) is called the



restriction morphism induced by 7. Given a preobject O, the notation f[U is usually clearer
than O(i)(f), where f € O(V) and i: U < V, and this notation is much used in the following.
O

This definition encapsulates the insight that observations are closed under restriction; this is a
generalisation of the prefiz closure condition of trace models. The fact that this condition can be
formulated as functoriality allows the natural application of a number of basic results in category
theory.

In all of our examples, the elements of each O(U) are functions, and in most of our examples,
the structure category C is the category Set of sets. Section 2.2 below describes some modest
(but somewhat more sophisticated) assumptions that allow us to handle other structures.

This approach can handle distribution over space, which is useful for studying multi-processor
computer systems, and it can also take account of continuity, linearity, or other special structure
that observations may have, by appropriate choice of T and C. In fact, all of the presheaves in
the examples of this paper arise in the following way:

Definition 8: A preobject O over a base T with attribute object A = A; x ... X 4, is a
presheaf of the form

OU)=1{h: U —= A x..x A, | K(h)},

where the morphisms O(i) are restriction maps, and the relation K expresses some property
of functions, embodying the “laws” that O satisfies; the elements of A may be called states,
attributes or events, depending on the context. O

For example, K might arise from the laws defining a logic gate, an electronic device, or the
distribution of heat on a sphere.

When 7 = Zy(w), the elements of O({0, ...,i}) can be thought of as traces of the behaviour of
O over U. (The states in these traces may be sets of more elementary states, or may have some
other complex structure.) Intuitively, if U C V and h € O(U) and b’ € O(V), then h = b'|U
means that the states in A’ can evolve from those in h.

Sheaf theory suggests that the following additional condition may be quite fundamental for
some applications:

Definition 9: An object is a preobject O such that its base T is a topological space, and
such that given U; € T and f; € O(U;) for all ¢ € I such that U = |J;c; U; and such that
[il(UinU;) = f;I(U; N Uj) for all 4,5 € I, then there is a unique f € O(U) such that fU; = f;
for all 7 € I. This condition is called the sheaf condition. If the index set [ is restricted to be
finite, then the corresponding condition is called the finite sheaf condition. O

The sheaf condition says that any set of pairwise consistent local observations can be “fused”
together into a unique observation over the union of their domains. A deterministic input/output
system has a subset of attributes (its inputs and/or states) such that knowing their values at some
point in time uniquely determines the values of the other attributes (the outputs). However, the
sheaf condition does not exclude non-determinism, in either the weak sense that there is more
than one f' € O(V) such that f'|U = f for some given f € O(U) with U C V, or in the
stronger sense that there is no subset of the attributes which is sufficient to determine all of
each f: U — A in O(U). Note that non-determinism is not being modeled by sets of values
in this discussion, although that could certainly be done for some applications if desired. Also,
notice that if 7 is a compact topological space, then the finite and infinite sheaf conditions are
equivalent; however, compactness does not seem to be very common in the applications.



The sheaf condition appears to be satisfied by the behaviours of all naturally arising systems
from Computing Science. This “Sheaf Hypothesis” is similar to the so-called Church (or Church-
Turing) thesis, that all intuitively computable functions are computable in the precise sense
of (say) Turing machines. Indeed, the claim of Scott and others that computable functions are
continuous can be seen as a special case of our claim (see Section 3.3 for some related discussion).
However, the sheaf condition is not satisfied by certain properties of systems, when they are
expressed as presheaves. For example, we will see in Example 16 that the property of fairness
gives a presheaf that is not a sheaf. However, the finite sheaf condition s satisfied by such
examples, and seems to be satisfied by all naturally arising properties of systems in Computing
Science. Such property presheaves also satisfy the so-called separation condition, which is the
sheaf condition with “there exists a unique” replaced by just “there exists a”.

Summing up the above discussion, our first main principle, which has much support from
mathematical experience with many different kinds of geometrical object, as well as strong intu-
itions from concurrency theory in Computing Science, is that

|OBJECTS GIVE RISE TO SHEAVES. |

Sheaves can be thought of as a kind of “phase space” for objects. This sense of “object” might
better be called an “object template” or “ideal object,” because it describes all possible be-
haviours. When an object is actually part of a system, it may not exhibit all of its potential
behaviours, because some of these may be inconsistent with constraints imposed by other objects.
Also, objects in the present sense do not have unique identifiers; we will see later on that when
part of a system, an object acquires a unique identifier (it will be the node that the object labels
in the diagram of the system).

2.1 Some Examples

This subsection gives a number of examples illustrating the above definitions; some come from
Computing Science, while others come from Electrical Engineering. Some more sophisticated
examples are given in Section 4.

Example 10: (Invertor): For the discrete time case, T = Zy(w), and when there is no delay,
the behaviour of an invertor is described by the following sheaf,

OU)={f: I —-2x2|ieland f(i) = () imply t = —t},

where I € T, 2 ={0,1}, and — denotes negation (i.e., =t = 1 — t). The traditional picture is

N

If we impose a unit delay, we get instead the following:
OI)={f: T —=2x2|i,i+1€land f(i) = (t,t) imply f(i+ 1) = (¢",—t)}.
O

Example 11: (Gates): More generally, if L(f1, ..., f,) is any Boolean-valued function of Boolean
variables f1,..., f, then we can form a discrete time “L-gate” as follows, again for I € T = Zy(w):

O ={f: T —2""|ieTlimplies f, 1(i) = L(f1(3), ..., fn(3))},



where f(i) = (f1(4), ..., fnt1(2)). For example, an invertor arises by taking L(¢) = —t, an AND-
gate arises from L(¢,t') =t At', and an OR-gate arises from L(t,t') =tV ¢.
For the unit delay case, we instead define, for I € Zy(w),

O() = {f+ 1 =21 ii+1 €I implies fys1(i + 1) = L(f1(3), -, fu(3))}-
For example, a unit delayor arises by taking L(¢) = t. O

Example 12: (Automata): More generally still, we can use automata to model dynamic
digital circuits whose behaviour depends on state as well as on input. The “ADJ diagram'” (i.e.,
algebraic signature?) given below describes deterministic (not necessarily finite state) automata
with initial state o, transition function , and output function 5. Such an automaton A consists
of three sets, Ax, Ag, and Ay whose elements are called inputs, states and outputs respectively,
plus an element A, € Ag and functions Ag: Ag — Ay and A5: Ax x Ag — Ag, called the output
and state transition functions, respectively. When just one automaton is under consideration and
there is no danger of confusion, we will write X, S,Y for Ay, Ag, Ay, and 0,3, 0 for A,, Ag, As
respectively.

Here again time is discrete, so we let T = Zy(w). The sheaf for this system is given, for I € T,
by

f200) =0
OU) =4 f: I XxSxY | f4(i) = B(fo(i)) forall i € I
Foli +1) = 6(f1(i + 1), fold)) for all iyi + 1€ [

where f1, fa, f3 respectively denote the X, S,Y components of f. Automata can be used, for
example, to define digital devices that have internal states, such as flip-flops. O

Example 13: (Non-deterministic Automata): The only difference between deterministic
and non-deterministic automata is that the transition function has the form §: X x § — 2°
instead of §: X x § — S; that is, it returns a set of states rather than a single state. To get the
sheaf for such a system, we replace the last line of the definition of O(I) in Example 12 above by

Foli +1) € 6(f1(i + 1), f2(3)) forall i,i+1€1

Because (f1(i + 1), f2(i)) can be empty, it may happen that there is no b’ € O([i + 1]) such
that A'|[i] = h for some given h € O([i]); even for deterministic automata, it can happen that
there is more than one such A’, but for non-deterministic automata, there can be multiple h’
having the same input components. O

!This name was suggested by Cliff Jones for a kind of diagram introduced by Goguen, Thatcher, and Wagner
[24] in their study of abstract data types. (The reason for the name “ADJ” is that the set {Goguen, Thatcher,
Wagner, Wright} called itself ADJ at that time.)

2A many sorted signature ¥ consists of a set S of sorts and a family of sets 3, s of operation symbols, one
for each w € S™ and s € S; we say that o € ¥, s has arity w and value sort s. An operation symbol o € ¥, 5
is interpreted as an operation A,: A, — A, where A, = A5, x ... x A;, when w = s1...s,. See [24] for more
details.



We can also model electrical components, using the real time base Z(R™). For example:

Example 14: (Capacitor): Here, for I € Z(R™),

— . 3
O(I)_{f.I—>R fom Fed(f— fy)

fis C*® on I, and }

where F' is the capacitance, f3 is the current, fi, fo are voltages, and where a C'®° function has
continuous derivatives of every order on its domain. The following is the traditional picture:

Aol n
F

Classical electrical engineering, which encompasses only linear devices, such as capacitors, in-
ductors, and resistors, leads to systems of first order linear differential equations, of the general
form
al%-i-@%+---+andditn+51$1+52$2+---+bn$n =c.

In this setting, we could choose to exploit a more sophisticated structure category: because the
differential equations involved are linear, the spaces of solutions are vector spaces; and because
they also have a topological structure, we could let C be the category of topological vector
spaces; an even better choice would be the category of Banach spaces (See [46] for information on
functional analysis, including Banach spaces, and Section 2.2 below for an approach to handling
such additional structure.) O

In much the same way, we could look at an object of solutions to some partial differential
equation on a smooth manifold, for example, describing the flow of heat on the surface of a
sphere. This would involve a 3-dimensional space?, say embedded in 4-dimensional Euclidean
space. See [15] for further examples along similar lines. We now return to discrete time.

Example 15: (Networks): Networks are usually built from sites and links®. Clearly the sites
can be regarded as objects, and for many purposes it is also convenient to regard the links as
objects. For example, it is not possible to send arbitrary signals over a real link, because it
has a certain bandwidth, certain conventions about how signals are represented, certain physical
properties, etc. Thus, we represent a network by a graph whose nodes include both the sites
and the links of the network, and whose edges represent a connection from a node to a link.
For example, consider a network with four sites, labelled P1, P2, P3, P4, and four links, labelled
F1,F2 F3, F4, as in the figure of Example 40. We can regard such a graph as defining a preorder,
with n > n' iff there is a link from n to n’. For example, P1 > F1. The downclosed sets then
give a topology, in which an open neighborhood N is a collection of sites and links such that if
a site is in N, then all the links connected to it are also in N. The topologies of various SIMD
and MIMD multi-processor architectures can be handled in this way.

3The third dimension is for time.
*The words “node” and “edge” would perhaps be clearer, but would conflict with the use of these words in
connection with graphs later in this discussion.



Real networks are dynamic in the sense that some sites and/or links may sometimes be “down”

and other times be “up.” Some networks “dynamically reconfigure” themselves. It might seem

that such networks cannot be modeled with the fixed topologies discussed above. However, they
can be, by fixing in advance all potential communication links, and including “up/down” as part
of the state of each node. For example, if the potential sites are {S; | i € w}, and if there is a
potential link L; ; between each pair (i,7) of sites, then we let

N={Sj|licw}U{L;;|i,j€w}

where L; ; < S;,5; for all 4,5 € w. Similarly, for a “star” topology, we would let
N ={S;|i€w}U{x}

where x denotes the central node, with x < S; for each 1 € w. O

If P is a totally ordered set (i.e., for all d,d’ € P either d < d' or d' < d (or both)), then the
finite sheaf condition is automatically satisfied in the downclosed topology 7 (P). It follows from
this that any presheaf over the base I[{(u)) is a sheaf, because any non-trivial infinite union would
have union w, which has been excluded. However, not all presheaves over Zy(w) and Zy(R™) are
sheaves, because interesting phenomena can appear “at infinity” that do not appear in the finite
approximations, as shown in the following:

Example 16: (Fair Scheduler): We use the base Zy(w), and consider a “fair scheduler” F
for two events a,b. What we mean by fairness here is that if an a occurs, then eventually a b
must occur, and if a b occurs, then eventually an ¢ must occur. This means that

F(w) = (atbt +bTa™)?,

which is a concatenation of strings, the first consisting of some a’s followed by some b’s or else
some b’s followed by some a’s, and so on forever. It is interesting now to notice that for each
n € w,

F([n]) = {a, 03",

i.e., any behaviour is possible on each finite interval {0,...,n — 1}, including all a’s, and all b’s.
If we now suppose that F is a sheaf, then the sheaf condition implies that

F(w) = {a,b}",

i.e., that any behaviour is also possible in the limit. But this contradicts the definition of F;
therefore F is not a sheaf. However, it does satisfies the finite sheaf and gluing conditions. O

Example 17: (Stacks): We can give an implementation for a stack that is distributed in
space, as well as in time, using the base of Example 5, by defining

OW)={f:U—wl|hehUt)NhUt+1)= fth) = ft+1,h)}.

