DisCoPy: Monoidal Categories in Python

Giovanni de Felice, Alexis Toumi, Bob Coecke

Department of Computer Science, University of Oxford. Cambridge Quantum Computing Ltd.

July 8th, ACT 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 0. What is a diagram?
- 1. Free categories, functors and their Python implementation.
- 2. Pre-monoidal categories, drawing and reading diagrams.
- 3. Rewriting modulo interchangers, normal forms for diagrams.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 4. Applications: natural language and quantum circuits.
- 5. Demo time!

- 1. Intuitively: a string diagram is a way of describing systems and processes, e.g. a cooking recipe, a quantum protocol, etc.
- Algebraically: a string diagram is a morphism in the free monoidal category MC(Σ) generated by a signature Σ₁ ⇒ Σ₀^{*}.
- 3. Geometrically: a string diagram is 1d cell complex embedded in the plain, labeled with Σ .
- 4. Combinatorially: a string diagram is given by dom, $cod \in \Sigma_0^*$, boxes $\in \Sigma_1^*$ and offsets $\in \mathbb{N}^*$ quotiented by interchangers.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

Given a (simple) signature $\Sigma_1 \rightrightarrows \Sigma_0$, the free category $\mathbf{C}(\Sigma)$ has objects Σ_0 and arrows $f: s \to t$ given by lists $f = f_1 \dots f_n \in \Sigma_1^n$ such that $\operatorname{dom}(f_1) = s, \operatorname{cod}(f_n) = t$ and $\operatorname{cod}(f_i) = \operatorname{dom}(f_{i+1})$ for all $i \leq n$. Identity arrows are given by the empty list and composition is given by list contatenation.

Proposition

A functor $F : \mathbf{C}(\mathbf{\Sigma}) \to \mathbf{D}$ is uniquely defined by a morphism of signatures $\Sigma \to U(\mathbf{D})$.

(日) (日) (日) (日) (日) (日) (日) (日)

Implementation

class Ob(name)
class Arrow(dom, cod, boxes)
class Box(name, dom, cod)
class Functor(ob, ar, ob_factory, ar_factory)

Definition

A (strict) pre-monoidal category is a category **C** with a unital, associative functor $\boxtimes : \mathbf{C} \square \mathbf{C} \to \mathbf{C}$ where \square is given by the pushout of $\mathbf{C}_0 \times \mathbf{D} \leftarrow \mathbf{C}_0 \times \mathbf{D}_0 \to \mathbf{C} \times \mathbf{D}_0$ in **Cat**.

Proposition

Given a (monoidal) signature $\Sigma_1 \rightrightarrows \Sigma_0^*$, the free pre-monoidal category **PMC**(Σ) is given by the free category **C**($L(\Sigma)$) for the (simple) signature of layers $L(\Sigma) : \Sigma_0^* \times \Sigma_1 \times \Sigma_0^* \rightrightarrows \Sigma_0^*$.

$$\begin{array}{c|c} u & s \\ f \\ t \end{array} \right|^{V}$$

A layer $(u, f, v) \in \Sigma_0^{\star} \times \Sigma_1 \times \Sigma_0^{\star}$.

Rewriting modulo interchangers, normal forms for diagrams

Proposition

Given a (monoidal) signature $\Sigma_1 \rightrightarrows \Sigma_0^*$, the free monoidal category $MC(\Sigma)$ is given by $PMC(\Sigma)/\mathcal{I}$ for \mathcal{I} the interchanger relation:

where $u, v, w \in \Sigma_0^*$ and $s \xrightarrow{f} t, s' \xrightarrow{f'} t' \in \Sigma_1$.

Theorem

The word problem for monoidal categories is decidable in polynomial time.¹

Applications: natural language and quantum circuits.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ 少々ぐ

Demo time!

https://github.com/oxford-quantum-group/discopy

• □ ▶ < □ ▶ < □ ▶ < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ <