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Abstract

Categorical quantum mechanics and the Wolfram model offer distinct but complementary approaches
to studying the relationship between diagrammatic rewriting systems over combinatorial structures and
the foundations of physics; the objective of the present article is to begin elucidating the formal corre-
spondence between the two methodologies in the context of the ZX-calculus formalism of Coecke and
Duncan for reasoning diagrammatically about linear maps between qubits. After briefly summarizing
the relevant formalisms, and presenting a categorical formulation of the Wolfram model in terms of ad-
hesive categories and double-pushout rewriting systems, we illustrate how the diagrammatic rewritings
of the ZX-calculus can be embedded and realized within the broader context of Wolfram model multiway
systems, and illustrate some of the capabilities of the software framework (ZXMultiwaySystem) that we
have developed specifically for this purpose. Finally, we present a proof (along with an explicitly com-
puted example) based on the methods of Dixon and Kissinger that the multiway evolution graphs and
branchial graphs of the Wolfram model are naturally endowed with a monoidal structure based on rulial

composition that is, furthermore, compatible with the monoidal product of ZX-diagrams.
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1 Introduction

The ZX-calculus, as first outlined by Coecke and Duncan in 2008[I][2], is a natural outgrowth of the field
of categorical quantum mechanics, as pioneered by Abramsky and Coecke[3][4] (whose primary objective
is to describe the foundations of quantum mechanics within the language of monoidal category theory[d]),
and provides a novel method of reasoning diagrammatically about linear maps between qubits in quantum
information theory[6][7] that is provably both complete and sound[§][9][10], such that two ZX-diagrams
represent the same linear map if and only if they can be transformed into one another via the rules of
the ZX-calculus. Philosophically, categorical quantum mechanics differs from the standard Hilbert space
formalism of Dirac and von Neumann in that it treats quantum processes and their compositions as being
the fundamental objects of study, as opposed to quantum states; within the mathematical context of a
“dagger symmetric monoidal category”[12], sequential compositions of quantum processes are captured in
terms of compositions of morphisms, whilst parallel compositions are captured in terms of monoidal products
of those morphisms[IT].

The conventional quantum circuit model of quantum computation ultimately treats every linear map
between qubits as being a large unitary matrix that is applied to some initial quantum state, where this matrix
is derived via the sequential composition of quantum gates (which are themselves unitary matrices)[13]. The
ZX-calculus model differs in at least two fundamental ways. Firstly, whereas quantum circuits exhibit a rigid
topological structure, in which the distinction between the inputs and outputs of gates, and indeed of the
circuit as a whole, is crucial, the linear map described by a ZX-diagram is invariant under arbitrary topological
deformations - in some sense, within a ZX-diagram, there is “only” topology. Secondly, whereas quantum
circuits distinguish between the specification of the circuit/matrix and its actualization (i.e. its application
to a particular quantum state), ZX-diagrams enact their own computations, via their own diagrammatic
transformation rules. In this regard, ZX-diagrams are highly analogous to combinators in mathematical
logic: in both ZX-diagrams and combinator expressions, no fundamental distinction is made between the
specification of a program and the state of its execution, because the program is executed by simply applying
symbolic transformation rules to its own specification. Thus, ZX-calculus may be viewed as an attempt to
“break apart” the formalism of the quantum circuit model, in such a way as to lay bare its underlying
computational structure.

In much the same way, the Wolfram model [I4][15][16] is an attempt to “break apart” the fundamental
structure of spacetime, and to make manifest the computational structure that (potentially) underlies it.

The Wolfram model describes an idealized class of “laws of physics” in terms of symbolic transformation



rules applied to hypergraphs (generalizations of graphs in which edges can connect arbitrary non-empty
subsets of vertices); such transformation rules naturally yield combinatorial structures known as causal
graphs, multiway systems and branchial graphs, amongst many others, with surprising formal analogies to
Lorentzian manifolds, path integrals and projective Hilbert spaces, respectively[I7]. Thus, both the Wolfram
model and the ZX-calculus ultimately find their foundations in diagrammatic rewriting systems. Indeed, just
as ZX-diagrams eschew the rigid structure of quantum circuits in favor of a pure description of the topology of
linear maps, the Wolfram model eschews the rigid structure of spacetime in favor of a pure description of the
topology of causal relationships. Moreover, just as ZX-diagrams do not distinguish between the specification
of a quantum process and the state of its execution, the Wolfram model does not distinguish between the
“background” structure of space and the “foreground” structure of physical processes: everything is described
entirely in terms of symbolic transformations on hypergraphs. Therefore, at least at first glance, these two
formalisms appear as though they may end up being deeply related.

Indeed, at a more fundamental level, the recent treatment of symmetric monoidal categories as a general
language for reasoning about physical systems (with morphisms between objects playing the role of physical
transformations between states, and with morphism composition and monoidal composition playing the role
of sequential and parallel combination of such processes, respectively) is very much in the same spirit as the
goal of the Wolfram Physics Project to describe physical processes in terms of multiway systems defined via
abstract rewriting rules over arbitrary symbolic expressions. The principal objective of the present article is
to begin the process of making the correspondence mathematically precise.

Since the number of people who are intimately familiar with both categorical quantum mechanics and the
Wolfram model is (presumably) still relatively small, we will begin this article with a brief but hopefully gentle
introduction to both formalisms, including a categorical formalization of (a restricted case of) the Wolfram
model in terms of adhesive categories and double-pushout rewriting (DPO) systems. We will then proceed to
describe how the diagrammatic rewritings of the ZX-calculus can be compiled and embedded within Wolfram
model multiway systems, including a brief illustration of the Wolfram Language software packages (such
as MakeZXDiagram[I8] and ZXMultiwaySystem[I9]) that we have developed specifically for this purpose,
which may be thought of as constituting the beginnings of Wolfram model-based variants of frameworks
like Quantomatic|20]. We will also briefly discuss some potential applications of this embedding, including
a new approach to parallelizing the automatic rewriting of ZX-diagrams, a new method for performing
lemma selection in automated reasoning algorithms over ZX-diagrams, and potentially even a new technique

for proving consistency, completeness and soundness results for the ZX-calculus (and related formalisms)



using combinatorial methods. Finally, we will begin to make manifest the connection between the present
conjectural formulation of quantum mechanics in the Wolfram model (described in terms of multiway systems
and branchial graphs) and the categorical formulation of quantum mechanics inherent to the ZX-calculus. In
particular, we will show that the categories of branchial graphs and of multiway systems are both naturally
endowed with a (compatible) monoidal structure, given in terms of rulial composition, and moreover that
this monoidal structure is also compatible with the natural monoidal product of ZX-diagrams. We will first
illustrate this compatibility empirically, via explicit computation, before presenting a general proof using the
methods of Dixon and Kissinger[21].

As a consequence of this choice of structure, Section [2] of this article is partially expository, albeit
involving a somewhat novel description of the Wolfram model in terms of double-pushout rewritings, and
an original presentation of the formalism of multiway operator systems. The majority of the novel content
of the article is contained within Sections [3|and [d] in which the two primary original contributions that we

wish to emphasize are:

1. An explicit demonstration that the diagrammatic rewritings of formalisms such as the ZX-calculus
may be recast cleanly and consistently into the more general framework of a Wolfram model multiway
operator system, illustrating that, in a precise sense, such multiway systems form an embedding space

for the collection of all possible diagrammatic rewritings.

2. A demonstration (and subsequent proof) that the categories of branchial graphs and multiway evolution
graphs in the Wolfram model formalism are naturally endowed, by the properties of the rulial multiway

system, with a monoidal structure that is compatible with the monoidal structure of ZX-diagrams.

We also attach an appendix, containing in Section [A]a glossary of basic terminology and concepts com-
monly encountered in the formalism of the Wolfram model, as well as in Section |B|lan overview of the theory
of monoidal categories, as commonly employed in category-theoretic approaches to quantum mechanics in

general, and in the ZX-calculus approach to quantum information theory in particular.



2 The Wolfram Model, Multiway Systems and Term Rewriting

We begin this section with a novel reformulation of the Wolfram model in terms of double-pushout rewriting
systems and adhesive categories. The Wolfram model is a discrete spacetime formalism in which apparently
continuous structures such as space, time and (projective) Hilbert space emerge as large-scale limits of
underlying discrete structures such as hypergraphs, causal networks and so-called branchial graphs. At its

most basic level, the Wolfram model is based upon diagrammatic rewriting rules acting on hypergraphs[16]:

Definition 1 A “spatial hypergraph”, denoted H = (V, E), is a finite, undirected hypergraph:

ECPV)\{0}, (1)
where P (V) denotes the power set of V.

A crucial observation is that (directed) spatial hypergraphs can therefore be represented purely abstractly

as finite collections of ordered relations (i.e. hyperedges) between elements (i.e. hypernodes), as shown in

Figure [}

3 5 2
4 1 3
o
2 4 1
Figure 1: Spatial hypergraphs corresponding to finite collections of ordered relations between elements,
namely {{1,2},{1,3},{2,3},{4,1}} and {{1,2,3},{3,4,5}}, respectively.

One can then define the dynamics of a Wolfram model system in terms of hypergraph rewriting rules:

Definition 2 An “update rule”, denoted R, for a spatial hypergraph H = (V, E) is an abstract rewrite rule
of the form Hy — Hs, in which a subhypergraph matching pattern Hy is replaced by a distinct subhypergraph

matching pattern Hs.

Each such rewriting rule is formally equivalent to a set substitution system (one in which a subset of ordered
relations matching a particular pattern is replaced with a distinct subset of ordered relations matching a
particular pattern), as shown in Figure

Note that, in general, the order in which to apply the transformation rules is not well-defined; in the sim-

plest case, we could simply apply the rule to every possible matching (and non-overlapping) subhypergraph,
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Figure 2: A hypergraph transformation rule corresponding to the set substitution system

{z. v} Ay 21} = Hw ut Ay, 23 {z w} {2, wh}

as illustrated in Figures[3|and[d] However, even in this simplified case, the initial choice of the subhypergraph
to which to apply the first transformation is still ambiguous, and different such choices will in general yield

non-isomorphic sequences of hypergraphs in the evolution.

S X

Figure 3: The results of the first 10 steps in the evolution history of the set substitution system
Hz,y} {y, 2} = {{w,y},{y, 2}, {7z, w}, {z,w}}, starting from a double self-loop initial condition.

Therefore, the evolution of any given spatial hypergraph will, generically, be non-deterministic, due to
this lack of any canonical updating order; we can parametrize this non-determinism by treating the Wolfram

model as an abstract rewriting system[22] [23]:

Definition 3 An “abstract rewriting system” (or “ARS”) is a set, denoted A (with each element known as

an “object”), equipped with some binary relation, denoted —, known as the “rewrite relation”.

Definition 4 —* is the reflexive transitive closure of —, i.e. the transitive closure of — U =, where =

denotes the identity relation.

In other words, —* is the smallest preorder containing —, i.e. the smallest binary relation containing —

and also satisfying the axioms of reflexivity and transitivity:

*

a—" a, and a—="bb—="c = a—"c (2)

A concrete way of representing the abstract rewriting structure of a Wolfram model system is through the

use of a general combinatorial structure known as a multiway system:



Figure 4: The result after 14 steps of evolution of the set substitution system
Hz, v} {y, 2z} = {{w, v}, {y, 2}, {z, w}, {z,w}}, starting from a double self-loop initial condition.

Definition 5 A “multiway system” (or, more strictly, a “multiway evolution graph”), denoted Guitivay,
is a directed, acyclic graph corresponding to the evolution of a (generically non-confluent) abstract rewriting
system, in which each vertex corresponds to an object, and the directed edge A — B exists if and only if there

exists a rewrite rule application that transforms object A to object B.

More specifically, directed edges connect vertices A and B if and only if A — B in the associated rewriting
system, and a directed path connects A and B if and only if A —* B, i.e. there exists a finite rewrite

sequence of the form:

a—ad —ad - =V b (3)

Thus, the evolution of a generic Wolfram model system will correspond to a multiway evolution graph, within

which the “standard” updating order shown above will correspond to a single path, as illustrated in Figures

[l and [6
In the above definitions, the notion of confluence is invoked in order to formalize the condition in

which, within certain classes of multiway systems, all bifurcations in the evolution history will eventually

converge[24][25]:

Definition 6 An object a € A is “confluent” if and only if:

Vb,c € A, such that a =" b and a =" ¢, dd € A such that b —* d and ¢ —" d. (4)
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Figure 5: The multiway evolution graph corresponding to the non-deterministic evolution of the set substi-
tution system {{x,y},{y,2}} = {{w,y},{y, z},{z, w}, {z,w}}.
Definition 7 An abstract rewriting system A is (globally) “confluent” (or exhibits the “Church-Rosser prop-

erty”) if and only if every object a € A is confluent.

An example of such a (globally) confluent multiway evolution for a Wolfram model system is shown in Figure
@

Furthermore, future applications of transformation rules may have dependencies upon prior applications,
such that updating event B could only have been applied if event A had previously been applied; such

dependencies may be captured by means of a causal network:

Definition 8 A “causal network”, denoted G qusal, 15 a directed, acyclic graph in which every vertex corre-
sponds to an application of an update rule (i.e. an update “event”), and in which the directed edge A — B

exists if and only if:

In (B) N Out (A) # 0, (5)
i.e. the input for event B makes use of hyperedges that were produced by the output of event A.

In the context of the Wolfram model, the transitive reduction of a causal network is presumed to correspond
to the Hasse diagram of the causal partial order for some discrete approximation to a Lorentzian manifold.
More specifically, we interpret the partial order relation < defined by the causal network as corresponding
to a statement of causal precedence[26] for points on an associated Lorentzian manifold M, such that, for

instance, the sets:

Jt()={ye M|z <y}, (6)
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Figure 6: The standard updating order for the evolution of the set substitution system
Hz,y} {y, 2} = {{w,y},{y, 2}, {z, w}, {x,w}}, highlighted as a single path in the associated multiway
evolution graph.

O

Figure 7: An example evolution of a (globally) confluent set substitution system, namely
{{z,y}} — {{z,y},{y, z}}, in which all bifurcations converge after a single step.

and:

J () ={ye M|y =<z}, (7)

which correspond combinatorially to the out and in-components of vertex z in the causal network, respec-
tively, are interpreted as being the future and past light cones of the associated event in M, respectively. In
this way, one can think of a single path through a Wolfram model multiway system as representing a deter-
ministic algorithmic method for generating causal sets[27][28] (albeit ones that are equipped with additional

topological structure arising from the hypergraph). An example of a causal network for a simple Wolfram

10



model system is shown in Figure
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Figure 8: The causal network for the set substitution system {{x, y},{z, z}} = {{z,y}, {z,w}, {y,w}, {z, w}}.

The notion of confluence in abstract rewriting theory is deeply related to (and, indeed, is a necessary but

not sufficient condition for) the criterion of causal invariance in multiway evolution:

Definition 9 A multiway system is “causal invariant” if and only if the causal networks generated by fol-

lowing all paths through the multiway system are (eventually) isomorphic as directed, acyclic graphs.

An example of a multiway evolution causal graph (in which updating events are shown in yellow, state
vertices are shown in blue, evolution edges are shown in gray and causal edges are shown in orange) for a
system exhibiting trivial causal invariance is featured in Figure [9}

Although our description so far has treated hypergraph transformation rules in terms of elementary oper-
ations on sets, it is important to note that there also exists a purely categorical description of the same class
of transformations. Specifically, a generic abstract rewriting system can be represented category-theoretically

by considering the rewrite relation — in the system (A, —) to be an indexed union of subrelations, such as:

—1 U —9=—, (8)
which will be the case in general, since there can exist multiple transformation rules within any given system.
Thus, we have a labeled state transition system (A, A, —), with the index set given by A. This system is
simply a bijective function from the set A to a subset of the power set of A indexed by A, i.e. P (A x A):

p—{(a,q) e AxA:p—2q}. (9)
Definition 10 An “endofunctor”, denoted F, is a functor that maps from a category C to itself:

11
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Figure 9: The multiway evolution causal graph (with evolution edges shown in gray, and causal edges shown in
orange) for the set substitution system {{z,y},{z,y}} = {{z,w},{y, w}, {2z, w}}, illustrating trivial causal
invariance.

F:C—C. (10)

Definition 11 The “F-coalgebra” for the endofunctor:

F:C—C, (11)

is an object A in ob (C), equipped with a morphism:

a: A FA, (12)
in hom (C), and which is consequently denoted (A, ).

We see, therefore, that this state transition system is simply an F-coalgebra for the power set functor
P (A x (—)), since the power set construction on the category of sets (denoted Set) can be represented as a

covariant endofunctor:

12



P : Set — Set, (13)

such that the abstract rewriting system (A, —) consists of the object A equipped with a morphism of Set,

denoted — (i.e. the rewrite relation):

—: A— PA. (14)

In the particular case of multiway Wolfram model systems, we construct the following category-theoretic
formulation of hypergraph rewriting in terms of adhesive categories and double-pushout (DPO) rewriting

[29] [30]:

Definition 12 A “span” is any diagram that consists of two maps with a common domain:

B« A= C. (15)

More specifically, a span generalizes the binary relation between two objects in a category C, by considering

instead three objects, A, B and C in ob (C), and the pair of morphisms:

f:A— B, and g:A—C, (16)
in hom (C).

Definition 13 A “monomorphism” is a morphism that is left-cancellative under composition. More specif-

ically, it is a morphism:

fiA> B, (17)

in hom (C) for some category C, such that, for every object C in ob (C), and every pair of morphisms:

91,92 : C — A, (18)

in hom (C), one has:

fogr=Ffog = g1 =g, (19)

13



which generalizes the notion of f being an injective function.

Definition 14 The “pullback” of the pair of morphisms:

f:A—=C, and g:B—C,

(20)

in hom (C) for some category C (i.e. a pair of morphisms with a common codomain), denoted P = A x¢ B,

is defined by an object P in ob (C) and a pair of morphisms:

pr:P— A, and py : P — B,

in hom (C) such that the following diagram commutes:

p-2,B
lpl Jg,
A1, ¢

(22)

and such that the pullback (P,p1,p2) is universal with respect to this diagram. More specifically, for any

other triple (Q, q1, q2) with morphisms:

q:Q — A, and q:Q — B,

in hom (C) such that:

foqi=goqq,

there must exist a unique morphism:

u:Q — P,

in hom (C), such that the following compositional equations are satisfied:

p2ou=q2, and piou=q.