(It might not appear so at first, but this example does satisfy the infinite sheaf condition.) O

10



2.2 Structure Categories

This subsection presents some assumptions on the structure category C that will make everything
work just as well as in the set case. (This material can be skipped on a first reading, as it requires
somewhat more sophisticated category theory.)

Because Definition 8 involves an attribute object A = Ay x ... X A,, we must assume that
structure categories have finite products. In fact, we will see later that we need limits over
all small (or at least finite) diagrams, i.e., we need (finite) completeness. All of the proposed
structure categories mentioned so far in fact satisfy these assumptions, so they are not very
restrictive in practice.

Definition 18: A structure category is a (finitely) complete category C together with a
functor U : C — Set, called its forgetful functor, that has a left adjoint F': Set — C, called its
free functor. O

For example, if C is the category of vector spaces, then U/ gives the underlying set of a vector
space, and F gives the free vector space using a given set as basis. In this connection, Definition 9
should be made more precise, by replacing “u: U — Ay X...x A,” by “u: U — U(A1 X...x A,)”.

Proposition 19: If C is a structure category, then its forgetful functor U preserves products,
and more generally, all limits.

Proof: It is well known that right adjoints preserve limits; e.g., see [32] or [26]. O

This means that the underlying set of a product object in C can be taken to be the product of
the underlying sets of the component objects; for example, we can get a product of two vector
spaces by giving a vector space structure to the product of their underlying sets. In the following
section, we will see that limits give the behaviour of systems; hence they are quite basic to our
approach.

Here is how the definition of object looks in the present general setting:

Definition 20: A preobject O: T — C with structure category C and with base 7 a topo-
logical space satisfies the finite sheaf condition iff the following is an equalizer diagram in

C7
OWUUV) —OU)xOV) X 0UNV)

for all U,V € T, where the first arrow is the tupling of the restrictions to U and V', and the next
two are m1; [(UNV) and mo; [(UNV). O is a sheaf iff the following is an equalizer diagram in C,

O(U) — H]‘ O(Uj) :; Hj,j’ O(Uj N Uj/).

whenever U = |J; Uj, where the first arrow is the tupling of the restrictions, and the next two
are given as compositions of projections with restrictions. This is called the sheaf condition.
O

It seems worth noting at this point that every presheaf is contained in a least sheaf, called

its enveloping sheaf; more precisely, there is a left adjoint to the inclusion functor of sheaves into
presheaves, called the sheafification functor; see [44] for some further details.
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3 System, Behaviour and Interconnection

The previous section presented objects as coherent collections of possible observations. This sec-
tion considers systems of such objects, and in particular, it considers how their joint behaviour
is determined by the behaviours of their components. It also considers relationships of inheri-
tance between objects, and how to interconnect systems. A very general compositionality result
is proved for these notions. This approach seems especially convenient for systems that are
highly concurrent, such as electrical circuits (whose component objects are capacitors, resistors,
inductors, etc.) and digital circuits (whose components are flip flops, invertors, AND gates, etc.).

3.1 Systems

This subsection argues that systems can be modeled by diagrams of sheaves. In order to consider
systems as diagrams, we need an appropriate notion of morphism between objects; these must
be able to express the kinds of relationships between objects that arise when they are connected
together to form systems; we argue that such relationships can be regarded as instances of
inheritance. We use preobject morphisms to express relationships between component objects in
a system, defined as follows:

Definition 21: Given preobjects O and O over the same base 7, a morphism ¢: O — O’ is
a family oy : O(U) — O'(U) of maps, one for each U € T, such that for each i: U — V in T,
the diagram

o) o 0'(V)
O(i) O'(4)
o) v 0'(U)

commutes in C. When O and O are objects, we may also call ¢ an object morphism or a
sheaf morphism. This gives rise to categories PreObj(T,C) and Obj(T,C) of preobjects and
objects, respectively, over a given base T and structure category C. O

Actually, such a ¢ is just a natural transformation from the functor O to the functor O’

Lemma 22: Given preobjects O and O’ with attribute objects A and A’ respectively, and given
a: A — A, then defining ay: [U — A] — [U — A’| by f — f;a, ie., by ay(f) = f;a, gives a
morphism iff U € T and f € O(U) imply f;a € O'(U). O

Definition 23: Given preobjects @ and O’ with attribute objects A = [ljes4; and A =
[1;esr Aj, respectively, with J' C J, if a: A — A’ sending (a; | j € J) to (a; | j € J') induces a
morphism by the method of Lemma 22, then it is called a projection morphism. O

For example, if J = {1,...,n} and J' = {1,...,m} with m < n, then we may think of the pro-
jection map O — O as “forgetting” the attributes A,,.1,..., A, of O, or in a dual but perhaps
more suggestive language, as expressing the inheritance by O of the attributes Ay, ..., A, from
O', with Ay, 41,..., A, added as its own local attributes. All of the morphisms that occur in
the examples of this paper are projections. Non-projection morphisms describe a kind of gen-
eralised inheritance that may involve combining attributes and changing representation. These
considerations motivate our second main principle, that

12



|MOR,PHISMS REPRESENT INHERITANCE. |

In particular, O inherits from O iff ¢: O — O’ (the apparent reversal of direction here arises
from the duality between “forgetting” and inheritance mentioned above).

In much the same way, multiple inheritance arises from multiple morphisms, as illustrated by
the following diagram,

which we describe by saying that O inherits from O, ..., O,,.

Now let us return to the question of how objects form systems: in order for two objects to
interact, they must each inherit something (some attributes and behaviour) from a third object;
i.e., they must share a “common language” before they can speak to each other. This may be
pictured as follows:

Let us call this a “valley” or “V” diagram. In many cases, the shared “language” &£ consists of
all possible behaviours having states in some attribute object, that is, it has the form

E)={f:T—=A[M(f)}

for each I € T, where the relation M may, for some application areas, express some minimal
conditions (such as being linear, bounded, or continuously differentiable) and where A contains
the states of some communication medium, such as the real numbers or an appropriate alphabet
of events. It is common that M(f) holds for all f, and in general we expect M to be such that
J C I and M(f) imply M (f].J); the latter condition is sufficient for £ to be a functor. It may
help to think of £ as the general object of all possible event streams or traces.

