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P r e f a c e

This volume provides comprehensive and accessible coverage of the disciplines of

philosophy of mathematics and philosophy of logic, including an overview of the

major problems, positions, and battle lines. In line with the underlying theme of the

series, each author was given a free hand to develop his or her distinctive viewpoint.

Thus, the various chapters are not neutral. Readers see exposition and criticism, as

well as substantial development of philosophical positions. I am pleased to report

that each chapter breaks new ground. The volume not only presents the disciplines

of philosophy of mathematics and philosophy of logic, but advances them as well.

For many of the major positions in the philosophy of mathematics and logic,

the book contains at least two chapters, at least one sympathetic to the view and

one critical. Of course, this does not guarantee that every major viewpoint is given

a sympathetic treatment. For example, one of my own pet positions, ante rem

structuralism, comes in for heavy criticism in two of the chapters, and is not

defended anywhere (except briefly in chapter 1). In light of the depth and extent of

the disciplines today, no single volume, or series of volumes, can provide extensive

and sympathetic coverage of even the major positions on offer. And there would

hardly be a point to such an undertaking, since the disciplines are ever evolving.

New positions and new criticisms of old positions emerge with each issue of each

major philosophy journal. Most of the chapters contain an extensive bibliography.

In total, this volume provides a clear picture of the state of the art.

There is some overlap between the chapters. This is to be expected in a work

of this scope, and it was explicitly encouraged. Authors often draw interesting, but

distinctive, conclusions from the same material. There is, of course, no sharp

separation between the philosophy of mathematics and the philosophy of logic.

The main issues and views of either discipline permeate those of the other. Just

about every chapter deals with matters mathematical and matters logical.

After the Introduction (chapter 1), the book begins with a historical section,

consisting of three chapters. Chapter 2 deals with the modern period—Kant and

his intellectual predecessors; chapter 3 concerns later empiricism, including John

Stuart Mill and logical positivism; and chapter 4 focuses on Ludwig Wittgenstein.

The volume then turns to the ‘‘big three’’ views that dominated the philoso-

phy and foundations of mathematics in the early decades of the twentieth century:

logicism, formalism, and intuitionism. There are three chapters on logicism, one

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



dealing with the emergence of the program in the work of Frege, Russell, and

Dedekind (chapter 5); one on neologicism, the contemporary legacy of Fregean

logicism (chapter 6); and one called ‘‘Logicism Reconsidered,’’ which provides a

technical assessment of the program in its first century (chapter 7). This is fol-

lowed by a lengthy chapter on formalism, covering its historical and philosophical

aspects (chapter 8). Two of the three chapters on intuitionism overlap considerably.

The first (chapter 9) provides the philosophical background to intuitionism, through

the work of L. E. J. Brouwer, Arend Heyting, and others. The second (chapter 10)

takes a more explicitly mathematical perspective. Chapter 11, ‘‘Intuitionism Re-

considered,’’ focuses largely on technical issues concerning the logic.

The next section of the volume deals with views that dominated in the later

twentieth century and beyond. Chapter 12 provides a sympathetic reconstruction

of Quinean holism and indispensability. This is followed by two chapters that

focus directly on naturalism. Chapter 13 lays out the principles of some prominent

naturalists, and chapter 14 is critical of the main themes of naturalism. Next up

are nominalism and structuralism, which get two chapters each. One of these is

sympathetic to at least one variation on the view in question, and the other

‘‘reconsiders.’’

Chapter 19 is a detailed and sympathetic treatment of a predicative approach to

both the philosophy and the foundations of mathematics. This is followed by an

extensive treatment of the application of mathematics to the sciences; chapter 20

lays out different senses in which mathematics is to be applied, and draws some

surprising philosophical conclusions.

The last six chapters of the volume focus more directly on logical matters, in

three pairs. There are two chapters devoted to the central notion of logical

consequence. Chapter 21 presents and defends the role of semantic notions and

model theory, and chapter 22 takes a more ‘‘constructive’’ approach, leading to

proof theory. The next two chapters deal with the so-called paradoxes of relevance,

chapter 23 arguing that the proper notion of logical consequence carries a notion

of relevance, and chapter 24 arguing against this. The final two chapters concern

higher-order logic. Chapter 25 presents higher-order logic and provides an over-

view of its various uses in foundational studies. Of course, chapter 26 reconsiders.

Throughout the process of assembling this book, I benefited considerably from

the sage advice of my editor, Peter Ohlin, of Oxford University Press, USA, and

from my colleagues and friends, at Ohio State, St. Andrews, and other institu-

tions. Thanks especially to Penelope Maddy and Michael Detlefsen.
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c h a p t e r 1

PHILOSOPHY OF

MATHEMATICS

AND ITS LOGIC:

INTRODUCTION

stewart shapiro

1. Motivation, or What

We Are Up to

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

From the beginning, Western philosophy has had a fascination with mathematics.

The entrance to Plato’s Academy is said to have been marked with the words ‘‘Let

no one ignorant of geometry enter here.’’ Some major historical mathematicians,

such as René Descartes, Gottfried Leibniz, and Blaise Pascal, were also major phi-

losophers. In more recent times, there are Bernard Bolzano, Alfred North White-

head, David Hilbert, Gottlob Frege, Alonzo Church, Kurt Gödel, and Alfred Tarski.

Until very recently, just about every philosopher was aware of the state of math-

ematics and took it seriously for philosophical attention.

Often, the relationship went beyond fascination. Impressed with the certainty

and depth of mathematics, Plato made mathematical ontology the model for his

Forms, and mathematical knowledge the model for knowledge generally—to the

extent of downplaying or outright neglecting information gleaned from the senses.

A similar theme reemerged in the dream of traditional rationalists of extending what

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



they took to be the methodology of mathematics to all scientific and philosophical

knowledge. For some rationalists, the goal was to emulate Euclid’s Elements of

Geometry, providing axioms and demonstrations of philosophical principles.

Empiricists, the main opponents of rationalism, realized that their orientation to

knowledge does not seem to make much sense of mathematics, and they went to

some lengths to accommodate mathematics—often distorting it beyond recogni-

tion (see Parsons [1983, essay 1]).

Mathematics is a central part of our best efforts at knowledge. It plays an im-

portant role in virtually every scientific effort, no matter what part of the world it is

aimed at. There is scarcely a natural or a social science that does not have substantial

mathematics prerequisites. The burden on any complete philosophy of mathemat-

ics is to show how mathematics is applied to the material world, and to show how

the methodology of mathematics (whatever it may be) fits into the methodology of

the sciences (whatever it may be). (See chapter 20 in this volume.)

In addition to its role in science, mathematics itself seems to be a knowledge-

gathering activity. We speak of what theorems a given person knows and does not

know. Thus, the philosophy of mathematics is, at least in part, a branch of epis-

temology. However, mathematics is at least prima facie different from other epi-

stemic endeavors. Basic mathematical principles, such as ‘‘7þ 5¼ 12’’ or ‘‘there are

infinitely many prime numbers,’’ are sometimes held up as paradigms of necessary

truths and, a priori, infallible knowledge. It is beyond question that these propo-

sitions enjoy a high degree of certainty—however this certainty is to be expounded.

How can these propositions be false? How can any rational being doubt them?

Indeed, mathematics seems essential to any sort of reasoning at all. Suppose, in the

manner of Descartes’s first Meditation, that one manages to doubt, or pretend to

doubt, the basic principles of mathematics. Can he go on to think at all?

In these respects, at least, logic is like mathematics. At least some of the basic

principles of logic are, or seem to be, absolutely necessary and a priori knowable.

If one doubts the basic principles of logic, then, perhaps by definition, she cannot

go on to think coherently at all. Prima facie, to think coherently just is to think

logically.

Like mathematics, logic has also been a central focus of philosophy, almost

from the very beginning. Aristotle is still listed among the four or five most in-

fluential logicians ever, and logic received attention throughout the ancient and

medieval intellectual worlds. Today, of course, logic is a thriving branch of both

mathematics and philosophy.

It is incumbent on any complete philosophy of mathematics and any complete

philosophy of logic to account for their at least apparent necessity and apriority.

Broadly speaking, there are two options. The straightforward way to show that a

given discipline appears a certain way is to demonstrate that it is that way. Thus the

philosopher can articulate the notions of necessity and apriority, and then show

how they apply to mathematics and/or logic. Alternatively, the philosopher can

4 oxford handbook of philosophy of math and logic



argue that mathematics and/or logic does not enjoy these properties. On this op-

tion, however, the philosopher still needs to show why it appears that mathematics

and/or logic is necessary and a priori. She cannot simply ignore the long-standing

belief concerning the special status of these disciplines. There must be something

about mathematics and/or logic that has led so many to hold, perhaps mistakenly,

that they are necessary and a priori knowable.

The conflict between rationalism and empiricism reflects some tension in the

traditional views concerning mathematics, if not logic. Mathematics seems nec-

essary and a priori, and yet it has something to do with the physical world. How is

this possible? How can we learn something important about the physical world by

a priori reflection in our comfortable armchairs? As noted above, mathematics is

essential to any scientific understanding of the world, and science is empirical if

anything is—rationalism notwithstanding. Immanuel Kant’s thesis that arithmetic

and geometry are synthetic a priori was a heroic attempt to reconcile these fea-

tures of mathematics. According to Kant, mathematics relates to the forms of or-

dinary perception in space and time. On this view, mathematics applies to the

physical world because it concerns the ways that we perceive the physical world.

Mathematics concerns the underlying structure and presuppositions of the nat-

ural sciences. This is how mathematics gets ‘‘applied.’’ It is necessary because we

cannot structure the physical world in any other way. Mathematical knowledge is

a priori because we can uncover these presuppositions without any particular

experience (chapter 2 of this volume). This set the stage for over two centuries of

fruitful philosophy.

2. Global Matters

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For any field of study X, the main purposes of the philosophy of X are to interpret

X and to illuminate the place of X in the overall intellectual enterprise. The philos-

opher of mathematics immediately encounters sweeping issues, typically concern-

ing all of mathematics. Most of these questions come from general philosophy:

matters of ontology, epistemology, and logic. What, if anything, is mathematics

about? How is mathematics pursued? Do we know mathematics and, if so, how do

we know mathematics? What is the methodology of mathematics, and to what

extent is this methodology reliable? What is the proper logic for mathematics? To

what extent are the principles of mathematics objective and independent of the

mind, language, and social structure of mathematicians? Some problems and issues

on the agenda of contemporary philosophy have remarkably clean formulations

when applied to mathematics. Examples include matters of ontology, logic, ob-

jectivity, knowledge, and mind.
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The philosopher of logic encounters a similar range of issues, with perhaps

less emphasis on ontology. Given the role of deduction in mathematics, the phi-

losophy of mathematics and the philosophy of logic are intertwined, to the point

that there is not much use in separating them out.

A mathematician who adopts a philosophy of mathematics should gain some-

thing by this: an orientation toward the work, some insight into the role of math-

ematics, and at least a tentative guide to the direction of mathematics. What sorts

of problems are important? What questions should be posed? What methodologies

are reasonable? What is likely to succeed? And so on?

One global issue concerns whether mathematical objects—numbers, points,

functions, sets—exist and, if they do, whether they are independent of the math-

ematician, her mind, her language, and so on. Define realism in ontology to be the

view that at least some mathematical objects exist objectively. According to onto-

logical realism, mathematical objects are prima facie abstract, acausal, indestruc-

tible, eternal, and not part of space and time. Since mathematical objects share

these properties with Platonic Forms, realism in ontology is sometimes called

‘‘Platonism.’’

Realism in ontology does account for, or at least recapitulate, the necessity of

mathematics. If the subject matter of mathematics is as these realists say it is, then

the truths of mathematics are independent of anything contingent about the

physical universe and anything contingent about the human mind, the commu-

nity of mathematicians, and so on. What of apriority? The connection with Plato

might suggest the existence of a quasi-mystical connection between humans and

the abstract and detached mathematical realm. However, such a connection is

denied by most contemporary philosophers. As a philosophy of mathematics,

‘‘platonism’’ is often written with a lowercase ‘‘p,’’ probably to mark some dis-

tance from the master on matters of epistemology. Without this quasi-mystical

connection to the mathematical realm, the ontological realist is left with a deep

epistemic problem. If mathematical objects are in fact abstract, and thus causally

isolated from the mathematician, then how is it possible for this mathematician to

gain knowledge of them? It is close to a piece of incorrigible data that we do have

at least some mathematical knowledge. If the realist in ontology is correct, how is

this possible?

Georg Kreisel is often credited with shifting attention from the existence of

mathematical objects to the objectivity of mathematical truth. Define realism in

truth-value to be the view that mathematical statements have objective truth-

values independent of the minds, languages, conventions, and such of mathe-

maticians. The opposition to this view is anti-realism in truth-value, the thesis that

if mathematical statements have truth-values at all, these truth-values are depen-

dent on the mathematician.

There is a prima facie alliance between realism in truth-value and realism in

ontology. Realism in truth-value is an attempt to develop a view that mathematics
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deals with objective features of the world. Accordingly, mathematics has the ob-

jectivity of a science. Mathematical (and everyday) discourse has variables that

range over numbers, and numerals are singular terms. Realism in ontology is just

the view that this discourse is to be taken at face value. Singular terms denote ob-

jects, and thus numerals denote numbers. According to our two realisms, math-

ematicians mean what they say, and most of what they say is true. In short, realism

in ontology is the default or the first guess of the realist in truth-value.

Nevertheless, a survey of the recent literature reveals that there is no con-

sensus on the logical connections between the two realist theses or their negations.

Each of the four possible positions is articulated and defended by established phi-

losophers of mathematics. There are thorough realists (Gödel [1944, 1964], Crispin

Wright [1983] and chapter 6 in this volume, Penelope Maddy [1990], Michael

Resnik [1997], Shapiro [1997]); thorough anti-realists (Michael Dummett [1973,

1977]); realists in truth-value who are anti-realists in ontology (Geoffrey Hellman

[1989] and chapter 17 in this volume, Charles Chihara [1990] and chapter 15 in this

volume); and realists in ontology who are anti-realists in truth-value (Neil Ten-

nant [1987, 1997]).

A closely relatedmatter concerns the relationship between philosophy of math-

ematics and the practice of mathematics. In recent history, there have been dis-

putes concerning some principles and inferences withinmathematics. One example

is the law of excluded middle, the principle that for every sentence, either it or its

negation is true. In symbols: A_:A. For a second example, a definition is im-

predicative if it refers to a class that contains the object being defined. The usual

definition of ‘‘the least upper bound’’ is impredicative because it defines a par-

ticular upper bound by referring to the set of all upper bounds. Such principles

have been criticized on philosophical grounds, typically by anti-realists in ontol-

ogy. For example, if mathematical objects are mental constructions or creations,

then impredicative definitions are circular. One cannot create or construct an

object by referring to a class of objects that already contains the item being created

or constructed. Realists defended the principles. On that view, a definition does not

represent a recipe for creating or constructing a mathematical object. Rather, a

definition is a characterization or description of an object that already exists. For a

realist in ontology, there is nothing illicit in definitions that refer to classes con-

taining the item in question (see Gödel [1944]). Characterizing ‘‘the least upper

bound’’ of a set is no different from defining the ‘‘elder poop’’ to be ‘‘the oldest

member of the Faculty.’’

As far as contemporary mathematics is concerned, the aforementioned dis-

putes are over, for the most part. The law of excluded middle and impredicative

definitions are central items in the mathematician’s toolbox—to the extent that

many practitioners are not aware when these items have been invoked. But this

battle was not fought and won on philosophical grounds. Mathematicians did

not temporarily don philosophical hats and decide that numbers, say, really do
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exist independent of the mathematician and, for that reason, decide that it is

acceptable to engage in the once disputed methodologies. If anything, the dia-

lectic went in the opposite direction, from mathematics to philosophy. The

practices in question were found to be conducive to the practice of mathematics,

as mathematics—and thus to the sciences (but see chapters 9, 10, and 19 in this

volume).

There is nevertheless a rich and growing research program to see just how

much mathematics can be obtained if the restrictions are enforced (chapter 19 in

this volume). The research is valuable in its own right, as a study of the logical

power of the various once questionable principles. The results are also used to

support the underlying philosophies of mathematics and logic.

3. Local Matters

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The issues and questions mentioned above concern all of mathematics and, in

some cases, all of science. The contemporary philosopher of mathematics has some

more narrow foci as well. One group of issues concerns attempts to interpret

specific mathematical or scientific results. Many examples come from mathemat-

ical logic, and engage issues in the philosophy of logic. The compactness theorem

and the Löwenheim–Skolem theorems entail that if a first-order theory has an

infinite model at all, then it has a model of every infinite cardinality. Thus, there are

unintended, denumerable models of set theory and real analysis. This is despite the

fact that we can prove in set theory that the ‘‘universe’’ is uncountable. Arithmetic,

the theory of the natural numbers, has uncountable models—despite the fact that

by definition a set is countable if and only if it is not larger than the set of natural

numbers. What, if anything, do these results say about the human ability to

characterize and communicate various concepts, such as notions of cardinality?

Skolem (e.g., [1922, 1941]) himself took the results to confirm his view that virtu-

ally all mathematical notions are ‘‘relative’’ in some sense. No set is countable or

finite simpliciter, but only countable or finite relative to some domain or model.

Hilary Putnam [1980] espouses a similar relativity. Other philosophers resist the

relativity, sometimes by insisting that first-order model theory does not capture the

semantics of informal mathematical discourse. This issue may have ramifications

concerning the proper logic for mathematics. Perhaps the limitative theorems are

an artifact of an incorrect logic (chapters 25 and 26 in this volume).

The wealth of independence results in set theory provide another batch of

issues for the philosopher. It turns out that many interesting and important

mathematical questions are independent of the basic assertions of set theory. One

example is Cantor’s continuum hypothesis that there are no sets that are strictly
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larger than the set of natural numbers and strictly smaller than the set of real

numbers. Neither the continuum hypothesis nor its negation can be proved in the

standard axiomatizations of set theory. What does this independence say about

mathematical concepts? Do we have another sort of relativity on offer? Can we

only say that a given set is the size of a certain cardinality relative to an inter-

pretation of set theory? Some philosophers hold that these results indicate an

indeterminacy concerning mathematical truth. There is no fact of the matter con-

cerning, say, the continuum hypothesis. These philosophers are thus anti-realists

in truth-value. The issue here has ramifications concerning the practice of math-

ematics. If one holds that the continuum hypothesis has a determinate truth-

value, he or she may devote effort to determining this truth-value. If, instead,

someone holds that the continuum hypothesis does not have a determinate truth-

value, then he is free to adopt it or not, based on what makes for the most con-

venient set theory. It is not clear whether the criteria that the realist might adopt

to decide the continuum hypothesis are different from the criteria the anti-realist

would use for determining what makes for the most convenient theory.

A third example is Gödel’s incompleteness theorem that the set of arithmetic

truths is not effective. Some take this result to refute mechanism, the thesis that

the human mind operates like a machine. Gödel himself held that either the mind

is not a machine or there are arithmetic questions that are ‘‘absolutely unde-

cidable,’’ questions that are unanswerable by us humans (see Gödel [1951], Sha-

piro [1998]). On the other hand, Webb [1980] takes the incompleteness results to

support mechanism.

To some extent, some questions concerning the applications of mathematics

are among this group of issues. What can a theorem of mathematics tell us about

the natural world studied in science? To what extent can we prove things about

knots, bridge stability, chess endgames, and economic trends? There are (or were)

philosophers who take mathematics to be no more than a meaningless game played

with symbols (chapter 8 in this volume), but everyone else holds that mathemat-

ics has some sort of meaning. What is this meaning, and how does it relate to the

meaning of ordinary nonmathematical discourse?What can a theorem tell us about

the physical world, about human knowability, about the abilities-in-principle of

programmed computers, and so on?

Another group of issues consists of attempts to articulate and interpret par-

ticular mathematical theories and concepts. One example is the foundational work

in arithmetic and analysis. Sometimes, this sort of activity has ramifications for

mathematics itself, and thus challenges and blurs the boundary between mathe-

matics and its philosophy. Interesting and powerful research techniques are often

suggested by foundational work that forges connections between mathematical

fields. In addition to mathematical logic, consider the embedding of the natural

numbers in the complex plane, via analytic number theory. Foundational activity

has spawned whole branches of mathematics.
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Sometimes developments within mathematics lead to unclarity concerning what

a certain concept is. The example developed in Lakatos [1976] is a case in point.

A series of ‘‘proofs and refutations’’ left interesting and important questions over

what a polyhedron is. For another example, work leading to the foundations of

analysis led mathematicians to focus on just what a function is, ultimately yielding

the modern notion of function as arbitrary correspondence. The questions are at

least partly ontological.

This group of issues underscores the interpretive nature of philosophy of

mathematics. We need to figure out what a given mathematical concept is, and

what a stretch of mathematical discourse says. The Lakatos study, for example,

begins with a ‘‘proof ’’ consisting of a thought experiment in which one removes a

face of a given polyhedron, stretches the remainder out on a flat surface, and then

draws lines, cuts, and removes the various parts—keeping certain tallies along the

way. It is not clear a priori how this blatantly dynamic discourse is to be un-

derstood. What is the logical form of the discourse and what is its logic? What is

its ontology? Much of the subsequent mathematical/philosophical work addresses

just these questions.

Similarly, can one tell from surface grammar alone that an expression like

‘‘dx’’ is not a singular term denoting a mathematical object, while in some cir-

cumstances, ‘‘dy/dx’’ does denote something—but the denoted item is a function,

not a quotient? The history of analysis shows a long and tortuous task of showing

just what expressions like this mean.

Of course, mathematics can often go on quite well without this interpretive

work, and sometimes the interpretive work is premature and is a distraction at

best. Berkeley’s famous, penetrating critique of analysis was largely ignored among

mathematicians—so long as they knew ‘‘how to go on,’’ as Ludwig Wittgenstein

might put it. In the present context, the question is whether the mathematician

must stop mathematics until he has a semantics for his discourse fully worked

out. Surely not. On occasion, however, tensions within mathematics lead to the

interpretive philosophical/semantic enterprise. Sometimes, the mathematician is

not sure how to ‘‘go on as before,’’ nor is he sure just what the concepts are. More-

over, we are never certain that the interpretive project is accurate and complete,

and that other problems are not lurking ahead.

4. A Potpourri of Positions

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I now present sketches of some main positions in the philosophy of mathemat-

ics. The list is not exhaustive, nor does the coverage do justice to the subtle and

deep work of proponents of each view. Nevertheless, I hope it serves as a useful
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guide to both the chapters that follow and to at least some of the literature

in contemporary philosophy of mathematics. Of course, the reader should not

hold the advocates of the views to the particular articulation that I give here,

especially if the articulation sounds too implausible to be advocated by any sane

thinker.

4.1. Logicism: a Matter of Meaning

According to Alberto Coffa [1991], a major item on the agenda of Western phi-

losophy throughout the nineteenth century was to account for the (at least) ap-

parent necessity and a priori nature of mathematics and logic, and to account for

the applications of mathematics, without invoking anything like Kantian intuition.

According to Coffa, the most fruitful development on this was the ‘‘semantic

tradition,’’ running through the work of Bolzano, Frege, the early Wittgenstein,

and culminating with the Vienna Circle. The main theme—or insight, if you will—

was to locate the source of necessity and a priori knowledge in the use of language.

Philosophers thus turned their attention to linguistic matters concerning the

pursuit of mathematics. What do mathematical assertions mean? What is their

logical form? What is the best semantics for mathematical language? The members

of the semantic tradition developed and honed many of the tools and concepts still

in use today in mathematical logic, and in Western philosophy generally. Michael

Dummett calls this trend in the history of philosophy the linguistic turn.

An important program of the semantic tradition was to show that at least some

basic principles of mathematics are analytic, in the sense that the propositions are

true in virtue of meaning. Once we understood terms like ‘‘natural number,’’ ‘‘suc-

cessor function,’’ ‘‘addition,’’ and ‘‘multiplication,’’ we would thereby see that the

basic principles of arithmetic, such as the Peano postulates, are true. If the program

could be carried out, it would show that mathematical truth is necessary—to the

extent that analytic truth, so construed, is necessary. Given what the words mean,

mathematical propositions have to be true, independent of any contingencies in

the material world. And mathematical knowledge is a priori—to the extent that

knowledge of meanings is a priori. Presumably, speakers of the language know the

meanings of words a priori, and thus we know mathematical propositions a priori.

The most articulate version of this program is logicism, the view that at least

some mathematical propositions are true in virtue of their logical forms (chapter 5

in this volume). According to the logicist, arithmetic truth, for example, is a

species of logical truth. The most detailed developments are those of Frege [1884,

1893] and Alfred North Whitehead and Bertrand Russell [1910]. Unlike Russell,

Frege was a realist in ontology, in that he took the natural numbers to be objects.

Thus, for Frege at least, logic has an ontology—there are ‘‘logical objects.’’
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In a first attempt to define the general notion of cardinal number, Frege [1884,

§63] proposed the following principle, which has become known as ‘‘Hume’s

principle’’:

For any concepts F, G, the number of F ’s is identical to the number of G ’s if and

only if F and G are equinumerous.

Two concepts are equinumerous if they can be put in one-to-one correspondence.

Frege showed how to define equinumerosity without invoking natural numbers.

His definition is easily cast in what is today recognized as pure second-order logic.

If second-order logic is logic (chapter 25 in this volume), then Frege succeeded in

reducing Hume’s principle, at least, to logic.

Nevertheless, Frege balked at taking Hume’s principle as the ultimate foun-

dation for arithmetic because Hume’s principle only fixes identities of the form

‘‘the number of F ’s¼ the number of G ’s.’’ The principle does not determine the

truth-value of sentences in the form ‘‘the number of F ’s¼ t,’’ where t is an ar-

bitrary singular term. This became known as the Caesar problem. It is not that

anyone would confuse a natural number with the Roman general Julius Caesar,

but the underlying idea is that we have not succeeded in characterizing the natural

numbers as objects unless and until we can determine how and why any given

natural number is the same as or different from any object whatsoever. The dis-

tinctness of numbers and human beings should be a consequence of the theory,

and not just a matter of intuition.

Frege went on to provide explicit definitions of individual natural numbers,

and of the concept ‘‘natural number,’’ in terms of extensions of concepts. The

number 2, for example, is the extension (or collection) of all concepts that hold of

exactly two elements. The inconsistency in Frege’s theory of extensions, as shown

by Russell’s paradox, marked a tragic end to Frege’s logicist program.

Russell and Whitehead [1910] traced the inconsistency in Frege’s system to the

impredicativity in his theory of extensions (and, for that matter, in Hume’s prin-

ciple). They sought to develop mathematics on a safer, predicative foundation.

Their system proved to be too weak, and ad hoc adjustments were made, greatly

reducing the attraction of the program. There is a thriving research program under

way to see how much mathematics can be recovered on a predicative basis (chap-

ter 19 in this volume).

Variations of Frege’s original approach are vigorously pursued today in the

work of Crispin Wright, beginning with [1983], and others like Bob Hale [1987]

and Neil Tennant ([1987, 1997]) (chapter 6 in this volume). The idea is to bypass

the treatment of extensions and to work with (fully impredicative) Hume’s prin-

ciple, or something like it, directly. Hume’s principle is consistent with second-

order logic if second-order arithmetic is consistent (see Boolos [1987] and Hodes

[1984]), so at least the program will not fall apart like Frege’s did. But what is

the philosophical point? On the neologicist approach, Hume’s principle is taken to
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be an explanation of the concept of ‘‘number.’’ Advocates of the program argue

that even if Hume’s principle is not itself analytic—true in virtue of meaning—it

can become known a priori, once one has acquired a grasp of the concept of car-

dinal number. Hume’s principle is akin to an implicit definition. Frege’s own

technical development shows that the Peano postulates can be derived from Hume’s

principle in a standard, higher-order logic. Indeed, the only essential use that Frege

made of extensions was to derive Hume’s principle—everything else concerning

numbers follows from that. Thus the basic propositions of arithmetic enjoy the

same privileged epistemic status had by Hume’s principle (assuming that second-

order deduction preserves this status). Neologicism is a reconstructive program

showing how arithmetic propositions can become known.

The neologicist (and Fregean) development makes essential use of the fact

that impredicativity of Hume’s principle is impredicative in the sense that the

variable F in the locution ‘‘the number of F ’s’’ is instantiated with concepts that

themselves are defined in terms of numbers. Without this feature, the derivation

of the Peano axioms from Hume’s principle would fail. This impredicativity is

consonant with the ontological realism adopted by Frege and his neologicist

followers. Indeed, the neologicist holds that the left-hand side of an instance of

Hume’s principle has the same truth conditions as its right-hand side, but the left-

hand side gives the proper logical form. Locutions like ‘‘the number of F ’s’’ are

genuine singular terms denoting numbers.

The neologicist project, as developed thus far, only applies basic arithmetic and

the natural numbers. An important item on the agenda is to extend the treatment

to cover other areas of mathematics, such as real analysis, functional analysis, ge-

ometry, and set theory. The program involves the search for abstraction principles

rich enough to characterize more powerful mathematical theories (see, e.g., Hale

[2000a, 2000b] and Shapiro [2000a, 2003]).

4.2. Empiricism, Naturalism, and Indispensability

Coffa [1982] provides a brief historical sketch of the semantic tradition, outlining

its aims and accomplishments. Its final sentence is ‘‘And then came Quine.’’ De-

spite the continued pursuit of variants of logicism (chapter 26 in this volume), the

standard concepts underlying the program are in a state of ill repute in some

quarters, notably much of North America. Many philosophers no longer pay

serious attention to notions of meaning, analyticity, and a priori knowledge. To

be precise, such notions are not given a primary role in the epistemology of math-

ematics, or anything else for that matter, by many contemporary philosophers.

W. V. O. Quine (e.g., [1951, 1960]) is usually credited with initiating widespread

skepticism concerning these erstwhile philosophical staples.
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Quine, of course, does not deny that the truth-value of a given sentence is

determined by both the use of language and the way the world is. To know that

‘‘Paris is in France,’’ one must know something about the use of the words ‘‘Paris,’’

‘‘is,’’ and ‘‘France,’’ and one must know some geography. Quine’s view is that the

linguistic and factual components of a given sentence cannot be sharply distin-

guished, and thus there is no determinate notion of a sentence being true solely in

virtue of language (analytic), as opposed to a sentence whose truth depends on the

way the world is (synthetic).

Then how is mathematics known? Quine is a thoroughgoing empiricist, in the

tradition of John Stuart Mill (chapter 3 in this volume). His positive view is that

all of our beliefs constitute a seamless web answerable to, and only to, sensory

stimulation. There is no difference in kind between mundane beliefs about ma-

terial objects, the far reaches of esoteric science, mathematics, logic, and even so-

called truths-by-definition (e.g., ‘‘no bachelor is married’’). The word ‘‘seamless’’

in Quine’s metaphor suggests that everything in the web is logically connected to

everything else in the web, at least in principle. Moreover, no part of the web is

knowable a priori.

This picture gives rise to a now common argument for realism. Quine and

others, such as Putnam [1971], propose a hypothetical-deductive epistemology

for mathematics. Their argument begins with the observation that virtually all of

science is formulated in mathematical terms. Thus, mathematics is ‘‘confirmed’’

to the extent that science is. Because mathematics is indispensable for science, and

science is well confirmed and (approximately) true, mathematics is well con-

firmed and true as well. This is sometimes called the indispensability argument.

Thus, Quine and Putnam are realists in truth-value, holding that some

statements of mathematics have objective and nonvacuous truth-values indepen-

dent of the language, mind, and form of life of the mathematician and scientist

(assuming that science enjoys this objectivity). Quine, at least, is also a realist in

ontology. He accepts the Fregean (and neologicist) view that ‘‘existence’’ is univ-

ocal. There is no ground for distinguishing terms that refer to medium-sized

physical objects, terms that refer to microscopic and submicroscopic physical ob-

jects, and terms that refer to numbers. According to Quine and Putnam, all of the

items in our ontology—apples, baseballs, electrons, and numbers—are theoretical

posits. We accept the existence of all and only those items that occur in our best

accounts of the material universe. Despite the fact that numbers and functions are

not located in space and time, we know about numbers and functions the same way

we know about physical objects—via the role of terms referring to such enti-

ties in mature, well-confirmed theories.

Indispensability arguments are anathema to those, like the logicists, logical

positivists, and neologicists, who maintain the traditional views that mathemat-

ics is absolutely necessary and/or analytic and/or knowable a priori. On such

views, mathematical knowledge cannot be dependent on anything as blatantly
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empirical and contingent as everyday discourse and natural science. The no-

ble science of mathematics is independent of all of that. From the opposing

Quinean perspective, mathematics and logic do not enjoy the necessity tradi-

tionally believed to hold of them; and mathematics and logic are not knowable

a priori.

Indeed, for Quine, nothing is knowable a priori. The thesis is that everything

in the web—the mundane beliefs about the physical world, the scientific theories,

the mathematics, the logic, the connections of meaning—is up for revision if the

‘‘data’’ become sufficiently recalcitrant. From this perspective, mathematics is of a

piece with highly confirmed scientific theories, such as the fundamental laws of

gravitation. Mathematics appears to be necessary and a priori knowable (only)

because it lies at the ‘‘center’’ of the web of belief, farthest from direct observation.

Since mathematics permeates the web of belief, the scientist is least likely to

suggest revisions in mathematics in light of recalcitrant ‘‘data.’’ That is to say,

because mathematics is invoked in virtually every science, its rejection is extremely

unlikely, but the rejection of mathematics cannot be ruled out in principle. No

belief is incorrigible. No knowledge is a priori, all knowledge is ultimately based

on experience (see Colyvan [2001], and chapter 12 in this volume).

The seamless web is of a piece with Quine’s naturalism, characterized as ‘‘the

abandonment of first philosophy’’ and ‘‘the recognition that it is within science

itself . . . that reality is to be identified and described’’ ([1981, p. 72]). The idea is to

see philosophy as continuous with the sciences, not prior to them in any epis-

temological or foundational sense. If anything, the naturalist holds that science is

prior to philosophy. Naturalized epistemology is the application of this theme to

the study of knowledge. The philosopher sees the human knower as a thoroughly

natural being within the physical universe. Any faculty that the philosopher

invokes to explain knowledge must involve only natural processes amenable to

ordinary scientific scrutiny.

Naturalized epistemology exacerbates the standard epistemic problems with

realism in ontology. The challenge is to show how a physical being in a physical

universe can come to know about abstracta like mathematical objects (see Field

[1989, essay 7]). Since abstract objects are causally inert, we do not observe them

but, nevertheless,we still (seemto) knowsomething about them.TheQuineanmeets

this challenge with claims about the role of mathematics in science. Articulations

of the Quinean picture thus should, but usually do not, provide a careful expla-

nation of the application of mathematics to science, rather than just noting the

existence of this applicability (chapter 20 in this volume). This explanation would

shed light on the abstract, non-spatiotemporal nature of mathematical objects,

and the relationships between such objects and ordinary and scientific material

objects. How is it that talk of numbers and functions can shed light on tables,

bridge stability, and market stability? Such an analysis would go a long way to-

ward defending the Quinean picture of a web of belief.
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Once again, it is a central tenet of the naturalistically minded philosopher that

there is no first philosophy that stands prior to science, ready to either justify or

criticize it. Science guides philosophy, not the other way around. There is no

agreement among naturalists that the same goes for mathematics. Quine himself

accepts mathematics (as true) only to the extent that it is applied in the sciences.

In particular, he does not accept the basic assertions of higher set theory because

they do not, at present, have any empirical applications. Moreover, he advises

mathematicians to conform their practice to his version of naturalism by adopting

a weaker and less interesting, but better understood, set theory than the one they

prefer to work with.

Mathematicians themselves do not follow the epistemology suggested by the

Quinean picture. They do not look for confirmation in science before publishing

their results in mathematics journals, or before claiming that their theorems are

true. Thus, Quine’s picture does not account for mathematics as practiced. Some

philosophers, such as Burgess [1983] and Maddy [1990, 1997], apply naturalism to

mathematics directly, and thereby declare that mathematics is, and ought to be,

insulated from much traditional philosophical inquiry, or any other probes that

are not to be resolved by mathematicians qua mathematicians. On such views,

philosophy of mathematics—naturalist or otherwise—should not be in the

business of either justifying or criticizing mathematics (chapters 13 and 14 in this

volume).

4.3. No Mathematical Objects

The most popular way to reject realism in ontology is to flat out deny that

mathematics has a subject matter. The nominalist argues that there are no num-

bers, points, functions, sets, and so on. The burden on advocates of such views is to

make sense of mathematics and its applications without assuming a mathematical

ontology. This is indicated in the title of Burgess and Rosen’s study of nominalism,

A Subject with No Object [1997].

A variation on this theme that played an important role in the history of our

subject is formalism. An extreme version of this view, which is sometimes called

‘‘game formalism,’’ holds that the essence of mathematics is the following of mean-

ingless rules. Mathematics is likened to the play of a game like chess, where char-

acters written on paper play the role of pieces to be moved. All that matters to the

pursuit of mathematics is that the rules have been followed correctly. As far as the

philosophical perspective is concerned, the formulas may as well be meaningless.

Opponents of game formalism claim that mathematics is inherently informal

and perhaps even nonmechanical. Mathematical language has meaning, and it is a

gross distortion to attempt to ignore this. At best, formalism focuses on a small
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aspect of mathematics, the fact that logical consequence is formal. It deliberately

leaves aside what is essential to the enterprise.

A different formalist philosophy of mathematics was presented by Haskell

Curry (e.g., [1958]). The program depends on a historical thesis that as a branch of

mathematics develops, it becomes more and more rigorous in its methodology,

the end result being the codification of the branch in formal deductive systems.

Curry claimed that assertions of a mature mathematical theory are to be con-

strued not so much as the results of moves in a particular formal deductive system

(as a game formalist might say), but rather as assertions about a formal system. An

assertion at the end of a research paper would be understood in the form ‘‘such

and such is a theorem in this formal system.’’ For Curry, then, mathematics is an

objective science, and it has a subject matter—formal systems. In effect, mathe-

matics is metamathematics. (See chapter 8 in this volume for a more developed

account of formalism.)

On the contemporary scene, one prominent version of nominalism is fic-

tionalism, as developed, for example, by Hartry Field [1980]. Numbers, points, and

sets have the same philosophical status as the entities presented in works of

fiction. According to the fictionalist, the number 6 is the same kind of thing as

Dr. Watson or Miss Marple.

According to Field, mathematical language should be understood at face

value. Its assertions have vacuous truth-values. For example, ‘‘all natural numbers

are prime’’ comes out true, since there are no natural numbers. Similarly, ‘‘there is

a prime number greater than 10’’ is false, and both Fermat’s last theorem and the

Goldbach conjecture are true. Of course, Field does not exhort mathematicians to

settle their open questions via this vacuity. Unlike Quine, Field has no proposals

for changing the methodology of mathematics. His view concerns how the results

of mathematics should be interpreted, and the role of these results in the scientific

enterprise. For Field, the goal of mathematics is not to assert the true. The only

mathematical knowledge that matters is knowledge of logical consequences (see

Field [1984]).

Field regards the Quine/Putnam indispensability argument to be the only se-

rious consideration in favor of ontological realism. His overall orientation is thus

broadly Quinean—in direct opposition to the long-standing belief that mathe-

matical knowledge is a priori. As we have seen, more traditional philosophers—

and most mathematicians—regard indispensability as irrelevant to mathematical

knowledge. In contrast, for thinkers like Field, once one has undermined the in-

dispensability argument, there is no longer any serious reason to believe in the ex-

istence of mathematical objects.

Call a scientific theory ‘‘nominalistic’’ if it is free of mathematical presup-

positions. As Quine and Putnam pointed out, most of the theories developed in

scientific practice are not nominalistic, and so begins the indispensability argu-

ment. The first aspect of Field’s program is to develop nominalistic versions of
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various scientific theories. Of course, Field does not do this for every prominent

scientific theory. To do so, he would have to understand every prominent sci-

entific theory, a task that no human can accomplish anymore. Field gives one

example—Newtonian gravitational theory—in some detail, to illustrate a tech-

nique that can supposedly be extended to other scientific work.

The second aspect of Field’s program is to show that the nominalistic theories

are sufficient for attaining the scientific goal of determining truths about the

physical universe (i.e., accounting for observations). Let P be a nominalistic sci-

entific theory and let S be a mathematical theory together with some ‘‘bridge

principles’’ that connect the mathematical terminology with the physical termi-

nology. Define S to be conservative over P if for any sentence F in the language of

the nominalistic theory, if F is a consequence of Pþ S, then F is a consequence of

P alone. Thus, if the mathematical theory is conservative over the nominalist one,

then any physical consequence we get via the mathematics we could get from the

nominalistic physics alone. This would show that mathematics is dispensable in

principle, even if it is practically necessary. Field shows that standard mathemat-

ical theories and bridge principles are conservative over his nominalistic New-

tonian theory, at least if the conservativeness is understood in model-theoretic

terms: if F holds in all models of Pþ S, then F holds in all models of P.

The sizable philosophical literature generated by Field [1980] includes argu-

ments that Field’s technique does not generalize to more contemporary theories

like quantum mechanics (Malament [1982]); arguments that Field’s distinction

between abstract and concrete does not stand up, or that it does not play the role

needed to sustain Field’s fictionalism (Resnik [1985]); and arguments that Field’s

nominalistic theories are not conservative in the philosophically relevant sense

(Shapiro [1983]). The collection by Field [1989] contains replies to some of these

objections.

Another common anti-realist proposal is to reconstrue mathematical asser-

tions in modal terms. The philosopher understands mathematical assertions to be

about what is possible, or about what would be the case if objects of a certain sort

existed. The main innovation in Chihara [1990] is a modal primitive, a ‘‘con-

structibility quantifier.’’ If F is a formula and x a certain type of variable, then

Chihara’s system contains a formula that reads ‘‘it is possible to construct an x such

thatF.’’ According to Chihara, constructibility quantifiers do notmark what Quine

calls ‘‘ontological commitment.’’ Common sense supports this—to the extent that

the notion of ontological commitment is part of common sense. If someone says

that it is possible to construct a new ballpark in Boston, she is not asserting the

existence of any ballpark, nor is she asserting the existence of a strange entity called

a ‘‘possible ballpark.’’ She only speaks of what it is possible to do.

The formal language developed in Chihara [1990] includes variables that range

over open sentences (i.e., sentences with free variables), and these open-sentence

variables can be bound by constructibility quantifiers. With keen attention to detail,
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Chihara develops arithmetic, analysis, functional analysis, and so on in his system,

following the parallel development of these mathematical fields in simple (impred-

icative) type theory.

Unlike Field, Chihara is a realist in truth-value. He holds that the relevant

modal statements have objective and nonvacuous truth-values that hold or fail

independent of the mind, language, conventions, and such of the mathematical

community. Mathematics comes out objective, even if it has no ontology. Chi-

hara’s program shows initial promise on the epistemic front. Perhaps it is easier to

account for how the mathematician comes to know about what is possible, or

about what sentences can be constructed, than it is to account for how the

mathematician knows about a Platonic realm of objects. (See chapters 15 and 16 in

this volume.)

4.4. Intuitionism

Unlike fictionalists, traditional intuitionists, such as L. E. J. Brouwer (e.g., [1912,

1948]) and Arend Heyting (e.g., [1930, 1956]), held that mathematics has a subject

matter: mathematical objects, such as numbers, do exist. However, Brouwer and

Heyting insisted that these objects are mind-dependent. Natural numbers and real

numbers are mental constructions or are the result of mental constructions. In

mathematics, to exist is to be constructed. Thus Brouwer and Heyting are anti-

realists in ontology, denying the objective existence of mathematical objects. Some

of their writing seems to imply that each person constructs his own mathematical

realm. Communication between mathematicians consists in exchanging notes about

their individual constructive activities. This would make mathematics subjective.

It is more common, however, for these intuitionists, especially Brouwer, to hold

that mathematics concerns the forms of mental construction as such (see Posy

[1984]). This follows a Kantian theme, reviving the thesis that mathematics is

synthetic a priori.

This perspective has consequences concerning the proper practice of math-

ematics. Most notably, the intuitionist demurs from the law of excluded middle—

(A_:A)—and other inferences based on it. According to Brouwer and Heyting,

these methodological principles are symptomatic of faith in the transcendental

existence of mathematical objects and/or the transcendental truth of mathemati-

cal statements. For the intuitionist, every mathematical assertion must correspond

to a construction. For example, let P be a property of natural numbers. For an

intuitionist, the content of the assertion that not every number has the property

P—the formula :Vx Px—is that it is refutable that one can find a construction

showing that P holds of each number. The content of the assertion that there is a

number for which P fails—Ax :Px—is that one can construct a number x and
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show that P does not hold of x. The latter formula cannot be inferred from the

former because, clearly, it is possible to show that a property cannot hold uni-

versally without constructing a number for which it fails. In contrast, from the

realist’s perspective, the content of :Vx Px is simply that it is false that P holds

universally, and Ax:Px means that there is a number for which P fails. Both for-

mulas refer to numbers themselves; neither has anything to do with the knowledge-

gathering abilities of mathematicians, or any other mental feature of them. From

the realist’s point of view, the two formulas are equivalent. The inference from

:Vx Px to Ax:Px is a direct consequence of excluded middle.

Some contemporary intuitionists, such as Michael Dummett ([1973, 1977]) and

Neil Tennant ([1987, 1997]), take a different route to roughly the same revisionist

conclusion. Their proposed logic is similar to that of Brouwer and Heyting, but

their supporting arguments and philosophy are different. Dummett begins with

reflections on language acquisition and use, and the role of language in commu-

nication. One who understands a sentence must grasp its meaning, and one who

learns a sentence thereby learns its meaning. As Dummett puts it, ‘‘a model of

meaning is a model of understanding.’’ This at least suggests that the meaning of a

statement is somehow determined by its use. Someone who understands the mean-

ing of any sentence of a language must be able to manifest that understanding in

behavior. Since language is an instrument of communication, an individual cannot

communicate what he cannot be observed to communicate.

Dummett argues that there is a natural route from this ‘‘manifestation re-

quirement’’ to what we call here anti-realism in truth-value, and a route from

there to the rejection of classical logic—and thus a demand for major revisions in

mathematics.

Most semantic theories are compositional in the sense that the semantic con-

tent of a compound statement is analyzed in terms of the semantic content of its

parts. Tarskian semantics, for example, is compositional, because the satisfaction

of a complex formula is defined in terms of the satisfaction of its subformulas.

Dummett’s proposal is that the lessons of the manifestation requirement be in-

corporated into a compositional semantics. Instead of providing satisfaction con-

ditions of each formula, Dummett proposes that the proper semantics supplies

proof or computation conditions. He thus adopts what has been called ‘‘Heyting

semantics.’’ Here are three clauses:

A proof of a formula in the form F _ C is a proof of F or a proof of C.

A proof of a formula in the form F ! C is a procedure that can be proved

to transform any proof of F into a proof of C.

A proof of a formula in the form :F is a procedure that can be proved

to transform any proof of F into a proof of absurdity; a proof of

:F is a proof that there can be no proof of F.
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Heyting and Dummett argue that on a semantics like this, the law of excluded

middle is not universally upheld. A proof of a sentence of the form F _:F con-

sists of a proof of F or a proof that there can be no proof of F. The intuitionist
claims that one cannot maintain this disjunction, in advance, for every sentence F.

A large body of research in mathematical logic shows how intuitionistic math-

ematics differs from its classical counterpart. Many mathematicians hold that the

intuitionistic restrictions would cripple their discipline (see, e.g., Paul Bernays

[1935]). For some philosophers of mathematics, the revision of mathematics is too

high a price to pay. If a philosophy entails that there is something wrong with

what the mathematicians do, then the philosophy is rejected out of hand. Ac-

cording to them, intuitionism can be safely ignored. A less dogmatic approach

would be to take Dummett’s arguments as a challenge to answer the criticisms he

brings. Dummett argues that classical logic, and mathematics as practiced, do not

enjoy a certain kind of justification, a justification one might think a logic and

mathematics ought to have. Perhaps a defender of classical mathematics, such as a

Quinean holist or a Maddy-style naturalist, can concede this, but argue that logic

and mathematics do not need this kind of justification. We leave the debate at this

juncture. (See chapters 9 and 10 in this volume.)

4.5. Structuralism

According to another popular philosophy of mathematics, the subject matter of

arithmetic, for example, is the pattern common to any infinite system of objects

that has a distinguished initial object, and a successor relation or operation that

satisfies the induction principle. The arabic numerals exemplify this natural num-

ber structure, as do sequences of characters on a finite alphabet in lexical order, an

infinite sequence of distinct moments of time, and so on. A natural number, such

as 6, is a place in the natural number structure, the seventh place (if the structure

starts with zero). Similarly, real analysis is about the real number structure, set

theory is about the set-theoretic hierarchy structure, topology is about topological

structures, and so on.

According to the structuralist, the application of mathematics to science oc-

curs, in part, by discovering or postulating that certain structures are exemplified

in the material world. Mathematics is to material reality as pattern is to patterned.

Since a structure is a one-over-many of sorts, a structure is like a traditional uni-

versal, or property.

There are several ontological views concerning structures, corresponding

roughly to traditional views concerning universals. One is that the natural number

structure, for example, exists independent of whether it has instances in the
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physical world—or any other world, for that matter. Let us call this ante rem

structuralism, after the analogous view concerning universals (see Shapiro [1997]

and Resnik [1997]; see also Parsons [1990]). Another view is that there is no more

to the natural number structure than the systems of objects that exemplify this

structure. Destroy the systems, and the structure goes with them. From this per-

spective, either structures do not exist at all—in which case we have a version of

nominalism—or the existence of structures is tied to the existence of their ‘‘in-

stances,’’ the systems that exemplify the structures. Views like this are sometimes

dubbed eliminative structuralism (see Benacerraf [1965]).

According to ante rem structuralism, statements of mathematics are under-

stood at face value. An apparent singular term, such as ‘‘2,’’ is a genuine singular

term, denoting a place in the natural number structure. For the eliminative struc-

turalist, by contrast, these apparent singular terms are actually bound variables.

For example, ‘‘2þ 3¼ 5’’ comes to something like ‘‘in any natural number system

S, any object in the 2-place of S that is S-added to the object in the 3-place of S is

the object in the 5-place of S.’’ Eliminative structuralism is a structuralism without

structures.

Taken at face value, eliminative structuralism requires a large ontology to

keep mathematics from being vacuous. For example, if there are only finitely many

objects in the universe, then the natural number structure is not exemplified, and

thus universally quantified statements of arithmetic are all vacuously true. Real

and complex analysis and Euclidean geometry require a continuum of objects,

and set theory requires a proper class (or at least an inaccessible cardinal number)

of objects. For the ante rem structuralist, the structures themselves, and the places

in the structures, provide the ‘‘ontology.’’

Benacerraf [1965], an early advocate of eliminative structuralism, made much

of the fact that the set-theoretic hierarchy contains many exemplifications of the

natural number structure. He concluded from this that numbers are not objects.

This conclusion, however, depends on what it is to be an object—an interesting

philosophical question in its own right. The ante rem structuralist readily ac-

commodates the multiple realizability of the natural number structure: some

items in the set-theoretic hierarchy, construed as objects, are organized into sys-

tems, and some of these systems exemplify the natural number structure. That is,

ante rem structuralism accounts for the fact that mathematical structures are

exemplified by other mathematical objects. Indeed, the natural number structure

is exemplified by various systems of natural numbers, such as the even numbers

and the prime numbers. From the ante rem perspective, this is straightforward:

the natural numbers, as places in the natural number structure, exist. Some of

them are organized into systems, and some of these systems exemplify the natural

number structure.

On the ante rem view, the main epistemological question becomes: How do

we know about structures? On the eliminative versions, the question is: How do
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we know about what holds in all systems of a certain type? Structuralists have

developed several strategies for resolving the epistemic problems. The psycho-

logical mechanism of pattern recognition may be invoked for at least small, finite

structures. By encountering instances of a given pattern, we obtain knowledge of

the pattern itself. More sophisticated structures are apprehended via a Quine-style

postulation (Resnik), and more robust forms of abstraction and implicit defini-

tion (Shapiro).

None of the structuralisms invoked so far provide for a reduction of the on-

tological burden of mathematics. The ontology of ante rem structuralism is as

large and extensive as that of traditional realism in ontology. Indeed, ante rem

structuralism is a realism in ontology. Only the nature of the ontology is in ques-

tion. Eliminative structuralism also requires a large ontology to keep the vari-

ous branches of mathematics from lapsing into vacuity. Surely there are not

enough physical objects to keep structuralism from being vacuous when it comes

to functional analysis or set theory. Thus, eliminative structuralism requires a

large ontology of nonconcrete objects, and so it is not consistent with ontological

anti-realism.

Hellman’s [1989] modal structuralism is a variation of the underlying theme of

eliminative structuralism which opts for a thorough ontological anti-realism. In-

stead of asserting that arithmetic is about all systems of a certain type, the modal

structuralist says that arithmetic is about all possible systems of that type. A sum

like ‘‘2þ 3¼ 5’’ comes to ‘‘in any possible natural number system S, any object in

the 2-place of S that is S-added to the object in the 3-place of S is the object in the

5-place of S ’’ or ‘‘necessarily, in any natural number system S, any object in the

2-place of S that is S-added to the object in the 3-place of S is the object in the 5-

place of S.’’ The modal structuralist agrees with the eliminative structuralist that

apparent singular terms, such as numerals, are disguised bound variables, but for

the modal structuralist these variables occur inside the scope of a modal operator.

The modal structuralist faces an attenuated threat of vacuity similar to that of

the eliminative structuralist. Instead of asserting that there are systems satisfying

the natural number structure, for example, the modalist needs to affirm that such

systems are possible. The key issue here is to articulate the underlying modality.

(See chapters 17 and 18 in this volume.)

5. Logic

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The above survey broached a number of issues concerning logic and the philos-

ophy of logic. The debate over intuitionism invokes the general validity, within

mathematics, of the law of excluded middle and other inferences based on it
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(chapters 9–11 in this volume), and questions concerning impredicativity emerged

from a version of logicism.

There is traffic in the other direction as well, from logic to the philosophy of

mathematics. Perhaps the primary issue in the philosophy of logic concerns the

nature, or natures, of logical consequence. There is, first, a deductive notion of

consequence: a proposition F follows from a set G of propositions if F can be

justified fully on the basis of the members of G. This is often understood in terms

of a chain of legitimate, gap-free inferences that leads from members of G to F. A
similar, perhaps identical, idea underlies Frege’s development of logic in defense

of logicism, and occurs also in neologicism. To show that a given mathematical

proposition is knowable a priori and independent of intuition, we have to give a

gap-free proof of it. There is also a semantic, model-theoretic notion of conse-

quence: F follows from G if F is true in every interpretation (or model) of the

language in which the members of G are true. Deductive systems introduced in

logic books capture, or model, the deductive notion of consequence, and model-

theoretic semantics captures, or tries to capture, the semantic notion.

There are substantial philosophical issues concerning the legitimacy of the

model-theoretic notion of consequence and over which, if either, of the notions is

primary. Of course, the resolution of these issues depends on prior questions

concerning the nature of logic and the goals of logical study (chapters 21 and 22 in

this volume). If both notions of consequence are legitimate, we can ask about

relations between them. Surely it must be the case that if a proposition F follows

deductively from a set G, then F is true under every interpretation of the language

in which G is true. If not, then there is a chain of legitimate, gap-free inferences

that can take us from truth to falsehood. Perish the thought. However, the con-

verse seems less crucial. It may well be that there is a semantically valid argument

whose conclusion cannot be deduced from its premises.

Issues surrounding higher-order logic, which were also broached briefly in the

foregoing survey, turn on matters relating to the nature(s) of logical consequence.

Second-order logic is inherently incomplete, in the sense that there is no effective

deductive system that is both sound and complete for it. Does this disqualify it as

logic, or is there some role for second-order logic to play? What does this say

about the underlying nature of mathematics? (See chapters 25 and 26 in this

volume.)

Finally, there is a tradition, dating back to antiquity and very much alive

today, that maintains that a proposition F cannot be a logical consequence of a

set G unless F is somehow relevant to G. On the contemporary scene, the main

targets of relevance logic are the so-called paradoxes of implication. One of these

is the thesis that a logical truth follows from any set of premises whatsoever, and

another is ex falso quodlibet, the thesis that any conclusion follows from a con-

tradiction. The extent to which such inferences occur in mathematics is itself a

subject of debate (chapters 23 and 24 in this volume).
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c h a p t e r 2

APRIORITY AND

APPLICATION:

PHILOSOPHY OF

MATHEMATICS IN

THE MODERN PERIOD

lisa shabel

In the modern period1—which might be thought to have begun with a new con-

ception of the natural world as uniquely quantifiable—the term ‘‘science’’ was used

to denote a systematic body of knowledge based on a set of self-evident first prin-

ciples. Mathematics was understood to be the science that systematized our knowl-

edge of magnitude, or quantity. But the mathematical notion of magnitude, and

This material is based upon work generously supported by the National Science

Foundation under grant no. SES-0135441. I am grateful to Gary Hatfield and Stewart

Shapiro for helpful comments and suggestions, and to Sukjae Lee for ongoing discussion.
1 For the purposes of this chapter, I am construing this period in the standard way,

as ranging from Descartes to Kant. I do not intend to offer an encyclopedic account of

the issues in the philosophy of mathematics that faced the modern philosophers, nor

even a survey of each major philosopher’s account of mathematical cognition. I hope,

rather, to tell a story about some key issues in the philosophy of mathematics in the

modern period.
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the methods used to investigate it, underwent a period of radical transformation

during the early modern period: Descartes’s new analytic methods for solving

geometric problems, Vieta’s and Fermat’s systems of ‘‘specious arithmetic,’’ and

Newton’s and Leibniz’s independent discoveries of the calculus are just a few of the

developments in mathematical practice that witness this transformation. These

innovations in mathematical practice inspired similarly radical innovations in the

philosophy of mathematics: philosophers were confronted with a changing math-

ematical landscape, and their assessment of the ontological and epistemological

terrain reveals that both the basic mathematical notions and the philosophers’

tools for comprehending and explaining those notions were in transition.

While mathematical methods were becoming decidedly more analytical and

abstract, they nevertheless remained anchored by a concrete conception of mag-

nitude, the object of mathematics. Ultimately, mathematics was meant to provide

a quantitative description of any quantifiable entity: the number of cups on the

table, the volume and surface area of a particular cup, the amount of liquid the

cup contains, the temperature of the liquid, and so on. The term ‘‘magnitude’’ was

used to describe both the quantifiable entity and the quantity it was determined to

have. That is, for the moderns, magnitudes have magnitude.2 In the seventeenth

and eighteenth centuries, modern mathematical practices had not yet become

sufficiently abstract so as to fully detach the latter notion from the former: math-

ematics was not yet about number or shape (much less set or manifold) conceived

independently from numbered or shaped things. This is not to suggest that the

modern mathematician lacked the resources to represent such quantifiables in

abstract mathematical form; indeed, the period was rich in such representational

innovation. The point is, rather, that modern mathematical ontology included

both abstract mathematical representations and their concrete referents. Accord-

ingly, modern mathematical epistemology could not rest with an account of our

cognitive ability to manipulate mathematical abstractions but had also to explain

the way in which these abstractions made contact with the natural world.

The state of modern mathematical practice called for a modern philosopher of

mathematics to answer two interrelated questions. Given that mathematical on-

tology includes quantifiable empirical objects, how to explain the paradigmatic

features of pure mathematical reasoning: universality, certainty, necessity. And,

without giving up the special status of pure mathematical reasoning, how to ex-

plain the ability of pure mathematics to come into contact with and describe the

2 Thus, for example, the pens on my table are a discrete magnitude having, say, a

magnitude of four units where the unit is one pen; the surface of my desk is a continuous

magnitude having, say, a magnitude of two units where the unit is square meters. For a

discussion of Newton’s conception of magnitude, and of his distinction between quantum

and quantity, see McGuire (1983), p. 75. For a discussion of Wolff and Kant on the same

distinction, see Shabel (2003), pp. 124–126.
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empirically accessible natural world.3 The first question comes to a demand for

apriority : a viable philosophical account of early modern mathematics must explain

the apriority of mathematical reasoning. The second question comes to a demand

for applicability : a viable philosophical account of early modern mathematics must

explain the applicability of mathematical reasoning. Ultimately, then, the early mod-

ern philosopher of mathematics sought to provide an explanation of the relation

between the mathematical features of the objects of the natural world and our

paradigmatically a priori cognition thereof, thereby satisfying both demands.

At the end of the modern period, Kant attempts to meet these demands with

his doctrine of Transcendental Idealism, including arguments for the synthetic

a priori status ofmathematical cognition. In the course of defending his own theory of

how we come to cognize the mathematical world, Kant distinguishes two strains of

thought in his predecessors’ competing accounts of mathematical cognition, which

he determines to be inadequate and misguided.4 Taking the science of Euclidean

geometry, an exemplar of pure mathematical reasoning, to provide substantive

cognition of space, spatial relations, and empirically real spatial objects, Kant claims

that prior attempts to account for our cognitive grasp of geometry and its objects

‘‘come into conflict with the principles of experience.’’5 On Kant’s view, both the

‘‘mathematical investigators of nature’’ (who suppose that the spatial domain of

geometric investigation is an eternal and infinite subsisting real entity) and the

‘‘metaphysicians of nature’’ (who suppose that the spatial domain of geometric

investigation comprises relations among confused representations of real entities

that are themselves ultimately nonspatial) fail to provide a viable account of early

modern mathematics in the sense described above. In particular, the ‘‘mathema-

ticians’’ fail to meet the applicability demand, and the ‘‘metaphysicians’’ fail to meet

the apriority demand.6 Kant’s claim, of course, is that his own theory of synthetic

a priori mathematical cognition meets with greater success.

3 The closest analog to our pure/applied distinction in the modern period is captured

by a distinction between pure and ‘‘mixed’’ mathematics. According to Christian Wolff,

the mixed mathematical disciplines are those that ‘‘consider and measure the particular

magnitude of things found in nature,’’ while the pure or unmixed mathematical dis-

ciplines ‘‘consider only the magnitude as magnitude’’ (Wolff (1965), pp. 866, 868).
4 It is obviously problematic to assess Kant’s early modern predecessors from Kant’s

own perspective. But Kant’s way of articulating his own position in contrast to competing

positions does provide us with a nice framework for understanding the entire period. I will

do my best to present the views of Kant’s predecessors objectively, with the caveat that I

am telling a story in which Kant gets the final word.
5 Kant (1998), B56.
6 These failures are not straightforward since, as we will see below, one can explicate

the view of a ‘‘mathematician’’ like Descartes in a way that seems clearly to satisfy both

demands. The sense in which, according to Kant, the apriority and applicability demands

are not met by any view prior to his own will be explained in section 3.
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In what follows, I will discuss these three major attempts to provide a viable

philosophical account of early modern mathematical practice. Descartes and Newton

stand as examplesof the ‘‘mathematicians’’; Leibniz exemplifies the ‘‘metaphysicians’’;

and Kant sees himself as correcting the common error that, on his view, leads both

‘‘mathematician’’ and ‘‘metaphysician’’ astray. I will begin by providing a brief ac-

count of a relevant aspect of early modern mathematical practice, in order to situate

our philosophers in their historical and mathematical context.

1. Representational Methods

in Mathematical Practice

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As noted above, the modern mathematician’s task included systematizing the

science of quantity. This required, first and foremost, a systematic method for rep-

resenting real, quantifiable objects mathematically, as well as a systematic method

for manipulating such representations. The real, quantifiable objects were con-

ceived to include both discrete magnitudes, or those that could be represented nu-

merically and manipulated arithmetically, and continuous magnitudes, or those

that could be represented spatially and manipulated geometrically. These cate-

gories, however, were neither fully determinate nor mutually exclusive; they did

not serve to demarcate two distinct sets of real, quantifiable objects because, for

example, a given magnitude might be considered with respect to both shape and

number, and thus might be treated geometrically for one purpose and arith-

metically for another. Mathematical progress required a representational system

that was adequate to symbolize any and all quantifiable features of the natural

world in such a way that comparisons could be easily made among them. More-

over, mathematical progress required that such a representational system be as ab-

stract and general as possible while nevertheless retaining its purchase on the

concrete and particular quantifiables of the natural world.

For a simple example, consider a bag of marbles. A geometric diagram of a

sphere can be taken to represent the shape of any individual marble and, indeed,

any spherically shaped object. This sort of representation can be mathematically

manipulated using classical techniques of Euclidean solid geometry, but its inter-

mathematical utility is limited: while a diagram of a sphere can be useful in plainly

geometric reasoning about spheres (and cross sections thereof, tangents thereto,

etc.), it is impotent for the purpose of more abstract reasoning, such as might be

required mathematically to compare the sphere to nonspatial magnitudes. A qual-

itative geometric diagram can represent a magnitude qua spatial object, but cannot

aid us in abstracting from spatiality in order to represent it as a discrete quantity.
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Moreover, while a number can be taken to represent the determinate ratio of all of

the marbles in the bag to a single marble, it can do so only upon specification of a

marble as the unit of measure. On the modern conception, a number ‘‘arises’’

upon consideration of a group of things of a particular kind in relation to a single

thing of that kind and thus is, in a sense, context-sensitive: the use of number as a

quantitative tool is inextricably tied to the choice of unit, which is not fixed. On

this conception, it follows that numbers are representationally inflexible: it is

difficult to see how to make quantitative comparisons among magnitudes of dif-

ferent kinds. More generally, on this conception the possibility of a notion of

number that ranges beyond the positive integers appears remote.

Early modern innovations in representational flexibility began with Descar-

tes’s observation that we can represent and compare magnitudes uniformly and in

the simplest possible terms by formulating ratios and proportions between and

among their ‘‘dimensions.’’ ‘‘By ‘dimension,’ ’’ Descartes writes, ‘‘wemean simply a

mode or aspect in respect of which some subject is considered to be measurable.’’7

According to Descartes, dimensionality comprises countless quantitative features

which include length, breadth, and depth, but also weight, speed, the order of

parts to whole (counting), and the division of whole into parts (measuring). More

importantly, a finite straight line segment is identified as the most versatile tool

for representing any dimension of magnitude; any and all quantitative dimensions

can be represented simply and uniformly via configurations and ratios of straight

line segments.8 Notably, in Descartes’s system the unit segment, to which any

other representative segment stands in relation, is problem-specific: for solution

of a particular problem ‘‘we may adopt as unit either one of the magnitudes al-

ready given or any other magnitude, and this will be the common measure of all

the others.’’9 Once the unit magnitude is chosen and represented as a particular

finite line segment, representations of all other relevant magnitudes can be con-

structed in relation to that unit.10

7 Descartes (1985), Rules, AT 10:447.
8 Descartes discusses this procedure in rules 14 through 18 of his Rules for the Di-

rection of the Mind. Descartes (1985) AT 10: 438–468. For further discussion see Shabel

(2003), pp. 65–67.
9 Descartes (1985), Rules, AT 10:450.
10 Thus, Descartes’s unit segment cannot be identified with the real unit interval

[0, 1], nor with sections of the orthogonal number lines that we use to construct what

we anachronistically call the ‘‘Cartesian’’ coordinate system. Descartes’s unit segment is a

line segment of arbitrary length that stands for whatever particular magnitude functions as

the unit in a particular problem. Even if the representational system were generalized and

a fixed unit segment were chosen to represent the unit of magnitude functioning in any

mathematical context, nevertheless the Cartesian unit segment would still serve as unit by

virtue of the ratio in which it stands to the other magnitudes of the problem, as evidenced

by their relative lengths, but not by virtue of its structure as a dense linear ordering.
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To solve a mathematical problem, one thus begins by identifying and repre-

senting the magnitudes involved, no matter whether they be determinate or

indeterminate, known or unknown, geometric or arithmetic, extended or multi-

tudinous, continuous or discrete. One chooses a unit of measure and conceives

each relevant magnitude in general terms—in abstraction from the object or group

of objects that is ordered or measured but in relation to the chosen unit—by

following Descartes’s technical constructive procedures. Algebraic symbols can

then be used as a heuristic aid for manipulating the line segments, and algebraic

equations formulated to express the mathematical relations in which the segments

stand to one another.11 Famously, the Cartesian representational system liberates

formerly heterogeneous magnitudes: on the Cartesian system, the multiplication of

two line segments yields another line segment, rather than the area of a rectangle. It

follows that products, quotients, and roots of linear magnitudes can be construed

to stand in proportion to the magnitudes themselves; likewise, the degree of al-

gebraic variables need not be taken to indicate strictly geometric dimensionality.

Descartes’s own use of his representational system was primarily directed at

solving problems in geometry,12 though he certainly thought it adequate for other

mathematical manipulations. Modern mathematicians who adopted the Cartesian

system emphasized its utility across mathematical disciplines, and used straight lines

to represent numbers for arithmetic and number-theoretic purposes. Once a single

straight line is designated as unity, any positive integer can be straightforwardly

represented as a simple concatenation of units. One advantage of the Cartesian rep-

resentational system is that it allows the notion of number to expand beyond the

positive integers so constructed: numbers can now be conceived as ratios between

line segments of any arbitrary length and a chosen unit. Rational numbers are iden-

tified as those segments that are (geometrically) commensurable with unity, and

irrational numbers those that are incommensurable. These representational inno-

vations witness a number concept in transition: the moderns are able to treat ra-

tional and irrational magnitudes numerically, but the notion of number remains

tied to the geometric concept of commensurability. Importantly, the moderns are

unable to use the Cartesian representational system to conceive negative quantities, a

disadvantage of the system. Consequently, negative quantities are variously deemed

‘‘absurd,’’ ‘‘privative of true,’’ ‘‘wanting reality,’’ and ‘‘not real.’’

Actual mathematical progress in the modern period might be said to outpace

the fundamental and foundational tools and concepts available to mathematicians

11 For a discussion of the details of Descartes’s technical constructive procedures, see

Shabel (2003), pp. 65–69.
12 His Géometrie opens with the claim ‘‘Any problem in geometry can easily be

reduced to such terms that a knowledge of the lengths of certain straight lines is sufficient

for its construction’’ (Descartes (1954), p. 2).
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at the time. Geometric problems far more sophisticated than the ancients could

have imagined are solved on ancient geometric foundations; algebraic methods

are developed and fruitfully applied long before algebra is conceived to be a math-

ematical discipline in its own right, with its own domain of problems distinct

from those of arithmetic and geometry; number-theoretic investigations and the

discovery of the calculus proceed despite the foundational inadequacy of a num-

ber concept that cannot handle negative or infinitesimal quantities with logical

rigor.13 In this sense, early modern mathematical practice awaits deep philosoph-

ical response in the nineteenth century, when logical and mathematical foundations

are reassessed in the face of the striking developments in mathematical practice in

the seventeenth and eighteenth centuries. The early modern philosopher remains

occupied by the more basic philosophical problems raised by a newly math-

ematized natural world.14 It is to those problems, and their solutions, that we

now turn.

2. ‘‘Mathematicians,’’

‘‘Metaphysicians,’’ and

the ‘‘Natural Light’’

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the Fifth Meditation of his Meditations on First Philosophy, Descartes famously

argues that we have a clear and distinct perception of the essence of material sub-

stance, and that that essence is pure extension. According to Descartes, our clear

and distinct perception of the immutable and eternal natures of all material ob-

jects, which we find represented in our idea of extension, is the basis for sure and

certain knowledge of those objects. This knowledge is systematized by our pure

mathematics, in particular by geometry, which thus provides us with an a priori

13 The calculus is based on a nonnumerical notion of the infinitesimally small dif-

ferentials between magnitudes conceived as finite line segments, called differences by

Leibniz and moments by Newton. See Struik (1986), pp. 272, 300–301.
14 Berkeley’s critique of the techniques of the calculus is an obvious exception to this

generalization, though I believe a case could be made that Berkeley’s criticisms prefigured

and anticipated issues that did not become fully transparent until the nineteenth century.

For this reason, and also due to the scope of this chapter, I have chosen not to address

Berkeley’s philosophy of mathematics here. For discussion of Berkeley’s philosophy of

mathematics, see Jesseph (1993). For discussion of the modern debates that are the pre-

cursors to the nineteenth-century debates on the foundations of the calculus, see Mancosu

(1996).
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science of the nature of the corporeal world. For Descartes, then, the essential

nature of the material world is perfectly mathematical and perfectly knowable.15

Descartes begins his Fifth (and penultimate) Meditation, ‘‘The Essence of

Material Things, and the Existence of God Considered a Second Time,’’ by pro-

posing to investigate ‘‘whether any certainty can be achieved regarding material

objects.’’16 Before demonstrating that we have certain knowledge of the real ex-

istence of material things, as he will do in the Sixth (and final) Meditation, Des-

cartes must first investigate his ideas of material things: ‘‘But before I inquire

whether any such things exist outside me, I must consider the ideas of these

things, in so far as they exist in my thought, and see which of them are distinct,

and which confused.’’17 He proceeds to show that his clear and distinct ideas of

extension provide insight into ‘‘that corporeal nature which is the subject-matter

of pure mathematics.’’18

First, Descartes confirms the clarity and distinctness of his idea of quantity, in

particular ‘‘the extension of the quantity (or rather of the thing which is quan-

tified) in length, breadth, and depth.’’ He continues, ‘‘I also enumerate various

parts of the thing, and to these parts I assign various sizes, shapes, positions and

local motions; and to the motions I assign various durations.’’19 The clarity and

distinctness of our general idea of quantity is best understood by considering the

mathematically fundamental representations discussed above, in section 1. For

Descartes, particular quantities are imaginable via line segments; lengths, breadths,

and depths, as well as enumerations of parts, sizes, shapes, positions, motions and

durations, are, qua quantities, all mathematically represented with straight line seg-

ments, relations among straight line segments, and algebraic equations expressing

those relations. These precise and perspicuous mathematical symbols witness the

15 On its surface, it should appear that Descartes’s account of our mathematical

cognition easily satisfies both the applicability and the apriority demands. Below, we will

discuss the specific sense in which—according to Kant—it fails to satisfy the applicability

demand.
16 Descartes (1985), AT 7:63.
17 Descartes (1985), AT 7:63.
18 Descartes (1985), AT 7:71. I take it that whereas the Sixth Meditation demonstrates

the existence of material things, the Fifth Meditation shows that if material things exist,

then they have the properties that I clearly and distinctly perceive them to have, that is, all

the properties which ‘‘viewed in general terms, are comprised within the subject-matter of

pure mathematics.’’ See passages at AT 7:65 and AT 7:80.
19 Descartes (1985), AT 7:63. In this passage Descartes actually speaks of quantity as

that which he distinctly ‘‘imagines.’’ Throughout the Fifth Meditation he moves back and

forth between his imaginings and his ideas, but his conclusions are formulated with re-

spect to the clear and distinct deliverances of the intellect. For a discussion of the relation

between the imagination and the intellect, and their roles in our knowledge of geometry,

see Hatfield (1986), pp. 62–63.
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quantitative properties they symbolize. But our perception of both these symbols

and the real quantitative properties they symbolize depends on our having clear

and distinct perception of pure extension and its modes—that is, on an idea of

quantity in general that is accessible to our intellect.