(24)

(25)

(26)

These compositional equations for the universal property are equivalent to stating that, for any triple

(@, q1,g2) for which the following diagram commutes, there much exist a unique morphism u : @ — P for

14



which the diagram also commutes:

(27)

Definition 15 The “pushout” of the pair of morphisms:

f:C—A and g:C — B, (28)

in hom (C) for some category C (i.e. a pair of morphisms with a common domain), denoted P = A +¢ B,

is the dual notion to a pullback, and is defined by an object P and a pair of morphisms:

p1:A— P, and p2: B — P, (29)

in hom (C) such that the following diagram commutes:

P A B
pﬁ QT : (30)
A <T C

and such that the pushout (P, p1,p2) is universal with respect to this diagram. More specifically, for any

other triple @Q (q1, q2) with morphisms:

qr:A—Q, and g2 : B — Q, (31)

in hom (C) such that:

@of=gqog, (32)

there must exist a unique morphism:

u: P —Q, (33)

in hom (C), such that the following compositional equations are satisfied:

15



UOo Py = qo, and uop =q. (34)

These compositional equations for the universal property, much as in the pullback case above, are equivalent
to stating that, for any triple (Q, g1, ¢2) for which the following diagram commutes, there must exist a unique

morphism w : P — @ for which the diagram also commutes:

(35)
Definition 16 A pushout of morphisms:
f':B— D, and g’ : C — D, (36)
in hom (C) for some category C, of a span:
g:A— B, and f:A=C, (37)
is known as a “van-Kampen square” if and only if, for every commutative diagram:
B/ a AI
hp
N S
B+— A
I lf’ lf P (38)
D+——C
hc
D’ c’
9n
for which the sub-diagrams:
B +— A
H
lhB J/hA ? (39)
B+— A

and:

16



Jf " th7 (40)
C +— ('
hc

are pullbacks, a certain compatibility condition between pushouts and pullbacks is satisfied. More specifically,

the pair of morphisms:

fr:B =D, and gn:C' = D', (41)
is a pushout of the span:
gn: A — B, and fn A=, (42)
if and only if the sub-diagrams:
B 2, B
lfﬂ J{f’ ) (43)
D 25 p
and:
D+——C
g
hDT th ) (44)
D +——— '
Ih

are pullbacks.

Definition 17 A category C is known as an “adhesive category”[31|] if and only if it has pullbacks, and all

pushouts along monomorphisms are van-Kampen squares.

In the context of an adhesive category, hypergraph transformation rules can thus be defined in terms of

double-pushout rewrites and direct derivations as follows[32]:

Definition 18 A “transformation rule”:

p=(0:K—Lyr:K—R), (45)
is a span of monomorphisms, where the left- and right-hand-sides of the rule are given by the objects L and

17



R, respectively.

Definition 19 A “rule match”:

m:L— G, (46)

for a transformation rule p within an object (such as a hypergraph) G is a morphism from the left-hand-side

of the rule p to G.

Definition 20 A transformation rule p is “applicable” at match m if there exists a pair of pushout diagrams

of the form:
L+—K — = R
J{m J{n J{P ) (47)
G<«5—D s H
i.e. if the pairs of morphisms:
m:L— G, and g:D— G, (48)
and:
p:R— H, and h:D— H, (49)
constitute pushouts of the pairs of morphisms:
l:K— L, and n: K —D, (50)
and:
r: K — R, and n: K — D, (51)
respectively.

Definition 21 A “direct derivation” refers to the pair of pushouts that appears in the application of rule p

at match m.

18



Clearly, by these definitions, only reversible transformations can be described by such a scheme; if there
exists a direct derivation from G to H using rule p, then there must exist a direct derivation from H to G

using the inverse rule p~!.

This constitutes an obstruction to obtaining a full description of the Wolfram
model using double-pushout rewritings (since the Wolfram model scheme is sufficiently general that it also
considers rewritings that are not strictly reversible). However, since the equational rewriting rules for the
ZX-calculus that the present article considers are necessarily reversible, this restriction will not be of concern
to us at present.

As mentioned towards the beginning of this section, hypergraph transformation rules and set substitution
rules are trivially interconvertible, such that each hypergraph can be represented alternately as a rooted tree

representing the hierarchical collection of ordered relations between abstract elements, as shown in Figures

[[0] and [IT} The same multiway evolution shown above for the set substitution rule:

Hz vt Ay, 23 = H{w,ud Ay, 23 {2 w) {2, wl ) (52)

can thus be recast in terms of graph transformations being applied to such rooted trees, as shown in Figure

Figure 10: The set system {{0,2},{1,2},{3,0},{0,1},{1,3},{2,3},{4,0},{0,1},{1,4},{0,4}}, repre-
sented as a directed hypergraph.

] 2 1 m 3 ] [¢] ] m m 4 [¢] 4

sented as a rooted tree denoting the hierarchical collection of ordered relations between elements.

This realization allows us to consider certain generalizations of Wolfram model multiway systems de-

scribed by term rewriting systems:
Definition 22 A “term” is an expression which contains nested sub-expressions.

Definition 23 A “term rewriting system” (TRS) is an abstract rewriting system whose objects are all terms.

19
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Figure 12: The multiway evolution graph corresponding to the non-deterministic evolution of the set substitu-
tion system {{z,y},{y,z}} = {{w, v}, {y, 2}, {z,w}, {x,w}}, represented in terms of graph transformations
being applied to rooted trees.

In other words, whereas Wolfram model multiway systems consider only nestings of expressions at a single
level (hence why all of the rooted trees shown in the multiway system described above have a depth of exactly
two), we can instead consider multiway systems which involve arbitrary nestings of expressions, in which
the associated rooted trees can therefore have arbitrary depth. For instance, the axioms of group theory
can be represented as a multiway operator system, with term rewriting rules {g[z_, g[y_, z_]] :> glg|z, y], 2],
glglz_, vy, z] > glx, gly, z]]} (associativity), {g[a_, €] :> a,a_:> gla, €]} (right identity) and {g[a_, inv[a_]] :> e,
e :> gla,inv[a]]} (right inverse), as shown in Figure or, in terms of transformations being applied to
rooted trees, as in Figure [[4] Crucially, by enabling the manipulation of rooted trees of arbitrary depth,
we are greatly expanding the class of possible symbolic rewriting systems that can be considered using this
framework, including (in particular) arbitrary diagrammatic rewriting systems, with the ZX-calculus being

a notable special case.

20



Figure 13:
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The multiway states graph (i.e. a variant of a multiway evolution graph in which cycles are

permitted) corresponding to the evolution of the multiway operator system for the axioms of group theory,
defined by the term rewriting rules {g[z_, gly-, z-]] :> glglz, 9], 2], glglx-, v, 2] :> glz, gly, z]]} (associativ-
ity), {gla-, €] :> a,a-:> gla, €]} (right identity) and {g[a_, inv[a_]] :> e, e :> g[a,inv[a]]} (right inverse).

Figure 14:
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The multiway states graph (i.e. a variant of a multiway evolution graph in which cycles are

permitted) corresponding to the evolution of the multiway operator system for the axioms of group the-
ory, defined by the term rewriting rules {g[z_, g[y-, z-]] :> glg[z, y], 2], glg[z-, y-], 2] :> gz, gly, z]]} (associa-
tivity), {g[a-, €] :> a,a-:> gla,e]} (right identity) and {g[a-,inv[a_]] :> e,e :> g[a,inv]a]]} (right inverse),
represented in terms of graph transformations being applied to rooted trees.
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3 The Multiway System as an Embedding Space of ZX-Diagrams

The multiway representation of an abstract rewriting system serves to provide a discrete embedding space
for the collection of all possible deductions in a given diagrammatic reasoning system. In what follows, we

will explicitly illustrate this embedding for the case of the ZX-calculus.

3.1 ZX Generators within the Wolfram Model

For the purpose of compiling and realizing diagrammatic rewritings of the ZX-calculus as Wolfram model
multiway systems, we consider now a particular class of nested operator expressions corresponding to ZX-

diagrams, as shown in Figure [15| for the case of the expression:

212,207 @ (X [01,1,2, 2] @ (W [i1,21) @ (W 21,00 & (W [o1,20] @ (W [iz, 1] @ W [, 02])))) ), (53)

along with a much more complicated diagram, represented using the same basic scheme, in Figure [I6]
To this end, we have developed the Wolfram Language software packages MakeZXDiagram[18], for easily
generating, manipulating, computing and displaying these diagrams (using the nested operator form as the
internal representation), and ZXMultiwaySystem[19], for actually simulating the diagrammatic rewrites as
Wolfram model multiway systems. This functionality is built upon a previous (and more general) software
framework that we developed known as MultiwayOperatorSystem[33], which we also make extensive use of
here. Amongst several other algorithmic and visualization features, the ZXMultiwaySystem software package

offers the ability to convert between symbolic ZX-diagrams and their explicit matrix forms, as shown in Figure

1

C1rcleT1mes

‘1( | ‘T'lmeszl ’ol‘ ‘W C'|rc'LeT'|mes‘

Al W [ 1@(

Figure 15: On the left, a ZX-diagram corresponding to the mnested operator expression
Z[21,2,1, 7] @ (X [21,1,2, 5] @ (W [i1,21] @ (W [21,01] @ (W [21,21] @ (W [ig, 21] © W [21,02]))))). On the
right, a representation of the same expression as a rooted tree.
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g > ¢

X[(xl, 0,1, 0@
{Z[z1, 3, 4,0])®{Z[z2, 2,1, B)@{X[x2,4, 1, @)@ (H[hl])®{Z[z3, 0, 1, B8)&{X[x3, 2, 2, O)@(H[h2] @ (W[x1, z1]) & (W[il, z1] &
W[i2, z1)e (W(zl, z2) e (W(zl, z2] & (W[zl, x2]@ (W[z2, x2])@ (W[zl, ol] & (W[i3, hl] &
(Wihl, x2)® (W[z3, x2]|® (W[x2, 04| ® (W[o4, x2| e (B[dl]) @ (W[i4, h2]@ (W[hZ, x3]® (W[i5, x3] &
(W[x3, o5]@ (W[x3, 06] @ (W16, 16]@W[IT, i81)1) 11010000000 000000010000)

Figure 16: A rendering of a more complicated ZX-diagram, again represented as a nested operator expression
(shown below).

The two principal generators of the ZX-diagrams shown here are the “Z-spiders” (colored in green) and
the “X-spiders” (colored in red) - so-named because they correspond to generalized variants of rotations
around the Z- and X-axes of the Bloch sphere, respectively. The Z-spiders are used to denote states/unitary

operators/linear isometries/projections/etc. with respect to the computational basis:

1
{10),11)} = : ; (54)

whilst the X-spiders are used to denote states/unitary operators/linear isometries/projections/etc. with

respect to the Hadamard-transformed basis:

1 1
V2 V2

The Z- and X-spiders are represented internally by operators of the form Z [n,i,0,p| and X [n,1,o0,p], re-

149,120 —{ (10) + 1) = (o) - |1>>}. (55)

spectively, where n designates the “name” of the spider (used as an unique identifier when specifying wire

configurations), ¢ designates the input arity of the spider (i.e. the number of incoming wires), o designates

23



in@43)= diagram =
MakezXDiagram[{Z[zl, 2, 1, Pi], X[x1, 1, 1, Pi/2], X[x2, 1, 1, Pi/3], W[i1, z1],
W[i2, z1], W[zl, x1], W[z1, x2], W[x1, ol], W[x2, 02]}]

Z Spiders: 1

out[43]= ZXD1agram0b]ect[ X Spiders: 2
Hadamard Gates: 0

4= diagram["LabeledGraph"]

outf44]=

n471= diagram["MatrixForm"]

1 i 1 1 ir 1 i 1 1 ir 1 i 1 1 ir i 1 1 ix
Om[47]={{{—+—] —+-e3 |, |-+ = —-—-e3 |, (747 [7+7e3), [7—7][7—783 },
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 i 1 1 ir 1 i 1 1 ir 1 i 1 1 ir 1 i 1 1 ir
{——4—— —-—-e3 |, |-+ —+-e3 |, |[-= —--e3 |, |-=--— —+-e3 }}
2 2 2 2 2 2 2 2 2 2)12 2 2 2 2 2

Figure 17: An illustrative example of the mutual inter-convertibility between symbolic ZX-diagrams and
their associated explicit matrix forms, as demonstrated using the ZXMultiwaySystem software package in
the Wolfram Language.

the output arity of the spider (i.e. the number of outgoing wires) and p designates the phase of the spider
(taken to be an element of the closed interval [—2,27]). The wires are specified by binary operators of the
form W [s1, s3], where s1 and sz designate the names of the spiders lying at the start and end points of the
wire, respectively. Both spiders and wires are composed using the ® operator, indicating the fact that all
diagram compositions are assumed to be monoidal (i.e. parallel) unless they are explicitly specified to be
compositional (i.e. sequential) by the choice of wire configurations.

Spiders with input arities of 0 and output arities of 1, i.e. expressions of the general form:

Z[Zl,(ll,Oé]@W[ZhOl], or X[th’l?a]@W[thl]’ (56)

can be interpreted as pure states, as shown in Figure [I8] More specifically, one has the pure states:

0) + ™ 1), and [+) + e =), (57)

for the Z- and X-spiders, respectively.

Spiders with input arities of 1 and output arities of 1, i.e. expressions of the general form:
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@ @

Figure 18: Z- and X-spiders with input arities of 0 and output arities of 1, corresponding to the expressions
7 [21,0,1,0] ® W [z1,01] and X [21,0,1,a] ® W [x1, 01], respectively, are interpreted as pure states.

Z 21,1, 1,0l @ (W [iy, 21] @ W [z1,01]) or X[z, 1,10l @ (W iy, z1] @ W [21,01]) (58)

can be interpreted as unitary maps (i.e. rotations about the Z- or X-axes of the Bloch sphere by angle «;
for a = m, these therefore correspond to the Z and X Pauli matrices, respectively), as shown in Figure

More specifically, one has the unitary maps:

0) O +e[1) (1], and  |4) (+[+e =) (], (59)

for the Z- and X-spiders, respectively.

Figure 19: Z- and X-spiders with input arities of 1 and output arities of 1, corresponding to the expressions
Z[z1,1,1,0] @ (W [i1, 21] @ W [z1,01]) and X [21,1,1,a] ® (W [i1,21] @ W [21, 01]), respectively, are inter-
preted as unitary maps.

Spiders with input arities of 1 and output arities of 2, i.e. expressions of the general form:

Z[21,1,2,a] @ (W [i1,21] @ (W [21,01] @ W [21,02])) , (60)

or:

X [21,1,2,0] @ (W [in,21] @ (W [21,01] @ W [21, 02])) (61)

can be interpreted as linear isometries (i.e. for o = 0, these correspond to simple copy operations in either
the computational or the Hadamard-transformed bases), as shown in Figure More specifically, one has

the linear isometries:

100) (O] + €™ [11) (1], and [+4) (+] + e |==) (=1, (62)
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for the Z- and X-spiders, respectively.

Figure 20: Z- and X-spiders with input arities of 1 and output arities of 2, cor-
responding to the expressions Z|z1,1,2,0] @ (W [i1,21] ® (W [21,01] @ W [21, 02])) and
X [z1,1,2,0] @ (W [i1,21] @ (W [x1, 01] ® W [x1, 02])), Tespectively, are interpreted as linear isometries.

Spiders with input arities of 2 and output arities of 1, i.e expressions of the general form:

Z [Zl7 2,1, a] ® (W [il, 21] ® (W [ig, 21] QW [21, 01])) , (63)

or:

X [l‘l, 2,1, Oé} X (W [il, 331] ® (W [ig, 1‘1] QW [1‘1, 01])) s (64)
can be interpreted as partial linear isometries (i.e. for o = 0, these correspond to CNOT operations followed
by destructive Z- or X-measurements applied to a single qubit, post-selected to either state |0) or |+)), as
shown in Figure More specifically, one has the partial linear isometries:

10) 00| + €™ |1) (11], and [+) (] + e =) (=1, (65)
for the Z- and X-spiders, respectively.
Spiders with input arities of 1 and output arities of 0, i.e. expressions of the general form:
Z|z1,1,0,a] ® W [i1,21] , or X [21,1,0,a] ® W [i1, 1], (66)

can be interpreted as projections (i.e. for a =0 or o =, these correspond to destructive Z- or X-
measurements applied to a single qubit, post-selected to either state |+), |—), |0) or |1)), as shown in

Figure More specifically, one has the projections:
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Figure 21: Z- and X-spiders with input arities of 2 and output arities of 1, cor-
responding to the expressions Z71,2,1,a] @ (W [i1, 21] @ (W [i2, 21] @ W [21, 01])) and
X [21,2,1,0] @ (W [i1,21]) @ (W [i2,21] ® W [21,01])), respectively, are interpreted as partial linear
isometries.

(Of + e (1], and (+] + (-, (67)
for the Z- and X-spiders, respectively.

—@ — @

Figure 22: Z- and X-spiders with input arities of 1 and output arities of 0, corresponding to the expressions
Z [21,1,0,a] ® W [i1, 21] and X [21,1,0, ] ® W [i1, 21], respectively, are interpreted as projections.

More generally, we can define the Z- and X-spider interpretations inductively as follows: a Z-spider with

an input arity of n and an output arity of m corresponds to a linear map of the form:

0)5™ (0% + e [1)®™ (1", (68)

whilst an X-spider with an input arity of n and an output arity of m corresponds to a linear map of the

form:

R i S R C (69)

A wire with an input arity of 1 and an output arity of 1 acts like an identity map:

10) O + 1) (1] (70)

a wire with an input arity of 0 and an output arity of 2 acts like a Bell state:

27



|00) + [11); (71)

a wire with an input arity of 2 and an output arity of 0 acts like a Bell effect:

(00] 4 (11]; (72)

and a pair of twisted wires acts like a SWAP gate (with input arity 2 and output arity 2):

100) (00| + 01) (10] + [10) (01| + |11) (11]. (73)

There also exist two additional “special” kinds of generators that we have not yet considered: the yellow

Hadamard gates with input arities of 1 and output arities of 1, given by expressions of the form:

H [ha] @ (W [in, ha] @ W [y, 01]) (74)

and which act as unitary Hadamard transformations:

[+) O + [=) (1], (75)

and also the black diamonds with input and output arities always equal to zero (i.e. they always appear
disconnected from the rest of the graph), given by expressions of the form B [d;], and which act as overall
(multiplicative) scalar factors of VD applied to the whole linear map (where D is the dimensionality of the
corresponding Hilbert space). In the above, hy and d; designate the “names” of the Hadamard and black
diamond spiders, respectively (again, to be used as unique identifiers). The two additional generators are

shown in Figure

]

Figure 23: The Hadamard and black diamond spiders, corresponding to the expressions
H[h1,] ® (W [i1, h1] ® W [h1, 01]) and B [d;], are interpreted as Hadamard transformations and overall (mul-
tiplicative) scalar factors, respectively.

The standard equational rewriting rules for the ZX-calculus, as presented in the tutorial of Coecke
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and Duncan[34][35], are thus implemented directly as equational (i.e. bidirectional) rewriting rules for our
multiway operator system; since many of the standard rewriting rules of the ZX-calculus (such as the Z-
and X-spider fusion rules) apply to spiders with arbitrary arities and arbitrary wire configurations, they
are actually treated by our code not as single rules but rather as infinite rule schemas within the multiway
operator formalism, analogous to the use of the bang-box notation in Quantomatic[36]. For instance, each
instance of a Z- or X-spider fusion rule is computed using a schema function of 5 arguments - namely, the
input and output arities of the first Z/X-spider, the input and output arities of the second Z/X-spider, and
finally the number of wires connecting the two spiders.

The S1 rules, or the Z- and X-spider fusion rules (for the case in which both spiders have input and
output arities equal to 4, and in which the two spiders are connected by exactly 4 wires), along with their
associated operator forms, are shown in Figure 24] The algebraic interpretation of these rules is that both
the Z- and X-spiders represent orthonormal bases (namely the computational and Hadamard-transformed
bases, respectively), and therefore whenever two spiders of the same type touch, they can merge, with their
respective phases combining additively.

Note that, for a spider of input arity n and output arity m, there will in general be (n+ 1) x (m + 1)
possible ways for it to “fission” into two different spiders, so the time-reversed versions of the S1 rules are
actually a little more subtle than the ones presented above. Although we will not worry too much about
this subtlety here (as it is implicitly handled by our construction of the canonical rule enumeration later),
it is worth noting that, for a true time-reversal of the S1 rules above, one must in fact enact a systematic
enumeration of all possible “fission” rules, as shown in Figure

The S2 rules, or the Z- and X-spider identity rules (in the most general case), along with their associated
operator forms, are shown in Figure The algebraic interpretation of these rules is that the Bell state
is always identical, irrespective of whether it is represented in the computational basis or the Hadamard-
transformed basis, and therefore any phaseless Z- or X-spider can be replaced by the identity map. Category-
theoretically, this rule is asserting that the Z- and X-spiders induce the same compact structure.

The B1 rules, or the Z- and X-spider copy rules (in the most general case), along with their associated
operator forms, are shown in Figure The algebraic interpretation of these rules is that a Z-spider of
arity 1 is proportional to a Hadamard-transformed basis state (namely |+)), and an X-spider of arity 1 is
proportional to a computational basis state (namely |0)), up to a multiplicative constant (i.e. up to a black
diamond), and therefore arity 1 Z-spiders get “copied through” X-spiders, and vice versa.

The B2 rules, or the bialgebra simplification rules (in the most general case), along with their associated
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R SR
B i

{Z(z1 , 4, 4,al & (X[x1_, 4, 4,al |
(Z[z2_, 4, 4, 02 _Je (W[Zl_, 22 Je@(W[zl_, z2_]e(W[zl_, 22 ]e (X[x2_, 4, 4, a2 _J@ (Wxl_, x2_J@ (W[xl_, x2_Je W[(xl_, x2_]e&
Wizl , z2_ )@ (W[il_, z1_ @ (W[i2_, z1_|® (W[i3_, z1_|= Wix1_, x2_J@ (W[il_, x1 )& (W[i2_, x1_]& (W[i3_, x1_ )&
(W[i4_, z1 Je (W[z2_, ol @ (W[z2_, 02 ]@ (W[i4_, x1_|@ (W(x2_, ol )& (W[x2_, 02_]| @&
(W[z2_, 03_J@W([z2_, 04 1)) )))))0010) e W[x2_, 03 J@W[x2 , 04 ])))))1)))))) =
Z[zl, 4, 4, ol +o2] @ (W[il, z1] @ (W[i2, z1] @ (W[i3, z1]® (W[id, z1]= X(xl, 4, 4, ol +a2]e (W[il, x1]e (W[i2, x1]e (W[i3, x1]e (W[i4, xl]e
W(zl, ol)e (W(zl, o2]e (W[zl, o3)eW[zl, o4]))])))), (W[xl, ol] @ (W[x1, o2] & (W[x1l, o3)eW(xl, od4]}))))1)1)),
Z(z1_, 4,4, al_+a2_]Je(W[il_, z1_Je(W[i2_, z1_ ]& X[X1 , 4,4, 0l +02 J@ (Wil , x1 e (W[i2_, x1 |e
(W[i3_, z1_ )@ (W[i4_, z1_)J@ (W[zl_, 0ol _|@ (W[i3_, x1_ e (W[i4_, x1_Je (W[x1 , 0l |&
Wizl , 02 J@{W[zl_, o3_JeW[zl_, 04 _]))1)1)1)) = (Wix1 , 02 Je(Wx1 ,03 |JeW[x1 , 04 ])))))1)) =
Module[{z2}, Z[zl, 4, 4, al] e (Z[22, 4, 4, a2] & (W[Zl, z2] & Module[(x2}, X[xX1l, 4, 4, al | @ (X[x2, 4, 4, a2] 2 (W[X1, x2] &
(W[zl, z2)@ (W[zZl, z2)@ (W[Zl, z2)@ (W[1L, z1) @ (W[i2, z1]® (W[xl, x2] @ (W[x1l, x2] & (W[x1, x2] @ (W[il, x1] e (W[i2, x1]e
(W[i3, z1) @ (W[i4, z1)® (W[z2, ol]® (W[Z2, 02] @ (W[i3, x1] e (W[i4, x1] e (W[x2, ol] e (W[x2, o2] @
(Wiz2, o3)eW[z2, o4]))))0010)0000) (W[x2, o3)eW(xZ, 04])))))1)1)10) 0}

Figure 24: The S1 rules, or the Z- and X-spider fusion rules (for the case in which both spiders have input
and output arities equal to 4, and in which the two spiders are connected by exactly 4 wires), along with
their associated operator forms. These rules correspond to the statement that the Z- and X-spiders represent
orthonormal bases (computational and Hadamard-transformed, respectively).

operator forms, are shown in Figure The algebraic/categorical interpretation of these rules is that the
computational and Hadamard-transformed bases are strongly complementary, and therefore any 2-cycle of Z-
and X-spiders must simplify. The concept of strong complementarity of observables in categorical quantum
mechanics, as developed by Coecke, Duncan, Kissinger and Wang[37], and its relationship to dagger special

(commutative) Frobenius algebras[38], is briefly outlined below.

Definition 24 A “monoid object”, denoted (M, u,n), in a monoidal category (C,®,1I), is an object M in

ob (C), equipped with a pair of morphisms:

p:MeM— M, andn: I — M, (76)

in hom (C), known as “multiplication” and “unit”, respectively, such that the following pair of diagrams both
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(X(x1_,2,2,al a2 )eM(ila_, x1_]eW(i2a_, x1 )& (W[x1_, ol JeW(x1_, 02.)))) =

Module[ (x2), X(X1, ©, 2, al]® (X(x2, 4, 2, a2] & (W(xL, X2] & (W[X1, x2) & (W[ila, x2] & (W[i2a, X2] ® (W(x2, 01) @W(X2, 02])1)))) ],
X(X1,2, 2, al_+a2 e W(ila_, x1_)® (W[i2a_, x1_] & (W(xL_, ola_] eW[xL_, ol ]})

Module( (x2), X(X1, ©, 3, al]® (X(x2, 4, 1, a2]® (W(xL, X2] & (WXL, x2] @ (W[x1, ola] & (W(ila, X2] & (W[i2a, x2] @W[x2, 01]))))))],

(Z(21,2,2,al_+a2 )e([ila_, 21 je (W(i2a_, z1 )& (W(z1_, o1 J@W(zl_, 02 ]))) =»
®(W(z1, z2] @ (W(z1, 22] ® (W[ila, 2] (W[i2a, 22] @ (W[22, 01]8W[22, 02])))))) ],

Module( (22}, Z(21, 0, 2, al] ® (Z(22, 4, 2, a2
Z(21., 2,2, al_+a2 e W(ila_, 21 |® (W[12a_, z1_]® (W(21_, ola_]eW[zl_, 01.])))
Module((22), Z(21, 0, 3, al] ® (Z(22, 4, 1, a2] & (W(z1, 22] & (W(z1, 22) & (W[z1, ola)e (W[ila, 22] & (W[i2a, 22] &W(22, 01])))))) ],
2021, 2,2, a1 +a2_jeMW(ila_, 21 )& (W[i2a_, 21 e (W(zl_, ola_jeW(zl_, 02a_]))) =»

4, al)®(Z(22, 4, 0, a2]® (W(z1, 22] ® (W(z1, 22] & (W21, ola]e (W(zl,

X(x1,2,2,al +a2 e Wila_, x1_)e (W[i2a_, x1_]& (W(xL_, ola_] eW(xl_, 02a_]))) :»
o02a)s (W(ila, 22] eW(i2a, 22]))))))],  Module(( ,0,4,al)(X(x2, 4, 0, a2] & (WXL, x2) @ (W[x1, x2] & (W[x1, ola] ® (W[x1, 02a) & (W[ila, x2) &W[i2a, x2)))))))],
X(x1,2, 2, al_+a2 & W(il_, x1_]® (W(ila_, x1_)& (W(xL_, o1 ]eW(x1_, 02_)))) =»

Module[ (x2), X(X1, 1, 2, al]® (X(x2, 3, 2, a2] & (W(xL, X2] & (W[X1, x2) @ (W[i1, X1] & (W[i1a, x2] ® (W[X2, 01] @W(X2, 02])1))))],
X(X1_, 2, 2, al_+a2 ] (W11, x1_]® (W(ila_, x1_]@ (W(x1_, ola_]eW[x1_, 01.]))) »

Module( (22}, Z(z1,
Z(21., 2,2, al_+a2 e (11, 21 e W(ila_, 21 ]® (W(zl_, 01 ]eW(zl_, 02.]))) =
Module((22), Z(21, 1, 2, al] @ (Z(22, 3, 2, a2] & (W(z1, 22] & (W(z1, 22 @ (W[il, z1]& (W[ila,

22)8 (W(z2, ol] eW(z2, 02]))))))),

Z(z1_,2,2,al_+a2_]e Wil , z1_]e (W[ila_, z1_]e (W(zl_, ola_]eW(zl_, 0l ]))) =
Module( (22}, Z(2z1, 1, 3, al]®(Z(22, 3, 1, a2)® (W(Z1, 22)® (W(z1, 22)® (W[il, z1]® (W[zl, ola)® (W[ila, 22)@W[Z2, 01]))))))], Module[(x2), X(x1, 1, 3, al}®(X[x2, 3, 1, a2] @ (W[x1, x2] @ (W[x1, x2] @ (W[il, x1] @ (W[x1, ola]® (W[ila, x2)@W(x2, o1]})))}))) ],
2(21, 2,2, al +a2 e ML, 2 e (W(ila_, 21 Je (W(zl_, ola_jeW(zl_, 022 ]))) = X(x1_, 2,2, al_+a2_]® WL, x1_] @ (W(ila_, xl_]e (W(x1_, ola_)eW(xl_, 02a_]))) =

olaje (W(xl, o2a] eW[ila, x2]))))))],

Module[ (x2), X(X1, 1, 4, al]® (X(x2, 3, 0, a2] & (W(xL, x2] ® (WX, x2] & (W[i1, X1] & (W[x1,
X(X1_, 2,2, al_+a2 ] (W[i1_, X1_]® (W(i2_, X1_]® (W(x1_, 01 ]@W(X1_, 02.]))) =

Module[ (x2), X(x1, 2, 2, al]® (X(x2, 2, 2, a2) & (W(xL, x2] ® (W[X1, x2) & (W[i1, x1] & (W[i2,
X(x1.,2, 2, al_+a2 o W(il_, x1_]® (W(i2_, x1_]® (W(x1_, ola_)eW(x1_, 01 )))) =
Module[(x2), X(x1, 2, 3, al]® (X(x2, 2, 1, a2] & (W(xL, X2] ® (W[X1, x2) & (W[i1, x1] & (W[i2,
X[X1_, 2, 2, al_+a2_]® (W(il_, X1_]® (W[12_, X1_] ® (W(X1_, 0la_] &W(X1_, 02a_]))) =
Module[ (x2), X(x1, 2, 4, al]® (X(x2, 2, 0, a2) & (W(xL, x2) ® (WX, x2) @ (W[i1, x1] & (W[i2,

Module((22), Z(21, 1, 4, al] ® (Z(22, 3, 0, a2] & (W(z1, 22] ® (W(z1, 22)® (W[i1, z1]& (W[z1, ola] & (W[zl, 02a] eW[ila, 22])))))) ],

Z(21., 2,2, al_+a2 )& (i1, 21_]& W[i2_, 21 ]& W(zl_, ol_]eW[zl_, 02.])))
Module( (22}, Z(21, 2, 2, al]® (Z(22, 2, 2, a2]® (W(21, 22] ® (W(21, 22] @ (W[, Z1] @ (W(12,
2021, 2,2, al_+a2 je Wil z1 J® (W[i2_, z1_]@ (W(z1_, ola_jeW(z1_, 01 ]))) =
Module( (22}, Z(21, 2, 3, al] ® (Z(22, 2, 1, a2] & (W(z1, 22] ® (W(z1, 22)® (W[il, z1] & (W[i2, 21]® (W(z1, ola] ®W(22, 01]))}))) ],
z(21., 2,2, al_+a2 e (i1, 21_]® (W[i2_, z1_]® (W(zl_, ola_]eW[zl_, 02a_]))) =»
Module((22), Z(21, 2, 4, al]® (Z(22, 2, 0, a2] ® (W(21, 22] ® (W(z1, 22)® (W(i1, Z1)® (W(12,

1) (W(22, o1)eW(22, 02)))))))], XU @ (M0, 03] WD, 02110
X1]® (W(xL, ola] eW(x2, 01]}))1)) ],

z1)® (W(z1, ola) W(z1, 02a])))))) )} X1]® (W(x1, ola] eW(x1, 02a]}))))) ]}

Figure 25: Samples of the enumeration of all possible Z- and X-spider “fission” rules (shown here for the case
in which both spiders have input and output arities equal to 2, and in which the two spiders are connected
by exactly 2 wires), along with their associated operator forms. These rules are the time-reversed versions

of the S1, or Z- and X-spider fusion rules, shown above.

commute:
(MeM)®M —2 Me (Mo M) 224 Mo M
Lu,@id J/N ) (77)
M®M r M
and:

oM "2 MaM o Mo
\ J(u / ) (78)
P
M
where, in the above, o, A and p denote the usual associator isomorphism and the left and right unitor

isomorphisms of the monoidal category, respectively, and I is the monoidal identity object.

Definition 25 A “comonoid object”, denoted (M,0d,€), in a monoidal category (C,®,1I), is the dual of a

monoid object, i.e. it is a monoid in the opposite/dual category C°P.

Definition 26 A monoid object (or, dually, a comonoid object) (M, u,n) in a symmetric monoidal category

(C,®,1I) is “commutative” if:
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O 9 -
— @ R

({Z[z1_, 2,0, 8)eW[il_, z1_]jaW[i2_, z1_] »W[il, 12], [(X[x1_, 2, 0, 0] eW[il_, x1_])eW[i2_, x1 ] =»W[il, 2],
W[il_, i2_] :»Module[(zl}, (Z[zl, 2, @, @] @W[il, z1])ew[i2, z1]]} W[il., i2_) = Module[(x1]}, (X[x1, 2, 8, 0]eW([il, x1])eW([i2, x1]])

.= ” . -
- ~ . - - .

({Z[zl_, 1, 1, 8)eW(il_, z1_])eW(zl_, ol_] -»W[il, ol], ((X[x1_, 1,1, 8]eW[il_, x1_])eW[x1_, ol_) > W[il, o1],
W[il_, ol_] :»Module[(zl}, (Z[zl, 1, 1, 8] @W([il, z1])eW([zl, ol]]} W[il_, ol ]:»Medule[({xl}, (X[x1, 1, 1, 8]@W[11l, x1])eW([x1, ol]]}

. ” -

{(Z[zl1_, 0,2, 0)eW[zl_, ol_])eW[zl_, 02_] :+W[ol, 02], ((X[x1_, 0,2, 0)eW(xl_, ol ])eW(xl_, o2 | W[el, 02],
Wiol_, 02_] :» Module[(zl}, (Z[z1, ®, 2, O] eW[zl, ol])eW[z1, 02]]} W[ol_, 02_] :»Module[(x1}, (X[x1, @, 2, @)@W[x1, ol])@W[x1, 02]]}

Figure 26: The S2 rules, or the Z- and X-spider identity rules (the most general case), along with their
respective operator forms. These rules correspond to the statement that the Bell state is always identical,
irrespective of whether it is represented in the computational or Hadamard-transformed basis.

poo=pu, (79)
where o denotes the usual monoidal symmetry isomorphism.
Definition 27 A “Frobenius algebra”, denoted (A, u,n,0,€), in a monoidal category (C,®,1), is an object
A in ob (C), equipped with two pairs of morphisms, namely:
n:AQA— A, and n:I— A, (80)

and:

0: A= AR A, and e:A—1, (81)

in hom (C), such that (A, u,n) forms a monoid object in C and (A, J,€) dually forms a comonoid object in

C, in such a way that the following pair of diagrams both commute:
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® L
> -
0) L
R 4
(({{{Z[z1_, 8, 1,0)eX(x1_,1,2,0])eW(zl_, xl J)jeW[xl_,ol )@ (({{(X[x1_,0,1,08)eZ(zl_,1,2,0])eW[xl_,zl jjeW[(zl ,ol )@
Wixl_, 02_])®B[dl_] :» Wizl , 02_])@B[dl_ ] :»
({Z[z1, 08,1, 0)eZ[x1, 8, 1, 8])=2W(zl, ol])eW[xl, 02], {{X[x1, 0,1, 0)eX[zl, 0,1, 0])eW[x1, ol])eW[zl, 02],
({Z[z1_, 0,1, 0)eZ(x1_, 0,1, 0])eW[(zl_, ol_])eW(xl_, 02_] «» ({X[x1_,0,1,0)eX[(z1_, 0,1, 0])eW[xl_, ol _])=eW[zl_, 02_] :»
Module([ {dl}, Module[{d1},
({({Z[z1, 0, 1, 0)eX(x1, 1, 2, @])eW([zl, x1])eW(xl, ol]) @& ({{({X[x1,0,1,0]eZ[zl,1, 2, 8])eW(xl, z1])eW([zl, ol])@®
W[xl, 0o2])@B[d1]]} W[zl, 02))eB[dl]]}

Figure 27: The B1 rules, or the Z- and X-spider copy rules (the most general case), along with their
respective operator forms. These rules correspond to the statement that Z- and X-spiders of arity 1 are
proportional to Hadamard-transformed and computational basis states (namely |[+) and |0)), respectively,
up to a multiplicative constant (a black diamond).