Another common case is that some relationship holds between two languages. This may be
pictured as follows:

13



Let us call this a “peak” diagram. For example, an invertor is a relation between two objects of
discrete time Boolean valued event streams. Similarly, AND an OR gates are relations between
three such objects.

A more general way for two objects to communicate is for there to be a “boundary object”
that can translate between their languages, or at least pass along some information, based on the
existence of a relationship between the two languages. The system diagram for this is a “double
valley” or “W” diagram, as follows:

in which O; has language &; (for i = 1,2) and R is a relation between these languages. For
example, £1 might be all streams over discrete time and &£, all streams over continuous time,
with R — £ and R — &, giving the translation of a discrete time interval {0,1,...,n} to a
continuous time interval [0,7 + 1). Similarly, R might translate between two different clocks,
thus allowing for asynchronous communication. For another example, R might represent the
summarisation of complex data in O, to simple statistics in Oy. O7 and O, can be thought of
as two different perspectives on a more complex object R or as providing a form of non-strict
inheritance. What is called “overriding” in object oriented programming can probably be handled
in this way. (These ideas were inspired by work of Leigh Star [41] on “boundary objects” in the
sociology of science.)

Example 24: Now let us consider the system that in traditional notation would be described
by the following diagram,

A——— A
8 >
c 1A

where A,V label AND and OR gates, respectively, corresponds to the following diagram in the
category of objects over Zy(w):

14



A B C D

These considerations motivate our third main principle, that

|SYSTEMS ARE DIAGRAMS. |

In line with our attempt to keep the category theoretic prerequisites of this paper to a minimum,
we may explain the above with the following:

Definition 25: A system S consists of a graph with nodes n € N labelled by (pre)objects S,,
and with edges e: n — n' labelled by morphisms ¢.: S, = S,/. O

All of the (pre)objects and morphisms in S are assumed to have the same base and the same
structure category. (We will later give a more sophisticated definition of system.)

3.2 Behaviour

This subsection argues that the behaviour of a system is given by the limit of its diagram. Let
us begin by constructing an object that describes all the possible behaviours of a system. So let
us assume a system S with objects S, for n € N, and let us choose some fixed domain I € T.
Then a possible behaviour of the system over [ is a choice of one behaviour for each object,
say fn: I — A, in §,(I), such that this family f,, is mutually consistent, in the sense that for
each morphism ¢, : S, — S, we have @¢(f,) = fnr. Let us call such a family {f,, | n € N} a
consistent net of points in S.
Thus, the object of behaviours of the system has, for each I € T,

L(I) = { {fn|n €N} imply @e(fn) = for

fn € Sp(I) and pe: Sy, — Sy }

that is, it contains all of the consistent nets of points over I.

When the structure category C is Set, it is well known (e.g., [32, 26]) that £(I) is (a con-
struction for) the limit of the diagram S(I) in which each node n is labelled by Sy, (I) and each
edge e: n — n' is labelled by ¢.: S,(I) = S,/(I). (One might say that the limit is “trying to
make the diagram commute”.)

We now draw upon another general result from category theory, showing that limits of di-
agrams of preobjects are computed “pointwise,” i.e., we have the following, in which lim, &),
denotes the limit of a system S of objects S, including their morphisms:
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Proposition 26: Any diagram S of presheaves with values in a structure category C has a
limit, and in fact, for each U € T,

(li711rn8n) (U) = lim(S,(U)).

Proof: This follows directly from a well known result about limits in functor categories that
is proved, for example, in [32] and [26], using the assumption that the structure category has
limits. O

This motivates our fourth main principle, that

| BEHAVIOUR IS LIMIT. |

Proposition 26 and our assumption that C has limits imply that every system has a behaviour
object £. But this does not mean that every system actually exhibits behaviour over every I € T
for example (assuming C = Set), it is possible that £(I) = ) for some, or even for all, I € T.

To illustrate this principle, the parallel composition of two objects, O || Oy, is the sheaf
given by their product, O; x O4, and their synchronised parallel connection is given by the
limit of a valley diagram, where synchronising events occur in the bottom object.

The relationship between global and local behaviour that arises between a system and its
component objects should be distinguished from the global/local relationship stated in the sheaf
condition of Definition 9. The first concerns the behaviour of multi-object systems, through
diagrams and their limits, while the second concerns “glueing together” behaviour over domains.

3.3 Interconnection

The principles that objects are sheaves, systems are diagrams, and behaviour is limit are all taken
from some earlier work in categorical General System Theory [13, 14, 18]. Another principle
from this work is that interconnecting systems corresponds to taking colimits in the category of
systems, where sharing is indicated by inclusion maps from shared parts into the systems that
share them. The papers [13, 14, 18] develop some very general results in this setting, including
the so-called Interconnection and Behaviour Theorems, which are given below®. We apply this
material to show that the behaviour of a sheaf at a limit point is the limit of its behaviours
at approximating points. (This is more technical than most of the rest of the paper, and some
readers may wish to skip it on a first reading.)

In order to have a category of systems, we first need to define morphisms of systems. It is
convenient to do this in the general setting of diagrams over an arbitrary category® S, as follows:

Definition 27: A diagram in a category S is a functor D: B — S from some base category
B. Given diagrams Dy: By — S and D;: B; — §, a morphism from Dy to D; consists of a
functor F': By — Bj and a natural transformation n: F; Dy = D.

Given three diagrams, D;: B; — S for 1 = 0,1,2, the composition of the morphisms
(Fy,m): Dy — Dy and (Fy,n2): Dy — Dy is a morphism (Fy; Fy, (Fy ong);mi): Dy — Dy. O

% Actually, the results given here are somewhat more general than those in [13, 14, 18], because the restriction
to so-called interconnection morphisms has been removed.
SIn particular, the objects of S need not be sheaves or presheaves.
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Here the operation “;” on natural transformations is their vertical composition, whereas “o” is

their horizontal composition; e.g., see [32]. Although Definition 25 defined a system to be a
kind of labelled graph, it is not difficult to see that any such labelled graph extends uniquely
to a functor with source the category of paths in the given graph; and conversely, any functor
can be considered a labelling of the underlying graph of its source category. So Definition 27 is
consistent with Definition 25.