Descartes claims further that his perception of particular features of quantity

is in harmony with his very own nature, ‘‘like noticing for the first time things

which were long present within me although I had never turned my mental gaze

on them before.’’20 This is a claim that is buttressed by the ‘‘wax argument’’ of the

Second Meditation. There Descartes identifies extension, or extendedness, as that

feature of the wax that makes it a material thing, its nature or essence. More

important, perhaps, he identifies his own intellect as that cognitive tool that al-

lows him to perceive the extendedness of all material things: Descartes’s per-

ception of the essential feature of material substance is due neither to sensation

nor to imagination, but to a ‘‘purely mental scrutiny’’ which enables his clear and

distinct perception of pure extension.

Descartes combines these results with his more general (and independently

demonstrated) conclusions that what he clearly and distinctly perceives is true;

that his idea of God is innate; that God exists; and that God is no deceiver. Since

Descartes has claimed that he clearly and distinctly perceives the quantitative fea-

tures of material objects, it follows that these quantitative properties are ‘‘true’’—

that is, that material objects (if they exist) really do have the quantitative properties

Descartes perceives them to have. The existence of a nondeceiving God under-

writes Descartes’s perception in a strong sense: his intellectual capacity for clear

and distinct perception is a God-given ‘‘natural light’’ providing him with the

ability to access mathematical truths, God’s own ‘‘free creations.’’21

Upon demonstrating in the Sixth Meditation that material substance exists

and is really distinct from immaterial substance, Descartes completes his Medita-

tive project. In the process of pursuing his broad metaphysical and epistemological

goals, Descartes can be understood to have articulated a philosophy of mathe-

matics according to which we have a priori knowledge of mathematical truths

about real, extramental material substance. In particular, our intellect affords us

clear and distinct perception of the quantitative features of mind-independent

entities, which we represent to ourselves via ideas of extension. Moreover, we know

that our ideas of extension perfectly describe the really extended material world—

that is, that our ideas of extension are in harmony with the really extended mat-

ter that is their object.22 Descartes’s epistemological and metaphysical conclusions

20 Descartes (1985), AT 7:64.
21 More specifically, the existence of a good God underwrites Descartes’s ability to

retain mathematical knowledge that is based on clear and distinct perception. See the

argument at AT 7:70.
22 Descartes uses the harmony metaphor at AT 7:64.
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vis-à-vis mathematical objects are thus entwined: he has identified a mental faculty,

the rational intellect, to be a cognitive tool for accessing mind-independent ma-

terial natures. Since, on Descartes’s view, those natures are quantitative and math-

ematically describable, he conceives the ‘‘natural light of reason’’ to illuminate the

metaphysically essential features of the mind-independent world and to provide us

with ‘‘full and certain knowledge . . . concerning the whole of that corporeal nature

which is the subject-matter of pure mathematics.’’23

It appears that if Descartes’s arguments are accepted, his rationalist philos-

ophy of mathematics satisfies both of the demands on a viable account of early

modern mathematical practice, identified above. He accounts for the apriority of

mathematics with his theory that the intellect, a faculty of mind independent of

the bodily faculties of imagination and sensation, provides direct access to innate

mathematical ideas of eternal and immutable natures. He accounts for the appli-

cability of mathematical reasoning by identifying the essence of the natural ma-

terial world with pure extension, the very object of our innate mathematical ideas:

an explanation of how a priori mathematics applies to the natural world is easily

forthcoming from a theory that directly identifies the essential features of the

natural world with the subject matter of pure mathematics. Since, on Descartes’s

view, our a priori mathematical knowledge systematizes mathematical truths

about a mind-independent and really extended natural world, he thus appears to

have satisfied both the apriority and the applicability demands. It will follow from

Kant’s critique, however, that a theory like Descartes’s goes too far in satisfying

the applicability demand: the mathematical sciences as Descartes understands

them apply far beyond the bounds of what Kant takes to be the limits of our

‘‘possible experience.’’ To see why this is so, it will be helpful to consider the views

of another ‘‘mathematician,’’ and Kant’s real target, Isaac Newton.

Newton did not concede all (or even many) of Descartes’s metaphysical and

physical conclusions; indeed, he spends much of his famous essay ‘‘On the Gravity

and Equilibrium of Fluids’’24 disputing Descartes’s theory of space. On Descartes’s

view, space is not distinct from the extended material world of spatial things:

There is no real distinction between space, or internal place, and the corporeal

substance contained in it; the only difference lies in the way in which we are

accustomed to conceive of them. For in reality the extension in length, breadth

and depth which constitutes a space is exactly the same as that which constitutes a

body.25

Thus, for Descartes, any knowledge we acquire via geometrical cognition of space

is, likewise, knowledge of bodily extension. By contrast, Newton conceives space

23 Descartes (1985), AT 7:71.
24 Newton (1962).
25 Descartes (1985), Principles, AT 8:45.
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to be distinct from bodies, arguing that we can clearly conceive of extension

independent of bodies: ‘‘. . .we have an exceptionally clear idea of extension, ab-

stracting the dispositions and properties of a body so that there remains only the

uniform and unlimited stretching out of space in length, breadth and depth.’’26 It

follows that, for Newton, our geometrical cognition of space affords us knowledge

of an entity that is infinitely extended, continuous, motionless, eternal, and im-

mutable, but that is not itself corporeal and that can be conceived as empty of

bodies. Moreover, space is a unified whole of strictly contiguous parts: the single

infinite space encompasses every possible spatial figure and position that a bodily

object might ‘‘materially delineate.’’27 Bodies, for Newton, are the movable and

impenetrable entities that occupy space, and thus provide us with corporeal in-

stances of spatial parts.

Thus, Descartes and Newton disagree in a deep sense about how to under-

stand the ontology of space and matter, about whether extension can be distin-

guished from corporeal reality, and thus about whether we have claims to

mathematical knowledge of space that are distinct from our claims to mathe-

matical knowledge of spatial things.28 For Descartes, our knowledge of quantifi-

able things just is knowledge of the nature of quantity in general, whereas for

Newton our knowledge of quantifiable things (which occupy parts of space) is

acquired via knowledge of the general nature of extension, knowledge of how

parts of space relate to space conceived as an infinite whole. But Descartes and

Newton nevertheless agree in their accounts of how we come to acquire knowl-

edge of what they both conceive to be an extramental reality that is the ultimate

subject matter of pure mathematics. Newton follows Descartes in positing a

faculty of understanding as the real source of mathematical cognition, a tool with

which we can comprehend the eternal and immutable nature of extension, which

he conceives as infinite space.29 While sensation allows us to represent ‘‘materially

delineated’’ bits of extension (i.e., bodies), and imagination allows us to represent

indefinitely great extension, according to Newton only the faculty of under-

standing can clearly represent the true and general nature of space/extension.30

26 Newton (1962), p. 132
27 Newton (1962), p. 133.
28 They also disagree about infinite versus indefinite extension, and about how to

understand the connection between created extension and the mind of God. These are

issues that I cannot pursue here.
29 Newton (1962), p. 134.
30 McGuire makes this point: ‘‘In this sense, then, the understanding possess [sic] a

non-sensuous representation of infinite distance which has its ultimate ground in the real

but uncreated nature of extension itself ’’ (1983, p. 107). According to Newton, the un-

derstanding can likewise represent the finite but infinitesimally small quantities that are the

basis of his calculus: ‘‘fluxions are finite quantities and real, and consequently ought to

have their own symbols; and each time it can conveniently so be done, it is preferable to
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Newton, like Descartes, thus accounts for our applicable a priori mathematical

cognition by claiming that we have a clear perception of the mathematical features

of an extramental natural world. Both Descartes and Newton conceive this clear

perception of the mathematical features of an extramental natural world to be

illuminated by the natural light of reason, a metaphor for the sense in which our

faculty of understanding is, on their views, an acute mental vision bestowed by a

nondeceiving God.31 As before, it appears that Newton’s account of mathematical

cognition satisfies both the apriority and the applicability demands: according to

Newton, we have the necessary cognitive tools to acquire a priori knowledge of the

mathematical features of the natural world. As noted, however, Kant considered

Newton’s account of mathematical cognition—representative of what he took

to be the ‘‘mathematician’s’’ position—to be deeply inadequate. He considered

Leibniz’s alternative account—representative of what he took to be the ‘‘meta-

physician’s’’ position—just as problematic, as we will see in detail below.

Famously, Leibniz claims that the ultimate constituents of reality, the true

substances, are monads: partless, simple, sizeless entities that have perceptual states,

like minds. It follows that, for Leibniz, no extended thing is an ultimate con-

stituent of reality and the extended natural world is merely a ‘‘phenomenon’’: our

perceptions of a spatial material world are confused representations of a meta-

physically fundamental realm of nonspatial monads. Space, time, and ‘‘the other

entities of pure mathematics’’ are ‘‘always mere abstractions.’’ Their perfect uni-

formity indicates that they are not intrinsic denominations, internal properties of

things, but extrinsic denominations, orderings or relations among things: ‘‘[Space]

is a relationship: an order, not only among existents, but also among possibles as

though they existed. But its truth and reality are grounded in God, like all eternal

truths.’’32 While it might be accurate to say that, on Leibniz’s view, mathematics

describes relations among material entities, it is important to remember that for

Leibniz material entities are exhausted by our confused phenomenal representa-

tions of a perceptually inaccessible underlying reality. This underlying monadic

realm is populated by entities that are not mathematically describable; monads as

Leibniz understands them cannot be identified with mathematical points, either

express them by finite lines visible to the eye rather than by infinitely small ones’’ (1982,
p. 107). Of course, that these finite lines be literally ‘‘visible to the eye’’ is, on his own

view, irrelevant. What matters is that the finite lines be mathematically manipulable

symbols of infinitely small but nevertheless real quantities, the ultimate subject matter of

the calculus.
31 As mentioned above, God plays different roles in the epistemological systems of

Descartes and Newton; this difference cannot be explored here. For discussion, see

McGuire (1983) and Stein (2002).
32 Leibniz (1996), II.xiii.149.
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geometric or numeric. Given his monadology, Leibniz thus owes us an account of

the status of mathematical claims to knowledge: Since our metaphysical knowl-

edge of reality does not include mathematical knowledge, how do we acquire

mathematical knowledge, and what is it about?

Leibniz expresses an important component of his mature philosophy of

mathematics in a letter to Queen Sophie Charlotte of Prussia,33 his student,

friend, and epistolary interlocutor. There he explains his position that an internal

‘‘common sense’’ allows us to form those clear and distinct notions that are for

Leibniz the ultimate subject matter of pure mathematics, such as number and

shape. These are ideas of qualities more ‘‘manifest’’ than those sensible and ‘‘oc-

cult’’ qualities we access via the clear but confused notions of a single sense, such

as colors, sounds, and odors. The notions we acquire through the ‘‘common

sense’’ describe qualities accessible to more than one external sense: ‘‘Such is the

idea of number, which is found equally in sounds, colors, and tactile qualities. It is

in this way that we also perceive shapes which are common to colors and tactile

qualities. . . .’’34 Leibniz further identifies the imagination as the faculty of mind

that operates on the clear and distinct notions of the common sense, the ideas that

arise from the perception of qualities common to more than a single external

sense, to produce our conceptions of mathematical objects:

. . . these clear and distinct ideas [of the common sense], subject to imagination,

are the objects of the mathematical sciences, namely arithmetic and geometry,

which are pure mathematical sciences, and the objects of these sciences as they

are applied to nature, which make up applied (mixtes) mathematics.35

He adds, however, that sense and imagination must be augmented by under-

standing in order to attain a full conception of mathematical objects and ‘‘to build

sciences from them.’’ It is, according to Leibniz, the understanding or reason that

assures that the mathematical sciences are demonstrative and that mathematical

truths are universally true, for without the application of such a ‘‘higher’’ faculty

of reasoning, the mathematical sciences would consist merely of observations and

inductive generalizations therefrom. Indeed, Leibniz claims that despite the fact

that our notions of mathematical objects originate in sensible experience, nev-

ertheless a demonstrative mathematical truth is fully ‘‘independent of the truth or

the existence of sensible and material things outside of us.’’ Thus, for Leibniz,

mathematical truths describe features of our sensible experience despite finding

their justification in the understanding alone.

33 Leibniz (1989), pp. 186–192. This letter is also known as ‘‘On What Is Independent

of Sense and Matter.’’ For more discussion of this letter and Leibniz’s philosophy of

mathematics, see McCrae (1995).
34 Leibniz (1989), p. 187.
35 Leibniz (1989), pp. 187–188.
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Leibniz resolves this apparent tension—between the sensible source of our

notions of mathematical objects and the intelligible source of our justification of

mathematical truths—with recourse to the ‘‘natural light’’ of reason. The ‘‘natural

light’’ of reason is solely responsible for our recognition of the necessary truth of

the axioms of mathematics and for the force of demonstrations based on such

axioms. Mathematical demonstration thus depends solely on ‘‘intelligible notions

and truths, which alone are capable of allowing us to judge what is necessary.’’36

For Leibniz, then, our pure mathematical knowledge is formal knowledge of the

logic of mathematical relations, which are not directly dependent on any sensible

data. This pure mathematical knowledge might be described as verified by our

sensible experience, but ultimately our ideas of the mathematical features of sensible

things conform to the mathematical necessities that we understand by the natural

light:

[Experience is] useful for verifying our reasonings as by a kind of proof. . . .But,
to return to necessary truths, it is generally true that we know them only by

this natural light, and not at all by the experiences of the senses.37

According to Leibniz, we have intelligible knowledge by the ‘‘natural light’’ of

‘‘what must be’’ and ‘‘what cannot be otherwise’’—that is to say, of necessary

(mathematical) truths such as the law of noncontradiction and the axioms of ge-

ometry. We can apply these laws to particular sensible qualities with our ‘‘com-

mon sense,’’ which represents for us particular ideas of magnitude and multitude,

thereby instancing universal mathematical truths. But, on this picture, we can dis-

cover necessary truths about many more things than we can possibly imagine, in

Leibniz’s sense: there are mathematical objects about which we can deduce math-

ematical truths but which our ‘‘common sense’’ cannot access. For example, even

though ‘‘one finds ordinarily that two lines that continually approach finally

intersect,’’ the geometer nevertheless makes use of asymptotes, ‘‘extraordinary

lines . . . that when extended to infinity approach continually and yet never in-

tersect.’’38 Likewise, the arithmetician operates with negative magnitudes, the

analyst with infinitesimally small magnitudes, the algebraist with imaginary roots

of magnitudes. Leibniz calls such notions ‘‘useful fictions,’’ that is, notions which

cannot be found in nature and which may seem even to contradict our sensible

experience, but which nevertheless have obvious mathematical utility. He is in a

unique position to account for them, despite the general inadequacies of modern

symbolic systems to do so, because of another aspect of his approach to mathe-

matics: his formalism.

36 Leibniz (1989), p. 189.
37 Leibniz (1989), p. 189.
38 Leibniz (1989), p. 191.
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Leibniz’s formalist attitude toward mathematical reasoning allows him to

conceive the symbols of arithmetic, algebra, and analysis independently from the

geometric figures they were originally devised to stand for, thus allowing those

symbols to be manipulated formally with only ‘‘intermittent attention’’ paid to

the figures that are their referent.39 The use of ‘‘fictional’’ mathematical notions is

thus warranted rather than deemed absurd, since, on Leibniz’s view, mathematical

formalisms are detachable from their domain of application. In this respect,

Leibniz can construe the objects of mathematical reasoning more abstractly than

could either Descartes or Newton, both of whom used formal symbolic manip-

ulation only as an aid to fundamentally geometric reasoning. Since Leibniz, by

contrast, identifies the systematization of logical reasoning as the primary aim of

the mathematical sciences, and separates his claims to mathematical knowledge

from his claims to metaphysical knowledge, he can disregard the suggestion that

metaphysical absurdities arise out of the use of effective mathematical symbol-

isms, thus initiating a transition to a more abstract and formal conception of the

mathematical sciences.40

How, then, does Leibniz’s account of mathematical cognition fare in the face

of our two demands? His account seems to satisfy the apriority demand, since the

role of the understanding in a mathematical context is specifically to provide us

with knowledge of the mathematical axioms and the laws of logic. On Leibniz’s

view, then, our claims to mathematical knowledge are a priori because they are all

founded on and deduced from universal and necessary truths known to us by the

‘‘natural light.’’ Moreover, according to Leibniz, these claims to mathematical knowl-

edge find application in the natural world: the clear and distinct deliverances of

the ‘‘common sense’’ demarcate the domain of mathematical applicability. That

our ‘‘common sense’’ notions are not notions of a metaphysically fundamental

monadic realm is of no bother to Leibniz’s account of mathematical cognition:

despite the fact that what is metaphysically fundamental is for Leibniz not math-

ematically describable, we nevertheless have substantive mathematical knowledge

of relations among objects of the phenomenal natural world.

We are now in a position to understand and appreciate Kant’s critique of the

philosophies articulated by the ‘‘mathematician’’ and the ‘‘metaphysician’’ who

preceded him, and to explicate his alternative account of mathematical cognition.

39 Leibniz (1996), II.xxi.186.
40 Leibniz was skeptical that algebra could fully systematize this more formal con-

ception of mathematics, stating in the New Essays that ‘‘algebra falls far short of being the

art of invention, since even it needs the assistance of a more general art’’ (1996, IV.xvii.
489). He implies in the same passage that the ‘‘general procedures’’ of his infinitesimal

calculus are more promising, though he speaks elsewhere of an even more general math-

ematical art.
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3. Kant’s Response

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A coherent philosophy of mathematics—including an account of prevailing

mathematical practice and an articulation of the epistemological and metaphysical

conditions on the success of such practice—is a vital component of Kant’s critical

project. In an important portion of the ‘‘Transcendental Aesthetic,’’41 Kant pro-

vides the general outlines of his philosophy of mathematics, and touts its virtues,

by drawing a contrast between his view and those held by his predecessors. Kant’s

claims in this section are that the ‘‘metaphysician’s’’ account of mathematical

cognition has failed the apriority demand; that the ‘‘mathematician’s’’ account has

failed the applicability demand; and that his own view satisfies both.

Famously, Kant’s own view includes the doctrine of Transcendental Idealism,

according to which space and time are the pure forms of our sensible intuition,

and the sources of synthetic a priori cognitions.42 Mathematics, geometry in par-

ticular, provides a ‘‘splendid example’’ of such cognitions: according to Kant, ge-

ometry is the science of our pure cognition of space and its relations, and provides

us with a priori knowledge of the spatial form of the objects of our possible ex-

perience, those sensible things about which we can make objectively valid judg-

ments.43 As we will see in more detail below, Kant claims that his own account

fully satisfies both the apriority and the applicability demands. According to Kant,

mathematical cognition is cognition of our own intuitive capacities, of our own

pure intuitions. Since Kant argues that our intuition of space is prior to and in-

dependent of our experience of empirical spatial objects, geometric cognition is

paradigmatically a priori; thus his account satisfies the apriority demand. But, on

Kant’s view, mathematical cognition is also cognition of the empirical objects that

we represent as having spatiotemporal form, that is, of the objects of our possible

experience. Inasmuch as we have a priori geometric cognition of space, we have a

priori geometric cognition of the spatial form of real spatial objects. The domain

of our a priori mathematical cognition extends beyond the pure intuition of space

to the formal conditions under which we represent empirical objects as being in

space, thus allowing a priori mathematical cognition to find application in the

realm of real empirical objects. Importantly, for Kant our a priori mathematical

cognition extends to, but not beyond, the bounds of possible experience: a priori

41 Kant (1998), A39/B56–A41/B58.
42 See Shabel (2004) for a discussion of how this particular claim relates to the

general doctrine of Transcendental Idealism.
43 For the sake of simplicity, and because of the direct connection between space and

mathematical (geometric) cognition, I will concentrate here on Kant’s views of space and

geometry, and will not discuss his account of time or other mathematical disciplines. For

discussion of Kant’s theory of algebra, see Shabel (1998).
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mathematical cognition applies to all and only the spatiotemporal objects of a

possible experience.

Kant defends his own account of mathematical cognition with positive argu-

ments in its favor (some of which we will examine below) as well as with his critique

of competing accounts. Having proclaimed the transcendental ideality of space and

time, and offered an associated account of the apriority and applicability of our

mathematical cognition, he objects that ‘‘Those, however, who assert the absolute

reality of space and time, whether they assume it to be subsisting or merely in-

hering, must themselves come into conflict with the principles of experience.’’44

Kant here takes both of his opponents to defend the absolute reality of space; on this

basis, he judges that both opponents fail to solve the problem of identifying the a

priori principles of our experience of the natural world.45 But the details of Kant’s

critique, and the contrasting ways in which his opponents fail where he succeeds,

emerge only upon discussion of what distinguishes those who ‘‘assume [space] to

be subsisting,’’ the ‘‘mathematical investigators of nature,’’ from those who ‘‘as-

sume [space] to be . . .merely inhering,’’ the ‘‘metaphysicians of nature.’’ We will

begin by examining Kant’s objections to the ‘‘metaphysicians,’’ proceed to his

objections to the ‘‘mathematicians,’’ and, finally, rehearse his own view.

Kant claims that Leibniz, Wolff, and other ‘‘metaphysicians of nature’’ hold

‘‘space and time to be relations of appearances . . . that are abstracted from ex-

perience though confusedly represented in this abstraction. . . .’’46 On this view,

according to Kant, our notions of space and time, the alleged source of our math-

ematical cognition, are ‘‘only creatures of the imagination, the origin of which

must really be sought in experience.’’ The representations that lie at the basis of

mathematical reasoning and cognition are abstracted by the imagination from or

out of our sensible contact with appearances, and thus have an empirical origin.

On this view, space and time are ‘‘only inhering’’ because they are relations among

objects and not self-subsisting entities; our representations of space and time are

constructed by abstraction from spatiotemporal relata. Note that from Kant’s

perspective, space and time are on this relationist view nevertheless ‘‘absolutely

real’’: the objects or appearances that stand in such spatiotemporal relations are

conceived to be the source of our notions of space and time and, thus, to be

‘‘absolutely real,’’ that is, independent of what Kant takes to be transcendental

conditions on experience. It follows from the metaphysicians’ view that the sub-

ject matter of mathematics is derived from our experience of the natural world,

and is not a factor in our own construction of that experience.

44 Kant (1998), A39/B56.
45 This should make clear the sense in which Kant sees his opponents’ project from

the perspective of his own. His criticism of their accounts of mathematical cognition is not

wholly objective, since they would surely have formulated the ‘‘problem’’ quite differently.
46 Kant (1998), A40/B57. Subsequent quotations are from this same passage.
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Kant admits that on such an account, mathematical cognition does not exceed

what he takes to be the limits of possible experience: if mathematical cognition

derives directly from our engagement with the realm of appearances, then our

application of mathematical cognition to all and only appearances seems guar-

anteed. This is a virtue of the metaphysicians’ account and explains the sense in

which Kant accepts it as satisfying the applicability demand. But the metaphysi-

cians’ account has, according to Kant, the fatal defect of not satisfying the apriority

demand. As Kant puts it, the metaphysicians ‘‘must dispute the validity or at least

the apodictic certainty of a priori mathematical doctrines in regard to real things

(e.g., in space), since this certainty does not occur a posteriori. . . .’’ Here Kant

claims that because the original source of mathematical cognition is, on the

metaphysicians’ view, experiential, our geometric cognition of the spatial features

of empirical objects must be a posteriori. This might seem not to be a problem for

the metaphysician; he could reply to Kant’s criticism by reiterating his account of

our a priori knowledge of the laws and axioms of formal mathematics, available to

us via the understanding. Thus the metaphysician would claim to satisfy the

apriority demand by having given an account according to which some mathe-

matical cognition is a priori (e.g., knowledge of laws, axioms, and theorems de-

rivable therefrom) while some is a posteriori (e.g., knowledge of the mathematical

features of real objects to which those theorems might be thought to apply).

But this sort of response misses the real thrust of Kant’s criticism. Kant claims

that the metaphysicians ‘‘can neither offer any ground for the possibility of a priori

mathematical cognitions . . . nor can they bring the propositions of experience into

necessary accord with those assertions.’’ According to Kant, the metaphysicians’

account serves to detach the two primary features of mathematical cognition—

apriority and applicability—in such a way that there is no explanatory or mean-

ingful harmony between the universal and a priori mathematical laws known by

the understanding and the substantive but a posteriori mathematical cognition of

the natural world acquired via the ‘‘common sense.’’ Kant’s charge is that formal

a priori mathematical cognition as the metaphysician understands it is alto-

gether isolated from the domain of objects taken to be mathematically and sci-

entifically describable; universal and a priori mathematical truths can only be

about ‘‘useful fictions’’ and not ‘‘real things.’’ If our account of a priori mathe-

matical cognition does not give us a priori knowledge of the objects of our pos-

sible experience, then our account has failed the apriority demand, at least as Kant

conceives it.

Proceeding to the ‘‘mathematicians,’’ Kant claims that ‘‘they must assume

two eternal and infinite self-subsisting non-entities (space and time) which exist

(yet without there being anything real) only in order to comprehend everything

real within themselves.’’ Kant here describes Newton’s absolutist view that space is

a container existing independently of the real spatial objects it contains, though

is not itself a real empirical entity. Kant’s assessment of this view is brief; he writes
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that ‘‘[The mathematicians] succeed in opening the field of appearances for math-

ematical assertions. However, they themselves become very confused through

precisely these conditions if the understanding would go beyond this field.’’ In the

first sentence, Kant makes clear that he understands the strength of the mathe-

maticians’ account to be its defense of our ability to achieve a priori insight into

the mathematical features of the empirical natural world. Whereas the metaphy-

sician could only explain a posteriori knowledge of such features, the mathema-

tician proffers apriority via our perfect understanding of extension. Thus, on the

mathematicians’ account we have a priori mathematical knowledge of the field

of appearances, of all of the objects that are contained within the domain of math-

ematical applicability. In the second sentence, however, Kant identifies the defect

in the mathematicians’ account: on this view, our a priori mathematical knowl-

edge is applicable to all—but not only—appearances. It attempts to extend our

a priori mathematical knowledge beyond the domain of appearances without

explanation or justification of that extension. That is, in positing our special

knowledge of an absolutely real and self-subsisting space or extension, the math-

ematician makes a claim to valid mathematical knowledge of entities that cannot

themselves be described as within the realm of our possible experience. Given the

mathematicians’ absolutist conception of space, our achieving a priori knowledge

of the mathematical features of the spatiotemporal natural world (e.g., knowledge

of the geometry of spatial objects) requires that we also achieve a priori knowl-

edge of the features of the supranatural world (e.g., knowledge of space itself,

conceived independently from both our understanding and the objects it is thought

to contain). Kant considers this to be a kind of ‘‘confusion’’: the ‘‘mathematician’’

achieves apriority only by extending the domain of applicability beyond the

bounds of our possible experience. For Kant, the cost of apriority cannot (and

need not) be that high. Thus, Kant takes the mathematicians’ account to fail the

applicability demand in a special sense: on the mathematicians’ account, a priori

mathematical cognition is applicable, but it is applicable beyond acceptable limits,

that is, beyond the limits of our possible experience and knowledge of nature.

Kant thus charges that both of his opponents ‘‘come into conflict with the

principles of experience,’’ albeit in different ways. The metaphysician conflicts

with the alleged apriority of those principles as applied to experience; the math-

ematician with the limits of their domain of applicability. While Kant’s pre-

decessors each satisfied only one of the two demands on a successful account of

mathematical cognition, Kant considers his own theory to satisfy both the apri-

ority and the applicability demands without conflicting with the principles of

experience. As noted above, his theory hinges on his claim that space and time are

pure forms of sensible intuition and sources of synthetic a priori cognitions. In

the case of space, our pure intuition of space is the source of our claims to geo-

metric knowledge: we have an a priori representation of space that is the ground

for geometric reasoning and cognition. Kant’s defense of this notorious claim is
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complex and beyond the scope of this chapter;47 it will suffice for our purposes to

consider the sense in which Kant’s theory of space provides him with an account

of mathematical cognition that satisfies both the apriority and the applicability

demands.

Kant’s argument runs roughly as follows. Because space and time are forms of

sensibility and cognitive sources of a priori mathematical principles, space and time

‘‘determine their own boundaries’’ and ‘‘apply to objects only so far as they are

considered as appearances. . . .Those alone are the field of their validity, beyond

which no further objective use of them takes place.’’ Kant is making a claim about

the connection between our way of intuiting, representing, and knowing the

structure of space and our way of intuiting, representing, and knowing the features

of the objects we experience to be in space: the former determines the latter. For this

reason, Kant claims that our a priori representation of space determines its own

domain of applicability, its ‘‘field of validity.’’ Insofar as our a priori mathematical

cognition has its source in our sensible faculty, including our a priori representation

of space, such cognition can be objectively valid with respect to all and only those

objects we can sense, the realm of appearances or objects of our ‘‘possible experi-

ence.’’ Thus, for Kant,mathematics is a body of synthetic a priori cognition providing

us with knowledge of both (1) the pure conditions on our sensible representations

and, by this means, (2) the objects that appear to us under those conditions. As Kant

says, geometry (which is available to us via our a priori representation of space)

provides the paradigm example. In the first sense, geometry is the science of a cog-

nitive capacity, in particular, a capacity to represent spatial relations; geometry is

the unique science that describes the various ways in which that capacity is both

warranted and constrained. In the second sense, as explained in Kant’s transcen-

dental philosophy, geometry is the science of the natural or empirical objects that

we conceive to stand in such spatial relations as we are conditioned to represent.

Thus, geometry can inform us as to the proper function of our cognitive capacity

for pure spatial intuition while also providing us with knowledge of the spatial form

of those objects we intuit as empirically real spatial things.

Because, for Kant, mathematics provides us with knowledge of the pure

conditions on our sensible representations, mathematical cognition is a priori.

Being knowledge of the cognitive conditions on our having sensible experience,

mathematics is cognition that is necessarily acquired prior to and independent

from such experience. Because, for Kant, mathematics provides us with knowl-

edge of the objects that appear to us under such cognitive conditions, mathe-

matical cognition is applicable to the natural empirical world. Being knowledge of

the formal features of sensible spatiotemporal objects, mathematics is cognition

that is necessarily about the things that inhabit the natural world, at least insofar

47 I take these claims to be defended in the ‘‘Metaphysical Exposition’’ and the

‘‘Transcendental Exposition of the Concept of Space’’ see Shabel (2004).
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as we represent them. If we are willing to accept this last caveat—that the natural

world comprises all and only those things that we have the cognitive capacity to

represent—then we can secure the ‘‘certainty of experiential cognition’’: our a priori

mathematical claims have direct and complete purchase on (our experience of )

the natural world. Kant thus claims to have provided an account of mathematical

cognition that satisfies both the apriority and the applicability demands with which

we began—and that, moreover, does not conflict with, but rather helps to estab-

lish, the ‘‘principles of experience.’’
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c h a p t e r 3

LATER EMPIRICISM

AND LOGICAL

POSITIVISM

john skorupski

1. The Historical and

Philosophical Context

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The empiricist approaches to mathematics discussed in this chapter belong to an

era of philosophy which we can begin to see as a whole. It stretches from Kant’s

Critiques of the 1780s to the twentieth-century analytic movements which ended,

broadly speaking, in the 1950s—in and largely as a result of the work of Quine.1

Seeing this period historically is by no means saying that its ideas are dead; it

just helps in understanding the ideas. That applies to the two versions of empir-

icism that were most prominent in this late modern period: the radical empiri-

cism of Mill and the ‘‘logical’’ empiricism associated with Vienna Circle positivism

of the late 1920s and early 1930s. Mill and the logical positivists shared the empiricist

doctrine that no informative proposition is a priori. Thus they rejected two main

tenets of Kantian epistemology: the claims that the possibility of knowledge

requires that there be synthetic a priori propositions and that there are such

I am grateful to Agustı́n Rayo and Stewart Shapiro for helpful comments.
1 See Quine (1953, 1966a, 1966b).
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propositions. But as to the status of logic and mathematics, they differed sharply.

Mill took logic and mathematics to consist of informative universal truths and

denied that they are a priori; the positivists held logic and mathematics to be a

priori and denied that they contained informative truths. Furthermore, in working

out the doctrine that logic and mathematics are exact and a priori because they

are—in their sense—‘‘analytic,’’ the logical positivists renewed vital elements of

Kantian thought even as they denied Kant’s doctrine that mathematics has in-

formative content.

To bring out the contrast between these two empiricisms, and to address the

element of continuity just noted between the views of Kant and those of logical

positivism, we should take note of an influential conception of knowledge. Gen-

uine knowing is of something wholly distinct from the knowing itself—something

to which cognition must conform if it is to be knowledge. Cognition is receptive.

It is not formative or constitutive of its objects. All this seems inherent in the very

idea of knowledge; but there have been many conceptions of knowledge, of which

this ‘‘mirroring’’ conception is only one. As far as empiricism in our late modern

period is concerned, the mirroring conception may seem inherent in the natu-

ralistic starting point that Mill and logical positivists share. They take it for

granted that cognition is a natural process within the natural world; it conforms

to its object by reflecting information received from it. And the information-

receiving processes by which it does this—the senses—must themselves be fully

characterizable within a scientific theory of the world.

Clearly the cognitive status of logic and mathematics is a central challenge for

this conception of knowledge. For as Kant famously noted, on this conception a

priori knowledge seems impossible:

Up to now it has been assumed that all our cognition must conform to the

objects; but all attempts to find out something about them a priori through

concepts that would extend our cognition have, on this presupposition,

come to nothing. Hence let us try whether we do not get farther with the

problems of metaphysics by assuming that the objects must conform to our

cognition. . . .

This attempt is Kant’s ‘‘Copernican revolution’’:

If intuition [sensory cognition of objects] has to conform to the constitution

of objects, then I do not see how we can know anything of them a priori; but if

the object (as an object of the senses) conforms to the constitution of our faculty

of intuition, then I can very well represent this possibility to myself.2

Kant holds that knowing requires a framework to which every knowable object

must conform. He locates it in the a priori structures of our sensibility and bases

2 Critique of Pure Reason, Bxvi–xvii.
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the synthetic a priori character of arithmetic and geometry on these. The resulting

transcendental idealism about our cognition is inconsistent with a naturalistic

view, according to which knowers and their knowledge are, straightforwardly,

only a part of the world they know: it demotes the naturalistic philosopher’s

‘‘empirical’’ view of our place in nature to just one viewpoint out of two—and not

the one in which the apriority of mathematics can be elucidated.

Viennese empiricism was not as distant from the Kantian or ‘‘Critical’’3 tra-

dition as was Mill.4 Specifically, logical positivists agreed with the general Critical

idea that knowledge is possible only within an a priori framework to which

knowable objects must conform. But the way they worked it out differed fun-

damentally from Kant’s transcendental-idealist interpretation. For them, the nec-

essary framework was provided not by forms of intuition or (necessary) categories

of understanding, but by a system of conventions. Knowledge, they agreed, re-

quired an a priori framework; there was, however, no unique framework that it

required. The conventions that provided the framework could vary. Moreover,

contra transcendental idealism, there was no meaningful distinction to be made

between objects as they could be known and objects as they really were. There was

no significant standpoint outside the empirical standpoint—only free choices of

framework.5 Things were as they could in principle be known to be within a

framework stipulated a priori: that was the import of their ‘‘verificationist’’ con-

ception of meaning. And this conception opened up, as they thought, a new ac-

count of the apriority of logic and mathematics. Logic and mathematics owed

their apriority, their exactness, and their certainty to the fact that they belonged to

the framework of conventions. By the same token, they were empty of content.

Content can exist, and can be conveyed, only within a framework. This conven-

tionalist doctrine was influential well beyond the Vienna Circle; it became a cor-

nerstone of the twentieth-century analytic tradition as a whole, and gave that

whole tradition its Critical aspect.

In contrast, no such scheme/content distinction is made by Mill (and

this goes far toward explaining the low esteem in which his view was held in

this tradition’s heyday). ‘‘Our thoughts are true,’’ he said, ‘‘when they are made

to correspond with Phaenomena’’—in other words, with what we are or could

be aware of through the senses, the observable facts. And this applies to logic

and mathematics, of which he takes a straightforwardly universalist view. These

3 I capitalize ‘‘Critical’’ to indicate that it refers to the post-Kantian epistemological

tradition. To be non-Critical is not to be uncritical.
4 Affinities between Kant’s views and those of the logical positivists and Wittgenstein

have been discussed by a number of interpreters; among them are Coffa (1991), Friedman

(1991), Garver (1996), and Stroud (1984).
5 See, for example, Carnap (1956) on ‘‘internal’’ and ‘‘external’’ questions.
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are, he thinks, empirical sciences which deal with the most general laws of

nature.6

It is also worth noting that in both cases, that of Mill and that of logical

positivism, their naturalism stands in apparent tension with some of their other

doctrines. Mill’s System of Logic (1843) propounds a ‘‘naturalised epistemology’’

which includes a thoroughly naturalistic treatment of semantics and the meth-

odology of science; yet in his Examination of Sir William Hamilton’s Philosophy

(1865) he puts forward a phenomenalist analysis of matter as permanent possi-

bility of sensation. He saw no inconsistency in this. But he was not sure what to

say about the mind. Can the mind also be resolved into ‘‘a series of feelings, with a

background of possibilities of feeling?’’ Mill is unwilling to accept ‘‘the common

theory of Mind, as a so-called substance,’’ yet the fact that self-consciousness is

involved in memory and expectation drives him to ‘‘ascribe a reality to the Ego—

to my own Mind—different from that real existence as a Permanent Possibility,

which is the only reality I acknowledge in Matter.’’7 This could have led him in a

transcendental direction: if self-consciousness has this nonsubstantial yet irre-

ducible kind of reality, can it impose an objectivity-constituting framework on its

own experience? Yet, despite these qualms, Mill seems more poised to go in the

Machian direction which followed than in the Kantian direction which preceded.

Mach takes reality to consist of elements that can indifferently be construed as

mental or physical, treats the self as a ‘‘thought-economical construct,’’ and views

mathematics as a universal empirical science. The Examination is a stage on the

road to that view.

If Mill’s naturalism is challenged by his uncertainty about the status of the

self-conscious subject, isn’t that of the logical positivists challenged by their

‘‘Critical’’ stance? If cognition is a purely natural process, how can it have a con-

stitutive role in determining the objectivity of content?

To answer this question, we must distinguish between naturalism and what I will

call ‘‘realism,’’ using the term to refer to a correspondence conception of what it is

for a proposition to be true—or, indeed, of what it is to be a proposition. The Millian

view of logic and mathematics results (as we shall see) from combining natural-

ism and realism. In contrast, the scheme/content distinction made by the logical

6 An Examination of Sir William Hamilton’s Philosophy, Collected Works, IX, p. 384.
By ‘‘universalism’’ about logic and mathematics I mean a view which takes these subjects

to be on a par, ontologically, with other sciences which propound universal laws; they are

distinguished by the generality of the subject matter whose laws they propound (Compare

Ricketts (1996), pp. 59–60). In this sense Mill and Frege were both universalists, though

they disagreed about whether logic and mathematics are a priori. Kant, Wittgenstein, and

the logical positivists were not.
7 An Examination of Sir William Hamilton’s Philosophy, Collected Works, IX,

p. 208.
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positivists requires rejection of that correspondence conception. Conventionalism is

in fact not just nonrealist, it is anti-realist—it requires an epistemic (in the positivists’

case, verificationist) conception of meaning. It was in this sense that Wittgenstein

and Carnap ‘‘offered in the early 1930s the first genuine alternative to Kant’s con-

ception of the a priori.’’8 The new conception of meaning was the crucial innovation

by which they were able to combine naturalism with a conception of logic and

mathematics as exact and a priori—because it allowed them, as we shall see, to put

forward a new doctrine of analyticity.

One can express empiricism as the view that no factual proposition is a priori.

What does ‘‘factual’’ mean, though, if we try to refine vague phrases like ‘‘about

the world?’’ Mill thinks of facts in the correspondence theorist’s way, as truth-

makers. But for the logical positivists, ‘‘fact’’ is elucidated in terms of ‘‘true factual

statement,’’ and factual statements exist only within a fixed logico-mathematical

framework. They are the nonanalytic statements in a total scientific theory.

Viennese empiricism does not come, as in the case of Mill, from a combination of

naturalism and realism. So where does it come from?

In his impressive pre-logical-positivist work, The General Theory of Knowl-

edge, Moritz Schlick had formulated naturalism as follows:

According to our hypothesis the entire world is in principle open to designation

by [the conceptual system of physics]. Nature is all; all that is real is natural.

Mind, the life of consciousness, is not the opposite of nature, but a sector of the

totality of the natural.9

But for logical positivism in its developed form this could not be a ‘‘hypothesis.’’

The apparently substantive proposition that the natural facts are all the facts there

are, reduces to a definitional truth: the true propositions, or contents, within a

given linguistic scheme are a subset of the contents expressible within that scheme.

Thus it is also a definitional truth that our knowledge is either ‘‘knowledge’’ of the

scheme (which the positivists would not regard as genuine knowledge, knowledge

of content) or factual knowledge based on sense experience.

To round off the historical picture: Quine’s empiricism has affinities to both

the Millian and the Viennese versions. Mill and Quine obviously differ in im-

portant ways. Mill is an inductivist and phenomenalist, Quine is an abductivist

and physicalist; Mill rejects abstracta, Quine countenances them. Yet there are

resemblances that are at least as important. For both of them, logic and mathe-

matics are a part of science, known by the a posteriori methods of science. They

have a similar conception of ‘‘naturalized epistemology,’’ though Quine gives (in

the opinion of most philosophers today) a better methodology of science than

Mill, and obviously has a more advanced conception of the scope of logic

8 Coffa (1991), p. 3.
9 Schlick (1985), p. 296.
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and higher mathematics. Nevertheless, Quine’s view is also in important ways

continuous with logical positivism. It is, one might say, logical positivism without

the ‘‘two dogmas of empiricism.’’ The scheme/content distinction is one of these

dogmas, and Quine decisively rejects it.10 Whereas Mill gets his universalism about

logic and mathematics from combining naturalism and realism, Quine gets it

from combining naturalism with rejection of the scheme/content distinction. But

that does not mean he rejects the verificationism that made the distinction pos-

sible. A verificationist conception of language and reality was crucial to the

twentieth-century version of the Critical tradition—in holistic form (the unit of

meaning is the theory) it endures in Quine’s thinking.

2. Analyticity in Mill

and in Logical Positivism

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Central to the differences between these empiricisms is the notion of analyticity.

Three different conceptions of analyticity will matter to us: the Kant/Mill and the

Kant/Frege conceptions, as I will call them, and the ‘‘implicit-definition con-

ception,’’ as I will call it, of the logical positivists.

Mill does not use the ‘‘analytic/synthetic’’ terminology. He distinguishes in-

stead between ‘‘verbal’’and ‘‘real’’ propositions and ‘‘merely apparent’’ and ‘‘real

inferences.’’ He notes, however, that this distinction coincides with Kant’s dis-

tinction between analytic and synthetic judgments, ‘‘the former being those which

can be evolved from the meaning of the terms used.’’11 Thus we can use the

Kantian terminology in describing his views. The crucial point in the Kant/Mill

notion is that an analytic proposition conveys no information, and an analytic

inference moves to no new assertion—its conclusion has been literally asserted in

its premises. Mill takes this notion very strictly. In effect, on his view, an analytic

inference must have the form

p1, . . . , pi, . . . , pj, . . . , pn
————————————— .

pi, . . . , pj

10 Quine (1953). The other dogma is reductionism.
11 System of Logic, Collected Works VII, p. 116. Compare Critique of Pure Reason, A6–7,

B10–11. Here Kant puts forward a narrower notion of analyticity than in the passage

mentioned in note 13, at least on standard interpretations of the latter.
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Inferences reducible to this form by explicit definitions of terms are analytic, and

analytic propositions are the corresponding conditionals of such inferences.12

With regard to propositions and inferences that are analytic in this sense, no

question arises about how acceptance of them is justified, because there is no

content there to justify. Hence Mill’s terminology: merely verbal, merely apparent.

Compare the Kant/Frege account. This characterizes analyticity as deduc-

ibility, with explicit definitions, from logic.13 Thus it is true by definition that logic

itself is analytic. But the definition does nothing to show that logic is empty of

content, or that there is no philosophical question to raise about the justification

of deduction. For a philosopher who believes that logic is simply too basic for

questions about its justification to arise, the point may pose no problem. But from

an empiricist standpoint this belief is dogmatic. For empiricism says that no

proposition that has content is a priori. Likewise, from an empiricist point of

view, logicism, however successful, would cut no epistemological ice unless ac-

companied by a philosophical elucidation of the contentlessness of logic. This the

Kant/Frege concept of analyticity does not do.

On Mill’s account some propositions and inferences of logic will be analytic

in the Kant/Mill sense. He holds that asserting a conjunction, A and B, is asserting

A and asserting B. He defines ‘‘A or B’’ as ‘‘If not A, then B, and if not B, then A;’’

and he takes ‘‘If A, then B’’ to mean ‘‘The proposition B is a legitimate inference

from the proposition A.’’ He discusses generality in a way which is insightful in

detail but hard to interpret overall; it fits with much of what he says to treat a

universal proposition as asserting a license to infer. We can then stipulate that a

universal proposition is analytic if and only if all its substitution instances are

analytic. For example, ‘‘All ABs are A’’ says ‘‘Any proposition of the form ‘X is A’

is legitimately inferable from the corresponding proposition of the form ‘X is A

and B’.’’ And each substitution instance of this is analytic.14

Mill takes ‘‘It is not the case that A’’ to be equivalent in meaning to ‘‘It is false

that A’’. If we further assume the equivalence in meaning of ‘‘A’’ and ‘‘It is true

that A,’’ the principle of contradiction becomes the principle of exclusion—as he

puts it, ‘‘the same proposition cannot at the same time be false and true.’’ He makes

analogous remarks about excluded middle, which turns—on these definitions—into

12 The definition can be extended to make ‘‘a¼ a’’ analytic: an inference of the form

‘‘Fa, a¼ b, therefore Fb’’ becomes analytic for the case where ‘‘a’’ is substituted for ‘‘b’’.

Interestingly, Mill thinks all name–name identities are ‘‘verbal’’ (because he thinks names

have no ‘‘connotation’’). The thought is that they assert no fact to obtain.
13 Critique of Pure Reason, A151, B190–191. The sense of this passage (‘‘The principle of

contradiction . . .must be recognised as being the universal and completely sufficient prin-

ciple of all analytic knowledge’’) is not entirely clear, but is often interpreted in the broad

‘‘Kant/Frege’’ sense. For Frege, see Frege (1950), §§12, 88–89.
14 Obviously this stipulation raises questions. Is it within the Kant/Mill spirit to take

it as analytic that a given proposition is a substitution instance of a given logical form?
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the principle of bivalence: ‘‘Either it is true that P or it is false that P.’’ He holds

these principles, bivalence and exclusion, to be synthetic—‘‘real’’ or ‘‘instruc-

tive’’—propositions. And thus the question is how they can be a priori.

From a Kantian point of view, if Mill’s analysis of logic is sound it puts logic in

the same synthetic a priori class as mathematics; and the answer to how it can be a

priori will then have to be the same. The apriority of logic will have to rest on the

form of our intuition. Bivalence and exclusion, like other synthetic a priori truths,

will be restricted to the domain of phenomena. They cannot be known to hold, as

Kant himself believed, of things-in-themselves. This conclusion would undercut

the epistemological aims of logicism just as much as Mill’s empiricism does. Show-

ing that mathematics is logic, and thus analytic in the Kant/Frege sense, would

not show that it is analytic in the Kant/Mill sense, and thus empty of content. It

would not show, without appeal to a priori intuition, how mathematics could be

a priori—since logic itself would now be seen to rest on a priori intuition.

But when we turn to logical positivism, we find a conception of analyticity

that is distinct from both the Kant/Mill and the Kant/Frege account. Fundamental

to it is the notion of implicit definition. Its main source seems to be the thinking

about the status of geometry done at the turn of the twentieth century, notably

by Hilbert and Poincaré. Moritz Schlick was among the first to appreciate its

full philosophical potential. In his General Theory of Knowledge he holds, like

Mill, that ‘‘Every judgement we make is either definitional or cognitive.’’ But he

thinks that ‘‘the radical empiricism of John Stuart Mill’’ has no way of ‘‘saving

the certainty and rigor of knowledge in the face of the fact that cognition comes

about through fleeting, blurred experiences.’’15 It is here that implicit definition

comes to the rescue. It can show how concepts can be given a meaning in a way

that does not found them directly on ‘‘immediate experience.’’ Their sharpness

can then be guaranteed independently of the degree of sharpness in our experi-

ence. ‘‘We would no longer have to be dismayed by the fact that our experiences

are in eternal flux; rigorously exact thought could still exist.’’16

Hilbert17 had provided a set of axioms for Euclidean geometry and suggested

that the primitive terms used in them—‘‘point,’’ ‘‘straight line,’’ ‘‘plane,’’ ‘‘be-

tween,’’ ‘‘outside of ’’—should be thought of as implicitly defined thereby. A def-

inition of this kind is ‘implicit’ in that no explicit metalinguistic stipulation about

meaning is made, whereas in a definition such as ‘‘ ‘Square’ means ‘plane figure

bounded by four equal rectilinear sides’ ’’ we have an explicit stipulation of

synonymy. Treating axiom sentences as implicit definitions can be thought of as

stipulating that they are to be understood as denoting, taken together, any entities

which systematically satisfy them. Schlick also recognizes what he calls ‘‘concrete

15 Schlick (1985), pp. 69, 30.
16 See Schlick (1985), p. 31.
17 Hilbert (1971).
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definitions,’’ as against ‘‘logical definition proper;’’ these are required to complete

the account of the meanings of terms which appear in the axioms.18

In a concrete definition the meaning of a simple concept is ostensively ex-

hibited in experience—for example, the note ‘‘A’’ is concretely defined by sounding

a tuning fork. Pure geometry becomes physical geometry when its primitive

concepts are ‘‘coordinated’’ by means of concrete definitions with physical facts.

Schlick holds that such coordinations essentially involve conventions, in a sense

which he ascribes to Poincaré.19 The coordination is between an implicit definition

and a concrete definition—for example, of ‘‘point’’ by ostending a grain of sand, or

‘‘straight line’’ by ostending a taut string. We must also determine units of mea-

surement: crucially, Schlick holds that this determination is also a matter of

convention. Thus a unit length could be defined by a particular taut string, or a

rigid rod, which is then laid against other straight lines to measure their length.

Schlick’s example is the unit of time measurement. We can define a day as the

period the earth takes to rotate about its axis (the sidereal day). We could equally

have chosen ‘‘the pulse beats of the Dalai Lama’’ as units. But

the rate at which the processes of nature run their course would then depend on

the health of the Dalai Lama; for example, if he had a fever and a faster pulse

beat, we would have to ascribe a slower pace to natural processes, and the laws of

nature would take an extremely complicated form.

We choose the metric which yields the simplest laws. So, for example, the sidereal

day may come to be abandoned as a unit of measurement—it may be more

‘‘practical’’

to assert that, as a consequence of friction due to the ebb and flow of the tides,

the rotation of the earth gradually slows down and hence sidereal days grow

longer. Were we not to accept this, we would have to ascribe a gradual accel-

eration to all other natural processes and the laws of nature would no longer

assume the simplest form.20

Thus the simplicity of the total system of laws of nature taken as a whole is the

only criterion for choosing units of measurement.

Given that the axioms are implicit definitions, Schlick thinks that the theo-

rems are definitions, too:

In the class of definitions in the wider sense, we include also those propositions

that can be derived by pure logic from definitions. Epistemologically, such

derived propositions are the same as definitions, since . . . they are interchange-

able with them. From this standpoint purely conceptual sciences, such as

18 Schlick (1985), p. 30.
19 Schlick (1985), p. 71.
20 Schlick (1985), p. 72.
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arithmetic, actually consist exclusively of definitions; they tell us nothing that

is in principle new, nothing that goes beyond the axioms.21

Now an explicit definition is a rule of substitution, not a proposition, so it cannot

play the role of premise or conclusion. But an implicit definition is a stipulation

that a certain set of object-language sentences is to be so understood as to be true.

(We will come back to this.) What does Schlick say, though, about the status of

the ‘‘pure logic’’ by which the theorems of the axiom system are derived? If the

truths of this logic are not contentless—because they are a posteriori or synthetic

a priori—then neither are those of pure geometry. We must reapply the same

treatment to logic itself, treating its axiomatized principles as implicit definitions

of the primitive logical constants. It seems that Schlick has something like this

in mind when he says that the principles of contradiction and excluded mid-

dle ‘‘merely determine the nature of negation’’ and ‘‘may be looked upon as its

definition.’’22

3. The Empiricist Argument in Mill

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now that we have set out the three conceptions of analyticity that concern us, let

us turn to their role in empiricist argument. We start with Mill.

The view that logic and mathematics are a priori because they are entirely

empty of content is one of the rival views Mill considers. He calls it ‘‘Nominalism.’’

Against it he argues by direct semantic analysis that logic and mathematics

contain synthetic inferences. The central failure of the Nominalists, he thinks, is

that they fail to make his distinction between connotation and denotation of

terms—‘‘seeking for their meaning exclusively in what they denote.’’23 Thus, for

example, contrary to the Nominalists, arithmetical identities such as ‘‘2þ 1¼ 3’’

are real propositions because the terms flanking the equality have different con-

notations. But Mill also argues indirectly. If logic did not contain synthetic

inferences, in the Mill/Kant sense, valid deductive reasoning could not produce

new knowledge. The conclusion of any valid deduction would literally be asserted

in the premises. In that case, in knowing that each proposition asserted in the

premises was true, one would already know the truth of the conclusion. (Mill

allows for definitional substitution, so this argument requires the principle that if

sentences A and B are definitionally substitutable, knowing the truth expressed by

21 Schlick (1985), p. 73.
22 Schlick (1985), p. 64; compare p. 337.
23 System of Logic, Collected Works VII, p. 91.
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A is knowing the truth expressed by B.) He is impatient with metaphorical talk

about conclusions being implicitly contained in premises:

It is impossible to attach any serious scientific value to such a mere salvo, as the

distinction drawn between being involved by implication in the premises and

being directly asserted in them.24

Deduction plainly produces new knowledge, and therefore logic must contain

synthetic (‘‘real’’) inferences. Mill applies the same dual argument, direct and

indirect, to the case of mathematics.

Mill also considers two other rival views: ‘‘Conceptualism’’ and ‘‘Realism.’’

Realists hold that logical and mathematical knowledge is knowledge of universals

existing in a mind-independent abstract domain; the terms that make up sentences

are signs that stand for such universals. Conceptualists hold that the objects studied

by logic are concepts and judgments conceived as psychological states and acts.

Realism is the view Mill takes least seriously, thinking it extinct (he did not

know that something like it was destined for revival). But there was probably a

deeper reason: although both Nominalists and Conceptualists hold that logic and

mathematics can be known nonempirically, they both accept that no instructive

proposition about a mind-independent world can be so known. Realism, in

contrast, abandons this constraint, and in doing so, abandons one of the things

Mill found most obvious.

Conceptualism had been given a new lease on life by the increasing influence of

Kantian ideas. In the System of Logic Mill responds to it by emphasizing the

distinction between judgment and the content of judgment as strongly as any

‘‘Realist’’ would; in the Examination he returns to it and engages with it more

extensively.25 Conceptualists emphasize the role of intuition as against induction

in our acceptance of logical and mathematical claims. Mill takes such appeals to be

appeals to what we can imagine experiencing (as against what we do experience);

and he accepts that we are justified in basing many arithmetical or geometrical

claims on such appeals. But he thinks that that justification is itself a posteriori.

Experiential imagination is indeed a largely reliable guide to real possibilities—

however, that is itself no more than an empirical truth. Mill also considers the

Kantian point that ‘‘Experience tells us, indeed, what is, but not that it must

necessarily be so, and not otherwise.’’ So if we have insight into the necessary truth

of certain propositions, that insight cannot be based on experience and must be

a priori. In response, he rejects any metaphysical distinction between necessary and

contingent truth; like Quine he thinks the highest kind of necessity is natural

24 System of Logic, Collected Works VII, p. 185.
25 The idea that the Examination propounds a psychologistic view of logic is a

misconception. On the contrary, that is the ‘‘Conceptualist’’ view Mill wishes to attack.

See Skorupski (1989), ch. 5, ‘‘Appendix.’’
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necessity. The only other sense of ‘‘necessary truth’’ he is prepared to concede is

‘‘proposition the negation of which is not only false but inconceivable’’:

This, therefore, is the principle asserted: that propositions, the negation of which

is inconceivable, or in other words, which we cannot figure to ourselves as being

false, must rest on evidence of a higher and more cogent description than any

which experience can afford.26

In response, in the System of Logic, Mill largely dwells on associationist expla-

nations of inconceivability. But in the Examination he makes the underlying

epistemological basis of his reply clearer:

. . . even assuming that inconceivability is not solely the consequence of limited

experience, but that some incapacities of conceiving are inherent in the mind,

and inseparable from it; this would not entitle us to infer, that what we are thus

incapable of conceiving cannot exist. Such an inference would only be war-

rantable, if we could know a priori that we must have been created capable of

conceiving whatever is capable of existing: that the universe of thought and that

of reality . . .must have been framed in complete correspondence with one

another. . . .That this is really the case has been laid down expressly in some

systems of philosophy, by implication in more . . . but an assumption more

destitute of evidence could scarcely be made. . . .27

The Conceptualist needs to show, and show a priori, that what we are ‘‘incapable

of conceiving cannot exist.’’

The ‘‘mirroring’’ idea of knowledge that I mentioned at the beginning is

clearly crucial in this line of thought: genuine knowing is of something distinct

from the knowing itself—to which the knowing must conform if it is indeed

knowledge. Mill applies the point single-mindedly to the most fundamental

synthetic truths. To prove that ‘‘a contradiction is unthinkable’’ is not to prove it

‘‘impossible in point of fact.’’ It is the latter, not the former, claim which is

required to vindicate ‘‘the thinking process.’’ ‘‘Our thoughts are true when they

are made to correspond with phaenomena’’:

If there were any law necessitating us to think a relation between phaenomena

which does not in fact exist between the phaenomena, then certainly the thinking

process would be proved invalid, because we should be compelled by it to

think true something which would really be false.28

This, then, is Mill’s general epistemological framework. It has simplicity and power,

and it clearly requires him to treat mathematics and logic itself as belonging to

26 System of Logic, Collected Works VII, pp. 237–238.
27 An Examination of Sir William Hamilton’s Philosophy, Collected Works IX, p. 68.
28 An Examination of Sir William Hamilton’s Philosophy, Collected Works IX, pp. 382,

384, 383.
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our empirical knowledge. Mill’s more detailed accounts of geometry and arith-

metic reflect more specific concerns: he wants to show how these sciences fit

into an inductivist epistemology and nominalist (in our contemporary sense)

ontology. These aims are prima facie distinct from the general empiricist frame-

work we have just described. It is a matter of debate whether they follow from it; if

they do not, they may seem less powerful as self-standing philosophical claims

than does Mill’s general epistemological framework itself. Does naturalistic em-

piricism force nominalism? Does it force inductivism? Neither point is obvious. It

may be that these positions stem from Mill’s combination of naturalism and

realism, rather than from naturalism alone. But let us sketch in some details of

Mill’s account.

The System of Logic develops a rather elegant historical picture of ‘‘the in-

ductive process.’’ Humanity begins with ‘‘spontaneous’’ and ‘‘unscientific’’ induc-

tions about particular, apparently unconnected, natural phenomena. Generalizations

accumulate, interweave, and are found to stand the test of time or are corrected by

further experience. As they accumulate and interweave, they justify the second-

order inductive conclusion that all phenomena are subject to uniformity and, more

specifically, that all have discoverable sufficient conditions. This conclusion in turn

provides (Mill believes) the grounding assumption for a new style of reasoning

about nature—eliminative induction, which he formulates in his ‘‘Methods of

Empirical Inquiry.’’ The improved scientific induction which results from this style

of reasoning spills back onto the principle of uniformity on which it rests, raising

its certainty. That in turn raises our confidence in the totality of particular enu-

merative inductions from which the principle is derived. Thus the amount of

confidence with which one can rely on the ‘‘inductive process’’ as a whole depends

on the point which has been reached in its natural history.

How does logical and mathematical knowledge fit into this? Mill thinks it

comes from those earliest ‘‘spontaneous’’ and ‘‘unscientific’’ enumerative induc-

tions which are retrospectively confirmed by the success of the inductive process.

Thus he considers the principle of exclusion, that ‘‘the same proposition cannot at

the same time be false and true,’’ to be ‘‘one of our first and most familiar gen-

eralisations from experience.’’29 The same goes for the parallels postulate. But this

account of how one comes to believe such principles may well strike one as quite

implausible. What kinds of instances could these generalizations involve?30 Even in

his own inductivist terms Mill might have found a little more wiggle room. He

could have agreed that our acceptance of these principles is based on intuition, that

is, ‘‘inconceivability of the negation’’—but that (as in the case of geometry) the

reliability of the conceivability test is itself ultimately a posteriori. This approach

29 System of Logic, Collected Works VII, p. 277.
30 ‘‘What kind of enumerative induction could lead us to the principle of math-

ematical induction?’’ (Shapiro, 2000, p. 100).
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might have led him to a more pragmatist, or conservative holist, view. His argu-

ment now would be that through the progress of science, theoretical grounds

remote from experience might lead us to reject a proposition supported by the

conceivability test. However, to take this line he would have to find some way of

defending a theory of the default authority of intuition.

Mill tries to give a nominalist analysis of both geometry and arithmetic.

Geometrical objects—points, lines, planes—are ideal or ‘‘fictional’’ limits of ideally

constructible material entities; Euclidean propositions are thus true of physical

space only in the limit. The real empirical assertion underlying an axiom such as

‘‘Two straight lines cannot enclose a space’’ is something like ‘‘The more closely

two lines approach absolute breadthlessness and straightness, the smaller the

space they enclose.’’ Likewise, the real content of the geometrical assertion that

rectangles exist emerges, on a Millian view, as ‘‘The construction of a plane sur-

face approximating to any required degree of accuracy to a Euclidean rectangle is

compatible with the geometry of space.’’ (Mill did not doubt that these Euclidean

propositions of physical geometry were true.) Note the essential reference made

here to laws of space : such constructions may be empirically impossible for us as

natural beings, or incompatible with the laws of matter.

The nominalist analysis of arithmetic faces Mill with far greater difficulties,

which he probably did not fully appreciate. Number terms denote ‘‘aggregates’’

(or ‘‘collections’’ or ‘‘agglomerations’’) and connote certain attributes of aggre-

gates. He does not say that they denote those attributes of the aggregates, so he

seems to think of them as general rather than singular. For example, being a five is

an attribute of all aggregates composed of five elements. We are to think of these

aggregates as identified by the elements that make them up, so that the aggre-

gate denoted by ‘‘the cards in that pack,’’ which is a 52, is not the same as the

aggregate denoted by ‘‘the suits in that pack,’’ which is a four. Yet aggregates are

not sets; Mill’s nominalism requires that they be concrete entities individuated by

a principle of aggregation.

This account escapes some of the rather unfair criticisms Frege later made of

it, but nonetheless it certainly isn’t clear that it can provide an adequate onto-

logical base for number theory. To pursue that question we would have to (1)

develop a theory of what aggregates are and (2) admit clearly that number theory

must allow for possible as well actual aggregates—the possibility in question being

a highly idealized one. Consider terms like ‘‘the cars in the parking lot’’ or ‘‘the

books on the shelf.’’ I might say ‘‘The books took up all the space on the shelf, but

I couldn’t see how many there were.’’ Thus here ‘‘the books’’ seems to refer to a

perceptible entity, and its attribute of number is also perceptible in principle,

though not in this case. But plainly this does not apply to physical aggregates

whose elements are widely separated in space and time, such as all the utterances

of a particular sound, or to aggregates which are not physical, such as the number

of figures of the syllogism. Reflection on this leads to the conclusion that
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aggregates should be thought of as products of acts of aggregation or collection. It

is the collecting that has to be concrete, not the things collected. One can think of

collection as the making of a mental or physical list. The basic process with which

number theory is concerned is the making and dividing of such lists, not the

existence or otherwise of their intentional content. And the laws of number are

the laws of listmaking and dividing. Turning to (2), however, we must obviously

allow for more numbers than are given to us by actual lists, or by lists that we,

even in collective relays, could produce. The idealized listmaker must be able to

make uncountable lists.

Making an uncountable list sounds uncomfortably close to counting the

uncountable. Still, this is an interesting line of thought which is very much in the

Millian spirit, though it goes far beyond the basic ideas Mill supplies.31 It could

draw on resources provided by formalism and constructivism. But, as already

noted, it is actually not evident how much should turn, for an epistemological

empiricist, on the apparent ontological distinction between possible concrete ag-

gregates and actual abstract sets; thus the prospects for a Millian ontology of num-

ber theory should not be linked too closely to the prospects for radical Millian

empiricism. And finally, now that we have sketched Mill’s account of geometry

and arithmetic, it is worth noting that he gives no attention to the ontology of

logic. If the empirical laws of geometry concern ‘‘geometrically possible’’ con-

structions, and those of arithmetic concern ‘‘arithmetically possible’’ collections,

what do the empirical laws of logic concern? Do they concern the ‘‘logically

possible’’ truths? What kind of concrete objects are truths? Or do they concern

negation and implication? What kind of concrete objects could these be? Can

there be empirical laws that do not deal with a distinctive subject matter?

4. Logical Positivism

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We saw the view of mathematics and logic as a system of implicit definitions being

developed by Schlick. In the 1920s this implicit-definition conception of analy-

ticity begins to appear in the thinking of Wittgenstein and Carnap.

In its intention, Wittgenstein’s idea of apriority as tautology in the Tractatus

had been in line with the Kant/Mill notion of analyticity. That is, it was meant to

show rigorously that tautologous inference is purely formal, empty of content,

wholly noninstructive. True, it did so only if bivalence and exclusion are somehow

purely formal or empty. A Millian could justly point out that the Tractatus’s

doctrine of ‘‘bipolarity’’ as a condition of the sense of propositions takes that

31 It is resourcefully developed by Philip Kitcher (1997). See also Kitcher (1983).
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dogmatically for granted. But now, in his conversations with the Vienna Circle,

Wittgenstein rejects the idea that tautology is the essence of the a priori:

That inference is a priori means only that syntax decides whether an inference is

correct or not. Tautologies are only one way of showing what is syntactical.32

He still holds that such inferences are noninstructive, but the way in which this is

now to be explained is much simpler.33 Analytic sentences have no declarative

content because they simply articulate rules of the language. The a priori is still

the analytic, but we have a new view of what is analytic.

Yet this new view is philosophically challenging, in a way that the Kant/Mill

criterion of analyticity, at least when understood strictly, is not. How can syntax

‘‘decide’’ whether an inference is correct or not? Doesn’t that depend on whether

the inference is truth-preserving? The answer must be that syntax decides what is

truth-preserving. But the natural objection is that we can’t just stipulate that a

sentence is true, or an inference rule is truth-preserving: truth is not up to us, it is

not for us to stipulate it.

Let us go back to the case of geometry. What, exactly, is ‘‘up to us’’ here?

(1) We can freely lay down uninterpreted axioms and rules of inference,

and analyze their formal consequences. The question of their truth or

validity does not then arise.

(2) We can stipulate that the terms occurring in the axiom-sentences are

to be understood to have (unspecified) referents of which the sentences

are true.

Certainly (2) is up to us. But does this activity of ours suffice to confer

meaning on the sentences? Only, according to the natural objection, if it deter-

mines a unique set of referents of which the sentences are true. For if more than

one interpretation makes the axioms true, then we haven’t specified what referents

are intended, and if no interpretation makes them true, then we haven’t found an

interpretation at all. It follows that stipulation, as in (2), only gives us metalin-

guistic knowledge—knowledge that the axioms should be thought of as expressing

something or other that’s true. To know what the axioms say, and that it is true,

we would need to know what objects they are about and that those objects satisfy

them. That knowledge may be a priori or a posteriori. Either way, it is not the

stipulation that delivers it. Thus the stipulation at most gives us a constraint on

how certain words are going to be used.

32 Wittgenstein (1979), p. 92. Note that Wittgenstein thinks they are a way. He is

evidently using ‘‘syntax’’ broadly.
33 Introducing ruthless simplifications that cut through supposed clutter was one of

logical positivism’s most modernist features.
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It follows that the notion of an implicit definition cannot explain the nature

of a priori knowledge. The point applies wherever we are considering an implicit-

definitions approach—be it the theory of logic or the theory of phlogiston. One

can stipulate that certain sentences containing the words ‘‘if ’’ and ‘‘not,’’ or

the word ‘‘phlogiston,’’ are to be so understood as to be true. But only if the world

co-operates does that confer meaning on them. Take the sentence ‘‘Phlogiston is

driven off whenever a metal or combustible material is heated.’’ We can stipulate

that either the word ‘‘phlogiston’’ in this sentence has a referent that makes the

sentence true or it has no referent. It is then a priori that either the sentence is true

or it lacks truth-value. Thus we do not know a priori that there is a true prop-

osition (content) to the effect that phlogiston is driven off whenever a metal or

combustible material is heated. Indeed what is actually the case is that (depending

on one’s semantic views) there either is no such proposition or, if there is, it is not

true. Similarly with the stipulation that the sentence ‘‘Not-not p if and only if p’’

should be so understood as to be true. What is a priori, on this stipulation, is that

either that sentence is true or it lacks truth-value. It does not follow from this

alone that there is an priori true proposition that not-not p if and only if p. If we

have a priori knowledge of that proposition, it is not the implicit-definition

account of analyticity that gives it to us.

According to this objection, the only way to show an inference to be purely

verbal or empty would be the Mill/Kant way. The objection seems decisive, but

the logical positivists did not accept it. Their view rested on a rethinking of

language, truth, and logic which was truly revolutionary and would, if sound,

refute it.

It is natural to think that particular languages are merely contingent vehicles

for the expression of contents of thought—concepts, propositions, epistemic

norms, and so on. Thought-contents themselves are a language-independent do-

main about which there are language-independent truths. The Vienna School

denied this. There is no such domain of thought-contents. There are no language-

independent facts or norms constituting it. There are only rules of particular

languages and ‘‘empirical’’ or ‘‘natural’’ facts expressible by true sentences in a

particular language. That a particular set of linguistic rules exists is itself an em-

pirical fact; on the other hand, without some set of rules there can be no expres-

sion of empirical facts. All discourse and thought is language-relative.

One can sum up this ‘‘linguistic turn’’ as follows:

1. Significant discourse or thought presupposes a determinate language: a

framework of rules which renders it possible and at the same time fixes its

‘‘limits’’ (what sentences have sense).

2. These rules confer (‘‘empirical’’ or ‘‘factual’’) content on a given sentence

by determining when it is assertible within the framework.
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3. The rules themselves are arbitrary or free conventions.

4. Sentences in the language which simply express or record these rules are

empty of content.

The notion of a linguistic rule elucidates—or, better, just replaces—the classical

philosophical notion of the a priori. This radically new Critical standpoint was

expounded by Wittgenstein in his conversations with the Vienna Circle and de-

veloped in independent, divergent ways by him and by Carnap, among others,

from the late 1920s on. It implied the end of philosophy, which should be replaced

by the systematic activity of describing or laying down rules of ‘‘logical syntax’’

(Carnap) or, alternatively, kept at bay by administering unsystematic reminders of

‘‘logical grammar’’ wherever it threatened to break out (Wittgenstein).34

The meaning of a sentence, on this new view, is determined by the conditions

in which it is assertible, and this determination occurs only in the framework of

language-rules. ‘‘Verificationism’’ is the familiar name for this, but it should be

noted that a definition of truth in terms of verifiability is not essential to it. The

essential point is that the meaning, and thus the truth-value, of a sentence is

internal to a framework.35 Whether or not an assertion is licensed is determined

by data of experience plus the conventions constituting the framework; these

conventions are its ‘‘syntax.’’ Epistemology reduces to syntax: the set of conven-

tions licensing moves within the language. There is nothing beyond these con-

ventions. There are no extralinguistic, or nonconventional, norms. ‘‘There are only

empirical facts and decisions.’’ And just as truth is internal to the conventions, so

is existence.

We can now see the Viennese reply to the natural objection mentioned earlier

in this section. It is a generalization of Schlick’s treatment of implicit and concrete

definitions. Once geometrical axioms have been set down and coordinated with

experience by ostensive and metric conventions, there is no further question

about the unique existence of appropriate geometrical objects. A priori knowledge

is knowledge of the rules—and that can include existential knowledge, since

existence is internal to the rules. Likewise, if we simply stipulate that phlogiston is

driven off whenever a metal or combustible material is heated, there is no further

question about whether it exists. And in the case of logic itself the same point

34 Compare Coffa (1991), p. 263: ‘‘One could, in fact, mimic Kant’s famous ‘Co-

pernican’ pronouncement to state their point. If our a priori knowledge must conform to

the constitution of meanings, I do not see how we could know anything of them a priori;

but if meanings must conform to the a priori, I have no difficulty in conceiving such a

possibility.’’ Of course this Critical standpoint, unlike transcendental idealism, admitted

no unknowable facts or necessary frameworks.
35 A survey of these issues, including the connection between an epistemic concep-

tion of meaning and an epistemic conception of truth, can be found in Skorupski (1997a).
Carnap (1963b) gives an account of his evolving views on truth.
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applies. The only questions concern the pragmatic convenience of this or that

language.

Can an ostensive definition come into collision with the other rules for

the use of a word? It might appear so; but rules can’t collide, unless they

contradict each other. That aside, it is rules that determine a meaning; there

isn’t a meaning that they are answerable to and could contradict.

Grammar is not accountable to any reality. It is grammatical rules that

determine meaning (constitute it), and so they themselves are not

answerable to any meaning and to that extent are arbitrary.36

In logic, there are no morals. Everyone is at liberty to build up his own

logic (i.e., his own form of language) as he wishes. All that is required of

him is that if he wishes to discuss it, he must state his methods clearly, and

give syntactical rules instead of philosophical arguments.37

The application to mathematics now looks simple: it is simply that mathematics

as a whole belongs to the framework.38 At a stroke we have preserved empiricism

while catering to Schlick’s search for certainty and rigor.39 But now we must turn

to the formidable difficulties, which can be considered under three headings.

1. Can mathematics be shown to be part of the linguistic framework?

2. How do we tell whether a sentence expresses a linguistic rule or conveys an

empirical assertion (i.e., whether it is analytic or synthetic)?

3. How tenable is the ‘‘linguistic turn?’’ Is it true that ‘‘There are only em-

pirical facts and (linguistic) decisions?’’

5. Criticisms of Logical Positivism

and of Millian Empiricism

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

How can we show that mathematics belongs to the linguistic framework? One

might think, prima facie, that the framework should be specified by explicit

individual stipulation of each sentence or inference rule contained in it. But if all

logic and mathematics is to be included in the framework, this cannot be done. It

36 Wittgenstein (1974), p. 184. See the application to the meaning of ‘‘not’’ which

follows, and the whole discussion of convention and arbitrariness in section 5.
37 Carnap (1937), p. 52.
38 Wittgenstein alludes to this point, ‘‘the paradox that mathematics consists of

rules,’’ in a marginal MS comment quoted in the note on p. 184 of Wittgenstein (1974).
39 Note that in this framework, as in Mill’s, logicism becomes a mathematical rather

than an epistemological issue.
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is not even possible to specify a procedure that effectively decides whether any

given sentence belongs to the framework.

What, then, about giving an effective axiomatization of the framework—that

is, stipulating that any theorem of the axiom system is to be counted a convention?

With a fully determinate metalogic we would have a fully determinate specification

of the analytic sentences in the object-language—so this would answer question (2)

as well as question (1). But this approach gives rise to deep questions.

What is the status of the metalogic? Consider a sentence to the effect that an

object-language sentence is derivable in the system. Is it itself part of the frame-

work? Presumably it has to be, on pain of allowing that there really are noncon-

ventional, and thus nonanalytic, logical truths. This sort of problem eventually led

Wittgenstein to his famous rule-following considerations.40 The point at stake is

not merely that the metalogic itself must be regarded as a set of conventions.

Consider the metalanguage sentence ‘‘Given the metalogic we have stipulated,

sentence S is derivable in the object-language.’’ Does this sentence express a stip-

ulation? It seems that the only possible answer for the logical positivist is that it

does—this is the view that Michael Dummett has called ‘‘radical conventionalism.’’

The only alternative available within logical positivism would be the thesis that it is

an empirical sentence41—but that idea would undermine the framework/empirical

content distinction. What belongs to the framework would become an empirical

matter, but empirical matters are supposed to be determinate only in the context of

a determinate framework. Yet the radical-conventionalist answer also puts in

question the determinacy of the framework.42 There are, on this view, no rails to

guide us; at every step, in applying the framework we make new decisions. The

framework cannot be specified ‘‘in advance’’; indeed, no unique framework is

‘‘given’’ at any time. Also noteworthy in this context is Gödel’s incompleteness

theorem of 1931 (of which Carnap and Wittgenstein were aware): true nonprov-

able propositions can be formulated within the language of any consistent, effec-

tively specified axiomatization of arithmetic. It reinforces—in a highly unexpected

way—the general point that language frameworks as envisaged by logical posi-

tivism cannot be formally specified.

Quine famously raised question (2). He asks whether threads of fact and

convention can be neatly separated out of our fabric of sentences. In part, his

critique consists in a far-reaching assault on the very notion of synonymy, which

if effective would undermine the analytic/synthetic distinction as such and not

40 Or so I argue in Skorupski (1997b).
41 For example, an empirical sentence to the effect that members of the speech

community would accept the derivation.
42 It’s a separate issue whether Wittgenstein’s discussion of rules in his later work

should be regarded as adhering to radical conventionalism or, on the contrary, as looking for

a way to avoid it. See Dummett (1959, 1993) and Stroud (1965). See also Skorupski (1997b).
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just the logical positivists’ understanding of it. The Mill/Kant conception, for

example, assumes that we can identify a conclusion sentence as saying the same

thing as a premise sentence. But if Quine’s arguments against synonymy are

sound, they undermine that assumption (along with much else). For even when

the conclusion sentence is type-identical to the premise sentence, there is no ‘‘fact

of the matter’’ as to whether it has the same meaning.

Suppose, however, that these very radical arguments against synonymy can be

set aside. Then it can look as though what Quine is saying boils down to a point

about the difficulty of establishing exact meanings in naturally evolving languages.

Carnap took it that way, and insisted in response that ‘‘analytic’’ was definable

only relative to a clearly specified framework. Natural language could in principle

be sharpened or just replaced by completely free language construction. The

question of what language to construct is then practical, in the sense that it should

simply reflect our overall aims. These aims may tend to cost-effectiveness in

intellectual effort, or to nostalgic sentiment in preserving old ways of talking; but

whatever they may be, it is certainly not the task of a specialist adviser from

Carnap Language-Construction Industries to moralize about them.

How should Quine reply? After all, he still adheres to the language-relative

view propounded by the logical positivists: experience and convention alone

determine ‘‘meaning,’’ insofar as we can talk about ‘‘meaning.’’ He does not reject

verificationism; it’s just that his verificationism takes the ‘‘unit of meaning’’ to be

the theory rather than the sentence. Thus truth and existence remain internal

to the fabric of sentences, which means that the natural objection to implicit-

definition conventionalism, considered above in section 2, does not arise. Thus, if

Quine’s all-out assault on meaning is set aside, the point that remains must be

that Carnapian linguistic constructions simply won’t stay rigid in use. Any fabric

we use is always stretched and restretched on an inextricable mix of experience,

theory, and convention—and mathematics is just a part of that fabric.

But if verificationism, and with it the language-relative view, is abandoned,

then the implicit-definitions conception of analyticity will succumb not just to

these Quinean points but also to the more fundamental objection just mentioned.43

For the positivist defense against that objection crucially depended on the idea that

truth and existence are themselves internal to a language framework.

In considering question (1), we noted that defending the framework idea

seems to call for a radical conventionalism which accepts that the framework is

always ‘‘open,’’ or ‘‘in process of construction.’’ But now we should also consider

question (3): Is it tenable to hold that there are only empirical facts and linguistic

decisions? More generally, we can ask what status any empiricist can give to

epistemological principles. The options seem to reduce to treating them in the

43 Here I disagree with Boghossian (1997). There has recently been renewed interest

in the implicit-definition notion of analyticity. See, e.g., Hale and Wright (2000).
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logical positivist manner as implicitly definitional of their subject matter, or

treating them as statements of fact. On the latter view, for example, the principle

of inference to the simplest explanation would be a factual sentence about the

world: ‘‘The world is simple.’’ Enumerative induction would be the factual sen-

tence that the world is induction-friendly. But Mill and Quine seem to approach

the matter differently. Their naturalizing approach to epistemology seems to

consist in appealing to how we actually reason. As Mill put it, ‘‘The laws of our

rational faculty, like those of every other natural agency, are only learnt by seeing

the agent at work.’’44 Is this a kind of psychologism, open to the familiar ob-

jections? Can it explain the normativity of epistemology?

If we observe rational agents at work, we find that as well as issuing rules, they

make factual and normative claims—and in both cases discuss their truth-value. It

does not seem, to prima facie observation, that the thinking agent does nothing

other than make observation statements, apply rules, and express feelings. So why

should one impose the rule/fact dichotomy on this observed trichotomy—factual,

stipulative, and normative? Why do all declarative sentences have to be licensed by

experiential data? What prevents the empiricist from accepting that as well as

stipulations and statements of fact there are declarative, truth-apt, purely nor-

mative sentences? We characterized empiricism as the view that no factual sen-

tence is a priori. But must all truth-apt sentences be factual?

It seems that what is in play here is not observation of thinkers at work, but a

metaphysical commitment to the factuality of content, which then combines with

the empiricist’s naturalistic view of what facts there are. Where does this com-

mitment come from? One might see it in Mill’s case as coming from the corre-

spondence conception of truth and the mirroring conception of knowledge that

goes with it. But the correspondence conception is not supposed to be present in

logical positivism. So where does the idea that content must be factual come from

there? One interpretation is that it comes from an unargued assumption that all

knowledge must be scientific knowledge. But then that just looks like scientistic

prejudice.

Once we have observed that normative judgment is inherent in what the

thinking agent does, we see it everywhere. In ethics and aesthetics, of course, but

also in epistemology, both at the level of general principles and at the level of

specific judgments of what, in the light of the data, there is sufficient reason to

believe. And as Wittgenstein eventually argued, any judgment about the right way

to apply a rule is neither factual nor stipulative, but normative.

So why not explore the possibility that logic and mathematics are themselves

normative? In a way this would continue the Critical idea. The idea would now

be that as well as factual propositions about objects and their properties, there

are normative propositions which are not, at least in the same sense, about the

44 Mill, System of Logic, Collected Works VIII, p. 833.
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properties of objects as against norms for reasoning about objects. A normative, as

against a universalist, view of logic would say that logic has no subject matter of

its own. It is not a set of factual propositions about a specific domain of objects. It

codifies norms governing our thinking about all objects. Factual propositions are

seen, on this approach, as internal not to rules of language but to norms of reason.

Logicism would be a way of showing that mathematics is normative, too, though

it might not be the only way. This normative view would still be in an important

way empiricist, in that it retained the thesis that no factual statement is a priori;

but it would drop the dogmas of realism and verificationism. It might be the best

way for empiricist descendants of Mill or logical positivism to go.
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c h a p t e r 4

WITTGENSTEIN ON

PHILOSOPHY OF LOGIC

AND MATHEMATICS

juliet floyd

Ludwig Wittgenstein (1889–1951) wrote as much on philosophy of mathematics

and logic as he did on any other topic, leaving at his death thousands of pages of

manuscripts, typescripts, notebooks, and correspondence containing remarks on

(among others) Brouwer, Cantor, Dedekind, Frege, Hilbert, Poincaré, Skolem,

Ramsey, Russell, Gödel, and Turing. He published in his lifetime only a short

review (1913) and the Tractatus Logico-Philosophicus (1921), a work whose impact

on subsequent analytic philosophy’s preoccupation with characterizing the nature

of logic was formative.1 Wittgenstein’s reactions to the empiricistic reception of

his early work in the Vienna Circle and in work of Russell and Ramsey led to

further efforts to clarify and adapt his perspective, stimulated in significant part by

developments in the foundations of mathematics of the 1920s and 1930s; these

I am indebted in this chapter to support from the Fulbright Program, Wellesley

College and a sabbatical fellowship from the American Philosophical Society, as well as to

stimulating conversations with members of my spring 2002 seminar on Wittgenstein at

Boston University, with Burton Dreben, Warren Goldfarb, Jin Ho Kang, Montgomery

Link, Thomas Ricketts, and especially Akihiro Kanamori.
1 There were, strictly speaking, also a lecture published, though never delivered and

immediately disowned by Wittgenstein (SRLF), a dictionary designed to teach spelling

(1926), and a letter to the editor of Mind (1933).
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never issued in a second work, though he drafted and redrafted writings more or

less continuously for the rest of his life.

After his death large extracts of writings from his early (1908–1925), middle

(1929–1934), and later (1934–1951) philosophy were published. These include his 1913

correspondence with Russell (see CL), 1914 dictations to Moore (MN), his Note-

books 1914–1916 (NB), transcriptions of some of his conversations with the Vienna

Circle (WVC), student notes of his Cambridge lectures and dictations (1930–1947),

and many other typescripts and manuscripts, the most widely studied of which are

Philosophical Investigations (PI) and Remarks on the Foundations of Mathematics

(RFM). Not until 2000 did a scholarly edition of his middle period manuscripts

(WA) and a CD-ROM of his whole Nachlass appear (1993– , 2000), thereby making

a more complete record of his writings accessible to scholars. Since Wittgenstein

often drafted multiple versions of his remarks, reinserting them into new contexts

in later manuscripts, and since his later, ‘‘interlocutory’’ multilogue style of writing

is so sensitive to context, this new presentation of the corpus has the potential to

unsettle current understandings of his work, especially since a fair number of re-

marks on mathematics and logic have yet to be carefully scrutinized by interpreters.2

Nevertheless, because of the wide circulation of the previously edited volumes there

is a substantial and fairly settled body of later writings that has exercised a signif-

icant and continuous influence on philosophy since the 1950s.

Wittgenstein’s discussions of mathematics and logic take place against the

background of a complex, wide-ranging investigation of our notions of language,

logic, and concept possession, and the fruitfulness of his work for the philosophy of

mathematics has arisen primarily through his ability to excavate, reformulate, and

critically appraise the most natural idealizing assumptions about the expression of

knowledge, meaning, and thought in language on which philosophical analyses of

the nature of mathematics, logic, and truth have traditionally depended. His

probing questions brought to light tendencies implicit in many traditional epis-

temological and ontological accounts to gloss over, miscast, and/or underrate the

complexity of the effects of linguistic expression on our understanding of what

conceptual structure and meaning consist in. Though he held, like Frege and

Russell, that a proper understanding of the logic of language would subvert the

role that Kant had tried to reserve for a priori intuition in accounting for the

objectivity, significance, and applicability of mathematics, his focus on the lin-

guistic expression of thought in language ultimately led him to question the

general philosophical significance of their logicist analyses of arithmetic. His re-

sistance to logicism ultimately turned on a diverse, multifaceted exploration of the

questions ‘‘What is logic?’’ ‘‘What is it to speak a language?’’ and, more generally,

‘‘What do we mean by rule- (or concept-) governed behavior?’’

2 Some recent discussions of these issues may be found in Marion (1998), Floyd
(2001b), Rodych (2002), and Mancosu and Marion (2002).
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Wittgenstein’s overarching philosophical spirit was anti-rationalist, in sharpest

contrast, among twentieth-century philosophers, to that of Gödel. For Wittgenstein,

as earlier for Kant, philosophy and logic are quests for self-understanding and self-

knowledge, activities of self-criticism, self-definition, and reconciliation with the

imperfections of life, rather than special branches of knowledge aiming directly at

the discovery of impersonal truth. These activities should thus aim, ideally, at

offering improved modes of criticism, clarity, and authenticity of expression,

rather than at a certain or explicit foundation in terms of general principles or an

enlarged store of knowledge. Like Plato in theMeno, or Kant in the Critique of Pure

Reason, when Wittgenstein discusses a particular logical result or a mathematical

example, he is most often model- or picture-building: pursuing, through a kind of

allegorical analogy, not only a better understanding of the epistemology of logic

and mathematics, but also a more sophisticated understanding of the nature of

philosophy conceived as an activity of self-expression and disentanglement from

metaphysical confusion, for purposes of an improved mode of life. He is investi-

gating how and whymathematical analyses affect and expand our self-understanding

as human beings, rather than assessing their cogency as pieces of ongoing math-

ematical research. Rather than adopting empiricism or a clearly formulated doc-

trine about mathematics and logic to combat rationalism,Wittgenstein fashioned a

novel appropriation of the dialectical, Augustinian side of Kant’s philosophy,

according to which philosophy is an autonomous discipline or activity not reduc-

ible to, though at the same time centrally concerned with, natural science. This sets

his philosophy apart both from Frege’s and Russell’s philosophies and from logical

empiricism, though his thought bears important historical relations to these and

cannot be understood apart from assessing his efforts to come to terms with these

rival approaches.

Because of philosophers’ tendency to focus on general questions of concept

possession and meaning in connection with Wittgenstein’s work, his philosophy of

mathematics is the least understood portion of his corpus. At present there is no

settled consensus on the place of his writings on mathematics and logic within this

overarching philosophy, nor is there agreement about the grounds for assessing its

philosophical worth or potential for lasting significance. His post-1929 remarks have

in particular met with an ambivalent reaction in contemporary philosophy of

mathematics and logic, drawing both the interest and the ire of working logicians.3

This is not surprising, in light of the controversial nature of Wittgenstein’s over-

arching philosophical attitude and his having presented few clear indications of how

to present a precise logico-mathematical articulation of his ideas. The main divide

in interpretations of Wittgenstein’s philosophy of mathematics is between those

who take his remarks on logic and mathematics to offer a restrictive epistemic

3 See, in particular, the critical discussions of Bernays, Goodstein, Gödel, Kreisel, and

Dummett.
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resource argument (constructivist, social-constructivist, anti-realist, formalist, veri-

ficationist, conventionalist, finitist, behaviorist, empiricist, or naturalist) based on

the finitude of human powers of expression, and those that stress his emphasis on

expressive complexity to forward criticisms of all such global epistemic positions.

Most agree that the heart of his philosophy of mathematics contains a recasting of

traditional conceptions of a priori knowledge, certainty, and necessary truth-an

attempt, not unlike Kant’s in his day, to find a way to resist naı̈ve Platonism or

rationalism without falling into pure empiricism, skepticism, causal naturalism,

or fictionalism. Yet, unlike Kant, Wittgenstein rejected the idea that the objectivity

ofmathematical and/or logical conceptsmay be satisfactorily understood in terms of

an overarching purpose, norm, or kind of truth to which they must do justice.

Wittgenstein came to suggest that a detailed understanding of how human beings

actually express themselves in the ongoing, evolving stream of life shows not the

falsity, but the lack of fundamental interest, of this idea. The main interpretive

debate about his philosophy concerns the basis and content of this suggestion.

One thing is clear. In his later writings Wittgenstein explicitly insisted that his

own philosophical remarks were a propadeutic, an ‘‘album’’ of pictures, criss-

crossing the same terrain in different directions from differing points of view for

differing, localized purposes. On this view the philosopher’s task is to investigate,

construct, explore, and highlight the philosophical effects and presuppositions of

many different possible models or ‘‘pictures,’’ each having a certain naturalness

given actual linguistic and mathematical practice; the point is to explore problems

rather than defend or enunciate general truths. In his later writings he suggested

that we conceive of human language as a variegated, polymorphous, overlapping

collection of ‘‘language-games.’’ Such a ‘‘game’’ he took to be a simplified struc-

ture, model, or picture (Bild ) of a portion of our language exhibiting various

kinds of distinctive patterns and regularities of human action and interaction.

Wittgenstein’s resistance to defending a single, unified conception, and his

many appeals to the notion of Bild, reflect his philosophy’s lineage from the

dialectical side of Kant—a side ignored and/or minimized in the mature phi-

losophies of Frege and Russell. Kant had insisted that human claims to possess

unconditional truth about reality, especially when grounded in the apparently

absolute and universal truths of formal logic, would inevitably end in conceptual

contradiction and paradox. The notion of Bild has a long philosophical history,

but in the German tradition it is connected with the general nature of symbolism,

with the mathematical notions of image and mapping, with the intuitive imme-

diacy and transparency to thought of a geometrical diagram,4 and with the notion

of education or self-development (Bildung). Wittgenstein’s distinctive uses of this

4 In The World as Will and Representation, a book that influenced Wittgenstein in his

teenage years, Schopenhauer emphasized the superiority of proof by diagrams in geom-

etry, contrasting them to the axiomatic, deductive style, which he associated with Euclid.
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notion were stimulated, in part, by his observation of the use of scale models in

engineering, but he was also especially taken with an idea he found in Hertz’s

Principles of Mechanics. Hertz had suggested that metaphysical confusions and

contradictory conceptions of fundamental notions (e.g., of force) cannot be re-

solved by the discovery of new knowledge, since they are caused in the first place by

the accumulation of a rich store of relations and associations around these notions

in the context of present-day knowledge. On this view, the best hope for ridding

ourselves of vexing conceptual perplexity is thus to sort through and conceptually

model, organize, or ‘‘picture’’ the store of relations and associations so as to resolve

conceptual confusions and antinomies, thereby relieving ourselves of the need to

summarize or join them in a general explanation of their fundamental nature. So

conceived, activities of restructuring, picturing, and formulating the architecture of

concepts (Begriffsbildung) provide new ways of conceiving fundamental problems

and notions, and are to be contrasted with the activity of discovery of truths by

reasoned deduction from first principles. As Hertz wrote in his introduction to his

Principles, ‘‘When these painful contradictions are removed, the question as to the

ultimate nature of [e.g.] force will not have been answered; but our minds, no

longer vexed, will cease to ask illegitimate questions.’’ The allusion to Kant’s cri-

tique of human claims to know the Ding an sich, the ultimate essence of things

apart from human conditions of representation, is clear in this quotation.

Yet Wittgenstein pressed to a logical conclusion Kant’s talk about ‘‘limits to

knowledge,’’ his distinction between ‘‘things in themselves’’ and things conceived

as appearances to us, subject to human forms of sensibility. Wittgenstein saw the

Kantian attempt to fashion theoretically justified limits to thought and/or knowl-

edge by articulating general principles of knowledge and/or experience as non-

sensical, for there is no making sense of a ‘‘transcendental’’ standpoint on our

knowledge that lies at or beyond its limits. For Wittgenstein the logical paradoxes

indicated that no such maximally general standpoint on knowledge can be made

sense of. The best that can be done is to engage in an immanent exploration of the

very notion of a limit to thought or to language.

Thus Wittgenstein radicalized Kant’s idea that the laws of logic and/or math-

ematics require philosophical analysis because of our tendency to misconstrue

them as unconditionally true of an ahumanly conceived domain of necessary

truth. For Wittgenstein, mathematics and logic are to be seen not only as sciences

of truth or bodies of knowledge derived from basic principles, but also as evolving

activities and techniques of thinking and expressing ourselves; they are complex,

applied, human artifacts of language. The logicism of Frege and Russell was right

to see the application and content of logic and arithmetic as internal to their

nature; mathematics and logic cannot be accounted for wholly in terms of merely

formal rules. Yet what it is to be part of arithmetic, grammar, or logic cannot,

Wittgenstein believed, be understood in terms of an appeal to a set of primitive

truths or axioms, or knowledge of logical objects. The best way to understand the
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apparently unique epistemic roles of logic and mathematics is to forgo the quest

for a unified epistemology in favor of a detailed investigation of how these ac-

tivities and artifacts shape and are shaped by our evolving language.

In the end, Wittgenstein’s work must be measured not in terms of its direct

contributions to knowledge—there were no theorems, definitions, or results of

any special importance in it—but in terms of the critical power of the widely

various arguments, analogies, terms, questions, suggestions, models, and modes of

conceptual investigation he invented in order to understand the post-Fregean

place of mathematics and logic within philosophy as a whole. Wittgenstein offers

us problems rather than solutions, new ways of thinking rather than an especially

persuasive defense or application of any particular philosophical thesis about the

nature of language, logic, or mathematics. Despite the ‘‘negativity’’ and ‘‘reac-

tionary’’ flavor that such a statement may suggest to some,5 these ways of thinking

mark a decisive step in the history of philosophy, in particular in relation to the

legacies of Kant, Frege, Russell, and the Vienna Circle, and inaugurated new and

fruitful ways of investigating phenomena of obviousness and self-evidence in

connection with the notion of logic.

After Wittgenstein, traditional logical and philosophical vocabulary involving

fundamental, apparently a priori categorial notions such as proposition, sentence,

meaning, truth, fact, object, concept, number and logical entailment has more often

been relativized by philosophers to particular languages, rather than assumed to

have an absolute or universal interpretation a priori. Fundamental logical notions

have been conceived as requiring immanent explication, a localized examination

of their ‘‘logical syntax’’ in the context of a working, applied language or language

game, rather than assumed to reflect independently clear, universally applicable

categories capable of supporting or being derived from universally or necessarily

true propositions or principles. It is largely to Wittgenstein, especially as inherited

by Russell, Carnap and Quine, that analytic philosophy owes its willingness to

question the Fregean idea that objectivity requires us to construe collections of

various declarative sentences and that-clauses of declarative sentences, whether in

the same language or in different ones, as reflecting a determinate content, thought,

proposition, sense, or meaning.

In what follows, some major themes governing Wittgenstein’s discussions of

mathematics and logic are treated against the background of the evolution of his

thought. A strong emphasis is placed on the early philosophy, both because this

set in place the major problems with which Wittgenstein was to grapple through-

out his life, and because it was the early work that placed Wittgenstein in direct

confrontation with earlier philosophies of mathematics, those of Frege and Russell

in particular. It was also the early philosophy that exerted the most direct and

measurable influence on the Vienna Circle. Readers primarily interested in the

5 See, e.g., remarks in works of Kreisel and in Hintikka (1993).
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later philosophy, which has received widespread attention since the late 1970s, are

referred to the accompanying bibliography, which provides an overview of cur-

rent literature.

Evolution of

Wittgenstein’s Thought

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. The Early Period

It seems that an early effort to solve Russell’s paradox was partly responsible for

turning Wittgenstein toward philosophy as a vocation. Trained as an engineer at

the Technische Hochschule in Berlin (1906–1908), he studied aeronautics in

Manchester (1908–1911), there encountering the works of Frege and Russell.6 By

April 1909 he had sent to Jourdain a proposed ‘‘solution’’ to the Russell paradox;

Jourdain’s response sufficiently exercised him that by 1911 he had drawn up plans

for a book and had met with both Frege and Russell to discuss his ideas (Grattan-

Guinness 2000, p. 581). At Cambridge (1911–1913) conversations with Moore and

especially with Russell stimulated Wittgenstein profoundly, and his final version

of the Tractatus Logico-Philosophicus was finished by 1918. It may be read, at least

in part, as a commentary on the philosophies of Frege, Moore, and Russell, and

the place of logicism in relation to the legacy of Kantian idealism. The Tractatus

thus forms a bridge between the earliest phases of analytic philosophy and the

logical positivism of the Vienna Circle (especially as expressed in the work of

Carnap), which in many ways it helped to create.

Wittgenstein made his primary impact by pressing to the fore the broadly

philosophical question ‘‘What is the nature of logic?,’’ a question that naturally

emerges if we attempt to gauge the general philosophical significance of Frege’s

and Whitehead and Russell’s ‘‘logicist’’ analyses of arithmetic. Given that it had

been shown how formally to derive basic arithmetical truths and principles from

basic logical principles, on what grounds may these principles themselves be held

to be ‘‘purely logical?’’ Our grasp of Frege’s basic laws seem, it is true, to involve

no obvious appeal to intuition or empirical knowledge, and his formal proofs

(Aufbauen) appear to be fully explicit, gap-free logical deductions. On the surface,

his basic principles express truths about fundamental notions (such as concept,

6 He also evinced skills as an applied mathematician, patenting a propeller engine

that was later used for helicopter propellers by the Austrian army in World War II.
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proposition, extension) that had long been acknowledged to be logical in nature.

Yet neither Frege, nor after him Whitehead and Russell, provided a satisfactory

account of why their systematized applications of the mathematical notion of

function to the logico-grammatical structure of sentences should compel us to

regard their analyses as purely logical in anything more than a verbal sense.

Frege’s and Russell’s own mark of the logical had been the explicit formul-

ability and universal applicability of its truths: they conceived of logic as a science

of the most general features of reality, framing the content of all other special

sciences.7 Their quantificational analysis of generality was what they had on offer

to make this conception explicit. But there were internal tensions within this

universalist view. Since the content and applicability of logic are assumed by the

universalist to come built-in with the maximally general force of its laws, it is

difficult to see how to make sense of its application as application, for from what

standpoint will the application of logic be understood, given that the application of

logic is what frames the possibility of having a standpoint? Frege’s and Russell’s

views led them to resist the idea of reinterpreting their quantifiers according to

varying universes of discourse, for they conceived their formalized languages as

languages whose general truths concern laws governing all objects, concepts, and

propositions whatsoever. They had no clear conception of ascending to a metalan-

guage in the model-theorist’s way. And yet, as a result, much of the extrasystematic

talk about the application of logic in which Frege and Russell engaged could not, by

their own lights, be formalized within their respective systems of logic.

Thus, for example, Frege was explicit that he had to fall back on extraformal

‘‘elucidations’’—hints, winks, metaphors—to explain his basic, purely logical

distinctions. He took inferences applying universal instantiation—the move from

‘‘(x)f x’’ to ‘‘fa’’—to reflect a universally valid rule of inference, but the universal

validity of that rule itself could not be explicitly formulated, on pain of a vicious

regress. He denied that ‘‘truth’’ is a genuine property word. The applicability of

many of his most fundamental notions and analyses (e.g., the procedures of cut

and assertion involved in modus ponens, such presuppositions as that ‘‘there are

functions,’’ ‘‘no function is an object,’’ and ‘‘Julius Caesar is not the number one’’)

could not be enunciated in terms of purely logical truths and/or definitions within

the language of his logical system. At best, they could be indicated or shown by

regarding the use of the formal system as the use of a contentful, universally ap-

plicable language.

Even more worrisome, the unrestricted application of Frege’s primitive no-

tions mired him in contradiction, as Russell (and earlier Zermelo) showed. If the

unrestricted application of basic logical principles engendered contradiction, how

7 See the annotated bibliography below for some key articles explaining the uni-

versalist conception and its significance for the history of logic.
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were the restrictions placed upon their applications to be defended as purely

logical ? It was difficult to see how Russell’s theory of types could be conceived to be

‘‘purely logical’’ on the universalist view, for it fractured the interpretation of

quantifier ranges into an infinitely ascending series of stratified levels, forcing

readers to understand each statement of a logical law, and each variable, as a

‘‘typically ambiguous’’ expression. Moreover, Whitehead’s and Russell’s unlim-

ited, ascending series of types cannot be spoken about as a whole, in terms of a

meaningfully demarcated range of generality. The universal application of Russell’s

general requirement of predicativity (associated with the ‘‘vicious circle principle’’)

suffers from the same problem. And his axiom of infinity raised the question how

any claim about the cardinal number of objects in the universe (whether finite or

infinite) can possibly be seen to rest on considerations of logic alone. Either this

question is one for physics, in asking what mathematics is needed to account for

the cosmological structure of the universe, or it begs the question for the logicist in

taking for granted that we already have mathematical knowledge of precisely those

mathematical structures that the ‘‘logical’’ theorems will have to account for.

The universalist conception of logic’s limitless application seemed in the end

to leave no room for any model-theoretical approach to logic. This left insuffi-

cient room for the kind of rigorization of the notion of logical consequence with

which we are now familiar. Neither Frege nor Russell had any means of formally

establishing that one truth fails to follow from another, because they had no

rigorous systematization of what in general it is for one truth to follow by logic

from another. All they had conceptual space for were explicit formulations of the

logical laws and rules of inference that they regarded as universally applicable and

the display of (positive) proofs in their systems. The completeness of these systems

with respect to logically valid inference could not be assessed except inductively

and/or in general philosophical terms, by pronouncing on the maximal gener-

ality of logic in its role of framing the content of all thought.8 It would take nearly

fifty years after Frege’s 1879 Begriffsschrift for the question of completeness with

respect to the notion of logical validity to be properly formulated, in part because

of the universalist conception that informed his formalization of logic.9

In his early work, while responding to the internal conceptual tensions within the

universalist view, Wittgenstein began to zero in on the project of isolating a notion of

logical consequence. This is somewhat ironic, in light of the fact that Wittgenstein’s

own later remarks about the notion of following a rule appear, at least at first blush, to

sit uncomfortably with the idea that we have a clear intuitive idea of one sentence’s

8 Frege (1903, § 17). Compare Whitehead and Russell (1910, p. 95n) and Russell (1919,
p. 191).

9 On this, see Dreben and van Heijenoort (1986), and compare the reply of Dummett

(1985).
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following with necessity from another.10 Still, though his philosophy always remained

indebted to its universalist origins, he took several decisive steps away from the

universalist model, steps that were to influence many who followed him.

Frege, Moore, and Russell had each rejected as unclear the notion of necessity,

replacing it with that of universality ; the early Moore and Russell explicitly held

that the notion of a ‘‘necessary’’ proposition was a contradiction in terms, arguing

that all ‘‘necessary’’ or ‘‘analytic’’ truths were in fact tautologies; and since no

tautology could express a proposition, all genuine propositions involving predi-

cation are synthetic (for a discussion of this prehistory, see Dreben and Floyd

1991). In his early philosophy, Wittgenstein brought necessity and apriority back

into view, denying that the notion of universality could replace them in account-

ing for the nature of logic. At the same time he preserved the idea that necessity is

not a clear property word or predicate; indeed, he took the Russell–Moore view

one step further in calling all so-called propositions of logic ‘‘tautologies.’’ This

had the radical effect of denying that logic consists of genuine propositions (i.e.,

of sentences capable of being either true or false, depending upon the relevant

state of affairs in reality), a sharp break with the universalist view of logic as a sci-

ence of (maximally general) truths.

Wittgenstein’s attempt to distinguish the concepts of necessity and generality

while retaining the universalist idea that logic frames all thought was fraught with

difficulty, and his struggles to make sense of this project dictated the course of his

future discussions of logic and mathematics. The Tractatus countered Russell’s

oft-repeated insistence on the importance to mathematical logic of the reality of

external relations (i.e., relations independent both of the mind and of the relata

related by the relations) by revisiting the idealist notion of an ‘‘internal’’ relation

or property, a notion connected in the Kantian tradition with necessity under-

stood as a reflection of human conditions and forms of knowledge.

10 It is not certain that Wittgenstein ever read Gödel’s completeness theorem (of 1930;
in Gödel 1986), and quite certain that he did not appreciate its mathematical significance,

given that he died in 1951, before the theorem’s significance and fertility were well un-

derstood. No explicit discussions of the theorem are so far known in Wittgenstein’s works,

though it is not impossible they might be found in the future. It would be nice if they

were, for it is the completeness theorem, much more than Gödel’s incompleteness the-

orems, that would seem to be most difficult for Wittgenstein to interpret philosophically,

given his later rule-following discussions.

Wittgenstein may have learned of the completeness theorem from Turing andWatson,

with whom he had discussions in 1937 that we have good reason to believe touched on

Church’s and Turing’s 1936 results concerning the undecidability of first-order validity (cf.
Watson [1938]). Goodstein (1957, 1972) mentions that by the early 1930s Wittgenstein knew

that the notion of finite could not be expressed in an axiomatic system; this is a conse-

quence of compactness in Gödel’s 1930 paper on the completeness theorem (cf. Gödel

[1986]).
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All logical concepts and relations were for Wittgenstein internal, and vice

versa. Internal relations and properties are necessary features of the objects, facts,

or properties they relate in the sense that we cannot conceive these to be what they

are, were their internal relations and properties to differ. An example is the co-

ordinate (2, 2) in a Cartesian coordinate system: it is part of what it is to be this

particular coordinated point that its first coordinate be 2 rather than 1, that it have

two coordinating numbers, that it differ from the point (1, 1), and so on.11 To ask,

for example, whether its first coordinate must be the number 1 is an ill-posed

question, to evince a misunderstanding, both of this particular coordinate and of

the framework within which it figures. In the Tractatus all such necessities are

taken to reflect structures of possible thought or modes of representation of facts

via propositions, not independent metaphysical facts or substances; they shape how

we see facts holding or not holding in the world, but they are not articulable in

terms of propositions telling us truly what objects really, ultimately are. The hold-

ing of an internal property or relation thus does not turn on any facts being or not

being the case, but on logical features of a proposition internal to its modes of

possible expression. These are not describable with a proposition, true or false, for

they reflect conditions of possible description that must be reflected in any de-

scription. For this reason Wittgenstein calls ‘‘internal’’ or ‘‘formal’’ properties and

relations pseudo concepts (i.e., not notions serviceable in the description of reality).

Wittgenstein used this idea of the internality of logical characteristics to reject

the Hegelian tradition’s insistence that the internal relatedness of subject and

predicate in a proposition could be used to establish monism as a metaphysical

truth. This was, in effect, to revitalize Kant’s view that logic, in being a consti-

tutive framework of thought as such, is factually empty, giving us no absolute or

substantial knowledge of reality or thought as they are in and of themselves (the

Hegelians had granted this for formal or ‘‘general’’ logic, but not for substantial,

true logic). It was also to revitalize the Kantian idea that logic is in its nature a

fertile source of dialectical illusion, constantly tempting us to confuse our forms

of representation with necessary features of reality, and therefore demanding

careful critique for its appropriate application.

Each of these ideas directly conflicts with the universalist standpoint of Frege

and Russell, according to which logical laws are truths, full stop.

Wittgenstein’s emphasis on internal relations was, however, also symptomatic of

his departure from Kant’s way of critiquing general logic. Kant set out a ‘‘transcen-

dental’’ logic of appearances that displayed the conditions of human knowledge in a

11 Another example is the expression of happiness in a particular facial expression:

the facial expression could not be the expression of happiness it is apart from expressing

what it expresses. Yet another example is the numberhood of the number 2: 2 could not be

what it is and fail to be a natural number, nor could the concept natural number be what it

is without applying to the number 2.
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set of synthetic a priori principles. Wittgenstein’s conception of logical relations as

internal to their relata was intended to allow him to undercut any such independently

given principled or mentalistic role for the transcendental. He aimed to display

the limits of sense from within language itself, by spelling out that which is internal

to the basic notion that we express ourselves meaningfully and communica-

tively, sometimes truly and sometimes falsely. This was the ultimate point at which

Wittgenstein could hope to show that neither necessity nor universality can be seen

aright without surrendering the idea that they are substantial concepts or properties.

Universal instantiation is as good an example as any. In the Tractatus the

logical relation between ‘‘(x)f x’’ and ‘‘f a,’’ in being ‘‘necessary’’ and ‘‘universally

applicable,’’ expresses an internal logical relation between these two propositions:

neither proposition could be what it is apart from the second sentence’s ‘‘fol-

lowing by logic’’ from the first. This indicates the idea that it is nonsensical to ask,

given the assumption that ‘‘(x)f x,’’ whether or not ‘‘f a’’ is true—as nonsensical as

it would be (on Wittgenstein’s view) to ask whether the coordinate (2, 2) has as its

first coordinate the number 2, or whether the number 2 is a natural number. The

logical or formal character of the relation (or property) comes in, ready-made,

with our representation of its elements. Differently put, the logical content and

force of generality is for Wittgenstein something shown in our language, but not

said; it is applied, but not described or established by a truth.

Wittgenstein’s chief philosophical difficulty lay in working out a conception

of logic that would display all logical features of propositions as internal to them,

and display all necessities as logical. His Notebooks 1914–1916 had begun with the

remark that ‘‘logic must take care of itself,’’ an insistence intended to preempt as

nonsensical any appeal to the extralogical in understanding the scope and nature

of logic. This insistence incorporated strands of the universalist point of view, but

pointed in a new direction. Wittgenstein was simultaneously rejecting an empty

formalism about logic that leaves its application to a theory of interpretations (in

the universalist spirit) and at the same time rejecting all theories—including

certain aspects of Frege’s and Russell’s philosophies of logic—that rely on an

appeal to purely mental activity—or to any extralogical facts—to account for the

application of logic in judgment.12 If logic could be shown to ‘‘take care of itself,’’

12 The theories he had in mind to undercut included Kant’s transcendental doctrine

of judgment as synthesis, Frege’s notion of assertion as an act working on a content,

Moore’s and Russell’s analyses of judgment as constituted by a relation between a mind

and a proposition, and Russell’s later multiple relation theory of judgment. All these

theories fall back on an appeal to an extralogical mental activity to account for the nature,

structure, and objectivity of truth in judgment. The effects of Wittgenstein’s reactions

(1913 and earlier) to Russell’s theories of judgment on the Tractatus notion of picture are

greatly illuminated by Pears (1977), Ricketts (1996b), and Proops (2002), and analogous

effects of his reactions to Frege by Ricketts (2002) and Sullivan (2001b).
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then the pseudo character of all attempts to justify its application and our obli-

gations to it could be unmasked, precisely by showing them to purport to have

achieved a perspective outside of logic from which to explain it. Of course, strictly

thought through, this conception would impugn itself, in that its own remarks

about logical relations would positively invite themselves to be read as substantial

truths about a reality underlying logic. In the Tractatus Wittgenstein bites the

bullet, declaring his own sentences as, by his own lights, nonsensical, to be sur-

rendered in the end as themselves misleading, as neither true nor false to any kind

of fact. Their use was to portray much traditional epistemic and metaphysical talk

of necessity and reality as equally so by freeing us from misleading construals of

logical grammar.

Wittgenstein’s most basic conceptual move, expressed in his Tractatus con-

ception of sentences as ‘‘pictures’’ or ‘‘models’’ of states of affairs, was to take the

unit of the perceptibly expressed judgment—the Satz or ‘‘proposition’’ as an

applied sentence, true or false—to be logically fundamental. The challenge was to

contrive a presentation of logic that would allow this notion to remain basic to the

presentation of what logic is, and to show how to unfold from it, without further

ontological or epistemological appeal, all fundamental logical notions and dis-

tinctions. Logical form, on this view, was not to be construed as anything entity-

or property-like, but instead as expressed in the ways in which we (take ourselves

to) apply and logically operate with propositions. If this could be accomplished,

Wittgenstein could surrender as otiose the whole idea of a logical fact or law, and

still view logic as in some way limitlessly applicable.

The analogy between pictures and propositions intuitively suggests this line of

thinking. A picture (a proposition) is conceived not as an object, but as a complex

structure, a fact laid up against reality as a standard without intervention of an

intermediate entity—something like a yardstick. The variety of different ways in

which one might model (or measure) the same particular fact, configuration of

objects, situation, or state of affairs—for example, by means of colored dots on a

grid, or by means of words, or by means of pencils and toy people (by means of

miles, feet, inches, or nanometers)—tempts us to conceive of a ‘‘something that

these models have in common with one another’’ (a ‘‘real length’’ of an object

independent of how it is measured on one or more occasions). Yet there is no such

notion to be had apart from the applicability of some particular system of

measurement (there is no notion of length in itself, unindexed to such a system).

This leaves us with the idea that the ‘‘it’’ that is common, for example, to all

possible depictions of a particular person’s stance at a particular moment in time,

is their common depiction of that particular person’s stance, and no other, in-

dependent kind of fact. But then the ‘‘it’’ of a picture’s content, the essence of its

particular comparison with the way the world is—analogously, a proposition’s

logical form—is on this view not object-like, or to be understood apart from our

understanding and application of it (i.e., of the propositional signs that, in
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application, are true or false in expressing it). Thoughts and senses, identified by

Wittgenstein with applied propositional expressions, are on this analogy equally

unobject- or unentity-like: they are shown or expressed in our activities of arguing,

agreeing, and disagreeing on the truth of particular propositions. On Wittgen-

stein’s conception, there is thinking without (Fregean) thoughts: what it is to take

ourselves objectively to communicate is given through our acceptance of different

complexes of signs (in different mouths of different speakers) to express the same

propositions or symbols. But this is simply to redescribe or reiterate as basic the

notion of a proposition as an applied sentence, true or false.

The weight of Wittgenstein’s overarching conception of logic was thus not

taken to rest so much on its ability to uncover a true logical structure of the world

(e.g., an ontology of objects and facts suitable to justify the priority of truth-

functional and/or quantificational logic) or a model-theoretic semantics of pos-

sible states of affairs to ground an intuitive notion of logical consequence or

entailment (though, as Wittgenstein was aware, one may easily interpret some of

his remarks in this way). Instead, he took his conception to rest wholly on its

ability to display all such (very natural, indeed perhaps inevitable) talk of necessity

in connection with the relation of logical consequence as in the end nothing but a

repeating back or reflection of the acknowledgment—to be recognized as fun-

damental rather than defended as a further independent proposition—that we

express propositions, some of which are true and some of which are false. This

unmasked as nonsensical (unsinnig) the idea that the kind of categorical talk most

natural to general philosophical discussion of logic could be viewed as contrib-

uting to an independent body of metaphysical truth about the most general

features of reality.

Wittgenstein used the truth-table notation—implicit in Frege’s and Russell’s

logic—to set forth his conception of the logical. He construed a truth-table as a

fully complete expression of a proposition or thought, and aimed to unfold from

this diagram the most fundamental logical distinctions. First, he identified the

‘‘sense’’ (Sinn) of a proposition with the truth-functional dependence of the

proposition’s truth-value upon the different possible assignments of truth and

falsity to its elementary propositional parts. This extensionalized the notion,

allowing him to dispense with Frege’s (intensional) way of defining a thought as

the Sinn of a proposition, the ‘‘mode of presentation’’ of a truth-value. It also

vividly displayed Wittgenstein’s idea of bipolarity, the notion that what it is to be a

proposition—to express a definite sense—is to be an expression that is true or

false, depending upon how the facts are. It depicted as internal to the proposi-

tion its combinatorial capacity to contribute to the expression of further truth-

functionally compounded propositional structures. And it gave Wittgenstein a

way to tie the notion of sense to that of logical equivalence in terms of purely truth-

functional structure: ‘‘:p_ q,’’ ‘‘p� q,’’ and ‘‘(p& p)� q’’ all express the same

sense in being logically equivalent, and vice versa, for the truth-table form of

88 oxford handbook of philosophy of math and logic



writing each of these shows that they each express the very same dependence of

truth-value upon assignments to ‘‘p’’ and ‘‘q,’’ regardless of the fact that different

truth-functions appear in their expression. It is, in other words, the way inwhich the

final column of the truth table relates assignments of truth and falsity to the

elementary parts that ultimately (logically) is what matters, and not the classifi-

cation of a proposition’s logical form as that of a conditional, a conjunction, or a

disjunction. Meaning and sense, in their logical aspects, are thus extensionalized.

This conception yielded a way to distinguish, on the basis of the truth-table

notation alone, the ‘‘propositions’’ of logic: ‘‘tautologies’’ are defined as having

‘‘T’’ in every row of the final column, ‘‘contradictions’’ as having ‘‘F’’ in every such

row, and the ‘‘propositions’’ of logic are just these sentences. This portrays logic as

empty of factual content, for the truth-values of such sentential forms may be seen

not to depend upon any particular truth-assignment to their elementary parts;

they hold no matter what assignment is chosen. (As Wittgenstein remarked, to say

that it is either raining or not raining right now tells me nothing about the

weather.) These purely logical ‘‘propositions’’ lack bipolarity, and hence sense:

Wittgenstein declares them sinnlos, regarding them as limiting cases of proposi-

tions that are not really either true or false, that carry ‘‘zero’’ information.

This characterization of logic was purely ‘‘formal’’ or ‘‘extensional’’ that is,

it worked without any independent appeal to extralogical meanings or truths, and

solely on the basis of reflection on the propositional sign, the truth-table notation

itself. On Wittgenstein’s view the logical status of logical sentences emerges solely

through their internal logical structure, a structure that cancels out the depicting

features of the sentence’s elementary parts, but not through any general truths or

through their gap-free derivability from basic logical laws. The truth-functional

connectives are themselves reduced, in this notation, to what is displayed in a

truth-table, particular dependencies of truth-values upon truth-assignments. The

interdefinability of the truth-operations indicates that they do not contribute to

any factual aspect of a proposition. Thus Wittgenstein remarks that his funda-

mental thought (Grundgedanke) is that the logical constants do not refer to or

serve as proxies for logical objects. There is, then, no room for a genuine dis-

agreement over the truth of individual logical laws. Any purported justification

(e.g., of bivalence, excluded middle, or noncontradiction) would be at best an-

other way of spelling out one’s prior acceptance of the truth table as a suitable

expression of the proposition itself, and hence no justification at all. In inviting us

to suppose that one can step outside of logic to assess the truth of its laws, any

such justification is nonsense. There is no question of generality here at all, only a

question of one’s understanding of the notion of proposition properly.

This understanding of the notion of proposition, built uponWittgenstein’s ‘‘ex-

tensionalism’’ about logic, was thus tied to a rejection of Frege’s and Russell’s

respective applications of the distinction between function and argument (Frege’s

distinction between concept and object), a distinction intrinsic to the quantificational
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conception of generality that appeared to give the universalist conception its

plausibility. As we have seen, Wittgenstein took the ability of a truth table to stand

in as an expressive replacement for (or a definition of) a truth-functional sign (for

example, in showing the expressive adequacy of ‘‘:’’ and ‘‘&’’ relative to the other

truth-functions) to indicate that the signs for the truth-functions are not names of

logical objects or functions, as Frege and Russell had held. Instead, he conceived

the connections as part of a framework for expressing logical dependencies, ‘‘inter-

nal’’ (nongenuine) relations between sentences. This demanded, for a proper treat-

ment of the logical signs, the introduction of a new grammatical category distinct

from that of function and name, namely, that of an operation. The depiction of

objects and functions by configurations of names and concept words is part and

parcel of the content of propositions for Frege, Russell, and Wittgenstein. But for

Wittgenstein operations, being merely formal, are simply a way of operating with

propositional signs; they do not stand proxy either for concepts (functions) or for

objects. They are instead like punctuation marks: an operation sign forms part of

the way in which a particular sense happens to be expressed, but in no way can a

particular logical connective be taken to reflect what a sentence means or is about.

Wittgenstein takes part of his task to be to show how we may regard all of the usual

logical signs as operation signs (i.e., as truth-operational features internal to the

expression of propositions) rather than features referring to that about which the

propositions in which they explicitly figure speak.13

Wittgenstein’s construal of logical features as emerging from what we do with

propositions—reflecting internal features of our ways of seeing the world rather

than properties or functions—remained a central leitmotif in all of his subsequent

work. Over and over again he warns against the tendency to reify our means of ex-

pression, showing how the oversimplification of logical grammar naturally leads

to the posing of pseudo-questions. He saw it as all too easy to assume that ob-

jectivity demands there must be an object or meaning corresponding to every

working sign in the language. Frege’s so-called context principle (‘‘never ask for the

meaning of a word in isolation, but only within the context of a proposition’’) and

Russell’s notion of an incomplete symbol (his use of the theory of descriptions to

analyze away apparently denoting phrases in favor of quantificational structures)

were moving in the right critical direction, but did not go far enough in under-

cutting our tendency to confuse elements of our expressive powers with entities

corresponding to elements of our language. For Frege and Russell failed to apply

their own principles to the logical elements of language. To Wittgenstein, their

uniform extensions of the distinction between function and argument across

logical notions were conceptually procrustean, mired in an overly optimistic ex-

tension of (an updated form of ) the ancient duality between subject and predicate.

13 Hylton (1997) and Floyd (2001a) examine the distinction between functions and

operations in the Tractatus in relation to Frege’s and Russell’s philosophies of logic.
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Difficulties about the analysis of generality were, however, central to Witt-

genstein’s problem, and these could not be faced by means of the truth-table and

the picturing ideas alone. It was alien to Wittgenstein, as much as it had been to

Frege and Russell, to conceive of the quantifiers as reinterpretable according to

arbitrarily chosen universes of discourse; the whole point was to see logic growing

seamlessly out of the given application of sentences in a language. But he con-

ceived of this growth in radically new terms. The decision procedure (algorithm)

for truth-functional validity, satisfiability, and implication that Wittgenstein

exhibited with the truth-tables in the Tractatus allowed him to make this view

plausible for part of logic: as he pointed out, in cases where the generality symbol

is not present, we can see that so-called ‘‘proof ’’ within pure logic is a mere cal-

culation, a ‘‘mechanical’’ expedient allowing us to display for ourselves the tau-

tologousness (or contradictoriness) of a logical proposition simply by rewriting it.

The idea that the truth-functional connectives refer to separable entities, or that

we can prove the logicality of a sentence (or the validity of a proof through its

conditionalization) via rational inferences from truth to truth, justified step-by-

step by the application of logical laws to general features of objects and concepts,

is thus—for Wittgenstein—otiose.

But how was this conception to be extended to quantification theory, where

(as Church was to establish in 1936) we have no decision procedure for validity,

and where (as Gödel was to show in 1930) we do have a systematic search pro-

cedure for it?

The purely philosophical motivation for extending Wittgenstein’s view across

‘‘all of logic’’ was clear. His emphasis on the mechanical aspect of proof in pure

logic was motivated by his critical reactions to the wedding of Frege’s and Rus-

sell’s philosophical arguments for logicism with their success in having formalized

logic. They had each argued, against formalists and traditional algebraists of logic,

that logic and mathematics are more than merely mechanical, formal games of

calculation—they are applicable and contentful sciences of truth. Frege explicitly

insisted that arithmetic was more than a mere game like chess because its prop-

ositions express senses, thoughts [Frege 1903, §91]. For Wittgenstein, this kind of

argument rang hollow. Arguably what Frege and Russell had done, in spite of (or

perhaps because of ) their universalist conceptions, was to show how the purely

logical character of an argument can be verified mechanically, by tracing through

its formalized structure. This appeared to reinforce the algebraical view that logic

is essentially empty, a calculus with uninterpreted signs. Wittgenstein did not wish

to fall back on an uncritical formalism. But he did wish to portray the debate

between Frege and Russell and their formalist forebears as mired in confusions

over what the application of logic and mathematics involves.

Wittgenstein understood quantification as something operational, that is, as

belonging to the way a proposition is expressed and applied, rather than to a

distinctive descriptive or functional element of a proposition. The Tractatus claims
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that all quantificational forms of sentence may be generated purely operationally,

and uses for this Wittgenstein’s operatorN, a generalized form of the Sheffer stroke

of joint denial that negates elementary propositions either singly or jointly. Since

he was writing at a time when the distinction between first- and second-order logic

had not been formulated, we may assume that Wittgenstein intended to use op-

erator N to express all quantificational structures. But his notational suggestions

have never been made wholly precise. For the first-order case, however, at least this

much is clear: ‘‘f x,’’ a propositional variable indicating a function, stipulates a

range of elementary propositions (i.e., those in which the function figures with an

object); ‘‘:(Ax)f x’’ is expressed through operator N by jointly (generally) denying

the elementary propositions presented by ‘‘f x’’; and ‘‘(x)f x’’ is generated by jointly

(generally) denying the elementary propositions presented by ‘‘:f x.’’ The logical
step from ‘‘(x)f x’’ to ‘‘f a’’ is thereby seen to be an immediate, purely formal op-

eration rather than an instantiation in accordance with a general logical rule or law

of inference; generality contributes nothing in and of itself to the material content

of a proposition. The sign for generality is thus not to be read as a function symbol,

but as a way in which a collection of elementary propositions is operated upon, or

displayed. In a sense, generality is already expressed in ‘‘f x,’’ and therefore, in a

sense, the ‘‘(x)’’ part of the generality notation is unnecessary or misleading.14 In

virtue of the fixed domain of (elementary) sentences that are presupposed from the

outset, this sign can at best be seen to contribute as an index to the applications of

operator N at work in cases of multiple generality. But it does not express a genuine

kind word, second-order function, or concept in its own right.

This is very far from the universalist’s conception of generality. Wittgenstein

is conceiving generality to be expressed in something like the way a genre painting

expresses an archetypal feature or scene. Such a painting is applicable to an aspect

of each concrete situation exemplifying the relevant genre features. That is what

its being a genre painting is, and that is what makes any exemplar an exemplar of

it. Its own way of representing is, of course, not reducible to the depiction of any

one such example, but each such example exemplifies on its own, without any

intermediary principle. This is reflected in the fact that the very same picture

could be used to depict (could be inspired initially as a depiction of ) a particular

scene, and also a genre scene; there is nothing in its internal structure that says

how it should be interpreted. That comes out in our uses of it.

Wittgenstein’s treatment is not intended to give a unified account of the

notion of generality. His distinction between function and operation bifurcates it

into two different notions, the material generality of concepts involved as func-

tions at the atomic level in elementary propositions, and the operational generality

of formal concepts. As we have seen, he conceives of formal concepts as pseudo

14 Compare Kremer (1992).
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concepts because of our tendency to assimilate them to genuine concepts or kind

words when we ought, as he thinks, to focus on the operational, procedural

aspects of our hold on them: formal notions do not sort independently given

objects into kinds (they are neither true classifiers nor sortals), but instead are

shown or expressed through the kinds of applications we make of them. Their

applications are internal to them, and the applications are, in turn, what they are

insofar as they successfully display or express the formal notions.

This gives Wittgenstein a way to dissolve Russell’s paradox. According to the

‘‘picture’’ idea, the elementary proposition is a fact in which names serve as

proxies for objects via their structural, configuration within the sentence as it is

used to depict the holding of a state of affairs. Material (‘‘propositional’’) func-

tions (concepts and relations) are expressed via fixed modes of positioning names

within the projected propositional sign. This exhausts the articulation of func-

tional and objectual material content (and generality) at work in language.

Wittgenstein holds that no material function can apply to itself: no sentence can

say of itself that it is true, for the sentence is a proposition only insofar as it is

compared, through its functional articulation via a structure of names, with

something else that it models truly or falsely. He is thinking here in terms of an

analogy with the positionality notation of our decimal system: that our numerals

are written in the decimal system, and not some other one, is presupposed in our

understanding of how to read the positional notation. This is not something that

the numerals say ; it is something that our operations with them show. Given a

fixed system of positionality to express material functions, writing down ‘‘f(f(x))’’

in effect gives rise to a claim about two different material functions, much as the

digit ‘‘2’’ reflects something different in each of its occurrences within the (decimal)

notation ‘‘222.’’15 This reflects Wittgenstein’s idiosyncratic reading of the gener-

ality of the variable: ‘‘f x ,’’ on his view, presents a fixed range of elementary prop-

ositions (‘‘f a,’’ ‘‘f b,’’ and so on) that cannot be changed by trying to reapply ‘‘f.’’

In ‘‘f(f x)’’ we thus have two occurrences of the same sign functioning as different

15 Wittgenstein’s idea that functionality might be expressed through positional

structure within a sentence resembles the positionality conventions at work in our decimal

notation in another way: a decimal numeral is not, from this perspective, just a name, but

a structure or an aspect of pictorial form. This is to rework Frege’s analogy between

the functional articulateness of the complex arithmetical term (such as ‘‘22þ 35’’) and the

sentence, using the analogy to reject Frege’s view that numerals and sentences are object

expressions (names).

On Wittgenstein’s analogy, the formally characterizable difference between an ele-

mentary proposition and a molecular proposition emerges through applications of truth-

operations in just the way that the difference between decimal numerals and complex

arithmetical terms emerges through the application of arithmetical operations (addition,

multiplication, subtraction, and exponentiation).
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symbols; in principle we could simply use different signs (say, with indices) to

distinguish them. This is Wittgenstein’s ‘‘solution’’ to Russell’s paradox.16

Yet Wittgenstein does not rule out a purely formal, ‘‘self-referential,’’ or

recursive series of nested applications, as in O 0x, O 0(O 0x), O 0(O 0(O 0x)). . . .What

he does insist is that if we imagine such a series being logically connected ac-

cording to repeated application of a single formal rule, then we are treating ‘‘O’’ as

a sign for an operation, not as a genuine (propositional, material) function

symbol. Operations, unlike (material) functions, are in their very nature recur-

sively iterable procedures generating collections of instances that are internally

ordered in what Wittgenstein calls formal series. Wittgenstein’s notation for this

kind of (recursive) generality uses square brackets: in, for example, ‘‘[a, x, O 0x],’’
‘‘a’’ stands for the basis step of the series, x for an arbitrary member of the series,

and ‘‘O 0x’’ for the result of applying an operation O to x. This bracket notation is

thus equivalent to writing down ‘‘a, O 0x, O 0O 0x, O 0O 0O 0x . . . ,’’ an expression

with an ellipsis. It expresses a rule whose applications are internal to its expres-

sion, but the generality of the rule is shown or indicated through the manner of

presenting its instances, not said or described. Furthermore, Wittgenstein allows

that the basis might itself be given through a formal series, so these bracketed

expressions may themselves be iterated. On this view, the procedure of moving

from type to type in Russell’s hierarchy is operational, something done formally,

without any appeal to the facts. It cannot be summed up in the quantificational

manner of Frege and Russell without confusion, for the generality of the formal

series, ordered by an ‘‘internal’’ rule of the series, is fundamentally different from

the generality of, for example, the (material) concept horse.

We have seen that the notion of proposition is held by Wittgenstein to be a

formal (pseudo)concept. This is evinced in his treating it as fully displayed through

applications of the (formal) operator N. Wittgenstein holds that all propositions

are results of applying iterations of operator N to a basis of elementary proposi-

tions. No proposition talks about the general form of proposition, for this is a formal

notion, given through a recursive template or rule, not via the functionally artic-

ulate name of a class or totality. Beginning with some basis of elementary propo-

sitions, p, the idea is that by a finite number of applications of operator N, we see

that we shall be able to generate all propositions. Wittgenstein writes what he calls

‘‘the general form of proposition’’ in terms of his recursive notation: ‘‘[ �pp, ���,Nð���Þ],’’
where ‘‘�pp’’ is a schema for a basis propositions, ‘‘��� ’’ a variable standing for all results

of some finite number of applications of operator N to elements in that basis, and

‘‘N (���)’’ for the totality of results of applying operator N.

16 Sullivan (2000) shows how understanding the cohesion of the Tractatus’s technical

and philosophical treatment of this distinction is crucial for understanding his responses

to Russell’s type-stratification of the universe. For another useful treatment, see Potter

(2000).
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The Grundgedanke of the Tractatus is that the so-called logical constants (the

logical expressions) do not refer: all logical expressions indicate operations,

according to Wittgenstein. Now we see that all operations are logical in being

purely formal, recursively iterable rules. And operations are always tied, directly

expressed through or indirectly, to our application of propositions in language,

via truth-operations on the elementary propositions. Nothing that is a proposi-

tion fails to be subject to logical operations.

There has been a recent debate over the question whether and in what sense this

Tractatus notation for the general form of proposition is expressively adequate, even

for first-order logic alone, and, therefore, whether and on what grounds Wittgen-

stein might have been committed, wittingly or unwittingly, to the existence of a

decision procedure for all of logic.17 Wittgenstein’s situation with respect to decid-

ability was vexed and complex. In 1913 he was apparently one of the first (wrongly) to

conjecture the existence of a decision procedure for all of logic, writing to Russell

that the mark of a logical proposition was one’s being able to determine its truth

‘‘from the symbol alone’’ (cf. CL, pp. 59, 63). Yet it remains unclear on precisely what

basis Wittgenstein might still have been committed to this as late as 1918.18 It is

usually held—and it was reported to have been said by Wittgenstein himself—that

in the Tractatus he conceived of the quantifiers in terms of potentially infinite

truth-functional conjunctions and disjunctions, not realizing the intrinsic barrier to

extending the truth-table analysis into the unrestricted quantificational domain.

Yet Wittgenstein himself had no interest in setting out a smooth-running

codification of quantification theory, and in fact he is not explicit in the Tractatus

about what semantics or notational details he would require. His central philo-

sophical problem was, after all, to indicate how one might be able to dispense,

conceptually, with the idea that general logical laws or rules of inference such as

universal instantiation are true in virtue of meanings of the words ‘‘all’’ and ‘‘some’’

that go beyond what is expressed at the elementary level by their instances; he

wanted to show that none of the logical constants must be conceived as going

proxy for an object or function. Only in this way could he undercut the idea of a

stance from which one might dispute the correctness or incorrectness of an in-

terpretation of the quantifier’s range, of the inference from ‘‘(x)f x’’ to ‘‘f a,’’ and

show that logic is not a science of true propositions or laws at all.

Arithmetic remained, however, as a potential stumbling block. For in reject-

ing Frege’s and Russell’s quantificational conception of generality, Wittgenstein

was in effect rejecting the means by which they carried through their account of

17 See Fogelin (1982), Geach (1981), Soames (1983), Sundholm (1990), and Floyd (2001a).
18 Certainly by the early 1930s he was insisting, in response to conversations with

Ramsey, that no such ‘‘leading problem’’ of mathematical logic would help us understand

logic’s basic nature. But this was in part a criticism of his earlier conception’s having

(apparently) made it a central concern.
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arithmetic as logical in nature. The first difficulty he had to face was an account of

the universal applicability of the cardinal numbers within extramathematical prop-

ositions. Here he proposed making cardinality and numerical identity internal

features or forms of the elementary propositions. This was to construe cardinal num-

bers as undefinable, as internal aspects of our presentation of facts in propositions,

rather than as objects or properties of objects. Falling back once again on his re-

jection of the adequacy of the function/argument distinction, Wittgenstein sharply

distinguished (as algebraists of logic had traditionally done) between logical iden-

tities and mathematical equations. He then argued that the sign for identity is,

in connection with propositional functions, expressively, and therefore logically,

unnecessary. It would always be possible, he argued, to devise a language in which

there were no redundant names: logic cannot bar this as an expressive option. This

would allow us to read numerical identity between material concepts directly off

from the expression of an elementary proposition; ascriptions of number were then

not (as they had been for Frege and for Russell) logical identities.

On this view, ‘‘f a & f b’’ shows without saying that there are at least two F ’s;

the number is a depicting feature of the symbolism, and not a separate object

referred to by the proposition.19 Wittgenstein adopts a convention for the variable

that allows him to read ‘‘:(Ax, y)( f x & f y)’’ as saying that there are not two f ’s.20

Thus the fact that we use equations in mathematics cannot, for Wittgenstein, be

used to argue that the numbers are objects, for though he argues that mathematics

consists essentially of equations, he holds that equations are not objectual iden-

tities in which genuine (propositional) functions work. Instead, they are part of an

operational calculus of signs, working via (what mathematicians had long called)

the method of substitution.21 Probability is also subjected to analysis in terms of

the nation of operation in the Tractatus, via the truth tables.

19 The nonlogical character of Russell’s Leibnizian second-order analysis of identity

in terms of coincidence of all properties is intended to be exposed by this thought ex-

periment: Wittgenstein is arguing that it is perfectly possible that we could conceive that

two different objects fall under precisely the same concepts. Furthermore, what Russell

tries to assert in his axiom of infinity would not be asserted, but shown in the use of

infinitely many different proper names. And if—as one would expect Wittgenstein to have

assumed, given the obvious demands of physics—real numbers were added to the forms of

the elementary propositions, this approach would yield elementary propositions with

potentially infinite formal complexity. Moreover, such pseudo statements as ‘‘(Ax)(x¼ x)’’

and ‘‘(Ax)(x 6¼ x)’’ could not be written in this language as propositions, true or false; that

which they try to express as general truths would be shown in the application of names in

genuine propositions.
20 The precise interpretation of this proposal is complex, and still not worked out

with full formal precision; for two discussions, see Hintikka (1956) and Floyd (2001a).
21 The terms in which Wittgenstein treats arithmetic in the Tractatus are precisely

those used by Whitehead (1898). See Floyd (2001a) for a discussion.
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In this way Wittgenstein revitalized in the Tractatus an older, algebraical way

of conceiving mathematics and logic that Frege and Russell had hoped to wipe out

as ‘‘formalist,’’ but precisely by tying this language itself back to the logicist idea

that our cardinal number words reflect aspects of the logical form of propositions

that we apply to the world. A mathematical equation, according to the Tractatus,

is neither true nor false, it expresses no thought or proposition, but instead sets

forth rules for the substitution of one numerical (operational) sign for another,

either in other mathematical equations or in genuine propositions (extramath-

ematical ascriptions of number). Ascriptions of number within mathematics (e.g.,

‘‘there is only one solution to xþ 1¼ 1’’) enunciate symbolic rules for the ap-

plication of operation signs; in this way the ‘‘x’’ in such an equation is not read as

a universally quantified variable, but as a formal operator.22 Regarded from the

perspective of mixed contexts, equations are taken to show us ways we may

interchange numerical operations in genuine propositions without affecting the

sense expressed. They reflect what we can do with these operations, not under-

lying general truths.

The pictorial character of number words is part and parcel of Wittgenstein’s

idea here. Operating on an equation via substitutions of one term (operation

sign) for another yields different ‘‘pictures’’ or standpoints from which to con-

sider the operation signs figuring in it: in mathematics we are shown different

aspects of the logical syntax of number words (cf. TLP 6.2323, 2.173). Arithmetical

‘‘proofs’’ of equalities between particular number words are calculations, manip-

ulations of a series of pictures using operation signs in accordance with ‘‘the

method of substitution’’ (6.241). On this view, the numbers are construed neither

objectually nor adjectivally, but practically, in terms of what we do with them.

And Wittgenstein has no need to define a general notion of (mathematical)

function.

On this view, second-order logical principles such as Hume’s principle23—

which essentially requires the notion of identity for its formulation—are otiose.

The equinumerosity of two concepts (whether material or formal) is already

22 Wittgenstein (1993–), vol. IV, p. 239:

x2¼ 1 has two roots versus on the table are 2 apples. The former is a

grammatical rule of the variable. . . .Can I determine a variable by saying

that its values should be all objects which satisfy a certain function? Not

if I don’t know this some other way—if I don’t, the grammar of the

variable is simply not determined (expressed).

23 ‘‘Hume’s principle’’ is Frege’s second-order contextual definition of sameness of

number, so dubbed in work byWright (1983) and Boolos andHeck (cf. Boolos [1998, part II]
for a discussion). Intuitively speaking, for conceptsU andV the principle is that the number

belonging to the conceptU is the same as the number belonging to the concept V if and only

if there exists a one-to-one correlation between the objects falling under each concept.
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expressed (applied) in the similarity of form shared by different first-order prop-

ositions (pictures) involving these concepts. For example, given Wittgenstein’s

eliminative proposal about redundant names, ‘‘f a & f b’’ and ‘‘gc & gd ’’ show

without saying that there are at least as many f ’s as g ’s through their shared forms.

Given Wittgenstein’s exclusive interpretation of the variables ‘‘x’’ and ‘‘y,’’

‘‘(Ax)(Ay)( f x & f y) & :(Ax)(Ay)(Az)( f x & f y & f z)’’ and ‘‘(Ax)(Ay)(gx & g y) &

:(Ax)(Ay)(Az)(gx & gy & g z)’’ show equinumerosity through their shared forms.

Cardinality, for material and for formal concepts, is thus taken by Wittgenstein to

be given with a concept’s expressive possibilities, possibilities whose applicability

must, he believes, already be in place in the use of (nonpurely logical) proposi-

tions before talk of one-to-one correlation is cogent. The existence of a one-to-one

mapping between numerals and objects may be understood either materially or

formally, externally or internally. Externally and materially, this is a way in which

individual objects may be associated, either with one another or with numerals.

But the heart of Wittgenstein’s picture idea is that a mere association between

names and objects is, in and of itself, not something qualifying as propositional at

all; only the internal features of a proposition give rise to a logical relation of

equinumerosity. The proposition, conceived as an articulate, applied structure or

fact, true or false, is fundamental. The upshot is that Wittgenstein treats the

cardinal numbers and the notions of object and numerical identity as indefinable

forms, expressive features of the symbolism, rather than as objects or names.24

Wittgenstein did not mention the principle of mathematical induction in the

Tractatus—a remarkable thing, given that one of the primary achievements of

Frege’s and Russell’s second-order analysis of arithmetic was to show how to

derive this (apparently ‘‘synthetic’’) truth from pure logic alone. He did take the

cogency of proof by induction to be a reflection of the logical structure of number

words; it is just that his conception of the logical differed from the logicists’. For

Wittgenstein an induction ‘‘principle’’ is one whose generality and applicability

are shown in the general form natural number, which is a formal notion. On this

view, mathematical induction’s application to the natural numbers is part and

parcel of what makes a number a number. Induction is thus not depicted as a sep-

arable general truth that could be deduced via a second-order definition of num-

ber in terms of equivalence classes. Wittgenstein’s own ‘‘definition’’ construes the

24 Such considerations against the priority of Hume’s principle were forwarded by

Wittgenstein (cf. WVC) and later, under his influence, by Goodstein (1951) and Waismann

(1951, 1982, 1986). Dummett (1978, 1991a) responded critically to Waismann’s version of

these considerations, which lacked Wittgenstein’s more or less explicit reliance on the idea

of the proposition as a picture. Marion (1998) contains a useful survey of the issues raised
here, which are obviously connected with the notion of a function-in-extension (i.e., with

the notion of a function as an arbitrary mapping between individuals or a set of ordered

pairs).
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numbers recursively, as ‘‘exponents’’ of operations (i.e., as forms common to the

development of any formal series).25 Every formal series has a first, a second, a

third member, and so on; the notion of ‘‘operation’’ is equivalent, Wittgenstein

remarks, to the notion of and so on. By writing down ‘‘[0, x, xþ 1],’’ a variable

ranging over exponents of all operations, Wittgenstein shows the general form of

natural number (TLP 6.03). In effect, he simply writes down ‘‘0, 1, 1þ 1, 1þ
1þ 1, . . . ,’’ without analyzing the ellipsis away explicitly, as is done with the

ancestral construction of Frege and Russell.