A9 A4 AoAw A
lﬂ J{A@g ) (82)

A— % L AA

and:

AQA 2%, Ao A0 A
y WA : (83)

A— 2% L AA

which naturally generalizes the notion of a finite-dimensional unital associative algebra equipped with a bi-

linear form.

Note that, in the above definition, we have assumed (without loss of generality) that the associated monoidal

category is strict:

Definition 28 A “strict monoidal category”, denoted (C,®,1I), is a monoidal category in which the associ-
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COOCOOOO0riX =1, 1, 2, @) eX[x2_, 1, 2, 0])eZ(zl_, 2, 1, @]) @

foeeeeeeeii(rzas, 1, 2, 8)e(z2_, 1, 2, 8])8X(xl_, 2,1, 8]} @
] Z(z2_,2,1,0))eW[il_, x1_]|)jeW[i2_, x2_])®

X(x2_,2,1,0))eW[il_, z1_))eW(i2_, z2_])e
Wizl , x1_]jeW(zl_, x2_])sW([z2_, x1_ ]} Wixl_, z1_|j@W(xl_, z2_])eW[x2_, z1_]} &
Wiz2_, x2_])eW[xl_, ol ])eW[x2_, 02 || e@B[dl ] = W(x2_, z2_])eW[zl_, ol_]jeW[z2_, 02_])eB[dl_] =

({{{(X[x1,2,1,0)eZ(zl, 1, 2, @))eW[il, x1])eW(i2, x1])= ({{{(Z[z1, 2, 1, 0)@X[x1, 1, 2, B])@W(il, z1])eW(i2, z1])®

Wixl, z1])eW[zl, ol])&W[zl, o2], Wizl, x1]) @W[x1, ol])eW[xl, 02],
((({{X[x1_, 2,1, 0)eZ[z1_, 1, 2, 0))eW[il_, x1 ]jeW[i2_, x1 )}e  (((((Zfzl , 2,1, @)eX(xl , 1, 2, 8]} eW[il , z1 ]jeW[i2 , z1 ]} e

Wixl_, z1 ])eW[zl_, ol ]} Wizl_, x1_]jeW[xl_, 0l _|}|&

W[ixl_, 02 )] :» Module|{z2, x2, d1},

:» Module[ (x2, z2, d1},
COOCOOE000XxL, 1, 2, B)@X(x2, 1, 2, 0])eZ[z1, 2, 1, 8])®

Wizl_, 02_]
CO0eeiie(zrz1, 1, 2, @) ®Zfz2, 1, 2, 0] ) @X(x1, 2, 1, 8] &
X[x2, 2, 1, 0]) ®W[il, z1])aW[i2, z2]) & 7(72, 2, 1, 8]) @W[il, x1))eW[i2, x2]) &
Wizl, x1])eW(zl, x2])eW([z2, x1]) & Wixl, z1])eW[xl, z2])eW[x2, z1]) @
W(x2, z2])eW[zl, ol))@W[z2, 02])@B[d1]]}

W[z2, x2])eW([xl, ol])@W[x2, 02])@B[d1]]}

Figure 28: The B2 rules, or the bialgebra simplification rules (the most general case), along with their
respective operator forms. These rules correspond to the statement that the computational and Hadamard-

transformed bases are strongly complementary.
ator, left unitor and right unitor isomorphisms a, X and p are all identity isomorphisms.

Definition 29 Within a dagger symmetric monoidal category (C,®,1,1), a “dagger special (commutative)

Frobenius algebra”, denoted O., is a (commutative) Frobenius algebra A defined in the usual way by the pairs

of morphisms:

ot A® A — A, and n.: I — A, (84)
and:
0, A= AR A, and € A=, (85)
in hom (C), such that one has the following compatibility conditions with the dagger structure:
(86)



and moreover, the diagrammatic equality shown in Figure holds.

(Z[zl, 1,2, 0)e(Z[z2,2, 1, 0)a (W1, z1) & (W[zl, z2)e (W[zl, z2)eW[z2, 0])))) »W([1, o],
W(i, 0) »Z2[z1,1, 2,0)®(Z[z2,2,1, 0] (W[i, z1)&(W[zl, z2)@ (W[zl, z2)eW([z2, 0]))))}

>

Figure 29: The defining diagrammatic equality for a dagger special (commutative) Frobenius algebra.

The connection between dagger special commutative Frobenius algebras and quantum observables lies in
the fact that, within the standard mathematical formalism of quantum mechanics, every non-degenerate
observable forms an orthonormal basis of eigenstates, and in the category FdHilb of finite-dimensional
Hilbert spaces, the orthonormal bases are in bijective correspondence with the dagger special commutative
Frobenius algebras[39][40]. For this reason, we shall henceforth adopt the standard convention of referring

to dagger special commutative Frobenius algebras as “observable structures”.

Definition 30 A pair of observable structures (O., O,), acting on a common object A, are “complementary”

if and only if the diagrammatic equality shown in Figure holds.

o o

{Z[z1, 1, 2, @)= {Z[z2,0, 2, B)=®(X[x1, 2,0, 0]&

(X[x2, 2,1, 0)= (Wi, zL]e(W(zl, z2])@ (W(x1l, z2] e (W(x1l, x2])@{(W[zl, x2]) @ (W[x2, o] oW w, w]}})}1}1}) =
Z(z,1,0,0]e(X[(x, 0,1, 0@ Wi, z]eW[(x, 0])), Z[Z, 1,0, O)&(X[x, 0, 1, @)= (W[1, Z]@W[x, 0]})) =
Z(zl,1,2,0]e(Z[z2,0, 2, 0]e(X[xl, 2,0, 0]e

(X[x2, 2,1, 0)e (Wi, zL] & (W(zl, z2) @ (W[x1, z2] & (W(xl, x2] @ (W[zl, x2) @ (W[x2, o] @W[w, W]} ))})1)11)]}

Figure 30: The defining diagrammatic equality for the complementarity of observable structures.

In the category FdHilb, this reduces to the standard quantum mechanical notion of complementarity be-

tween observables.

Definition 31 A pair of observable structures (O.,0,), acting on a common object A, are “coherent” if

and only if the diagrammatic equalities shown in Figures[31], (33 and[33 all hold.

Definition 32 A pair of observable structures (0., O,), acting on a common object A, are “strongly com-

plementary” if and only if they are coherent and the diagrammatic equality shown in Figure holds.

From this last equality, we see that the bialgebra simplification rules follow immediately from the fact that
the computational and Hadamard-transformed orthonormal bases (when interpreted as observable struc-

tures/dagger special commutative Frobenius algebras) are strongly complementary.
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- ) -
(X[(x1,0,1,08)e
(Z[z1, 1, 0, 8] @ {W[x1, z1]® (X[x2, 0, 1, 0] @ (Z[22, 1, 2, 0] @ (W[x2, z2] @ {W[Z2, ol]@W[z2, 62]})}))] »

X[(x1, 0,1, 0]e(X[(x2, 0,1, 0)e(W(xl, ol)eW[x2, 02]}),
X(x1, 8,1, 0] (X(x2, 8, 1, 8] @ (W[x1, ol]eW(x2, 02])) >X[x1, 0, 1, 0]®
(Z[zl, 1, 0, 8] & (W[x1, z1]® (X(x2, 0, 1, 0)=® (Z(z2, 1, 2, 0] ® (W[x2, z2] & (W[Z2, ol]&W[Z2, 02]}}))} )}

Figure 31: The first defining diagrammatic equality for the coherence of observable structures.

- s -
(Z[z1,0,1,0]&
(XK[x1, 1,0, 0)eW(zl, x1)e(Z2(z2, 0, 1, 0]e(X[x2, 1, 2, 0] (W[z2, x2])e (W(x2, ol]@W[x2, 02])))))) —»

Z[(z1,0,1,0)={Z(z2, 08, 1, 0)e (W[zl, ol]aW[zZ, 02])),
Z(z1,0,1,0]®(Z[z2,0, 1, 0] @ (W[zl, ol)@W[z2, 02])) +Z(zl, 0, 1, 0]&
(X[x1, 1, 0, 0)@ (W(zl, x1]@ (Z[22, B, 1, 8] @ (X[x2, 1, 2, B) @ (W[Z2, x2]@ (W[x2, ol]@W[x2, 02])}))])]}

Figure 32: The second defining diagrammatic equality for the coherence of observable structures.

It is worth noting that, in addition to the case presented above in which both the Z- and X-spiders are

strictly phaseless, there exist two other cases in which the bialgebra rule holds, namely whenever either of

the Z-spider or X-spider phases are equal to 7, with the other phases being equal to zero. This can be easily

verified algebraically using the following explicit representations of the spiders:

10
L1 0 0 100 0
H=— , Z(a) = ; X(B)=H | (HeH),
V211 0 0 00 0 ¢
0 eia

where spiders Z («) and X () are both expressed in the computational basis.

Furthermore, swapping wires are represented using:
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(X(x,@,1,0]s(Z[(z, 1,0, 0)&W(x, z)] »Z(z, 0, 1, B] & (X[x, 1, 0, 0] eW(z, X)),
Z(z, 0,1, 0)8(X[X, 1,08, 0)aW(z, x]) +X(x, 0,1, 0)e(Z[z, 1, 0, 8] &W(x, Z]))

Figure 33: The third defining diagrammatic equality for the coherence of observable structures.

e e 11

0 o0

{X[x1, 0,1, 0]=
(Z[z1, 1,0, 0)e{W[(xl, z1]& (X[x2, 1, 2, 0] {X[(x3, 1, 2, 0]e{Z2[z2, 2,1, 0)={Z[23, 2, 1, 0] = (W[il, x2]e

W[i2, x3) @ (W[x2, z2) @ (W[x2, z3) & (W[x3, 22| @ (W[x3, z3] & (W[Z2, 01]@W(zZ3, 02)))))))))1))))) =
Z(z, 2, 1, 8] (X[x, 1, 2, 0] @ (W[il, z] & (W12, z] & (W[Z, x] & (W[X, ol] 8W[X, 02]]]])),
Zlz, 2,1,0)e(X[x, 1, 2, 0]e{W[il, z]= (W[i2, z]e (W[Z, x]® (W[x, ol]@W[x, 02]))))) =

X[xl,8,1,0]e
(Z[z1, 1,0, 0)e{W[(xl, z1]& (X[x2, 1, 2, 0] {X[(x3, 1, 2, 0]e{Z2[z2, 2,1, 0)={Z[23, 2, 1, 0] = (W[il, x2]e
(W[i2, x3) @ (W[x2, z2] @ (W[x2, 23] & (W[x3, z2] @ (W[x3, 23] @ (W[Z2, ol]@W(Z3, 02]))))))))))1)))}

Figure 34: The defining diagrammatic equality for the strong complementarity of observable structures.

10 00
0 010
SWAP = , (88)
01 0O
0 0 01
which, when combined together, indeed verifies:
V2(Z (a) @ Z () (I, @ SWAP @ L) (X (8) @ X (8)) = X (B) Z (a), (89)

for (¢ =, 8 =0) and (a = 0, 8 = 7), where Iy denotes the 2 x 2 identity matrix. Consequently, the variants
of the B2 rules in which the X-spider and Z-spider phases are equal to 7, with all other phases equal to zero,
are shown in Figures [35] and [36] respectively.

The K1 rules, or the Z- and X-spider 7-copy rules (for the case in which the X- and Z-spiders have output
arities equal to 4, respectively), along with their associated operator forms, are shown in Figure The
algebraic interpretation of these rules is that a Hadamard NOT gate (i.e. an X-spider with an input arity of
1, an output arity of 1 and a phase of 7) is a function map of the Hadamard-transformed basis (i.e. it maps

Hadamard-transformed basis states to Hadamard-transformed basis states), and therefore it copies through
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SNDELN
S S S

COO0eie(iZrz1, 1, 2, 0)eZ(22 , 1, 2, 0))eX(xL_, 2,1, 7] | e COOOU00{((Xx1_, 2, mj@X[x2_, 1, 2, m])@Z(zl_,2,1,0])e
X[(x2_, 2, 1, w])@W[il_, z1_))eW(i2_, z2_ ))& 7[z2_,2,1,0))eW[il_, x1_])eW[i2_, x2_])@
Wizl , x1_ ])eW[zl_, x2_J1eW[z2_, x1_])@ Wixl_, z1 J)eW[x1l_, zZ_])eW[x2_, z1_]) =
Wiz2_, x2 ])eW[xl_, ol |jeW[x2_, 02_])eB[dl_ ] = Wix2_, z2 ])®W([zl , 0l |)eW[z2_, 02_])@B[dl_] =
(((((X[x1, 2,1, nj@Z(zl, 1, 2, 0])@W([il, x1))eW[i2, x1])& {({({{({Z[z1, 2, 1, ®)=X[x1l, 1, 2, m])@W[il, z1]))@W[i2, z1]) @
Wixl, z1])eW[zl, ol])eW[zl, 02], Wizl, x1])2W(xl, ol])eW[xl, 02],
((({(X[x1_, 2,1, mj@Z[z1_, 1,2, 0])eW[il_, x1_])eW([i2_, x1_])®  (((((Z(zl_, 2,1, @]@X(xl_, 1, 2, m])eW[il_, z1_])eW(i2_, z1_]) e
Wixl , z1 J)eW[zl , ol ))& Wizl , x1_]J)eW[(xl_,ol_ ))&
W[zl , o2_] > Module[(x2, z2, d1}, W[xl_, 02_] :»Module[{z2, x2, d1},
(OO0 0{({(Z[z1, 1, 2, 8)®Z(22,1, 2, 8] )eX[x1, 2,1, n])® (OO0 (Xx1, 1, 2, njeX(x2, 1, 2, m))eZ(zl, 2,1, 8])e
X[(x2, 2, 1, n])eW[il, z1])® Z[z2,12,1, 0])eW[il, x1]) @
W[i2, z2])eW[zl, x1])eW([zl, x2])eW[z2, x1]) e Wii2, x2))eW(xl, z1])eW(xl, z2])eW[x2, z1]} &
W[z2, x2])eW[x1, ol])@W[x2, 02])@B[d1]]} W(x2, z2))eW([zl, ol])eW(z2, 02]) eB([d1l]]}

Figure 35: A variant of the B2 rules, or the bialgebra simplification rules (the most general case), along with
their respective operator forms. These rules modify the standard B2 rules for the case in which the X-spider
phases are equal to 7, with the Z-spider phases being equal to zero.

a Z-spider, whereas a computational NOT gate (i.e. a Z-spider with an input arity of 1, an output arity of
1 and a phase of 7) is a function map of the computational basis (i.e. it maps computational basis states to
computational basis states), and therefore it copies through an X-spider.

The K2 rules, or the Z- and X-spider phase flip rules (in the most general case), along with their associated
operator forms, are shown in Figure[38] The algebraic interpretation of these rules is that, when a Hadamard
NOT gate (i.e. an X-spider with an input arity of 1, an output arity of 1 and a phase of 7) is commuted
through a Z-rotation gate, or when a computational NOT gate (i.e. a Z-spider with an input arity of 1, an
output arity of 1 and a phase of 7) is commuted through an X-rotation gate, the rotation of the latter gate
flips, and therefore the phase of the latter spider is negated.

The C rules, or the Z- and X-spider color change rules (for the case in which the Z- and X-spiders have
input and output arities equal to 4, respectively), along with their associated operator forms, are shown in
Figure The algebraic interpretation of these rules is that a Hadamard gate maps from the computational

basis to the Hadamard-transformed basis, and back again, and therefore the color of the spider is inverted.

38



1 e 1D
S sEp el

OO0 eeei((zZrzl_, 1, 2, mj@f(z2 , 1, 2, mjjeX(xl ,2,1,0])& COOOO0Eiiiix=1., 1,2, 0)eX(x2_,1,2,0))eZ(zl , 2,1, 1))@
X(x2_,2,1,0))eW(il_, z1 _JjeW[i2_, z2 ))& Z(2z2_, 2,1, 7))eW[il_, x1_)jeW[i2_, x2 ]| =
Wizl , x1_JjeW(zl_, x2_JjeW[z2_, x1 || @ Wixl_, zl J)@W(xl_ ,z2 J)eW(x2_ ,zl ||e
Wiz2_, x2_])eW[xl_, ol_])eW[x2_, 02_])eB[dl_] = Wix2_, z2_])eW[zl_, ol || eW[z2_, 02 ])eB[dl ] «»
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Wixl_, zl ]jeW[zl_, 0l |} & Wizl_, x1_])eW[xl_,ol ))&
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Figure 36: A variant of the B2 rules, or the bialgebra simplification rules (the most general case), along with
their respective operator forms. These rules modify the standard B2 rules for the case in which the Z-spider
phases are equal to 7, with the X-spider phases being equal to zero.

The D1 and D2 rules, or the spider cancellation and scalar multiplication rules (in the most general case),
along with their associated operator forms, are shown in Figures [40] and The algebraic interpretation of
the spider cancellation rules is that Z- and X-spiders can mutually cancel, so as to yield a single scalar factor,
therefore reducing down to single black diamond, whilst the interpretation of the scalar multiplication rules
is that two scalar factors of v/ D multiply together to yield D, and therefore two black diamonds can combine
to yield a single loop of wire (representing an overall multiplicative scalar factor of D).

Finally, one has a set of non-diagrammatic axioms for the composition operator ®, ensuring that the
monoidal structure induced by ® satisfies the requisite associativity and symmetry properties (and therefore
that the corresponding monoidal category is equipped with the requisite associator and symmetry isomor-

phisms):

{a-®@ (b-®c) > (a®b)®c,(a-@b)@c.:>a® (b®c),a-@b_:>b®a}. (90)

With the multiway operator rules (and rule schemas) thus defined, one can consequently enact a systematic
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Figure 37: The K1 rules, or the Z- and X-spider 7-copy rules (for the case in which the X- and Z-spiders have
output arities equal to 4, respectively), along with their associated operator forms. These rules correspond
to the statement that a Hadamard NOT gate (i.e. an X-spider with an input arity of 1, an output arity of
1 and a phase of ) is a function map of the Hadamard-transformed basis, and that a computational NOT
gate (i.e. a Z-spider with an input arity of 1, an output arity of 1 and a phase of 7) is a function map of the
computational basis, respectively.

enumeration of all possible rules in the ZX-calculus up to a given arity, as shown in Figure [42| for the case

of enumeration up to input arity 2 and output arity 2 across all generators.
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Figure 38: The K2 rules, or the Z- and X-spider phase flip rules (the most general case), along with their
associated operator forms. These rules correspond to the statement that when a Hadamard NOT gate is

commuted through a Z-rotation gate, or when a computational NOT gate is commuted through an X-rotation
gate, the rotation of the gate flips.

41



gor s
% r

{Z(zl_, 4,4, cl |=
(H[hli_]@ (H[h2i_)J@ (H[h3i_] @ (H(h4i_] & (H[hlo_] & (H[h20_] & (XK[x1_, 4, 4,al |&
(H{h3o_]® (H[hdo_] @ (W[il_, hli_je (Whli_, z1_]e (H(h1i_ )@ (H(h2i_|® (H[h3i_] e (H[h4i_]@ (H(hlo_]® (H[hlo_ )=
(W[i2_, h2i_)e (W[h2i_, z1 )& (W[i3_, h3i_]e (H[h3o_] e (H(h4o_ )& (Wil , h1i_je(W[hli_, x1 ]e&
Wih3i_, z1_je (W(id_, h4i_je (W[i2_, h2i_je (Wh2i_, x1_)J@ (W[i3_, h3i_]e

(Wihdi_, z1_J=® (W[zl_, hlo_]|= (Wih3i_, ®x1_|e(W[i4_, hai_) &
(Wihlo_, ol_j@(W[zl_, h2o_]e (Wih4i_, x1_Je@ (W[xl_, hlo_]e&
(Wih2o_, 02_]® (W[zl_, h3o_]=® (W[ {Wihlo_, ol @ (W([xl_, h2o_]®
h3o_, 03 )& (W[zl , hdo_)eW hdo_, {W[h2o_, 02 ] & (W[x1_, h3o_]& (W[

h3o_, 03_] @ (W(x1l_, hdo_]eW[hdo_,

A_T I IIIIIIIIINIIINNN NN e
X(zl, 4, 4, o) @ (W[il, z1] e (W[i2, z1) @ (W[i3, z1]& QAN I IR I NI e
(W[id, z1] @ Z(x1, 4,4, al]e (W[il, x1)=(W[i2, x1) e (W[i3, x1]=&
{W[zl, ol) @ (W[zl, 02] & (W[zl, 03] @W[zl, 04]))))))], W[4, x1]e
X(zl_, 4,4, al Je(W[il_, z1 |® (Wix1, ol]@ (W[xl, 02] @ (W[x1l, o3]@W[x1, 04]]])))}),
W[ Z(x1_,4,4,al Je Wil ,x1 )&
i2_, W
zl_)® iz,
(W[i3_, z1_ e (W[id4_, z1_Je@(W(zl_, 0l ]= x1 ]@
W[zl , 02_]®(W[zl_, 03_J@W(zl_, o4_]))1)))) = (W13, ®x1 e (W[i4_, x1 J@(W[(xl , ol |&
Module([ {h1li, h2i, h3i, hai, (Wix1_, 02 J@ (W[x1_, o3_J@W[x1_, 04_])})))))
hlo, Module[ (h1li, h21, h3i, h4i,
h2e, hle,
h3o, hzo,
hao}, h3e,
7 hdo},
z1, X[
4, x1,
4, 4,
al]® 4,
{H(hli] & al]e
(H[hZi]® (H[h3i] @ (Hihlij@ (H(h2i]® (H[h3i]®
{H[h4i] & (H[hlo] @ {H[h2o] @ (H[h30] & (H[h40] & (W[11, hli] & (H[h4i) @ (H[hlo) @ {H[h20) @ (H[h30) @ (H[h40) @ (W[il, hli]e
(Wihli, z1)® (W[12, h2i] @ (W(h2i, z1] @ (W[1i3, (Wihili, x1)® (W[i2, h2i) @ (W[h21, x1) & (W[1i3,
h3i) e (W[h3i, z1) & (W[i4, h4i] & (W[ h3ije (W[h3i, x1] e (W[4, hai)e (W[
h4i, z1) 2 (W(zl, hlo]= (W hlo, ol] =& h4i, x1) @ (W[xl, hlo] & (W[hlo, ol] &
(W[zl, h2o] & (W[h2o, 02] & (W[zl, {W[x1, h2o] @ (W[h2o, 02]® (W[xL,
h3o] & (Wh3o, 03) 2 (W[zl, h4o] eW| h3o] @ (W h3o, 03] & (W[XLl, h4o) eW[
hdo, 041101 ) 0001300 NI hdo, od]) )b i) biIdbbidaisIetIl}

Figure 39: The C rules, or the Z- and X-spider color change rules (for the case in which the Z- and X-
spiders have input and output arities equal to 4, respectively), along with their associated operator forms.
These rules correspond to the statement that Hadamard gates map from the computational basis to the
Hadamard-transformed basis, and back again.
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] =2 B[x1],

((X[x1_,0,1,0)=2Z[z1_, 1,0, 0])eW[x1l_, z1

({Z[z1_, 0,1, 0)eX(x1_, 1,0, 0])eW[zl_, x1_]:

] =» Module[{x1}, {Z[dl, 0, 1, B8)@X[x1, 1, B, B8])@W[dl, x1]]} «» Module[{zl}, (X[dl, @, 1, 0)®Z[zl, 1, @, 0])@W[dL, z1

B[d1 B[dl

Figure 40: The D1 rules, or the spider cancellation rules (the most general case), along with their associated
operator forms. These rules correspond to the statement that Z- and X-spiders can cancel to yield a single

scalar factor.

. Q , Q .

(B[dl_]eB[d2_] :»W[dl, d1], W[il_, i1_] :» Module[(d2}, B[il)eB[d2]]}

Figure 41: The D2 rules, or the scalar multiplication rules (the most general case), along with their associated
operator forms. These rules correspond to the statement that two /D scalar factors multiply together to

yield D.
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Figure 42: Samples of the complete rule enumeration for the ZX-calculus, up to input arity 2 and output
arity 2 across all generators.
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3.2 Multiway Evolution Graphs of ZX-Diagrams

We now proceed to demonstrate how multiway systems provide a natural embedding space for the collection
of all possible deduction chains in the ZX-calculus, by constructing explicit examples of multiway evolution
graphs for the rewriting of certain ZX-diagrams. Much like the paths discussed previously for the case
of more abstract rewriting systems, a single path in a multiway evolution graph here represents a proof of
equivalence between two ZX-diagrams. The multiway evolution graph as a whole can therefore be interpreted
as representing the space of all possible proofs in the ZX-calculus, starting from a given initial diagram.

Let us illustrate this more concretely with the help of an initial expression of the form:

X [21,0,1,0) ® (Z [21,1,2,0] @ (W [x1, 21] @ (W [21,01] ® W [21,02]))), (91)

i.e. a simple two-spider initial diagram. Applying all possible diagrammatic rewritings allowable by the
ZX-calculus, one obtains, after one and two steps of evolution respectively, the multiway evolution graphs
shown in Figures [43| and (although strictly speaking, the second figure shows a multiway states graph,
i.e. a variant of a multiway evolution graph in which cycles are permitted). Moreover, a subgraph of the
multiway evolution causal graph (with evolution edges shown in gray, and causal edges shown in orange) for
the multiway operator system after two evolution steps is shown in Figure with the subgraph induced
by applying only Z-spider identity rules of a particular arity. The full evolution causal graph, obtained by
applying all possible rules without restrictions, is shown in Figure [46] exhibiting a highly non-trivial pattern
of causal relationships between the diagrammatic rewriting events.

Recasting the diagrammatic rewritings of the ZX-calculus into the framework of multiway operator sys-
tems confers a multitude of both conceptual and practical advantages over the more traditional formulation
in terms of abstract rewriting systems. One immediate conceptual benefit of the multiway formalism is that,
by being a very concrete instantiation of an otherwise rather abstract metamathematical construct (namely
the “space of all possible proofs” that one can construct using the ZX rules), the multiway evolution graph
allows one to reformulate questions regarding the soundness, consistency, completeness, etc., of the ZX rules
in terms of simple combinatorial properties of the associated evolution graph. For instance, to take a highly
idealized case, one could imagine a simple proof calculus in which each proposition is simply a string of Os
and 1s, with the proposition 010 constituting the negation of proposition 101, etc., and with the inference
rules of the calculus being given by elementary string substitution rules, such as {1 — 01,0 — 10} [I4].

Then, as shown in Figure [I7 one can very straightforwardly infer the completeness and consistency prop-
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Figure 43: The multiway evolution graph corresponding to the first step in the non-deterministic evolution
of the ZX-calculus multiway operator system, starting from a simple two-spider initial diagram.

erties of the calculus by simply inspecting the state vertices that can be reached in the multiway evolution
graph starting from the single vertex 1. The first multiway system, corresponding to the string substitu-
tion system {1 — 0,10 — 10}, represents an incomplete inference system, since there exist certain strings,
such as 111, for which the multiway system neither generates the string nor its negation 000. The second
multiway system, corresponding to the string substitution system {1 — 01,0 — 10,01 — 00}, represents an
inconsistent inference system, since there exist certain strings such as 010, for which the multiway system
generates both the string and its negation 101. Finally, the third multiway system, corresponding to the
string substitution system {1 — 01,0 — 10,1 — 11}, represents an inference system that is both complete
and consistent, since for every possible string, the multiway system either generates it or its negation, but
never both. Thus, the multiway formalism potentially provides one with a general procedure for proving
certain metamathematical properties of the ZX-calculus in terms of combinatorial properties of the space of
possible proofs.

On a much more pragmatic level, the fact that multiway operator systems come naturally equipped with
a causal partial order on updating events also potentially paves the way for new parallelization methods in

the automated rewriting of ZX-diagrams. If one has a particularly large ZX-diagram and wishes to parallelize
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Figure 44: The multiway states graph (i.e. a variant of a multiway evolution graph in which cycles are
permitted) corresponding to the first two steps in the non-deterministic evolution of the ZX-calculus multiway
operator system, starting from a simple two-spider initial diagram.

its rewriting by first splitting it into subdiagrams, each of which gets rewritten by a parallel computational
thread, and then reassembling it at the end, then in order to ensure the consistency of the reassembly
process, one must first ensure that the parallel rewritings applied to the individual subdiagrams do not
conflict with each other (i.e. two updating events occurring in different subdiagrams must not have any
non-trivial causal relationship). The natural structure of the multiway evolution causal graphs reduces the
algorithmic and computational complexity of making such determinations quite considerably, as compared
to the ordinary abstract rewriting approach. Moreover, the ability to infer information regarding the causal

partial order on updating events can also be used to assist with the process of “lemma selection” in automated
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Figure 45: A subgraph of the multiway evolution causal graph (with evolution edges shown in gray, and
causal edges shown in orange) corresponding to the first two steps in the non-determinsitic evolution of the
ZX-calculus multiway operator system, starting from a simple two-spider initial diagram (and here restricted
to use only Z-spider identity rules of a particular arity).

theorem-proving over ZX-diagrams, since when selecting which particular ZX-diagram equivalences to select
as lemmas, one is attempting to select the lemmas which will exhibit the greatest effect on shortening
subsequent proofs (which are, in turn, the lemmas which exert the greatest causal influence on future
rewritings). We intend to explore many of these topics in greater detail in a forthcoming article regarding

the application of multiway systems to automated reasoning over ZX-diagrams.
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Figure 46: The multiway evolution causal graph (with evolution edges shown in gray, and causal edges
shown in orange) corresponding to the first two steps in the non-deterministic evolution of the ZX-calculus
multiway operator system, starting from a simple two-spider initial diagram (with no restrictions).

0001 0101 1001 1101 A/A/

010/ 000|100

[00101]  [ot001]  [10001] [10101]  [11001] [000]” [0110| [0010| [1010] [0100 000 00001 (0010171100 01001/ [10001| 0001/ [01101T[10101T 11001 [11101

00001, 00011 11111

Figure 47: Multiway evolution graphs for three elementary string substitution systems, namely
{1 —-01,0 — 10}, {1 — 01,0 — 10,01 — 00} and {1 — 01,0 — 10,1 — 11}, respectively. The first mul-
tiway system is incomplete, in the sense that there exist certain strings, such as 111, for which the system
generates neither the string nor its negation 000. The second multiway system is inconsistent, in the sense
that there exist certain strings, such as 010, for which the system generates both the string and its negation
101. Finally, the third multiway system is both complete and consistent - for every possible string, either it
or its negation is generated, but never both.
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4 Connection to Quantum Foundations: The Monoidal Structure

of Multiway Systems

4.1 Representation of Quantum Processes Using Multiway and Branchial Graphs

Within the current hypothesis for how quantum mechanics can be formulated within the Wolfram model
[I7], quantum observers (as distinguished from relativistic observers) are assumed to coordinatize multiway
evolution graphs by assigning to each state vertex an integer time value, in such a way as to foliate the
multiway evolution graph into the level sets of this universal time function, known as “branchial graphs”
or “branchlike hypersurfaces” (which are assumed to be analogous to the discrete Cauchy surfaces that one
obtains by foliating a causal network into spacelike hypersurfaces). Indeed, the rationale behind referring to
such choices of universal time function as “observers” stems from the formal analogy to choices of reference

frame in relativity. More precisely, one has:

Definition 33 An “observer” in a multiway system is any ordered sequence of non-intersecting “branchlike
hypersurfaces” ¥; that covers the entire multiway evolution graph, with the ordering defined by a universal

time function:

t: M —Z, such that At # 0 everywhere, (92)

such that the branchlike hypersurfaces are exactly the level sets of this function, satisfying:

Vti,ts € Z, Yy ={peM:t(p)=ti}, and Xy, N Yy, =0 <= t; # to, (93)
where M denotes the vertex set of the multiway evolution graph.

The branchial graphs themselves effectively show common the ancestry distance between multiway states for
a given value of the universal time function; in other words, vertices A and B are connected by an undirected
edge in the branchial graph if and only if they share a common ancestor C' in the multiway evolution graph.
An example of a default choice of foliation for the multiway evolution graph of a Wolfram model system is
shown in Figure along with the corresponding sequence of branchial graphs (i.e. branchlike hypersurfaces)
as witnessed by an “observer” embedded within that foliation in Figure

The conjectural significance of these branchial graphs is that, under the assumptions of this formalism,

each state vertex within the multiway evolution graph corresponds to a different pure state for the universe
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Figure 48: The default foliation of the multiway evolution graph for the set substitution system
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Figure 49: The corresponding branchial graphs (i.e. branchlike hypersurfaces), as witnessed by an “ob-
server” embedded within the default foliation of the multiway evolution graph for the set substitution system

ez ud Ay, 21 = {w, v} {y, wi, {2, wh)

(under the assumption that the overall state of the universe is described by some generalized Hartle-Hawking
wave function[4]), with each branchial graph thus indicating the instantaneous superposition of certain
eigenstates at a given moment of time, and with the evolution of the multiway system from one branchlike
hypersurface to the next thus corresponding to the unitary evolution of this wave function. The magnitude
of the amplitude associated with each eigenstate is taken to be related to that state’s path weighting (i.e.
the number of distinct evolution paths which lead to that state) within the multiway evolution graph, as
illustrated via a toy example in the next subsection.

Geometrically, much like the points on a discrete spacelike hypersurface for a given causal network are
presumed to correspond to points in some associated continuous Riemann manifold (with the discrete spatial
distance metric converging to a Riemannian metric in the continuum limit), points on a discrete branchlike

hypersurface for a given multiway evolution graph are presumed to correspond to points in some associated
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continuous projective Hilbert space, with the discrete branchial distance metric defined above converging to

a Fubini-Study metric on CP" in the continuum limit:
Definition 34 The “Fubini-Study metric” on the complex projective Hilbert space CP™, written in terms of
the homogeneous coordinates:

Z=\Zy,...,%,], (94)

i.e. the standard coordinate notation for projective varieties in algebraic geometry, is defined by the line

element:

\Z|? |dZ|* — (Z - dZ) (Z - dZ)

ds® =
z[*

; (95)

or, in a more explicit form:

Z02%dZd 2P — 7% Z3dZ 0 2"

ds® = —
(2.2%)

(96)

In other words, assuming that the points on each branchlike hypersurface represent pure quantum states of

the form:

n
) =D Ziler) =Zo: Zv i Z], (97)
k=0
for some orthonormal basis set {|ey)} for the Hilbert space, the discrete branchial distance metric converges
to the following infinitesimal line element:

Lz 6UI60) _ (6vl) (low) 08)

(W) (Wly)®

For further details regarding the formal correspondence between branchlike hypersurfaces and projective

Hilbert spaces, see [17].

4.1.1 TIllustration of Quantum State Transitions Using Multiway Graphs

As an initial toy example, let us first illustrate how a typical multiway evolution graph can be used to

represent state transitions between qubits, as obtained by applying a standard root-NOT quantum gate:
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1|1+4% 1—1
VNOT = 5 , (99)
1—i 141
to an initial superposition state of the form \/Li (I0) +1]1)). This evolution is shown in Figures and

produced using a simple Wolfram Language software framework that we have developed known as

QuantumToMultiwaySystem[42].

0.1} {1. 0}

1 1 1 1
{0, 1} {1, 0} {1, 0} {0, 1} {1, 0} {0, -1}

{. 0} .- [{o.n 1,0} 0,1} 1.0} {0, -1} 1. 0}
4 2 4 6 6 2 4 4

Figure 50: The multiway evolution graph for a toy quantum system based upon a root-NOT gate being
applied to an initial \/Li (|0) 4 |1)) superposition state, with vertex weights given by the number of distinct
evolution paths that lead to a given state.
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Figure 51: The sequence of branchial graphs (i.e. branchlike hypersurfaces), as witnessed within the default
foliation of the multiway evolution graph for the toy root-NOT quantum system starting from an initial
\/LE (|0) + |1)) superposition state, with vertex weights given by the number of distinct evolution paths that
lead to a given state.
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By simply summing over the collection of states on each branchlike hypersurface (with each state vector
being multiplied by path weight of its associated vertex), one immediately verifies that this representation
of the quantum evolution is faithful (in the sense that it agrees with the ordinary representation of the
evolution in terms of basic matrix multiplication), and that, under the interpretation that each branchial
graph designates a superposition of eigenstates, the path weights of the vertices naturally play the role of

the quantum amplitudes, as required.
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4.2 Rule Compositions and Rulial Multiway Systems

One important consistency condition required by our formulation is that the category of branchial graphs,
which we tentatively denote BrGraph (exploiting the fact that the branchial graphs, and thus, by extension,
the multiway evolution graphs, tentatively denoted MuGraph, trivially form subcategories of the category
Graph of graphs, to be defined subsequently) be equipped with a monoidal structure; in other words, it is
required that one be able to take monoidal products of branchial graphs and multiway evolution graphs, just
as one can take tensor products of states and operators in standard quantum mechanics. In the following
subsection, we will show how this monoidal structure arises naturally from the parallel composition of
rewriting rules. This can be made mathematically precise by considering the combinatorial properties of
so-called “rulial” multiway systems - that is, multiway systems obtained by the parallel composition of all
possible rules of a given size. For instance, a multiway evolution graph for a particular parallel composition
of 2-state, 2-color Turing machine rules (thus yielding a non-deterministic Turing machine evolution) is
shown in Figure whilst the rulial multiway states graph (i.e. a variant of a multiway evolution graph
in which cycles are permitted), obtained by the parallel composition of all possible 2-state, 2-color Turing
machine rules, is shown in Figure In the above, a non-deterministic Turing machine is taken to refer to
a generalization of an ordinary (deterministic) Turing machine in which two or more deterministic Turing
machine rules can be applied at any given step, thus weakening the partial transition function that defines

an ordinary Turing machine:

0:(Q\F)x F—-QxTx{L,R}, (100)

to a partial transition relation of the same basic form:

SC((Q\F)x F)x (QxT x{L,S,R}), (101)

where, as usual, @ denotes a finite, non-empty set of states, I' denotes a finite, non-empty alphabet, F'
denotes a set of final states, and L, R and S denote the possible shift directions for the tape head, namely
left shift, right shift and no shift, respectively. Note that this description of a non-deterministic Turing
machine differs fundamentally from that of a quantum Turing machine, in which the transition function

becomes a transition monoid:

0:IXxQT =Y xQxT x{L,R}, (102)
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and where the set of states @ is interpreted as a finite-dimensional Hilbert space, such that ¢ reduces to
a collection of unitary matrices corresponding to automorphisms of . In the context of our multiway
formulation, deterministic Turing machines correspond to particular paths through the multiway evolution
graph that are chosen by deterministic evolution rules; non-deterministic Turing machines also correspond
to particular paths, albeit ones that are chosen by non-deterministic evolution rules; and quantum Turing
machines correspond to the entire multiway evolution graph itself (i.e. the superposition of all possible
paths), as represented in terms of an evolution between branchlike hypersurfaces (where each branchlike
hypersurface corresponds to a pure superposition of classical Turing machine states).

As we shall outline formally in the next subsection, within this particular formulation, a non-deterministic
Turing machine can therefore be interpreted geometrically as corresponding to a fiber bundle which has
been constructed by taking a monoidal product of ordinary (deterministic) Turing machines. The original
motivation for considering this particular model for the monoidal structure was that it would entail that, upon
appropriate foliation of the rulial multiway system, each rulial branchial graph would consequently inherit,

via the category FdHilb, the structure of a tensor product of finite-dimensional Hilbert spaces[43][44].

[TTe ]

=/
-
[
e

Figure 52: The multiway evolution graph for a 2-state, 2-color non-deterministic Turing machine constructed
by parallel composition of the two deterministic Turing machine rules shown below it.
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Figure 53: The rulial multiway states graph (i.e. a variant of a multiway evolution graph in which cycles
are permitted), as obtained by the parallel composition of all possible 2-state, 2-color Turing machine rules.
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4.3 Monoidal Products of Multiway Systems

In this subsection we will demonstrate explicitly how the disjoint union of rules endows the rulial multi-
way system with a natural monoidal structure. As an illustrative example, consider the two-dimensional
multiway evolution graphs produced by two elementary string substitution systems, namely {4 — AB} and
{A — BA}, as shown in Figure with the associated one-dimensional branchial graphs (as witnessed after
8 evolution steps in the default foliation of the multiway evolution graph) shown in Figure By composing
the two rules together in parallel, we thus obtain a composite string multiway system {A — AB, A — BA},
with the two elementary two-dimensional string multiway systems forming a spanning set for this new higher-
dimensional space, as shown in Figure similarly, the two elementary one-dimensional string branchial
graphs form a spanning set for the two-dimensional composite branchial graph, as shown in Figure We
now wish to illustrate how such composite multiway and branchial graphs may be considered to be the result

of a monoidal product of the two original elementary multiway and branchial graphs respectively.

AA AA
/ \
A}
AAB ABA ABA BAA
/ N/ \ ARVARN
AABB ABAB ABBA ABBA BABA BBAA
/N /N /\ N /N /\
N/ \/ \ /N /N /N
/ N/ (W / N/ \/ \
AABBB ABABB ABBAB ABBBA ABBBA BABBA BBABA BBBAA
/\ \ \ / AN /\
/ \ /\ / \ / \ / \\ / \ /\ /\
/ N/ N/ \/ \ / N/ N/ NS\
AABBBB ABABBB ABBABB ABBBAB ABBBBA ABBBBA BABBBA BBABBA BBBABA BBBBAA
/ \ /' \ / \ / \ /\ / / \ / \ /
/\ // \ /\ / \\ /\ VANYA // \ /\ / \\
AN/ NS NS\ /NS NS NS NS
AABBBBB ABABBBB ABBABBB ABBBABB ABBBBAB ABBBBBA ABBBBBA BABBBBA BBABBBA BBBABBA BBBBABA BBBBBAA
/ \ / \ / \ / \ / \ \ / / '\ \ / \ / /
/ \ / \\ / \\ / \\ // \ // \ /,/ \\ ) / \\\ // \\ /\ / \\ / \\
/NS NS NS NSNS\ /NS NS NS NSNS\
// \\ // \\\ /'/ \\\ /'/ ‘\\ // \‘\ / \\ // \\\ / \\\ / \ // \ // \\ / \\\ // \ /'/
/ / / / / \ \ / / / \
/Y \ / (W4 \W2 W \ Y \ / \W4 (W \W4 \W4 N/ \ / \
7\ 7\ A I\ 7\ 7\ 7\ /N /\ /\ N\ /\N /\N /\ /
/N /\ /N JNC/N /N /N /\ /SNSN/N/NSN SN /NN
N/ NSNS NSNS NSNS N /S N/ NS NS NSNS NSNS\
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Figure 54: The two-dimensional multiway evolution graphs for two elementary string substitution systems,
namely {A — AB} and {A — BA}, respectively.

Figure 55: The one-dimensional branchial graphs (i.e. branchlike hypersurfaces), as witnessed after 8 evo-
lution steps, in the default foliation of the multiway evolution graph for two elementary string substitution
systems, namely {A — AB} and {A — BA}, respectively.

Trivially, the parallel composition of rules in the context of a rulial multiway system is both symmetric
and associative (since it is merely a disjoint union of rule sets), so all that remains is to prove is that this

putative monoidal structure on the branchial and multiway evolution graphs is, in fact, compatible with the
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Figure 56: On the left, the higher-dimensional multiway evolution graph for the composite string substitution
system {A — AB, A — BA}, obtained by parallel composition of the two elementary string substitution
systems shown above. On the right, the two constituent elementary multiway systems are highlighted.
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Figure 57: On the left, the two-dimensional branchial graph (i.e. branchlike hypersurface), as witnessed
after 8 evolution steps, in the default foliation of the multiway evolution graph for the composite string
substitution system {A — AB, A — BA}, obtained by parallel composition of the two elementary string

substitution systems shown above. On the right, the two constituent elementary branchial graphs are
highlighted.

monoidal structure of the category of ZX-diagrams, and then we will have successfully established a rigorous
connection between the formalism of multiway systems and the formalism of categorical quantum mechanics.

First, let us consider how the monoidal structure makes itself manifest in the two two-dimensional multi-
way evolution graphs shown in Figure[54] resulting in the three-dimensional multiway evolution graph shown
in Figure We can see immediately that this composite multiway evolution graph does not correspond
to either the Cartesian product nor the Kronecker product of the two constituent evolution graphs, since
the number of nodes that one sees in the composite graph is far fewer than one would expect from a typical
graph product. However, noting instead that all graph products can be interpreted as fiber bundles, with the

Cartesian product yielding a trivial bundle and the Kronecker product yielding a non-trivial bundle, we can
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see that the Kronecker product is only one possible such construction, since we can choose to merge sections
of graphs in a variety of non-trivial ways. The precise operation playing out in our example here is that,
when two rules act on each of the multiway states shown in Figure each of the multiway evolution graphs
acquires additional edges and vertices extending in a third direction, corresponding to the places where the
second rule is applicable. Then, these two extended evolution graphs are merged, with identifications made
between vertices that correspond to the same string state, yielding the resulting multiway system shown in
Figure The branchial graph shown in Figure [57]is simply a slice of the multiway product shown in Figure
and its structure is therefore directly induced from this monoidal construction.

Indeed, as we shall prove formally in the following subsection, these mergings of multiway evolution graphs
based on identifications between specific vertices correspond precisely to the monoidal products described by
the category of directed cospans on selective adhesive rules. In fact, as we shall also subsequently describe,
the monoidal structure arising from the category of directed cospans is applicable more generally to any
abstract rewriting system that is equipped with a notion of completion (as is the case with the Knuth-
Bendix completions employed within the context of the Wolfram model). An example of such a merging of
multiway states graphs (as a consequence of completion) for a simple ZX-calculus multiway operator system
starting from two independent two-spider initial conditions is shown in Figure [58 In this particular case,
the completion (i.e. the minimal set of additional rewriting rules that must be added to the multiway system

in order to guarantee causal invariance) corresponds to the set:

{X [21,0,1,0] ® (Z [21,1,2,0] @ (W [z1, 21] @ (W [21,01] @ W [21,09]))) —
A [21,07 1,0] X (X [.Tl, 1,2,0] X (W [21,1‘1} X (W [1‘1,01] QW [.’171,02]))) R
Z[21,0,1,0] @ (X [21,1,2,0] @ (W [z1,21] @ (W [21,01] @ W [21, 02]))) —

X [.’1?1,0, 1, 0} X (Z [2’1, 1, 270] ® (W [1‘1, 21] ® (W [2’1, 01] QW [2’1, OQD))} . (103)

Let us now proceed to illustrate computationally how such a monoidal structure, operating within
MuGraph, the putative category of multiway systems, would act on the multiway evolution graphs produced

by standard rewritings of ZX-diagrams. Starting from an initial expression of the form:

X[21,0,1,0]@ (Z[21,1,2,0] @ (W [21, 21] @ (W [21, 0] @ W [21, 02]))) , (104)
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Figure 58: On the left, the unmerged multiway states graph (i.e. a variant of the multiway evolution graph
in which cycles are permitted) for the first two steps in the non-deterministic evolution of a ZX-calculus
multiway operator system, starting from two independent two-spider initial conditions. On the right, the
merged multiway states graph for the same ZX-calculus multiway operator system, showing the effects of
completion.

i.e. the same two-spider initial diagram as used in the previous section, and applying only the variants of the
7Z- and X-spider identity rules with an input arity of 2, one obtains after two evolution steps the multiway
states graphs (i.e. the variants of multiway evolution graphs in which cycles are permitted) shown in Figure
with the corresponding branchial graphs shown in Figure the Z-spider identity rule case is shown on

the left, and the X-spider identity rule case is shown on the right.
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Figure 59: The multiway states graphs (i.e. variants of multiway evolution graphs in which cycles are
permitted) corresponding to the first two steps in the non-deterministic evolution of a ZX-calculus multiway
operator system, starting from a simple two-spider initial diagram, using only the (input arity 2 variants of
the) Z- and X-spider identity rules, respectively.

Parallel composition of the Z- and X-spider identity rules yields a composite multiway operator system
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Figure 60: The corresponding branchial graphs (i.e. branchlike hypersurfaces), as witnessed within the
default foliation of the multiway states graph for the first two steps in the non-deterministic evolution of

a ZX-calculus multiway operator system, starting from a simple two-spider initial diagram, using only the
(input arity 2 variants of the) Z- and X-spider identity rules, respectively.

in which either rule can be applied at any step. The resultant composite multiway states graph is shown in
Figure with the corresponding composite branchial graph shown in Figure
On the other hand, monoidal products in the ZX-calculus can be taken simply by stacking diagrams

vertically. Thus, consider now an initial expression of the form:

X [.TQ,O, 1,0] X (Z [ZQ, 1,2,0] X (W [$2,22] ® (W [22,03] ® (W [2’2,04] ® (Z [21,0, 1,0] X
: (105)

(X [71,1,2,0] @ (W [21,21] @ (W [21,01] @ W [21,02]))))))))

i.e. a composite four-spider initial diagram composed by stacking two (mutually color-inverted) two-spider
diagrams on top of each other, as shown in Figure Applying only the Z-spider identity rule (with an input
arity of 2), one obtains after two evolution steps the multiway states graph (i.e. the variant of the multiway
evolution graph in which cycles are permitted) shown in Figure with the corresponding branchial graph

shown in Figure Modulo trivial state equivalences (in particular, the “cusps” in the branchial graphs
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Figure 61: The multiway states graph (i.e. the variant of the multiway evolution graph in which cycles are
permitted) corresponding to the first two steps in the non-deterministic evolution of a composite ZX-calculus
multiway operator system, starting from a simple two-spider initial diagram, using both of the (input arity
2 variants of the) Z- and X-spider identity rules.

in the monoidal product case each contain exactly one fewer state than the corresponding “cusps” in the
rulial composition case, due to the presence of a trivial color-inversion symmetry in the diagram), one can
see rather explicitly that the multiway and branchial structures obtained by the monoidal product of ZX-
diagrams are isomorphic to the multiway and branchial structures obtained by rulial composition (i.e. by
the disjoint union of rules).

This realization immediately lends credibility to the claim that rulial composition endows MuGraph,
the putative category of multiway systems, with a monoidal structure, and moreover indicates strongly that
this monoidal structure is fully compatible between the branchial, multiway and rulial levels. Indeed, after
performing the same isomorphism tests against 65 instances of ZX-diagrams with spider input/output arities
up to 1, 235 instances of diagrams with input/output arities up to 2 and 1001 diagrams with input/output
arities up to 3, the same compatibility between the monoidal structure of the ZX-diagrams and the composi-

tional structure of the rulial multiway system was found to hold in all cases. To prove that this compatibility
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Figure 62: The corresponding branchial graph (i.e. branchlike hypersurface), as witnessed within the default
foliation of the multiway states graph for the first two steps in the non-deterministic evolution of a composite
ZX-calculus multiway operator system, starting from a simple two-spider initial diagram, using both of the
(input arity 2 variants of the) Z- and X-spider identity rules.

holds in general, we employ the techniques introduced by Dixon and Kissinger[21] for constructing general
monoidal theories using typed open graphs; we will first provide a brief overview of the Dixon-Kissinger

construction, followed by a description of how it can then be extended for our particular purposes.
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Figure 63: A composite four-spider ZX-diagram, composed by stacking two (mutually color-inverted) two-
spider diagrams on top of each other, and hence representing a monoidal product.

Figure 64: The multiway states graph (i.e. the variant of the multiway evolution graph in which cycles are
permitted) corresponding to the first two steps in the non-deterministic evolution of a ZX-calculus multiway
operator system, starting from a composite four-spider initial diagram (obtained as the monoidal product of
two two-spider ZX-diagrams), using only the (input arity 2 variant of the) Z-spider identity rule.
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Figure 65: The corresponding branchial graph (i.e. branchlike hypersurface), as witnessed within the default
foliation of the multiway states graph for the first two steps in the non-deterministic evolution of a ZX-
calculus multiway operator system, starting from a composite four-spider initial diagram (obtained as the
monoidal product of two two-spider ZX-diagrams), using only the (input arity 2 variant of the) Z-spider
identity rule.
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4.4 The Rulial Multiway System of ZX-Diagrams and the Category of Directed

Cospans of Selective Adhesive Rules

We now proceed to prove that the rulial multiway system defined by applying all possible rewriting rules of
the ZX-calculus to a given ZX-diagram forms a subcategory of the category of directed cospans of selective
adhesive rules. Intuitively, any particular multiway evolution graph, associated with a particular choice of
rewriting rule, can thus be thought of as corresponding to a particular fiber in the associated rulial space.
In this way, the multiway evolution graphs themselves inherit certain properties from this underlying space
of rules, in such a way as to guarantee compatibility between the merging and splitting operations of the
multiway evolution and the generalized tensor product and partial trace operations of the ZX-calculus (this
can be shown by constructing an explicit functor from the rulial space to the multiway evolution graphs
themselves, such that the monoidal structure reduces to a simple homomorphism of functors, although this

construction lies outside the scope of the present article).

Definition 35 A “functor category”, denoted [C,D] for categories C and D, is a category whose class of
objects ob ([C, D]) is the class of functors:

F:C—D, (106)

and whose class of morphisms hom ([C, D)) is the class of natural transformations:

n:F—G, (107)

between these functors, where:

G:C-D, (108)
is assumed to be another object in ob ([C,D]).

Natural transformations can be composed, since if:

p(A): F(A) = G(A), (109)

is a natural transformation between the functors:
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F:C—D, and G:C—D, (110)

and:

n(A): G(A) - H(A), (111)

is a natural transformation between the functors:

G:C—»D, ad H:C—oD, (112)

then the composition:

n(A)p(A): F(A) — H(4) (113)

defines a natural transformation from F to H, and therefore [C,D] does indeed satisfy the axioms of a
category. Strictly speaking, in the definition above, one should restrict C to be a small category (i.e. one in
which the collections of objects ob (C) and of morphisms hom (C) form sets, as opposed to proper classes).

In the work of Dixon and Kissinger, an “open graph” is formalized as a generalization of a graph in which
edges do not need to be attached to vertices on both ends; they can “hang loose” at one or both ends, and
an edge can consequently even connect back to itself to form a closed loop. Note that, within our multiway
operator formulation of the ZX-calculus, we are implicitly performing diagrammatic rewritings over open
graphs (as opposed to ordinary graphs), since the input wires, output wires and loops in the ZX-diagrams
form edges that are open at one or both ends, and therefore this formalization is of eminent relevance to the
present argument. The category of open graphs is not itself an adhesive category, but through the Dixon-
Kissinger construction of a selective adhesive functor, the category can inherit sufficient adhesivity from the
ambient category of typed graphs into which it is embedded so as to allow the techniques of double-pushout
rewriting to be applied. We can formalize the category of open graphs as a functor category in the following

way:

Definition 36 A “partial graph morphism”[{5], denoted:

f:G— H, (114)
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for graphs G and H, is given by a pair of partial functions:

fv : GV — I’IV7 and fE : GE — HE, (115)

where Gy and Gg denote the vertexr and edge sets of graph G, respectively, and likewise for graph H,
satisfying certain properties. More specifically, if the function fg is defined for an edge e € G, then fy
should be defined for both sc (e) and tg (e) (where sg and tg denote the source and target functions for

directed edges in graph G, respectively), and the following pair of composition rules should hold:

frosg=sgo fEg, and fvotg=tgo fE. (116)

Definition 37 A partial graph morphism f becomes a “total graph morphism” if the functions fy and fg

are both themselves total.

Definition 38 A graph G is a “typed graph” if there exists a distinct graph TG known as the “type graph”,

along with a total graph morphism of the form:

typeg : G = TG, (117)
known as the “typing morphism”.

Definition 39 The category of graphs, denoted Graph, is the functor category [G, Set] where G is defined

by:

t

E_s 1P, (118)

-3

where E designates the edges of the graph, P designates points on the graph and s and t are the source and
target functions, respectively, such that the incoming edges to point p are those edges e for which t (e) = p,

and the outgoing edges are those for which s (e) = p.

The rationale for using the terminology of “points” as opposed to “vertices” arises from the fact that some
points will be “true” vertices, whilst others will simply be “dummy” points that lie on the open ends of
edges, which are nevertheless useful when formalizing replacement rules over subgraphs. Furthermore, we

can use the following type graph, henceforth denoted 2g:
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Ve Seo, (119)

to distinguish between the two. If a graph G is typed by 2g, i.e. if there exists a typing morphism:

7:G — 2g, (120)

then those points p in graph G which map to V, i.e. such that 7 (p) =V, are the usual (“true”) vertices,

whilst all others, for which 7 (p) = €, are the “dummy” points lying on the open ends of edges.
Definition 40 A “comma category”[{6], denoted (S | T), where S and T (“source” and “target”, respec-
tively) are a pair of functors with the same codomain:
A—=5C+—B, (121)
for categories A, B and C, is a category whose class of objects ob ((S | T)) is the class of all triples (A, B, h)
for which A is an object in ob (A), B is an object in ob (B) and:
h:S(A)—T(B), (122)
is a morphism in hom (C). Moreover, the class of morphisms hom ((S | T)) between objects (A, B,h) and
(A, B')}) in ob ((S 1 T)) is the class of all pairs (f,g) of morphisms:
f:A— A, and g:B— B, (123)
in hom (A) and hom (B), respectively, for which the following diagram commutes:

S(f) S (A

lh Jh/ : (124)

Morphisms compose according to the equational rule:

(f/,g,)o(f7g):(flofyg/og)’ (125)

assuming that the right-hand expression is defined, and the identity morphism on object (A, B, h) is assumed

70



to be given by (ida,idp).

Comma categories thus provide a different intuition for the basic structure of a category, in which morphisms
(rather than the objects themselves) become the fundamental items of study. As a special case, one can

consider:

Definition 41 If one now considers a comma category for which C = A, S is the identity functor and
B =1 (i.e. the calegory containing a single object, denoted x, equipped with a single identity morphism),
then one obtains a “slice category”, denoted (A | A.), where T (x) = A, for some object A, in ob(A). In

other words, one has:

AP A1 (126)

The objects in ob ((A | A,)), namely (A, %, h), can therefore be reduced to objects of the form (A, h), where:

h:A— A, (127)
where, in order to make the reduction more explicit, we choose instead to refer to h as m4. Thus, we can
simplify the morphisms:

(f? Zd*) : (Aaﬂ-A) - (Al77rA’)a (128)

in hom ((A | A,)) down to morphisms of the form:

fiA A (129)

for which the following diagram commutes:

At L u

\ / (130)

Definition 42 The category of open graphs, denoted OGraph, is a subcategory of the slice category (Graph | 2¢)
(i.e. a category whose objects are objects in ob ((Graph | 2g)) and whose morphisms are morphisms in
hom ((Graph | 2g)), with the same identities and compositions of morphisms). More specifically, the class

of objects ob (OGraph) is given by those objects in ob ((Graph | 2g)) for which every “dummy” point has
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no more than one incoming edge and one outgoing edge. The class of morphisms hom (OGraph) is given
by those morphisms in hom ((Graph | 2g)) which are “true” vertices, i.e. any edge that is adjacent to a

vertez f (v) must also be in the codomain of f.

Definition 43 An “input” is a “dummy” point p that has no incoming edges; the set of all inputs of an

open graph G is denoted In (G).

Definition 44 An “output” is a “dummy” point p that has no outgoing edges; the set of all outputs of an
open graph G is denoted Out (G).

Definition 45 An “isolated point” is a “dummy” point p that has no incoming or outgoing edges (i.e. it is

both an input and an output).

Definition 46 A “graphical signature” is a function:

T:A— O"x O, (131)
for sets A and O, where O* denotes the set of finite lists from O.

An intuition for graphical signatures is that they assign each element of A with an input and an output
type, similar to the tensor schemes introduced by Joyal and Street[47]. Any graphical signature 7" allows
us to construct an associated type graph Tg whose vertex set is given by O U A, and in which every vertex
o € O has a self-loop. For each vertex a € A, T (a) yields a pair of words D and C, which define the domain
and codomain of a, respectively (corresponding to the input and output types of a). For every element d of
word D, there exists a directed edge d — a in the type graph Tg, and likewise there exists a directed edge

a — ¢ for every element ¢ in word C.

Definition 47 The edge neighborhood, denoted N (v), of a given vertex v in graph G is the set of edges that

are adjacent to v.

Definition 48 A “local isomorphism” between graphs G and H is a map:

f:G—H, (132)

such that, for every vertex v in graph G, the edge function of f restricts to the bijection:

I N @) N (f (v). (133)
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In what follows, let (Graph | Tg). denote the subcategory of the slice category (Graph | Tg) whose class
of objects ob ((Graph + Tg)%) consists of all pairs of the form:
(Gy7:G—1Tg), (134)

where 7 designates a local isomorphism, and whose class of morphisms hom ((Graph + Tg)g) consists of
all local isomorphisms. This forms a full subcategory of (Graph | Tg), i.e. one in which, for every pair of

objects A and B in ob ((Graph | Tg)..), one has:

hOIn(Graph\LTg)3 (Aa B) = hom(GraphiTg) (A> B) . (135)

For every type graph Ty, there exists a graph homomorphism:

K Tg — 2g, (136)

that sends every point in the set A to V' and every point in the set O to €, such that composing every object
in ob ((Graph | Tg)) on the left with the homomorphism x yields a forgetful functor (i.e. a functor that

partially “forgets” the structure of its input) of the form:

Uy : (Graph | Tg) — (Graph | 2g), (137)

that sends objects of the form:

7:G— Tg, (138)

in ob ((Graph | Tg)) to objects of the form ko 7 in ob ((Graph | 2g)).

Definition 49 An “open Tg-graph” is a Tg-graph such that the object Uy (G) in ob ((Graph | 2g)) is itself

an open graph.

Definition 50 The category of open Tg-graphs, denoted OGraphy,, is the full subcategory of (Graph | Tg)~

whose objects are themselves open graphs.

Definition 51 A “cospan” is any diagram that consists of two maps with a common domain:

B— A+ C, (139)
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and so generalizes the binary relation between two objects in a category C, by considering instead three
objects, A, B and C in ob (C), and the pair of morphisms:

f:B— A, and f:C— A (140)
in hom (C).

Definition 52 The category of “directed cospans” of OGraphy,, denoted DCsp (OGraphTQ), assuming

a graphical signature of the form:

T:A— O x O, (141)

is the category whose class of objects ob (DCsp (OGrapth)) is the class of words in O*, i.e. the objects

are the point graphs in OGraphry,, where points are endowed with a total order. Each morphism:

G:X Y, (142)

is a cospan of the form:

Y%GTX, (143)

in which d denotes the inclusion map of In(G) = X, ¢ denotes the inclusion map of Out (G) =Y and the

open graph G contains no isolated points.

The crucial realization is that DCsp (OGrapth) forms a symmetric monoidal category (strictly speaking,

a 2-category) in the following, rather natural, way:

Definition 53 The “coproduct” of two objects A1 and As in ob (C) for some category C, denoted Ay 11 Ag,

is an object for which there exists a pair of morphisms:

21 : A1 — A1 ]_[/127 and 19 - A2 — A1 HAQ, (144)

in hom (C), such that, for any object B in ob (C) and any pair of morphisms:

f1 : A1 — B7 and f2 : A2 — B7 (145)
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in hom (C), there exists a unique morphism:

f2A1 HA2—>B, (146)

in hom (C) such that the following compositional equations are satisfied:

Ji=/fou, and f2=fois. (147)

These compositional equations for the universal property are equivalent to stating that the following diagram

comimutes:

B

f £ . (148)
- | f2
A1 L> A1 HA2 (T A2

The morphisms i1 and iz are commonly known as “canonical injections”. Now, the coproducts in OGraphy,
endow the category of cospans DCsp (OGrapth) with a monoidal structure, such that, for the pair of

cospans:

G:A— B, and H:C— D, (149)

the monoidal product G ® H is the cospan:

BUD —°— GUH «— AIIC | (150)

where i and o denote the two induced maps of the coproducts. The symmetry isomorphisms:

oaB:A®B = B® A, (151)

are constructed using the induced swap map:

g = [ig, il] 5 (152)

where 47 and is denote the canonical injections of the coproduct A Il B:

BIA s BITA +—— AIIB . (153)
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Moreover, pairs of morphisms:

G:A— B, and H: B — C, (154)

in hom (DCSp (OGrapth)) compose via pushouts, and, for any point graph A, the identity morphism
of A in hom (DCsp (OGrapth)) is the cospan given by the identity of graph A in hom (O(}rapth)7

namely:

A Ae— A (155)

The final step in the argument returns to our previous definition of a hypergraph transformation rule as

a span of monomorphisms of the form:

p=(0:K—Lyr:K—R), (156)
which one can then extend to the case of open graphs by considering selective adhesive functors:

Definition 54 A “selective adhesive functor”, denoted S, is a functor:

S:C— A, (157)

between a category C and an adhesive category A that preserves monomorphisms, creates isomorphisms,

reflects pushouts and is “faithful” in the sense that it induces an injective function of the form.:

Sxy : home (X,Y) — homa (S (X),S (Y)), (158)
for every pair of objects X and Y in ob(C).

Definition 55 A “selective adhesive span” for a selective adhesive functor of the form:

S:C— A, (159)

is a span of the form:
Ae—B e (160)
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that has a pushout that is preserved by the functor S (this pushout is known as a “selective adhesive pushout”).

Definition 56 The “pushout complement” of a pair of morphisms:

m:C — A, and g:A— D, (161)

in hom (C) for some category C, is a pair of morphisms:

f:C— B, and n:B— D, (162)
such that the following square commutes and is a pushout:
—

c A
l l . (163)

B—— D

In this way, pushout complements are essentially “completions” of pairs of morphisms to form pushout
squares (and are thus highly analogous to the Knuth-Bendix completions[48][49][50] of branch pairs described

in the conjectural formulation of quantum measurement in the Wolfram model).

Definition 57 A “selective adhesive pushout complement” for a pair of morphisms:

m:C — A, and g:A—= D, (164)

in hom (C) for some category C, is a pair of morphisms:

f:C— B, and n:B— D, (165)
such that the following diagram is a selective adhesive pushout:
—

B A
l l . (166)

B —— D

Definition 58 A “selective rule match” for a transformation rule:

p=(1:K—Lr:K—>R)), (167)
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within an object G is a monomorphism of the form:

m:L— G, (168)

such that the pair of morphisms:

K—tsrp-""sqG, (169)
has a selective adhesive pushout complement.

Definition 59 A “selective adhesive rewrite” for a transformation rule:

p=(0:K—Lr:K—R), (170)

and a selective adhesive rule match:

m:L— G, (171)

is a diagram of the following form:

L+ K - R
lm lf , (172)
G+—— G —— Gpl,,
where G' denotes the selective adhesive pushout complement of the pair of morphisms:
K—‘s1L-"sqa, (173)

such that the right-hand pushout is selective adhesive.

Thus, by constructing the category of selective adhesive rules, tentatively denoted SARule, and considering
its category of directed cospans DCsp (SARule), one immediately obtains a lifting of the monoidal structure
from DCsp (OGrapth) to DCsp (SARule). More specifically, for any pair of cospans:

G:A— B, and H:C— D, (174)

in DCsp (SARule), the monoidal product G ® H is simply given by the cospan:
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BUD —%+ GUH +—— AILC , (175)

where i and o are the induced maps of the coproducts in SARule. This demonstrates that the rulial
multiway system defined by applying all possible rules of the ZX-calculus to a given ZX-diagram does indeed
form a subcategory of the category of directed cospans of selective adhesive rules.

It is worth nothing that, in the above argument, we have considered only rewriting rules over typed
open graphs, since this is the particular case that pertains to the multiway operator systems of the ZX-
calculus. More generally, one may extend the above construction of the category of directed cospans to
string substitution systems, set substitution systems, or any other abstract rewriting system within which

appropriate adhesive functors can be defined.
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5 Concluding Remarks

It has become increasingly clear over the past several years that the theory of diagrammatic rewriting systems
over combinatorial structures has the potential to yield significant insights in regards to the foundations of
physics; the Wolfram model and the ZX-calculus (and categorical quantum mechanics more generally) offer
distinct yet complementary approaches to studying such systems. It is hoped that the present article will
begin a fruitful process of establishing a more rigorous mathematical correspondence between the two, in
the hopes that both approaches may benefit from the methods and intuitions yielded by the other. In this

article, we have made a first step towards formally establishing this correspondence, in that we have:

1. Demonstrated that the diagrammatic rewriting formalism of the ZX-calculus can indeed be embedded
and realized within the more general formalism of Wolfram model multiway operator systems, using a
novel reformulation of the Wolfram model in terms of double-pushout rewriting systems and adhesive

categories.

2. Shown explicitly (and subsequently proved formally) that the rulial evolution graphs, multiway evolu-
tion graphs and branchial graphs described by the Wolfram model are indeed endowed with a mutually
compatible monoidal structure, that is furthermore naturally compatible with the monoidal product

of ZX-diagrams.

3. Introduced new Wolfram Language tools for generating, manipulating, computing and displaying ZX-

diagrams, and simulating their diagrammatic rewritings as Wolfram model multiway systems.

In other words, the categories of branchial graphs, multiway evolution graphs and rulial evolution graphs
are therefore indeed symmetric monoidal categories of exactly the kind studied in the context of categorical
quantum mechanics, suggesting that these structures may be interpreted as categorical quantum systems
based on hypergraph rewritings. Assuming moreover that they are endowed with an involutive dagger
structure (which we conjecture is given by the inversion of multiway evolution edges, although we have not yet
proved formally that this operation is compatible with the induced monoidal product - this remains a subject
for future work), plus the requisite compact structure (which would allow us to compute generalized duals of
structures like branchial graphs), this will help to establish a complete and rigorous mathematical equivalence
between the global multiway and categorical approaches to quantum mechanics. More specifically, since the
category FdHilb of finite-dimensional Hilbert spaces is itself a dagger compact category, it would therefore

guarantee that, under appropriate foliation of the rulial multiway system, the structure that one obtains
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is isomorphic to that of a tensor product of finite-dimensional Hilbert spaces, exactly as our standard
mathematical formulation of the Wolfram model predicts[I7]. It is important to note that, whereas the
standard formulation of categorical quantum mechanics builds only upon the monoidal categorical structure
of ZX-diagrams themselves, we have considered here the extension of this construction to the category of
general rewriting systems over ZX-diagrams.

More practically, there is also an immediate and rather exciting potential for application of the generalized
Wolfram model/multiway system approaches developed within this article to the development of circuit
optimization and automated diagrammatic reasoning algorithms over quantum circuits, and over string
diagrams more generally, using multiway-based equational theorem-proving techniques; a follow-up to the
present article addressing this particular topic is currently in preparation. Indeed, there even exists the
possibility of using the multiway operator system formalism presented here to investigate alternative (and
perhaps provably minimal) equational axiomatizations of categorical quantum mechanics with equivalent
expressive power to the ZX-calculus. To the best of our knowledge it is currently unknown, but would be
exceedingly interesting to find out, how the structure of multiway systems is affected by the use of alternative
diagrammatic languages and axiomatizations, such as the recently-proposed ZW- [51], [62] and ZH-calculi
[53] for describing W-state and classically non-linear computation, respectively.

Finally, another future research direction following from the present project involves an attempt to make
a formal correspondence between the Wolfram model higher category-theoretic structures appearing in the
context of homotopy type theory and the univalent foundations program [54]. The objective of such a
direction would be to forge a connection between the kinds of combinatorial structures (such as multiway
systems, branchial graphs, causal networks, etc.) studied in the context of the Wolfram model, and the kinds
of spatial structures investigated in the context of Shulman’s formulation of cohesive homotopy type theory
[55]. The existence of such a connection would likely hinge upon an interpretation of the rulial multiway
system as an oo-groupoid, which thus inherits the structure of a formal homotopic space via Grothendieck’s
hypothesis[43]. Tt is therefore hoped that the formal identification of dagger compact closed categories within
the Wolfram model itself will provide a solid foundation for the construction of such higher category-theoretic

generalizations.
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Appendix

The first section of this appendix provides a glossary of relevant concepts commonly encountered in the
formalism of the Wolfram model, whereas the second section aims to present a general overview of the
mathematical formalism of monoidal categories as they are commonly employed in category-theoretic ap-
proaches to quantum mechanics in general, and in the ZX-calculus approach to quantum information theory

in particular.

A Glossary of Wolfram Model Terminology

e Branchial Graph: The graph whose vertex set is the set of states in a particular layer (or slice) of the
multiway evolution graph, and in which states are connected by directed edges if and only if they share
a common ancestor in the evolution graph. Otherwise known as a branchlike hypersurface, by analogy
to spacelike hypersurfaces in causal networks. Branchial graphs are used to represent instantaneous

superpositions between pure states.

e Branchial Space: The spatial structure defined by a branchial graph, much like how physical space
is the spatial structure defined by a hypergraph. In this way, branchial space has the same relationship
to the multiway evolution graph as physical space has to an ordinary causal network. The default
metric on branchial space (i.e. the Fubini-Study metric) is defined in such a way that entangled states

are nearby.

e Branchtime: The spatial structure defined by a multiway evolution graph, i.e. the time-extended
version of branchial space. In this way, branchtime has the same relationship to the multiway evolution

graph as spacetime has to an ordinary causal network.

e Causal Network: The network of causal relationships between updating events. Specifically, the
vertex set of the causal network is the set of updating events, and a directed edge exists between
events A and B if and only if the input for event B makes use of hyperedges that were produced by
the output of event A, such that event B could not be applied unless event A had previously been
applied. The flux of edges through particular hypersurfaces in the causal network is related to certain

projections of the energy-momentum tensor.

e Causal Invariance: A property of multiway systems whereby all possible evolution paths yield causal

networks that are (eventually) isomorphic as directed acyclic graphs. Since the notion of confluence
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in the theory of abstract rewriting systems is a necessary (though not sufficient) condition for causal
invariance, it follows that whenever causal invariance exists, every branch in the multiway evolution
graph must eventually merge. For the particular case of a terminating (strongly normalizing) rewriting
system, causal invariance therefore implies that all evolution paths yield the same eventual state. For
a causal network representing the causal structure of a Lorentzian manifold, causal invariance implies

Lorentz symmetry.

Completion: An additional rule or collection of rules introduced into a multiway system that brings it
closer to causal invariance (some multiway systems can be made causal invariant by adding only a finite
number of completions). Completions, specifically Knuth-Bendix completions, are commonly used in
automated theorem-proving algorithms, as a means of forcing confluence within equational rewriting
systems. Knuth-Bendix completions also constitute a conjectural approach to representing the process
of projective quantum measurement within the framework of the Wolfram model, by allowing one to

“collapse” superpositions of states in branchial space.

Foliation: A method for defining a universal time function over the vertices of a directed acyclic graph
(i.e a function mapping vertices to integers), in such a way that the level sets of that function, known
as slices, cover the entire graph without intersecting. Foliations of a causal network yield successive
configurations of hypergraphs, representing spacelike hypersurfaces. Foliations of a multiway evolution
graph yield successive configurations of branchial graphs, representing instantaneous superpositions

between pure states (branchlike hypersurfaces).

Hypergraph: The basic structure used for representing space in the Wolfram model. Hypergraphs are
generalizations of ordinary graphs in which hyperedges can connect any arbitrary non-empty subset of
vertices (such that ordinary graphs correspond to the special case in which all hyperedges are of arity
2). In this way, a hypergraph can be represented purely formally as a collection of abstract relations

between elements.

Multiway Evolution Causal Graph: A composition of a multiway evolution graph and a causal
network, i.e. a directed acyclic graph containing both global states and updating events, and in
which there exist two fundamentally different kinds of edges - evolution edges, which connect different
states in the multiway evolution, and causal edges, which show the causal relationships between the
updating events. In this way, the multiway evolution graph contains information regarding the causal

relationships not only on a single branch of multiway evolution (as in a standard causal network),
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but also between different branches of multiway evolution. In a causal invariant system, the multiway

evolution causal graph can be effectively factored into many isomorphic spacetime causal networks.

e Multiway Evolution Graph: A directed acyclic graph whose vertex set is the set of possible states
of a given multiway system, and a directed edge exists between states A and B if and only if there
exists an updating event (i.e. a rule application) that transforms state A to state B. The limiting

behavior of geodesics in the multiway evolution graph is governed by a path integral.

e Multiway System: An abstract rewriting system that has been enriched with additional causal
structure between rewriting events (see Multiway Evolution Graph and Multiway Evolution Causal

Graph for further details).

e Observer: Any ordered sequence of non-intersecting level surfaces of a universal time function, defined
over a directed acyclic graph. In the case of a causal network, this corresponds to a foliation of spacetime
(and therefore to a relativistic observer, embedded in a particular reference frame). In the case of a
multiway evolution graph, this corresponds to a foliation of branchtime (and therefore to a quantum

observer).

¢ Rulial Multiway System: The multiway system constructed by applying all possible rules of a given
class (e.g. hypergraph tansformation rules, string substitution rules, Turing machine rules, etc.) to
states of a given system. For instance, the rulial multiway system for Turing machines is obtained by
allowing all possible non-deterministic transitions between Turing machine states. See Rulial Space for

further details.

e Rulial Space: The space defined by allowing all possible rules of a given class (e.g. hypergraph
transformation rules, string substitution rules, Turing machine rules, etc.) to be followed between
states of a system. In other words, it is the spatial structure associated with the evolution of a
rulial multiway system. For instance, the rulial space for Turing machines is obtained by allowing all
possible non-deterministic transitions between Turing machine states. Rulial space can be formulated
as a category of rewriting rules, and it functorially acquires the properties of an adhesive category.
Consequently, the monoidal structure of both multiway evolution graphs and branchial graphs (which
are obtained by foliations of multiway evolution graphs) is inherited from the composition of rules in

rulial space.

e Spacelike Hypersurface: A subset of spacetime that contains only spacelike-separated events, i.e.
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events that form antichains in the associated causal network, such that a time-ordered sequence of
spacelike hypersurfaces defines a foliation of spacetime. The events on a spacelike hypersurface may
be considered by a relativistic observer to be “simultaneous”. In the Wolfram model, the flux of causal

edges through spacelike hypersurfaces is associated with energy.

e Timelike Hypersurface: A subset of spacetime that contains only timelike-separated events, i.e.
events that are connected by edges in the associated causal network, and which are therefore orthog-
onal to spacelike hypersurfaces. In the Wolfram model, the flux of causal edges through timelike

hypersurfaces is associated with momentum.

e Updating Event: A single application of a rule (i.e. an application of the rewrite relation —) in a
multiway system. Updating events form the set of vertices in the causal network and the set of edges

in the multiway evolution graph.

B Overview of Monoidal Categories and Categorical Quantum
Mechanics

Definition 60 A “category”[50)], denoted C, consists of a class of “objects”, denoted ob (C), as well as
a class of “morphisms”, denoted hom (C), between objects, where the composition of morphisms satisfies
azioms of both identity and associativity. More specifically, each morphism f in hom (C) is of the general

form:

f:A— B, (176)

where A and B are both objects in ob (C), such that the “hom-class” of the pair (A, B), denoted home (A, B),
represents the class of all morphisms from A to B. For every triple of objects A, B and C in ob (C), there

ezists a binary operation:

hom (4, B) x hom (B,C) — hom (A, C), (177)

known as the “composition of morphisms”, denoted g o f, where:

f:A— B, and g:B—C, (178)
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which satisfies the properties of identity and associativity, such that for all objects X in ob (C), there exists

an “identity morphism”, denoted:

dx : X = X, (179)
such that every pair of morphisms:
f:A—=X, g:X — B, (180)
one has:
idxof=7F, and goidx =g, (181)
and moreover that, whenever:
f:A— B, g:B—C, and h:C — D, (182)
one has:
ho(gof)=(hog)of. (183)

Definition 61 A (covariant) “functor”, denoted F, is a map between categories C and D thatl preserves
both the identity morphisms and the composition of morphisms in hom (C). More specifically, F associates

each object X in ob (C) with an object F (X) in ob (D), as well as each morphism:

f:A>B (184)

in hom (C) with a morphism:

F(f): F(A) — F(B) (185)

in hom (D), such that, for all objects X in ob (C), one has the associated identity morphism:

F(idx) = idp(x), (186)
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and for all pairs of morphisms:

f:A— B, and g:B—C, (187)

in hom (C), one has the composition of morphisms:

F(gof)=F(g) o F(f). (188)

A functor can also be contravariant, in which case it simply reverses the direction of morphisms (and

hence also the direction of composition):

Definition 62 A “contravariant” functor, denoted F, is a map between categories C and D that preserves
the identity morphisms and reverses the composition of morphisms in hom (C). More specifically, F asso-

ciates each object X in ob (C) with an object F (X) in D, as well as each morphism:

f:A—> B, (189)

in hom (C) with a (reversed) morphism:

F(f)=F(B)— F(4), (190)

in hom (D), such that, for all objects X in ob (C), one has the associated identily morphism:

F(idx) = idp(x), (191)

and for all pairs of morphisms:

f:A— B, and g:B—=C, (192)

in hom (C), one has the (reversed) composition of morphisms:

F(gof)=F(f)oF(g). (193)

Definition 63 A “diagram”, denoted D, in a category C is a (covariant) functor from an “index category”,

denoted J, to C:
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D:J—C. (194)

Definition 64 A “commutative diagram” is a diagram in which all directed paths with the same start and

endpoints yield the same result.

Definition 65 The “product category”, denoted C x D, of two categories C and D, generalizes the notion
of a Cartesian product of sets, such that the class of objects ob (C x D) consists of pairs of objects (A, B)
where A is an object in ob (C) and B is an object in ob (D), the class of morphisms hom (C x D) consists

of pairs of morphisms (f,g):

(fvg) : (AlaBl)*)(A25B2)7 (195)
where:
[ A — Ao, (196)
is a morphism in hom (C), and:
g:B1 — Bs, (197)

is @ morphism in hom (D). Moreover, the composition of morphisms is given by component-wise composition

within each of the two constituent categories:

(f2,92) o (f1,01) = (f20 f1,92091), (198)

where f1, fa are morphisms in hom (C), and g1, g2 are morphisms in hom (D), and the identity morphisms

are given by pairs of identity morphisms taken from each of the constituent categories:

ida,p) = (ida,idp). (199)

Definition 66 A “bifunctor” is any functor whose domain is a product category (and which therefore acts

like a functor in two arguments).

Definition 67 A “natural transformation”, denoted n, is a map between (covariant) functors F and G
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(which are themselves maps between categories C and D) that preserves the composition of morphisms in

both C and D. More specifically, n associates each object A in ob (C) with a morphism:

na: F(A) = G(A),

in hom (D), known as the “component” of n at object A, such that, for all morphisms:

f+A— B,

in hom (C), one has:

ny o F(f)=G(f)ona.

This last condition is equivalent to stating that the following diagram commutes:

A F(A) 2 G (A)
lf lrw Jew
B F(B) -5 G(B)

If both F and G are contravariant functors, then the vertical arrows in this diagram are reversed.

Definition 68 In a category C, an “isomorphism” between objects A and B in ob (C), denoted A =

any morphism:

f+A— B,
that is also equipped with an inverse morphism:
g:B— A,
i.e. such that:
fog=1idg, and go f=ridy.

(200)

(201)

(202)

(203)

B, is

(204)

(205)

(206)

Definition 69 A “natural isomorphism” is a natural transformation n with the property that, for every

object X in ob (C), nx is an isomorphism in D.
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Definition 70 A “coherence condition” is a requirement that certain compositions of morphisms must be

equal.

Definition 71 A “monoidal category” [57][58], denoted (C,®,I), is a category that is equipped with a

“monoidal structure” (or a “monoidal product”), i.e. a bifunctor, denoted ®:

®:CxC—C, (207)

which satisfies an associativity aziom (up to natural isomorphism) and which generalizes the notion of a
tensor product of vector spaces[59][60], as well as an object I, known as the “identity object” of the monoidal
structure, that acts as both a left and right identity for the monoidal product (again, up to natural isomor-
phisms). More specifically, for each triple of objects A, B and C in ob (C), there exists a natural isomorphism

a, known as the “associator”, whose components are given by:

OLA7B,C:A®(B®C)g(A®B)®C, (208)

and, for each single object A in ob (C), there exists a pair of natural isomorphisms \ and p, known as the

“left unitor” and the “right unitor”, respectively, and whose components are given by:

A I@AX=A, and paARI = A (209)

These two foundational requirements of associativity and left/right identity for the monoidal structure
can be represented using the following coherence conditions, expressed here as the requirement that the

following two diagrams commute:

(&3

A9 (B® (Co D) *28A® B)® (C® D)y 223 (A@ B)® C) @ D
J{idA®(¥B,C,D aA,B,C@idDT ) (210)
A® ((B®C)® D) tanec.b (A2 (B®C))® D

for every tuple of objects A, B, C' and D in ob (C), and:

QA,I,B

A® (I® B) (AI)® B
WAB / , (211)
paAR®idp
A®B

for all pairs of objects A and B in ob (C).
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Definition 72 A monoidal category (C,®,I) is known as a “symmetric monoidal category” if, for every

pair of objects A and B in ob (C), there exists a natural isomorphism o whose components are given by:

oaB: A®B=B®A, (212)

such that o is coherent with the associator and the left and right unitors, as well as obeying an inverse law.

More specifically, the following three diagrams all commute:

(Ao B) o 224 B o A) o C

laA,B,C‘ lQB,A,C

A® (B O) B®(A®C) (213)

lG'A‘BQbC lidB@)UA,C

QB,C,A

(BRC)® A —/—= B (C® A)

for all triples of objects A, B and C in ob (C),

Aol — 221 104

\ / , (214)

for all single objects A in ob (C), and:

B® A
OA,B OB, A ; (215)

A® B tdass A® B

for all pairs of objects A and B in ob (C), where, in the above, o, A and p denote the associator isomorphism

and the left and right unitor isomorphisms of the monoidal category, respectively.

Loosely speaking, a symmetric monoidal category captures the intuitive notion of the monoidal structure

being “as commutative as possible”.

Definition 73 The “opposite category”, denoted C°P, of a given category C, is the category obtained by

reversing the direction of all morphisms in hom (C).

Definition 74 A “dagger category”[61][62], denoted (C,7), is a category that is equipped with a “dagger

structure”, namely an involutive functor (i.e. a functor that is also its own inverse), denoted }:
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t:C% = C, (216)

which naturally generalizes the notion of a Hermitian adjoint of a linear operator on Hilbert space, where

C°P designates the opposite category of C. More specifically, the dagger structure associates every morphism:

f:A— B, (217)

in hom (C) with its adjoint morphism:

ff:B— A4, (218)

such that, for every object A in ob (C), the adjoint of the identity morphism id, is itself:

ida = idly - A — A, (219)
for every morphism:
f+A—= B, (220)
the dagger structure is involutive:
fiff=f:A—- B, (221)
and for every pair of morphisms:
f:A— B, and g:B—C, (222)

the dagger structure reverses the order of composition:

(gof)f = flogt:c— A (223)

Definition 75 A “dagger symmetric monoidal category”, denoted (C,®,1,1), is a symmetric monoidal
category (C, ®, I) that is also equipped with a dagger structure that is compatible with the underlying monoidal

structure. More specifically, for every pair of morphisms:
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f:A— B, and g:C—= D, (224)

in hom (C), one has:

(fog'=fled:BeD»AcC, (225)

if a denotes the associator isomorphism, then for every triple of objects A, B and C in ob (C), one has:

aipo=0150: A0 (BRC)= (A2 B)®C, (226)

if X and p denote the left and right unitor isomorphisms, respectively, then for every single object A in ob (C),

one has:

ANy=21AxTeA, and — pli=pli A= AR, (227)

and if o denotes the monoidal symmetry isomorphism, then for every pair of objects A and B in ob (C), one

has:

ol p=013: B A= A®B. (228)

Definition 76 A symmetric monoidal category (C, ®, I) is designated as “compact closed” [63] if every object
A in ob(C) has an associated dual object, denoted A*, which is unique up to a canonical (i.e. unique)
isomorphism and which generalizes the notion of a dual vector space. More specifically, the dual A* is an

object that is equipped with a pair of morphisms known as the “unit”:

na:I—A"®A, (229)

and the “counit”:

€eAtARA" =1, (230)

which satisfy the following pair of equations regarding their compositions:

Aao(ea® Ao a;,lA*,A o (A®na)opy =ida, (231)
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and:

pa- o (A* @ea)oan aao(na®A*) ot =ida-, (232)
where, as usual, o, A and p denote the associator, left unitor and right unitor isomorphisms, respectively.

These two equational requirements for (C,®,I) to be compact closed can be restated diagrammatically

as the assertion that, for every object A in ob (C), the following compositions of morphisms:

A2 A0 29 A9 A 0 A) =2 A A)9A Y Ted =, 4, (233)
and:
A Z L Tea TN (Aol —Z A e (Aoar) 22 4ol = A% (234)

must equal id4 and id 4+, respectively.

Definition 77 A “dagger compact closed category”[6][6T], denoted (C,®,1,7), is a dagger symmetric
monotdal category that is also compact closed, obeying a suitable compatibility condition between the dagger
structure and the compact structure. More specifically, for every object A in ob (C), the unit na and counit

€a are related by the dagger structure in such a way that the following diagram commutes:

I, Agar
A l“w . (235)

A*® A
The relationship between category theory and the foundations of quantum mechanics arises from the
fact that the category FdHilb of finite-dimensional vector spaces and linear maps naturally forms a dagger
compact closed category[66] [67], with the class of morphisms being the class of linear maps between Hilbert
spaces, the monoidal structure reducing to the regular tensor product of Hilbert spaces and the dagger
structure reducing to the regular Hermitian adjoint of linear operators. The category of infinite-dimensional
Hilbert spaces (which we shall not consider here) is not dagger compact, but nevertheless still forms a dagger

symmetric monoidal category in much the same way.

Of greater relevance for the present article is the fact that the collection of all possible diagrams in the
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ZX-calculus forms a dagger compact closed category C, in which the class of objects ob (C) is simply the
class of natural numbers N, and the monoidal structure ® is given by natural number addition +. Every

morphism:

fin—m, (236)

in hom (C) is a ZX-diagram, to be interpreted as a linear map acting on n qubits as input and yielding
m qubits as output. The composition of morphisms in hom (C) thus yields the horizontal composition of
ZX-diagrams (in which one takes the output wires of a diagram on the left and connects them to the input
wires of a diagram on the right, or vice versa), with the monoidal product of morphisms yielding the vertical
“stacking” of ZX-diagrams, such that the former operation captures the essence of sequential application
of linear maps, whilst the latter captures the essence of parallel application. By taking the free category
generated by a finite set of ZX-generators under composition and monoidal product, and then modding out
by both the compact structure and the intrinsic equational diagrammatic rewriting rules that define the
ZX-calculus (to be defined subsequently), one thus obtains the category of all possible ZX-diagrams.

Note that the ZX-generators themselves are known as “spiders”, and are directly analogous to the shapes
that appear within the Penrose graphical notation[68][69] for multilinear functions; in this way, each ZX-
diagram may simply be interpreted as a tensor network representing an arbitrary multilinear map. Specifi-
cally, each tensor is represented as a “spider”, and summations over pairs of indices are represented as wires;
moreover, free indices are represented as “dangling” wires, with sums represented by loops, and finally the

identity tensor, i.e. the Dirac delta 6{ , is also represented as a single wire.
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