The direction of the arrows 7, : D1(F(n)) — Dg(n) may seem counter-intuitive at first, but,
for example, in the common case of an inclusion from a one node diagram into a system, it
corresponds to need for translating the language of an object in the system into that of the
object in the one node diagram.

It is not difficult to check the following:

Fact 28: Composition of diagram morphisms is associative and has identities, so that we have
a category of diagrams in S, denoted Dgm/(S). O

The following basic result guarantees that in the setting of this paper, where the category S
of systems in complete, we can always interconnect systems. (The elegant proof is due to Razvan
Diaconescu.)

Theorem 29: (Interconnection Theorem) If S is (finitely) complete, then Dgm(S) is also
(finitely) cocomplete, i.e., has all (finite) colimits.

Proof: First, we define a functor P: Cat®” — Cat by

P(B) = [B — S]? for any category B, and
P(F)=[F = 8]?: [B; — S8]°P — [By — §]°? for any functor F': By — Bj.

Noting that P is a (strict) indexed category (in the sense of [43]), and that Dgm(S) = Flat(P)
(again, see [43] for this notation), we can use Theorem 2 of [43] to show the (finite) cocompleteness
of Flat(P) by checking the hypotheses of that theorem:

1. Cat is cocomplete.

2. [B — S]°P is (finitely) cocomplete for any category B because S is assumed (finitely)
complete.

3. P is locally reversible because (S¥)P: [B; — 8] — [By — S]° has a left adjoint, because
S™: [By — 8] — B — S] has a right adjoint, because any functor By — S has a right Kan
extension along any functor R: By — B; by the Kan Extension Theorem (see Theorem 1
on page 233 of [32]) because S is assumed complete.

Taking colimits in the category Dgm(S) corresponds to interconnecting systems. For exam-
ple, interconnecting two relations (represented by “peak” diagrams) over a common object gives
a “double peak” diagram, whose behaviour (i.e., limit) gives the relation which is the composition
of the two given relations, as illustrated in Figure 2.

We may summarise the above discussion in the following principle, from [13, 14, 18] (see also
16]):

| INTERCONNECTION IS COLIMIT. |

17



Figure 2: The Composition of Two Relations

We will soon need the following result about limits:

Proposition 30: Given a complete category S, then “limit of” is a functor
Lim: Dgm(S)?®? — S

which is right adjoint to the functor
[[]: § — Dgm(S)*

which sends each object C' to the diagram consisting of just one node labelled C.

Proof: This is just a reformulation of the universal property of limits. In particular, note that
the functor category Dgm(S)[D, [C']] is the category of all cones n: [C] = D over D. O

Intuition about systems suggests that one can calculate the behaviour of a system from the
behaviours of its components. This intuition is actually a precise theorem in the present formal
setting, stated as follows:

Theorem 31: (Behaviour Theorem) Let D: I — Dgm(S)% be a (small) diagram of
diagrams (i.e., systems) over a complete category S. Then (in a hopefully suggestive notation)

Lim(colim D) = lim(D; Lim).

Proof: As noted in the proof of Proposition 19, right adjoints preserve limits; also, limits in
Dgm(8)° are colimits in Dgm(S). O

This result is a very general “Compositionality Theorem,” in the sense of giving very general
conditions under which behaviours of parts can be composed to give the behaviour of the whole.

Let us consider a special case, where [ is the discrete base with just two nodes, say 0,1. Then
a functor D: I — Dgm(S)°P consists of just two diagrams, Dy and D;. If we denote their colimit
in Dgm/(S) by Dy + D, then we have the following formula:

lim(Dg + D7) = lim(Dg) x lim(Dy).

It may be amusing, and perhaps surprising, that Theorem 31 can be used to prove that the
behaviour of a sheaf at a “limit point” is the limit of the behaviours leading up to it. Given a

18



presheaf O: T — C with C complete, let U = ;c; U; in T, for some index set J. Let I have
the shape

{0} & {1}

We will now define a diagram D in Dgm(O) with base I. Let Dy be the diagram with base the
set J and with j € J labelled by O(Uj); let D; be the diagram with base J x J and with (7, j")
labelled by O(U; NUjr). Next, define d: Dy — Dy as follows: on the bases, dr is the projection
(7,3") ¥ j; and on the objects, (dy); ;1 is the restriction morphism O(U;) — O(U;NUy:). Define
d': Dy — Dy similarly: on the bases, d is the projection (j,j') — j'; and on the objects,
(dy,) 5,7y 18 the restriction morphism O(Uj) — O(U; N Uj).

If we apply the limit functor Lim to this diagram D (of diagrams) with base I, and then take
its limit, we get the following diagram in C,

The equaliser formulation of the sheaf condition (Definition 20) says that O is a sheaf iff L. = O(U)
whenever U = |J; Uj, and the Behaviour Theorem says that L is the limit of the following diagram

O(Uy) O(Us) O(Us)
N\ s N\ v s
ONTL) O NUy)
O(U, N Uy)

where all arrows are restriction morphisms. From this, we conclude that O is a sheaf iff its
behaviour O(U) at U is the limit of its behaviours O(U;) at U;, whenever U = (J; U;. For
example, if T = Zo(w) and U; = [n], then we have w = |J,[n], so that O(w) is the limit of the
O([n])-

3.4 Discussion

We have considered systems at three different levels: (1) objects, as collections of possible obser-
vations; (2) systems, as collections of interacting objects; and (3) interconnections, as systems of
interacting systems. A wide variety of systems can be treated in this way, including digital hard-
ware, electrical circuits, and (as shown in the next section) concurrent programming languages.
Concepts from category theory have helped achieve this generality: we model objects as sheaves;
systems as diagrams; and interconnections as diagrams of diagrams. In addition, behaviour is
given by limit, and the result of interconnection by colimit. Although we have not done so here,
it is possible to iterate these constructions to obtain hierarchical systems of arbitrary depth; see
[13, 14, 18].

Our approach to systems is declarative or constraint based in the sense that behaviour arises
through “mutual effects” or “interdependent origination” rather than through the propagation
of causes and effects; in particular, we do not assume that all devices have inputs and outputs,
and hence we are not limited to simple functional devices”. In this setting, what it means for a
system to satisfy a specification (i.e., a presheaf representing some property, such as fairness) is
that if we interconnect that property with the system, then the resulting behaviour is the same
as (i.e., is isomorphic to) the behaviour of the original system.