To the objection that he was opening arithmetic up to an account in terms of

synthetic a priori intuition of succession, Wittgenstein replied that language itself

would provide the necessary ‘‘intuition’’—which was just to dismiss any serious

independent role for the notion of intuition. On his view, the individual arith-

metical terms within this series are not freestanding, but emerge through their

connection with the notation for the general form of proposition and, hence,

through the expressive structure of the operations we perform with elementary

propositions. Wittgenstein went so far as to deny (in the early 1930s) that there

could be a notation for arithmetic in which numerals functioned as proper names

(WVC, p. 226). And he always insisted that the theory of classes is ‘‘superfluous’’

for mathematics (TLP 6.031). Indeed, he considered the ancestral definition of

successor to suffer from an expressive ‘‘vicious circle’’ (TLP 4.1273). This was not

for him an epistemic argument against our claiming to have knowledge of abstract

objects or a freestanding preference for predicativity. It formed part of an ex-

pressive argument about the philosophical advantages of one notation for the

numbers over another, presupposing his treatment of generality.

Wittgenstein was thus always sympathetic to the kind of considerations

Poincaré brought forward against logicism—namely, that in setting out the for-

malization of logic within which the logistic reduction would be carried out, Frege

and Russell already depended upon their reader’s ability to apply arithmetic and

inductive inference. But this was not (as it was for Poincaré) intended to refute

the notion that arithmetic is in some sense ‘‘analytic.’’ Instead, it was to show that

the logistic reduction is not of any fundamental epistemic relevance.26 Wittgen-

stein feared that Frege and Russell would reinforce the philosophical tendency to

look at the logical characteristics of mathematics through the distorting lens of a

25 Detailed reconstructions of this idea may be found in Frascolla (1994, 1997),
Marion (1998), and Potter (2000).

26 An assessment of the legitimacy of this kind of objection, and the differences

between Wittgenstein and Poincaré, lies outside the scope of my discussion here; the

adjudication of these issues is complex. For two especially relevant treatments of Poin-

caré’s arguments, see Goldfarb (1988) and Mclarty (1997); on Wittgenstein’s criticisms of

Frege and Russell’s logicism, see Steiner (1975) and, for a contrasting interpretation,

Marion (1998).
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unified account of generality. From his perspective, the logicistic reduction is

likely to reinforce the tendency to look behind mathematical practice for an un-

derlying account of a reality of necessities. The advantage of his recursive notation

lay, he believed, in its showing on its face that which is logical in arithmetic,

namely, the internality of the relations among arithmetical principles, arithmetical

operations, and arithmetical terms, regarded as a reflection of our fundamental

ability to ascribe number in empirical contexts. The general notion of natural num-

ber is not a material predicate or kind word, as he sees it, but, like the notion of

proposition, is given through our application of recursive operations to expressive

features of our language.

The universalist’s conception is depicted here as wrongheaded, a needless

wrapping up of logic and arithmetic in the guise of talk derived from general

principles about objects, functions, and relations. Logic and arithmetic could

certainly be developed axiomatically on Wittgenstein’s view, but such a devel-

opment would be, at best, just one mode of exposition among many other pos-

sible ones, and at worst, a philosophically misleading exposition. It could never

demonstrate to us, as an analysis, the true nature of our concepts of logic, number,

and arithmetic, or ground our knowledge of mathematics in absolutely certain or

absolutely general principles. It would not show any deep facts of deductive de-

termination, but would recapitulate in one style the very same expressive gram-

matical structure that we could look at differently; that, indeed, is what would

make its derivations ‘‘purely logical.’’ As Wittgenstein sees it, logic ‘‘takes care of

itself ’’: a proposition of logic (or, in mathematics, an equation) belongs to logic

(or to arithmetic) just as it is, in virtue of its figuring in a calculus of operations

that we apply to it. A universalist interpretation in terms of an extensional con-

ception of classes or concepts thus distracts from what is to Wittgenstein’s mind

truly fundamental to arithmetic and logic—namely, our ability iteratively to op-

erate with (to ‘‘follow’’) a recursive rule in connection with internal necessities of

language; and it is on this ability that the applications of logic and mathematics

fundamentally rest. Frege and Russell gloss over this in eliding the crucial dif-

ference between accidental (material) and nonaccidental (operational, formal)

generality, the difference between that which the sentences of our language depict,

and that which comes built-in with the logical syntax of any depiction.

2. ‘‘Middle’’ Life and Philosophy (1929–1933)

After the First World War, Wittgenstein largely withdrew from academic phi-

losophy. He did speak with Ramsey in the mid-1920s about the foundations of

mathematics (about the notions of identity and cardinality in particular), and

by the late 1920s he had decided to return to Cambridge to attempt a further
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articulation of his views. He continued to write and discuss philosophy until his

death. His ‘‘middle’’ or transitional period (1929–1933) was a period of exploration

of his earlier views in light of his own and others’ reactions.

After 1935, Wittgenstein came explicitly to advocate philosophical investiga-

tion of grammar and concepts (i.e., of logic) in which concepts generally, and

mathematical concepts in particular, are treated as a ‘‘motley,’’ a many-colored,

evolving family of notions, notions that lack sharply definable ranges of appli-

cation (cf. RFM III, §§46ff.). In a general way, his focus shifted from an emphasis

on the notion of a calculus or system to the broader notion of a language game,

but this shift was made against the backdrop of an underlying continuity in his

thinking about the contributions and errors made by Frege and by Russell. During

the initial phase of this latter part of his philosophical life, his ideas were con-

stantly evolving under the pressure of his attempts to clarify his Tractarian ideas

and shift them in response to recent developments in the foundations of math-

ematics and logic. What he had eventually to surrender was the idea that the

notion of an ‘‘internal’’ property or relation (i.e., his unmasking of the idea that

arithmetical and logical participles refer to independently given objects and func-

tions) could be accomplished through the display of mechanically effective algo-

rithms or the notion of a purely ‘‘internal’’ or ‘‘formal’’ relation or technique. In

the end, however, his aim of thinking through the nature of logic, and the lim-

itations of the universalist conception, always remained central to his work.

Feigl recounts that Wittgenstein returned to philosophy after hearing a lecture

by Brouwer in Vienna in 1927, and some have inferred from this that Wittgenstein

should be read as a Brouwerian, but this reading seems very doubtful, both in

light of Wittgenstein’s insistence on the importance of linguistic expression to our

understanding of mathematics (his skepticism about a transcendental, solipsistic

self), and in light of his denial (in a sense more radical than Brouwer’s) that logic

consists of any laws or principles.27 In any case no one influence may be said to

have governed his thinking: he experienced no radical conversion in his over-

arching conception of philosophy, but thought through his ideas in a new, far

more complicated intellectual setting. By the late 1920s and through the early 1930s

he was reacting critically to the Tractatus’s positivistic, empiricistic appropriation

by the Vienna Circle and attempting to come to terms with recent developments

in the foundations of mathematics and epistemology: not only Brouwer’s intui-

tionism but also Russell’s Analysis of Mind, Ramsey’s work on the foundations

of mathematics, Hilbert’s metamathematics and finitism, discussions by Weyl,

and Skolem’s analysis of quantifier-free arithmetic (cf. here especially WA, PR,

PG, WVC). By 1935 he began to try to come to terms with the diagonalization

arguments of Cantor, Gödel, and Turing (Wittgenstein and Turing discussed

27 Three interesting (and contrasting) discussions of Wittgenstein and intuitionism

may be found in Fogelin (1968), A.W. Moore (1989), and Marion (1998).
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philosophy and logic between 1937 and 1939). Beginning in 1929, when he first

returned to Cambridge, conversations with Ramsey and Sraffa stimulated Witt-

genstein, as did his reading of Nicod’s Geometry and Induction; he was also

influenced by his reading of Spengler, Frazer’s Golden Bough, and Freud. In con-

versations with the Vienna Circle he discussed, among others, Frege, Russell,

Husserl, Hilbert, Weyl, Brouwer, and Heidegger. The grammar of the concept of

infinity, both within and outside of mathematics, was a central preoccupation

from 1929 to 1934.

Given this complexity and ferment, there are many different ways of un-

derstanding the development of Wittgenstein’s thought. Here we shall content

ourselves with a brief description of the ways he developed just a few Tractarian

ideas about philosophy, logic, and mathematics; in particular, we shall focus on

his treatment of generality and necessity.

Not until he returned to England in 1929, and to sustained conversations with

Ramsey, did Wittgenstein begin seriously to investigate whether and how far his

Tractarian treatment of arithmetic might be adequate. The difficulty came in

assessing how this treatment could be interwoven with his Tractarian conception

of logic without glossing over his sharp distinction between material and oper-

ational generality, and without adopting a substantial metaphysical or epistemic

position in discussing the nature of logic and its applicability. Wittgenstein had

not been explicit in the Tractatus about which cardinalities he took to be built into

the forms of the elementary propositions and, thus, what sort of elementary

propositions he had in mind. He discussed the natural numbers and left all

further discussion to the side. This left his attitude toward real and imaginary

numbers—and the application of mathematics in physics—unclear, and thus,

especially in connection with the topic of the infinite, Wittgenstein’s elliptical uses

of the notion of operation came to seem to him too coarse and nebulous. The

fundamental problem was a clash of analogies at the heart of the Tractatus: he had

linked his conception of finite cardinality much too tightly to his view of the

truth-table as an adequate display of the logical. This, as Russell and Ramsey

helped him to see, left crucial conceptual questions open.

In the Tractatus Wittgenstein had suggested that the logical impossibility of

an object’s being both red and green all over at the same time, or both exactly

three inches long and exactly four inches long at the same time, would be shown

at the atomic level of analysis. Now he saw that he could not hold on to his views

about the application of number without linking his conception of the logical to

systems of propositions. If, in Wittgenstein’s manner, we ascribe a cardinal num-

ber x to a material concept f x (e.g., through a proposition like ‘‘f a & f b’’), then it

is immediate (shown within the expression of this proposition) that the appli-

cation of this number (viz., two) rules out as false the ascription of exactly one to

the concept. This treatment of number thus pulled in the opposite direction from

the image of an ultimately self-sufficient elementary proposition; what was given
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already in the application of the truth-table were systems of propositions, ac-

cording to Wittgenstein’s own construal of the number words as operation signs.

Imagining real numbers used in the formulation of elementary propositions

makes this point vivid: here we have infinite complexity of a certain kind within

the elementary proposition, complexity we understand through our understanding

of the system of real numbers itself. The yardstick analogy with the proposition

pulled in this direction anyway. For if an object is presented, via a material

concept, to be exactly one meter long (or green all over), then it is immediate

(internal to the proposition’s expression) that the object so described is not three

meters long, not four meters long, and so on. A yardstick, in other words, figures

in a system of measurement.

Wittgenstein’s treatment of cardinal number left it unclear whether he wished to

(or could) make room for the transfinite, as Russell noted in his introduction to the

Tractatus. It was equally unclear howWittgenstein’s replacement for Russell’s axiom

of infinity was to work. How were we to be shown the cardinal number of all objects

as all of them? If there were a finite number of objects, n, then onWittgenstein’s view

it would be nonsensical to try to say that there were nþ 1 objects; but on what

ground could we possibly regard this as something purely logical? And if there were

an infinite number of objects, then how would that be shown in language? No formal

rule could set out the names in advance without destroying Wittgenstein’s sharp

distinction between names and operations signs, a distinction on which his con-

ception of the universal applicability of the truth table depended. But without such a

rule, the totality of elementary propositions remained expressively opaque, in

principle impossible to list completely. Russell suggested in his introduction to the

Tractatus that an infinite hierarchy of languages would defeat Wittgenstein’s use of

the show/say distinction—perhaps the first place in print where the contemporary

idea of a metalanguage was broached. Wittgenstein had no way to rule this out for-

mally, given his own discussion of the movement from type to type in Russell and

Whitehead’s hierarchy. But the picture of a series of languages raised with a ven-

geance the question of whether and on what basis one could make sense of the unity

of language (i.e., the very notion of a speaker’s grasp of a—his or her own—language.

Nearly immediately upon his arrival in Cambridge in 1929, Wittgenstein’s

exclusive reliance on the model of the independence of elementary propositions

fell by the way, precisely in order that he could retain that which was fundamental

to his philosophical conception (cf. WA, PR). For some time he attempted to

think through what a logical analysis of the ‘‘phenomenological’’ language of first-

person experience would look like, focusing in his discussions with the Vienna

Circle on the logical status of hypotheses and the holistic systematicity to be found

in descriptions of experience (WVC). He accused himself of having erroneously

construed the quantifiers in terms of conjunctions and disjunctions. (see G. E.

Moore [1954–1955]). He admitted that he had failed clearly to show how one could

view the application of the quantifier in pure number theory (cf. PR p. 130).
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Wittgenstein did not surrender the show/say distinction; he elaborated and

adapted it to his evolving standpoint. Confronted with recent work on the

Entscheidungsproblem, he retained, but softened, his earlier tendency to connect

this distinction with the display of algorithms and the notion of a calculus.

Conversations with Ramsey in 1929–30, along with his reading of Hilbert, Weyl,

and others, made him critical of the vagueness of his earlier appeal to the notion

of operation. He now explicitly retreated from embracing algorithmicism as a

general account of proof in logic and mathematics. Ramsey had obtained an

important result (1928) for a partial case of the Entscheidungsproblem, and was

engaged in trying to develop an ‘‘extensional’’ account of the foundations of

mathematics in terms of the notion of arbitrary function, conceiving of his own

work as a development of the Tractatus’s extensionalized standpoint. In sharply

differentiating his philosophical outlook from Ramsey’s, Wittgenstein came to

radicalize his previous tendency to resist a unified account of generality. By 1934

he was explicitly rejecting two ideas that, as he now saw it, the Tractatus had, in its

vagueness, invited: (1) the idea that mathematics and/or logic have a unified core

or nature; (2) the idea that a philosophical understanding of logic or mathematics

could rest upon the solution to a leading or single fundamental problem (such as

the Entscheidungsproblem). The articulation of these rejections became the hall-

mark of his later discussions of mathematics and logic.

The evolution of Wittgenstein’s thought was, however, piecemeal and uneven

during this ‘‘middle’’ period. In 1929 he began to speak (as he had not in the

Tractatus) of the ‘‘sense’’ of a mathematical proposition or equation as something

that is shown in its proof (cf. WA, PR). He still sharply distinguished between

equations and propositions, but now began to try to do better justice to the dis-

tinctive generality at work in mathematical proof. This comes through in his

examination of Skolem’s quantifier-free treatment of primitive-recursive arith-

metic (PG, pp. 397ff.). Wittgenstein still wished to deny that an induction could be

conceived on the model of the demonstration of a true general proposition based

on general principles. Now he insisted that such a proof shows on its own the

‘‘internality’’ of the connection between universal quantification and instances by

constructing a kind of algorithm or template. In other words, the meaning of ‘‘all’’

in an inductive proof is fully expressed in the giving of the argument itself—it is a

reflection not of the existence of a further function or rule, but of the grammar of

the formal series of natural numbers. On this view it would be nonsense to ask for a

general principle of mathematical induction to justify the generalization: once a

property has been shown to hold for zero and to hold for the successor of an

arbitrarily chosen k, in some sense the application of ‘‘all’’ is fully expressed or

exhausted.28 For Skolem to claim that in an inductive argument a general propo-

28 For a range of slightly different readings of these remarks, see Waismann (1951),
Shanker (1987), and Marion (1998).
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sition is proved to be true is, as Wittgenstein sees it, just dispensable and potentially

misleading ‘‘prose,’’ gas surrounding the hard and genuine core of the proof,

which consists in nothing but the construction of a diagram for an algorithm. Thus

Wittgenstein conceives the recursive proof as a (schematic) picture, not as a

proposition: it shows or directs us in the way an algorithm, table, or rule does. In

an inductive proof, something is expressed that cannot be satisfactorily accounted

for in terms of the notion of an arbitrary function or an explicit second-order

principle of logic. Instead, the generality comes out in our applications of the

template or schema. We see from the proof (the picture) how to go on.29

Wittgenstein’s resistance to Ramsey’s extensionalist conception of (proposi-

tional) functions—a major theme of his middle period—also turns on his ad-

aptation of the Tractarian conception of showing. The heart of his unwillingness

to follow Ramsey’s approach to the foundations of mathematics was that he could

not see what made the notion of function-in-extension a logical notion. Logic

unfolded what could be conceived of as given in the use of propositions, true or

false. But then a function-in-extension à la Ramsey could not be taken to be a

propositional function: it lacked the kind of pictorial complexity Wittgenstein

associated with propositions. For Ramsey to allow any arbitrary output whatso-

ever for an input to such a function left us at sea about the applications of this

notion within language, within the expression of propositions. From 1929 through

1934 Wittgenstein set his face against Ramsey’s extensionalism about the infinite

by speaking of what he called the ‘‘intensional’’ character of the concept of in-

finity, by which he meant a conception of the potential infinite as given through

our possible applications of a rule, in contrast to a conception of it as a list or

abstract object such as a set. From the Tractatus Wittgenstein retained the idea of

conceiving the indefinitely extendable as a grammatical rule or elliptical expres-

sion we apply in language, as opposed to a property, object, or totality, as well as

the idea that the notion of infinite is not a specifically logical notion; infinity, he

argued, is not expressed in a picture or isolated fact. During his early middle

period he tried to investigate in far greater detail than he had before different

contexts in which the notion of the infinite shows its grammatical face. His dis-

cussions, though often read as endorsing a straightforward form of verificationism

or intensionalism, are perhaps better seen as a link between his earlier and his later

philosophy: a further, more detailed effort to reject an overarching or homoge-

nous categorial structure for all of logic and mathematics. By 1935 Wittgenstein

came to see his talk of an ‘‘intensional’’ conception of infinity as too vague and

coarse, as liable (just as his earlier talk of operations had been) to misconstrual in

29 This approach to mathematical induction, not unlike Weyl’s, held heuristic value

for one of Wittgenstein’s students, Goodstein, who went on to develop a ‘‘logic-free’’

system of quantifier-free arithmetic in the 1940s. For relevant discussions, see Goodstein

(1951) and Marion (1998).
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the hands of intuitionists, finitists, and verificationists. He became explicit that

revision of mathematical practice in the light of epistemic or empirical constraints

on human modes of knowledge was not his aim—thereby more or less admitting

that his earlier discussions had invited such misuses. And he also began to zero in

on the ways in which his earlier discussions of operations and intensions had

rested on far too general and uncritical an appeal to the notion of following a rule.

While the latter topic was to become an explicit focus of concern by the mid-

1930s, Wittgenstein was never to surrender the idea that the theory of classes (the

extensional conception of [propositional] function) was ‘‘superfluous’’ for (i.e.,

parasitic upon) the working applications of mathematics in language, in its role

as part of our framework for giving empirical descriptions. For him, set theory

was a strange hybrid of traditional logical notions (concept, extension, proposition)

and purely mathematical notions about whose mathematical applications he

always remained confused and about whose purely philosophical applications

and metaphysical motivations he always remained doubtful. This was not to reject

set theory’s results as genuine parts of mathematics, to but insist that these

results require detailed scrutiny (cf. PG, pp. 460ff.; RFM II, §§19ff.; V, §§7ff.; VII,

§§33ff.).

To rid himself of spurious philosophical appeals to meanings and objects,

Wittgenstein had always emphasized the central role of algorithms and calculation

in mathematics, the image of mathematical activity epitomized by the solving of

equations according to calculation techniques. He saw no reason to give this

strategy up, or to try to justify it. But as a picture of mathematics generally, it was

misleading. Mathematics consists in more than the construction of algorithms,

procedures, and axiomatic systems; it seems to give insight into structure. In

particular, the metamathematics of Hilbert seemed to be able to show us how to

mathematize certain notions and philosophical questions that had not been

mathematized before. In response, Wittgenstein insisted that metamathematics is

not a theory establishing true, independently grounding principles for otherwise

incomprehensible practices. Instead, it gains its point and purpose from its ap-

plication to our practices of arithmetical calculation. Metamathematics was for

Wittgenstein just another branch of mathematics, an extension of it in a new

direction, not a more fundamental supertheory (cf. WVC).

In one way, metamathematics appeared to Wittgenstein to be just a sophis-

ticated way of formally picturing or modeling the grammar already in place in

arithmetic. In another, it struck him as misleading prose inessential to the

working core of everyday mathematical practices such as devising techniques for

solving equations, engineering solutions for the construction of machines, reck-

oning calculations, and applying geometry. The trouble with metamathematics,

for Wittgenstein, is that it tends to mislead philosophers into thinking that the

metamathematical language gives us a single way of surveying the core, or in-

terpreting the meaning, of apparently fundamental mathematical and logical
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notions. But ascent to the metalanguage is just another perspective on practices

that gain their character within language from their working applications in hu-

man life. Such ascentmay change our perspective on our own language, but it grows

from our current practices, and is parasitic upon them: it cannot make them more

epistemologically certain.

3. The Later Philosophy

Throughout his life Wittgenstein mounted many arguments designed to question

how far we may legitimately hold that logical or mathematical necessity (or truth)

is lodged in the purely deductive implications of prior intellectual commitments

(e.g., commitment to the truth of certain general arithmetical principles, to def-

initions and laws of inference, or to general rules of grammar previously accepted).

His point was not to question arithmetic or the formal derivations to be found in

Frege’s Grundgesetze or Principia Mathematica, nor was it to insist, in an irra-

tionalist or mystical vein, that its bases are not in any way cognitive—though he

did often highlight the arationality of the sometimes rote, unreflective aspects of

training on which teaching of logic and mathematics depends. His primary focus

was on the misleading pictures of language, understanding, and rationality that

emerge from naı̈ve interpretations of such accounts of mathematics. Like the

logicists, Wittgenstein took the kind of apparently unrevisable, impartial, uni-

versally agreed-upon truth of mathematics to arise from the very grammar of our

understanding of the terms involved. At the same time he insisted more and more

stridently over time on the philosophical relevance of the fact that this gram-

mar arises in tremendously complicated, partly contingent ways that evolve over

time within the natural world, depending upon how a particular sentence is

learned, taught, applied, and contextualized within larger mathematical and extra-

mathematical linguistic contexts.

A central analogy remaining from Wittgenstein’s earliest work was between

mathematical theories and systems of measurement. An equation such as

‘‘2þ 2¼ 4’’ may be conceived to serve speakers of the language as an operational

recipe, a standard or ‘‘paradigm’’ to which certain activities, if they are to count as

arithmetical, must conform (RFM, I). As a purely arithmetical tool licensing the

substitution of one numerical term for another, the equation serves a role much

like that of a conversion ruler showing how to switch between inches and meters;

in its applied role, it is used like a ruler for measuring particular episodes of

calculating and counting, giving us something like a rule or model of grammar

rather than a particular belief. If one counts two apples and another two apples,

without overlap, then there must be four apples counted, and if there are not four

on a subsequent count, we say either that there has been an error in counting or
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that a surprising physical event has occurred. The equation’s ‘‘truth,’’ if we wish

to speak this way, holds as much in virtue of our own, contingently evolved

commitments to certain methods of representation and ongoing communal

practices and needs as it does in virtue of the nature of things. Like a system of

measurement, mathematics (like logic) is for Wittgenstein a complex human

artifact, situated and created in and for an evolving natural world, and its claims

to objectivity and applicability ultimately turn upon our human ability to find

one another in sufficiently constant agreement about results of its application to

make the practice prove its worth (RFM VI, §§39ff.).

If we insist on speaking of discovery in mathematics, Wittgenstein suggests that

we ought to allow ourselves to think in terms of an analogy with technological dis-

coveries, which are perhaps better conceived of as inventions, like the steam engine

or the wheel or the decimal notation or the computer (RFM I, §§168ff.; II). As we

have seen, algorithms and fixed procedures of calculation were for Wittgenstein—

as they are in any system of measurement—of central importance here, and he

always conceived tables, algebraic representations of constructive procedures,

algorithms, and calculations to play a central role in mathematics.30 As time went

on, he relied more explicitly on his looser analogy between applied mathemati-

cal structures (systems of numerals, geometrical diagrams, equations, episodes of

counting, and proofs) and pictures or models (Bilder). He explicitly regarded

proofs and episodes of establishing equinumerosity as conceptual paradigms,

models giving us ways of synoptically expressing reproducible routines for de-

scribing and/or constructing empirical events. Insofar as these routines allow us to

take in, understand, and make sense of empirical situations, they are to be counted

as part of the logical syntax or ‘‘grammar’’ of our language; they fix concepts and

their applications precisely by making them synoptically surveyable. Such artifacts

are, like systems of measurement, as much invented as discovered, because to

understand them, as to understand any human artifact, we must be able to under-

stand their uses in concrete situations we encounter and wish to describe.

The use of such pictures in communicating and establishing mathematical

conviction is tied to empirically conditioned perceptual and intuitive aspects of

our nature as human beings, aspects that shape their qualities of design. A theorem

that may be communicated with an easily surveyable model gives us a kind of un-

derstanding and insight (an ability to ‘‘take it in,’’ to appreciate and communicate

30 Marion (1998) argues that Wittgenstein was an algorithmicist about mathematics,

the kind of finitist or constructivist who sees the construction of algorithms as the core

of mathematics. In light of Wittgenstein’s later discussions of proof and rule-following,

this is not, I believe, all there is to his philosophy of mathematics (see Floyd [2002]), but
there is no doubt that he insisted on construing calculation as something extremely

important and central to mathematics—something not every mathematician or philoso-

pher does.
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the result) that a long, intricate, formalized version of the proof does not. That is

not to say that there are no uses for formalized proofs (e.g., in running computer

programs). It is to say that a central part of the challenge of presenting proofs in

mathematics involves synoptic designs and models, the kind of manner of orga-

nizing concepts and phenomena that is evinced in elementary arguments by dia-

gram. This Wittgenstein treated as undercutting the force of logicism as an

epistemically reductive philosophy of mathematics: the fact that the derivation of

even an elementary arithmetical equation (like 7þ 5¼ 12) would be unperspic-

uous and unwieldy in Principia Mathematica shows that arithmetic has not been

reduced in its essence to the system of Principia (cf. RFM III, §§25,45–46).

Of course, our ability to use a picture or diagram to express and/or com-

municate a mathematical principle or concept depends upon our understanding

of how to apply it. A central difficulty Wittgenstein raises here is, the question of

what is to count as an application (correct or incorrect) of a logical or mathe-

matical rule, concept, or procedure, construed as such a model or picture.

Wittgenstein is to be credited with having tied this question to more wide-ranging

ones about the nature of concept-possession. In his later work he often drew an

analogy between the ability to project a noun or adjective into new contexts and

the computation of instances of an elementary arithmetical function, or the

drawing of a purely logical inference (cf. RFM I; PI §§186ff.). This was intended to

soften his earlier Tractatus distinction between material and formal generality.

Now he emphasized that the difference between the mathematical and the em-

pirical (or the psychological) was not given by the grammatical structure of

sentences: the very same sentence might in one way be viewed as empirical, and in

another way as merely conceptual or mathematical (cf. RFM VII, §§20ff.). A

fortiori mathematics and logic were to be seen to have no monolithic core, just

as—and indeed because—our notion of that which belongs to language does not.

All we have to rely on in expressing the general applicability of a model, an

episode of empirical counting, or a diagram is our language, broadly construed.

And yet no image, picture, sentential form, or model applies itself. Not any

arbitrary application or use one might make of a sentence or diagram can be held

to be fitting or appropriate to it if there is to be any coherent notion of applying it.

Yet how deviant from the communal norm can an application be before we say

that it is no longer an application? The question is just as difficult (and perhaps

just as unanswerable) as the question of when the use of an artifact—such as a

knife—ceases to be a use of the artifact as the artifact that it is. One of Witt-

genstein’s main points, throughout his discussions of rule-following, is to show

how an absolute notion of logical necessity, treated without qualification, is as

much a will-o’-the-wisp as an absolute or general notion of rule.31

31 And hence, that no notion of intention is likely to be able to determine the ap-

plications of these notions. Compare Floyd [1991].
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Indeed, in drawing analogies between equations, proofs, numerals, and con-

cepts and rules of grammar, Wittgenstein was suggesting that our cognitive verbs

such as ‘‘know’’ and ‘‘believe’’ ultimately work against the grain of our usual traf-

fic in logical and mathematical statements (cf. RFM I, §§106ff.). For instance, to

say that a person believes that 2þ 2¼ 4 appears to leave open the possibility that

the sentence ‘‘2þ 2¼ 4’’ might not be true, suggesting that one could understand

the equation quite apart from agreeing with it. Wittgenstein’s view, in depicting

the equation as a rule of language, is that understanding and assent work so

closely together in the case of this kind of accepted logical and mathematical

sentence that one cannot step outside one’s own understanding of the notions and

terms at work in them to prescind from one’s commitments within our language

when considering the equation’s truth. To understand ‘‘2þ 2¼ 4’’ in the way we

expect an adult speaker of our language to understand it is to be unwilling to

grant the sense of circumstances in which this sentence might turn out to be false.

To suppose that its truth is a matter of very well confirmed or perhaps even

indubitable professional opinion, or that only a proof from more general prin-

ciples can, ideally, bring about belief or certainty in its truth, is to fail to give this

conceptual aspect its proper place.

Proof is thus not sufficiently understood, according to Wittgenstein, by

maintaining that it yields firm conviction or certain truth dependent upon

knowledge of derivations from prior truths, for it equally involves acceptance of a

sentence (or proof ) as a standard in one’s own language of what does and does

not make sense. Proof, on this view, is not a series of sentences meeting purely

formal deductive requirements, but an activity of achievement and acceptance

constitutively shaping one’s conceptions of language and the world, sustained in

complicated ways by psychology, natural regularities, and communal practice. To

appreciate the necessity and universal applicability of an equation like ‘‘2þ 2¼ 4,’’

then, Wittgenstein asked his readers to investigate the role it plays in shaping what

does and does not make sense to us, our very notion of understanding.

Wittgenstein tries to display the importance of this idea in his later writings

by sketching simplified language games or imagined forms of life—often usefully

pictured as those that might be played with children—in order to illustrate how

much varied, active cultural training, both rote and reflective, must be in place for

human objectivity in mathematics to take the forms that it does. This brings out

the relativity to particular practice of such apparently fundamental notions as

object, name, reference, number, proof, and so on. There is in fact a great variety of

empirical, contingent human factors—historical, aesthetic, anthropological, ped-

agogical, psychological, and physiological—on which the evolution and interest of

mathematical objectivity depend. Wittgenstein’s point is an anti-reductive one,

though it is easy to slide from his remarks to the notion that he was offering a

psychologistic, radically empiricistic, purely conventionalist, ethnomethodologi-

cal or relativistic account of mathematics: indeed, Wittgenstein is often hailed as a
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hero by social constructivists.32 His primary aim was, however, to diffuse (without

refuting) assumptions about knowledge shared by various forms of skepticism

and those anti-skeptics (such as Frege, Russell, and Gödel) who hold that a

universally applicable, eternal framework of contents, thoughts, or senses, possibly

transcending the reach of humanity’s current concepts, must be postulated to

account for mathematical objectivity and truth.

Wittgenstein came to treat mathematics and logic as a ‘‘motley,’’ then, partly

because he came to emphasize the importance to philosophy of the idea that there

is no single property, criterion, mental state, fact, or characteristic feature com-

mon to all cases of the expression of understanding. Indeed, it is part and parcel of

his later investigations of logic to make this image of our concept of understanding

plausible. Understanding is manifested in many different kinds of ways, even in

the case of a particular linguistic form such as ‘‘2þ 2¼ 4’’: sometimes in a char-

acteristic experience of the moment (‘‘Aha!! Now I get it!!!’’); sometimes in the

ability to pronounce it unhesitatingly (as in the memorization of multiplication

tables by children); sometimes in the ability to apply it to solve minimally difficult

word problems; sometimes in the ability to set it into a more general, systematic

context of definitions and proofs; sometimes in the ability to successfully teach,

communicate, and/or defend it to another. Wittgenstein suggested, famously, that

the notion of understanding—along with such notions as proof, truth, meaning,

mathematics, number, language, and game—has a ‘‘family resemblance’’ character,

in that, though no one characteristic might belong to every instance of the general

notion, overlapping similarities from case to case would suffice to tie the instances

together. His discussion was intended to explore the extent to which the notion of

full or complete understanding of a sentence is itself a potentially misleading

idealization, especially for the logician.33 In this way he retained his early will-

ingness to question the relevance to philosophy of the idea that to every predicate

or concept of the language we may associate in the same way a function or an

extension (i.e., a sharply defined property or concept-word). He also retained his

idea that knowledge and/or understanding ought never to be conceived of as a

relation between a person and a proposition without regard to the particular

context of utterance or the particular sentence affirmed (cf. RFM I, appendix III).

A major difficulty here is, of course, how to do justice to the intuitive notion

of mathematical and logical truth, for mathematics is not just a game. Wittgen-

stein’s resistance to any doctrine of contents or knowledge that pretends to

universal validity, coupled with his insistence that the applications of mathematics

are internal to its character, led him to deny that there is a substantial (i.e., more

than merely formal or family resemblance) characterization of the notion of

mathematical (or even just arithmetical) truth. His conception aimed to deny that

32 See, for example, works by Bloor.
33 For an especially lucid article on this idea, see Goldfarb (1992).
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the objectivity, sense, and applicability of the most basic notions of logic and

mathematics (e.g., concept, proposition, elementary arithmetical truth, proof, num-

ber, and so on) may be explained by setting forth an axiomatized theory in which

truths involving the said notions are explicitly derived from fundamental prin-

ciples. From this perspective it is not surprising that by the mid-1930s Wittgen-

stein became fascinated with understanding the fundamental basis of Cantor’s

and Gödel’s limitative arguments, as well as Turing’s analysis of computability (cf.

RFM I, appendix III; RFM II; RFM VII). Of course, his resistance to making a

definition of truth central to philosophy was, as we have seen, based on purely

philosophical considerations that predated by over a decade his encounter with

Gödel’s work; in general historical terms it was a hallmark of the Kantian tra-

dition—shared by Frege, among others—that philosophers could learn nothing

important from analyzing or defining the concept of truth.34 But Gödel’s in-

completeness theorems forced Wittgenstein to rethink the role of the notion of

truth in mathematics.

Wittgenstein’s emphasis on the image of the mathematician as inventor or

fashioner of models, pictures, and concepts was, in the main, directed at the phil-

osophical talk of those, like Hardy and Russell, who insisted on speaking of

mathematical reality in a freestanding way, picturing the logician or mathema-

tician as a zoologist embarked on an expedition to new, hitherto unseen lands,

analogous to an empirical scientist. Wittgenstein himself explicitly said he did not

wish to deny that there is a ‘‘mathematical reality.’’35 But on his view the Hardy–

Russell picture of truth tended to preempt as irrelevant to mathematics its evo-

lution as a language, the importance to it of problems of expression, intention,

formulation, and construction. For Wittgenstein the mathematician is an in-

ventor, not in the sense of making up truth willy-nilly as he or she goes along, as a

pure conventionalist would suppose,36 but in the sense of engaging in the ac-

tivities of fashioning proofs, diagrams, notations, routines, or algorithms that

allow us to see and accept (understand, apply) results as answering to what does

and does not make sense to us. We ‘‘make’’ mathematics in the sense that we

34 Cf. Kant on truth at (1781/1787, A58/B82). Frege’s argument that truth is a primitive

undefinable notion, and not a genuine property word, may be found in Frege (1918). This
was an essay that Wittgenstein always disliked, as we now know from the Frege corre-

spondence with him (1989), but Wittgenstein seems to have objected to Frege’s handling

of idealism, not his treatment of truth (cf. Floyd [1998]). For two useful papers on the role

of the concept of truth in this tradition, see Ricketts (1996a) and Diamond (2002). So far as

we know, Wittgenstein never discussed Tarski’s theorem on the undefinability of truth.

Ramsey and Turing appear to have agreed with him that the concept of truth was not of

central importance.
35 See, e.g., LFM, pp. 136–141.
36 For a conventionalist reading of Wittgenstein, see Dummett (1959); compare the

discussions of Dummett in Stroud (1965) and in Wright (1980).
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make history: as actors within it (cf. WVC, p. 34, n. 1). The ‘‘what’’ in ‘‘what makes

sense to us’’ is then evolving, to be understood locally for present purposes, and

not in terms of any theory of content or a priori known domain of fact. Witt-

genstein still took philosophical considerations ultimately to rest on terms and

structures of the language we take ourselves to be speaking right now, but in the

end he emphasized the variety of perspectives we may bring to bear on our un-

derstanding of language’s internal necessities and requirements. That which

‘‘belongs to language’’ is something open for current investigation, not something

to be taken as determined, stipulated, or fully circumscribable in advance.
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The bibliography that follows contains a representative, though by no means

exhaustive, sampling of literature relevant to Wittgenstein’s philosophy of logic

and mathematics. The following remarks are intended to provide an overview of

themes treated in recent literature for the interested reader.

Those who wish to learn the biographical details ofWittgenstein’s life are advised

to consult McGuinness (1988) and Monk (1990), as well as the brief Malcolm (2001).

New Logics

Wittgenstein’s philosophy has helped to inspire the construction of new logics

that serve to question the philosophical hegemony of first-order logic. Hintikka’s

development of systems of modal logic, the logic of knowledge, and game-the-

oretic semantics was inspired in part by the Tractatus, and in part by Wittgen-

stein’s notion of a language-game (see Hintikka (1956, 1962, 1973, 1996a, 1996b,

1997). Parikh (1985, 2001) has also stressed connections between logic and games

in his formal treatments of logics of knowledge and information. For the devel-

opment of an inconsistency theory of truth and paraconsistent logic that is rele-

vant to Wittgensteinian questions about whether an inconsistency in arithmetic can

be logically contemplated, see Priest (1987, 1994). Tennant (1987) develops a

constructive logicist foundation for number theory based on intuitionistic rele-

vance logic, describing his system as a generalization fromWittgenstein. Sundholm
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(1994) subsumes an intuitionistic view of truth as existence of proof under a

truthmaker analysis, situating his analysis explicitly in relation to logical appli-

cations of Wittgenstein’s Tractarian ideas. Shapiro (1991) makes an interesting

application of the rule-following considerations to argue for the expressive su-

periority of second-order logic over first-order logic.

Rule-Following

The centrality of what are now called ‘‘rule-following’’ considerations to the inter-

pretation of Wittgenstein was initially emphasized by Fogelin—see Fogelin (1987),

Wright (1980), and Kripke (1982)—building on Wittgenstein’s later writings ex-

ploring the analogy between the application of an arithmetical principle and

concept-projection; each formed a response to the view, voiced in Dummett (1959),

that Wittgenstein was a ‘‘full-blooded’’ conventionalist about logical necessity.

Different responses to Dummett may be found in Stroud (1965) and also in Dia-

mond (1989, 1991), who is simultaneously reacting to Wright. A range of differing

reactions to Kripke’s exegesis of Wittgenstein may be found in Baker and Hacker

(1984), Goldfarb (1985), Cavell (1990), Floyd (1991), Minar (1991, 1994), Steiner

(1996), and Wright (2001, ch. 7); Holtzman and Leich (1981) is a useful anthology

exploring general philosophical implications of this theme. More focused discus-

sions of the implications of these considerations for the notion of content and the

ascription of meaning via linguistic behavior may be found in Boghossian (1986)

and Chomsky (1986). Proudfoot and Copeland (1994) and Shanker (1998) have

connected their readings of Wittgenstein on rules with questions about Church’s

thesis, Turing’s mechanism about the mind, and the foundations of cognitive

science. ‘‘Rule-following’’ considerations have also been brought to bear on the

presumption (e.g., by Quine and Putnam) that the Skolem–Löwenheim theorem

can establish inscrutability of reference and/or ‘‘internal’’ realism: on this, see Hale

and Wright (1997), Benacerraf (1998), and Wright (2001, part IV), as well as Parikh

(2001), which connects these questions with Searle’s Chinese Room thought ex-

periment and the theoretical foundations of computer science.

Wittgenstein’s Place in the History

of Analytic Philosophy

Amore detailed historical approach toWittgenstein’s philosophy has characterized

much recent work on his philosophy of mathematics, sparked by a growing interest
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in developing an enriched account of the origins and development of early analytic

philosophy in relation to the history of logic. Baker (1988), Coffa (1991), Simons

(1992), Friedman (1997), and Hacker (1986, 1996) offer readings of early Wittgen-

stein through the broad lens of a larger philosophical history of neo-Kantianism,

realism, and logical positivism; Potter (2000) offers an especially concise technical

reconstruction of theTractatus treatment of logic and number in light of the history

of philosophies of arithmetic from Kant to Carnap. Dummett (1991b) examines

Wittgenstein’s relation to Frege in connection with the theory of meaning. Marion

(1998) places Wittgenstein into context against the background of the history of

finitism as a mathematical tradition, contrasting Wittgenstein with Brouwer and

drawing connections between Wittgenstein’s middle-period views on generality

and remarks byWeyl andHilbert. Aside from this work, the only other recent book-

length treatments of Wittgenstein’s philosophy of mathematics in its historical

development, from early through later philosophy, are Shanker (1987) and Frascolla

(1994); Shanker (ed., 1986) is a useful anthology of articles covering all phases of

Wittgenstein’s philosophy of mathematics. Shanker rejects both Kripke’s rule-

following skepticism and Dummett’s use of the realist/anti-realist distinction to

interpret Wittgenstein on mathematics, elaborating an alternative reconstruction

inspired by the grammatical conceptualist reading of Baker andHacker; he explores

in detail Wittgenstein’s conception of proof and his reactions to Skolem and Hil-

bert, and also explores the significance of computer proofs for Wittgenstein’s point

of view. Frascolla offers the most detailed formal reconstruction yet ofWittgenstein’s

Tractatus account of arithmetic—cf. Frascolla (1997, 1998) and Wrigley (1998) for a

rejoinder; and, like Marion and Shanker, questions the attribution to Wittgenstein

of an epistemic perspective that could support strict finitism.

Van Heijenoort (1967) is the locus classicus laying out the ‘‘universalist’’ con-

ception of logic, attributing this view to Frege, Russell, and the earlyWittgenstein and

contrasting it with the algebraic tradition of ‘‘logic as calculus’’; this article has

profoundly affected how the Tractatus show/say distinction has been read, along with

the history of the quantifier and the notion of completeness (cf. Goldfarb [1979, 2000];

Dreben and van Heijenoort [1986]). The extent of this conception’s accuracy to Frege

has been disputed by, among others, Dummett (1984); for a discussion of the debate,

see Floyd (1996). Van Heijenoort’s reading remains especially influential among those

interested in the history of early analytic philosophy, and in Wittgenstein in partic-

ular. Among others, Hintikka and Hintikka (1986), Weiner (1990, 2001), Ricketts

(1985, 1986a, 1986b), and Diamond (2002) have deepened and generalized Van

Heijenoort’s analysis in interpretingWittgenstein’s relation to Frege. Reck (2002) and

Crary and Read (2000) contain further essays interpreting Wittgenstein’s philosophy

of logic and mathematics in the historical context of early analytic philosophy.

Boghossian and Peacocke (2000) contains several essays touching on Witt-

genstein’s philosophy of mathematics in relation to the evolution of twentieth-

century conceptions of a priori knowledge as they shape contemporary discussion.
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Wittgenstein and Gödel

An abiding interest in locating Wittgenstein’s philosophy in relation to Gödel

began with nearly unanimous condemnation of Wittgenstein: reviews of the ear-

liest published excerpts from his writings on Gödel were roundly dismissed, and

skepticism about his remarks on Gödel still remains (see Hintikka [1993]). Klenk

(1976) offered an early attempt to defend the cogency of some of Wittgenstein’s

remarks. In recent years there has been a revisiting of the topic, both philosoph-

ically and historically, in light of newly detailed historical questions about the

evolution of Wittgenstein’s appreciation of the incompleteness theorems and

the significance of diagonalization methods. Assessment of the nature and im-

plications of Wittgenstein’s attitude toward Gödel’s incompleteness theorems has

been taken up by Shanker (1988), Floyd (1995, 2001b), Rodych (1999, 2002), Steiner

(2000), and Floyd and Putnam (2000), following earlier discussions by Goodstein

(1957, 1972) and Wang (1987b, 1991, 1993); Kreisel (1983, 1989, 1998) has also elab-

orated thoughts on the topic. Webb (1980) and Gefwert (1998) situate remarks of

the middle Wittgenstein within the larger history of formalism, mechanism, the

Entscheidungsproblem, and the effect of Gödel’s and Turing’s work on Hilbert’s

program. Maddy (1997) contains a useful discussion of Wittgenstein and Gödel’s

attitudes toward the philosophy of mathematics. Friedman (1997, 2001) probes

Carnap’s attitude toward the relevance of Gödel’s arithmetization of syntax to

Wittgenstein’s Tractatus. Tymoczko (1984) invokes Gödel’s epistemological

remarks on the incompleteness theorems to argue for a socially based ‘‘quasi-

empiricism’’ he associates with Wittgenstein.

Recent Trends in Interpreting Wittgenstein:

New Approaches to the Philosophy of Mathematics

General Themes. Large-scale shifts in the interpretation of Wittgenstein’s general

philosophy since the mid-1980s have affected and been affected by accounts of his

philosophy of logic and mathematics. The presentations of Wittgenstein in Wright

(1980) and Kripke (1982) radicalized Dummett’s (1959) view of Wittgenstein as a

conventionalist, reading him as offering a form of skepticism about the rational

necessity of applying a rule. Among those who questioned Dummett’s reading while

rejecting the attribution to Wittgenstein of skepticism were Stroud (1965) and,

beginning in the 1970s, Diamond (see [1989, 1991]); she fashioned a rival account of

Wittgenstein’s philosophy of logic and mathematics in the context of a wider

recasting of discussions of realism in ethics and a stress on the continuity of
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Wittgenstein’s development (compare Gerrard [1991]). Diamond’s approach to

Wittgenstein has been especially influential in the United States, along with work of

Cavell (e.g., [1976, 1979]), which independently challenged both the then-popular

broadly empiricistic reading of Wittgenstein (see, e.g., Pears [1986, 1987, 1988]) and

the reading of Wittgenstein’s conception of grammar due to Baker and Hacker (e.g.,

their [1980], [1984], [1985]). Diamond (1999) and Gerrard (1999) reject traditional

readings of Wittgenstein as a verificationist and explore Wittgenstein’s treatment of

the notion of proof in connection with his later discussions of the notion of mea-

ning. Readers influenced by Cavell and Diamond have inspired recent heated inter-

pretive debate about a ‘‘New Wittgensteinian’’ approach (see Crary and Read

[2000]); this kind of reading has been applied to Wittgenstein’s later discussions

of mathematics by Floyd (1991), Conant (1997), and Putnam (1996). Questions

surrounding this ‘‘new’’ interpretation in relation to the Tractatus conceptions of

analysis and realismhave been pursued byGoldfarb (1997), Diamond (1997),McGinn

(1999), Floyd (1998), Proops (2001), Ostrow (2002), and Sullivan (2002a); Floyd

(2001) and Kremer (2002) examine its implications for our understanding of the

Tractatus treatment of arithmetic. Wright (1993) sets the verifiability principle into

conceptual context against the backdrop of different strands of Wittgenstein’s

philosophy of mathematics, and outlines in (2001) challenges he takes to be faced by

the ‘‘noncognitivist’’ approach to mathematical proof he associates with the later

Wittgenstein.

Constructivism. The grounds on which Wittgenstein might be taken to have held

a substantial constructivist attitude toward mathematics—despite his claim not to

be forwarding ‘‘theses’’ in philosophy—have received substantial investigation in

recent years. Marion (1995), Sahlin (1994), Wrigley (1995), and especially Sullivan

(1994) analyze in useful detail Wittgenstein’s debates with Ramsey in the late 1920s

with an eye toward understanding the character of Wittgenstein’s interest in the

infinite; Noë (1994), Hintikka (1996a), and Marion (1998) offer general philo-

sophical interpretations of Wittgenstein’s transitional period writings on the phi-

losophy of mathematics. Mancosu and Marion (2002) examine Wittgenstein’s

effort to ‘‘constructivize’’ Euler’s proof of the infinity of primes in light of the

immediate historical context of constructivist discussions in Vienna in the late

1920s and early 1930s.

Finitism. Kreisel’s (1958) andWang’s (1958) association of Wittgenstein with ‘‘strict

finitism’’ or ‘‘anthropologism’’ about mathematics spawned in the hands of Dummett

(1970), a ‘‘finitist’’ reading of Wittgenstein that has received scrutiny and detailed

development since the mid-1980s. Kielkopf (1970) associates the term ‘‘strict finitism’’

with a view of mathematical necessities as a posteriori, but more frequently the term is

associated, as in Dummett (1970), with the form of constructivism that rejects con-

structions that outstrip what is too complex or too lengthy for an individual or
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community to actually carry out in practice—a restriction on methods of proof more

severe than any suggested by the intuitionists. It is unclear what precise form such a

strict finitism should ideally take; Wright (1982) defends the program’s internal co-

herence.Wang (1958) associated the notion of human ‘‘feasibility’’ withWittgenstein’s

remarks on the surveyability of proof, suggesting that an anti-reductionist investi-

gation of complexity would be a fruitful foundational approach. He also emphasized

connections between Wittgenstein’s conception of the surveyability of proof and his

critical comments about Principia’s ‘‘reduction’’ of arithmetic to logic. Wright (1980),

Steiner (1975), and Marion (1998) discuss the character and validity of these criticisms

of logicism from three rather different points of view.

Despite the continued association of Wittgenstein with finitism, as well as his

critical attitude toward set theory, there are some (e.g., A.W. Moore [1990] and

Kanamori [2003]) who have suggested that Wittgenstein’s grammatical investi-

gations of infinity and the limits of sense may be the best kind of philosophical

approach to a proper conception of set theory and the higher infinite.

Social Constructivism. Wittgenstein’s emphasis on the social aspects of language

use have inspired some to develop his ideas into a social constructivist philosophy

of mathematics: Bloor (1983, 1991) and Ernest (1998) offer recent accounts with a

strongly sociological orientation that take up the relation of this approach to phi-

losophy of mathematics education. Tymoczko ([1993]; ed., [1986]) are also relevant,

rejecting foundationalist programs and calling for a view of mathematical practice as

a community-based art rather than a science.
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Gödel,’’ in Epistemology and Philosophy of Science. Proceedings of the 7th Inter-

national Wittgenstein Symposium, ed. P. Weingartner and J. Czermak, Vienna,
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—. 2002. ‘‘Wittgenstein on Gödel: The Newly Published Remarks,’’ Erkenntnis 56:

379–397.
Russell, B. 1903. Principles of Mathematics, Cambridge, Cambridge University Press; 2nd.

ed. New York, Norton, 1938.
—. 1919. Introduction to Mathematical Philosophy, London, Allen and Unwin; 2nd

ed. 1920.
—. 1984. The Theory of Knowledge: The 1913 Manuscript, ed. E.R. Eames and

K. Blackwell, London, Routledge.

Sahlin, N.E. 1995. ‘‘On the Philosophical Relations Between Ramsey and Wittgenstein,’’

in Hintikka and Puhl, eds., pp. 150–162.
Schirn, M., ed. 1998. The Philosophy of Mathematics Today, Oxford, Clarendon Press.

Shanker, S.G. 1987. Wittgenstein and the Turning Point in the Philosophy of Mathematics,

Albany, State University of New York Press.

—. 1988. ‘‘Wittgenstein’s Remarks on the Significance of Gödel’s Theorem,’’ in
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c h a p t e r 5

THE LOGICISM OF

FREGE, DEDEKIND,

AND RUSSELL

william demopoulos

peter clark

Philosophy confines itself to universal concepts; mathematics can

achieve nothing by concepts alone but hastens at once to intuition, in

which it considers the concept in concreto, though not empirically, but

only in an intuition which it presents a priori, that is, which it has

constructed, and in which whatever follows from the universal conditions

of the construction must be universally valid of the object thus

constructed.

—(Kant, Critique of Pure Reason A716/B744)

[W]e see how pure thought, irrespective of any content given by the

senses or even by an intuition a priori, can, solely from the content

that results from its own constitution, bring forth judgements that at

first sight appear to be possible only on the basis of some intuition.

This can be compared with condensation, through which it is possible

to transform the air that to a child’s consciousness appears as nothing

into a visible fluid that forms drops. The propositions . . . developed

in what follows far surpass in generality all those that can be derived

from any intuition.

—(Frege, Begriffsschrift §23)
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Introduction and Scope

of the Study

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Our discussion is organized around logicism’s answers to the following questions:

(1) What is the basis for our knowledge of the infinity of the numbers? (2) How

is arithmetic applicable to reality? (3) Why is reasoning by induction justified?

Although there are, as we will see, important differences, the common thread

that runs through all three of our authors is their opposition to the Kantian thesis

that reflection on our reasoning with mere concepts (i.e., without attention to

intuitions formed a priori) can never succeed in providing us with satisfactory

answers to these three questions. This description of the core of the view dif-

fers from more usual formulations which represent the opposition to Kant as

an opposition to the contention that mathematics in general, and arithmetic

in particular, are synthetic a priori rather than analytic. From our perspective,

such a formulation is not sufficiently general: it fails to capture Dedekind, who

does not use the terminology of analytic vs. synthetic judgments at all; it over-

looks the fact that Frege relies on this terminology only in Gl , eschewing it in his

other major writings, Bg and Gg.1 And it is not easily squared with the fact that

during his philosophically most productive period, Russell used the terminology

only to express his agreement with Kant that mathematics is synthetic, while

holding that, contrary to Kant, logic is as synthetic as mathematics.2 What is

essential to the logicism of history (if not the logicism of legend) is its opposi-

tion to the incursion of Kantian intuition into the content of arithmetical theo-

rems or their justification: the thesis that all our authors share is the contention

that the basic truths of arithmetic are susceptible of a justification that shows

them to be more general than any truth secured on the basis of an intuition given

a priori.

One final note on our selection of topics. The more purely philosophical

dimension to Frege’s program centered on the problem of explaining how the

numbers are ‘‘given to us,’’ if we have neither experience nor intuitions of them

(Gl §62). The solution to this problem, from a contemporary viewpoint, would

consist in an explanation of our reference to abstract objects—objects which sub-

sist ‘‘outside’’ of space and time. In our view, it is in this context that the ‘‘Julius

Caesar problem’’ becomes especially pressing. Since our concern is to expound

those aspects of logicism that are more closely connected with its status as a

1 A point observed by Dummett ([1991a], p. 28). Our references to Frege’s Begriffs-

schrift, Grundlagen, and Grundgesetze are abbreviated Bg, Gl, and Gg, respectively.
2 Principles, p. 457. For a discussion of Russell and Kant, see Coffa [1981].
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contribution to the philosophy of the exact sciences, we have largely exempted

these issues from the purview of our discussion.3

Frege’s Logic and Theory

of Classes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

From Bg we can extract a presentation of second-order logic based on a language

containing a single binary relation symbol. The central innovation of the work is

the analysis of generality by means of the introduction of function/variable no-

tation; it is this that is alluded to in the subtitle of Bg (A Formula Language

Modeled upon That of Arithmetic for Pure Thought) as the characteristic feature of

the language of arithmetic on which the work is modeled. When combined with

expressions for relations, the result is a language of great expressive power, even

when restricted to its ‘‘first-order fragment.’’ Part III of Bg is devoted to the

‘‘theory of sequences.’’ It is here that Frege presents his celebrated definition of

‘‘following in a sequence’’—the ancestral of a relation, in the terminology of

Whitehead and Russell or, in more modern terms, the transitive closure of a

relation—and proves generalized analogues of mathematical induction, as well as

various formal properties of the ancestral.

With the exception of his reliance on an implicit rule of substitution, Frege’s

formulation of his logic achieved a degree of precision that was not to be equaled

for several decades. Bg’s implicit principle of substitution is equivalent to the

second-order Comprehension Scheme:

9P 8x(Px � F(x));

where F(x) is a second-order formula in one free variable in which P does not

occur free. The scheme tells us that for every condition F(x) which can be for-

mulated in the language of Bg there is a corresponding property P. Bg makes no

assumptions concerning the connection between properties or, as Frege says,

‘‘concepts,’’ and the ‘‘extensions’’ or classes associated with them. Such a connec-

tion is introduced in Gg with Basic Law V, which we formulate as the universal

closure of

{x: Fx} ¼ {x: Gx} � 8x (Fx � Gx),

3 For a discussion of the ‘‘Julius Caesar problem’’ from the perspective of the present

article, see Demopoulos [in press].
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where the expression ‘‘{x : Fx}’’ is a class abstraction operator forming, for a con-

cept F, the value range or extension of F. Frege took the class abstraction operator

as primitive; given it, we can define the notion of membership by

x2 y � 9H(Hx ^ y ¼ {x: Hx}):

In the context of second-order logic, this definition of membership, together with

Basic Law V, implies the Naive Comprehension Axiom:

8P 9z 8x(x2 z � Px):4

4 The proof depends on the following lemma (cp. Gg I §54):

8x(x 2fy: Pyg � Px):

Naive Comprehension immediately follows since, by generalizing on the term {y : Py}, we

have

9z 8x(x 2 z � Px);

and since P is arbitrary,

8P 9z 8x(x 2 z � Px):

Proof of the Lemma: Suppose x2 {y : Py}. By the definition of 2 ,

x 2fy: Pyg � 9H(fy:Pyg ¼ fy:Hyg ^Hx):

Thus, Hx and {y : Py}¼ {y : Hy}; whence, by the left-to-right (problematic)

direction of Basic Law V, Vy(Py�Hy), and thus Px�Hx, and therefore, Px.

Next, suppose Px. By the right-to-left (benign) direction of the following

instance of Basic Law V,

8y(Py � Py) � {y: Py} ¼ {y: Py},

{y : Py}¼ {y : Py}; and hence,

9z(z ¼ {y: Py}):

Let z¼ u. Then (u¼ {y : Py} ^ Px) and, therefore,

9P(u ¼ {y: Py} ^ Px),

whence, by the definition of 2 ,

x2 {y : Py}. &
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On its intended interpretation, Naive Comprehension asserts that for every prop-

erty there is a class which consists of precisely the individuals having the prop-

erty. It will be observed that the axiom is a sentence of second-order logic, and

that it implies the first-order instances of the following Naive Comprehension

Scheme:

9z 8x(x2 z � j(x)),

where j(x) is a first-order formula in one free variable, not containing the var-

iable z. The Russell–Zermelo paradox follows immediately from the instance

9z 8x(x2 z � x2= x),

which asserts the existence of a class consisting of all and only those sets which are

not members of themselves.

It is a relatively recent discovery (see Parsons [1987]) that in the context of

first-order logic, any collection of instances of Basic Law V is consistent; that is,

the first-order fragment of Gg is consistent; moreover, any first-order theory can

be conservatively extended by the addition of such instances (Bell [1995]). Striking

as these technical results are, their philosophical significance is limited, since

without the (second-order definable) relation of membership, it is wholly unclear

in what sense the notion of the extension of a concept is interchangeable with the

familiar notion of a class.

For Frege, concepts are thoroughly extensional, so that if F and G apply to

precisely the same objects, they are the same concept. Thus, in the direction

8x (Fx � Gx) ! {x: Fx} ¼ {x: Gx},

Basic Law V may be seen to assert the functionality of the relation which asso-

ciates every concept with an extension; the direction

{x: Fx} ¼ {x: Gx} ! 8x (Fx � Gx)

asserts that this function is one-one. But the Russell–Zermelo paradox shows that

there is no such function. Indeed, if we further assume that the totality of ex-

tensions of concepts corresponds to the power set of the set of objects falling

under them, then Basic Law V clearly contravenes Cantor’s Theorem that the

power set of a set cannot be injected into that set.

In the Appendix that was added to Gg in response to Russell’s letter informing

him of the contradiction, Frege himself showed that no map from concepts to

objects can be one-one. Since Basic Law V asserts the existence of at least one such

map, the system of Gg does not have a model—no classes or sets could possibly
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satisfy it. Thus, while Frege’s development of second-order logic is perfectly con-

sistent, its elaboration, in Gg, to include a theory of concepts and their extensions,

foundered on the Russell–Zermelo paradox. However, both the mathematical

development of Frege’s theory of the natural numbers, and a significant compo-

nent of his philosophy of mathematics, may be rendered completely indepen-

dently of his theory of extensions.

Frege’s Analysis of the

Natural Numbers

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Frege tells us (Gg, p. ix) that the ‘‘fundamental thought’’ on which his analysis of

the natural or ‘‘counting’’ numbers is based, is the observation that a statement of

number involves the predication of a concept of another concept; numerical

concepts are concepts of ‘‘second level,’’ which is to say, concepts under which

concepts (of first level) are said to fall. This yields an analysis of the notion of a

numerical property, as when we predicate of the concept horse which draws the

King’s carriage the property of having four objects falling under it. Such properties

are first-order definable in terms of the numerically definite quantifiers. In order

to pass from the analysis of numerical properties to the numbers, Frege intro-

duced a ‘‘cardinality operator,’’ which he ‘‘defined’’ contextually by the principle

NxFx ¼ NxGx � F � G,

that is, the number of Fs is the same as the number of Gs if and only if the Fs and

the Gs are in one-to-one correspondence. (It is well known that � is definable in

second-order logic.) Again, as with the class abstraction operator, here also it is

simply assumed that Nx . . . x is a term-forming operator. This contextual defi-

nition and the fundamental thought yield Frege’s account of the applicability of

mathematics. In this, the simplest case for which the question arises—the ap-

plication of the cardinal numbers—the solution is that arithmetic is applicable to

reality because the concepts, under which things fall, fall under numerical con-

cepts. Thus it is possible to prove in second-order logic that AnxFx� n¼NxFx

(i.e., F falls under the numerical property expressed by the numerically definite

quantifier Anx if and only if the Frege number of F is n, where n is defined in terms

of the cardinality operator). It follows that the fact that the number of horses

drawing the king’s carriage is four is interderivable with the fact that there are four

horses drawing the king’s carriage. We will return to the Fregean solution to the

applicability of arithmetic.
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The contextual definition is the basic principle upon which Frege’s develop-

ment of his theory of the natural numbers was based; it is not a definition in the

proper sense, not least in the sense that it is not conservative over the language

L= {zero, successor, natural number} of second-order arithmetic. Indeed, the con-

textual definition allows for the proof both of the existence of the (Dedekind in-

finite) sequence of natural numbers and of an infinite cardinal (called endlos in Gl).

In the recent secondary literature,5 the contextual definition has come to be

called ‘‘Hume’s principle,’’ since in introducing it (Gl §63), Frege quotes from

Hume’s Treatise (I, iii, 1). Notice that Hume’s principle bears an obvious formal

resemblance to Basic Law V: both relate an identity involving singular terms to an

equivalence relation on concepts. And both postulate a type reducing corre-

spondence between Fregean concepts and objects, in the case of Basic Law V, one

which associates distinct objects with noncoextensive concepts, with its attendant

difficulties, but in the case of Hume’s principle, merely one which associates

distinct objects with nonequinumerous concepts. We will return to the signifi-

cance of type reduction in a moment.

For Frege, Hume’s principle provides the necessary ‘‘criterion of identity’’ for

numbers; that is, it gives us a statement, in other words, of the condition under

which we should pronounce as true certain ‘‘recognition statements’’ (as Frege

calls them in Gl §62) involving numerical singular terms, namely, statements of

the form

NxFx ¼ NxGx,

for arbitrary sortal concepts F and G. (Hume’s principle is clearly at best a partial

account of the identity of numbers because it fails to settle the truth-value of

statements of the form a¼NxFx where a is not given in the form NxHx for some

H.) By contrast with Basic Law V, the second-order theory, whose sole axiom is

Hume’s principle, is consistent, with the sequence h0, 1, . . . ,oi forming the do-

main for a model of the theory, each concept F interpreted as a subset of o, and
each term of the form NxFx interpreted as the cardinal of the subset corre-

sponding to F.

Frege derives Hume’s principle from his inconsistent theory of concepts and

their extensions by appealing to his well-known explicit definition of the cardi-

nality operator:

NxFx ¼ {G: G � F}

(Gl §73). This is the ‘‘Frege–Russell definition of the cardinal numbers’’ as classes

of equinumerous concepts (or sets). The characterization ‘‘Frege–Russell’’ slurs

5 See especially Boolos [1990].
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over the fact that for Russell the number associated with a set (concept of first

level) is an entity of higher type than the set itself. Beginning with individuals—

entities of lowest type—we proceed first to concepts or sets of individuals and

then to classes of such sets (corresponding to Frege’s concepts of second level).

For Russell, numbers, being classes, are of higher type than sets. But for Frege,

extensions, and therefore numbers, belong to the totality of objects whatever the

level of concept with which they are associated. Thus, while Russell and Frege both

subscribe to some version of Hume’s principle, their conceptions of the logical

form of the cardinality operator—and, therefore, of the principle itself—are quite

different: the operator is type-raising for Russell, and type-lowering for Frege. This

difference is fundamental, since it enables Frege to establish—on the basis of

Hume’s principle—those of the Peano–Dedekind axioms of arithmetic which

assert that the system of natural numbers is Dedekind infinite. By contrast, when

the cardinality operator is type-raising, Hume’s principle is rather weak, allowing

for models of it of every finite power.

The intuitive idea6 underlying Frege’s proof of the infinity of the numbers is

the definition of an appropriate sequence of representative concepts (for concepts

we use square brackets, and we use curly brackets for classes):

N0 [x : x 6¼ x]

N1 [x : x¼ the number of the concept N0]

N2 [x : x¼ the number of N0_ x¼ the number of N1]

N3 [x : x¼ the number of N0_ x¼ the number of N1_ x¼ the number of N2]

and so on.

The existence of numbers for each of the concepts N0, N1, . . . is established using

only logically definable concepts and those objects whose existence and dis-

tinctness from one another can be proved on the basis of Hume’s principle.

Nowhere in this construction is it necessary to appeal to extensions of concepts. It

is, however, possible to make use of a consistent fragment of the theory of ex-

tensions, and when we do so, an interesting comparison with later developments

emerges. To see this, suppose we limit the introduction of extensions to those

belonging to the concepts of the sequence hN0, N1, . . . i. This yields a new se-

quence of concepts:

N0 [x : x 6¼ x]

E1 [x : x¼ the extension of the concept N0]

E2 [x : x¼ the extension of N0_ x¼ the extension of E1]

E3 [x : x¼ the extension of N0_ x¼ the extension of E1_ x¼ the extension

of E2]

and so on;

6 Here we follow the presentation in Demopoulos [1998].
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the extensions of these concepts are the finite von Neumann ordinals:

0 ;
1 {;}
2 {;, {;}}
3 {;, {;}, {;, {;}}}
and so on.

In its mathematical development Frege’s theory thus provides an elegant recon-

struction of our understanding of the cardinal numbers, one which can be carried

out quite independently of the portion of his system which led to inconsistency.

The Problem of Applicability

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A remark should be made on the application problem and its relation to the

‘‘Julius Caesar’’ problem. It is certainly true that Frege put the application prob-

lem at the heart of his philosophy of mathematics. To the question ‘‘Why does

arithmetic apply to reality?’’ the logicist provides the clear answer ‘‘Because it

applies to everything that can be thought; it is the most general science possible.’’

The partial contextual definition, provided by Hume’s principle, and the funda-

mental thought that numerical concepts are second-level concepts yields Frege’s

account of how arithmetic is applicable to reality. The central result, the theorem

that AnxFx� n¼NxFx (i.e., F) falls under the property expressed by the numeri-

cally definite quantifier Anx if and only if the Frege number of F is n, answers this

question by connecting a fact involving a mathematical object—the fact that the

number of Fs is n—with one that does not, namely, the fact that there are n Fs.

Thus, if F is the property of being a book on the desk, the ‘‘mathematical fact’’ is

that the number of books on the desk is three (say), and the ‘‘physical fact’’ is that

there are three books on the desk. The proof of the above theorem for the case

n= 3 shows how the two are connected, and thus answers the question of how

arithmetic applies to the physical world.

But the very possibility of framing the question of the applicability of

arithmetic raises problems of its own. Hume’s principle provides at best a partial

contextual definition. The principle cannot settle the truth conditions of sentences

of the form a=Nx Fx where a is not given in the form NxHx for some H. This of

course is the Julius Caesar problem. In the case of pure arithmetic the Julius

Caesar problem cannot be raised, since there are no singular terms like a in the

language of pure arithmetic. But once the language is expanded to include em-

pirical singular terms, as it would in the language of applied arithmetic, Hume’s

principle will no longer settle the sense of all numerical identities and the Julius
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Caesar problem can no longer be ignored. Of course this issue does not arise in

the formal language of Gg, since in that language all the objects it is possible to

refer to are already given as extensions (value ranges), the identity conditions for

which are purportedly given by Basic Law V. Michael Potter comes close to mak-

ing the right observation when he writes:

[A] formal language in which Julius Caesar cannot be spoken of is one in which

he cannot be counted, and in such a language the applicability of arithmetic

remains unexplained. At some stage in the development we shall have to extend

the formal language by adding some empirical vocabulary, and we shall then have

to address the Julius Caesar problem just as before. (2000, p. 108)

But the difficulty is not that the applicability of arithmetic remains unexplained: it

is explained perfectly by Frege’s account. The difficulty is, rather, that any lan-

guage for which the problem of the application of arithmetic can be nonvacuously

posed is one in which the Julius Caesar problem must also be addressed. And this

latter problem appears to have eluded Frege.

Frege’s Account of Reasoning by

Mathematical Induction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Frege’s earliest contribution to the articulation of logicism consisted in show-

ing that the validity of reasoning by induction can be accounted for on the basis

of our general knowledge of principles of reasoning discoverable in every domain

of inquiry. This directly engages the Kantian tradition in the philosophy of

the exact sciences, according to which principles of general reasoning peculiar to

our understanding must be supplemented by a faculty of intuition if we are

to account for arithmetical knowledge. We are inclined today to view the answer

to Kant as requiring the demonstration that mathematical reasoning—in this

case, reasoning about the natural numbers—is recoverable as part of logical

reasoning.

In Bg, part III, Frege showed how the ancestral of a relation—intuitively, the

property of, for example, following the number 0 in the sequence of natural numbers

after ‘‘some number of relative products of successor’’—might be defined without

reference to number. The (necessarily second-order) definition is easily presented in

three simple steps.7 Frege’s account is quite general; he proceeds ‘‘schematically’’ by

7 See Boolos [1985], whose presentation we follow.
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taking a fixed, but arbitrary, binary relation f, and then shows how to form its

ancestral. Suppressing explicit reference to the relation f, we abbreviate ‘‘F is he-

reditary in the f-sequence’’ by Her(F), and define it by the condition

8u 8v(ufv ^ Fu ! Fv),

given by proposition 69 of Bg. For ‘‘F is inherited from a in the f-sequence’’ we

write In(a, F), and define this as

8z(afz ! Fz):

For ‘‘y follows x in the f-sequence’’—the ancestral of f—we write

xf *y:

With these abbreviations, Frege’s definition of the ancestral becomes

xf *y � 8F(Her(F) ^ In(x,F) ! Fy):

Given the relation (immediate) successor (P) and the number zero (0), this defi-

nition is easily adapted to a definition of the property natural number by the

condition

y ¼ 0 _ 0P*y: (*)

This definition implies another, more tractable, condition:

8F(Her(F) ^ F0 ! Fy): (x)

That is, y is a natural number—NNy—if and only if y has every hereditary

property of 0. (The proof that (*) implies (x) is very simple: If F0 and Her(F ), then

F1. Since 1 is the only successor of 0, In(0, F ), and hence, by our hypothesis (viz.,

0P*y) and the definition of the ancestral, Fy.)

For the philosophical purpose of showing that from the definition of natural

number we can prove the Principle of Mathematical Induction (MI)—thus

showing induction to be a species of general reasoning—our simpler condition

(x) suffices. First, we formulate MI in the relational form:

F0 & For any m and n, if mPn and Fm, then Fn

For all n, Fn:
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Here, ‘‘relational form’’ simply means that we take successor to be a binary relation

and assume the presence of those axioms which ensure that it is a one-one

function. To prove MI, we assume the hypothesis of MI:

F0 & For any m and n, if mPn and Fm, then Fn,

and derive the conclusion

For all n, Fn,

using only our definition of natural number given by the condition (x). That is, we
have to show, for an arbitrary individual y, that y has F, when y has all the hereditary

properties of 0. The proof is completely trivial: since the hypothesis of MI is simply

the hypothesis of the generalized conditional of our definition—namely, F0 and

Her(F )—we have Fy. Since y was arbitrary, we have shown that for all n, Fn. And

since the property 0P*x is hereditary with respect to successor (cf. Bg 96), MI implies

our originaldefinition ofNNy in terms of the condition (*), thus completing the circle

and showing the equivalence of our conditions (*) and (x) to one another and to MI.

Comparison with Dedekind’s

Chains

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It has long been known that what Frege calls the property following a in the

f-sequence—af *x—is closely related to Dedekind’s notion the chain of an element

a, introduced in Was sind und was sollen die Zahlen? To elucidate the connection,

let f be a one-one relation in Y� Y. We will say that X covers f if Dom( f )�X and

Rg(f )�X. For A�Dom( f ), A nonempty, the chain or closure Cf (A) of A with

respect to f is given by

\ {X : X covers f ^ A � X};

the chain of a is just Cf {a}. To see the connection between Dedekind’s chains and

Frege’s ancestral, notice that on the assumption that f is one-one, the chain of a is

just the extension of the concept af *x _ x¼ a. If A covers f, then A¼Cf (A).

Thus, in particular, what Dedekind calls the ‘‘system’’ N of natural numbers

covers successor, which is one-one, so N can be defined—as Dedekind defines it—

as the chain of its initial element with respect to successor. The connection with

Frege’s definition of the property NNx of being a natural number is this: the

success of Frege’s definition of NNx in terms of the condition

8F(Her(F) ^ F0 ! Fx)
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depends on the fact that among the hereditary properties of 0 (hereditary with

respect to successor) are those whose extensions are, in Dedekind’s sense, chains of 0.

A Remark on Frege and Kant

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For Kant, the concept of the number 7 is available to the Understanding without

the aid of Sensibility and, hence, without intuitions. But its schematization—the

provision of a reference for any concept-expression associated with it—does re-

quire intuition. This is not only immediate from the definition of ‘‘schematiza-

tion’’; it is also required by the fact that many statements of number involve

equations and inequations, and their reference must also be provided for. In

Kant’s terminology, this means that the categories of unity and plurality must be

schematized, and this requires addressing how unity and plurality relate to

intuitions. We will return to this latter problem of the schematization of the

categories. In the case of the concept of 7, the schematization is given by counting

the objects to which it is applied. Counting may be likened to the construction of

a geometric figure: both relate to empirical intuition, to the data of possible

experience. There are, however, also objects of pure intuition; although such ob-

jects are not given in empirical intuition, they are the product of the form of em-

pirical intuition. In the case of geometrical objects, it seems clear that this form is

spatial, and that it constitutes a framework within which constructions involving

ruler and compass, together with their possible combination and iteration, are pos-

sible. It would be tendentious to say that in the arithmetical case the relevant form

of empirical intuition is time, and that it is a temporal framework that makes

counting possible, just as it is a spatial one that makes ruler and compass con-

structions possible. But perhaps we can say that in the arithmetical case, the con-

structive procedure which is made possible is just the process of iteration itself.

The possibility of indefinitely iterating any procedure, whether in counting or in

the construction of figures, is guaranteed by the spatial and temporal forms of

empirical intuition. To return to the topic of schematization, insofar as counting

is iterative, it and the schematization of the various number concepts depend on

the form of our intuition, and therefore on space and time.

From this brief sketch we can extract several desiderata for an account of

number that could be held to be independent of Kantian intuition. It is clear, first

of all, that such an account must explain the applicability of numerical concepts

without invoking any intuitions beyond those that are demanded by the concepts

to which the numerical concepts are applied. Second, it must explain the reference

of numerical equations and inequations without recourse to intuition, perhaps in

terms of relations among concepts, or in terms of ‘‘logical’’ objects—objects that
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are transparent to Reason itself. Finally, it must recover any piece of arithmetical

reasoning which rests on the possibility of indefinitely iterating an operation as a

species of general reasoning. Frege’s articulation of his fundamental thought in Gl,

according to which a statement of number involves the predication of something

of a concept, clearly addresses the first desideratum: the application of there are

exactly four moons of Jupiter must not involve any intuitions beyond those

demanded by x is a moon of Jupiter. Gl ’s criterion of identity for number—the

contextual definition—addresses the second: provision of a criterion of identity

for number is the Fregean analogue of the schematization of the categories of

unity and plurality. The theory of classes of Gg is an extension of this attempt,

mandated by the fact that the contextual definition of numerical identity and

distinctness (the unity and plurality of number) in terms of the relation of one-

one correspondence between concepts is at best partial. Of course the definition of

the ancestral, given in Bg, is the key to Frege’s solution to reasoning by induction,

the paradigm of iterative reasoning.

Summary

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The dependence relations among Frege’s definitions as they appear in Gl are

summarized in the following chart:8

F � G

#
CNk (iff 9F(k ¼ Nx Fx), x72) ( Nx Fx ) 0 ¼ Nx[x 6¼ x](x74) ) 90xFx

+
uPv

(iff 9F 9y(Fy ^Nx[Fx ^ x 6¼ y] ¼ u ^ Nx Fx ¼ v), x76)
+

xP*y(from Bg)

+
nþ1 ¼ Nn[0P*n _ n ¼ 0] (x79) ) 9nþ1xFx

+
NNn (§§81,83)

8 Adapted from Dummett ([1991a], p. 31).

142 oxford handbook of philosophy of math and logic



A ) B is read: B is defined in terms of A. A0x, A1x, . . . are the ‘‘numerically definite

quantifiers’’ (also first-order definable in terms of identity and the usual logical

operators and quantifiers), and are read: there are exactly zero Fs, there is exactly one

F, and so on. Only the first link in this chain (indicated by the single arrow, ;) is a
contextual ‘‘definition’’; all the rest are proper explicit definitions. Note that the

explicit definition of the cardinality operator does not appear here, since it is not

required by the mathematical development of Gl. Notice also that there are two

definitions of number, one of cardinal number (CNk) given directly in terms of the

cardinality operator, and the other, a definition of natural number (NNn), given in

terms of the ancestral of the successor relation. The first defines cardinal numbers—

answers to the question ‘‘How many?’’—irrespective of whether they are finite or

infinite. The second definition (that of NNn) splits into two: the ‘‘pure’’ definition,

given above—which is independent of the cardinality operator and defines natural

number purely ordinally—and the definition (of §§81, 83) which adapts this general

strategy to the case where successor is defined in terms of the cardinality operator and,

thus, defines natural number in terms of cardinality. Although the successor relation

is defined in terms of the cardinality operator, the definition of the ancestral is, of

course, completely general and does not in any way require the cardinality operator.

In conclusion, let us note that the second-order predicative fragment of Gg

results when the Comprehension Scheme AP Vx(Px�F(x)) is restricted to for-

mulas F(x) in the language of Gg which contain no bound occurrences of second-

order variables. By contrast with the first-order fragment of Gg, the second-order

predicative fragment has a notion of membership and, therefore, a genuine notion

of class. Extending methods of Parsons [1987], Heck [1996] has shown that the

predicative fragment of Gg is consistent. This is intuitively plausible, since by so

weakening Comprehension, there are vastly fewer properties for which it is nec-

essary to find a representative extension. Nevertheless, the significance of the con-

sistency of such an introduction of classes is unclear. For Frege, NNy is a defined

property—indeed, its definition marks a high point of his logicism. But since

Frege’s definition of NNy is impredicative, this definition cannot occur as a con-

dition in the second-order predicative fragment of Gg ; and, therefore, the class

which NNy determines cannot occur with its intended defining condition. Hence,

whatever foundational interest the consistency of the predicative fragment of Gg

might have for others, its interest for Frege is, at best, limited.

Assessment

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Notice that the proof of MI, like the proof of the infinity of the number sequence,

rests on Frege’s use of second-order quantification. So also do two further key
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theorems that Frege establishes in part II of Gg : the proof of the validity of

definition by induction over the natural numbers (theorem 263), and the proof

that the relations together with their fields which satisfy Frege’s axioms for the

natural numbers are isomorphic.9 As is well known, both theorems were first

established by Dedekind in Was sind, where they occur as theorems 126 and 132,

respectively; that analogues of them appear in Gg is less well known. The proof of

the infinity of the number series requires treating numbers as objects and needs

the additional presence of Hume’s principle, and therefore, unlike the proofs of

MI, categoricity, and the justification of definition by induction, it is not purely a

result of second-order logic.

A difficulty which is often urged against Frege’s account of general principles is

that it relies on second-order features of his logic. The assessment of Frege’s success in

addressing the basis for our knowledge of the infinity of the numbers and the justi-

fication of induction, by contrast with the assessment of his success in connection with

the applicability of arithmetic, has stalled on the question of whether second-order

logic is really logic. We believe this to be unfortunate, since it has deflected attention

from Frege’s claim to have shown that reasoning by induction and our knowledge of a

Dedekind infinite system depend on principles which, whether they are counted as

logical or not, are appropriately general in their application and, therefore, do not rest

on a notion of Kantian intuition of the sort Frege sought to refute. It may be necessary

to concede that these demonstrations rest on intuition in a familiar, psychologistic,

sense of the term; what has beenmissed is how little is conceded by such an admission.

When this contention is, as we believe, rightly emphasized, a question emerges that

leads naturally to Russell’s contributions to logicism.

Although a consistent theory of arithmetic can be extracted from Gl, one with

Hume’s principle as its only nonlogical axiom, it remains unclear to what extent

the full conceptual apparatus of Gl (or its elaboration in Gg) is entirely coherent—

even when the notion of class is excised from it. As Frege tells us in his intro-

duction to Gl, one of the methodological pillars of the work is the distinction

between concepts and objects. But Frege’s notion of object is of necessity one of

great generality; if it were not, it could not be maintained with confidence that the

development of arithmetic that Gl advances is independent of intuition. Russell’s

discovery that Frege’s notion of class is paradoxical unless somehow restricted was

problematic for Frege for just this reason: to preserve the idea of founding

arithmetic on classes, it would be necessary to qualify the generality of the notion

of an object, and it would then be unclear whether logicism represented the

advance on Kant that it had promised to provide.

The mathematically central feature of a Fregean object is that it is a possible

argument to a concept of first level. That numbers are objects in this minimal

sense is all that is needed for the proof of Frege’s theorem. The suggestion we have

9 See (Heck [1995], pp. 315–316) for a discussion and references.
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been pursuing in our exposition is that the Fregean framework of concepts and

objects—without the notion of class—is a sufficient basis for arithmetic since,

among other things, it allows us to recover the basic laws of arithmetic. Numbers

are unproblematic precisely because their criterion of identity—namely, Hume’s

principle—requires only that the relation between concepts and objects should be

functional; by contrast, the criterion of identity for classes (Basic Law V) demands

that it should be injective. The rejection of classes is relatively unproblematic once

it is seen that arithmetic can be developed without their use. But as we will show

in the next section, there are, in addition to classes, other Fregean ‘‘objects’’ that

will have to go if the framework of concepts and objects is to be coherent. The

cumulative effect of successive prunings is that at some point it must become

questionable whether arithmetic is being developed within an appropriately

general conception of concepts and objects, or whether the notion of a framework

of concepts and objects is being tailored for the development of arithmetic.

Neither project is without philosophical significance and interest, but only the

successful execution of the first can count as an unequivocally compelling answer

to Kant.

Russell’s Propositional Paradox

and Fregean Thoughts

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

At the conclusion of The Principles of Mathematics (indeed, on the last two pages

of the final appendix of the book), Russell derives a paradox that has come to be

known as the propositional paradox. Principles contains the only mention of the

propositional paradox in Russell’s published writings. However, it occupies a

significant position in his correspondence with Frege, where it led Frege to extend

the theory of sense and reference which he had articulated in €UUber Sinn und

Bedeutung to include a more elaborate development of the theory of indirect

reference.10 The issues raised by the paradox are so central to the interpretation of

Frege and Russell that it will be worthwhile to go into the paradox in some

detail.11

Like Russell’s paradox of the class of all classes that are not members of

themselves, the propositional paradox illustrates how ‘‘[f ]rom Cantor’s propo-

sition that any class contains more subclasses than objects we can elicit constantly

10 See especially Frege’s letter to Russell of December 28, 1902, reprinted in McGuinness

([1980], pp. 152–154).
11 Our presentation follows Demopoulos [2001], which in turn draws from Potter

[2000]. See also Linsky [1999].
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new contradictions.’’12 While one can extract from the derivation of the paradox a

proof that there are more properties of propositions than there are propositions,

its main interest, like the interest of the Russell–Zermelo paradox, consists in the

fact that it challenges a number of basic assumptions, in this case, assumptions

about the nature of propositions and propositional identity—and by an extension

we will explore presently, Fregean thoughts.

The formulation of the paradox we will follow13 focuses on propositions of

the form

8p(j(p) ! p):

In a propositional theory like Russell’s, such a proposition is understood as saying

that every proposition with property j is true. Notice that in order for ‘‘j(p)’’ to
express a propositional function, and for ‘‘j(p)! p’’ to express a proper truth

function of j(p) and p, ‘‘p ’’ must have what we will call a designative occurrence in

‘‘j(p)’’, that is, substituends for ‘‘p’’ must designate propositions. By contrast, the

occurrence of ‘‘p’’ in the consequent of ‘‘j(p)! p’’ must not be designative, but

expressive ; that is, a substituend for ‘‘p’’ must express a proposition. There is a

systematic ambiguity between designative and expressive occurrences of ‘‘p’’ in

the argument to the paradox, but there is no confusion of designative and ex-

pressive occurrences. As remarked by Church ([1984], p. 520), the paradox is

derivable for a wide choice of propositions. In the extension to Frege’s theory of

thoughts given below, we derive the paradox using a proposition whose universal

quantifier binds only designative occurrences of ‘‘p.’’

Although, as we have noted, ‘‘Vp(j(p)! p)’’ is naturally taken to express the

proposition that every proposition with property j is true, the notion of a truth

predicate does not enter into the derivation of the paradox. Nor does the paradox

require for its formulation the availability of a semantic relation of designation, a

point first made explicit in Church [1984]. Church derives the paradox within a

theory consisting of the simple theory of types augmented by the axioms of

propositional identity that are implicit in Principles. In the context of the simple

theory, it can be shown (see Church [1984], p. 520) that the analogue of our

(Injectivity), below, is derivable from these axioms of propositional identity.

Thus, in terms of a well-known division of the paradoxes into those belonging to

logic and mathematics ‘‘in their role as symbolic systems’’ versus those which

depend on the bearing of logic on ‘‘the analysis of thought’’ (Ramsey [1931], p. 21),

the propositional paradox falls squarely into the second category; yet, for the

reasons just given, it is not straightforwardly semantic.

12 Russell’s letter to Frege of November 11, 1902, in McGuinness ([1980], p. 147).
13 See Russell’s letter to Frege of May 24, 1903, in McGuinness ([1980], pp. 148–150).
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The paradox arises as follows. Let j be a property of propositions; in Russell’s

terminology, j is a propositional function which takes propositions as arguments

and yields propositions as values. Consider the function f from properties of

propositions to propositions defined by

fj ¼Df 8p(j(p) ! p):

The notation is justified by Russell’s theory of propositions: since j is a con-

stituent of fj, f is a many–one relation, and on the assumption that for every j
there is such a proposition fj, f is a function. Since j is a constituent of the

proposition fj, it follows from Russell’s conception of propositions and propo-

sitional identity (see Church [1984], p. 520) that

( fj ¼ f c) ! (j ¼ c),

a consequence we will call ‘‘(Injectivity).’’ Now let c be the property of propo-

sitions given by

c(p) ¼Df 9j(p ¼ fj ^ :j(p)),

and suppose :c(fc):

:9j( f c ¼ fj ^ :j( f c));

that is,

8j( f c ¼ fj ! j( f c)),

and therefore, c(fc).
Next suppose c(fc):

9j( f c ¼ fj ^ :j( f c)):

Then, by (Injectivity),

9j(j ¼ c ^ :j( f c));

whence :j(fj).
Our exposition brings out how little the paradox requires from the theory of

Russellian propositions developed in Principles. Thus, in the context of Russell’s

logicism: frege, dedekind, russell 147



conception of propositions, (Injectivity) is required by the assumption that the

propositional function j is a constituent of fj; and the assumption that for every

j there is a proposition fj—the proposition Vp(j(p)! p)—is so intuitively

obvious that it would seem to be a necessary component of any theory of

propositions. Assuming that for every j there is a proposition of the form

Vp(j(p)! p), all we require is that the relation which associates Vp(j(p)! p)

with j (the inverse of the relation determined by f ), should be functional. We will

return to this latter point in the context of Frege’s theory of thoughts.

The solution mandated by the ramified theory of types depends on observing

the restrictions it imposes on the ‘‘orders’’ of the propositions and propositional

functions to which the derivation of the paradox appeals.14 The technical idea

behind the ramified theory’s stratification of propositions into orders is that the

order of a proposition, p, must exceed the order of any proposition that falls

within the range of one of its quantified propositional variables, and therefore, by

the restrictions the theory imposes, p cannot itself fall within the range of one of

its quantified propositional variables. By an extension of terminology, the order of

a propositional variable is the order of the propositions which belong to its range

of values. According to the ramified theory, the proposition q=Df Vp(c(p)! p)

and the propositional function c, defined in the course of the derivation of the

paradox, are such that if the order of the bound propositional variable in q is n,

the orders of q and c must be nþ 1, so that q is not itself a possible argument for

the function c. Since the contradiction was derived from the supposition that

c(q) or :c(q), the argument collapses once the restrictions imposed by ramifi-

cation are taken into account. Notice that this solution preserves the idea that j is

a constituent of fj, as well as the idea that there always is a proposition fj
corresponding to j.15 However, the generality of these assumptions is the re-

stricted generality of the ramified theory: for every c of order nþ 1, there is a

proposition of order nþ 1 which asserts the truth of every proposition of order n

for which c holds.

14 The remarks which follow are merely illustrative. The subject of Russell’s ramified

theories of types is subtle and complex, and deserves a separate exposition. (We return to

it below.) See in this connection the admirable review of type theory in Urquhart [2003];
see also Chihara [1972, 1973].

15 Russell’s remarks in the correspondence with Frege leave it unclear whether the

solution to the paradox just outlined is the one he came to favor. Fuhrmann [2002] argues
that Russell saw the paradox’s resolution to lie in the simple rejection of (Injectivity). But

merely rejecting this assumption fails to address the problem of providing a positive

theory of propositions; it also overlooks the fact that a solution in terms of ramification

preserves the central features of the theory of propositions—subject, of course, to the

restrictions noted in the text. A more serious difficulty with Fuhrmann’s analysis is that

the rejection of (Injectivity), while plausible on one formulation of the paradox, is not

plausible on another, as Fuhrmann himself concedes (p. 209).
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As is well known, there are two hierarchies that emerge from Frege’s philo-

sophical reflections on logic and language: the hierarchy of functions (or con-

cepts) and objects, and the hierarchy of senses. The first hierarchy has a simple

type-theoretical structure and, like the simple theory of types, is naturally moti-

vated by considerations of predicability: first-level functions are predicated of

objects, second-level functions of first-level functions, third-level functions of

second-level functions, and so on. There is therefore no analogue in Frege’s hi-

erarchy of functions of Russell’s paradox of the propositional function that is

predicable of all and only those propositional functions which are not predicable

of themselves. But as we have seen, the propositional paradox can be derived from

the theory of Russellian propositions of Principles even when this theory is for-

mulated within a simple type-theoretical formalism. It is therefore natural to ask

whether Frege’s theory of sense, and in particular his theory of thoughts, fares just

as badly—to ask, in other words, whether Fregean thoughts, which are the proper

correlates of Russellian propositions, admit the construction of an analogue of the

propositional paradox.

Potter [2000, p. 135] claims that the propositional paradox can be extended to

Fregean thoughts only if we ignore the ‘‘degree of indirectness’’ of a thought and

its constituent senses. When degrees are taken into account, the argument can be

seen to fail because it rests on the identification of thoughts of different degree.

Potter does not explain the principle controlling the assignment of degree indices;

for that, one must look to Frege’s letter to Russell of December 28, 1902, which

tells us that the degree of a thought is assigned on the basis of the number of

embeddings into opaque contexts a canonical linguistic expression of the thought

exhibits. The details of this need not concern us. The important point is that

however high its degree, a thought remains a possible argument to a concept of

first level. As we will now show, this is all the extension of the paradox to Frege’s

theory of thoughts requires.

Passing to the hierarchy of senses, notice that insofar as senses are objects, they,

too, fall under concepts. Thoughts, being the senses of complete expressions, are

objects. Among thoughts, some are universal (i.e., are composed of the senses for

the universal quantifier and a concept-expression; let us call the concept to which

such a concept-expression refers, the principal concept of the universal thought.

Although Frege’s hierarchy of concepts escapes Russell’s paradox of the predicate

which holds of all predicates that are not predicable of themselves, there appears to

be nothing to prohibit the concept w that holds of all universal thoughts that do not
fall under their principal concept. Does the universal thought expressed by, for

instance, ‘‘Everything is w’’ fall under w? If it does, it violates the defining char-

acteristic of w, and so does not fall under w. And if it does not, it violates the

universality of w, and therefore, does fall under w.
The informal argument we have just given can be found in Myhill [1958].

More explicitly, define a one–many relation h on the domain of Fregean concepts
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which relates every concept j to a universal thought Vp(j(p)) of which it is the

principal concept: jhq if, and only if, q=Vp(j(p)); h is one–many since there

may be distinct universal thoughts whose constituent senses determine j as their

principal concept. At the level of the senses js of concepts j, the situation for

Fregean thoughts exactly parallels Russellian propositions and propositional

functions: the theory implies that the relation between universal thoughts and the

senses of their principal concepts maps one–one the domain of such senses onto

the class of universal thoughts. But the derivation of a paradox in Frege’s theory

requires only that h satisfy the following two conditions: (1) every universal

thought is in the range of the relation h, and (2) whenever jhp, chq, and p= q,

j=c. It is clear that (1) is satisfied. As for (2), if the universal thoughts p and q are

the same, so also are their constituent senses js and cs , and since sense determines

reference, their principal concepts must also be the same.

Now let q=Vp(w(p)), where

w(p) ¼Df 9j(jhp ^ :j(p)):

Then whq. Now suppose that w(q), that is,

9j(jhq ^ :j(q)):

It then follows that

9j(whq ^ jhq ^ :j(q)),

so that, using (2),

9j(w ¼ j ^ :j(q)),

whence :w(q).
Next suppose :w(q):

8j(jhq ! j(q)):

Thus, in particular, whq ) w(q). Since q¼ Vp(w(p)), whq; and therefore, w(q).
Klement ([2001], [2002], ch. 5) formalizes a fragment of the theory of sense and

reference sufficient to secure a rigorous derivation of the ‘‘the concept/Gedanke

antinomy’’ within this formalization of the theory, and argues that since the

fragment does not employ Basic Law V, the paradox reveals an inconsistency in

Gg’s philosophy of language, one that arises independently of its theory of classes.

Klement is certainly correct to observe that the difficulty goes beyond Frege’s

theory of classes. But the source of the difficulty is a general and pervasive feature
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of the theory of concepts and objects, a feature that lies at the basis of both

paradoxes, yielding one inconsistency in the context of classes and another in the

context of thoughts. Because classes and thoughts are themselves objects, we can

always ‘‘diagonalize out’’ of any attempt to specify a representative object for each

concept—the difficulty is the same whether that object is taken to be a thought or a

class. The essential similarity between the concept/class and concept/thought

paradoxes can be made intuitively compelling as follows: Recall that an object

belongs to a class if it falls under the concept whose extension the class is. Similarly,

let us say that an object belongs to a universal thought if it falls under the principal

concept of the thought. Then the concepts expressed by ‘‘x is the class of all classes

that do not belong to themselves’’ and ‘‘x is the universal thought of all universal

thoughts that do not belong to themselves’’ both lack objectual representatives.

As we remarked earlier, Frege shows that, given any map f from concepts to

objects, we can always find concepts j and c such that fj¼ fc but j(fj)^
:c(fj);16 not only are distinct concepts necessarily mapped onto the same ob-

ject, but we can actually specify an object which distinguishes j and c in terms of

the mapping f. Thus, the fact that there cannot be an injection of concepts into

objects is entailed by a consistent fragment of Gg, and this shows that the difficulty

posed by Basic Law V is an instance of a more general incoherence in the Fregean

theory of concepts and objects.

In the case of thoughts, Frege might argue that they, at least, are not proper

objects—not arguments to concepts of first level. Thoughts are like objects in

being ‘‘saturated’’—in corresponding to ‘‘complete’’ expressions; but this is only

one component of what characterizes something as an object. The most important

component of being an object—that of being an argument to a concept of first

level—may not be a feature that thoughts enjoy; rather, they might form a dif-

ferent hierarchy from concepts and objects proper. But an examination of the

argument leading to the paradox shows it to require only that thoughts fall under

the concepts appropriate to them and is unaffected if thoughts and the concepts

they fall under form a separate hierarchy from ordinary objects and concepts.17

Frege’s proof of the infinity of the numbers does not require any assumptions

about the objectual character of thoughts, but rests, as we saw, on the thesis that

numbers are objects. Frege’s proof is therefore in no way compromised if the

hierarchy of thoughts and the concepts they fall under is distinguished from

the realm of objects and the hierarchy of concepts under which they fall. But the

foundational significance of Frege’s account of our knowledge of the infinity of

the numbers does rest on the generality of the framework of concepts and objects

within which his account is presented. The Russell–Myhill paradox shows that

16 See the appendix Frege added to Gg in response to Russell’s letter of June 16, 1902,
informing him of the contradiction.

17 We are indebted to Kevin Klement for this observation.
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this generality may need to be constrained, and this inevitably raises a question

regarding the basis for settling on one or another set of restrictions.

Let us briefly review the situation we have arrived at. The consistency of Bg

shows that the generality of the Comprehension Scheme for properties is not by

itself problematic. The consistency of the first-order fragment of Gg shows that the

mere combination of concepts and objects does not necessarily run into difficulty.

The consistency of the predicative fragment of Gg shows that when the notion of a

Fregean concept is suitably restricted, every allowable concept can have a class as its

(bi-unique) representative object. Given the Comprehension Scheme of Bg, a

difficulty arises if the objects which represent concepts are in turn capable of falling

under the concepts of which they are the objectual representative. Whether these

objects are taken to be classes is quite irrelevant to the derivation of an inconsis-

tency. That thoughts and classes should exhibit this feature appears unavoidable in

view of the logicist’s conception of their generality. As Frege says in the motto we

have taken from Bg, thoughts have a generality that sets them apart from intu-

itions, even intuitions given a priori. And a comparable generality is arguably also

unavoidable in any notion of class capable of supporting the idea that classes are

logical objects. Number escapes paradox without sacrificing its claim to generality

because the numerical correlates of concepts are not representative of them—they

are given by a relation which is many–one, but not one–one.

Dedekind’s Account of

Our Knowledge of the

Infinity of the Numbers

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To a great extent, Dedekind’s and Frege’s treatments of the natural numbers are

on a par. Frege’s theorem shows that if the finite cardinals are introduced by

way of Hume’s principle and the successor relation is defined in terms of the

cardinality operator, then the finite cardinals together with successor satisfy the

Dedekind–Peano axioms. Conversely, Dedekind shows (theorem 120) that the ver-

sion of Hume’s principle which results when the concept variables range over only

finite concepts, is obtainable in the system of Was sind. But despite these formal

similarities, there are considerable differences in their accounts of our knowledge

of the existence and infinity of the natural numbers. We have described Frege’s

methodology at some length. Let us now consider Dedekind’s.

Dedekind defines a system to be (Dedekind) infinite if and only if it can be put

into one-to-one correspondence with a proper subsystem of itself. He defines a

simply infinite system to be any system which forms the domain of a relation
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satisfying the Dedekind–Peano axioms. He then proves that every infinite system

contains a simply infinite subsystem (theorem 72). Now suppose that we have

already proved that there is an infinite system. Then we know there is a simply

infinite system which, together with its relation, models the Dedekind–Peano

axioms. Once we are in possession of a simply infinite system, we

entirely neglect the special character of [its] elements, simply retaining their

distinguishability and taking into account only the relations to one another in

which they are placed. . . . [T]hese elements [are] called natural numbers or

ordinal numbers or simply numbers. . . .With reference to this freeing [of] the

elements from every other content (abstraction) we are justified in calling

numbers a free creation of the human mind. (Was sind, p. 68)

We should record an important difference between Frege’s account of number

and the account of Dedekind. For Dedekind, the exhibition of a simply infinite

system is designed to yield the concept of number; it does not purport to fix the

identity of the individual numbers—indeed, Dedekind is opposed to any such

extension of his ideas. By contrast, Frege does attempt this in order to secure their

status as ‘‘self-subsistent objects.’’ On Dedekind’s analysis, the existence of num-

bers is a consequence of a mental power to abstract from particular characteristics

of the elements of a simply infinite system to its ordinal structure.

The success of Dedekind’s methodology hinges on the existence of an infinite

system. As Dummett ([1991 a], pp. 49ff.) has observed, Dedekind sought to secure

the existence of such a system by the provision of a concrete example, one from

which the concept of number could be viewed as having been abstracted in the

manner just reviewed. It would then follow by his categoricity theorem (theorem

132) that the peculiarities of the starting point of the construction can be dis-

counted, and the generality of the construction of the infinite system secured. This

is the goal of theorem 66, whose proof runs as follows:

The world of my thoughts, i.e., the totality S of all things that can be objects

of my thought, is infinite. For if s denotes an element of S, then the thought s 0, that
s can be an object of my thought, is itself an element of S. If s 0 is regarded as the

image j(s) of the element s, then the mapping j on S determined thereby

has the property that its image S 0 is a part of S and indeed S 0 is a proper part
of S, because there are elements in S (e.g., my own ego), which are different

from every such thought s 0 and are therefore not contained in S 0. Finally it is clear
that if a, b are different elements of S, then their images a0, b 0 are also different,

so that the mapping j is distinct (similar). Consequently, S is infinite, q.e.d.

Following Frege,18 we may say that for Dedekind the realm of thoughts is an

objective one, one that exists independently of us. Our access to this realm is taken

for granted, since thoughts are transparent to our reason. The realm of thoughts

18 As, indeed, Frege [1897] suggests; see Hermes et al. ([1980], p. 136).
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yields an exemplar of an infinite system because the relation, x is an object of my

thought y, is a one-one function which maps a subsystem of objects of my thought

onto a proper part of itself. From this exemplar we abstract the concept of an

infinite system, and thus of number. For Dedekind’s proof to succeed, it is es-

sential that thoughts be proper objects—arguments to concepts of first level, in

fact to the concept x is an object of my thought, one that holds of thoughts and

of objects which are not thoughts. Dedekind says very little about the nature of

thoughts, so it can hardly be urged against him that his account rests on an in-

consistent theory of thoughts. But were we to regard Dedekind’s tacit theory of

thoughts as essentially Frege’s—together with the further condition that thoughts

are proper objects—the concept/thought paradox would be an obstacle to the suc-

cess of his account of our knowledge of the infinity of the numbers: if the proof of

theorem 66 fails, we lack an exemplar from which the concept of number can be

abstracted and cannot be said to have an account of how we come to know the

numbers’ most salient property.

Russell’s Logicism and

the Rejection of

Denoting Concepts

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For Russell, no satisfactory solution of the problem of our knowledge of arith-

metic is possible so long as the theory of concepts and objects is not on a secure

footing. The character of this footing will determine to what extent logicism can

be judged a success. The first steps toward a solution came with the discovery of

the theory of descriptions. Its contributions to the philosophy of arithmetic were

at least twofold: (1) the clarification of the theory of generality and the consequent

simplification of the theory of concepts and objects by the elimination of denoting

concepts; (2) the method of contextual analysis.

The Principles theory of generality was based on the notion of a denoting

concept. Such concepts were important because without them, Russell believed,

our knowledge of the infinite combinations of things that correspond to words of

quantification—hence also our ability to express, by finite means, thoughts in-

volving infinite totalities—would be severely limited:

Indeed it may be said that the logical purpose which is served by the theory of

denoting is, to enable propositions of finite complexity to deal with infinite

classes of terms: this object is effected by all, any, and every, and if it were not

effected, every general proposition about an infinite class would have to be
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infinitely complex. Now, for my part, I see no possible way of deciding whether

propositions of infinite complexity are possible or not; but this at least is clear,

that all the propositions known to us (and, it would seem, all propositions

that we can know) are of finite complexity. It is only by obtaining such pro-

positions about infinite classes that we are enabled to deal with infinity; and it is a

remarkable and fortunate fact that this method is successful. (Principles §141)

But Russell came to view denoting concepts as bringing with them many of the

difficulties he associated with Fregean senses. A denoting concept is like the

predicable notion of a concept in applying to many things, but in some cases, at

least, it is like an object or ‘‘term’’ insofar as it is expressed or ‘‘indicated’’ by a

singular term. The central case is that of the denoting concepts which we express

with definite descriptions. If such concepts could be eliminated, this would mark

a significant simplification and would secure the theory of concepts and objects by

removing one potential source of paradox. The means by which this was achieved

by the theory of descriptions—the method of contextual analysis—constitutes the

second contribution of the theory to the articulation of Russell’s logicism.

It has for a long time been supposed that the central achievement of the

theory of descriptions was the elimination of the denotations of denoting phrases

that express vacuous or nondenoting denoting concepts. But the theory of Prin-

ciples, and almost all of those theories, such as Frege’s, to which it bore any

resemblance, were perfectly capable of representing the possibility that a denoting

phrase might express a sense while lacking a reference. The really significant and

novel achievement of Russell’s theory was its elimination of denoting concepts.19

The way this was achieved by the method of contextual analysis is as follows:

Given a sentence S containing, for example, a definite description, the theory spec-

ifies how to transform S into a logically equivalent sentence ST in which the

descriptive phrase does not occur. ST gives the correct logical form of the prop-

osition expressed by S, showing it to be quantificational (in fact of the form AV)
rather than subject–predicate, and showing, as a consequence, that it was illusory

to have sought the denotation of a denoting concept at all, since ST shows that

there is not, in the proposition expressed by S, anything that even purports to be

such a symbolic entity as a denoting concept. A contextual analysis differs from an

ordinary analysis, such as one involving an explicit definition, by showing how to

transform any ‘‘context’’—any sentence—in which the expression to be analyzed

occurs into an equivalent sentence, without thereby assuming that the expression

contributes an entity to the proposition expressed by the sentences in which it

occurs.

On Russell’s theory, our understanding of the proposition expressed by S

proceeds by our being acquainted with its constituents; what these constituents

19 As has been made particularly clear by Noonan [1996].

logicism: frege, dedekind, russell 155



are, we can know only relative to an analysis. The theory of descriptions shows

that when a sentence contains a description, the proposition it expresses contains

only ordinary, predicable concepts and individuals—not denoting concepts; in

particular, therefore, our understanding of such propositions does not require

acquaintance with denoting concepts. An important and insufficiently appreci-

ated aspect of Russell’s theory is the manner by which it allows us to distin-

guish propositions that we understand from those that, because they contain

among their constituents things which fall outside our acquaintance, can only be

asserted.20 We succeed in knowing about such things because the propositions

we do understand contain propositional functions that hold uniquely of them.

To take a simple, nonmathematical illustration of Russell’s theory of proposi-

tional understanding, since I am not acquainted with Bismarck, any proposition I

can understand which purports to say something about him must contain a

propositional function which holds uniquely of Bismarck and is composed

wholly of constituents with which I am acquainted. An equivalent proposition

which contains Bismarck is not one I can understand; but in view of the fact

that there is a proposition that I do understand, one that contains a suitable prop-

ositional function which holds only of Bismarck, the limitations on the scope of

my acquaintance need not impose a limitation on what I can have knowledge

about.

The logical theory consisting of some sort of hierarchy of types of proposi-

tional functions seeks to preserve certain features of the theory of propositional

understanding that, together with the theory of descriptions, forms the backbone

of Russell’s theory of meaning. As Ramsey [1931] was perhaps the first to make

fully explicit, what is distinctive of this logical theory is its division of proposi-

tional functions into two hierarchies: one satisfying an intricate system of

restrictions whose natural justification is that they are forced by reflection on how

propositional functions are known by us, and another, unconstrained by con-

siderations of this sort and reflecting the purely logical restrictions of the simple

theory of types.21

The immediate inspiration for ramified-type theory is the intuitive, informal

principle that Russell seems to have drawn from Poincaré’s diagnosis of the source

of the logical paradoxes, the Vicious Circle Principle: ‘‘Whatever involves all of

a collection must not be one of the collection’’ (Russell [1908], p. 63). Russell gives

a number of glosses on this idea. In a footnote he adds, ‘‘When I say that a col-

lection has no total, I mean that statements about all its members are nonsense’’

20 The distinction between asserted and expressed propositions and its importance

for Russell’s theory of propositional understanding is further elaborated in Demopoulos

[1999].
21 Here we are indebted to a suggestion of Goldfarb [1989].
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(Russell [1908], p. 63).22 And again, ‘‘No totality can contain members defined in

terms of itself[; . . .w]hatever contains an apparent variable must not be a possible

value of that variable’’ (Russell [1908], p. 75). In Principia Mathematica (PM )

Russell gives the following formulation:

Given any set of objects such that, if we suppose the set to have a total, it will

contain members which presuppose this total, then such a set cannot have a total.

By saying that a set has ‘‘no total’’ we mean, primarily, that no significant

statement can be made about ‘‘all its members.’’ (p. 37)

The theory of order effects the main constraint of the Vicious Circle Principle

since it rules out the impredicative propositional functions which Russell thought

were directly implicated in the paradoxes, where an impredicative propositional

function is one that contains a quantifier that binds a variable whose range

contains the propositional function itself as a member. Individuals have order 0,

as do the variables ranging over them. Propositional functions of individuals of

order 1 then take individuals as arguments. The arguments of propositional func-

tions of individuals of order 2 include propositional functions of order 1; those of

order 3 include propositional functions of order 2, and so on. If a propositional

function j of individuals is presented in terms of quantification over other

propositional functions of individuals, j will fail to respect the principle un-

derlying ramification if it lies within the range of one of its constituent variables.

More generally, the presentation of a function j—whether of functions or of

individuals—of order n> 1 depends on the presentation of functions of order less

than n, since j quantifies over variables within whose range such functions lie. j
is precluded from falling within the range of one of its quantified variables be-

cause the presentation of j is understood as following on the presentation of its

constituents. The principle underlying ramification is entirely plausible and in no

way ad hoc if the ramified hierarchy is held to reflect the fact that our epistemic

access to functions higher in the hierarchy depends on our access to those below

it. A violation of such a constraint on epistemic access would indeed be viciously

circular.

In this connection, it is important to appreciate that the propositional func-

tions of PM are not fixed in advance: its ‘‘symbolic resources’’ are not bounded in

the manner that is familiar to us from our experience with formalized languages,

22 The expression ‘‘has no total’’ is an allusion to the idea of ‘‘indefinitely extensible’’

concepts or domains. Building on Russell, Dummett has made much of the notion of

indefinitely extensible domains, seeing in their existence the origin of the contradiction

which afflicted Frege’s theory of classes and an independent argument for intuitionistic

logic as the natural logic of classes (Dummett [1991c], ch 17; [1994]). We haven’t space to

go into this subject here. For an extended commentary see Boolos [1993], Clark [1993],
[1994], [1998], and Oliver [1998].
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but are susceptible of indefinite extension by the addition of new functions as

applications of the framework may demand. Although our access to a function j
is mediated by quantification over other functions, this in no way precludes the

existence, within the hierarchy, of extensionally equivalent predicative functions or

functions of order 1—that is, functions that do not contain quantification over

other functions. The restrictions respected by predicative functions are merely the

type restrictions of the simple hierarchy. The orders that ramification imposes

constrain our epistemic access to propositional functions of order greater than 1.

The hierarchy of orders of the ramified theory is compatible with the existence,

independently of our knowledge of them, of predicative (i.e., order 1) equivalents

of functions of all orders. But a predicative function may be such that what

knowledge we have about it is mediated by access to a logically equivalent function

of order greater than 1. The assumption that for every propositional function

of order n there is an equivalent propositional function of order 1, is an axiom

of reducibility. The infinite collection of such axioms—one for every order of

propositional function greater than 1—constitutes ‘‘the’’ axiom of reducibility

of PM.

There is a suggestive comparison between the ramified theory with reducibility

and Russell’s theory of propositional understanding: Not being acquainted with an

individual i, reference to it requires a description (i.e., a propositional function

which holds uniquely of i—a ‘‘descriptive function’’ for i. An ‘‘axiom of ac-

quaintance’’ that parallels reducibility would assert that every descriptive function

for an individual i has an equivalent that is composed wholly of constituents with

which I am acquainted. The axiom thus enforces a concordance between the

domain of individuals picked out by descriptive functions—presumably all indi-

viduals—and those picked out by such ‘‘good’’ descriptive functions as the axiom

postulates. The functions corresponding to good descriptive functions are the

analogues in the theory of propositional understanding of the predicative func-

tions of the ramified hierarchy. Ordinary descriptive functions correspond to

propositional functions of order greater than 1; individuals correspond to classes.

The axioms of acquaintance and reducibility postulate (respectively) the possibility

of knowing individuals and classes in terms of functions that possess a certain

epistemic transparency, a transparency embodied by acquaintance in the one case

and the absence of complex forms of quantification in the other. Classes occur

in the hierarchy only under the guise of predicative functions, which are the

means by which they are known. Reducibility thus postulates a concordance be-

tween mathematical reality and our knowledge of it that the ramified theory is

otherwise unable to demonstrate. It is precisely for this reason—its possession

of the virtues of theft over honest toil—that the axiom’s necessity was regarded

as a serious flaw. An important foundational question arises in this connec-

tion, one which brings into sharp relief a basic and pervasive difference between

Frege’s and Dedekind’s developments of logicism and Russell’s. This is the analysis
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of mathematical induction and the definition of the set of natural numbers, to

which we now turn.

Russell’s Account of

Reasoning by Induction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The tradition of predicative analysis that originates with Weyl [1987]23 proceeds

on the assumption that the system N of natural numbers is not in need of

definition or reconstruction but is available to us. The considerable achievements

of this tradition would not have been possible without this assumption. By

contrast, logicism sought to account for N, impredicatively in the case of Frege

and Dedekind, predicatively in the case of Russell.

The Frege–Dedekind definition of x is natural number amounts to the con-

dition, called (§) above, that x is a natural number if and only if x has every

hereditary property of 0. But this is excluded by ramification since ‘‘every he-

reditary property of zero’’ quantifies over properties of 0 of all orders. The proper

formulation in Principia Mathematica (PM) would be ‘‘x has every predicative

property possessed by 0.’’ But if we know that for each propositional function

there exists a predicative propositional function coextensive with it, then the two

conditions ‘‘every hereditary property of zero’’ and ‘‘every predicative hereditary

property of zero’’ are, in fact, logically equivalent and condition (§) is simply the

principle of mathematical induction in full generality. That for each propositional

function there exists a coextensive predicative function is guaranteed by an axiom

of reducibility.

In his Appendix B to the 1925 edition of PM, Russell attempted to dis-

pense with this axiom in the justification of the definition of natural number.

Gödel ([1944], p. 145) noted a mistake in Russell’s proof of the fundamental

lemma, *89.16. In the terminology of Hellman and Feferman ([1995], p. 4), Rus-

sell’s error occurs in the context of his attempt to prove that every subclass of a

finite set is itself finite. (This lemma is equivalent to an axiom of Hellman and

Feferman’s Elementary Theory of Finite Sets and Classes, which they use to give a

‘‘predicative’’ characterization of N.) Myhill [1974] later showed that without

reducibility, the set of natural numbers is not definable in the system of PM

(1910).24

23 See chapter 19 in this volume for a discussion and references.
24 Landini [1996] does not contradict Myhill [1974]. Indeed, according to Landini

(personal communication—W.D.), the system Landini [1996] attributes to the 1925 PM

contains axioms of extensionality equivalent to reducibility.
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Russell on the Dedekind

Infinity of the Numbers

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Call a set x inductive if it belongs to every class A of sets such that A contains the

empty set L of individuals, and for any set y and individual a, if y2A, then y [
{a}2A. (Compare, an inductive number is one which belongs to every set x such

that 0 2 x and for any n, if n 2 x, so is nþ 1.) x is noninductive if it is not

inductive, and x is reflexive (Dedekind infinite) if it can be injected into a proper

subset of itself. PM ’s axiom of infinity tells us that the set V of individuals is

noninductive. The axiom says nothing about the infinity or otherwise of the re-

construction of the natural numbers as ‘‘Russell-numbers’’ in PM (a reconstruc-

tion to which we will soon come). By postulating the axiom of infinity, Russell did

not take the infinity of the Russell-numbers for granted; instead, he derived their

Dedekind infinity from the existence of a noninductive set of individuals by a

beautiful classical argument based on the following:

Lemma. If x is noninductive, then the natural numbers can be injected into

PPx, the power set of the power set of x.

Proof. Observe first that L is a subset of x, so x has a subset of cardinality

0. Suppose there is a subset y of x of cardinality n. Since x is noninduc-

tive, there is an a 2 x�y. Hence y[ {a} is a subset of x of cardinality

nþ 1, and we may conclude that for every n, there is a subset of x of

cardinality n. Hence we may define, for each natural number n, a Russell-

number Sn, given by

Sn¼ {y : y � x and y has cardinality n}.

For each n, Sn is nonempty, Sn� Px, and for m 6¼ n, Sm 6¼ Sn, so that the

map, sending n to Sn, injects the natural numbers into PPx, as required. &

It follows from the lemma that the Russell-numbers form a Dedekind infinite

subclass of PPx since the ‘‘successor’’ map, that sends Sn to Snþ 1, is evidently one-

one from the Sn into a proper subclass of Russell-numbers. More generally, we have

Russell’s theorem: If x is infinite, PPx is Dedekind infinite,

since if a class contains a Dedekind infinite subclass, it is itself Dedekind infinite

(compare PM II *124.57).

In Russell’s development of logicism, the proper analogue of Frege’s theorem

is this proof of the Dedekind infinity of the Russell-numbers.25 Russell’s analysis

25 This point is emphasized by Boolos [1994], whose discussion we have followed.
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shares with Dedekind’s a reliance on an assumption regarding the infinity of a set

of objects not internal to arithmetic. Dedekind, as we saw, sought to discharge this

assumption by a proof. Russell and Whitehead explicitly left their assumption

unproven, conceding that it could not be secured by completely general con-

siderations regarding the nature of concepts and the objects which fall under

them. But in the rush to object to the incursion of an evidently empirical as-

sumption into the foundations of arithmetic, critics of PM have overlooked the

subtlety of its analysis of the infinity of the numbers.

Final Assessment

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We have based our discussion of the logicism of Frege, Dedekind, and Russell

around its answers to three questions: (1) What is the basis for our knowledge of

the infinity of the numbers? (2) How is arithmetic applicable to reality? (3) Why is

reasoning by induction justified? It is an extraordinary achievement of these

authors that they were able to throw such light upon these questions and to

produce such mathematically fruitful answers. It is possible to portray logicism as

a failure because of the Zermelo–Russell contradiction and its need to rely on

nonlogical principles. And of course it is now entirely clear that even if one thinks

of logic as second-order logic, the basic laws of arithmetic are not deducible by

logical means alone from the truths of logic; at present it is at best unclear as to

whether, in any sense demanded by Frege, numbers can be seen as logical objects,

or that our knowledge of the infinity of the numbers is purely logical knowledge.

While all that is so, it does absolutely nothing to detract from the depth of the

logicist analysis of number. Frege’s basic idea gave us quantification theory and

the notion of the ancestral; Dedekind’s methods provided a general mathematical

technique, based upon an informal notion of set (or ‘‘system’’) which in subse-

quent refinements became extended to the notions of ideal and lattice, both

central mathematical tools; and with its development in PM, Russell showed just

what a powerful method type theory really was. It is possible to see PM as a work

not in the logicist tradition of Frege and Dedekind but in what is now called

‘‘reverse mathematics,’’ that is, as asking and answering the questions ‘‘What basic

principles of a general kind are needed to develop the whole of classical mathe-

matics?’’ and ‘‘Can these principles be incorporated into a general theory of con-

cepts and objects which is free of the logical paradoxes?’’ (as Whitehead and

Russell themselves expressed their achievement; see PM I, p. 59).

The monumental achievement of the work was to exhibit such principles and

to actually show how mathematics—not merely elementary arithmetic—might be

reconstructed from them. Not only did logicism show how few were the nonlogical
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assumptions necessary for the development of arithmetic, but particularly in the

work of Dedekind and Russell it began to emerge how surprisingly few principles

were required to develop all of the working mathematician’s cannon, culminating

ultimately in the system Z of Zermelo [1908]. The penetration to the mathematical

heart of the problem achieved by the logicists is in stark contrast to the sterile,

mathematically empty views which preceded them. We owe to logicism first the

completion of the revolution in rigor which was so important a part of nineteenth-

century mathematics; we owe to it second the discovery that many arithmetical

concepts are purely logical concepts; and we owe to it third the most sustained

analysis of the relation between thought in general and mathematics in particular

that has ever been provided.
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Gödel, K. [1944]: ‘‘Russell’s mathematical logic,’’ in Schilpp [1944], pp. 123–154.
Goldfarb, W. [1989]: ‘‘Russell’s reasons for ramification,’’ in Savage and Anderson

[1989], pp. 24–40.
Heck, R.G. [1995]: ‘‘Definition by induction in Frege’s Grundgesetze der Arithmetik,’’ in

Demopoulos [1995], pp. 295–333.
Heck, R.G. [1996]: ‘‘The consistency of predicative fragments of Frege’s Grundgesetze

der Arithmetik,’’ History and Philosophy of Logic, 17, pp. 209–220.
Hermes, H., et al. (eds.) [1980]: Posthumous writings of Gottlob Frege, Chicago:

University of Chicago Press.

Kitcher, P., and W. Aspray (eds.) [1988]: History and philosophy of modern mathematics,

Minnesota Studies in the Philosophy of Science, vol. 11, Minneapolis: University of

Minnesota Press.

Klement, K.C. [2001]: ‘‘Russell’s paradox in Appendix B of The principles of mathe-

matics: Was Frege’s response adequate?,’’ History and Philosophy of Logic, 22,
pp. 13–28.

Klement, K.C. [2002]: Frege and the logic of sense and reference, London: Routledge.

Landini, G. [1996]: ‘‘The definability of the set of natural numbers in the 1925 Principia,’’
Journal of Philosophical Logic, 25, pp. 597–614.

Lewis, H.D. (ed.) [1979]: Bertrand Russell: Memorial volume, London: George Allen and

Unwin.

Linsky, B. [1999]: Russell’s metaphysical logic, Stanford, CA: CSLI Publications.

Marsh, R. (ed.) [1956]: Logic and knowledge, London: Allen and Unwin.

McGuinness, B. (ed.) [1980]: Philosophical and mathematical correspondence of Gottlob

Frege, H. Kaal (trans.), Oxford: Blackwell.

McGuinness, B. (ed.) [1984]: Gottlob Frege: Collected papers on mathematics, logic and

philosophy, Oxford: Blackwell.

Monk, R., and A. Palmer (eds.) [1996]: Bertrand Russell and the origins of analytical

philosophy, Bristol, UK: Thoemmes Press.

Myhill, J. [1958]: ‘‘Problems arising in the formalization of intensional logic,’’ Logique

et analyse, 1, pp. 78–83.
Myhill, J. [1974]: ‘‘The undefinability of the set of natural numbers in the ramified

Principia,’’ in Nakhnikian [1974], pp. 19–27.
Myhill, J. [1979]: ‘‘A refutation of an unjustified attack on the Axiom of Reducibility,’’

in Lewis [1979], pp. 81–90.
Nakhnikian, G. (ed.) [1974]: Bertrand Russell’s philosophy, London: Duckworth.

Noonan, H. [1996]: ‘‘The ‘Gray’s Elegy’ argument and others,’’ in Monk and Palmer

[1996], pp. 65–102.
Oliver, A. [1998]: ‘‘Hazy totalities and indefinitely extensible concepts,’’ in Brandl and

Sullivan [1998], pp. 25–50.
Parsons, C. [1965]: ‘‘Frege’s theory of number,’’ reprinted in Demopoulos [1995],

pp. 182–210.

164 oxford handbook of philosophy of math and logic



Parsons, T. [1987]: ‘‘On the consistency of the first-order portion of Frege’s logical

system,’’ in Demopoulos [1995], p. 422–431.
Pears, D.F. (ed.) [1972]: Bertrand Russell. A collection of critical essays, New York: Anchor

Books.

Potter, M. [2000]: Reason’s nearest kin: Philosophies of arithmetic from Kant to Carnap,

Oxford: Oxford University Press.

Ramsey, F.P. [1931]: ‘‘The foundations of mathematics,’’ in The foundations of mathe-

matics and other logical essays, R.B. Braithwaite (ed.), London: Routledge and

Kegan Paul.

Russell, B. [1903]: The principles of mathematics, London: Allen and Unwin.

Russell, B. [1905]: ‘‘On denoting,’’ in Marsh [1956], pp. 41–56.
Russell, B. [1908]: ‘‘Mathematical logic as based on the theory of types,’’ reprinted in

Marsh [1956], pp. 59–102.
Russell, B. [1919]: Introduction to mathematical philosophy, London: Allen and

Unwin.

Russell, B. [1994]: The collected papers of Bertrand Russell, Vol. IV, Foundations of logic

1903–05, McMaster University ed., A. Urquhart and A.C. Lewis (eds.), London and

New York: Routledge.

Savage, C.W., and C.A. Anderson (eds.) [1989], Rereading Russell: Essays in Bertrand

Russell’s metaphysics and epistemology, Minnesota Studies in the Philosophy of Sci-

ence, vol. 12, Minneapolis: University of Minnesota Press.

Schilpp, P.A. (ed.) [1944]: The philosophy of Bertrand Russell, New York: Harper

Torchbooks.

Shapiro, S. [2000]: Thinking about mathematics, Oxford: Oxford University Press.

Stein, H. [1988]: ‘‘Logos, logic and logistiké: Some philosophical remarks on the

nineteenth-century transformation of mathematics,’’ in Kitcher and Aspray [1988],
pp. 238–259.

Stein, H. [1998]: ‘‘Logicism,’’ in Routledge encyclopedia of philosophy, E. Craig (ed.),

pp. 811–817. London and New York: Routledge.

Urquhart, A. [2003]: ‘‘The theory of types,’’ in The Cambridge companion to Russell,

N. Griffin (ed.), pp. 286–309. Cambridge: Cambridge University Press.

Van Heijenoort, J. (ed.) [1967]: From Frege to G€oodel: A source book in mathematical logic,

1879–1931, Cambridge, MA: Harvard University Press.

Weyl, H. [1987]: The Continuum. A Critical Examination of the Foundations of Analysis.

English translation of 1918 edition by S. Pollard and T. Bole, Kirksville, MA:

Thomas Jefferson Press.

Whitehead, A.N., and B. Russell [1910–1913]: Principia mathematica, Vols 1–3,
Cambridge: Cambridge University Press.

Zermelo, E. [1908]: ‘‘Investigations in the foundations of set theory I,’’ in Van

Heijenoort [1967], pp. 199–215.

logicism: frege, dedekind, russell 165



c h a p t e r 6

LOGICISM IN THE

TWENTY-FIRST

CENTURY

bob hale

crispin wright

1. Frege’s Philosophy of

Mathematics and

the Neo-Fregean Program

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Frege believed, at least for most of his career, that the fundamental laws of

elementary arithmetic—the theory of the natural numbers (finite cardinals)—and

real analysis are analytic, in the sense he explained in Grundlagen §3—that is,

provable on the basis of general logical laws together with suitable definitions.

Since his defense of this thesis depended upon taking those theories to concern a

realm of independently existing objects (selbst€aandige Gegenst€aande)1—the finite

cardinal numbers and the real numbers—his view amounted to a Platonist version

1 ‘‘Independently existing’’ means, roughly, ‘‘not dependent for their existence upon

objects of any other kind’’—for a somewhat fuller expression of the idea, see Hale and

Wright (2001), essay 14, sec. 5. It does not, as some structuralists have supposed, mean that

the natural numbers, for example, exist independently of one another !

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



of logicism. Neo-Fregeanism2 holds that he was substantially right in both these

components of his philosophy, but takes a more optimistic view than Frege him-

self did of the prospects for contextual explanations of fundamental mathematical

concepts—such as those of cardinal number and real number—bymeans of what are

now widely called abstraction principles. Generally, these are principles of the form

8a 8b(S(a) ¼ S(b) $ a � b),

where S is a term-forming operator applicable to expressions of the type of a,b
and � is an equivalence relation on entities denoted by expressions of that type.

The type of a,b may be that of singular terms, in which case � is a first-level

relation and the resulting abstraction principle represents a first-order abstraction

on objects. A well-known example, in terms of which Frege conducted most of his

own discussion of this type of explanation, is the Direction Equivalence.3

The direction of line a¼ the direction of line b if and only if lines a and

b are parallel.

A potentially more important class of higher-order abstractions results from taking

the type of a and b to be that of first (or higher)-level predicates, with � a corre-

spondingly higher-level relation. One much discussed—and, for our purposes,

crucial—principle of this kind is what has come to be known as Hume’s Principle :

the abstraction by means of which, on the proposal reviewed in the central sections

(§§60–68) of Grundlagen, the concept of (cardinal) number may be explained:

The number of Fs¼ the number of Gs if and only if there is a one-one

correlation between the Fs and the Gs

As Frege went on to point out (Grundlagen §§71–72), what is required for there to

be a one-one correlation between the Fs and the Gs may itself be explained in

purely logical terms.4

As is well known, Frege very swiftly came to the conclusion that the ex-

planatory purport of abstraction principles is severely qualified by an objection

which had earlier led him, at Grundlagen §56, to reject as inadequate an attempt to

2 Often called ‘‘neologicism,’’ and sometimes—better but more cumbersome—‘‘neo-

Fregean Logicism.’’ The approach to be discussed in what follows differs in fundamental

respects from other recently defended forms of logicism, such as the quantificational ap-

proach of Bostock (1974, 1979) and the abstraction-free approach of Tennant (1987). These
are well worth separate study but the requisite comparisons would take us too far afield here.

3 More accurately, its universal closure; likewise with Hume’s Principle as stated below.
4 In standard notation, thus: AR Vx (Fx! Ay (Gy^ Vz (Rxz$ z¼ y))^ (Gx! Ay(Fy^

Vz(Rzx$ z¼ y))).
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define number by recursive definition of the series of numerically definite quan-

tifiers of the form ‘‘there are exactly n Fs’’ As he there puts it:

. . .we can never—to take a crude example—decide by means of our definitions

whether any concept has the number JULIUS CAESAR belonging to it, or

whether that same familiar conqueror of Gaul is a number or not.5

In his view, the very same difficulty fatally infects the attempt to define number by

means of Hume’s Principle: the proposed definition provides us with a means to

decide whether the number of Fs¼ q, when q is given in the form ‘‘the number of

Gs’’—but it apparently entirely fails to do so, when q is not a term of that form

(nor a definitional abbreviation of such a term). Perceiving no way to solve the

problem, Frege concluded that an altogether different form of definition is needed

and opted for his famous explicit definition in terms of extensions:

The number of Fs¼ the extension of the concept ‘‘equal to the concept F ’’

in effect, that the number of Fs is the class containing exactly those concepts G

such that the Gs are one-one correlated with the Fs. To derive the fundamen-

tal laws of arithmetic with the aid of this definition, Frege obviously required

an underlying theory of extensions or classes. This he sought to provide, in

Grundgesetze, by means of his Basic Law V, which governs what Frege called value

ranges of functions (concepts being a particular kind of function, on Frege’s

account). As regards extensions of concepts, what Basic Law V asserts is that the

extensions of two concepts are identical just in case those concepts have the same

objects falling under them, that is (in class notation):

8F 8G(fx: Fxg ¼ fx:Gxg$8x(Fx$Gx)):

As very soon became apparent, this is disastrous, since Basic Law V leads to

Russell’s Paradox. Frege sought at first to modify his law V so as to avoid the in-

consistency, but to no avail, and finally abandoned his attempt to provide a logical

foundation for arithmetic and analysis as a complete failure.

Neo-Fregeanism holds that Frege need not have taken the step which led to

this unhappy conclusion. At least as far as the theory of natural numbers goes,

Frege’s central mathematical and philosophical aims may be accomplished by

basing the theory on Hume’s Principle, adjoined as a supplementary axiom to a

suitable formulation of second-order logic. Hume’s Principle cannot, to be sure, be

taken as a definition in any strict sense—any sense requiring that it provide for the

eliminative paraphrase of its definiendum (the numerical operator, ‘‘the number

of . . . ’’) in every admissible type of occurrence. But this does not preclude its being

viewed as an implicit definition, introducing a sortal concept of cardinal number

5 Frege (1884), p. 68.
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and, accordingly, as being analytic of that concept—and this, the neo-Fregean

contends, coupled with the fact that Hume’s Principle so conceived requires a prior

understanding only of (second-order) logical vocabulary, is enough to sustain an

account of the foundations of arithmetic that deserves to be viewed as a form of

logicism which, while not quite logicism in the sense of a reduction of arithmetic to

logic, or as a demonstration of its analyticity in Frege’s own strict sense,6 preserves

the essential core and content of Frege’s two fundamental theses.

Restricting attention for the time being to elementary arithmetic, there are

two main claims—one logical, the other more purely philosophical—which must

be seen to hold good, if the neo-Fregean’s leading thesis is to be sustained. The

logical claim is that the result of adjoining Hume’s Principle to second-order logic

is a consistent system which suffices as a foundation for arithmetic, in the sense that

all the fundamental laws of arithmetic are derivable within it as theorems.7 The

philosophical claim is that if that is so, that constitutes a vindication of logicism,

on a reasonable understanding of that thesis.

In our view, investigations have now reached a point at which at least the

technical part of the logical claim may be taken to have been established.8 Hume’s

Principle, added to a suitable system of second-order logic, does indeed suffice for

a proof of the Dedekind–Peano axioms.9 Moreover, as far as consistency is con-

cerned, we now have as much assurance as it seems reasonable to demand. In ‘‘The

Consistency of Frege’s Foundations of Arithmetic,’’ Boolos (1987) presents a formal

theory FA (Fregean Arithmetic), incorporating an equivalent of Hume’s Princi-

ple, which captures the mathematical content of the central sections of Frege’s

Grundlagen (§§63–83) and proves not just that we can give a model for Hume’s

Principle, but also that the informal model-theoretic proof can be replicated

both in standard set theory and in the weaker theory known as ‘‘second-order

6 For some reasons in favor of construing analyticity more generously than Frege

does, see Hale and Wright (2001), pp. 12–14.
7 Formulating the logical claim in this way—rather than as that every truth of arith-

metic be derivable as a theorem of the system—avoids an obvious clash with Gödel’s first

incompleteness theorem. For some discussion of the claim that Gödel’s theorem shows

that the logicist project was doomed to failure right from the outset, see Wright (1983),
p. 131.

8 It would be a mistake, of course, to think that the issues here are entirely technical.

The formal result is strictly only that Hume’s Principle plus higher-order logic permit the

derivation of a theory which allows of interpretation as arithmetic. It is a philosophical

issue to defend that interpretation, pursued to some extent below and much more fully in

several of the essays collected in Hale and Wright (2001)—see especially essay 13.
9 This result, following a suggestion of George Boolos, is now often referred to as

Frege’s Theorem. The derivability of Frege’s Theorem seems to have been first explicitly

noted in Charles Parsons (1964); see remark at p. 194. For detailed accounts of the proof,

see Wright (1983), §xix; Boolos (1987 and 1990, appendix); and Boolos and Heck (1998).
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arithmetic’’ or ‘‘analysis,’’ the consistency of which seems well beyond serious

question.

The philosophical significance of the situation is another matter entirely. If the

neo-Fregean is to justify his contention that Frege’s Theorem can underwrite

a viable Platonistic version of logicism, then, even if he restricts that claim to

elementary number theory, he has much philosophical work to do on several

fronts; and if he additionally aspires, as we do, to sustain a more inclusive version

of logicism encompassing at least the theory of real numbers and perhaps some set

theory, then he must take on an additional range of tasks—some technical, some

philosophical.

In the four immediately following sections, we shall confine ourselves to

issues which neo-Fregeanism must address, even if the scope of its leading claims

is restricted to elementary arithmetic. Many of these concern the capacity of

abstraction principles—centrally, but not only, Hume’s Principle itself—to dis-

charge the implicitly definitional role in which the neo-Fregean casts them, and

thereby to subserve a satisfactory apriorist epistemology for (at least part of )

mathematics. Others, to be briefly reviewed in section 8, concern the other main

assumption that undergirds the specifically logicist aspect of the neo-Fregean

project (and equally, of course, Frege’s original project): that the logic to which

abstraction principles are to be adjoined may legitimately be taken to include

higher-order—at the very least, second-order—logic without compromise of the

epistemological purposes of the project. In between, in sections 6 and 7 respec-

tively, we shall canvass some of the issues that attend a neo-Fregean construction

of analysis and of set theory.

2. Abstraction Principles—Ontology

and Epistemology

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Frege’s Platonism is the thesis that number words have reference, and that their

reference is to objects—objects which, on any reasonable account of the abstract-

concrete distinction,10 must be reckoned to lie on the abstract side of it. Why it

was so crucial for Frege that numbers be recognized as objects becomes clear when

we consider how he proposes to prove that every finite number is immediately

followed by another (and hence, in the presence of others of the Dedekind–Peano

axioms, which Frege can straightforwardly establish, that the sequence of finite

numbers is infinite). The idea of Frege’s proof is to show that for each finite n, the

10 Exactly how this distinction is best drawn is a delicate issue. One of the best modern

discussions is Dummett (1973), ch. 14. See also Noonan (1976) and Hale (1987), ch. 3.
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number belonging to the concept finite number ancestrally preceding or equal to n

itself directly follows after n. To prove this, in the manner sketched in Grundlagen

§§82–83, requires applying Frege’s criterion of identity for cardinal numbers, as

encoded in Hume’s Principle, to first-level concepts of the type just indicated—

that is, concepts under which numbers, and indeed only numbers, fall—and thus

requires numbers to be objects.

It may be rejoined that this gives Frege a motive to treat numbers as objects,

but not a justification for doing so. However, while Grundlagen provides no

systematic argument for this apparently crucial thesis, Frege did at least provide

hints, and some of the materials, on the basis of which a case for it may be

constructed. We start from two ideas. First: objects, as distinct from entities of

other types (properties, relations, or, more generally, functions of different types

and levels), just are what (actual or possible) singular terms refer to. Second: no

more is to be required in order for there to be an at least prima facie case that a

class of apparent singular terms have reference, than that they occur in certain

true statements free of all epistemic, modal, quotational, and other forms of

vocabulary standardly taken to compromise straightforward referential function.

In particular, if certain expressions function as singular terms in various true first-

order atomic contexts, there can be no further question that they have reference

and, since they are singular terms, refer to objects. The underlying thought is

that—from a semantic point of view—a singular term just is an expression whose

function is to effect reference to an object, and that a wide class of statements

containing such terms cannot be true unless those terms successfully discharge

their referential function. Provided, then (as certainly appears to be the case), there

are such true, suitable statements so featuring numerical singular terms, there are

objects—numbers—to which they make reference.11

This simple argument, of course, is not conclusive. At most it creates a pre-

sumption in favor of numbers’ existence as a species of objects. And there are

various ways in which that presumption might be defeated. An opponent might

agree that the statements to which appeal is made have, superficially, the right

logical form, but deny that appearances are trustworthy. Or, more radically, she

11 This argument requires, of course, that we should be able to identify expressions

functioning as singular terms without appeal to the assumption that they refer—or

purport reference—to objects. We hold that this can be done, employing criteria of the

kind originally proposed by Dummett (1973, ch. 4) to the effect that singular terms may be

discriminated by their distinctive inferential role—in the sense that certain simple patterns

of inference, such as the natural language analogue of existential generalization, are valid

when identified positions in their premises and/or conclusions are occupied by singular

terms, but otherwise invalid. The exact formulation of suitable broadly inferential tests is a

matter of some delicacy, involving complications we cannot review here. For discussion of

them, and defense of the proposal against some criticisms (e.g., Wetzel (1990)), see Hale

and Wright [2001], essays 1 and 2.

logicism in the twenty-first century 171



may accept those appearances as a fair guide to truth-conditions (at least as far as

purely arithmetical statements go), but deny that any of the relevant statements are

actually—taken literally and at face value—true.12 It might be conceded that the

argument makes a prima facie case, but argued that the relevant statements cannot

really be seen as involving reference to numbers, on the ground that there are

(allegedly) insuperable obstacles in the way of making sense of the very idea that we

are able to engage in identifying reference to, or thought about, any (abstract)

objects to which we stand in no spatial, causal or other natural relations, however

remote or indirect. A closely related objection—originating in Paul Benacerraf ’s

much discussed dilemma for accounts of mathematical truth, and subsequently

pressed in a revised form by Hartry Field—has it that a Platonist account of the

truth-conditions of mathematical statements puts them beyond the reach of hu-

manly possible knowledge or reliable belief, and must therefore be rejected.

The simple argument—it is worth noting—makes no appeal to the specific

possibility of explaining singular terms for natural numbers, along with the cor-

responding sortal concept, via Hume’s Principle. Of course, the case for the exis-

tence of numbers can be made on the basis of Hume’s Principle, and it is important

to the neo-Fregean that this should be so, precisely because it provides for a head-

on response to the epistemological challenge posed by Benacerraf ’s dilemma.

Hume’s Principle, taken as implicitly defining the numerical operator, fixes the

truth-conditions of identity-statements featuring canonical terms for numbers as

those of corresponding statements asserting the existence of one-one correlations

between appropriate concepts. Given statements of the latter sort as premises, the

truth of such identities (and hence the existence of numbers) may accordingly be

inferred. We thus have the makings of an epistemologically unproblematic route to

the existence of numbers and a fundamental species of facts about them. The key

idea is clearly present in Frege’s metaphorical explanation of how the Direction

Equivalence may serve to introduce the concept of direction: ‘‘we carve up the

content [expressed in the statement that lines a and b are parallel] in a new way,

and this yields us a new concept’’ [i.e., of direction] (Frege 1884, §64).

More generally, it is open to us, by laying down an abstraction principle

VaVb(S(a)¼S(b)$ a�b), to re-describe or re-conceptualise the type of state

of affairs apt to be depicted by sentences of the form a�b—we may so

reconceive such states of affairs that they come to constitute the identity of a new

kind of object of which, by that very stipulation, we introduce the concept.13

12 This is the central negative thesis of Hartry Field’s atraditional version of Nomi-

nalism, first advocated in his (1980) and subsequently defended in various papers, mostly

collected together in his (1989). Our own objections to Field’s position are presented in

Hale (1987), ch. 5; Hale (1990); Hale and Wright (1992) (to which Field (1993) replies), and
Hale and Wright (1994). For discussion and other recent references, see Colyvan (2000).

13 For fuller explanation of this idea, see Hale and Wright (2001), essays 4, 8, and 12.
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This is all quite consistent with Platonism, modestly and soberly conceived.

For it is no part of the proposal that objects of the new kind—abstract objects

such as directions, numbers, or whatever—are creations of the human mind,

somehow brought into being by our stipulation. The sense in which they are new

is merely that the (sortal) concept under which they fall is newly introduced by

our abstractive explanation. In and of itself, the abstraction does no more than

introduce that concept and establish a use for a corresponding range of singular

terms by means of which its instances, if any, may be designated, and involves no

attempt to guarantee that the concept does indeed have instances. The existence of

objects of the new kind (e.g., directions) depends—and, if the explanation is ac-

cepted, depends exclusively—upon whether or not the relevant equivalence re-

lation (e.g., parallelism) holds among the entities of the presupposed kind (e.g.,

lines) on which that relation is defined.14 And, to return to the case that most

concerns us here, provided that facts about one-one correlation of concepts—in

the basic case, sortal concepts under which only concrete objects fall—are, as we

may reasonably presume, unproblematically accessible, we gain access, via Hume’s

Principle and without any need to postulate any mysterious extrasensory faculties

or so-called mathematical intuition, to corresponding truths whose formulation

involves reference to numbers.15

Both this form of the case for the existence of numbers and its claim to

provide trouble-free access to a basic class of facts about them may, like the simple

argument, be challenged. For example, it may be claimed that if statements having

the form of the left-hand side of Hume’s Principle involve reference to numbers,

then they cannot legitimately be accepted as equivalent to corresponding state-

ments having the form of the right-hand side, since the latter involve no such

reference and may accordingly be true under circumstances where their left-hand

counterparts are not (viz. if there are no numbers). On this basis, it may be

held that Hume’s Principle—along with abstraction principles quite generally—is

acceptable only either if it is so construed that the apparent reference to num-

bers presented by the left-hand sides of its instances is treated as merely apparent,

or it is amended so as to explicitly allow for the presupposition that numbers

exist.