"Of course, ours is not the only approach with this property. For example, Gordon [27] has used higher order
relations to study digital circuits. But the point does seem worth a bit of emphasis.
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It is interesting to look at so-called “internal choice” and “external choice” in the context of
limits of diagram of sheaves. We have already noted that non-determinism simply corresponds
to there being more than one function to choose from in some set O, (U). When O,, participates
in some larger system, some of these elements may no longer be consistent with overall system
behaviour i.e., they may not be in the n component of any consistent net of points for the
system. More interestingly, the n component may be completely determined by the behaviour
of the rest of the system. In this case, we may say that “external choice” is being exerised. But
if several values for the nth component remain, then we may say that O,, has “internal choice”.
Under a constraint oriented view of systems, the distinction between internal and external choice
appears somewhat artificial, and may depend on the point of view taken. (Formulating the
above discussion for an arbitrary structure category requires some additional concepts that are
discussed in Section 4.2.)

It is worth noting that the sheaves that arise from some particular model of concurrency, such
as some kind of transition system, typically form a complete subcategory of the category of all
sheaves over the appropriate base; in general, there will be some sheaves that do not correspond
to any system of the given kind.

4 Semantics and Properties of Systems

Now that we have stated, motivated and illustrated all four of the main principles of this paper,
let us apply them to some examples of more immediate interest to Computing Science. This
section shows how to give semantics for a simple concurrent language executing in a distributed
environment.

The objects considered in the previous sections were closed, in the sense that their attributes
can be divided into inputs and outputs such that the values on the inputs uniquely determine
those on the outputs. But modern programming requires open systems, the objects of which only
constrain what happens under certain conditions, and leave the rest unconstrained. (Of course,
non-determinism, where outputs are only partially constrained, is also possible.) Openness in
this sense is similar to what happens when a number of objects are connected to an Ethernet,
and each responds only to those messages addressed to it.

The syntax of our simple concurrent programming language is given by the (order sorted)
signature® 3 of the following ADJ diagram:

Here Uid is the sort for object names, Var for variables, Nat for natural numbers, Exp for
expressions, and Pgm for programs. Also, + and * are operations on expressions, while ; and ||

8 An order sorted signature has, in addition to the data of a many sorted signature, a partial ordering on the
set S of sorts, and some assumptions about the consistency of overloaded operation symbols. This ADJ diagram
is therefore augmented to indicate subsort relationships with “hooked” arrows. (See [23] for details of order sorted
algebra.)
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are operations on programs, := is assignment, skip is the instruction that does nothing, and —
indicates a subsort relation (based on order-sorted algebra [23]). We also assume that the sorts
Uid, Var and Nat are populated by a countably infinite number of mutually disjoint constants.
Typical elements of sort Uid are Tom, Dick and Harry, and of Var are X, Y, Z, while the elements
of sort Nat are of course 0,1,2,... . We let |X| denote the set of all symbols in ¥; hence |X|* denotes
the set of all finite strings of elements from Y. Unless otherwise indicated, variables w,w’, w1,
etc. range over |X|*.

Our language is the algebra Ty of all X-terms, constructed just like the order sorted term
algebra in [23], except that in order to simplify the transition rules to be given below, we will
use reverse Polish (i.e., Polish postfix, or Lukasiewicz) notation for the terms of sort Pgm, which
will represent programs. For example, the program

X =Y+2[|Y:=X+2
appears in Tx, pgy as the string
| =X+Y2:=Y+X2

To simplify the notation, we will sometimes write 4 € Uid instead of u € T%; yiq and similarly for
X € Var and the other sorts. So n € Nat iff n € w. Also, we abbreviate T pgn by Px.

For simplicity, we will use discrete time in this example, so that 7 = Zy(w). Then the
appropriate event stream object £ is given, for I € T, by

EI)={f]|f:1— Px}.

Next, we give the objects that define the semantics of the various features of the language.
For this purpose, we will use the following “transition notation” in defining objects O over the
base Zg(w): if A is the attribute object of O, then a +— o' (for a,a’ € A) means that if f(i) = a
for some f € O(I), then there are some I' O I and f' € O(I') such that i +1 € I' and f'|I = f
and f'(i + 1) = a/. (This implies that each basic operation takes unit time; but it is easy to
redefine — so that different operations take different times, or so that operations may take as
long as they like.) In general, ¢ and o’ in the notation a — a’ are not elements of A, but rather
may be patterns that define a set of transitions. For example,

wnmw' — wkw' if n,m €w and k=n+m

means that if there exist strings w,w' € |3|* and some numbers n, m such that f(i) = w+nmw',
then there is some f' such that f'(i) = w+nmw' and f'(i + 1) = wkw' where k = n + m. Also,
we will let

= a

indicate that the initial state is a, i.e., that if f € O([) is defined at 0, then f(0) matches the
pattern a; usually a is just a single attribute in this notation.

The object O defined by a set of transition relations is then the least family? O(U) C £(U)
of sets of term-valued functions, for each U € T, satisfying the transition relations and closed
under restriction, i.e., such that if U CV and f € O(V) then flU € O(U).

We now define a series of objects, one for each feature of the language, which when put
together give a system whose semantics is that of the language.

9This exists because the conditions defining it are all positive, i.e., they are Horn clauses.
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Example 32: (Parallel Composition) This feature is defined by an object denoted P having
attribute object Ps; and satisfying

wy || skip w wy —  wi w wh
wy || w skip wy —  wi w w)

for wy,w), w,w', wy, wy € Px. This just says that when either of the two parallel programs is
completed, the parallel constructor can be eliminated; computation by the other program can
proceed in parallel with the elimination. Note that this object is a subobject of £; we will use
the resulting inclusion morphism to relate it to other objects. O

Example 33: (Sequential Composition) This object is denoted Q, has attribute object Py,
again, and is defined by

wy ;W W3 Wy = w) ywh wy wy if wy # skip
wy ;skip wz wy —  w) wg wh

This says that the first program must be completed before the execution of second can begin. It
does not constrain what can be done by the first program. Again, its projection is the inclusion.
O

Example 34: (Assign) Assignment is defined by a family of objects G, one for each X € Var.
G~ has attribute object w x Py and is defined by the following:

= (0,w)
(m,w:= Xnw') — (n,w"skipw’)
(n, wpXw') = (n,w"pnw") if p#£:=

where n € w and p € . This says the each variable initially has value 0, that an assignment
of n to X causes the object GX to remember n, and that the variable X can be replaced by its
value, unless it occurs just after :=. The projection is from the second component of the pair in
the state. O

Example 35: (Adder) Let w; = wU{—} and let w, x Py be the attribute object. Then a
typical adder object, AF*®? for Fred € Uid, may be defined as follows:

(s,w1Fredwsy) — (—,wiswh) if s# —
(—, wi*+nmwq) — (s,w)Fredw)) where s is the number n+m
(S,U)) = (Saw,> if wawl € PZJ_Fred

where n,m € w. This says that Fred performs just one addition at a time, and allows other
operations to occur concurrently. If additions are ready to be performed, then he must perform
one; he replaces the chosen expression +nm by his name and memorises the sum. When he sees
his name, he replaces it by the number he has memorised, forgets that number, and becomes
ready to do another sum. Notice that Fred also prohibits anyone else (to whom he communicates)
from using his name. Again, projection is from the second component of the pair in the state. O

Example 36: (Multiplier) A typical multiplier, say M™® for Tom € Uid, is defined just like
the adder Fred, except that + is replaced by * and Fred is replaced by Tom. O

We have now defined all the features of the language. Unfortunately, what we have still allows
unprogrammed transitions to occur. However, we can introduce a “frame object” to keep things
the same unless they are deliberately changed:
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Example 37: (Frame) This object is denoted F, has attribute object Py, and is defined by

wi...wp, — wh..w,, where
w; = w) for i =1,...,n unless
w; € Uid or w; € Uid or w; € {:=, |, ;, skip},

where w;, w) are here in X* rather than in Py. O

Finally, in order to “close” the system, we can add a “shop steward” who disallows unregis-
tered workers:

Example 38: (Union) This object denoted U is defined, for I € T, by

UI) ={f | f: I = Psiwiaiw)},

where W is the set of union members, which might for example be {Fred, Tom}. O

So our system looks as follows,

and the limit of this diagram evaluates programs in our little language. In the limit object, at
each instant of time, each object has a copy of the same program, and possibly some internal
state, such as the value of a variable. As time progresses, the program is simplified as worker
objects process its parts. This processing is concurrent and distributed. Moreover, the objects
for variables are true objects in the sense of object oriented programming, although very simple
ones. The consistent nets of points in the limit object can be seen as the run time states of the
computation. If we add more workers, then programs can be executed more quickly. Note that
these objects can be seen as (infinite state) automata.

Of course, this is a simple example. But seems clear that the same techniques will extend to
much more complex languages. For example, it is easy to add more language constructs, such
as loops. Another interesting feature to add would be abort. Also, it seems that the semantics
of the functional and object oriented language FOOPS [22, 25] and of the Rewrite Rule Machine
(see [19] and [17]) can be developed in a similar way, and I hope these will be discussed in future
papers. See [7] for some other applications of sheaf theory to concurrent systems.
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4.1 Deadlock

It is important that many real systems should be deadlock free, in the sense that they do not get
into dead states. Definitions of deadlock in the literature tend to be syntactic, and as far as I am
aware, there is no definition that is sufficiently general to encompass all of the kinds of system
considered in this paper. The following proposes one:

Definition 39: If £ is the limit object of a system, then the system has deadlock at h € L(U)
iff forall U’ D U and all b’ € L(U’) such that h'|U = h, we have h'(i) = h'(i) for all 4,7’ € U'-U.
Furthermore, the system terminates at h € L(U) iff (VU' D U)(Vh' € L(U")) K'|U # h. O

Deadlock at h says that if the system has evolved through the events in h, then evolution into
a different state is impossible. Terminating at h is a more drastic form of deadlock in which
there is no possible future behaviour of the system that extends h. For example, consider a short
circuited 6 volt battery: it cannot have both a 6 and a 0 volt potential difference between its
terminals. Thus, a discrete time system in a state where in the next instant a switch will be
thrown that produces a short circuit is terminal at that state. (Of course, a more realistic model
would show a large current flow followed by the decay of either the battery and/or the wiring, but
in the simple model chosen for this example, a short circuit is an inconsistency which precludes
any future behaviour.)

The following is a common example in the Computing Science literature on concurrency:

Example 40: (Dining Philosophers): This somewhat fanciful situation involves four philoso-
phers supported in a research institute with a circular table, the center of which always contains a
plate of food. This food must be eaten seated at the table with one fork in each hand. The table
has four forks, one between each two adjacent chairs. Philosophers are asynchronous processes
that think and eat.

Let us now construct a formal model of this situation: Let P = {P1, P2, P3, P4} be the
names of the four philosophers, and let F = {F'1, F'2, F3, F4} be names for the four forks. Then
the following is a diagram for this situation as a system:

The fork object between philosophers P and P’ has states s € {P, P',—} with the following
transitions,

S = S
— = s
s = -
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That is, a fork can remain as it is, can be picked up, and can be put down.
Each philosopher P has states s = ([,n,r) for [,r € P, = PU{—} and n € {t,e} (¢t and e
stand for “thinking” and “eating” ' respectively), and has the following transitions:

= (=t )
(I,n,ry — (I n,r') if 1.I',r,r' 4P
(I, t,r) — (l’, e,r’y if LU',r,r' £ P
(l,e,=) w— (l'e,P) if I,I' # P
(le,P)y +— (l'e,P) if LLI'£P
(—,e,P) — (l,e,P)
(P,e,P) +— (—t —)

The first rule says that philosophers are born thinking, without forks. The second rule says that
if a philosopher has no forks, then he can continue in his present state, without constraining the
actions of his two neighboring philosophers. The third rule says if he has no forks and is thinking,
then he may become hungry, again without constraining his neighbors. The fourth rule says that
if he has no forks, then he can pick up his right fork if it is available, without constraining his
left neighbor (note that, by the second rule, he need not do so). The fifth rule says that he can
remain in the state of having just a right fork, without constraining his left neighbor (but he
does not need to so remain, because | can be any fork state). The sixth rule says that if he has
a right fork, then he can pick up his left fork, if it is available. The last rule says that if he has
both forks and is eating, then he can put them both down and think. (A slightly more accurate
model might add a rule saying that if he has both forks he can continue to hold them and eat;
under the above rules, he has only one unit of time in which to eat.)

The object for each philosopher has two projections, from its first and third components, as
shown in the diagram above.

Let £ denote the limit of this system, and let I = {0,...,i} € Zg(w). Then officially, the
elements of £(I) are 8-tuples of functions on I, four of them 3-tuples for the philosophers, and
four of them elements of P |, for the forks. However, it is equivalent to consider 16-tuple valued
functions on I, by flattening the 3-tuples. In fact, these 16-tuples have a lot of redundancy,
due to the constraints imposed by their representing consistent nets of points, and it suffices to
consider 8-tuples of the form

S = (flaf?af3af4ap11p27p37p4>

with f; € P, and p; € {t,e}, where f; is the state of the i*" fork and p; is the middle component
of the state of the i** philosopher. Hereafter, we will feel free to call p; “the state of P;” and
to call such 8-tuples “states of the system”. Notice that when the system is in state s, then
each philosopher P; (for i = 1,2,3,4) is in the state (fii1,ps, fi+1), where the subscripts are
understood modulo 4.

There is a unique state of the system in which each philosopher is in his initial state, namely

<7a Ty 77ta t,t, t>

and we will call this the “initial state of the system”.

It is now easy to see that the state in which each philosopher holds his right fork is a reachable
deadlock state. To see that it is reachable, it suffices to give a sequence transitions from the initial
state to it. In fact, two parallel transitions are enough: in the first, each philosopher becomes
hungry, and in the second, each philosopher picks up his right fork:

(fafafafatatataw = <*,*,*,*,6,6,6,6) = (Pl,PQ,Pg,P4,6,6,6,€>-

'0A more accurate description would be “hungry and in a process that may lead to eating.”
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Let us denote this last state by . To see that it is a deadlock state, we note that only the second
rule applies to z. This is checked by seeing which lefthand sides of rules match (P;1,e, P;y1),
where the subscripts are again understood modulo 4. Therefore, the only possible transitions
from z return the system to state x, because the corresponding righthand side of the second rule
is again (P;|1,e, P;11). This analysis also shows that the system is not terminal.

It is possible to modify this example to use real time, by giving a slightly different interpre-
tation for the transition notation —; however, we omit this. O

Deadlock can also arise when testing to see if some system satisfies some property by inter-
connecting the system with the property and taking the limit: if the property is inconsistent
with the system, in the sense that the system has no states with the given property, then the
interconnected system exhibits deadlock.

4.2 Information Flow and Security

Another important property of real systems is security: we may want to be sure that access to
certain confidential information is protected, and that certain unauthorised actions are prevented.
For example, we don’t want an electronic bank robber to be able to discover which are the largest
accounts, and then withdraw funds from them. It is now rather well recognised that “non-
interference” assertions can be used to express security properties of (monolithic) sequential
systems [20, 21]. An active research topic is the extension of such assertions to more general
classes of system. Definition 43 below extends non-interference to a much wider class of system,
such as distributed object oriented databases, and appears to be more general than anything else
in the literature. (But see [31, 38] for two other very general approaches.) First, we need some
auxiliary material:

Definition 41: Let ¢: O — O’ be a morphism of set valued presheaves. Then the image
presheaf of ¢, denoted p(O) C ', is defined by ¢(O)(U) = ¢y (O(U)); note that ¢(O)(U) C
O'(U) for each U € T. O

This definition can be generalised to a suitable structure category C, and is used in the last
equation of Definition 43 below. But first note the following:

Fact 42: The image of a morphism of sheaves is a sheaf. O
Now the main concept:

Definition 43: Given a system S with objects S, for n € N, with morphisms ¢.: S, — Sy
for e: n — n/, and with behaviour (i.e., limit) £ having projections m,: £ — S, then S,, is
non-interfering with S, written S, % Sy, iff the following holds:

let £’ be the limit of the subsystem of S from which S, and all morphisms to and
from S, have been omitted; let n,: £ — S, be its projections, for n € N — {m};
then 74 (L) = m,(L).

|

What this says'! is that the behaviour of the system looks the same from the object S, with
the object S,, omitted as it does with the object S,,, present; i.e., there is no flow of information

"1t may help to think of “k” as a “crook” and “m” as a “market analyst” whose information k seeks to steal.
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from §,, to Si. This definition is general enough to apply to data dependency analysis for
compilers of concurrent languages onto distributed systems, and to the flow of information in
natural language conversation, along the lines suggested by situation semantics [4] and the work
of Dretske [6]. Indeed, it seems possible that sheaf theory could help in providing a natural
semantics for situation theory.

5 Conclusions

Our sheaf approach provides a semantic, i.e., model theoretic, foundation for concurrent dis-
tributed computing by (possibly active) objects, without commitment to any particular notation
or conceptualisation for concurrency. In general, such an approach should be closer to our physical
intuition, and can provide standards against which to measure the soundness and completeness
of syntactic systems.

Sheaf theory has been used in mathematics to study relationships between local and global
phenomena, for example, in algebraic geometry, differential geometry, and even logic; the subject
has also been developed in an abstract form using category theory. The theory of topoi, originally
developed by Lawvere and Tierney (see [33], [26], [2]) is perhaps the most exciting development
in this respect. An interesting topic for future research is to see what the theory of topoi can
tell us about concurrency. For example, one should be able to reason about a system using the
internal intuitionistic logic of the corresponding topos of sheaves.

Concepts from category theory have helped us achieve generality: objects have been mod-
eled by sheaves; inheritance by sheaf morphisms; systems by diagrams; and interconnections by
diagrams of diagrams. In addition, behaviour is given by limit, and the result of interconnection
by colimit. The approach is illustrated with many examples, including a semantics for a simple
concurrent object-based programming language.

The definitions, examples and results in this paper are just a beginning. Yet the variety of
examples may be surprising. Moreover, one example illustrates an important class of applications,
namely the semantics of concurrent, distributed object oriented systems. Some of the definitions
may also be surprising for their generality, including a notion of security that generalises the
Goguen-Meseguer non-interference approach [20, 21] from sequential systems to (for example)
real time distributed concurrent object oriented databases. A very general definition of deadlock
is also given. It is interesting that these concepts are so easily stated in a purely semantic form.
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