14 Whether or not that condition is fulfilled may be a contingent matter, or it may be

a matter of necessity—or even, as in the case of abstractive explanation of number via

Hume’s Principle, a matter of logical necessity. Either way, stipulative introduction of a

concept by abstractive reconceptualization is one thing and ensuring that it has a nonempty

extension is another. There is thus plenty of clear water between Fregean abstractions, on

the one hand, and, on the other, arguments such as Anselm’s first Ontological Argument,

with which the former have been invidiously compared (by Hartry Field in, e.g., (1989),
essay 5) in one form of ‘‘Bad Company’’ objection. For other forms of this objection, see

section 4 below.
15 For a fuller account, see Hale & Wright (2002), esp. secs. 5 and 6.
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An advocate of the first alternative—likely to find favor with orthodox

nominalists—will insist that we may accept abstraction principles as explanatory

of the truth conditions of their left-hand sides only if we treat the latter as devoid

of semantically significant syntax, beyond the occurrences of the term or predicate

variables a and b. The only legitimate reading of Hume’s Principle, on this view, is

an austere one according to which it merely serves to introduce a new, seman-

tically unstructured two-place predicate:

thenumberof . . . isidenticalwiththenumberof__

as alternative notation for the equivalence relation that figures on the right-hand

side: ‘‘. . . corresponds one-one with __.’’ But why insist upon austerity? The

seemingly straightforward answer—that since the statement ‘‘F corresponds one-

one with G’’ plainly involves no reference to numbers, it can be taken as explaining

the truth conditions of ‘‘the number of Fs¼ the number of Gs’’ only if the latter

likewise involves no such reference—implicitly relies upon a question-begging

assumption. It is certainly true that statements of one-one correspondence between

concepts involve no terms purporting reference to numbers. And it is equally

clearly true that two statements cannot have the same truth-conditions if they differ

in point of existential commitment. But the premise the nominalist requires—if

he is to be justified in inferring that statements of one-one correspondence can

be equivalent to statements of numerical identity only if the latter are austerely

construed—is that statements of one-one correspondence do not demand the

existence of numbers. And this premise does not follow from the acknowledged

absence, in such statements, of any explicit reference to numbers. The statement

that a man is an uncle involves no explicit reference to his siblings or their off-

spring, but it cannot be true unless he has a nonchildless brother or sister.

It may be objected that while no one would count as understanding the

statement that Edward is an uncle if she could not be brought to agree that its

truth requires the existence of someone who is brother or sister to Edward and

father or mother of someone else, it is quite otherwise with statements of one-one

correspondence. Someone may perfectly well understand the statement that the Fs

correspond one-one with the Gs without being ready to acknowledge—what the

nominalist denies—that its truth requires the existence of numbers. The neo-Fregean

reply is that so much is perfectly correct, but insufficient for the nominalist’s

argument. It is correct precisely because—just as the neo-Fregean requires—

understanding talk of one-one correspondence between concepts does not de-

mand possession of the concept of number. But it is insufficient because the

question that matters is, rather, whether one who is fully cognizant of all the

relevant concepts—that is, the concepts of one-one correspondence between con-

cepts and number—could count as fully understanding a statement of one-to-one

correspondence between concepts without being ready to agree that its truth
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called for the existence of numbers. If the concept of number is implicitly defined,

as the neo-Fregean proposes, by Hume’s Principle, she could not. Insisting at this

point that no such explanation can be admitted, because only an austere reading

of Hume’s Principle is permissible, amounts to no more than an unargued—and

now explicitly question-begging—refusal to entertain the kind of explanation on

offer.

Nominalists of the less traditional kind represented, most prominently, by

Hartry Field16 are more likely to favor the second alternative: to allow that ab-

straction principles are all very fine as stipulative explanations, provided (what the

nominalist views as) their existential presuppositions are made properly and fully

explicit. Hume’s Principle, in particular, should be replaced by a properly con-

ditionalized version along the lines of ‘‘If there exist such things as the number of

Fs and the number of Gs, then they are identical if and only if the Fs and Gs are

one-one correlated.’’ Such conditionalized principles would, of course, be inad-

equate to the neo-Fregean’s purposes.

There is, however, an immediate difficulty confronting the proposal to replace

Hume’s Principle by such a conditionalized version.17 How are we to understand

the antecedent condition? In rejecting Hume’s Principle as known a priori, Field

holds that the obtaining of a one-one correlation between a pair of concepts can-

not be regarded as tout court sufficient for the truth of the corresponding numer-

ical identity. So, since that was an integral part of the proposed implicit definition

of the concept of number, his position begs some other account of that concept—

an intelligible doubt about the existence of numbers requires a concept in terms of

which the doubt might be framed. More specifically, if we take it that the hy-

pothesis that numbers exist may be rendered as ‘‘AFAx x¼NyFy,’’ then in order

to understand the condition under which Field is prepared to allow that Hume’s

Principle holds, we must already understand the numerical operator. But it was

the stipulation—unconditionally—of Hume’s Principle which was supposed to

explain it. That explanation has lapsed; but Field has put nothing else in its

place.

Is there perhaps a better way to implement Field’s conditionalization strategy,

one which avoids this difficulty? A familiar way of thinking about the manner in

which theoretical scientific terms acquire meaning18 holds that we should view a

scientific theory, embedding one or more novel theoretical terms, as comprising

two components: one encapsulating the distinctive empirical content of the theory

without deployment of the novel theoretical vocabulary, the other serving to fix the

16 Cf. Field (1984).
17 This difficulty was stressed, originally, in Wright (1983), pp. 148–152, and Wright

(1988), sec. V.
18 The tradition includes Bertrand Russell (1927); F.P. Ramsey, ‘‘Theories,’’ in Ramsey

(1931); Rudolf Carnap (1928); and David Lewis (1970).
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meaning(s) of the theoretical term(s). The theory’s total empirically falsifiable con-

tent is, roughly, that there exist entities of a certain kind, namely, entities satisfying

(a schematic formulation of ) the (basic) claims of the theory. This can be

expressed by the theory’s Ramsey sentence (i.e., roughly, an existential general-

ization obtained from the original formulation of the theory employing the new

theoretical terms by replacing each occurrence of each new term with a distinct free

variable of appropriate type, and closing the resulting open sentence by prefixing

the requisite number of existential quantifiers). Thus if, focusing for simplicity on

the case where a single new theoretical term, ‘‘f,’’ is introduced, the undifferenti-

ated formulation of the theory is ‘‘Y(f )’’, then its empirical content is exhaustively

captured by its Ramsey sentence, ‘‘AxY(x),’’ where the new variable ‘‘x’’ replaces

‘‘f ’’ throughout ‘‘Y( f ).’’ The new term ‘‘f ’’ can then be introduced, by means of

what is sometimes called the Carnap conditional19: ‘‘AxY(x)!Y(f ),’’ as denoting

whatever (if anything) satisfies ‘‘Y’’ (on the intended interpretation of the old vo-

cabulary from which it is constructed). This conditional expresses, in effect, a

convention for the use of the new term ‘‘f.’’ Being wholly void of empirical content,

it can be stipulated, or held true a priori, without prejudice to the empirical

disconfirmability of the theory proper. Alternatively, the definitional import of

the theory might be seen as carried, rather, by a kind of inverse of its Carnap

conditional—in the simple instance under consideration, something of the shape

‘‘Vx(x¼ f!Y(x)).’’ We shall follow this proposal in the brief remarks to follow.20

This may seem to offer Field a way around the difficulty: treat the system

consisting of Hume’s Principle and second-order logic as a ‘‘theory,’’ in a sense

inviting comparison with empirical scientific theories, whose capacity to introduce

theoretical concepts by implicit definition is uncompromised by the fact that they

may turn out to be false. We may indeed think of this theory as indirectly implicitly

defining the concept of cardinal number; however the real vehicle of this definition

is not Hume’s Principle but the corresponding inverse-Carnap conditional:

(HP*) 8F 8G 8u 8v((u ¼ NxFx ^ v ¼ NxGx) ! (u ¼ v $ F1-1G)):

And now the complaint that Field has put nothing in place of Hume’s Principle to

enable us to construe the condition on which he regards it as a priori legitimate to

affirm Hume’s Principle is met head-on. HP*, Field may say, tells us what

19 It is called the Carnap conditional by Horwich. In Lewis (1970) it is called the

Carnap sentence.
20 For more on this suggestion, see Hale and Wright (2001), pp. 141–142. The prin-

cipal advantage of the inverse formulations over the Carnap conditionals is in the pro-

vision of space for the theoretical terms they define to express concepts of natural kinds,

whose essential nature may not be disclosed by the particular theory in question—which

may indeed be partially incorrect— rather than concepts of functional (explanatory) role.
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numbers are in just the way that the inverse-Carnap conditional for any (other)

scientific theory tells us what the theoretical entities it distinctively postulates

are—by saying what (fundamental) law(s) they characteristically satisfy, if they

exist. That there are numbers is itself no conceptual or definitional truth; it is,

rather, the content of a theory (in essence, a theory given by the Ramsified version

of Hume’s Principle: AZ VF VG(ZF¼ ZG� F1-1G)), which may perfectly well

be—and in Field’s view is—false.21

Should this proposal be accepted? Let’s allow that if there is good reason to

insist that an implicit definition of the numerical operator should proceed, not

through an outright stipulation of Hume’s Principle but through something more

tentative, then one plausible shape for the stipulation is an inverse Carnap for-

mulation of the kind suggested. But is there any such reason?

The comparison with the empirical scientific case cannot provide one. Con-

ditionalization is called for in the scientific case in order to keep open the pos-

sibility of empirical disconfirmation. Fixing the meaning of ‘‘f ’’ by stipulating the

truth of the whole conditional ‘‘Vx(x¼ f!Y(x))’’ leaves room for acknowledg-

ment that the antecedent (more precisely, its existential generalization ‘‘Ax x¼ f ’’)

might turn out false—grounds to think it false being provided by empirical

disconfirmation of the consequent (more precisely, of the theory’s Ramsey-

sentence ‘‘AxY(x)’’). But there is no possibility of empirical disconfirmation of the

Ramsified Hume’s Principle if, as seems reasonable to suppose, Hume’s Principle

is conservative over empirical theory—as Field allows, indeed argues—since in

that case it will have no proper empirical consequences.

It does not, of course, follow that there cannot be other reasons to insist upon

a more cautious, conditionalized form of stipulation. Let us say that a stipulation

of a sentence as true is arrogant if its truth requires that some of its ingredient

terms have reference in a way that cannot be guaranteed just by providing them

with a sense. An example would be the stipulation ‘‘Jack the Ripper¼ the per-

petrator of the Whitechapel murders’’ offered by way of introduction of the term

‘‘Jack the Ripper.’’ Were the outright stipulation of Hume’s Principle rightly

regarded as arrogant, that would—plausibly—provide an independent reason for

insisting that it cannot be known a priori just on the basis of its meaning-

conferring credentials and for adopting something like the distinction between

21 This idea—or something closely akin to it—seems to be what Kit Fine has in mind

when he suggests, in The Limits of Abstraction, that Field can explain number using

Hume’s principle while denying the existence of numbers ‘‘by treating Hume’s Law as an

explanation of a variable number operator. The existence of numbers may then intelligibly

be denied’’—Fine claims—‘‘since the denial simply amounts to the claim that there is no

operator that conforms to the law. If we regard Hume’s Law as part of a ‘scientific’ theory,

then this response is equivalent to a Ramsey-style treatment of theoretical terms’’ (cf. Fine

(2002), p.524, fn. 10).
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factual content, carried by Ramsified Hume, and meaning-fixing—accomplished

by something appropriately conditionalized—proposed in the scientific-theoretical

case. The crucial question is, then, whether an outright stipulation of Hume’s

Principle is indeed guilty of this failing. We think not. In general, it would seem, it

suffices for an implicitly definitional stipulation to avoid arrogance that it does no

more than lay down introduction and elimination conditions for the definiendum

in terms themselves free of any problematic existential presupposition. And this

will surely be so, if the import of the stipulation may be parsed into introductory

and/or eliminative components, each conditional in form, prescribing which true

statements free of occurrences of the definiendum are to be respectively sufficient

and/or necessary for true statements variously embedding it.

But that is exactly what Hume’s Principle, proposed as a stipulation, does.

The principle does not just assert the existence of numbers as ‘‘Jack the Ripper is

the perpetrator of this series of killings’’ asserts the existence of the Ripper. What

it does is to fix the truth conditions of identities involving canonical numerical

terms as those of corresponding statements of one-one correlation among con-

cepts (compare the schematic stipulation ‘‘a is the single perpetrator of these

killings if and only if a is Jack the Ripper’’). Its effect is that one kind of context

free of the definiendum—a statement of one-one correlation between suitable

concepts—is stipulated as sufficient for the truth of one kind of context em-

bedding the definiendum: that identifying the numbers belonging to those re-

spective concepts. That is its introductory component. And, conversely, the latter

type of context is stipulated as sufficient for the former. That is the principle’s

eliminative component. All thus seems squarely in keeping with the constraint

that in order to avoid arrogance, legitimate implicit definitions must have an

essentially conditional character.22 If the additional conditionalization in HP* is

proposed in the interests of avoiding arrogance, it thus merely involves a con-

dition too many.23

Obviously the general notion of implicit definition invoked here calls for

further clarification and defense.24 But even if it is accepted that this is one way in

which a statement might qualify as analytic in something akin to the general spirit

of Frege’s notion, if not its detail, there are several more specific grounds on which

22 It is, of course, true—and essential to the case for number-theoretic logicism—that

the truth of certain instances of the right-hand side of Hume’s Principle is a matter of

logic. In particular, it is vital that the existence of a one-one correlation of the non-self-

identicals with themselves should be—as it is—a theorem of second-order logic. More

generally, if F is any sortal concept, then, as a matter of logic alone, the identity relation

correlates F ’s instances one-one with themselves, so that, applying Hume’s Principle, we

have it that NxFx¼NxFx, whence Ay y¼NxFx.
23 The point applies to abstraction principles quite generally: their biconditional

character ensures that they are never arrogant per se.
24 See Hale and Wright (2001), essay 5.
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it might be denied that Hume’s Principle in particular can function as such an

implicit definition. In the next three sections we summarize the most important of

them, with just the briefest indication how the neo-Fregean may respond.

3. Abstraction Principles

and Julius Caesar

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

One paramount such ground is, of course, the Julius Caesar problem. The concept

of number to be explained, in both Frege’s and the neo-Fregean view, is a sortal

concept. Mastery of any general concept applicable to objects involves knowing

what distinguishes objects to which it applies from those to which it does not—

involves, that is, a grasp of what Dummett has called a criterion of application for

the concept. What sets sortal concepts apart from others is that full competence

with a sortal concept involves, in addition, knowing what settles questions of

identity and distinctness among its instances—what determines, given that x and

y are both Fs, whether they are one and the same, or distinct, Fs. In other words,

sortal concepts are distinguished from others by their association with what Frege

called a criterion of identity.25 Hume’s Principle appears, at least, to take care of a

necessary condition for number to be a sortal concept in this sense—by supplying

a criterion of identity—and so to constitute at least a partial explanation of a

sortal concept of number. The neo-Fregean, however, makes a stronger claim—

that by stipulating that the number of Fs is the same as the number of Gs just in

case the Fs are one-one correlated with the Gs, we can set up number as a sortal

concept (i.e., that Hume’s Principle suffices to explain the concept of number as a

sortal concept). This stronger claim appears open to an obvious objection: simply,

that Hume’s principle cannot be sufficient, since there is also required, as with any

other concept, a criterion of application. Since such a criterion would determine

which sorts of things are not numbers, it would also settle the truth-conditions of

any identity statement of the form ‘‘the number of Fs¼ q,’’ where ‘‘q’’ marks a

place for a term explicitly purporting to denote a thing of some previously un-

derstood sort. In short, the Caesar Problem, in the form in which Frege expresses

it at Grundlagen §66, is nothing other than the problem of supplying a criterion of

application for number and thereby of setting it up as the concept of a genuine

sort of object. But that it is such a concept is the cardinal thesis of (neo-) Fregean

Platonism.

25 This is only an initial characterization; for some refinements, see Hale and Wright

(2001), essay 14, sec. 6.
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For this reason,26 we believe it is no option for the neo-Fregean to declare

‘‘mixed’’ identity statements of the troublesome sort out of order or somehow

ill-formed. Rather, he must grant that they raise perfectly genuine, legitimate

questions and seek to explain how, within the resources at his disposal, their

truth-values may in principle be resolved. In short, he needs a positive solution to

the Caesar Problem. The best hope for providing one remains, in our view, the

consideration that there are at least some restrictions on the extension of any

given sortal concept which are mandated by the type of canonical ground—

criterion of identity—associated with identity statements concerning its instances;

and, more specifically, that because they are canonically decided by refer-

ence to independent considerations, statements of numerical and of, say, perso-

nal identity must be reckoned to concern different categories (or ultimate sorts)

of objects.27

4. Abstraction Principles

and Bad Company

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Frege’s Basic Law V, like Hume’s Principle, is a second-order abstraction, and

thus provides a sharp reminder that not every imaginable abstraction principle

constitutes an acceptable means of introducing a concept. Some constraints are

needed—with consistency, obviously, a minimum such constraint. But some crit-

ics have thought the inconsistency reveals far more—not merely that Law V can-

not function as an explanation of a coherent concept of extension or set, but also

that abstractive explanations are defective quite generally. If it were possible

satisfactorily to explain the concept of number by laying down Hume’s Principle,

the objection goes, then it ought to be possible to do the same for the concept of

extension by laying down Basic Law V. Since the concept of extension cannot be

satisfactorily so explained, neither can the concept of number, and nor can any

other concept.

This is the Bad Company objection in its simplest, most sweeping, and—in

our estimation—least challenging form. The objection as stated seems to assume

that if a pattern of concept explanation—in this case, explanation by means of an

abstraction principle—can be exploited to set up the resources for derivation of

26 There are other reasons, one of which we touch upon below in section 5. For fuller
discussion, see Hale and Wright (2001), essay 14.

27 We lack space to develop this thought here. For more detailed discussion, defense

of it, and references to further work, see Hale and Wright (2001), essay 14.
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an antinomy, that somehow shows not just that that particular attempt at ex-

plaining a concept aborts, but that the pattern itself is defective. This extreme

claim should be rejected. Allowed a sufficiently free hand in explaining predicates

by laying down their satisfaction conditions, we can explain a predicate applicable

to predicates by stipulating that a predicate satisfies ‘‘x is heterological’’ if and

only if it does not apply to itself, and speedily arrive at the well-known contra-

diction that ‘‘heterological’’ is heterological just in case it is not. No one seriously

supposes that the moral in that case is that we can never satisfactorily explain a

predicate by saying what it takes for an object to satisfy it. Why suppose it any less

unreasonable to draw the parallel moral in the case in hand—that one can never

explain a sortal concept by means of a Fregean abstraction? If it should be

demanded that the neo-Fregean point to some relevant difference between good

and bad cases of would-be abstractive explanations, it would seem, so far, a per-

fectly adequate reply that Basic Law V, for example, is known to be inconsistent,

whereas Hume’s Principle is not. Indeed, he can in this case make a stronger

reply—although it is not clear that he needs to make it, in order to dismiss the

objection as stated—that Hume’s Principle is very reasonably believed not to be

inconsistent.

A potentially more interesting form of Bad Company objection, due to

George Boolos,28 allows that the possibility of inconsistent abstractions does not

discredit abstractive explanation as such, and grants that an explanation based on

Hume’s Principle may justifiably be presumed at least consistent, but points to the

possibility of other equally consistent abstraction principles which are, however,

inconsistent with Hume’s Principle. Hume’s Principle has models, but none

which have less than countably infinite domains. By taking a different equivalence

relation on (first-level) concepts, such as one which holds between a pair of con-

cepts F and G if and only if just finitely many objects are either F-but-not-G or

G-but-not-F, we can frame an abstraction—the Nuisance Principle29—which has

it that certain objects n(F) and n(G)—the ‘‘nuisances’’ of F and G, respectively—

are one and the same just in case F and G are so related. The Nuisance Principle

is, like Hume’s Principle, consistent. The trouble is that while it has models, it

can be shown to have only finite models. What this threatens is not so much the

capacity of Hume’s Principle to function as an explanation, as its title to be

regarded as known in virtue of being analytic of the concept of number. For

does not the Nuisance Principle enjoy an equally good title to be regarded as

analytic of the concept of nuisance? Yet inconsistent principles cannot both be

28 Boolos (1990), p. 273.
29 As it is dubbed in Hale and Wright (2001), essay 12. The Nuisance Principle is a

close relative of Boolos’s Parity Principle, in terms of which his objection was originally

formulated.
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true, much less known. Pending exposure of some relevant disparity, should we

not conclude that neither principle can, after all, be known on the basis of its

stipulation?

If the neo-Fregean view of the philosophical significance of Frege’s Theorem

is to be sustainable, there must be a relevant difference: some further con-

straint(s), in addition to any which may be needed to ensure satisfaction of the

minimal (and of course fundamental) condition of consistency, with which good

abstractions must comply, but which the Nuisance Principle breaches. One nat-

ural proposal is to the effect that no acceptable explanation—whether it proceeds

through an abstraction principle or takes some other shape—can carry implica-

tions for the size of extensions of concepts other than, and quite unconnected

to, the concept to be explained. The requirement this suggests is that an ac-

ceptable abstraction principle should be conservative in a sense closely akin to

that deployed by Hartry Field in his defense of Nominalism, according to which

a mathematical theory M is conservative if its adjunction to a nominalisti-

cally acceptable theory N has no consequences for the ontology of N which are

not already consequences of N alone.30 Since the Nuisance Principle constrains

the extensions of all other concepts to be at most finite, it fails this require-

ment and cannot, therefore, constitute an acceptable explanation. Evidently the

same will go for any other ‘‘limitative’’ abstraction principle (i.e., any abstrac-

tion which, while consistent, can have no models exceeding some assignable

cardinality.31

There is a wider question here which merits investigation in its own right,

quite apart from its obvious bearing on the prospects for extending the neo-

Fregean approach beyond elementary arithmetic. What conditions, in general, are

necessary and sufficient for an abstraction principle to be acceptable? The ap-

parent need for conservativeness constraints, over and above any restrictions

which may be needed to avoid inconsistency, is one important aspect of this larger

question. Another issue concerns the requirement of consistency itself. If an ap-

preciable body of mathematics can be generated from acceptable abstraction

principles, we should not expect to be able to formulate a general theory of

abstraction that is provably consistent—save, perhaps, relative to the assumption

30 This is an approximation. The correct formulation of the notion of conserva-

tiveness relevant to our purposes is actually a little tricky. For details, see Hale and Wright

(2001), essay 13, n. 21.
31 There is no conflict here with the Upward Löwenheim–Skolem Theorem—

remember that we are concerned here, in effect, only with abstractions which are (at least)

second-order.

The introduction of a constraint of conservativeness does not dispose of all forms of

‘‘nuisance,’’ for, as Alan Weir has observed, there are pairwise incompatible but indi-

vidually conservative abstractions. For a review of the issues, see Weir (2003).
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of the consistency of some yet more powerful theory. It may, nevertheless, be

possible to articulate some general restrictions which must be observed if in-

consistency is to be avoided. One obvious danger here arises from the fact that an

equivalence relation defined on the concepts on a specified underlying domain of

objects may partition those concepts into more equivalence classes than there are

objects in the underlying domain, so that a second-order abstraction may ‘‘gen-

erate’’ a domain of abstracts strictly larger than the initial domain of objects. This,

in itself, need be no bad thing—indeed, it is essential, if there is to be a neo-

Fregean abstractionist route to (classical) analysis. But it raises the specter of

something like Cantor’s Paradox. If that is to be avoided, it is natural to think,

then we must bar all ‘‘inflationary’’ abstractions—abstractions which make im-

possible demands upon the cardinality of any determinate objectual domain.32

But how precisely such a restriction should be formulated is a delicate and dif-

ficult question which we cannot further pursue here.33

There are several other grounds on which the analyticity of Hume’s Principle

may be, and indeed has been, disputed, to which we can here merely draw the

reader’s attention. Most obviously, perhaps, it may be claimed that no statement

encumbered with significant existential implications can possibly be analytic, in any

reasonable sense. Hume’s Principle, however, certainly does carry such implica-

tions, since it entails the existence of infinitely many objects—each and every one

of the natural numbers, at least. Again, while we know that Fregean arithmetic is

consistent if (and only if ) second-order arithmetic is consistent, we have no ab-

solute guarantee that either theory is consistent; but if we don’t know that Fregean

arithmetic is consistent, how can we justifiably claim that Hume’s Principle is

analytic? Or—focusing again upon the principle’s existential implications—it may

be contended that, quite apart from the fact that no analytic principle ought to

carry existential commitments at all, Hume’s Principle carries particular such

commitments which are, at best, highly questionable. For given that the principle,

in conjunction with the second-order logical truth that there is a one-one map

from any empty concept to itself, ensures the existence of zero defined as Nx :x 6¼ x,

it would seem that the neo-Fregean can have no ground for refusing to coin-

stantiate its second-order variables F and G by the complementary predicate of

self-identity, so that the principle entails (together with another obvious second-

order logical truth) the existence of the universal number Nx :x¼ x—the number,

‘‘anti-zero,’’ of all the things that there are. But the existence of such a number is

doubtful at best—perhaps worse, since under standard definitions, it is provable

32 This is the driving thought behind the treatment developed in Fine (1998). Cf. the
diagnosis offered of Russell’s paradox in Boolos (1993).

33 For further discussion see, in addition to the items cited in note 32, Hale and

Wright (2001), essay 15, sec. IV; Cook (2002); and Hale (2000a).
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in Zermelo–Fränkel set theory (ZFC) that there can be no cardinal number of all

the sets there are.34

5. Abstraction Principles

and Impredicativity

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Formulated in the language of second-order logic, and with quantifiers made

explicit, Hume’s Principle is

8F 8G[Nx:Fx ¼ Nx:Gx] $ 9R 8x((Fx ! 9!y(Gy ^ Rxy))

^ (Gx ! 9!y(Fy ^ Ryx))):

If we are to be able to prove, by means of this principle, the distinctness of the

individual natural numbers as Frege proposed to define them (0¼ df Nx :x 6¼ x,

1¼ df Ny :(y¼Nx:x 6¼ x), etc.), and to prove there to be infinitely many of them by

proving, as Frege envisaged, that each natural number n is immediately followed by

the number of numbers up to and including n, then it is essential that the prin-

ciple’s initial second-order quantifiers be taken as ranging over concepts under

which numbers themselves fall, and hence that its first-order quantifiers be taken as

ranging over numbers as well as objects of other kinds. In short, if Hume’s Prin-

ciple is effectively to discharge the role in which the neo-Fregean casts it, its first-

order quantifiers must be construed as ranging over, inter alia, objects of that very

kind whose concept it is intended to introduce. Is that a cause for concern?

That it is—that the unavoidable impredicativity of Hume’s Principle amounts

to some sort of vicious circularity—has long been the general thrust of much of

Michael Dummett’s objection both to Frege’s philosophy of arithmetic and, more

recently, to neo-Fregean efforts to resuscitate it. Indeed, while Dummett has

34 And if so, presumably, provable in ZFC with ur-elements that there is no cardinal

number of all the things (sets and ur-elements) there are. However, we here record a

misgiving not developed in the sequel: the ‘‘standard definitions’’ referred to identify each

cardinal number in the standard series with the smallest ordinal having that cardinal

number of predecessors. Thus everything treated as a cardinal in ZFC is a certain kind of

ordinal, and anti-zero could be a cardinal of this kind only if some ordinal were preceded

by universe-many others—on pain of the Burali–Forti paradox. But where does ZFC state

or imply that all cardinals are ordinals of this kind?

The objections noted in this paragraph, along with some others, have all been pressed

by George Boolos in various of his writings. Hale and Wright (2001), essay 13, responds to
them.
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developed a number of quite distinct lines of criticism of that enterprise,35 it

seems clear that it is the impredicativity of Hume’s Principle which forms the

focus of his principal complaint. It is, however, neither obvious that impred-

icativity is always harmful, nor easy to be clear why, exactly, Dummett takes it to

be a fatal defect in this case. There is, of course, the comparison with Basic Law

V—the form of Bad Company objection noted earlier. It is true enough that both

principles are impredicative, and true also that the derivation of Russell’s con-

tradiction exploits precisely this feature of Law V—predicativity restrictions

would certainly block the derivation, and in that sense, impredicativity may be

held to be at least partly to blame for the contradiction. But impredicativity does

not always lead to contradiction, and Hume’s Principle is, as we have emphasized,

at least very plausibly taken to be consistent. Dummett’s thought seems to be that

impredicativity is objectionable, regardless of whether it actually results in in-

consistency. But why?

There seem to be a number of distinguishable lines of objection suggested by

Dummett’s discussion. One is that, for Frege at least, it was necessary to ensure

that every statement about numbers possesses a determinate truth-value, and that

the impredicativity of Hume’s Principle obstructs this.36 Another is that quan-

tification over a domain of objects is in good order only if it is possible to supply

an independent, prior characterization of the domain, and that this cannot be

done for the domain over which Hume’s Principle’s impredicative first-order

quantifiers are required to range.37 Finally, there is the thought that the impred-

icative character of Hume’s Principle disqualifies it from functioning as an ex-

planation of the numerical operator because, considered as such, it would be

viciously circular.38 None of these objections, in our view, carries conviction. The

first appears to rely either upon the questionable assumption that Frege’s un-

swerving commitment to bivalence is indispensable to anything worth describing

as a version of logicism or upon an unjustifiably exacting interpretation of the

requirements for contextual explanation of a sortal concept. The second invokes

an exorbitant—and indeed incoherent—condition on the intelligibility of quan-

tification. And granted—crucially—the availability of a positive solution to the

Caesar Problem, it does seem possible, contra the third, to explain how intelligent

reception of Hume’s Principle as an explanation could enable one, impredicativity

notwithstanding, to understand numerical statements of arbitrary complexity.39

35 What we take to be Dummett’s other main objections are discussed in Hale and

Wright (2001), essays 8 and 9.
36 Cf Dummett (1991), p. 226.
37 Cf. Dummett (1991), p. 236.
38 Cf. Dummett (1991), p. 236.
39 Assuming, of course, an understanding of any other concepts involved. For fuller

discussion of Dummett’s objections, see Hale and Wright (2001), essays 8, 10, and 11.
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6. Neo-Fregean Real Analysis

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The minimal formal prerequisite for a successful neo-Fregean foundation for a

mathematical theory is to devise presumptively consistent abstraction principles

strong enough to ensure the existence of a range of objects having the structure of

the objects of the intended theory—in the case of elementary arithmetic, for

instance, the existence of a series of objects having the structure of the natural

numbers (i.e., constituting an o sequence). Second-order logic, augmented by the

single abstraction, Hume’s Principle, accomplishes this formal prerequisite. The

outstanding question is then whether Hume’s Principle, beyond being pre-

sumptively consistent, may be regarded as acceptable in a fuller, philosophically

interesting sense. That raises the intriguing complex of metaphysical and episte-

mological issues just reviewed.

In parallel, the minimal formal prerequisite for a successful neo-Fregean

foundation of real analysis must be to find presumptively consistent abstrac-

tion principles which, again in conjunction with a suitable—presumably second-

order—logic, suffice for the existence of an array of objects that collectively

comport themselves like the classical real numbers; that is, compose a complete,

ordered field. Recently a number of ways have emerged for achieving this result.

One attractive approach is known as the Dedekindian Way.40 We start with

Hume’s Principle plus second-order logic. Then we use the Pairs abstraction,

(8x)(8y)(8z)(8w)(hx,yi¼hz,wi $ x ¼ z ^ y ¼ w),

to arrive at the ordered pairs of the finite cardinals so provided.41 Next we abstract

over the Differences between such pairs,

Diff (hx,yi)¼Diff(hz,wi) $ x þ w ¼ y þ z,

and proceed to identify the integers with these differences. We then define addition

and multiplication on the integers so identified and, where m, n, p, and q are any

integers, form Quotients of pairs of integers in accordance with this abstraction:

Qhm,ni ¼ Qhp,qi $ (n ¼ 0 ^ q ¼ 0) _ (n 6¼ 0 ^ q 6¼ 0 ^m� q ¼ n� p):

40 This is explored in work of Stewart Shapiro and Crispin Wright. See Shapiro

(2000) and Wright (2000).
41 Shapiro’s description in his (2000) does not make direct use of the Pairs abstraction,

but moves directly to abstraction principles which ‘‘operate on objects taken two at a time.’’

However, since the order in which the objects are taken matters for these principles, it seems

better to signal the assumptions involved in an explicit principle and to treat their ab-

stractive domains as composed by the appropriate ordered pairs delivered by it.
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We may now identify a rational with any quotient Q hm,n iwhose second term n

is nonzero. Then, defining addition and multiplication and the natural linear

order on the rationals so generated, we can move on to the objects which are to

compose the sought-for completely ordered field via the Dedekind-inspired Cut

Abstraction:

(8P)(8Q)(Cut(P) ¼ Cut(Q) $ (8r)(P � r $ Q � r),

where ‘‘r ’’ ranges over rationals and the relation� holds between a property, P,

of rationals and a specific rational number, r, just in case any instance of P is

less than or equal to r under the constructed linear order on the rationals. Cuts are

the same, accordingly, just in case their associated properties have exactly the

same rational upper bounds. Finally, we identify the real numbers with the cuts of

those properties P which are both bounded above and instantiated in the

rationals.

On the Dedekindian Way, then, successive abstractions take us from one-to-

one correspondence on concepts to cardinals, from cardinals to pairs of cardinals,

from pairs of finite cardinals to integers, from pairs of integers to rationals, and

finally from concepts of rationals to (what are then identified as) reals. Although

the path is quite complex in detail and the proof that it indeed succeeds in the

construction of a completely ordered field is at least as untrivial as Frege’s The-

orem, it does make for a near-perfect neo-Fregean capture of the Dedekindian

conception of a real number as the cut of an upper-bounded, nonempty set of

rationals. True, the abstractions involved do not provide for the transformability

of any statement about the reals, so introduced, back into the vocabulary of pure

second-order logic with which we started out. But that—pure logicist—desideratum

was already compromised in the construction of elementary arithmetic on the

basis of Hume’s Principle. As in that case, a weaker but still interesting version

of logicism remains in prospect. If each of the successive abstractions invoked on

the Dedekindian Way succeeds as an implicit definition of the truth-conditions of

contexts of the type schematized on its left-hand side, then there is a route of

successive concept formations that starts within second-order logic and winds

up with an understanding of the Cuts and a demonstration of the fundamental

laws of a canonical mathematical theory of them: in effect, a foundation for

analysis in second-order logic and (implicit) definitions. Dedekind did not

have the notion of an abstraction principle. But it seems likely that his logicist

sympathies would have applauded this construction and its philosophical

potential.42

42 An illuminating brief discussion of Dedekind’s ‘‘logicism’’ may be found in Sha-

piro (1997), pp. 170–176.
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The Dedekindian Way contrasts significantly with another route explored by

one of the present authors in recent work.43 In claiming to supply a foundation

for analysis—in particular, in claiming that the series of abstractions involved

effectively leads to the real numbers—the Dedekindian Way may be viewed as

resting on an essentially structural conception of what a real number is: in effect,

the idea of a real number merely as a location in a certain kind of (completely)

ordered series. For one following the Dedekindian Way, success just consists in

the construction of a field of objects—the Cuts, as defined—having the structure

of the classical continuum. Against that, we may contrast what is accomplished by

Hume’s Principle in providing neo-Fregean foundations for elementary arith-

metic. The corresponding formal result is that Hume’s Principle plus second-

order logic suffices for the construction of an o sequence. That is certainly of

mathematical interest. But what gives Frege’s Theorem its distinctive and addi-

tional philosophical interest is that Hume’s Principle also purports to give an

account of what cardinal numbers are. The philosophical payload turns not on the

mathematical reduction as such but on the specific content of the abstraction by

which the reduction is effected.

To enlarge: Hume’s Principle effectively incorporates a variety of philo-

sophical claims about the nature of number for which Frege prepares the ground

philosophically in the sections of Grundlagen preceding its first appearance—for

example, the claims (1) that number is a second-level property, a property of

concepts, and it is concepts that are the things that have numbers, which is

incorporated by the feature that the cardinality operator is introduced as taking

concepts for its arguments; and (2) that the numbers themselves are objects,

which is incorporated by the feature that terms formed using the cardinality

operator are singular terms. And in addition, of course, Hume’s Principle pur-

ports to explain (3) what sort of things numbers are. It does so by framing an

account of their criterion of identity in terms of when the things that have them

have the same one: numbers, according to Hume’s Principle, are the sort of things

that concepts share when they are one-to-one correspondent.

Now one could, if one wanted, read a corresponding set of claims about real

number off the Cut Abstraction principle featured in the Dedekindian Way. One

would then conclude, correspondingly, that real numbers are objects, that the

things which have real numbers are properties of rationals, and that real numbers

are the sorts of things that properties of rationals share just when their instances

have the same rational upper bounds. One could draw these conclusions. But,

apart from the first, they are unmotivated-seeming conclusions to draw. There is

no philosophical case that real number is a property of properties of rationals

which stands comparison with Frege’s case that cardinal number is a property of

43 Hale (2000). This was the first neo-Fregean treatment of the real numbers.

188 oxford handbook of philosophy of math and logic



(sortal) concepts. On the contrary, the intuitive case is that real number belongs

to things like lengths, masses, temperatures, angles, and periods of time. We could

conclude that the Dedekindian Way incorporates poor answers to questions

whose analogues about the natural numbers Hume’s Principle answers relatively

well. But a better conclusion is that the Dedekindian Way was not designed to

take those kinds of questions on.

In order to understand what is at stake here, we need to appreciate that

Hume’s Principle accomplishes two quite separate foundational tasks. There is,

a priori, no particular reason why a principle intended to incorporate an account

of the nature of a particular kind of mathematical entity should also provide a

sufficient axiomatic basis for the standard mathematical theory of that kind of

entity. It’s one thing to characterize what kind of entity we are concerned with,

and another thing to show that and why there are all the entities of that kind that

we standardly take there to be, and that they compose a structure of the kind we

intuitively understand them to do. The two projects may be expected to interact,

of course. But they are distinct. It is a peculiar feature of the standard neo-Fregean

foundations for elementary arithmetic that the one core principle, Hume’s Prin-

ciple, discharges both roles. This is not a feature which we should expect to be

replicated in general when it comes to providing neo-Fregean foundations for

other classical mathematical theories. What the reflections of a moment ago sug-

gest is that the Dedekindian Way, for its part, is best conceived as addressing only

the second project.

It is the distinction between these two projects—the metaphysical project of

explaining the nature of the objects in a given field of mathematical inquiry and

the epistemological project of providing a foundation for the standard mathe-

matical theory of those objects—that, so far as one can judge from the incomplete

discussion in Grundgesetze, seems to have been a principal determinant of the

approach taken by Frege himself. Real numbers, as remarked, are things possessed

by lengths, masses, weights, velocities, and such—things which allow of some kind

of magnitude or quantity. Quantities are not themselves the reals, but the things

which the reals measure. As Frege says:

. . . the same relation that holds between lines also holds between periods of

time, masses, intensities of light, etc. The real number thereby comes off

these specific kinds of quantities and somehow floats above them.

(Grundgesetze §185)

So if we want to formulate an abstraction principle incorporating an answer to the

metaphysical question ‘‘What kind of things are the reals?’’ after the fashion in

which Hume’s Principle incorporates an answer to the metaphysical question

‘‘What kind of things are the cardinal numbers?’’ then quantities will feature, not

as the domain of reference of the new singular terms which that abstraction will
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introduce, but rather as the abstractive domain;—that is, as the terms of the ab-

stractive relation on the right-hand side.

However, it’s clear that individual quantities don’t have their real numbers

after the fashion in which a particular concept, say Julio-Claudian Emperor of Rome,

has its cardinal number. We are familiar with different systems of measurement,

like the imperial and metric systems for lengths, volumes, and weights, or the

Fahrenheit and Celsius systems for temperature, but there is no conceptual space

for correspondingly different systems of counting. Of course, there can be different

systems of counting notation: we can count in a decimal or binary system, for

instance, or in Roman or Arabic numerals. But if they are used correctly, they

won’t differ in the cardinal number they deliver to any specified concept, but only

in the way they name that number. By contrast, the imperial and metric systems

do precisely differ in the real numbers they assign to the length of a specified

object. One inch is 2.54 centimeters. The real number properly assigned to a

length depends on a previously fixed unit of comparison. Thus real numbers are

relations of quantities, just as Frege says.

These reflections seem to enforce a view about what a principle would

have broadly to be like whose metaphysical accomplishment for the real num-

bers matches that of Hume’s Principle for the cardinals. Where Hume’s Prin-

ciple introduces a monadic operator on concepts, our abstraction for real

numbers will feature a dyadic operator taking as its arguments a pair of terms

standing for quantities of the same type; more specifically, it will be a first-order

abstraction:

Real Abstraction Rha,bi ¼ Rhc,di $ E(ha,bi,hc,di),

where a and b are quantities of the same type, c and d are quantities of the same

type (but not necessarily of the type of a and b), and E is an equivalence relation

on pairs of quantities whose holding ensures that a is proportionately to b as c is

to d. In effect, the analogy is between the abstraction of cardinal numbers from one-

one correspondence on concepts, and abstraction of real numbers from equi-

proportionality on pairs of suitable quantities.

A neo-Fregeanwhowishes to pursue this antistructuralist,more purely Fregean,

conception of a foundation for analysis must therefore engage with each of the

following three tasks.

First, a philosophical account is owing of what in the first place a quantity is—

what the ingredient terms of the abstractive relation on the right-hand side of the

Real Abstraction principle are.

Second—if the aspiration is to give a logicist treatment in the extended sense

in which Hume’s Principle provides a logicist treatment of number theory—it
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must be shown that, parallel to the definability of one-one correspondence using

just the resources of second-order logic, both the notion of quantity and the

relevant equivalence relation, E, allow of (ancestral)44 characterization in (second-

order) logical terms.45

Third, a result needs to be established analogous to Frege’s Theorem: spe-

cifically, it needs to be shown that there are sufficiently many appropriately in-

dependent truths of the type depicted by the right-hand side of Real Abstraction

to ground the existence of a full continuum of real numbers. And while, as

stressed, Hume’s Principle itself suffices for the corresponding derivation for

the natural numbers, here it is clear that additional input—the construction of a

complete domain of quantities—is going to be required to augment the Real

Abstraction principle.46

We have no space here to go further into the philosophical issues at stake

between the Dedekindian Way and the more purely Fregean approach. A key

question is the cogency, in the context of foundations for analysis, of what we

term Frege’s Constraint : that a philosophically satisfactory foundation for a

mathematical theory must somehow intimately build in its possibilities of ap-

plication. This may be taken to require that an abstraction to the special objects of

a mathematical theory is satisfactory only if the abstractive domain on its right-

hand side comprises the kinds of things that the mathematical objects in question

are of—the kinds of things of which they provide a mathematical measure. A

structuralist may be expected to reject Frege’s constraint, or anyway this under-

standing of it. The matter is open.47

44 ‘‘Ancestral’’ characterization in the sense that a chain of effective implicit defini-

tions, eventually grounding in concepts of second-order logic, may be reckoned good

enough, even if it does not provide the resources for eliminative paraphrase of the de-

finienda. This, of course (as noted), is the most that is achieved by the Dedekindian Way.

But there is still a disanalogy: no issue arose, on that approach, concerning the logical

character of the items in the abstractive domain for the abstraction that yields the reals.

On the Dedekindian Way, those items were concepts (of ancestrally logical objects). On

the more purely Fregean route they are (pairs of ) quantities.
45 Should it prove impossible to do this, that would not necessarily deprive the

abstractionist project of interest. But the point would have to be faced that an abstrac-

tionist treatment of analysis would apparently have to originate in a special nonlogical

subject matter, with significant possible impact on the epistemological payoff of the

project.
46 For further discussion and steps toward the accomplishment of each of these three

tasks, see Hale (2000).
47 For further discussion, see Wright (2000).
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7. Neo-Fregean Set Theory
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Much further work is needed here. We give but the briefest sketch of some salient

approaches and their problems.

An abstraction principle which can plausibly be seen as implicitly defining the

concept of setwill do so by fixing the identity conditions for its instances, and will—

on pain of changing the subject—take the identity of sets to consist in their having

the same members. So if we assume—what does not seem seriously disputable—

that any plausible candidate will be a higher-order abstraction, then the equiva-

lence relation involved had better be coextensiveness of concepts. What we are

looking for is, accordingly, a consistency-preserving restriction of Basic Law V,

where the restriction is given by imposing a constraint on which concepts are to

have properly extensionally behaved sets corresponding to them.48

Let’s schematically represent the sought-after constraint using a second-level

predicate ‘‘Good.’’ Then two natural ways to restrict Basic Law V are

(A) 8F 8G[(Good(F) _ Good(G)) ! (fxjFxg ¼ fxjGxg $ 8x(Fx $ Gx))]

and

(B) 8F 8G[fxjFxg ¼ fxjGxg $ (Good(F) _ Good(G) ! 8x(Fx $ Gx))]:

The main difference between these is that (A) is a conditionalized abstraction

principle, whereas (B) is unconditional, with the restriction built into the relation

required to hold between F and G for them to yield the same set—fairly obviously,

the resulting relation is an equivalence relation.49 Consequently, (B) yields a ‘‘set’’

for every F, regardless of whether it is Good or not, whereas (A) yields a set {x|Fx}

only if we have the independent input that F is Good. If neither F nor G is Good,

48 Frege’s own hasty reaction to the paradox was of course different: not to restrict

which concepts determine sets, but to relax the requirement of strict coextensiveness, al-

lowing that sets could be the same merely when the corresponding concepts were coex-

tensive up to, but possibly excluding, the sets themselves. For a useful review of the

shortcomings of the approach, see Resnik (1980), pp. 211–220.
49 Reflexivity and Symmetry are obvious. For Transitivity, suppose (a) Good(F)_

Good(G)!Vx(Fx$Gx) and (b) Good(G)_Good(H)! Vx(Gx$Hx). If the anteced-

ents of both (a) and (b) are both false, then (Good(F)_Good(H)), whence (c) Good(F)_
Good(H)! Vx(Fx$Hx). Likewise, if the consequents of both (a) and (b) are true, then

Vx(Fx$Hx), whence (c). If (a)’s antecedent is false but (b)’s consequent is true, then

Good(H), whence (Good(F) _ Good(H)), and so (c) again. Similarly if (a)’s consequent

is true but (b)’s antecedent is false. Essentially this is the proof given in Wright (1997),
fn.32.
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the right-hand side of (B) holds vacuously, so we get that {x |Fx}¼ {x |Gx}—

regardless of whether F andG are coextensive. That is, we get the same ‘‘set’’ from all

Bad concepts. We get real sets via (B)—that is, objects whose identity is deter-

mined by their membership—only from Good concepts.

So what might it be for a concept to be Good? Various suggestions have been

canvassed. One general approach, first proposed by Boolos,50 picks up on the

well-entrenched ‘‘limitation of size’’ idea, that the set-theoretic paradoxes stem

from treating as sets ‘‘collections’’ which are in some sense ‘‘too big’’—the col-

lection of all sets, of all sets that are not members of themselves, of all ordinals,

and so on. Following Boolos, define a concept F to be Small¼Good if there is a

one-one function taking the Fs into the concept self-identical but no one function

taking the self-identicals into the Fs. The resultant restricted set abstraction in the

style (B) is what Boolos called New V (and Wright called VE51):

New V 8F 8G[fxjFxg ¼ fxjGxg$ (Small(F)_ Small(G)!8x(Fx $ Gx))]:

Boolos showed that a significant amount of set theory can be obtained in the

system consisting of New V and second-order logic.52 But there are two serious

problems with it. The first is that we don’t get enough set theory. As Boolos

showed, neither an axiom of infinity (that there is an infinite, properly behaved

set) nor the power set axiom can be obtained as theorems on this basis—so the

theory affords not even a glimpse of Cantor’s Paradise.

A further, quite different, problem relates to the constraints needed to dif-

ferentiate between acceptable abstraction principles and unacceptable ones. Ear-

lier we noted the need for a constraint of a certain kind of conservativeness:

acceptable abstraction principles should do no more than fix the truth-conditions

of statements involving the entities whose concept they introduce. They should

have nothing to say about the truth-values of statements whose ontology is re-

stricted to entities of other kinds. The Nuisances abstraction, for instance, was

faulted on precisely these grounds. Unfortunately, New V appears to be in dif-

ficulty for the same reason. The basic point is simple enough.53 If the concept

ordinal is Small, New V yields a properly behaved set of all the ordinals and will

therefore generate the Burali–Forti contradiction. Hence ordinal must be Big. But

in that case it is exactly as big as the universe (i.e., there is a one-one corre-

spondence between ordinal and a(ny) universal concept, say self-identity. And

50 Boolos (1987).
51 Wright (1997), p. 300.
52 Boolos (1987). For a general discussion of the potentialities of this style of ab-

straction for varying interpretations of ‘good,’ see Shapiro (2003).
53 The point is first made in Shapiro and Weir (1999). Boolos noted New V’s im-

plication of global well-ordering in his (1989).
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this, together with the fact that the ordinals are well-ordered by membership,

entails global well-ordering—the existence of a well-ordering of the universe, and

hence of any subuniverse consisting just of the ontology of a prior theory: a result

which may well be independent of a suitably chosen such theory. So New V must

be reckoned nonconservative.

This problem may be remediable by a suitable redefinition of Smallness.

Reinterpret Goodness as Double Smallness, where a concept is doubly small if and

only if it is (strictly) smaller than some concept which is itself (strictly) smaller

than some concept; that is:

Small2(F) $ 9G 9H(F < G < H):

This blocks the reasoning which shows that New V, as originally understood,

implies global well-ordering. We can still show, of course, that ordinal cannot be

Good—that is, now, Small2—since if it were, we would have the Burali–Forti

paradox, just as before. So we have to agree that ordinal is Bad. But that just

means that it is not Small2, and from this we cannot infer that it is bijectable onto

any universal concept (or, indeed, onto any concept).54

The other, and more serious, of the two problems New V faces, as we noted,

was its weakness: its inability to deliver either an axiom of infinity or a power set

axiom as theorems. The same will go, of course, for New V reinterpreted with

Good as Small2 and Small2 V. However, this need not be a crippling drawback

from the neo-Fregean’s point of view, if he can justify supplementing New V, or

Small2 V, with other principles—most especially, other abstraction principles—

which compensate. On this more catholic approach, we separate two distinct roles

one might ask a set-abstraction principle to discharge: fixing the concept of set, on

the one hand, and, on the other, serving as a comprehension principle. The claim

would then be that New V’s, or Small2 V’s, shortcomings as a comprehension

principle need not debar it from successfully discharging a concept-fixing role—of

54 It may be observed (and was, by Roy Cook) that while the global well-ordering

result is blocked, one still gets a significant result—that, since ordinal is not Small2, there

cannot be any concept that is bigger than ordinal but smaller than the universe. Though a

weaker result, this is independent of second-order ZFC. Perhaps so, but it is not a non-

conservativeness result for a set theory based on New V with Small interpreted as Small2

(or Small2 V, that is, Small V with Small so reinterpreted) in the sense in which global

well-ordering is a nonconservativeness result for original New V. Global well-ordering

implies well-ordering for the ‘‘old’’ ontology (i.e., the universe of objects as a whole,

including those not included among the abstracts provided by New V). By contrast, if our

set theory is to be based on Small2 V, then the theory of ordinals will be naturally

construed as a part of it, and the ordinals themselves will be a species of the new abstracts

so introduced. That this species is at most singly small would seem to have no bearing on

anything—cardinal or ordinal—essentially to do with the old ontology.
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serving as a means of introducing the concept, while leaving its extension to be

filled out, largely or even entirely,55 by other principles. An obvious first port of

call for this approach would be to consider a system consisting of second-order

logic augmented by, say, Small2 V, Hume’s Principle, and an appropriate range of

instances of a schematic form of the Cut Abstraction principle. Notice that it

would be perfectly legitimate, for the purposes of this project, to restrict the

domain of the < relation, featured in the definition of Small2, to concepts in-

stantiated exclusively by the objects given by these privileged prior abstractions.56

A quite different direction, but still in keeping with the overall approach,

would be to interpret Goodness not in terms of size but in terms of definiteness.

Here definite concepts contrast with those which Michael Dummett has termed

‘‘indefinitely extensible.’’ An indefinitely extensible concept is one, roughly, for

which any attempt at an exact circumscription of the extension immediately gives

rise to further intuitively acceptable instances falling outside that circumscription.

One classic line of diagnosis of the set-theoretic paradoxes, originating in effect

with Russell, has it that they arise through reasoning about indefinitely extensible

concepts such as ordinal number, cardinal number, and set itself as if they were

definite, and in particular by unguardedly assuming that such concepts give rise to

collections of entities apt to constitute sets. If it were possible to give sufficient of

an exact characterization of indefinite extensibility to make that thought good,

there would be both a sense of having accomplished a solution to the paradoxes

and a clear motive for an appropriate version of either schema (A) or schema (B)

which restricted the concepts determining sets to those which are definite. And if

the sought-for characterization could somehow be given using only resources

available in higher-order logic, we might have the basis for a strong and well-

motivated neo-Fregean set theory.

It must be confessed that the hope at present seems somewhat utopian. No

sufficiently clear account of the notion of indefinite extensibility, still less one

deploying only logical resources, has yet been achieved. And even if one can be, it

is by no means clear in advance that it will not be beset by problems of weakness

analogous to those of the various Smallness abstractions. The crucial question, as

far as overcoming the problem with infinity is concerned, is whether there is any

55 Largely, but not entirely, if one works with a (B)-type abstraction, such as New V

with Good understood as Small2, but entirely if one works with a conditionalized,

(A)-type abstraction, such as Small2 V. We make no attempt to adjudicate here whether

there are compelling reasons to favor one approach over the other. Very roughly, the

fragment of standard set theory which one can recover without appeal to non-set-theoretic

abstraction principles—though existentially very weak—is larger if one works with a

(B)-type principle such as New V rather than an (A)-type principle such as Small2 V. This

might be thought a reason for preferring New V over Small2 V.
56 Some of the relevant issues are reviewed in Hale (2000a).
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acceptable account of indefinite extensibility which, while embracing the usual

suspects—ordinal, cardinal, and set—ranks natural number as definite. Work so

far has not found one. And even if that trick can be turned, it will be necessary

that the characterization of natural number as definite on that basis can proceed

on the basis of considerations formalizable in higher-order logic. Otherwise there

will be no payoff in terms of the proof-theoretic strength of the abstraction

principle in question.

8. Neo-Fregean Logic

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The classic logicist thesis about a particular mathematical theory is that its fun-

damental laws are obtainable on the basis just of definitions and logic. It is still, at

the time of writing, a justifiable complaint that while much attention has been

paid by neo-Fregeans, and their critics, to the first component in the recipe—

issues to do with abstractions in general and Hume’s Principle in particular—

comparatively little has been given to the second component: the demands,

technical and philosophical, to be made on the logical system which is to provide

the medium for the proofs the neo-Fregean needs. That system will be either, to

all intents and purposes, the higher-order logic pioneered in Frege’s Begriffsschrift

or some substantial fragment of it. Even if it is granted that all the outstanding

questions concerning abstractions may be settled in the neo-Fregean’s favor, the

interest of the neo-Fregean reconstructions of classical mathematical theories will

very substantially depend upon their being possible to return logicist-friendly

answers to a number of fundamental questions about logical systems of this kind.

The significance which a successful logicist treatment of a particular mathe-

matical theory was traditionally believed to carry was based on the assumption

that logic is interestingly set apart from, and somehow more fundamental than,

other formal a priori disciplines—that it is marked off by, for instance, its gen-

erality, its implication in anything recognizable as rational thought, and by the

special character of its distinctive vocabulary—the connectives and other logical

constants. It is only in the setting of an acceptance that logic is, in some such way,

metaphysically and epistemologically privileged that a reduction of mathematical

theories to logical ones—more accurately, to logical theories and legitimate

(implicit) definitions—can be philosophically any more noteworthy than a re-

duction of any mathematical theory to any other. The great issue raised is therefore

whether the philosophy of logic can indeed provide a clear account answering to

our sense of the fundamentality of logic and its separation from other a priori

disciplines and, more specifically, whether—in the context of such an account—

higher-order logic will indeed be classified as properly so conceived.
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A key issue here concerns the ontology of higher-order logic. When Quine

famously quipped that he regarded higher-order logic as ‘‘set theory in sheep’s

clothing,’’ his point was not that, in his view, set theory might have a case to count

as logic; it was, rather, that higher-order logic had better be regarded as mathe-

matics. However, someone who was persuaded that Quine was wrong about

that—that, qua logic, higher-order logic loses nothing to first-order logic—might

still be concerned about the ontology apparently demanded by higher-order

quantification. Such a thinker might thus be persuaded that there was a logicist

insight to be recovered by neo-Fregeanism but still thoroughly skeptical whether

anything to render the ontology of traditional mathematical theories more pal-

atable can be achieved by the neo-Fregean’s abstractionist story, the invocation of

the Context Principle, and the rest, when the logical component of the reducing

theory—higher-order logic plus abstraction principles—incorporated such indi-

gestible ontological presuppositions of its own.

A frequent type of response would be to accept the problem at face value—to

accept that any ontology which was allowed to be distinctively involved in higher-

order quantification would indeed be problematical—and try to maintain that in

contrast to first-order quantification, higher-order quantification actually incor-

porates no special ontological commitments: that it is best construed substitu-

tionally, for instance. Or else second-order quantification might be understood in

the manner, explored by George Boolos, whereby the only entities involved are

those already quantified over at first order (viz., objects). The meaning of higher-

order quantifiers is determined by postulating an analogy between their rela-

tionship to plural denoting expressions and the relationship between first-order

quantification and ordinary singular terms.57 Each of those proposals, however,

would have important limitations from the neo-Fregean perspective. A substi-

tutional interpretation of higher-order quantification looks obviously insufficient

to sustain the demands placed on higher-order logic by the kind of neo-Fregean

treatment of analysis canvassed above, for instance, while Boolos’s construal

extends no further than existential quantification into the places marked by

monadic predicates.58

Ingenuity may come up with further possibilities. For instance, it might be

possible to reduce relational quantification, of arbitrary degree, to monadic

quantification in the context of a first-order ontology enriched by appropriate n-

tuples of objects, yielded in turn by appropriate first-order abstraction principles.59

57 Cf. Boolos (1975, 1984).
58 It thus provides no resources for the construal of universal higher-order quanti-

fication for one not inclined to accept the classical interdefinability of the quantifiers; and

it says nothing about the proper interpretation of higher-order relational quantification—

of which, of course, Hume’s Principle itself provides a signal example.
59 Cf. Shapiro and Weir (2000).
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But without prejudging the prospects for such reductionist approaches, we our-

selves are inclined to favor a different direction. The thought is intuitively com-

pelling that quantificational statements cannot import a type of ontological

commitment that is not already present in their instances. Thus, if the quantifiers

of higher-order logic were indeed best interpreted as calling for an ontology of sets,

or setlike entities of some sort, the same should be said about the simple pre-

dications which instantiate them. Alternatively, it might be argued that since

simple predication, unlike singular reference, incorporates no special ontology,

higher-order quantification doesn’t either.60 That thought might be taken to de-

mand a substitutional interpretation of higher-order quantification. But there are

at least two other possibilities to explore. First, suppose we can lucidly conceive of

thoughts—propositions—as literally internally structured entities.61 Then we can

grasp the idea of one thought resulting from another merely by variation on some

internal structural theme they both exhibit, and perhaps also the idea of all

thoughts which so result (or at least, all which satisfy some other specific restric-

tion). And in that case there has to be a way of understanding quantification which

liberates it from the idea of range—the association with a domain of entities of

some kind or other which is the (Quinean) root of the ontological problems with

higher-order logic. Simply, let

(VF )Q(F )

be the weakest thought whose truth suffices for that of any thought accessible by

playing the prescribed kind of variation on the place marked by the dots in

Q . . .

Likewise, (AF )Q(F) will be the strongest thought for whose truth the truth of any

such thought suffices.

This construal has a kind of substitutional flavor, but it doesn’t have the usual

limitation of substitutional quantification of being confined to a particular lin-

guistic repertoire. It can literally be of unrestricted generality, or as unrestricted a

generality asmakes thinkable sense.Whether higher-order quantification implicates

an ontology now depends on whether or not the kind of ‘‘thought-component’’ for

which the dots mark a place does. If that component involves direction upon an

object—the thought-analogue of singular reference—then of course it will. So

first-order quantification does. But it is only if one has argued independently that

the thought-components that correspond to predication are entity-involving that

higher-order quantification will be entity-involving.

60 This is a point emphasized in Rayo and Yablo (2001).
61 Along the kind of lines that Evans supposes in the way he formulates the Gen-

erality Constraint. See Evans (1982), pp. 100–102.
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The other possibility is more Fregean and more squarely in keeping with the

neo-Fregean approach to abstract ontology in general. It is to apply the Context

Principle, conceived as a principle concerning Bedeutung, to incomplete expres-

sions as well as to complete ones. This approach would hold that, just as the

occurrence of a singular term in a true (extensional) statement demands an object

as its referent, so the occurrence of an n-place predicate in such a statement

demands a concept under which the object(s) referred to therein are thereby

brought. And just as, in the case of reference to abstract objects, any sense of

epistemic impasse is to be offset by explaining what is to refer to and know about

such objects in terms of competence in the discourse in which their names occur,

so the epistemology of the entities answering to predication would be accounted

for in terms of competence in the use of the predicates associated with them. In

brief, the proposal would be that higher-order logic should be accepted at face

value, as quantifying over entities which constitute the semantic values of in-

complete expressions, and that worries about the character of such entities, and

about their epistemic acceptability, are to be addressed in exactly the same kind of

way, mutatis mutandis, as the way in which neo-Fregeanism approaches the issues

to do with abstract singular reference. Of course, a number of issues immediately

loom large, not least the paradox of ‘‘the Concept Horse,’’ the nature of the se-

mantic relationship between incomplete expressions and the entities over which

higher-order logic quantifies, and how (finely) these entities are individuated. But

perhaps enough has been said to indicate why someone who is content that the

neo-Fregean approach to abstract singular reference is broadly along the right

lines might be hopeful that no specially opaque or intractable issue might be

posed by higher-order quantification as such.

Finally, one more technical matter arising in this context concerns the varying

demands placed on the underlying logic by different phases of the neo-Fregean

reconstruction of mathematics. J. L. Bell (1999) has shown that the higher-order

logic necessary for the demonstration of Frege’s Theorem on the basis of Hume’s

Principle is in fact quite weak.62 By contrast, it’s obvious enough that any ab-

straction which is to generate a classically uncountable infinity of objects—like

that canvassed for the real numbers—must draw on a classically uncountable

higher-order domain. So the intriguing and difficult issue therefore arises whether

it is possible to justify a conception of the higher-order ontology which can

sustain this demand; and whether, in particular, it is possible to do so on the basis

62 Bell shows that we can restrict the range of the higher-order variables to the finite

concepts and relations on the domain in question, so that no more than a countable

population of higher-order entities is demanded. (It would follow that if one was oth-

erwise attracted to such a thing, substitutional interpretation of the higher-order quan-

tifiers in neo-Fregean arithmetic would be viable. This consideration very effectively

addresses the line of concern developed in Clark (1993)).
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of the approaches to higher-order quantification canvassed a moment ago, which

inevitably effect a very close tie between (n-adic) concept and (item of a) thinkable

predication. The possibility must be taken seriously, it seems to us, that the most

tractable philosophies of higher-order logic will have the side effect that a neo-

Fregean treatment of analysis will be constrained to be constructivist, and that the

classical continuum will be out of reach. (Whether that would be cause for regret

is, of course, a further question.)
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c h a p t e r 7

LOGICISM

RECONSIDERED

agustı́n rayo

This chapter is divided into four sections.* The first two identify different logicist

theses, and show that their truth-values can be established given minimal

assumptions. Section 3 sets forth a notion of ‘‘content-recarving’’ as a possible

constraint on logicist theses. Section 4—which is largely independent from the

rest of the paper—is a discussion of ‘‘neologicism.’’

1. Logicism

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.1. What Is Logicism?

Briefly, logicism is the view that mathematics is a part of logic. But this formu-

lation is imprecise because it fails to distinguish among the following three claims:

1. Language-Logicism

The language of mathematics consists of purely logical expressions.

2. Consequence-Logicism

There is a consistent, recursive set of axioms of which every

mathematical truth is a purely logical consequence.

* I am grateful to Matti Eklund, Stewart Shapiro, and Gabriel Uzquiano for many

helpful comments.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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3. Truth-Logicism

Mathematical truths are true as a matter of pure logic.

In fact, this is still not what we want. Consider Language-Logicism as an example.

When taken at face value, standard mathematical languages do not consist of

purely logical expressions. (For instance, when taken at face value, the standard

language of arithmetic contains the individual constant ‘‘0,’’ which is not a purely

logical expression.) So if Language-Logicism is to have any plausibility, it should

be read as the claim that mathematical sentences can be paraphrased in such a way

that they contain no nonlogical vocabulary. Similarly for Consequence-Logicism

and Truth-Logicism: if they are to have any plausibility, they should be read, re-

spectively, as the claim that mathematical truths can be paraphrased in such a way

that they are a purely logical consequence of the relevant set of axioms, and as the

claim that mathematical truths can be paraphrased in such a way that their truth

is a matter of pure logic. Let us therefore distinguish the following logicist theses

(relative to a mathematical language L with an intended model M):

Notation: A paraphrase-function * is a function such that, for any sentence

f in the domain of *, f* is a paraphrase of f.

1. Language-Logicism

There is a paraphrase-function * such that, for any sentence f of L, f*
contains no nonlogical vocabulary.

2. Consequence-Logicism (Semantic Version)

There is a paraphrase-function * and a consistent, recursive set of

sentences A such that, for any sentence f of L which is true (false)

according to M, f* (the negation of f*) is a semantic consequence of A.

3. Consequence-Logicism (Syntactic Version)

Like the semantic version, except that ‘‘semantic consequence of A’’ is

replaced by ‘‘derivable from A on the basis of purely logical axioms and

rules of inference.’’

4. Truth-Logicism (Semantic Version)

There is a paraphrase-function * such that, for any sentence f of L which

is true (false) according to M, f* (the negation of f*) is a logical truth.

5. Truth-Logicism (Syntactic Version)

Like the semantic version, except that ‘‘logical truth’’ is replaced by

‘‘derivable from the empty set on the basis of purely logical axioms and

rules of inference.’’

In stating these five logicist theses, we have left open two important issues. First,

there is the question of what it takes for one sentence to be a paraphrase of another.

Is synonymy required, or could we settle for less? Second, there is the question of

what should be counted as logic. Which expressions count as logical? Which

axioms and rules of inference are logical? Which sentences are logical truths? These
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are difficult questions, which we cannot hope to address here. In section 2 we will

evaluate the logicist theses on the basis of different assumptions about logic and

paraphrase, but refrain from assessing the assumptions themselves.

1.2. Why Bother?

The five logicist theses are connected to important philosophical problems. Here

are some examples:

1. On the assumption that statements of pure logic carry no commitment to

abstract objects, Language-Logicism might be used as part of a nominalist

account of mathematics, that is, an account of mathematics according to

which statements of pure mathematics carry no commitment to abstract

objects. (See chapters 15 and 16 in this volume.1)

2. (a) If the semantic version of Consequence-Logicism is true, then every

mathematical sentence has a determinate truth-value, provided only that

the relevant axioms are determinately true and that semantic consequence

preserves determinate truth. Such a result is important for certain

brands of structuralism, which face the challenge of explaining how it

is that finite beings like ourselves can succeed in picking out the standard

mathematical structures. (See chapters 17 and 18 in this volume.)

(b) If, in addition, the syntactic version of Consequence-Logicism is true,

then one can come to know (at least in principle) any mathemati-

cal truth by deriving it from an appropriate set of axioms, provided

only that the axioms are known to be true and that derivations

preserve knowledge.

3. (a) If the semantic version of Truth-Logicism holds, then every mathe-

matical truth is a logical truth.

(b) If, in addition, the syntactic version of Truth-Logicism holds, then we

get a very impressive result: one can come to know (at least in prin-

ciple) any mathematical truth by carrying out a purely logical deri-

vation, provided only that logical derivations preserve knowledge.

1.3. Some Brief Historical Remarks

An important focus of traditional logicist projects was Truth-Logicism. Famously,

Frege’s Foundations of Arithmetic and Basic Laws of Arithmetic attempted to

1 For more on nominalistic accounts of mathematics, see Burgess and Rosen (1997).
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establish a version of Truth-Logicism according to which mathematical truths can

be proved merely on the basis of ‘‘general logical laws and definitions.’’ The precise

motivation behind Frege’s defense of Truth-Logicism is a matter of scholarly

debate.2

Frege’s project collapsed with the discovery that one of its Basic Laws leads to

contradiction. In the latter part of the twentieth century, however, the project was

revitalized in a somewhat different form by Crispin Wright and Bob Hale, largely

as an attempt to secure a version of the epistemological result in 3(b) of section

1.2. (For more on neo-Fregeanism, see section 4 of the present text and chapter 6

in this volume.)

The logical empiricists of the first half of the twentieth century were also

interested in Truth-Logicism. Their program was based on the doctrine that any

meaningful statement concerns either a ‘‘matter of fact’’ (and, if true, is know-

able only a posteriori), or a ‘‘relation of ideas’’ (and, if true, is ‘‘true in virtue of

meaning’’ and consequently knowable a priori).3 In order to resist the idea that

mathematical statements concern ‘‘matters of fact,’’ it was therefore crucial to

logical empiricism that every mathematical truth be shown to be ‘‘true in virtue of

meaning’’ and consequently knowable a priori. But if every mathematical truth can

be known on the basis of a purely logical derivation, as in 3(b), then mathematical

truths are indeed ‘‘true in virtue of meaning’’ and knowable a priori—assuming

that logical truths are ‘‘true in virtue of meaning’’ and that purely logical deriva-

tions preserve a priori knowledge, as logical empiricists believed.

It is not clear, on the other hand, whether Truth-Logicism was Russell’s aim in

Principia Mathematica. It might well have consisted of Language-Logicism together

with Consequence-Logicism.4 (For more on the logicism of Frege and Russell, see

chapter 5 in this volume.)

2. An Assessment of Logicism

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.1. Logic and Paraphrase

In stating our five logicist theses in section 1.1, we left open the question of what

should be counted as logic. Two possible answers are that logic is first-order logic,

and that logic is higher-order logic. More precisely,

2 See, for instance, Benacerraf (1981).
3 See, for instance, the preface to the first edition of Ayer (1946).
4 See, for instance, Boolos (1994).
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The First-Order View

A sentence is a logical truth just in case it can be paraphrased as a first-

order sentence which is true in every model of the standard first-order

semantics.5 An axiom is logical just in case it is a logical truth. A rule of

inference is logical just in case it preserves logical truth. Logical expressions

are those that can be paraphrased as an expression of pure first-order logic.

The Higher-Order View

Like the first-order view, except that ‘‘first-order’’ is everywhere replaced

by ‘‘higher-order.’’6 (For more on higher-order languages, see chapters

25 and 26 in this volume.)

In order to read the logicist theses in accordance with the first-order view, all we need

to do is insist that the relevant paraphrase-functions deliver first-order sentences as

outputs, and understand logical notions in accordance with the standard semantics

for first-order languages. Similarly for the higher-order view.

These are certainly not the only ways of answering the question of what

should be counted as logic—one might think, for instance, that an infinitely long

sentence can be logically true.7 But they are the only ones we will consider here.

A second issue which we left open is the question of what it takes, in the

context of logicism, for one sentence to count as a paraphrase of another. This is a

difficult problem. But, whatever the constraints on paraphrases turn out to be, it

is reasonable to expect that any legitimate paraphrase-function will be recursive

and will preserve truth-values. And we will see there is a lot that can be learned

about the logicist theses on the basis of these rather minimal constraints.

Formally, let us say that a paraphrase-function * is minimally adequate for a

mathematical language L with an intended model M just in case the following

conditions are satisfied:

1. Every sentence of L is in the domain of *.

2. The restriction of * to sentences of L is recursive.

5 Similarly, a sentence f is a semantic consequence of a set of sentences G just in case

there is a first-order sentence f0 and a set of first-order sentences G0 such that (a) f0 is a
paraphrase of f, (b) every sentence in G0 is a paraphrase of some sentence in G, and (c) f0

is true in every model of the standard first-order semantics which makes every sentence in

G0 true. In order not to count ‘‘Ax (x¼ x)’’ as a logical truth, we must avoid the simpli-

fying assumption that the domain of a model is always nonempty.
6 Unless a suitable Reflection Principle holds, the standard semantics for higher-

order languages is inadequate for languages whose intended domain contains too many

objects to form a set (such as the language of set-theory). To avoid the problem, one can

use a higher-order semantics, such as the one developed in Rayo and Uzquiano (1999).
7 Yablo (2002) provides an interesting paraphrase function from arithmetic and set

theory to an infinitary version of first-order logic.
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3. There is a model S (intuitively, the intended model of the paraphrases)

such that, for any sentence f of L, 	M f if and only if 	S f*.

2.2. The First-order View

When the logicist theses are read in accordance with the first-order view, the

following relations obtain: (see figure 7.1)

[fov-1] The syntactic and semantic versions of Truth-Logicism and

Consequence-Logicism are equivalent, since first-order logic is

sound and complete according to the first-order view.

[fov-2] Truth-Logicism implies Consequence-Logicism, since Truth-Logicism

is the special case of Consequence-Logicism when A is empty.

[fov-3] When paraphrase functions are assumed to be minimally

adequate, Language-Logicism implies Consequence-Logicism.8

These implications suffice to decide the question of whether the five logicist theses

are true, in the context of the first-order view. For, assuming paraphrase-functions

are minimally adequate, it is a consequence of Gödel’s Incompleteness Theorem

that the syntactic version of Consequence-Logicism is false for any interesting

fragment of mathematics.9 And since each of the other logicist theses implies the

syntactic version of Consequence-Logicism, it follows that each of the other logicist

theses must also be false.

8 This follows from the fact that any consistent first-order theory T containing only

sentences with no nonlogical vocabulary has a recursive axiomatization: if T has a finite

model, then every sentence in T follows from a sentence stating that there are precisely n

objects, for some n; if T has an infinite model, then every sentence in T follows from a set

of sentences to the effect that the universe is infinite.
9 Proof Sketch: Let T be a sufficiently interesting mathematical theory (i.e., a theory in

which Robinson Arithmetic can be interpreted), and suppose there is a minimally ade-

quate paraphrase-function * which delivers the syntactic version of Consequence-Logicism

with respect to a recursive axiomatization A of T. Then there is a decision procedure for

Robinson Arithmetic. (For f a sentence of Robinson Arithmetic, let c be the interpre-

tation of f in T. Since * is minimally adequate, it is recursive. And since there is a

recursive function listing the theorems derivable from A, the set S of syntactic conse-

quences of A is recursive. But since Consequence-Logicism holds, c* is in S if c is true,

and the negation of c* is in S if c is false.) This contradicts Gödel’s Incompleteness

Theorem, which implies that that there is no decision procedure for Robinson Arith-

metic.
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2.3. The Higher-order View

When the logicist theses are read in accordance with the higher-order view, the

following relations obtain (see figure 7.2):

[hov-1] The syntactic versions of Truth-Logicism and Consequence-Logicism

imply the corresponding semantic versions, since higher-order

logic is sound according to the higher-order view. (The converse

implications do not hold because higher-order logic is incomplete.)

[hov-2] Each version of Truth-Logicism implies the corresponding version

of Consequence-Logicism, since Truth-Logicism is the special case

of Consequence-Logicism when A is empty.

[hov-3] If the semantic version of Consequence-Logicism obtains on the

basis of a finite axiomatization, then there is a minimally adequate

paraphrase-function which makes Language-Logicism true.10

The final implication holds because, when the semantic version of Consequence-

Logicism obtains on the basis of a finite axiomatization,A, the paraphrase-function

Truth-Logicism
(Syntactic Version)

Consequence-Logicism
(Syntactic Version)

[FOV-2]

[FOV-1] Truth-Logicism
(Semantic Version)

Consequence-Logicism
(Semantic Version)

Language-Logicism

[FOV-2]

[FOV-3] (min. adequacy)

[FOV-1]

Fig. 7:1. Implications among the five logicist theses, when read in accordance with the

first-order view. (Arrows go from implicans to implicatum.)

10 It is worth emphasizing that whereas [fov-3] describes an implication from

Language-Logicism to Consequence-Logicism, [hov-3] describes an implication from

Consequence-Logicism to Language-Logicism. Our proof of [fov-3] cannot be repro-

duced in the context of the higher-order view because it makes use of the Downward

Löwenheim-Skolem Theorem, which holds for first-order languages but not their higher-

order counterparts. Our proof of [hov-3] cannot be reproduced in the context of the first-

order view because, although the result of Ramsifying a higher-order sentence is always a

higher-order sentence, the result of Ramsifying a first-order sentence is not always a first-

order sentence.

logicism reconsidered 209



taking a higher-order sentence pfq to the result of universally Ramsifying pA!fq
is minimally adequate.11 And the result of universally Ramsifying pA!fq is a

higher-order sentence containing no nonlogical vocabulary.

Let us now turn to an assessment of the five logicist theses, from the per-

spective of the higher-order view.

2.3.1. The Syntactic Versions of Consequence- and Truth-Logicism

When it comes to the syntactic versions of Consequence- and Truth-Logicism, the

higher-order view constitutes no improvement over the first-order view. Assuming

paraphrase-functions are minimally adequate, it is a consequence of Gödel’s In-

completeness Theorem that the syntactic version of Consequence-Logicism is false

for any interesting fragment of mathematics.12 And, since the syntactic version of

Truth-Logicism implies the syntactic version of Consequence-Logicism, it follows

that the syntactic version of Truth-Logicism must also be false.

2.3.2. The Semantic Version of Consequence-Logicism

Because there are semantic consequences of higher-order theories which are not

derivable on the basis of any sound deductive system, nothing we have said so far

entails that the semantic version of Consequence-Logicism must fail in the context

of the higher-order view. But does it?

For the special case of arithmetic, we have a positive result, thanks to semantic

completeness: the second-order Dedekind–Peano Axioms semantically imply ev-

ery true sentence of the language of pure second-order arithmetic.13 From this the

Truth-Logicism
(Syntactic Version)

Consequence-Logicism
(Syntactic Version)

[HOV-2]

[HOV-1] Truth-Logicism
(Semantic Version)

Consequence-Logicism
(Semantic Version)

Language-Logicism

[HOV-2]

[HOV-3] (finite axiomatization)

[HOV-1]

Fig. 7:2. Implications among the five logicist theses, when read in accordance with the

higher-order view. (Arrows go from implicans to implicatum.)

11 The result of universally Ramsifying pA!fq is the universal closure of the result of

uniformly substituting variables of the appropriate type for all nonlogical primitives in pA!fq.
12 The proof is analogous to that in footnote 9.
13 The original result is due to Dedekind. For a proof see Shapiro (1991), theorem 4.8.
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semantic version of Consequence-Logicism follows immediately, in the context of

the higher-order view.

Similar results hold for other branches of pure mathematics.14 In the case of

set theory, however, there is a problem. Unlike the second-order Dedekind–Peano

Axioms, the axioms of second-order ZFC are not guaranteed to be semantically

complete: there may be a sentence of the language of pure second-order set theory

such that neither it nor its negation is a semantic consequence of the axioms.

(This will be the case if there are models of second-order set theory whose domain

is larger than the first strongly inaccessible cardinal.) All we have is a partial result:

if we add to the axioms of second-order ZFC a sentence specifying how many sets

there are, then we are guaranteed semantic completeness.15

Thus, one possibility is to enrich the axioms of second-order ZFC with a

sentence Sm of pure second-order logic to the effect that there are no inaccessible

cardinals. That would certainly yield semantic completeness. Unfortunately, Sm is

not universally regarded as true. Many set theorists endorse a Global Reflection

Principle, to the effect that there is a set a such that every true sentence in the

language of higher-order set theory is true when the quantifiers are restricted to

the elements of a. And the Global Reflection Principle implies that Sm is false

because it implies that there is an inaccessible cardinal (since the standard set-

theoretic axioms are true, the Reflection Principle implies that they are also true

when the quantifiers are restricted to the members of some set, and this is possible

only if there is an inaccessible cardinal.)

As it turns out, matters are worse still: if the Global Reflection Principle is true,

then no recursive set of true sentences in the language of higher-order set theory

semantically implies every true sentence in the language of higher-order set the-

ory.16 Thus the Global Reflection Principle implies that there is no hope of pro-

ducing a semantic completeness result in the case of set theory.

14 For a proof of the categoricity of analysis, see Shapiro (1991), theorem 4.10.
15 The result is due to Zermelo. See Zermelo (1930).
16 Proof Sketch: Suppose, for reductio, that A is such a set. Define, within the lan-

guage of higher-order set theory, the notion of a (set-sized) model for the language of

higher-order set theory, and a corresponding satisfaction predicate. Let p �SS 	þ �ffq be a

sentence of the language of higher-order set theory stating that every (set-sized) model in

which every sentence whose Gödel number is in �SS is satisfiable is also a model in which

the sentence with Gödel-number �ff is satisfiable. Since A is recursive, ‘‘x2A’’ is ex-

pressible in second-order ZFC. Thus p �AA 	þ �ffq is a truth predicate for the language of

higher-order set theory. (By our assumption, every true sentence of the language of

higher-order set theory is a semantic consequence of A, and hence true on every (set-

sized) model; and, by the Global Reflection Principle, there is a (set-sized) model

according to which every untrue sentence of the language of higher-order arithmetic is

false.) But it follows from Tarski’s Theorem that no language can express its own truth-

predicate.
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So much for pure mathematics. In the case of applied mathematics it is un-

reasonable to ask for a semantic completeness result, since no set of mathematical

axioms should imply, for instance, that Mars has two moons (or that it doesn’t).

But one might hope for a relative semantic completeness result, to the effect that

there is a set of axioms which, together with the set of true sentences containing

no mathematical vocabulary, semantically implies every true sentence in some

particular fragment of applied mathematics, and the negation of every false one.

As it turns out, it is possible to prove a relative completeness result for higher-

order applied arithmetic.17 Thus Consequence-Logicism holds for higher-order

applied arithmetic, modulo the set of nonarithmetical truths.

2.3.3. Language-Logicism

When all we require of paraphrase-functions is minimal adequacy, it follows from

[hov-3] that any higher-order theory with a finite and complete axiomatization

can be paraphrased using no nonlogical vocabulary. Thus, thanks to the semantic

completeness results discussed in the preceding section, Language-Logicism can be

shown to be true for the case of pure higher-order arithmetic.

But minimal adequacy is a very weak constraint on paraphrase functions, and

some advocates of logicism might hope for more. One way to strengthen the

constraint is by making use of semantic notions. For instance, one might require

paraphrase-functions to preserve content. We will say something about this in sec-

tion 3, but for the moment it is best to focus on a syntactic constraint instead.

Informally, say that a paraphrase-function * is compositional just in case the

compositional structure of f* mirrors the compositional structure of f, for every
f in the domain of *. (For a formal characterization of this constraint, see the

appendix.) Paraphrase-functions based on Ramsey-conditionals are not compo-

sitional. Thus, when compositionality is required, Ramsey-conditionals do not

deliver Language-Logicism.

For the case of pure higher-order arithmetic, however, there are composi-

tional paraphrase functions which deliver formulas of pure higher-order logic as

outputs. One is implicit in Whitehead and Russell’s Principia (see chapter 5 in this

volume). More recently, Harold Hodes has set forth a paraphrase-function that

works by treating first-order quantifiers ranging over natural numbers as third-

order quantifiers ranging over finite cardinality object-quantifiers (that is, second-

order concepts true of all and only first-order concepts under which precisely n

objects fall, for some n).18 Hodes’s paraphrase-function can be shown to be

17 See Rayo (2002a). It is worth noting that whereas completeness results are usually

based on categoricity theorems, the proof in Rayo (2002a) relies on an essentially different

method.
18 See Hodes (1984, 1990). See also Wright (1983, pp. 36–40); Bostock (1979, vol. II,

ch. 1); and Rayo (2002a).
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minimally adequate on the assumption that the universe is infinite, and its re-

striction to pure higher-order arithmetic always delivers formulas of pure higher-

order logic as outputs. Thus, when no more is required of paraphrase-functions

than compositionality and minimal adequacy, Language-Logicism can be shown to

be true for the case of pure higher-order arithmetic in the context of the higher-

order view.

2.3.4. The Semantic Version of Truth-Logicism

We noted in section 2.3.1 that the syntactic version of Truth-Logicism fails in the

context of the higher-order view. But, for all that has been said so far, it might still

be the case that the semantic version of Truth-Logicism holds.

None of the paraphrase-functions we have discussed so far deliver this result.

Consider, for instance, the paraphrase-function <, which takes each sentence pfq
of pure second-order arithmetic to the result of universally Ramsifying pA!fq
(where pAq is the conjunction of the Dedekind–Peano Axioms). In order for < to

deliver Truth-Logicism, f< would have to be a logical truth whenever f is true on

the intended interpretation, and a logical falsehood whenever f is false on the

intended interpretation. This is certainly the case when we restrict our attention to

models with infinite domains. But it is not the case when models with finite

domains are allowed, since f< is true on any model with a finite domain, in-

dependently of whether f is true on the intended interpretation.

A similar problem afflicts Hodes’s paraphrase-function. When we restrict our

attention to models with infinite domains, the Hodes-paraphrase of f is a logical

truth just in case f is true on the intended interpretation, for any sentence f in

the language of higher-order arithmetic. But this is not the case when models with

finite domains are allowed.

Might other paraphrase-functions do better? In an important sense, the an-

swer is ‘‘no.’’ On the assumption that paraphrase-functions are required to be

compositional, the semantic version of Truth-Logicism must fail for any inter-

esting fragment of mathematics, in the context of the higher-order view. (See

appendix for proof.)

A final point is worth mentioning. So far we have made the (standard) as-

sumption that first- and higher-order quantifiers are domain-relative. In other

words, we have presupposed that which individuals the truth-value of a quantified

sentence depends on is not a logical matter and, accordingly, that the range of the

quantifiers may vary from model to model. But Timothy Williamson has recently

made a case for logically unrestricted quantifiers: quantifiers whose range consists,

as a matter of logic, of absolutely everything.19 If Williamson’s logically unre-

stricted quantifiers are allowed, then the fact that there are at least two objects in

19 See Williamson (1999) and Rayo and Williamson (2003).
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existence suffices to guarantee that when the quantifiers are regarded as logically

unrestricted, ‘‘Ax Ay (x 6¼ y)’’ is logically true. Similarly, the fact that there are

infinitely many objects in existence suffices to guarantee that when the quantifiers

are regarded as logically unrestricted, a second-order sentence stating that the

universe is infinite is logically true.

When logically unrestricted quantifiers are allowed, the status of Truth-Logicism

changes dramatically. The fact that there are infinitely many objects ensures that

when quantifiers are regarded as logically unrestricted, the Hodes-paraphrase of f is

a logical truth (falsehood) just in case f is true (false) on the intended interpretation,

for any f in the language of pure higher-order arithmetic. It also ensures that, when

quantifiers are regarded as logically unrestricted, f< is a logical truth (falsehood)

whenever f is true (false) on the intended interpretation, for any f in the language

of pure second-order arithmetic. Finally, when the quantifiers are regarded as log-

ically unrestricted, one can show that there is a minimally adequate (but non-

compositional) paraphrase-function verifying the semantic version of Truth-Logicism

for the language of pure higher-order set theory, given the assumption that there

are strongly inaccessibly many objects.20

This concludes our assessment of the five logicist theses. Figure 7.3 sum-

marizes some of the main results.

2.4. What Have We Learned?

We have seen that Truth-Logicism fails on natural assumptions about logic

and paraphrase. Although this casts doubt on the view that every mathematical

truth is a truth of logic, it does not constitute a decisive refutation. One way of

maintaining Truth-Logicism is by adopting a conception of logic distinct from the

first- and higher-order views. Frege, for example, took Basic Law V—the principle

that the extension of the Fs equals the extension of the Gs just in case the Fs are

the Gs—to be ‘‘purely logical.’’ 21 (Though of course he later discovered that

Basic Law V leads to contradiction.) Another way of resisting the first- and higher-

order views is by adopting Williamson’s logically unrestricted quantifiers. But it is

20 Consider the paraphrase-function *, which takes each sentence pfq of the lan-

guage of higher-order set theory with ur-elements to the result of universally Ramsifying

pZFCU!fq (where pZFCUq is the conjunction of the axioms of second-order ZFC with

ur-elements plus an axiom to the effect that the ur-elements form a set). If there are

strongly inaccessibly many objects, it follows from the result in McGee (1997) that when
quantifiers are regarded as logically unrestricted, f* is a logical truth (falsehood) whenever

f is true (false) on the intended interpretation for every f in the language of pure higher-

order arithmetic.
21 See Frege (1893, 1903), vol 1, pp. vii.
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important to be clear that logically unrestricted quantifiers have an epistemological

cost, since their legitimacy would destroy any hope of establishing a straightfor-

ward connection between logical truth and a priori knowledge.22 The failure of

Truth-Logicism on the first- and higher-order views makes it seem implausible that

one could acquire a priori knowledge of the standard mathematical axioms merely

by carrying out logical derivations. (We will see in section 4 that neo-Fregeans have

argued for the weaker claim that one can acquire a priori knowledge of the stan-

dard arithmetical axioms merely by setting forth an appropriate stipulation and

going on to carry out appropriate logical derivations.)

We have also seen that, on the higher-order view, the semantic version of

Consequence-Logicism holds for the case of (pure and applied) higher-order ar-

ithmetic. This delivers the result that every arithmetical sentence is either deter-

minately true or determinately false, provided only that appropriate arithmetical

axioms are determinately true and that higher-order consequence preserves

determinate truth.23 As noted in section 2.3.2, the Global Reflection Principle

implies that there is no hope of producing a semantic completeness result for the

case of set theory, but it is worth noting that it does not preclude a determinacy

result. By working within the language of set theory with ur-elements, McGee

(1997) and Uzquiano (2002) have found axiomatizations of second-order set theory

with the feature that the pure sets of any two models are isomorphic, provided only

Consequence-Logicism
(Semantic Version)

Language-Logicism

First-order View
(allowing only minimally ade-
quate paraphrase-functions)

Higher-order View
(allowing all and only com-
positional, minimally adequate
paraphrase-functions)

Consequence-Logicism
(Syntactic Version)

Truth-Logicism
(Semantic Version)

Truth-Logicism
(Syntactic Version)

False

False

False

False

False

Trueb

Truea

False

Falsec

False

Fig. 7:3. Summary. a for the case of pure higher-order arithmetic. b for the case of pure and

applied higher-order arithmetic (modulo the set of non-arithmetical truths). c true for the

case of pure higher-order arithmetic when logically unrestricted quantifiers are allowed.

22 See, however, Williamson (1999). It is also worth noting that because of Gödel’s

incompleteness results, the legitimacy of higher-order quantification should be enough to

make us suspicious of a straightforward connection between logical truth and a priori

knowledge.
23 All of this, modulo indeterminacy in nonmathematical expressions.
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that the models in question have domains consisting of everything there is.24

Accordingly, by insisting that one’s quantifiers are to range over absolutely every-

thing,25 one could carry out a recursively specifiable stipulation capable of deliv-

ering the result that every sentence in the language of pure set theory is either

determinately true or determinately false. As before, this relies on the assumption

that the appropriate set-theoretic axioms are determinately true and that higher-

order semantic consequence preserves determinate truth.

Finally, we have seen that on the higher-order view, Language-Logicism holds

for the case of pure higher-order arithmetic. This result might be used as part of a

nominalist account of mathematics. (And, of course, Nominalism is of interest

even if one is not a Nominalist; for instance, a Nominalist account of higher-order

applied arithmetic would conclusively undermine the thought that we are justified

in believing standard mathematical theories because they are indispensable for the

natural sciences.)

3. Recarving Contents

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The only semantic constraint on paraphrase-functions we have considered so far

is preservation of truth-value. Are there other semantic constraints one might

reasonably impose?

One option, of course, is to require strict synonymy. But perhaps a more

liberal constraint can be extracted from the following passage in Frege’s Foun-

dations of Arithmetic:

The judgement ‘‘line a is parallel to line b’’, or, using symbols, ‘‘a //b’’, can be

taken as an identity. If we do this, we obtain the concept of direction, and say: ‘‘the

direction of line a is identical with the direction of line b’’. Thus we replace the

symbol // by the more generic symbol ¼, through removing what is specific in

the content of the former and dividing it between a and b. We carve up the content

in a way different from the original way, and this yields a new concept. (§64)

Thus, the sentences ‘‘line a is parallel to line b’’ and ‘‘the direction of line a is iden-

tical to the direction of line b’’ are taken to express the same content, only ‘‘carved

up’’ in a different way. And, as Frege observed, something similar might be said for

24 For discussion on quantifying over everything see Parsons (1974); Dummett (1981),
chs. 14–16; Cartwright (1994); Boolos (1998b); Williamson (1999); McGee (2000); the post-
script to Field (1998) in Field (2001); Rayo (2002b), Rayo (2003b); Rayo and Williamson

(2003); Glanzberg (forthcoming); and Williamson (2003).
25 The possibility of doing so determinately is defended in McGee (2000) and Rayo

(2003b).
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the case of arithmetic: the sentences ‘‘the Fs can be put in one-one correspon-

dence with the Gs’’ and ‘‘the number of the Fs is identical to the number of the

Gs’’ might be taken express the same content, only ‘‘carved up’’ in a different way.

In this section we will consider the following three questions:

1. Is there an interesting way of making the notion of content recarving

precise?

2. Is there a paraphrase-function I such that, for any sentence f in some

interesting fragment of mathematics, f and fI express the same content,

only ‘‘carved up’’ in a different way?

3. If I exists, does it verify any of the logicist theses?

It is best for expositional purposes to begin with question 2, while working with

the informal characterization of content-recarving provided by Frege’s remark.

Later we will return to question 1, and say something about how the notion of

content-recarving might be made precise. We end with question 3.

3.1. The Second Question

First, some notation. We let ‘‘F�G ’’ be a second-order formula expressing one-

one correspondence between the Fs and the Gs,26 and interpret ‘‘N(n,F )’’ as ‘‘n

numbers the Fs.’’27

Next, we set forth a paraphrase-function F . Intuitively, F works by para-

phrasing talk of the number of the Fs by talk of the Fs themselves.28 Formally, F
may be characterized as follows, where ‘‘m1,’’ ‘‘m2,’’ . . . are first-order variables

ranging over numbers, and ‘‘Z1,’’ ‘‘Z2,’’ . . . are second-order variables ranging

over an unrestricted domain:


 p8mi(f)qF ¼ p8Ziq _ p(f)qF ;

 pmi ¼ mjqF ¼ pZi � Zjq;

 pN(mi, X)qF ¼ pZi � Xq;

 p:fqF ¼ ‘‘:’’ _ pfqF ;

 pf ^ cqF ¼ pfqF _ ‘‘^’’ _ pcqF ;

 pf ! cqF ¼ pfqF _ ‘‘! ’’ _ pcqF :

26 That is,

F � G �df 9R [8w(Fw ! 9!v(Gv ^ Rwv)) ^ 8w(Gw ! 9!v(Fv ^ Rvw))]:
27 ‘‘N’’ is a second-level predicate because it takes a second-order variable in one of

its argument-places. For a discussion of second-level predicates see Rayo (2002).
28 I use plurals for expository purposes only. I do not presuppose that second-order

quantifiers should be understood plurally, as in Boolos (1984).

logicism reconsidered 217



As an example, consider the sentence ‘‘the number of the Fs¼ the number of the

Gs.’’ In our notation, it can be formulated as

8m1 8m2(N(m1, F) ^ N(m2,G) ! m1 ¼ m2):

The result of applying F is

8Z1 8Z2(Z1 � F ^ Z2 � G ! Z1 � Z2),

which is equivalent to

F � G:

Thus, the result of applying F to ‘‘the number of the Fs¼ the number of the Gs’’

is equivalent to ‘‘F�G.’’ In a Fregean spirit, one might be tempted to say that the

application of F has resulted in a recarving of content.

What happens when we apply F to other arithmetical formulas? For in-

stance, what happens when we apply it to a sentence such as ‘‘the number of the

planets¼ 9’’? When numerical predicates are defined in the obvious way,29

0(m) �df 8X(N(m,X) $ :9x(X(x)));
1(m) �df 8X(N(m,X) $ 9!1x(X(x)));
2(m) �df 8X(N(m,X) $ 9!2x(X(x)));

..

.

‘‘the number of the planets¼ 9’’ can be formulated as

8m1(N(m1, x̂x[Planet(x)]) ! 9(m1)):
30

29 As usual,

9!1x(f(x)) �df 9x(f(x) ^ :9y(y 6¼ x ^ f(y))),

9!nþ1x(f(x)) �df 9x(f(x) ^ 9!ny(y 6¼ x ^ f(y))):

30 Syntactically, an expression of the form ‘‘x̂x[f(x)]’’ takes the place of a monadic

second-order variable. But the result of substituting ‘‘x̂x[f(x)]’’ for ‘‘Y ’’ in a formula

‘‘C(Y)’’ is to be understood as shorthand for

8W (8x(W x $ f(x)) ! C(W )):

Additional clauses must be added to the definition of F before it can be applied to

sentences containing ‘‘x̂x [f(x)],’’ but they are all trivial. See Rayo (2002a) for details.
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And the result of applying F to this sentence is equivalent to

8Z1(Z1 � x̂x[Planet(x)] ! 9!9x(Z1(x))),

which is in turn equivalent to

9!9x(Planet(x)):

Thus, the result of applying F to ‘‘the number of the planets¼ 9’’ is equivalent to

‘‘A!9x(Planet(x)).’’ One might again be tempted to say, in a Fregean spirit, that the

application of F has resulted in a recarving of content.

It is easy to define ‘‘Plus’’ and ‘‘Times’’ in terms of N(n,F). Consider

‘‘Plus’’ as an example:

Plus(m1,m2,m3) �df

8X 8Y 8Z (N(m1,X) ^N(m2,Y ) ^ N(m3,Z) ! Join(X , Y , Z)),

where

Join(X ,Y ,Z) �df

9X 0(X 0 � X ^ 8x(X 0(x) ! :Y (x)) ^ x̂x[X 0(x) _ Y (x)] � Z):

A sentence such as ‘‘Vn Vm (nþm¼mþ n)’’ can then be formulated as

8m18m28m3(Plus(m1,m2,m3) ! Plus(m2,m1,m3)):

The result of applying F is equivalent to31

8Z1 8Z2 8Z3(Join(Z1,Z2,Z3) ! Join(Z2,Z1,Z3)):

And, again, in a Fregean spirit, one might be tempted to say that the application

of F has resulted in a recarving of content.

As it turns out, F can be made to encompass every sentence of pure and

applied nth-order arithmetic, and it can be done in such a way that the result of

applying F to a sentence of pure n-th order arithmetic is always a sentence of

pure second-order logic. As one might have hoped, F is a compositional and

minimally adequate paraphrase-function.32

31 Additional clauses must be added to the definition of F before it can be applied to

this sentence, but they are all trivial. See Rayo (2002a) for details.
32 See Rayo (2002a).
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3.2. The First Question

Is there any interesting way of making the notion of content-recarving precise?

Hale (1997) sets forth one proposal, which is intended as a defense of the Neo-

Fregean Program. Here we will consider another, which is not.

I would like to suggest that one must ask not whether f expresses a recarving

of the content expressed by c0 when f and c0 are considered in isolation, but

whether f expresses a recarving of the content expressed by c when f is con-

sidered in the context of a set of sentences A and c0 is considered in the context of

a set of sentences B. More specifically, the proposal is this:

The content expressed by f is a recarving of the content expressed by c
(when f is considered in the context of a set of sentences A and c0 is
considered in the context of a set of sentences B) just in case the content

expressed by f relative to A is the same the content expressed by c relative

to B.

What is it to express a content relative to a set of sentences? Let me begin with an

informal explanation. Suppose it is right to say that f and c express the same

content simpliciter just in case (1) f and c have the same logical structure; and

(2) nonlogical primitives occupying corresponding places in the logical structure of

f and c have the same semantic-value. One can then say that the content expressed

by f relative to A is the same as the content expressed by c relative to B just in case

(1) the logical structure, LSfA , that is ‘‘displayed’’ by f in the context of A is

isomorphic to the logical structure, LScB , that that is ‘‘displayed’’ by c in the context

of B; and (2) if E is an expression in f that ‘‘functions’’ in the context of A as a

nonlogical primitive and occupies a certain position in LSfA , and E
0 is an expression

that ‘‘functions’’ in the context of B as a nonlogical primitive and occupies a

corresponding position in LS c
B , then the semantic-value of E is ‘‘analogous’’ to the

semantic-value of E 0.
The notion of an ABI-recarving embodies a rigorous version of this informal

explanation:

Let A and B be sets of formulas, let I be a one-one function from A onto B, and

suppose that the following conditions are met:

1. I preserves the logical networking of A.

2. For any f2A, f and fI are equisatisfiable.

Then we shall say that for any f2A, f is an ABI-recarving of fI .

The requirement of preservation of logical networking is a way of captur-

ing the thought that the logical structure ‘‘displayed’’ by a sentence f in A is
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isomorphic to the logical structure ‘‘displayed’’ by fI in B. And the requirement

of equisatisfiability is a way of capturing the thought that any expression in f that

‘‘functions’’ in the context of A as a nonlogical primitive is mapped onto an

expression of fI that ‘‘functions’’ in the context of B as nonlogical primitive with

an ‘‘analogous’’ semantic-value.

Although the appendix provides a precise characterization of the notions of

preservation of logical networking and equisatisfiability, an example should suf-

fice to convey the basic idea.

Let A be the set of arithmetical formulas,33 and let B be the result of applying

F (from section 3.1) to formulas in A. F preserves the logical networking of A

because it satisfies three conditions. First, F is compositional. Second, F respects

the logical connectives of sentences in A (e.g., p:fqF ¼ ‘‘:’’ _ pfqF). Third, F
maps identity-statements in A to formulas that ‘‘function’’ as identity statements

in B. For instance, F maps ‘‘m1¼m2’’ to ‘‘Z1�Z2,’’ which ‘‘functions’’ as an

identity statement in B because (1) ‘‘�’’ is reflexive, symmetric, and transitive,

and (2) for any sentence pfq of B containing only pZiq free, the universal clo-

sure of

Zi � Zj ! (f $ f[Zj=Zi])

is true.34 (It is important to note that although ‘‘Z1�Z2’’ ‘‘functions’’ as an

identity statement within the context of B, it doesn’t do so within the context of

the entire language, since condition (2) does not generally hold for sentences

outside B. For instance, the universal closure of ‘‘Z1�Z2! (Z1(a)$Z2(a))’’ is

always false.)

33 More specifically, A is the set of formulas of a second-order language L, containing

the following kinds of variables: first-order arithmetical variables, ‘‘m1,’’ ‘‘m2,’’ . . . ; first-
order general variables, ‘‘x1,’’ ‘‘x2,’’ . . . ; and, for n a positive integer, n-place second-order

general variables pXn
1 q,pXn

2 q, . . . . To avoid variable clashes, monadic second-order general

variables are divided in two groups: the pX 1
2iq—which are abbreviated pZiq—are associ-

ated with first-order arithmetical variables by F ; the pX1
2iþ1q—which are abbreviated

pXiq—are used for more general purposes. We assume that L has been enriched with a

single higher-level predicate ‘‘N’’ taking a first-order arithmetical variable in its first

argument-place, and a monadic second-order general variable of the second group in its

second argument-place. The well-formed formulas of L are defined in the usual way, with

the proviso that an atomic formula can contain arithmetical variables only if it is of the

form pmi¼mjq or pN(mi, Xj)q.
34 ‘‘f[Zj /Zi]’’ is the result of substituting pZjq for pZiq in pfq, and possibly rela-

beling bound variables to avoid clashes.
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Let us now turn to equisatisfiability. Consider the following sentence, which is

sometimes called ‘‘HP’’:

8F 8G(m̂m[N(m, F)] ¼ m̂m[N(m,G)] $ F � G):35

Assuming HP, f and fF can be shown to be equisatisfiable for any f2A. In

essence, this is because two conditions are met. First, F is compositional. Second,

we have the following:

Let f(mi) be a formula in A containing only pmiq free, and let c(Zi) be
the result of applying F to f(mi). Then f(mi) is true of the number of the

Gs just in case c(Zi) is true of the Gs.

Putting all of the above together, we get the result that on the assumption that HP

is true, f is an ABF-recarving of f
F for any f in A. A similar result can be proved

for Hodes’s paraphrase-function, described in section 2.3.3.

3.3. The Third Question

What can be concluded about the logicist theses? Since the result of applying F to a

sentence of pure n-th order arithmetic is always a sentence of pure second-order

logic,F can be shown to verify Language-Logicism, in the context of the higher-order

view. In addition, F can be shown to verify the semantic version of Consequence-

Logicism for the case of pure and applied nth-order arithmetic.36, 37 When the

intuitive notion of content-recarving is cashed out in terms of ABF-recarvings and

35 When HP is formulated within a one-sorted higher-order language, it entails that

the universe is infinite. But when it is formulated in a two-sorted higher-order language

(such as the language described in note 33), it is compatible with a finite universe (it entails

only that either the range of the arithmetical variables and the range of the general

variables are both infinite, or there is one more object in the range of the arithmetical

variables than in the range of the general variables). It is worth noting that the equisa-

tisfiability result for F requires no more than the two-sorted reading of HP.

In the context of our discussion of the Neo-Fregean Program in section 4, however, it
is crucial that HP be read as formulated within a one-sorted higher-order language. This is

because, unlike its two-sorted counterpart, the one-sorted version of HP entails a version

of the Dedekind–Peano Axioms. For more on formulations of HP within multisorted

languages, see Heck (1997b).
36 This follows from the completeness result in Rayo (2002a).
37 Since F is a compositional paraphrase-function, the results in section 2.3

imply that it cannot verify any of the three remaining logicist theses. However, if logi-

cally unrestricted quantifiers are allowed, then F verifies the semantic version of Truth-

Logicism.
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HP is assumed, this yields the result that Language- and Consequence-Logicism are

both verified by a paraphrase-function which preserves content, modulo recarvings.

4. The Neo-Fregean Program

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This final section will be devoted to the Neo-Fregean Program (or ‘‘neologicism,’’

as it is sometimes called). Despite its roots as an attempt to rescue Frege’s logicist

project from inconsistency, neo-Fregeanism has increasingly developed a life of its

own, and must be assessed on its own terms.38 This makes the present section

largely independent from the rest of the paper.

The core of the Neo-Fregean Program is the contention that it is possible to

acquire an a priori justification for arithmetical statements in a special kind of

way. Let hN, HPi be the following linguistic stipulation:

The second-level predicate ‘‘N’’ is to be used in such a way that HP

(introduced in section 3.2) turns out to be true.

Neo-Fregeans believe that merely as a result of setting forth hN, HPi, one can

acquire an a priori justification for the belief that HP is true. But HP deductively

implies (definitional equivalents of ) the second-order Dedekind–Peano Axioms.39

So, if the Neo-Fregean story is right, then hN, HPi yields an a priori justification

for the second-order Dedekind–Peano axioms.40

The Neo-Fregean program has given rise to many objections and replies. We will

make no attempt to survey the literature here.41 Instead, we will focus on a problem

which I believe is especially important, and surprisingly underdeveloped. (For a

broader perspective on the Neo-Fregean program, see chapter 6 in this volume.)

The problem arises as follows. Say that a linguistic stipulation is weakly suc-

cessful if it has the effect of rendering its definienda meaningful. Say that a linguistic

stipulation is strongly successful if it has the effect of rendering its definienda

meaningful in such a way that the sentence targeted by the stipulation turns out

to be true. hN, HPi is of little interest to the Neo-Fregean unless it is strongly

38 The original incarnation of the Neo-Fregean Program is Wright (1983). For a

collection of more recent essays, see Hale and Wright (2001a).
39 The result, which relies on a one-sorted formulation of HP (see note 35), is known

as Frege’s Theorem. It was originally proved by Frege (by making what was later shown to

be a nonessential use of Basic Law V), and more recently rediscovered and cleaned up

from contradiction by Crispin Wright. See Frege (1893, 1903) and Wright (1983).
40 A different question is whether HP is what underlies our actual knowledge of

arithmetic. See Heck (1997a) and Demopoulos (2000).
41 For a comprehensive survey, see MacBride (2003).
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successful. (If it is only weakly successful, then it doesn’t have the effect of render-

ing HP true, and a fortiori the Neo-Fregean’s proposal cannot yield the result that

HP is known to be true.) But HP can be true only if there are infinitely many ob-

jects.42 So hN, HPi can only be strongly successful if there are infinitelymany objects.

So far, all we have is the conclusion that either there are infinitely many

objects or hN, HPi is not strongly successful. But this gives way to a natural worry:

Isn’t an antecedent justification for the infinity of the universe required for hN,
HPi to deliver a justification for the belief that HP is true? After all, consider the

following stipulation:

The singular term ‘‘Zack’’ is to be used in such a way that the sentence

‘‘Zack is the man currently in my kitchen’’ turns out to be true.

Nobody would think that this stipulation can deliver a justification for the belief

that Zack is the man currently in my kitchen unless one has an antecedent jus-

tification for the belief that there is a (unique) man currently in my kitchen. Why

should the situation be any different when it comes to hN, HPi? More generally,

the following proposal suggests itself:

The Straight Proposal

If a linguistic stipulation is to be strongly successful, the world must

cooperate. In particular, the result of existentially Ramsifying the sentence

targeted by the stipulation must be true.43 This is because the target

sentence can be true only if its existential Ramsification is true,44 and

strong success can obtain only if the target sentence is rendered true.

In order for the setting forth a stipulation to deliver a justification for

believing the stipulation’s target sentence, one must have an antecedent

justification that the world cooperates. In particular, one must have an

antecedent justification for believing the existential Ramsification of the

stipulation’s target sentence.

What is true in general is true for hN, HPi. Since the existential

Ramsification of HP is equivalent (modulo choice principles) to the infin-

ity of the universe, the setting forth of hN, HPi can deliver a justification

for believing HP only if one has an antecedent justification for the infinity

of the universe.

42 This is true only on a one-sorted reading of HP. But on a two-sorted version of HP

(see note 35), HP does not imply the Dedekind–Peano Axioms, so the Neo-Fregean

Proposal looses interest.
43 The result of existentially Ramsifying the sentence targeted by the stipulation is the

existential closure of result of uniformly replacing the definienda in the target sentence

with variables of the appropriate type.
44 This makes the simplifying assumption that the target sentence contains no inten-

sional vocabulary, but a similar proposal could be made to accommodate intensional cases.
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The first paragraph of the Straight Proposal should be uncontroversial, even by

the lights of Neo-Fregeans. But the final two paragraphs are not, and Neo-Fregeans

must find an alternative proposal if their views are to have any plausibility. The

problem of finding a plausible Neo-Fregean alternative to the Straight Proposal is

the main focus of the present section.45

4.1. Conditional Stipulations

Neo-Fregeans are keen to observe that hN, HPi is, in a certain sense, conditional.46

More specifically, they argue that hN, HPi succeeds in assigning a concept to ‘‘N’’

independently of how matters stand in the world. Facts about the world—in

particular, facts about one-one correspondence—enter the picture by determining

what extension the concept will take.

Whatever the value of this observation in other contexts, it is not helpful as a

rebuttal of the Straight Proposal. For if there are only finitely many objects, then

the existential Ramsification of HP is false, and there can be no concept (whatever

its extension) satisfying the constraints imposed by hN, HPi. Thus, insofar as

proponents of the Straight Proposal are worried about whether one can be jus-

tified in thinking that hN, HPi is strongly successful in the absence of an ante-

cedent justification for the belief that the universe is infinite, they will also be

worried about whether one can be justified in believing that hN, HPi succeeds in
creating a concept of the requisite kind in the absence of an antecedent justifi-

cation for the belief that the universe is infinite.

4.2. The Abstraction Thesis

Some presentations of the Neo-Fregean program make heavy use of content

recarving.47 Specifically, they rely on the view that as a result of setting forth hN,
HPi, pm̂m[N(m, F)] ¼ m̂m[N(m, G)]q comes to have the same content as pF�Gq,
carved up in a different way. Call this the Abstraction Thesis.

It is important to be clear that the Abstraction Thesis is a special case of the

view the hN, HPi is strongly successful, since it is a special case of the view that as

a result of setting forth hN, HPi, HP is meaningful and true. Thus, insofar as pro-

ponents of the Straight Proposal are worried about whether one can be justified in

45 Much of the material in this section is based on the more detailed discussion in

Rayo (2003a).
46 See, for instance, Hale and Wright (2000), pp. 315–316.
47 See, for instance, Wright (1997).

logicism reconsidered 225



thinking that hN, HPi is strongly successful in the absence of an antecedent

justification for the belief that the universe is infinite, they will also also be

worried about whether one can be justified in accepting the Abstraction Thesis in

the absence of an antecedent justification for the belief that the universe is infinite.

The Abstraction Thesis is therefore not a good way of countering the Straight

Proposal, in the absence of further argumentation. In fact, commitment to the

Abstraction Thesis can only complicate the task of offering a Neo-Fregean argu-

ment for the view that hN, HPi is strongly successful. For however difficult the task
might have been when all hN, HPi is expected to deliver is a material equivalence,

matters can only be worse if it is also expected to deliver sameness of content.

It is worth noting that in section 3.2 we relied on the assumption that HP is

true to show that f is an ABF-recarving of fF . In particular, we relied on the

assumption that HP is true to show that pm̂m[N(m, F)] ¼ m̂m[N(m, G)]q is an

ABF-recarving of pF�Gq. Thus, in the absence of further argumentation, the

proposal about content-recarving we set forth in section 3 does not deliver a

justification for believing that hN, HPi is strongly successful. It does, however,

supply a way of understanding the Abstraction Thesis according to which the

Abstraction Thesis is true on the assumption that hN, HPi is strongly successful.

Why, then, is the Abstraction Thesis of any interest? In connection with

logicism, there is at least this: if the Abstraction Thesis is true, then a content-

preserving paraphrase-function verifies Language-Logicism for the special case of

numerical identities. Neo-Fregeans sometimes sound as if they believe something

further: that if the Abstraction Thesis is true, then there is a sense in which every

theorem of arithmetic is ‘‘logical.’’ Perhaps the paraphrase-function F (from

section 3.1) supplies a way of spelling out this stronger claim.

4.3. Success by Default

One way of offering an alternative to the Straight Proposal is by defending a

default-epistemology, according to which it may be sufficient for a belief to be

justified that there be no reasons to the contrary.48 In particular, Neo-Fregeans

might attempt to defend something like the following:49

Success by Default

In the absence of reasons for thinking that a stipulation fails to meet the

adequacy conditions in a certain set S, we are justified in thinking that it

is strongly successful.

48 I believe this point is due to Crispin Wright. Unfortunately, it does not seem to

have been explicitly defended in print.
49 In a talk titled ‘‘Implicit Definition and Abstraction’’ (University of St Andrews,

October 30, 1999), Stewart Shapiro discussed a principle similar to Success by Default.
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If Success by Default is true, then we needn’t have an antecedent justifica-

tion for the belief that the universe is infinite in order for hN, HPi to deliver a

justification for HP, as proponents of the Straight Proposal would have it. All we

need is the absence of reasons for thinking that hN, HPi fails to meet the con-

ditions in S.

Unfortunately, Success by Default is far from being an uncontroversial prin-

ciple. In order to defend it, Neo-Fregeans must carry out the following two tasks:

1. A specification of the conditions in S must be given.

2. It must be argued that a default epistemology is appropriate for

linguistic stipulations.

Much discussion in the Neo-Fregean literature has centered upon task 1. The main

adequacy condition in S is the requirement that the stipulation in question in-

volve an abstraction principle, that is, a principle of the form

8a 8b(S(a) ¼ S(b) $ R(a, b)),

for R an equivalence relation.50 Unfortunately, this requirement will not do on its

own. There are a number of abstraction principles giving rise to stipulations that

Neo-Fregeans cannot regard as successful. This is what has come to be known as

the Bad Company Objection. The simplest example of a problematic abstraction

principle is Frege’s Basic Law V, which is inconsistent and, hence, unsatisfiable.

Neo-Fregeans must therefore add a requirement of consistency to S. But con-

sistency cannot be the end of the matter. Heck (1992), Boolos (1997), and Weir

(2003), among others, have set forth an array of consistent but pairwise incom-

patible abstraction principles. Since Success by Default can be taken to provide

support for only one or the other of a pair of consistent but incompatible ab-

straction principles, Neo-Fregeans are forced to postulate additional adequacy

conditions. Recent efforts include conservativeness,51 modesty,52 stability,53

50 Alternatively, the stipulation might involve a pair of rules leading from each side of

an abstraction principle to the other.
51 Roughly, an abstraction principle is conservative if it entails nothing new about

objects other than the referents of terms in the principle’s left-hand side. See Wright (1997)
and Shapiro and Weir (1999).

52 According to appendix 1 of Wright (1999), ‘‘an abstraction [principle] is Modest if

its addition to any theory with which it is consistent results in no consequences—whether

proof- or model-theoretically established—for the ontology of the combined theory which

cannot be justified by reference to its consequences for its own abstracts.’’ Here an abstract

is the referent of a term in the left-hand side of the relevant abstraction principle.
53 An abstraction principle is stable if, for some cardinal k, it is true at all and only

those cardinalities �k. See Fine (1998), Shapiro and Weir (1999), and Weir (2003).
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and irenicity.54 But Neo-Fregeans have yet to find a fully satisfactory set of ade-

quacy conditions.

What about task 2? The literature on skepticism offers some general discus-

sion on default epistemologies, mostly in connection with perceptual beliefs.55 It

is argued, for example, that, in the absence of reasons to the contrary, I am now

justified in thinking that here is a hand and here is another. Unfortunately, there

is no obvious way of extending these conclusions to the realm of linguistic

stipulation. And, as far as I know, the adequacy of a default-epistemology for the

case of linguistic stipulation has never been defended in print. Unless this

omission can be remedied, default-epistemologies are unlikely to pose a serious

threat to the Straight Proposal.

4.4. Further Challenges

The Neo-Fregean program faces at least two further challenges. One concerns

second-order logic. Since Neo-Fregeans wish to show that hN, HPi yields an a

priori justification for the Dedekind–Peano Axioms, they must argue not only

that HP can be known a priori, but also that the second-order derivation of the

Dedekind–Peano Axioms from HP preserves a priori knowledge. Assessing the

status of second-order quantification gives rise to difficult questions which cannot

be reviewed here. (See chapters 25 and 26 in this volume.)

Neo-Fregeans also face the Indeterminacy Challenge. It arises from the ob-

servation that many different assignments of semantic-value to the second-level

predicate ‘‘N’’ are compatible with the truth of HP. In particular, it is compatible

with the truth of HP that the members of any o-sequence whatsoever serve as

referents for the finite numerals (which can easily be defined on the basis of ‘‘N’’).

But it would seem to follow, at least at first sight, that the success of hN, HPi does
not by itself suffice to determine whether the referent of ‘‘0’’ is, for instance, Julius

Caesar. This is bad news for the Neo-Fregean on the assumption that the fol-

lowing principle obtains:

(*) An expression cannot be meaningful if there are several different

assignments of semantic value, all of which are equally acceptable by

the lights of our linguistic practice.56

54 An abstraction principle is irenic if it is conservative and compatible with any

conservative abstraction principle. See Weir (2003).
55 See, for instance, Wright (2000a, 2000b, 2004) and, for a related proposal, Pryor

(2000).
56 Here ‘‘linguistic practice’’ must be understood broadly enough to include both

mental states and environmental factors.
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In addressing a related challenge,57 Hale and Wright have offered an argument to

the effect that—contrary to what one might have thought—the success of hN, HPi
does, in fact, suffice to determine that the referent of ‘‘0’’ is not Julius Caesar. It is

based on the idea that hN, HPi establishes one-one correspondence as the ‘‘cri-

terion of identity’’ for the sortal concept number. If it is conceded that something

other than one-one correspondence is the ‘‘criterion of identity’’ belonging to the

sortal concept person, and that no object can fall under sortal concepts with

different ‘‘criteria of identity,’’ then the referent of ‘‘0’’ (which falls under the

sortal number) must be distinct from Julius Caesar (which falls under the sortal

person)—or so the argument goes.

Whether or not this sort of argument can be made to work (and whether or

not it succeeds in answering the the challenge it was intended to address), it does

not suffice to answer the Indeterminacy Challenge. For, as Hale and Wright are

aware, their story is compatible with the possibility that the success of hN, HPi
does not determine whether the referent of ‘‘0’’ is the number 7, or any other

object falling under the sortal number. And, with (*) on board, this is enough to

give rise to trouble. It is important to note, however, that the Indeterminacy

Challenge is an instance of a general problem in the philosophy of mathematics,58

and Neo-Fregeans are free to emulate responses offered by some of their rivals.

For example, they can offer resistance to (*) by arguing that it threatens the

meaningfulness of ordinary English.59

Appendix
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Compositionality

We say that a function * is compositional with respect to a set S of sentences in a

first-order language L just in case there are


 a function >;

 a higher-order formula x^ containing y1 and y2 as subformulas and no

free occurrences of variables outside y1 and y2;

 a higher-order formula x: containing y1 as a subformula and no free

occurrences of variables outside y1;

57 See Hale and Wright (2001b). The related challenge concerns a cluster of inter-

connected issues which is usually referred to as ‘‘the Caesar-Problem.’’
58 The standard source is, of course, Benacerraf (1965).
59 See McGee (1993) and Burgess and Rosen (1997), I.A.2.d.
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 a higher-order formula xA containing y1 as a subformula and no free

occurrences of variables outside y1;

 for each n-place atomic predicate Pn

i of L, a formula xPn
i
containing free

occurrences of all and only the variables a1, . . . , an;

such that the following conditions obtain:60


 pf ^ cq> ¼ x^[y1=pfq>][y2=pcq>]

 p:fq> ¼ x:[y1=pfq>]

 p(9xi)(f)q> ¼ x9[a=pxiq>][y1=pfq>]

 pPn

i (xj1 , . . . , xjn)q> ¼ xPn
i
[a1=pxj1q>] . . . [an=pxjnq>]


 For any variable pxiq in L, pxiq> is a variable.

 If f is a sentence of S, then f> is a sentence.

 For any sentence of S in the range of *, f*¼f>.

where x[y/f] is the result of replacing every occurrence of y in x by f,
and x[a/v] is the result of replacing every occurrence of a in x by v.

Proposition

Let L be a first-order language with an intended model M and suppose

that all numerical identities can be interpreted in the theory of M. Let *
be a function such that (1) every sentence in L is in the domain of *, (2)

there is a higher-order language L0 such that every sentence in the range

of * is a sentence of L0, and (3) * is compositional with respect to L. Then
there is no model S such that S has a finite domain and, for any sentence

f of L, 	M f if and only if 	S f*.

Proof : If f is a formula of L0 with one free first- or higher-order variable

a, say that the extension of f relative to S is the set of semantic values s(a)
for s a variable-assignment satisfying f in S. Since S has a finite domain,

there cannot be an infinite set C such that (a) for some first- or higher-

order variable a every member of C is a formula containing only a free,

and (b) no two elements of C have the same extension relative to S.
Assume, for reductio, that there is a model S such that S has a finite

domain and such that, for any sentence f of L, 	M f if and only if 	S f*.
Since all numerical identities can be interpreted in the theory ofM, a formula

(9x1)(x1 ¼ �nn ^ x1 ¼ �mm)

60 For the sake of simplicity, we assume that L contains no individual constants or

function letters and that all connectives and quantifiers are defined in terms of ‘‘^,’’ ‘‘:,’’
and ‘‘A,’’ in the usual way.
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is true in M whenever n¼m and false in M whenever n 6¼m. Call this

formula wn,m. By our assumption, w*n,m is true in S whenever n¼m, and

false in S whenever n 6¼m.

Let n 6¼m. We know that * is compositional with respect to L. Let >
be as in the definition of compositionality. By the definition of compo-

sitionality, px1 ¼ �nnq> and px1 ¼ �mmq> must contain free occurrences of

the variable px1q>, and no free occurrences of other variables. Moreover,

compositionality ensures that w*n,m is the result of substituting px1 ¼ �nnq>
for occurrences of px1 ¼ �mmq> in w*n,m. Since w

*
m,m is true in S and w*n,m is

false in S, it follows that the extension of px ¼ �nnq> relative to S is

different from the extension of px1 ¼ �mmq> relative to S.
Consider the set C of formulas px1 ¼ �nnq>, for n a natural number.

We know that no two formulas in C have the same extension relative to

S. But we had noted above that this is impossible on account of S’s finite
domain. &

Recarving Contents

Let L be an interpreted higher-order language, and allow the variables of L of any

given type to be classified according to different ‘‘groups.’’ Let pan,m,k
i q be the i-th

m-place nth-order variable of the k-th group in L.

Say that a formula ‘‘an,m,k
1 � an,m,k

2 ’’ is an identity-predicate for variables of

kind pan,m,k
1 q with respect to a set S just in case (a) ‘‘an,m,k

1 � an,m,k
2 ’’ is reflexive,

transitive, and symmetric, and (b) the following condition obtains for any for-

mulas pfq and pcq in S:

If pcq is the result of replacing every free occurrence of pan,m,k
i q in pfq by

pan,m,k
j q (and perhaps relabeling variables to avoid clashes), then the

universal closure of pan,m,k
i � an,m,k

j ! (f $ c)q is a true sentence of L

for any i and j.

Let A and B be sets of formulas of L, and let I be a compositional,61 one-one

function from A onto B. We shall say that I is an identity-isomorphism with

respect to A and B just in case there are formulas ‘‘F(an,m,k
1 ,an

0 ,m 0 ,k 0
1 ),’’ ‘‘an,m,k

1 �
an,m,k
2 ,’’ and ‘‘an

0,m 0 ,k 0
1 �0 an

0,m 0,k 0
2 ’’ of L such that the following conditions obtain:


 ‘‘an,m,k
1 � an,m,k

2 ’’ is an identity-predicate for variables of kind pan,m,k
i q

with respect to A.

61 Although the definition of compositionality above is framed in terms of first-order

languages, it can easily be generalized so as to encompass higher-order languages.
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 ‘‘an
0,m0,k0

1 �0 an
0,m0,k0

2 ’’ is an identity-predicate for variables of kind

pan0,m0,k0
i q with respect to B.


 When > is as in the definition of compositionality,

pan,m,k
i q> ¼ pan0 ,m0,k0

i q.

 The universal closures of the following are true sentences of L:

8an,m,k
1 9an0 ,m0 ,k0

1 (F(an,m,k
1 ,an

0,m0 ,k0
1 ))

8an0,m0 ,k0
1 9an,m,k

1 (F(an,m,k
1 ,an

0,m0 ,k0
1 ))

F(an,m,k
1 ,an

0,m0,k0
1 ) ^ F(an,m,k

2 ,an
0 ,m0,k0

2 ) ! (an,m,k
1 � an,m,k

2

$ an
0 ,m0,k0

1 �0 an
0 ,m0,k0

2 ):

For pfq2A, we say that pfq and pfqI are ABI-equisatisfiable with respect to

variables of kind pan,m,k
i q if I is an identity-isomorphism with respect to A and B,

and the following additional condition obtains:


 Let pan,m,k
1 q . . . pan,m,k

l q be the free variables in pfq. Then the universal

closure of

F(an,m,k
1 , an

0,m0,k0
1 ) ^ � � � ^ F(an,m,k

l , an
0,m0,k0

l ) ! (f $ fI )

is a true sentence of L, where pfIq is pfqI .

When there is no risk of confusion, we use ‘‘pfq and pfqI are equisatisfiable’’ as

an abbreviation for ‘‘pfq and pfqI are ABI-equisatisfiable with respect to every

kind of variables occurring in A.’’

Finally, we say that I preserves the logical networking of A if I is an identity-

isomorphism with respect to A and B, and I preserves logical connectives.
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c h a p t e r 8

FORMALISM

michael detlefsen

1. Introduction: The Formalist

Framework

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Viewed properly, formalism is not a single viewpoint concerning the nature

of mathematics. Rather, it is a family of related viewpoints sharing a common

framework—a framework that has five key elements.

Among these is its revision of the traditional classification of the mathe-

matical sciences. From ancient times onward, the dominant view of mathematics

was that it was divided into different sciences. Principal among these were a

science of magnitude (geometry) and a science of multitude (arithmetic).

Traditionally, this division of mathematics was augmented by an ordering

of the two parts in terms of their relative basicness and which was to be taken as

the more paradigmatically mathematical. Here it was geometry that was given the

priority.1 The formalist outlook typically rejected this traditional ordering of the

mathematical sciences. Indeed, from the latter half of the nineteenth century

onward, it typically reversed it. This reversal is the first component of the for-

malist framework.

A second component is its rejection of the classical conception of mathemat-

ical proof and knowledge. From Aristotle on down, proof and knowledge were

1 Priority in what sense? Here there were different views. Some adopted a more

metaphysical understanding of the ordering, others a more epistemological one. More on

this later.
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conceived on a genetic model. According to this model, we know a thing best when

we know it through its ‘‘cause.’’ In mathematics, this cause was taken to reside in

basic definitions and principles of construction (e.g., Euclid’s first three postulates).

Generally speaking, a theorem concerning a given type of object was taken to be

properly proved or demonstrated by showing how to construct objects of its type

as objects having the property asserted of them in the theorem. This allowed one to

witness the formation of the objects from their rudiments, and this exhibition of the

formation of objects became an important part of the traditional standard for rigor.

These were the essential elements of the classical conception of proof. For-

malists rejected both ideas. They rejected the genetic conception of proof by de-

nying that the only proper knowledge of a thing comes through knowledge of its

causes.

They rejected as well the traditional ‘‘presentist’’ conception of rigor which

saw it as consisting primarily in the keeping of an object continuously before the

visual imagination or intuition of the prover during the course of a proof. Indeed,

they moved towards a conception of rigor that emphasized abstraction from

rather than immersion in intuition and meaning. This change in the conception

of rigor is the third component of the general formalist framework.

The fourth and perhaps most distinctive component of the formalist frame-

work was its advocacy of a nonrepresentational role for language in mathematical

reasoning. This idea reached full consciousness in Berkeley. Being particularly

impressed with the algebraists’ use of imaginary elements, he came to the general

view that there are uses of expressions in reasoning whose utility and justification

is independent of the (semantic) contents of those expressions.

The fifth and final component of the formalist framework is what I call its

creativist component. This is the idea that the mathematician, qua mathematician,

has a freedom to create instruments of reasoning that promise to further her

epistemic goals (e.g., the improvement of cognitive efficiency). This was used by

formalists in the nineteenth century to counter charges that they would make

mathematics an essentially mechanical matter, the exercise of sheer technique

(techn�ee). Formalists agreed with nonformalists that the end of mathematical rea-

soning is the acquisition of genuine knowledge. They did not agree, however, that

the only proper, or even the best, way to pursue this end was through the ex-

clusive use of contentual reasoning.

The above are the chief characteristics of the historically and philosophically

important variants of formalism. They are all, in one way or another, related to

two important developments in the history of mathematics. One of these was the

emergence and rapid development of algebraic methods from the seventeenth

century onward. The second was the erosion of the authority of classical geometry

and its methods throughout much of the same period.

The former gained impetus from various sources. Wallis, for example, argued

for a reversal of the priority traditionally granted to geometry over arithmetic. In
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particular, he argued that many of the traditional geometrical laws were based

on arithmetical rather than geometrico-constructional properties of geometrical

figures.

The latter derived in part, of course, from the discovery of non-euclidean

geometries in the early part of the nineteenth century. This discovery suggested

that (classical) geometrical intuition might not be the final authority even in

geometry. This was further supported by the discoveries of Bolzano and Weier-

strass (and others) in the mid-nineteenth century that suggested that geometrical

intuition was not a reliable guide to the development of analysis. Mathematicians

were therefore forced to look to arithmetic in order to find a foundation for

analysis.

The remainder of this essay is largely an attempt to further our under-

standing of the five elements of the formalist framework just summarized. We

begin, in the next section, with an overview of the classical genetic conception of

proof. Following that, we describe the main challenges to the classical view that

emerged in the late Middle Ages and the Renaissance. In the fourth section we

consider the emergence of algebra and its two motivating ideals—what we call

the invariantist and symbolical ideals. We argue there that formalism amounts to

more than just an emphasis on algebraic methods or a general retreat from

intuition. In the fifth section we identify the main factors comprising modern

formalism, the formalism which found expression in the writings of Peacock and

the Cambridge algebraists and was later developed more fully by Hilbert. In the

final section, we consider a variety of challenges to formalism and suggest some

general conclusions.

2. The Traditional Viewpoint

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.1. The Aristotelian Division of Mathematics

Aristotle (cf. book Delta of the Metaphysics, 1020a7–14) defined mathematics as

the study of quantity (poson2), with quantity being generally conceived as that

which is divisible into constituent parts. The division of a quantity was taken to

admit of two basic forms: (1) division into discrete parts and (2) division into

parts continuous with one another. Quantity admitting of division of the first

type was termed plēthos by Aristotle (loc. cit.). The usual English translation is

2 Others, for example, the Pythagoreans, treated poson as the ‘‘how many’’ and p�eelikon
as the ‘‘how much.’’
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multitude or plurality, which is intended to suggest that it is a type of quantity

whose amount is to be determined by counting its parts.

Quantity of the second sort was termed megethos (loc. cit.), generally trans-

lated as magnitude. It was understood as being divisible into parts (each itself a

magnitude) joined together by common boundaries. The location of each part

with respect to others was taken to be discernible, including, of course, parts

joined to a given part by a common border. The extent of a magnitude was to be

determined by measurement, a comparison of a magnitude with a unit of the same

type.

Aristotle’s division between basic types of quantities gave rise to a corresponding

division between two branches of mathematics—arithmetic (arithmetikē), or the

science3 of multitude, and geometry (geōmetria), or the science of magnitude.4

Beginning with the discovery of incommensurables,5 there was a long tradi-

tion of regarding magnitude as the more basic of the two types of quantity. In

ancient times, numbers were mainly regarded as whole numbers, or numbers used

in counting. They were also, however, related to geometrical objects, as in the Py-

thagoreans’ theory of figured (figurate) numbers, and their ratios or proportions

were studied in the ancient theory of means and proportions.

3 Our use of the term ‘‘science’’ is not casual here. Rather, it is intended to comport

with its classical use, a use that distinguished between the science of number and the art of

reckoning or calculation. The science (epistēmē in the Greek writers, scientia in the Latin

commentators) of number was arithmetikē. It inquired into the causes of arithmetic facts.

The art (technē in the Greek writers, ars in the Latin commentators) of calculation, on the

other hand, was logistikē, which broadly concerned practical means of reckoning number.
4 Barrow [Barrow 1664, cf. lecture II, pp. 14ff.) attributed the original distinction to

the Pythagoreans and viewed Aristotle’s distinction as a modification of their scheme.

This is somewhat misleading however. The Pythagoreans apparently divided mathe-

matics into a quadrivium of subjects (cf. [Proclus], 29–31): arithmetic (arithmētikē), music

(mousikē), geometry, and spheric, in that order. Arithmetic and music dealt with poson;

arithmetic with poson in itself, music with poson taken in relation to sound. Geometry and

spheric dealt with magnitude (pēlikon); geometry with magnitude considered in isolation

from its motion, spheric with magnitude in motion.

Plato had a somewhat different scheme still (cf. [Plato.], bk. VII, 525a–530d), adding a

subject called stereometry, which had clear overlaps with the geometry of the Pythagoreans.

In addition to these, there were yet other divisions of mathematics proposed by Ana-

tolius and Geminus (cf. [Proclus], 31–35).
5 The question of who discovered incommensurables is famously a matter of con-

troversy. One view is that it was Hippasus of Metapontum, in the latter half of the fifth

century B.C. A case for this was presented in von Fritz [von Fritz 1945]. Zeuthen [Zeuthen

1896–1897], Frank [Frank 1923], Burkert [Burkert 1972], Reidemeister [Reidemeister 1949],

and Vogt [Vogt 1910], however, argue for other alternatives (e.g., that Pythagoras himself

or Theodorus of Cyrene deserves precedence). Acceptance of irrational quantities as

numbers on which arithmetical operations might be performed seems to have originated

with the Hindus of medieval times (cf. [Cantor 1894], vol. I).
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Irrational quantities were different. They did not represent the results of count-

ing, they did not suggest the shapes of geometrical figures, and they did not rep-

resent proportions expressible as ratios of (whole) numbers.6

Ratios of incommensurables were thus quantities that admitted of repre-

sentation as geometrical quantities but not as numbers or arithmetical quantities.

Since all arithmetic quantities (i.e., all numbers) were geometrically representable,

this suggested that magnitude was the more fundamental of the two basic types of

quantity: all quantities could be represented as magnitudes, but not all quantities

could be represented as multitudes (or ‘‘figures’’ or ratios thereof ).

Of multitude and magnitude, then, magnitude appeared to be the more basic.

This led to a corresponding priority of the science of magnitude (geometry), and

its methods, to the science of number (arithmetic), and its methods.7

2.2. Traditional Ideals of Proof

The discovery of incommensurables thus supported the establishment of classical

geometrical method as the paradigm for mathematical method. It also played a

role in determining a leading methodological ideal of classical geometry—what I

will call the constructive ideal.

The constructive ideal had both a genetic component and a constructional

component.Both represented epistemic ideals.According to thegenetic component,

knowledge of a geometrical object was at its best when it came through knowledge

of that object’s cause—knowledge, that is, of its genesis, or how it came to be the

object that it is. According to the constructional component, this knowledge of

cause or genesis was at its highest when it consisted in knowledge of how to

construct the object in question.

Aristotle gave the classical statement of the genetic ideal.

We suppose ourselves to possess unqualified scientific knowledge of a thing,

as opposed to knowing it in the accidental way in which the sophist knows, when

we think that we know the cause (aitia) on which the fact depends as the cause

6 There were no general rules for calculating with irrational quantities, and that, too,

distinguished them from numbers. It is true, of course, that Eudoxus developed a scheme

for ‘‘calculating’’ with irrational quantities. His scheme was, however, composed of geomet-

rical rather than symbolic or algebraic forms of manipulation, and so, at least in the minds of

many, it supported the view that geometrical quantities and operations were more funda-

mental than arithmetical quantities and operations.
7 This was not the universal view of the Greeks. Aristotle, for example, famously

maintained the priority of arithmetic over geometry. It was, however, the predominant

view of postclassical times—in particular, of Renaissance and modern times. It’s this

dominance that is of principal interest to us here.
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of the fact and of no other, and, further, that the fact could not be other than it is.

[An. post.], I, 2 (71b9–11)8

This was, moreover, taken to apply as much to mathematical as to nonmathe-

matical objects. The question was what cause might come to in the case of mathe-

matical objects. To help answer this question, Aristotle famously distinguished

four notions of cause—formal, material, efficient, and final.

Evidently we have to acquire knowledge of the original causes (for we say we

know each thing only when we think we recognize its first cause), and causes are

spoken of in four senses. In one of these we mean the substance, i.e. the essence

(for the ‘‘why’’ is referred finally to the formula [logos], and the ultimate ‘‘why’’ is

a cause and principle [archē]; in another, the matter or substratum; in a third the

source of the change; and in the fourth the cause opposed to this, that for the

sake of which and the good (for this is the end of all generation and change).

[Metaph., Rev.], I, 3 (983a25–31)

Aristotle believed that it was the first or formal notion of cause that applied to

mathematical knowledge.

The salient feature of a formal cause was that it did not depend upon or consist

in any type of motion. Rather, it was a form of causation that reflected the inherent

nature of the object itself. The idea was that the nature or essence of an object itself

exerts a type of determinative force on its becoming and its development.

One could thus acquire epistēmē of a mathematical object by knowing its

formal cause—that is, its nature or essence. The nature or essence of an object,

however, was supposed to be given by a proper definition of that object. Grasp of

the nature of a mathematical object should therefore consist in grasp of its proper

definition. From this it follows that, at bottom, knowledge of cause in mathe-

matics consists in knowledge of a definition. As Aristotle so succinctly put it:

The ‘‘why’’ is referred ultimately . . . in mathematics . . . to the ‘‘what’’ (to the

definition of straight line or commensurable or the like) . . . . [Physics, Rev.], II, 7
(198a16–18)

The genetic component of the constructive ideal in geometry thus called for

knowledge of the definitions of mathematical objects. In itself, however, this does

not indicate a constructive approach to proof. The constructive element entered,

rather, through the second component of the constructive ideal—what I am calling

the constructional component. This component amplifies the genetic component

by expressing an ideal for its realization. It maintains that the best kind of defi-

nition of a geometrical object is one that indicates how it is to be constructed.

This constructional component of the constructive ideal was not particularly

Aristotelian in character. Still less, of course, was it Platonist. It is therefore perhaps

surprising that the Neoplatonist Proclus should have attributed a systematic role

8 Cf. [Physics], II, 3 (194b16–19); [Metaph.], I, 3 (983a24–25).
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to construction in his account of the ancient distinction between problems and

theorems.9

. . . the propositions that follow from the first principles he [Euclid] divides into

problems and theorems, the former including the construction of figures, the

division of them into sections, subtractions from and additions to them, and in

general the characters that result from such procedures . . . the latter concerned

with demonstrating inherent properties belonging to each figure. Just as the

productive sciences have some theory in them, so the theoretical ones take on

problems in a way analogous to production. [Proclus], 63

The overall purpose of construction, according to Proclus, was to take the rea-

soner from the given of a problem/theorem to that which is sought in it ([Proclus],

159).

[Geometry] calls ‘‘problems’’ those propositions whose aim is to produce, bring

into view, or construct what in a sense does not exist, and ‘‘theorems’’ those whose

purpose is to see, identify, and demonstrate the existence or nonexistence of an

attribute. Problems require us to construct a figure, or set it at a place, or apply it

to another, or inscribe it in or circumscribe it about another, or fit it upon or

bring it into contact with another, and the like; theorems endeavor to grasp firmly

and bind fast by demonstration the attributes and inherent properties belonging

to the objects that are the subject-matter of geometry. [Proclus], 157–158

Constructions were taken to be built up from (applications of ) postulates in some-

thing like the same way in which proofs were taken to be built up from axioms

([Proclus], 163).

They were also, however, taken to play a role in proof. One particular such

role was that of establishing existence. The idea was that before a proof can rightly

appeal to a geometrical entity (e.g., a point), the existence of that entity must be

established, and the way to establish that existence was to construct the entity or,

perhaps, to give directions for its construction.

In this vein, speaking of Euclid’s proof of proposition 4, book I, Proclus wrote:

The propositions before it have all been problems . . . our geometer follows

up these problems with this first theorem. . . . For unless he had previously shown

the existence of triangles and their mode of construction, how could he discourse

about their essential properties and the equality of their angles and sides? And

how could he have assumed sides equal to sides and straight lines equal to other

straight lines unless he had worked these out in the preceding problems and

devised a method by which equal lines can be discovered? . . . It is to forestall such

9 Proclus’s view of the nature of the distinction and which sciences fell under which

sides of it was in rough (though only rough) agreement with Aristotle’s conception of the

distinction between productive and theoretical knowledge. Cf. [Topics], bk. VI, ch. 6
(145a15–16); [Topics], bk. VIII, ch. 1 (157a8–10); [Metaph.], bk. VI, ch. 1 (1025b18–27, 1026a
6–17); [Metaph.], bk. XI, ch. 7 (1064a10–32).
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objections that the author of the Elements has given us the construction of

triangles. . . .These propositions are rightly preliminary to the theorem. . . .
[Proclus], 182–183

Proclus thus seems to have seen constructions as, among other things, the means

of establishing the existence of items dealt with in proofs.10

As noted above, however, this was not the settled view of the Greeks. Indeed,

it was a matter of considerable controversy.11

Plato famously held that to be knowable, an object must be eternal and im-

mutable. Knowledge, for him, was a contemplation of essence, not of genesis (cf.

[Plato.], 526e). Geometrical knowledge, in particular, was ‘‘the knowledge of that

which always is, and not of a something which at some time comes into being and

passes away . . . geometry is the knowledge of the eternally existent’’ ([Plato., 527b).

Plato criticized the common view and practice of geometry as being con-

fused on this point. The ‘‘language’’ of the usual geometer, he wrote, ‘‘is most

ludicrous . . . for they speak as if they were doing something and as if all their

words were directed toward action. For all their talk is of squaring and applying

and adding and the like, whereas in fact the real object of the entire study is pure

knowledge.’’ ([Plato., 527a).

Plato thus regarded the bulk of geometers as confused about their subject.

They conceived of their subject as centrally concerned with the generation or

production of objects, when in truth it was a science of the eternally existing and

ungenerated. For Plato, then, constructed objects were produced and not eternal,

and they could not, for that reason, be the objects of geometrical knowledge. They

could at best serve as representations of real objects and provide some sort of

practical guide to their knowledge. As Proclus, describing the views of the Pla-

tonists Speusippus and Amphinomus, put it:

There is no coming to be among eternals . . . hence a problem [as opposed to a

theorem] has no place here [in the theoretical science of geometry], proposing as

it does to bring into being or to make something not previously existing—such

as to construct an equilateral triangle, or to describe a square when a straight line

is given, or to place a straight line through a given point. Thus it is better,

according to them [Speusippus and Amphinomus], to say that all these objects

exist and that we look on our construction of them not as making, but as

understanding them, taking eternal things as if they were in the process of

coming to be. [Proclus], 64

Menaechmus, a student of Eudoxus and an important figure in the early Acad-

emy, was among those geometers holding the view thus criticized. He took

10 It is perhaps worth noting that this was also the view famously taken at the end of

the nineteenth century by H.G. Zeuthen in his widely cited and discussed [Zeuthen 1896–

1897] (cf. p. 223).
11 For a useful discussion of this controversy see Bowen [Bowen 1983].
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construction to be central to geometry, and conceived of it generally as a process

by which objects were produced or generated.12

Proclus tried to harmonize these views. The school of Speusippus was right,

he said (cf. [Proclus], 64), because the problems of geometry are different from

those of mechanics in that the latter but not the former ‘‘are concerned with

perceptible objects that come to be and undergo all sorts of change’’ (ibid.).

The school of Menaechmus, on the other hand, was also right because ‘‘the

discovery of theorems does not occur without recourse to . . . intelligible matter’’

(ibid.).13 Proclus’s suggestion was thus to offer a distinction between the under-

standing (gnōstikōs, dianoia) and the imagination (phantasia) and to say that the

understanding keeps the definition (logos) of the eternal, changeless geometric

objects fixedly in mind while the imagination, ‘‘projecting its own ideas’’ (ibid.) is

a production (poiētikōs) of figures, sectionings, superpositions, comparisons, ad-

ditions, subtractions, and the other acts of construction (poiētikōs, sustasis). The

change that takes place is therefore in the actions of the imagination of the

constructor, which actions form the efficient cause of the figure constructed. It

is not in the understanding, whose ‘‘action’’ remains that of a Platonic contem-

plation of an eternal form which serves as the formal cause of the figure con-

structed.14 The figures produced by the efficient causation of the imagination are

thus constructions of or from the figures contemplated in the understanding.15

12 Cf. [Proclus], 64. Menaechmus is widely credited with the discovery of conic sections (cf.

Allman [Allman 1889], where Menaechmus is listed as a member of the group within the

Academy known as the ‘‘school of Cyzicus’’). Allman, citing Boeckh [Boeckh 1863], maintains

that the reputation of the Academy as a center for mathematical and astronomical learning was

chiefly due to the members of this school (loc. cit., 177–178). Proclus ([Proclus], 166) also

mentions a genetic tradition extending fromOenopides through Zenodotus to Poseidonius that

saw a problem as a query concerning the condition under which a thing exists.
13 Intelligible matter is distinct from sensible matter. Aristotle describes it as follows:

. . . some matter is perceptible and some intelligible, perceptible matter

being for instance bronze and wood and all matter that is changeable, and

intelligible matter being that which is present in perceptible things not

qua perceptible, i.e. the objects of mathematics. [Metaph.], 1036a8–13

14 The formal cause of a thing is ‘‘. . . the form or the archetype, i.e. the definition of

the essence, and its genera . . . and the parts in the definition’’ ([Physics, Rev.], 194b27–29).
The efficient cause is ‘‘. . . the primary source of the change or rest; e.g. the man who

deliberated is a cause, the father is cause of the child, and generally what makes of what is

made and what changes of what is changed ([Physics, Rev.], 194b30–32).
15 Seen this way, the constructive activity of the geometer is based not on a genetic or

generational definition of a figure (i.e., a definition specifying a means of constructing that

figure), but on what some (e.g., [Molland, 1976]) have called definition by property—that

is, a specification of the essence of the figure. Since, however, the definition by property, in

the account sketched above, serves as the formal cause of the figure (as the figure having

the properties it has), the definition by property is itself a kind of genetic definition.
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Indeed, the constructor (or his constructive actions) becomes the efficient cause

of a triangle in his imagination by virtue of his having the form (logos) of the

triangle in his understanding. Thus, the triangle the diagrammer constructs is in

one sense a product of his diagramming actions. In another it is a product of the

form he holds in his mind:

. . . from art proceed the things of which the form is in the soul of the artist. (By

form I mean the essence of each thing and its primary substance.)

[Metaph.], 1032a32–b1

If Proclus’s account of the controversy within the early Academy concerning the

place of constructions in geometry is correct, the constructive ideal had a significant

following among ancient geometers.16 Another indication of this is the above-

mentioned distinction in the Elements between postulates and axioms.17 Other

ancient geometers, too, gave construction a prominent place in their work.

Among these were Apollonius (e.g. in his constructive definition of the cone (cf.

[Apollonius], 1)) and Archimedes (e.g. in his operations on circles, spheres and

cylinders (cf. [Archimedes], e.g. Prop. 5)). This tradition continued throughout

the Middle Ages and Renaissance and into the modern era.

In addition to the criticisms of the Platonists noted above, there were other

criticisms of the constructive ideal. These included criticisms of both its con-

structional and its genetic components. On the constructional side, this led to a

discussion of the forms of motion that ought to be admissible in construction.

Discussion focused on the use of ‘‘mixed motion’’ or ‘‘mixed line’’ (cf. [Proclus],

84–86, 211ff.) constructions. This was construction via lines or points moving at

equal or fixed proportional rates of speed (e.g. Hippias’s quadratrices). This type

of construction (commonly termed ‘‘mechanical’’ or ‘‘instrumental’’ (organikos or

mēchanikos), as opposed to properly ‘‘geometrical’’ (geometrikos)) was believed by

some to require the marking of motion in both the imagination and the un-

derstanding. That is, it required essential use of or reference to motion not only to

visualize but also to understand. As such, it violated the terms of Proclus’s Pla-

tonistic compromise by not confining motion to what properly belonged only to

the imagination.

16 Proclus, too, seems to have given it an important place. See, for example, his

definition of the cylindrical helix ([Proclus], 85).
17 Euclid’s first three postulates all seem to be constructional in character. They are

(1) to draw a straight line from any point to any point; (2) to produce a finite straight line

continuously in a straight line; (3) to describe a circle with any center and distance.

Euclid’s fourth and fifth postulates do not have this constructive character. Euclid’s

fourth postulate, as Proclus (citing Geminus) remarked, has the character of an axiom

(cf. [Proclus], 147). The fifth has neither the constructive character of a postulate nor

the self-evident character of an axiom. Rather, it has the character of a theorem (cf.

[Proclus], 150).
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The controversy concerning the propriety of ‘‘mechanical’’ construction and

the proper separation of it from truly geometrical construction continued for a

long time. During part of this time, there also arose a controversy concerning the

propriety of the genetic element of the constructive ideal—that is, the idea that

there is, properly speaking, causation in geometry (and in mathematics generally).

This was generally regarded as posing a deeper challenge to the classical construc-

tive ideal than the controversy over the proper office of construction in geometry.

It is to this discussion that we now turn.

3. Medieval and Renaissance

Challenges to the Ancient Ideals

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A remnant of the constructional component of the constructive ideal was thus

preserved by the Neoplatonists of late antiquity. Various of the Jesuit commen-

tators of the late Middle Ages and Latin Renaissance, however, launched sweeping

criticisms of the constructive ideal, including its genetic component. Of these, the

critique of Ludovicus Carbone in his 1599 treatise Introductio in universam phi-

losophiam seems to have been particularly influential.18 This treatise offered a

classification of the sciences based on Aristotle’s conception of scientia (epistēmē)

as knowledge based on demonstration or knowledge of cause. According to this

classification, there were five speculative sciences and two practical sciences.19 The

speculative sciences were a science of God, a science of intelligences, a science of

being in common, a science of natural bodies, and a science of quantity. The two

practical sciences were logic and ethics.

The sciences in this classification were ranked according to their nobility and

their certitude. In the ranking according to certainty, mathematics was at the top.

In the ranking according to nobility, it was at the bottom. This agreed with the

relatively widespread belief, shared by Carbone, that there are no genuine defi-

nitions, no genuinely causal connections, and, hence, no truly genuine demon-

stration or scientia in mathematics (cf. Wallace [Wallace 1984], 131–132).

A concise statement of this general viewpoint was given by the Jesuit Bene-

dictus Pererius in his 1576 treatise De communibus omnium rerum naturalium

principiis et affectionibus. He there argued for a more Platonistic viewpoint ac-

cording to which mathematical objects are or should be treated as having no

essential connection to motion (efficient cause) or any other genuine type of cause.

18 This treatise is widely believed to have been plagiarized from notes of lectures

delivered in 1588 by Paulus Valla. Cf. Wallace [Wallace 1984], ch. 1, for more on this.
19 Cf. Wallace [Wallace 1984], 130.
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My opinion is that mathematical disciplines are not proper sciences . . .To have

science (scire) is to acquire knowledge of a thing through the cause on account of

which the thing is; and science (scientia) is the effect of demonstration: but

demonstration (I speak of the most perfect kind of demonstration) must be

established from those things that are per se and proper to that which is dem-

onstrated, but the mathematician neither considers the essence of quantity, nor

treats of its affections as they flow from such essence, nor declares them by the

proper causes on account of which they are in quantity, nor makes his dem-

onstrations from proper and per se but from common and accidental predicates.

[Pererius 1576], i.12, p. 2420

A central example used to illustrate this claim was Euclid’s proof that the

interior angles of a triangle sum to two right angles (cf. prop. 32 in book I of the

Elements). In his proof, Euclid both extended the base of the triangle and con-

structed a line parallel to one of its sides. For Pererius, this made the proof

noncausal (and hence nonscientific) because neither the extension of the base of a

triangle nor the construction of a line parallel to one of its sides is an essential

property of the triangle in itself or of the construction of the triangle itself. This

being so, Euclid’s proof could not rightly be seen as providing a causal demon-

stration (i.e., a demonstration from the essence of the triangle).21

The charge that mathematics did not preserve the genetic ideal was familiar to

Christopher Clavius and the other mathematicians at the Collegio Romano22 in

the latter part of the sixteenth century. Clavius and his student Josephus Blan-

canus systematically opposed the charge, insisting that there is genuine causation

and, hence, genuine demonstration and genuine scientia in mathematics. To ac-

cept anything less, they believed, was to jeopardize the place of mathematics in the

curriculum of the Jesuit universities. Their reasoning was essentially this: if there

is not genuine causal demonstration in mathematics, then mathematical knowl-

edge is not knowledge of the highest type; and if mathematical knowledge is not

knowledge of the highest type, then it does not deserve a prominent place in a

university curriculum. Clavius and Blancanus therefore viewed the Platonistic

arguments of Carbone, Piccolomini, and Pereira as a serious threat to the place of

20 Quoted from the English translation of this passage in Crombie [Crombie 1977], 67.
Alessandro Piccolomini in his Commentarium de certitudine mathematicarum discipli-

narum (1547) gave an earlier statement of this view. Various of the Coimbran Jesuits (e.g.,

Toletus) also expressed the view at roughly the same time as Pererius. Gassendi (cf.

[Gassendi 1972], 104–108) gave a later statement. See Crombie [Crombie 1977]; Wallace

[Wallace 1984], ch. 3; Dear [Dear 1987]; and Mancosu [Mancosu 1996], ch. 1 for useful

discussions of some of the controversy in the Collegio surrounding the question of

mathematics’ status as scientia.
21 Essentially the same argument was given by Proclus (cf. [Proclus], 161–162).
22 The Collegio Romano was founded by Ignatius in 1550 and was the principal Jesuit

university of the late sixteenth century, and the one where mathematics was best repre-

sented. It was also well-represented at La Flèche, Ingolstadt, and Würzburg, however.
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mathematics in the universities, and they called upon the ‘‘teachers of philoso-

phy’’ to stop characterizing mathematics as falling short of the genetic ideal.

It will . . . contribute much . . . if the teachers of philosophy abstain from those

questions which do not help in the understanding of natural things and very

much detract from the authority of the mathematical disciplines in the eyes of

the students, such as those in which they teach that the mathematical sciences are

not sciences. . . . [Clavius 1586], quoted in [Crombie 1977], 6623

More substantively, Blancanus argued that the quantities studied in geometry

and arithmetic are formed from intelligible matter, which is abstracted from

sensible matter. Because of this, he maintained, it is possible to define the essences

of objects composed of such matter, and these definitions will in turn provide the

middle terms necessary for true formal-causal (logos or archē) demonstration. He

also argued that intelligible matter, like sensible matter, is composed of parts, and

that such parts are capable of providing the material causes of the properties of

intelligible objects as well as their formal causes. He thus maintained that both

material and formal causation operate in mathematics.24

In addition to Clavius and Blancanus, Galileo too shared this view, at least

during the earlier part of his life. So, too, it seems, did many other mathemati-

cians and philosophers. So much so, in fact, that it became the prevailing view of

mathematical knowledge in the seventeenth century and remained influential for

a considerable time thereafter. The following two remarks, one by a mathema-

tician and one by a philosopher, are thus representative of the common view of

seventeenth-century thinkers regarding the nature of mathematical knowledge.

. . .Mathematical Demonstrations are eminently Causal . . . because they only

fetch their Conclusions from Axioms which exhibit the principal and most

universal Affections of all Quantities, and from Definitions which declare the

constitutive Generations and essential Passions of particular Magnitudes. From

whence the Propositions that arise from such Principles supposed, must needs

flow from the intimate Essences and Causes of the Things. [Barrow 1664], 8325

. . . demonstrations are flawed unless they are scientific, and unless they proceed

from causes, they are not scientific. Further, they are flawed unless their con-

clusions are demonstrated by construction, that is, by the description of figures,

23 Clavius and Blancanus were largely successful in their efforts to defend the sci-

entific status of mathematics and to give it a central place in the Jesuit curriculum of the

seventeenth century. The ideal curriculum outlined in the 1599 Ratio studiorum gave it a

prominent place. See Wallace [Wallace 1984], 139–141, for more on this.
24 See [Wallace 1984], 142–143 for a brief but useful discussion of Blancanus’s views on

these points.
25 The occasion was Barrow’s installation as the first Lucasian chair of mathematics at

Cambridge. The lectures were published in Latin (under the title Lectiones mathematicae)

in 1683 and in English translation in 1734.

248 oxford handbook of philosophy of math and logic



that is, by the drawing of lines. For every drawing of a line is motion, and so every

demonstration is flawed, whose first principles are not contained in the definitions

of the motions by which figures are described. [Hobbes 1666], vol. 4, 42126

4. The Emergence of Formalism

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Modern formalism emerged against the backdrop of two noteworthy develop-

ments. One was a general decline in the importance of intuition as a guide to

proof.27 The other was the general increase in popularity of algebraic methods that

began in the seventeenth century.

Modern formalism historically accompanied these developments. This not-

withstanding, there is no necessary conceptual connection between them. The

decline of intuition was a broad and complex phenomenon that left ample room

for nonformalist responses. Similarly for the ascent of algebraic method. It arose

from a variety of motives, only some of which were formalist.

Such, at any rate, is the argument I will sketch in the remainder of this

section. The remaining element in the emergence of formalism—the symbolic

element—will be discussed in section 5.

4.1. The Decline of Intuition

It has been suggested that the fundamental influence shaping nineteenth-century

formalism was the general loss of confidence in geometric intuition that reached a

critical point in the late nineteenth century. The following remark by the early

twentieth-century mathematician–philosopher Hans Hahn gives a fairly typical

assessment of this crisis.

Because intuition turned out to be deceptive in so many instances and because

propositions that had been accepted as true by intuition were repeatedly proved

false by logic, mathematicians became more and more sceptical of the value of

intuition. They learned that it is unsafe to accept any mathematical proposition,

much less to base any mathematical discipline, on intuitive convictions. Thus a

demand arose for the expulsion of intuition from mathematical reasoning and

for the complete formalization of mathematics. . . . every new mathematical

26 Quoted in [Jesseph 1993], p. 312, n. 8.
27 This was brought on primarily by the early nineteenth-century discovery of non-

Euclidean geometries and the later discovery of curves with counterintuitive properties

(e.g., having no gaps but also having no tangents).
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concept was to be introduced through a purely logical definition; every mathe-

matical proof was to be carried through by strictly logical means.

. . .
It is not true, as Kant urged, that intuition is a pure a priori means of

knowledge . . . rather . . . it is force of habit rooted in psychological inertia. [Hahn

1980], 93, 101

Hahn makes two charges here that it is important to distinguish. One is the

sweeping claim that belief in a mathematical proposition ought never to be based

on intuition. The other is the more cautious claim that reliance on intuition ought

rightly to be banished from mathematical reasoning or inference. Commitment to

the latter does not entail commitment to the former.

The latter is primarily a concern for rigor; a concern which, moreover, was

clearly in evidence prior to the nineteenth-century developments mentioned above.

It was widely known among seventeenth-century geometers that the proofs in the

Elements were not so rigorous as had commonly been supposed. Specifically, they

were known to rely upon assumptions that were not stated in the axioms and

postulates. Lamy and Wallis, to mention but two seventeenth-century figures,

each noted a number of such lapses.

Lambert, a century later, offered both a diagnosis and a cure. His diagnosis

was that lapses in rigor were principally due to the tacit smuggling of undeclared

(even unrecognized) elements of our intuitive grasp of geometrical figures into

the inferences of geometric proofs. His prescribed cure was direct. He called for

proof to proceed solely on the basis of its ‘‘algebraic’’ character (i.e., the syntactic

character of the expressions occurring in it) and in abstraction from its subject

matter. In determining whether a given proposition follows from others, he thus

maintained, we should abstract away from everything having to do with the rep-

resentation (Vorstellung) of the object or thing(s) (Sache) with which the proof is

concerned. In this respect, a proof should ‘‘never appeal to the thing itself . . . but

be conducted entirely symbolically [durchaus symbolisch Vortrage]’’ ([Lambert

1786], 162). Thus, a proof should treat its premises ‘‘like so many algebraic equa-

tions [algebraische Gleichungen] that one has ready before him and from which

one extracts x, y, z, etc. without looking back to the object itself [ohne daß man auf

die Sache selbst zur€uucke sehe]’’ (ibid.).

This was in radical opposition to the traditional conception of rigor. It also

anticipated the formal conception of rigor and reasoning that was to be put into

effect in the geometrical work of Pasch and Hilbert a century later (cf. [Pasch 1882]

and [Hilbert 1899]). Its main contention was that rigorous verification of the

validity of an inference should not require appeal to its subject matter. As Pasch

later put it:

. . . if geometry is to be genuinely deductive, the process of inferring must

always be independent of the sense of geometrical concepts just as it must be
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independent of diagrams. It is only relations between geometrical concepts that

should be taken into account in the propositions and definitions dealt with.

In the course of the deduction, it is certainly legitimate and useful, though by no

means necessary, to think of the reference of the concepts involved. In fact, if

it is necessary so to think, the deficiency of the deduction and the inadequacy of

the method of proof is thereby revealed. . . . [Pasch 1882], 98

The modern conception of rigor thus required that both intuition and mean-

ing be eliminable from the verification of the validity of the inferences that are

made in a proof. It did not, however, require and did not justify a similar

eliminability of intuition from the verification of the propositions that are used as

the premises of such proofs. It did not, therefore, justify anything as radical asHahn’s

claim that ‘‘it is unsafe to accept any mathematical proposition, much less to base

any mathematical discipline, on intuitive convictions’’ ([Hahn 1980], 93). Nor was

it generally claimed to do so.

The justification of this more radical proposal to eliminate intuition was

generally based not on lapses in traditional rigor but on the more challenging

discoveries of Bolzano and Weierstrass and others of curves that ‘‘cannot possibly

be grasped by intuition’’ ([Hahn 1980], 87) and ‘‘can only be understood by logical

analysis’’ (ibid.). The existence of such curves suggested, if it did not strictly imply,

that logical analysis was superior to intuition as a means of determining the truth

of mathematical propositions. This being so, logical analysis should replace in-

tuition everywhere possible in order to minimize the chances of error.

This, of course, raises the question of whether use of logical analysis instead of

intuition is always or even generally a means of minimizing the likelihood of

error. My interest in formalism does not require that I offer an answer to this

question here. The formalist can treat it as an open question. This is because he

does not require the exclusion of intuition from mathematics but, rather, the

inclusion of the nonintuitive (even the noncontentual) in it.28 The elimination of

intuition is therefore not an essential element of formalism. Hilbert made this

clear in his criticism of the logicists Dedekind and Frege when he said that their

attempts were ‘‘bound to fail’’ ([Hilbert 1926], 376) because the very use of logical

inference and the performance of logical operations require that something be

given to intuitive representation prior to all thinking.

The elimination of intuition is therefore not a necessary ingredient of for-

malism. Neither, I will argue, is it a sufficient condition. It is both a historical and a

philosophical mistake to think otherwise. The pivotal commitment of formalism is

not the negative one of eliminating intuition. Rather, it is a view concerning the

nature of language—namely, that it can serve as a guide to thought even when it

does not function descriptively. This general view was put forward by Berkeley in

28 In separating the nonintuitive from the noncontentual, I am allowing what Pasch

allowed—namely, that not all content in mathematics need be intuitive.
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the eighteenth century, partly as an attempt to account for the usefulness of imag-

inary expressions in algebra. We will discuss it further in section 5. For the moment,

however, we will consider more closely the questions of what might constitute a

retreat from intuition and whether formalism is essentially a case of such.

4.2. Formalism and the Retreat from Intuition

In the remark quoted from Lambert, we already see a tendency to associate

formalism with what might be called the algebraic way of thinking, where this is

taken to consist in some type of abstraction from the intuitive contents of geo-

metrical objects. In this subsection, I want to consider what such abstraction

might, or perhaps should, be seen as coming to. It is not, I think, so clear as it may

first appear to be. Locating some of the unclarities will help us to see better why

formalism is not to be identified in any simple way with a retreat from intuition.

To begin with, let’s try to get clearer on what is to count as intuition. The

classical conception of intuition emphasized its immediacy. Plato first, but later

Descartes (1596–1650), too, identified it with immediate knowledge of the (purely)

intelligible, or what the Greeks referred to as noēsis (where this was distinguished

from knowledge arising from the senses, or aesthesis). Descartes described this

noetic conception of intuition as follows:

By intuition I understand, not the fluctuating testimony of the senses, nor the

misleading judgment that proceeds from the blundering constructions of

imagination, but the conception which an unclouded and attentive mind gives us

so readily and distinctly that we are wholly freed from doubt about that which is

understood. . . . intuition is the undoubting conception of an unclouded (purae)

and attentive mind. . . . [Descartes 1970a], 7 (rule III)

Locke (1632–1704) in his Essay Concerning Human Understanding also empha-

sized the immediacy of intuition, as well its clarity and certainty.

. . . if we . . . reflect on our own ways of thinking, we will find, that sometimes the

mind perceives the agreement or disagreement of two ideas immediately by

themselves, without the intervention of any other: and this I think we may call

intuitive knowledge. . . . this kind of knowledge is the clearest and most certain

that human frailty is capable of. . . . [it] is irresistible, and, like bright sunshine.
[Locke 1689], vol. II, pp. 176–177

Unlike Descartes, however, Locke found the central qualities of clarity and cer-

tainty not in the noemata of pure intellection (i.e., the ideas of reason or re-

flection) but in the ideas of sense. He thus maintained a basically empiricist

conception of intuition while Descartes maintained a rationalist conception.

Kant (1724–1804) fashioned a view lying somewhere between these ex-

tremes. Specifically, he divided intuition into two types (or, perhaps better, two

252 oxford handbook of philosophy of math and logic



components): the pure, which supplied the form(s) of experience, and the empir-

ical, which supplied its matter or content. He employed this division to obtain a

conception of intuition that allowed it to possess robust content while at the same

time retaining an element of apriority.

In whatever manner and by whatever means a mode of knowledge may relate to

its objects (Gegenst€aande), intuition (Anschauung) is that through which it is in

immediate relation to them, and to which all thought (Denken) as a means is

directed. But intuition takes place only in so far as the object is given to us.

This . . . is only possible . . . in so far as the mind (Gem€uut) is affected in a certain

way. The capacity for receiving representations (Vorstellungen) through the mode

in which we are affected by objects, is entitled sensibility. Objects are given to us

by means of sensibility, and it alone yields intuitions. . . .
The effect (Wirkung) of an object upon the faculty of representation . . . is

sensation (Empfindung). That intuition which is in relation to the object through

sensation, is entitled empirical (empirisch). The undetermined object of an em-

pirical intuition is entitled appearance (Erscheinung).

That in the appearance which corresponds to sensation I term its matter

(Materie); but that which so determines the manifold of appearance (Mannig-

faltige der Erscheinung) that it allows of being ordered . . . I term the form (Form)

of appearance. That in which alone the sensations can be posited and

ordered . . . cannot itself be sensation; and therefore, while the matter of . . .
appearance is given to us a posteriori only, its form (Form) must lie ready

(bereitliegen) for the sensations a priori in the mind. . . .The pure form of sensible

intuitions . . .must be found in the mind a priori. This pure form of sensibility

may . . . be called pure intuition. [Kant 1781], A19–20, B33–35

It is important for our purposes to consider the significance of Kant’s dis-

tinction between pure and empirical intuition. What, we should ask, is the essence

of this distinction? Our answer is that it is an attempt to distinguish the variable

(Materie) from the invariable (Form) elements of intuition and to allign mathe-

matics with the invariable.

We thus already see in Kant’s distinction between the form and matter of

intuition a certain type of retreat from intuition—namely, a retreat from its variable

elements. We see something of the same in Locke’s distinction between primary

(invariant) and secondary (variant) qualities of objects and in his identification of

objective knowledge with knowledge of the former. In each case, there is a variant

type of intuition from which the enterprise of knowledge is separated. At the same

time, there is an invariant intuition to which knowledge remains bound. Knowledge

generally and, in the case of Kant, at least, mathematical knowledge in particular, is

identified with the grasp of certain invariants of experience.

4.2.1. The Invariantist Ideal

Commitment to invariantist ideals was already clear in the methodological writings

of various mathematicians and mathematically engaged philosophers in Locke’s
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day. It took a variety of forms, however, one of which was a shift of focus,

generally attributed to Viète (1540–1603) and Descartes, from particular quantities

to quantities in general or, to use the traditional terminology, from particular

quantities to species of quantities.29

The leading idea of this generalized arithmetic was that while some properties

of mathematical quantities are due to those quantities being the particular quan-

tities they are, others of their properties are due to more general features that

those quantities share with other quantities. Viète was interested in this latter type

of property. In this spirit, he inquired into the relations that exist between the

coefficients and the roots of equations generally, and discovered that there are

invariances in such relations. One example is the general relation that exists be-

tween the coefficients and roots of a second-degree equation when the coefficient

of the second term of the equation is the negative of two numbers whose product

is the third term. Under this condition, the two numbers in question are roots of

the equation, regardless of the particular values of the quantities to which the

coefficients may be attached. This suggests that certain relationships between co-

efficients and roots of quadratic equations are due not to the particular quantities

with which an equation is concerned, but to certain standing properties that

endure regardless of the particular quantities dealt with.

Descartes intensified this search for the most general laws of quantity. It was,

indeed, the leitmotif of his mathesis universalis. He believed that these laws would

illuminate not only arithmetic but geometry. Indeed, he believed that it was these

laws that guided the work of ancient geometers. Unfortunately, Descartes main-

tained, the ancients coveted the admiration of others more than they loved truth

and, so, hid their methods to keep others from seeing how easy and unremarkable

many of their discoveries really were. This was a familiar theme among the early

developers of algebra (cf. the quote from Pedro Nuñez’ algebra in [Wallis 1685], ch.

II, 3, the remark by Viète) in ch. V [Vi�eete 1983], p. 27 and the claim by Wallis in ch.

II of [Wallis 1685], p. 3).

The secret of the Greeks was Algebra, and it was this realization, said Des-

cartes, that recalled him from

. . . the particular studies of Arithmetic and Geometry to a general investigation

of Mathematics, and thereupon . . . to determine what precisely was universally

meant by that term . . . as I considered the matter carefully it gradually came to

light that all those matters only were referred to Mathematics in which order and

measurement are investigated, and that it makes no difference whether it be in

numbers, figures, stars, sounds or any other object that the question of mea-

surement arises. I saw consequently that there must be some general science to

explain that element as a whole which gives rise to problems about order and

29 Viète commonly referred to algebra as the ‘‘logistic of species,’’ and represented

species (or abstract, general quantities) by writing them as letters. Others (e.g., Wallis)

referred to algebra as the ‘‘arithmetic of species’’ or ‘‘specious arithmetic.’’
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measurement, restricted as these are to no special subject matter. [Descartes

1970a], 13

This general or universal mathematics (mathesis universalis) ‘‘contained every-

thing on account of which the others [that is, the particular mathematical sci-

ences] are called parts of Mathematics’’ (ibid.). A genetically penetrating proof of

a truth of this general mathematics would therefore not depend upon the special

properties of any particular quantity or kind of quantity.

Seen this way, algebra was intended to serve the genetic ideal. In addition to

this, however, it also promised to make mathematical thinking more economical

by keeping it focused. Descartes expressed this idea as follows:

By this device [symbolic algebra] not only shall we economize our words, but,

which is the chief thing, display the terms of our problem in such a detached

and unencumbered way that, even though it is so full as to omit nothing, there

will nevertheless be nothing superfluous to be discovered in our symbols, or

anything to exercise our mental powers to no purpose, by requiring the mind to

grasp a number of things at the same time. [Descartes 1970a], 67

The Oxford mathematician John Wallis (1616–1703) made similar points in

his 1685 Treatise of Algebra. As regards the simplification of thinking, he wrote:

This Specious Arithmetick, which gives Notes or Symbols (which he [Viète] calls

Species) to Quantities both known and unknown, doth (without altering the

manner of the demonstration, as to the substance,) furnish us with a short and

convenient way of Notation; whereby the whole process of many Operations is at

once exposed to the Eye in a short Synopsis. [Wallis 1685], preface, a5

Wallis did, then, consider (some kind(s) of) brevity or efficiency to be a prime

virtue of algebraic reasoning—particularly as a means of what he called investi-

gation (i.e., ‘‘finding out of things yet unknown,’’ [Wallis 1685], 305–306) as dis-

tinct from demonstration. Wallis’s view of algebra was, however, also deeply

motivated by what he took to be its capacity to genetically improve upon the

demonstrations of classical geometry. He argued, in particular, that some of the

deepest properties of geometrical figures are due not to their manner of con-

struction but to more basic algebraic or arithmetic characteristics which hold of

them not as geometrical quantities but as quantities per se:

. . . beside the supposed construction of a Line or Figure, there is somewhat

in the nature of it so constructed, which may be abstractly considered from such

construction; and which doth accompany it though otherwise constructed

than is supposed. [Wallis 1685], 291

Again we see here an invariantist ideal—the idea that geometry ought to be

concerned with the most invariant features of geometrical figures. In Wallis’s

view, these were (at least in some instances) arithmetical features of those figures

and not features dictated by the manner of their construction. He thus proceeded
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to offer arithmetic or algebraic proofs—proofs appealing only to a figure’s general

characteristics as a quantity—of various classical properties of geometrical fig-

ures.30 He applied this to the classical problem of quadrature. A good example

was his ‘‘demonstration’’ of the classical law of area for the triangle(4 ¼ 1
2
bh).31

The basic idea of the proof is that the interior of a triangle ABC can be

approximated by a stack of thin rectangles (call them composing rectangles) that

approximates ever more closely the interior of ABC as the common height of the

rectangles is allowed to go to 0.32 (See figure 8.1.) Thus, let the length of the base

AB of ABC be b, and its height (i.e., the length of CD) be h. As hc (the common

height of the composing rectangles) goes to 0, the sum of the heights of the

composing rectangles approaches h, and the sum of their areas approaches the

area of ABC.

How is the sum of the areas of the composing rectangles to be reckoned?

Wallis reasoned that since the sides of a triangle are straight lines (and hence

of constant slope) and the composing rectangles are of uniform height, every

move from one rectangle to the next one down in the stack will result in the same

change in the length of the base of that rectangle. For each value of hc, then, the

C

BA D

Fig. 8:1. Area of Triangle.

30 This was a main preoccupation of his 1656 treatise Arithmetica infinitorum.
31 The argument here can be found both in [Wallis 1656], 366, and, in its essentials, in

[Wallis 1685], 285f. It was closely patterned after a general technique of exhaustion de-

signed fifty years earlier by Cavalieri (cf. [Geometria]). Wallis detailed his debt to Cavalieri

in chapter 74 of [Wallis 1685], whose title is ‘‘Of Cavallerius His Method of Indivisibles.’’

He also described his method as a ‘‘Method of Exhaustion’’ (cf. [Wallis 1685], 286–287).
32 A similar argument approximating ABC from the ‘‘outside’’ can also be given.
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lengths of the bases of the composing rectangles will form an arithmetic pro-

gression.33 This, in turn, implies that for each value of hc the areas of the com-

posing rectangles will form an arithmetic progression.34

This being so, we can use the law concerning sums of arithmetic progressions

to find the joint area of the composing rectangles. The sum of an arithmetic

progression is the average size of its terms times their number. The average size of

the terms of a progression is the average of its largest and smallest terms. The sum

of an n-element arithmetic progression whose smallest element is k1 and whose

largest element is kn is thus (k1þ kn)/2 � n.

Letting nc be the number of composing rectangles, the sum of their areas will

then be 1
2
(nchcs þ nchcb), where s is the length of the base of the smallest rect-

angle. Since s approaches 0 as hc approaches 0, and since the product nchc ap-

proaches h as hc approaches 0, we can say that the quotient 1
2
(nchcsþ ncþ hcþ b)

approaches 1
2
(h0þ hb) ¼ 1

2
bh as hc approaches 0.

Using Wallis’s arithmetical computation for the area of a triangle, then, we

can always come closer than any assigned value to the value determined by the

classical law for the area of a triangle (i.e., 4 ¼ 1
2
bh). By the principle of ex-

haustion, it then follows that the value determined by Wallis’s procedure and the

value determined by the classical law are the same. Q.E.D.35

Wallis took this and similar proofs to show that the genetic ideal is not always

well served by joining it to a constructive ideal. The real ‘‘causes’’ of truths con-

cerning geometrical figures do not always reside in the manner of their con-

struction, but in certain of their construction-invariant arithmetical features.

Because these arithmetical invariants are more persistent than their geometrical

counterparts, the features they signify are deeper and more revealing of the es-

sence of geometrical objects than are the associated constuctional properties.

33 An arithmetic progression is a sequence in which each term after the first differs

from the previous one by a constant amount, called the common difference.
34 This is so because multiplying the terms of any arithmetic progression by a con-

stant (in this case, hc) produces a sequence whose terms also form an arithmetic pro-

gression.
35 Wallis himself (cf. [Wallis 1685], 286–287) characterized his method as ‘‘the

Method of Exhaustion.’’ The Method of Exhaustion is, of course, a well-known ancient

method of proof based on the idea that if two quantities differ by less than any assignable

quantity, they are then equal. Heath ([Heath 1921], vol. I, 327f.) notes that Archimedes

attributed the first proof of it to Eudoxus, though Democritus is said to have been the first

to have discovered it. Hankel ([History], 122) cites evidence that it was formulated and

used by Hippocrates before Eudoxus. It is sometimes referred to as Archimedes’ Axiom

(op. cit., 217), one variant of which is stated as def. IV in bk. V of The Elements, and used,

in effect, to prove another variant—namely, that given in prop. 1 in bk. X.

What is supposedly new in Wallis’s application of exhaustion is its use to force

equality between an arithmetically determined value and a geometrically determined

value.
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This posed a challenge to the traditional Aristotelian injunction against meta-

basis, and it did so in the name of genetically deeper proof. Wallis thus maintained

that his algebraic methods were not only satisfactory but, in many cases, genet-

ically superior to the methods of classical geometry:

. . . this Abstractio Mathematica (as the Schools call it,) is of great use in all kind of

Mathematical considerations, whereby we separate what is the proper Subject of

Inquiry, and upon which the Process proceeds, from the impertinences of the

matter (accidental to it,) appertaining to the present case or particular construction.

For which reason, whereas I find some others (to make it look, I suppose, the

more Geometrical) to affect Lines and Figures; I choose rather (where such things

are accidental) to demonstrate universally from the nature of Proportions, and

regularProgressions; because suchArithmeticalDemonstrations aremoreAbstract,

and therefore more universally applicable to particular occasions. Which is one

main design that I aimed at in this Arithmetick of Infinites. [Wallis 1685], 29236

For Wallis, then, as also for Descartes, fidelity to the genetic ideal did not entail

fidelity to the constructive ideal. In particular, it devalued that intuition which

consists in the use of vision or the visual imagination to construct geometric fig-

ures. It did so on the grounds that preoccupation with such intuition can be, and

oftentimes is, preoccupation with the less rather than the more invariant and, as

such, is preoccupation with the genetically less deep. Thus it was that adherence to

the classical genetic ideal itself provided a motive for the retreat from intuition that

began in earnest in the seventeenth century.

Something of the same spirit animated that nineteenth-century ‘‘revival’’ of

synthetic method in geometry known as projective geometry. We now briefly

consider this.

4.2.2. Projective Geometry and the Principle of Continuity

There was, of course, a need to be clearer about invariance and its connection with

objectivity, and this became a central concern of eighteenth- and nineteenth-century

36 Wallis’s views are complicated by the unclarity of his position on the classical

distinction between ‘‘art’’ and ‘‘science.’’ At one place (cf. [Wallis 1685], 290), for example,

he describes algebra as being not a ‘‘science’’ capable of producing demonstrations

(explanations), but only an ‘‘art’’ of ‘‘invention’’ capable of identifying truths without

demonstrating or explaining them. He was also less than perfectly consistent in the

statement of his purpose(s). Replying to objections of Fermat’s, for example, he wrote:

. . . he doth wholly mistake the design of that Treatise; which was not so

much to shew a Method of Demonstrating things already known; (which

the Method that he commends, doth chiefly aim at,) as to shew a way

of Investigation or finding out of things yet unknown: (Which the Ancients

did studiously conceal.) For which he doth admit this (Epist. 12), if

warily used, to be a good Method; and therefore should not have found

fault with it, when applyed to such a purpose. [Wallis 1685], 305–306
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geometry. Jean-Victor Poncelet (1788–1867), one of the founders of projective

geometry, proposed a solution in the form of a principle—the so-called Principle of

Continuity (PC).37 He presented it in the preface to the 1822 edition of his famous

Traité des propriétés projectives des figures:

Let us consider some geometrical diagram, its actual position being arbitrary

and in a way indeterminate with respect to all the possible positions it could

assume without violating the conditions which are supposed to hold between its

different parts. Suppose now that we discover a property of this figure. . . . Is it
not clear that if, observing the given conditions, we gradually alter the original

diagram by imposing a continuous but arbitrary motion on some of its parts, the

discovered properties of the original diagram will still hold throughout the

successive stages of the system always provided that we note certain changes, such

as that various quantities disappear, etc.—changes that can easily be recognized a

priori and by means of sound rules? [Poncelet 1822], vol. 1, p. xii

There are, I think, few clearer examples of philosophical ambition in the history of

mathematics. Poncelet asserts nothing less than that properties of figures that

change across what he calls ‘‘gradual’’ transformations cannot properly be regarded

as being among their real properties.

But what, really, does this say? Two readings, at least, seem possible. One is

metaphysical, the other methodological. On the metaphysical reading, the PC says

that any figure FD (¼derived figure) obtained from another figure FO (¼original

figure) by means of a ‘‘gradual’’ transformation is co-real with, and has the same

lawlike features as, FO.

Clearly, such properties as the size of an angle or the length of a line segment

are not invariant under gradual transformation. We can increase or decrease the

sizes of both angles and line segments by degrees. They are therefore not among

the properties that the PC would count as real or objective properties of figures.

The PC thus demotes to nonreal or nonobjective various properties counted

as real or objective by traditional geometry. Curiously, it also gives rise to entities

that could only be regarded as imaginary from an intuitive standpoint. A classical

example is the so-called point at infinity of plane projective geometry. The fol-

lowing reasoning illustrates its interaction with the PC.

Consider a pair of lines L1, L2 arranged in nonparallel fashion (figure 8.2). Call

this the original figure. This figure can be changed by ‘‘gradual’’ transformation

into the figure shown in figure 8.3, in which L1 and L2 are parallel. This can be

37 The name calls to mind Leibniz’s Law of Continuity, presented more than a century

before Poncelet’s principle. Leibniz (1646–1716) wrote: ‘‘Everything goes by degrees in

nature, and nothing by leaps, and this rule of changes is part of my law of continuity’’

([Leibniz 1704], bk. IV, ch. xvi, §12; emphasis added). Leibniz’s Law of Continuity seems to

have been intended as a law of nature, however, and not as a principle concerning proper

mathematical method.
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done, for example, by pivoting L1 and L2 as arranged in figure 8.2 about the points

p1 and p2 in the direction indicated by the arrows.

The metaphysical interpretation of the PC imples that the lawlike properties

that hold of the original figure should also hold of the parallel figure shown in

figure 8.3. One of the lawlike properties of the original figure, however, is that L1, L2
have exactly one point of intersection. At every point in the transformation of

figure 8.2 into figure 8.3, L1 and L2 have a unique point of intersection. Moreover,

continuing the rotation of L1 and L2 about p1 and p2 ‘‘past’’ their parallel orien-

tation in figure 8.3, L1 and L2 once again continuously have a unique point of

intersection. If, therefore, the parallel orientation of L1 and L2 in figure 8.3, is not to

violate the PC by representing a ‘‘jump’’ or discontinuity in the continuous trans-

formation of the original figure, there must be a unique point at which L1, L2
intersect in it, too. The PC thus implies the existence of a point of intersection for

parallel lines.

On its metaphysical reading, then, the PC can dictate the introduction of what,

from an intuitive vantage, could only be regarded as imaginary or ideal (¼unreal)

elements.

On the methodological reading, the PC has a different function—namely, that

of a directive that enforces a type of simplicity. On this reading, the PC says

(roughly) that if one figure can be obtained from another by means of gradual

p2

p1

L1

L2

Fig. 8:2

L1

L2

Fig. 8:3
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transformation, then, even if there is no supporting intuition (and perhaps even if

there is contrasting intuition), it is nonetheless good method to ascribe the same

general features to the one figure as to the other.

The ‘‘dualities’’ of projective geometry bear witness to the fruitfulness of this

understanding of the PC. They arrange theorems into pairs, each element of

which can be obtained from the other by a uniform scheme of substitutions. The

well-known point/line duality of plane projective geometry, for example, allows

one to obtain the theorem

(a) For every two lines, there is exactly one point that is their meet

from the theorem

(b) For every two points, there is exactly one line that is their join,

and vice versa. One need only replace every occurrence of the term ‘‘point’’ (resp.

‘‘line’’) with an occurrence of the term ‘‘line’’ (resp. ‘‘point’’), and every occur-

rence of the term ‘‘meet’’ (resp. ‘‘join’’) with an occurrence of the term ‘‘join’’

(resp. ‘‘meet’’) in order to obtain the one from the other.

The dualities suggest that certain terms (e.g., ‘‘point,’’ ‘‘line,’’ ‘‘meet,’’ ‘‘join,’’

etc.) that function as constants in ordinary (i.e., metric) geometry function as

variables in projective geometry. This, in turn, indicates a greater level of gener-

ality or abstraction—hence a greater genetic depth—for projective geometry as

over against ordinary metric geometry.

The status and/or plausibility of the PC is not, however, our main concern

here. Rather, we are concerned with the invariantist ideal—the idea that invari-

ance is the mark of the objective—and what the relationship between the PC and

this ideal may be. We believe that the PC embodies an invariantist ideal—one

which contends that only those properties of geometrical figures are real that are

invariant under continuous transformation. It thus also embodies a retreat from

intuition—specifically, a retreat from that type of intuition that is particular to a

particular intuitive viewpoint or vantage. The PC not only retreats from intuition,

however. It also violates it by giving rise to such counter-intuitive results as the

existence of points at infinity.

The invariantist ideal of knowledge became a mainstay of mathematical

method of the later nineteenth and early twentieth centuries. This is illustrated by

Cayley’s work in geometry in the mid-nineteenth century in which (cf. [Cayley

1859]) he identified a function which possessed the same algebraic features as a

metric or distance function, but which was nonetheless invariant under the

transformations of projection and section. Cayley took this to show that metric

geometries could be derived from purely nonmetric properties of descriptive

geometry. He concluded that ‘‘The metrical properties of a figure are not the

properties of the figure considered per se apart from everything else, but its
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properties when considered in connexion with another figure, viz. the conic

termed the Absolute’’ ([Cayley 1889], vol. 2, 92).

The invariantist ideal was developed further by Felix Klein in his well-known

Erlanger Program. Klein went beyond Cayley to show how to systematically

generate non-Euclidean geometries from projective geometry using different

choices of conics for the Absolute (cf. [Klein 1871]).38 Projective geometry thus

came to be seen as providing a general framework for metric geometry.39

The general epistemology of this approach was summed up well by the

twentieth-century philosopher-mathematician Friedrich Waismann. He wrote:

The properties which projective geometry brings to light are more intimately tied

to the space structures and harder to destroy than the properties considered in

the usual geometry. . . . on ascending from the usual or ‘‘metric’’ geometry to

affine and then to projective geometry, the differences of the configurations

vanish more and more, and the deeper lying, more general, characteristic features

come to the fore instead. [Waismann 1951], 177

4.3. Conclusion

In closing, let me summarize the argument of this section. Our question has been:

To what extent should formalism be seen as consisting in a retreat from intuition?

Our answer, generally, has been ‘‘to no very great extent.’’ In saying this, however,

we must be careful to distinguish the intuition of classical geometry, with its

emphasis on visualizability, from the very different type of intuition that Kant

labeled a priori. A priori intuition emphasized certain invariances in our visual

experience that are due to the existence of various standing conditions which order

it. Kant may not have correctly identified which conditions these are, but in

emphasizing their invariant nature, he anticipated the leitmotif of the geometry

that was to come after him. This is what I will call the invariantist ideal, an ideal

which, in one form or another, has been a leading ideal of mathematics since the

late seventeenth century.

What, at bottom, is this ideal? One way of describing it is as a commit-

ment to the classical ideal of genetic depth in proof. But what does this com-

mitment represent? At bottom, it represents a commitment to objectivity—that

is, a commitment to finding the properties of geometric figures that are in the

38 The Absolute for three-dimensional Euclidean space is the plane. But the Absolute

can also take hyperbolic or elliptical forms, and when it does, non-Euclidean geometries

are the result.
39 The classic statement of the Erlanger Program is [Klein 1872]. See [Richards

1988], ch. 3, for a brief but useful discussion of Klein’s program and related devel-

opments.
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figures themselves, as opposed to those properties that are ‘‘in’’ the mind of the

geometer. This was at least among the principal motives driving Descartes’s de-

velopment of algebra, and it seems to have been a principal motive guiding Wallis

as well.

Kant changed the goal from objectivity to intersubjectivity, but this preserved

the emphasis on invariance since the intersubjective is that which is invariant

from subject to subject.

Formalism is not, I believe, primarily the development of an invariantist motif.

It is centered instead on an instrumentalist conception of language and its use in

reasoning. So, at any rate, I will argue.

5. Symbolic Formalism

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The instrumentalist conception of language allows for purely symbolic uses of

signs in our reasoning—uses that do not depend in any essential way on the

semantic content of the signs involved or on their even having such content. This

is the central doctrine of the position I am calling symbolic formalism or, more

simply, formalism. This central doctrine is itself composed of two key elements.

The first is what I will call the creative or creativist element—the idea that the

mathematician is free to introduce or ‘‘create’’ methods out of considerations of

convenience or efficiency as distinct from evaluation of content. The second is the

distinctively symbolic element—namely, that nonsemantical uses of signs may, at

least on occasion, constitute such conveniences. In the next few subsections, I’ll

reprise the basic history of these ideas leading up to the mature formalism of

Hilbert. I’ll then close the section with a discussion of Hilbert’s views.

5.1. The Berkeleyan Conception of

Language and Reasoning

Symbolic formalism received its chief historical impetus from the rapid devel-

opment of algebra in the sixteenth and seventeenth centuries. Impressed by this

development, Berkeley (1685–1753), in the early eighteenth century, attempted to

sketch a general philosophical framework for it. The cornerstone of this frame-

work was a conception of language and thought that contrasted strongly with the

‘‘received opinion’’ of the day—namely, that language gains its cognitive signif-

icance by semantic means, specifically, by its expression of ideas and their com-

binations (cf. [Berkeley 1710], 36–37).
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Against this view, Berkeley urged a broadly instrumentalist function of lan-

guage. He took the practice of algebraists to illustrate this, though he regarded the

general phenomenon as much broader (cf. [Berkeley 1732], vol. 3, 307).40

. . . it is a received opinion, that language has no other end but the communi-

cating [of ] our ideas, and that every significant name stands for an idea. . . . a
little attention will discover, that it is not necessary (even in the strictest rea-

sonings) [that] significant names which stand for ideas should, every time they

are used, excite in the understanding the ideas they are made to stand for: in

reading and discoursing, names being for the most part used as letters are in

algebra, in which though a particular quantity be marked by each letter, yet to

proceed right it is not requisite that in every step each letter suggest to your

thoughts, that particular quantity it was appointed to stand for. . . . the com-

municating of ideas marked by words is not the chief and only end of language,

as is commonly supposed. [Berkeley 1710], 3741

Berkeley gave various examples intended to clarify the instrumental use of

language. One of these was the use of counters or chips in a card game. He noted,

first, that the chips were not used ‘‘for their own sake’’ (cf. [Berkeley 1732], 291), as

it were, but for the sake of determining how money was to be exchanged between

the players at game’s end. Chips or counters therefore ultimately had semantic

significance. This notwithstanding, the players were not obliged to keep the

semantic values of the counters before them as they played the game. Nor was

there any advantage in doing so. It was enough that, at the end of the game, the

counters could be converted to the money they were agreed to signify. As Berkeley

put it:

. . . it is sufficient the players at first agree on their [the counters’] respective

values, and at last substitute those values in their stead. . . .words may not be

insignificant, although they should not, every time they are used, excite the ideas

they signify in our minds; it being sufficient that we have it in our power to

substitute things or ideas for their signs when there is occasion. It seems to follow

that there may be another use of words besides that of marking and suggesting

distinct ideas, to wit, the influencing [of] our conduct and actions, which may be

done . . . by forming rules for us to act by. . . .A discourse . . . that directs how to

act or excites to the doing or forbearance of an action may . . . be useful and

significant, although the words whereof it is composed should not bring each a

distinct idea into our minds. [Berkeley 1732], 291–292, (brackets added)

There is an important formalist message in this passage—namely, that rea-

soning can, at some level, proceed on the basis of syntactically marked regulari-

ties of expressions, without adversion to supposed semantic contents. This is,

40 Page references here and throughout are to the reprinting of [Berkeley 1732] in

[Berkeley 1948–1957].
41 Emphasis Berkeley’s, brackets mine.
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moreover, true even of rigorous reasoning, though this ran strongly counter to the

prevailing conception of rigor in Berkeley’s day.

That conception of rigor was what I will call the presentist conception. It saw

rigor as consisting in the keeping of the subject matter of a piece of reasoning

continually before the mind—or, more commonly, before the intuition—of the

reasoner. Poncelet expressed the idea as follows.

In ordinary geometry, which one often calls synthetic . . . the figure is described,
one never loses sight of it, one always reasons with quantities and forms that are real

and existing, and one never draws consequences which cannot be depicted in the

imagination or before one’s eyes by sensible objects. [Poncelet 1822], xix42

The paradigm of presentist procedure was the constructive proof of classical

synthetic geometry. The diagrams and diagrammatic operations of classical syn-

thetic proof were believed to offer the best means of keeping the subject matter of

a proof before the prover’s mind. They did so by ‘‘mirroring’’ the objects and

constructions of classical geometry. This relationship of mirroring or resemblance

was, however, utterly absent from the symbolic methods of the algebraists. The

rigor of those methods was therefore open to serious question. The semantic

mysteriousness of various of the algebraists’ symbols (e.g.,
ffiffiffiffiffiffi�1

p
) only added to

the dubiousness of their methods. The Scottish cleric and mathematician John

Playfair summed up the general situation this way:

The propositions of geometry have never given rise to controversy, nor needed

the support of metaphysical discussions. In algebra, on the other hand, the

doctrine of negative quantity and its consequences have often perplexed the

analyst, and involved him in the most intricate disputations. The cause of this

diversity in sciences which have the same object must no doubt be sought for in

the different modes which they employ to express our ideas. In geometry every

magnitude is represented by one of the same kind; lines are represented by lines,

and angles by an angle, the genus is always signified by the individual, and a general

idea by one of the particulars which fall under it. By this means all contradiction is

avoided, and the geometry is never permitted to reason about the relations of

things which do not exist, or cannot be exhibited. In algebra again every mag-

nitude being denoted by an artificial symbol, to which it has no resemblance, is

liable, on some occasions, to be neglected, while the symbol may become the sole

object of attention. It is not perhaps observed where the connection between

them ceases to exist, and the analyst continues to reason about the characters

after nothing is left which they can possibly express; if then, in the end, the

42 Poncelet did not ultimately endorse this conception of proof. Rather, he empha-

sized its inconvenience, saying that its genetic imperative made it laborious. This labo-

riousness he saw as principally due to the perceived need for the prover to take things all

the way back to the rudimentary constructions—to, in his words, ‘‘reproduce the entire

series of primitive arguments from the moment where a line and a point have passed from

the right to the left of one another, etc.’’ ([Poncelet 1822], xix).
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conclusions which hold only of the characters be transferred to the quantities

themselves, obscurity and paradox must of necessity ensue. [Playfair 1778],

318–319 (emphasis added)43

On the presentist conception, then, rigor was compromised at any point in an

algebraic argument where there was an expression whose object was not directly

present to the reasoner’s mind or intuition, and this is something that occurs

frequently in algebraic reasoning. Indeed, one might say that it is typical, even

paradigmatic, of algebraic reasoning. The constructional proofs of classical syn-

thetic geometry were taken to avoid this by dint of a relationship of resemblance

between the diagrams used in them and the geometrical objects with which the

proofs were ultimately concerned. Such, at any rate, was the prevailing view.

Mathematicians of Berkeley’s day often emphasized the reliability of judg-

ments based on the above-mentioned resemblance. Baron Francis Maseres (1731–

1824), for example, posited a distinction between two cognitive faculties, a faculty

of understanding and a faculty of sense or intuition, claiming that the latter was

more reliable than the former. The latter he took to be the faculty employed in

classical geometric proof. The former he took to be the faculty used in algebraic

reasoning. He thus emphasized

. . . the greater facility with which a writer may impose upon himself as well as his

readers, and fancy he has a meaning where, in reality, he has none, in treating of

an abstract science, such as Algebra, that addresses itself only to the under-

standing, than in treating of such a science as Geometry, that addresses itself to

the senses as well as to the understanding; for the impossibility, or difficulty, of

representing a false, or obscure, conception in lines to the eye, would immedi-

ately strike either the writer or the reader, and make them perceive its falsehood

or its ambiguity; whereas when things are expressed only in words, or in any

abstract notation, wherein the senses are not concerned, men are much more

easily deceived: and for the same reasons, a defect of proof, or a hasty extension

of a conclusion justly drawn in one case to several other cases that bear some

resemblance, but not a complete one, to it, may be much more easily perceived in

Geometry than in Algebra. [Maseres 1758], ii–iii44

43 This paper, the first mathematical paper published by Playfair, was submitted

while he was a parish minister. In 1785 he was appointed Joint Professor of Mathematics at

the University of Edinburgh.
44 Maseres was not fatalistic about this difference. Indeed, his motive for writing his

treatise was ‘‘to raise [algebra] to a level with Geometry, in respect both of perspicuity of

conception, and accuracy of reasoning’’ ([Maseres 1758], iii). His general strategy for

effecting this elevation centered on the provision of intuitive interpretations for algebraic

expressions (especially for those that involved the ‘‘negative sign’’). Other thinkers, equally

committed to the algebraic way of doing things, questioned the propriety, or at least the

superiority, of intuitional grasp as a basis for mathematical knowledge. Lacroix, for ex-

ample, cautioned against ‘‘borrowing from appearances and sensations those things that

can be drawn from judgment alone’’ in mathematics (cf. [Lacroix 1805], 174).
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Berkeley’s claim that reasoning in which the reasoner’s mind was not continually

fixed on the meanings of the expressions involved could nonetheless be rigorous

was thus counter to the traditional view of rigor.45

This, however, only committed him to the view that signs need not, in all

their uses, function to express ideas. It is a further step, though perhaps not a

great one, to say that there are signs that do not in any of their uses express ideas.

Berkeley seems to have taken this further step in arriving at his general view of

the significance of algebraic language:

. . . the true end of speech, reason, science, faith, assent, in all its different degrees,

is not merely, or principally, or always, the imparting or acquiring of ideas, but

rather something of an active operative nature, tending to a conceived good:

which may sometimes be obtained, not only although the ideas marked are not

offered to the mind, but even although there should be no possibility of offering or

exhibiting any such idea to the mind: for instance, the algebraic mark, which denotes

the root of a negative square, hath its use in logistic operations, although it be

impossible to form an idea of any such quantity. [Berkeley 1732], 307 (emphasis

added)46

45 It was not unprecedented, however. Leibniz, for instance, in a well-known letter to

Fr. Des Bosses, praised algebraic methods for their usefulness while, at the same time,

labeling them fictions:

To speak philosophically, I would advocate neither infinitely small nor

infinitely large magnitudes; nor infinitely numerous nor infinitely scarce.

To put it compendiously, I hold these to be mental fictions [pro mentis

fictionabus], suited for use in calculations, like the imaginary roots in

algebra. And yet I have demonstrated that these expressions [expressiones]

are a great aid in shortening thought [ad compendium cogitandi] and also

in discovery [ad inventionem], and it is not possible that they should lead

us into error [in errorem ducere non posse]. Letter to Fr. Des Bosses,

March 17, 1707, in [Leibniz 1959], 436

Leibniz generally attributed the economizing power of algebra to the fact that it ‘‘un-

burdens the imagination’’ (cf. [Leibniz 1704], bk. IV, ch. 17), where the term ‘‘imagination’’

signified a capacity to visualize.

Before Leibniz, too, the usefulness of algebraic methods had been emphasized. Clear

expressions of this are found, for example, in the writings of Viète, Descartes, and Wallis.

Berkeley’s contribution was to link this to a broader instrumental conception of language

and reasoning.
46 Berkeley’s use of the term ‘‘logistic’’ agreed with the then current usage. Barrow,

shortly before him, characterized logistic as ‘‘. . . a kind of Artifice for designing Magni-

tudes and Numbers by certain Notes or Symbols, and collecting and comparing their

Sums and Differences . . . ’’ ([Barrow 1664]), 28).
Hutton, shortly after, identified it with ‘‘. . . the rules of computations in Algebra, and

in other species of Arithmetic: witness the Logistics of Viète and other writers ([Hutton

1795–1796], vol. II, 51–52).
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The cognitive significance of language was therefore not, in Berkeley’s view,

exclusively a result of its semantic usage. It could, in addition, have a kind of lo-

gistic use whose aim was to assist the mind in reasoning, judging, extending,

recording, and communicating knowledge even when it was not used to express

ideas (cf. [Berkeley 1732], 304–305). As Berkeley put it:

A discourse . . . that directs how to act or excites to the doing or forbearance of an

action may . . . be useful and significant, although the words whereof it is com-

posed should not bring each a distinct idea into our minds. [Berkeley 1732], 292

This, as we will now see, became a popular view among mathematicians of the

eighteenth and nineteenth centuries.

5.2. The Usefulness of Algebra

Despite their ultimate preference for classical synthetic proof, eighteenth-century

mathematicians widely acknowledged the usefulness of algebraic methods. A typ-

ical expression of this is the following remark of MacLaurin (1698–1746) in ref-

erence to the methods employed by Wallis in [Wallis 1656].

His demonstrations, and some of his expressions . . . have been excepted against.

But it was not very difficult to demonstrate the greatest part of his propositions

in a stricter method. . . .He chose to describe plainly a method which he had

found very commodious for discovering new theorems; and . . . this valuable
treatise contributed to produce the great improvements which soon followed

after. . . . In general, it must be owned, that if the late discoveries were deduced at

length, in the very same method in which the ancients demonstrated their the-

orems, the life of man could hardly be sufficient for considering them all: so that

a general and concise method, equivalent to theirs in accuracy and evidence, that

comprehends innumerable theorems in a few general views, may well be

esteemed a valuable invention. [MacLaurin 1742], 114

Here, as in the remark by Leibniz quoted earlier, we see admiration for both the

efficiency and the reliability of algebraic methods. This did not, however, imply an

unqualified acceptance of them. MacLaurin, indeed, said that they generally lack

the clarity and plainness that geometric methods ought ideally to possess. His

overall assessment was thus that algebraic methods

Logistic was, of course, a Greek idea. Plato, for example, spoke of it in The Republic

(cf. Bk. VII), the Gorgias (cf. 451b, c) and the Theaetetus (e.g. 145a, 198a). There is also a

substantial description of it in a scholium to the Charmides, 165e (the relevant part of

which is reprinted and translated in [Thomas 1980], 16–19). Heath notes that the pre-

Socratic thinker Archytas used it in the same sense (cf. [Heath 1921], I, 14). See [Heath

1921], I, 14–16 for further sources.
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. . .may be of use, when employed with caution, for abridging computations in

the investigation of theorems, or even of proving them where a scrupulous

exactness is not required; and we would not be understood to affirm, that the

methods of indivisibles and infinitesimals, by which so many uncontested truths

have been discovered, are without a foundation. But geometry is best established

on clear and plain principles; and these speculations [the infinitistic speculations

of Wallis] are ever obnoxious to some difficulties. . . .Geometricians cannot be

too scrupulous in admitting of infinites, of which our ideas are so imperfect.

[MacLaurin 1742], 113

This was a common view among mathematicians of the eighteenth and early

nineteenth centuries. There were, however, exceptions to this common view and

exceptions of three types. On the one hand, there were those who thought it did

not go far enough in its approval of algebraic methods. Wallis was a prime

example of this. As noted earlier, he regarded his methods as more than mere

instruments. They were, in his view, methods of genuine proof. Indeed, they

were superior methods of proof because they provided a truer and more probing

genetic account of many of the theorems of classical geometry than did the

traditional constructional proofs.

Others—for example, Maseres (cf. [Maseres 1758]) and William Frend (1757–

1841) (cf. [Frend 1796])—regarded the prevailing view as too tolerant of algebraic

methods. They believed this to be particularly true of its attitude toward the use of

negative and imaginary quantities.

More common and influential than either of the above, though, were attempts

to justify imaginary elements by comparing them to more commonly accepted

elements of the mathematical universe. These attempts were not as ambitious as

Wallis’s. They did not, in particular, argue that use of negative, imaginary, and

infinite numbers are necessary for genetically penetrating proofs. They did, how-

ever, try to put them on an equal footing with more commonly accepted numbers.

Gauss’s celebrated defense of the imaginary and complex numbers is a case in

point (cf. [Gauss 1831]). This defense centered on the provision of a geometrical

interpretation for these numbers—an interpretation which Gauss believed pro-

vided a basis in classical geometrical intuition for their acceptance.

The basics of this interpretation are as follows. Each complex number c is first

represented as an arithmetic sum, aþ bi (where a, b are real numbers and i is the

imaginary number
ffiffiffiffiffiffi�1

p
). aþ bi is thus uniquely determined by the pair of reals

(a, b), and can be interpreted as the point in the (Cartesian) plane whose real

coordinate x is a and whose complex coordinate iy (measuring the number of

units of i) is b. The value of aþ bi is then taken to be the Euclidean distance of

aþ bi from the origin O of this plane, which, by the Pythagorean metric, isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
( ¼ ja þ bij).

Given this interpretation of distance (or absolute value), addition and mul-

tiplication can be defined as geometrical operations. Addition is planar translation
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(vector addition) and operates according to the so-called parallelogram law. The

sum of c1(¼ a1þ b1i) and c2(¼ a2þ b2i) is the point whose x coordinate is a1þ a2
and whose iy coordinate is b2þ b2. Multiplication is a more complex operation,

but it, too, can be represented geometrically as a composition of rotations (about

O) and dilations.47

Gauss initially maintained that his interpretation justified the use of (ex-

pressions for) imaginary and complex numbers as means of proof:

. . . the arithmetic of the complex numbers is . . . capable of the most intuitive

sensible representation [der anschaulichsten Versinnlichung], and although the

author in the present account has pursued a purely arithmetical treatment, he

nevertheless also gave the necessary hints for this sensible representation—a

sensible representation which makes the insight come to life, and is therefore to

be recommended. . . .By this device the effect of the arithmetical operations on

the complex quantities becomes capable of sensible representation that leaves

nothing to be desired. . . . in this way the true metaphysics of the imaginary

quantities is placed in a bright new light. [Gauss 1831], 174–17548

He did not remain confident in this view, however. A few years following the

publication of the geometrical interpretation, he voiced doubts concerning the

legitimacy of imaginary numbers as means of arithmetic proof. His misgivings

seem to have been motivated by an ideal of genetic purity reminiscent of Aristotle,

who believed that one ought not to cross genetic lines in demonstrations. Gauss

seems to have held a similar scruple, though he applied it in the opposite di-

rection. That is, instead of disallowing arithmetic reasoning in geometry, as

Aristotle had done, he questioned the use of spatial (i.e., geometrical) intuition in

arithmetic. He expressed these misgivings in a letter to Moritz Drobisch (August

14, 1834):

47 As is well known, there were others who discovered such interpretations prior to

the publication of Gauss’s Anzeige in 1831. These include C. Wessel, J. R. Argand, J. War-

ren, and C. V. Mourey. Accounts of these and related developments are widely available.

Three brief but useful ones are [Beman 1897], [Cajori 1912], and [Windred 1929]. Somewhat

more wide-ranging are the discussions in [Lewis 1994] and [Novy 1973]. Wessel, a surveyor,

presented his ideas to the Royal Academy of Denmark in 1797. They were published in 1799
(English trans. in [Smith 1929]). Argand published his interpretation in 1806, and Warren

and Mourey each published theirs in 1828. Attempts at planar represenation of the

complexes seem to have had their start with Wallis ([Wallis 1685], ch. LXVI), who sug-

gested an inadequate interpretation. Euler, too, presented indications of such a view (cf.

[Euler 1749]). A letter of Gauss to Bessel in 1811 (cf. [Gauss 1870–1927], vol. VIII, p. 90)
suggests that he (Gauss) may also have had the idea of planar representation in mind by

that time.
48 Gauss also expressed his acceptance of imaginary elements as means of demon-

stration in an entry of October 1797 in his Tagebuch (cf. [Gauss 1903], #80, p. 18). In his

dissertation ([Gauss 1799]), however, he conspicuously avoided use of imaginary numbers.
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The representation (Darstellung) of the imaginary quantities as relations of

points in the plane is not so much their essence (Wesen) itself, which must be

grasped in a higher and more general way, as it is for us humans the purest or

perhaps a uniquely and completely pure example of their application. [Gauss

1870–1927], vol. X, 106

Gauss expressed his misgivings more publicly in the 1849 Jubil€aaumschrift,

where, commenting on proofs of the existence of roots of equations, he wrote:

At bottom the real content (eigentliche Inhalt) of the entire argumentation be-

longs to a higher realm of the general, abstract theory of quantity (abstracten

Gr€oossenlehre), independent of the spatial. The object of this domain, which tracks

the continuity of related combinations of quantities, is a domain about which

little, to date, has been established and in which one cannot maneuver much

without leaning on a language of spatial pictures (r€aaumlichen Bildern). [Gauss

1870–1927], vol. III, 7949

This suggests that Gauss lost confidence in his geometrical interpretation as a

means of revealing the essential nature of the complex numbers. His remark to

Drobisch that his interpretation provided a ‘‘uniquely pure’’ example of the ap-

plication of the complexes might nonetheless imply that he took his interpretation

as establishing their consistency.

Whatever Gauss’s own views of his interpretation may have been, however,

it was widely viewed by others as justifying the use of complex expressions in

proofs.

5.3. Peacock’s Formalism

At roughly the same time, there was a revival of formalist ideas. This was perhaps

most prominent in England, where the leading figure was George Peacock, a key

figure in the Cambridge School of the 1830s and 1840s.50 He believed that inter-

pretation was necessary for the ‘‘final result’’ of reasoning ([Peacock 1830], xiv),

but he did not believe that such interpretation need be applied to the ‘‘inter-

mediate part[s] of the process of reasoning which lead[s] to’’ (ibid.) that result.

49 For more on Gauss’s changing views of imaginary numbers, see [Schlesinger 1912].
50 ‘‘Cambridge algebraists’’ is the title Hankel used to refer to the school of algebraic

thinkers to which Peacock belonged (cf. [Hankel 1867], 15). Others have used the term

‘‘English School’’ or ‘‘British School.’’ The central figures of this movement were Peacock,

D. F. Gregory, and A. De Morgan. Their work derived inspiration, however, from the

earlier ideas and methods of Babbage, Woodhouse, and Lacroix (the latter through the

publication of [Lacroix 1802]). Various of the ideas of this group were also emphasized in

the work of Condillac and Condorcet. In Germany, Martin Ohm (1792–1872) advanced

similar ideas.

formalism 271



The similarity to Berkeley’s views stands out. According to Boole, something like

this view had become common among early and mid-nineteenth-century thinkers.

That language is an instrument of human reason, and not merely a medium for

the expression of thought, is a truth generally admitted. . . .whether we regard

signs as the representatives of things and of their relations, or as the repre-

sentatives of the conceptions and operations of the human intellect, in studying

the laws of signs, we are in effect studying the manifested laws of reasoning.

[Boole 1854], 2451

This was the conception of mathematical reasoning adopted by Peacock and the

Cambridge algebraists. We will call it the symbolic conception. According to it,

mathematical reasoning need not involve the constructional manipulation of

intuitions or the logical manipulation of propositions. It can instead consist in the

syntactic manipulation of uninterpreted (even uninterpretable) signs.

Symbolic reasoning is thus very different from contentual reasoning—that is,

reasoning with the semantic contents of expressions, be they intuitive or con-

ceptual in character. That notwithstanding, it is subject to constraints that are

based on concern for its use in producing contentually correct results. For Pea-

cock, this generally meant that a system of algebraic laws must preserve the laws of

contentual arithmetic:

Algebra may be considered, in its most general form, as the science which treats of

the combinations of arbitrary signs and symbols by means of defined though arbi-

trary laws: for we may assume any laws . . . so long as our assumptions are . . . not
inconsistent with each other: in order, however, that such a science may not be

one of useless and barren speculations, we choose some subordinate science as

the guide merely, and not as the foundation of our assumptions, and frame them

in such a manner that Algebra may become the most general form of that

science . . . and as Arithmetic is the science of calculation, to the dominion of

which all other sciences, in their application at least, are in a greater or less degree

subject, it is the one which is usually, because most usefully, selected for this

purpose. [Peacock 1830], §7852

There are a number of points in this passage that call for comment. The first

concerns Peacock’s use of the terms ‘‘Algebra’’ and ‘‘Arithmetic.’’ The former is

here used synonymously with ‘‘Symbolical Algebra,’’ a term that Peacock em-

ployed widely throughout his writings. ‘‘Algebra’’ is thus to be contrasted with

‘‘Arithmetic’’ or ‘‘Arithmetical Algebra.’’ Peacock took the latter to be composed

of evident necessary truths. He regarded the former as composed of evidentially

arbitrary but epistemically useful assumptions (cf. [Peacock 1830], §§ 71–77) or con-

ventions (cf. [Peacock 1830], viii).

51 This is a striking early statement of a view that was later advanced by Hilbert (cf.

[Hilbert 1928], 475) and that formed a fundament of his proof-theory.
52 See [Peacock 1834], 200–201 for a similar statement of the consistency requirement.
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A second point concerns what Peacock meant by ‘‘defined though arbitrary’’

laws. Of the notion of definition involved here, he says that we must take the signs

involved in such laws ‘‘not merely as the general representatives of numbers, but

of every species of quantity’’ ([Peacock 1830], ix) and that we must ‘‘give a form to

the definitions of the operations of Algebra, which must render them independent

of any subordinate science’’ (ibid.). Whatever the ‘‘definitions’’ of the signs of a

symbolical algebra are, then, Peacock regarded them as independent of the subject

matter of any ‘‘subordinate’’ science which may suggest it. Specifically, they are

not deducible from the definitions of the suggesting science. Later, we will con-

sider another crucial difference separating the definitions of a symbolical algebra

from the definitions of its suggesting science(s) as well. This is that, in a suggesting

science, the definitions of terms are taken to determine the rules concerning their

use; in a symbolical algebra, on the other hand, ‘‘the rules determine the meanings

of the operations, or more properly speaking, they furnish the means of inter-

preting them’’ ([Peacock 1834], 200).

A third and final point concerns the constraints Peacock placed on the choice

of laws for a symbolical algebra. My comment here will of necessity be longer and

more involved than those just given. It descends to the very elements of Peacock’s

views of algebra.

Peacock explicitly required that the laws of algebra be consistent with each

other. A little reflection reveals, however, an additional consistency constraint, one

implicit in Peacock’s requirement that symbolical algebra be useful, or, in his words,

that it not be a body of ‘‘useless and barren speculations’’ ([Peacock 1830], §78).

Peacock saw the usefulness of symbolical algebra as depending upon its

preservation of certain arithmetic laws—namely, those vital to its capacity as a

‘‘science of calculation, to the dominion of which all other sciences . . . are in a

greater or lesser degree subject’’ ([Peacock 1830], §78).53 In contemporary termi-

nology, the usefulness of symbolical algebra depends upon its being a conservative

extension of its ‘‘science of suggestion,’’ the suggesting science of arithmetic.54

The idea that a symbolical extension of a ‘‘suggesting’’ science55 should con-

serve its laws (or the laws that underwrite its computational utility, at any rate)

53 Arithmetical algebra was not the only science of suggestion that a symbolical

algebra might have. Indeed, Peacock expressly mentioned geometry, mechanics, and dy-

namics in this connection (cf. [Peacock 1830], xxi). Generally speaking, he broadened the

class of possible suggesting sciences to include ‘‘every . . . branch of natural philosophy,

which can be made to depend, by approximation, at least, upon fixed and invariable

principles’’ ([Peacock 1830], xxi).
54 Conservative extension of the suggesting science of arithmetic need not be taken to

imply conservative extension of the whole of arithmetic. There might be theorems of the

latter that are not important to the utility of arithmetic as a computing instrument and,

so, not theorems of the former.
55 Also termed a ‘‘subordinate’’ science by Peacock (cf. [Peacock 1830], §132).
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was enshrined in a general methodological principle that Peacock formulated in

1830 and which, in one form or another, became influential in the later nineteenth

and early twentieth centuries. Peacock called it the Principle of the Permanence of

Equivalent Forms (PPEF, for short) and stated it as follows:56

. . . if we discover an equivalent form in Arithmetical Algebra or any other sub-

ordinate science, when the symbols are general in form though specific in their

nature, the same must be an equivalent form, when the symbols are general in

their nature as well as in their form.57 [Peacock 1830], §132

Two clarificatory remarks are in order. The first concerns Peacock’s distinc-

tion between generality of form and generality of nature or value (cf. [Peacock

1842–1845], vol. II, §631). The second concerns his notion of equivalence between

algebraic expressions, specifically expressions containing variables.

In referring to the form of a symbol as ‘‘general,’’ Peacock meant that it was a

variable rather than a constant. In calling its nature or value general he seems to

have meant that it could serve as a variable ranging not only over a given par-

ticular type of quantity, but over any quantity of any type. A symbol general as to

both form and nature, then, would be a variable ranging over all quantities of all

types.

As regards equivalence, Peacock regarded two variable-containing expres-

sions, ‘‘F ’’ and ‘‘G,’’ as equivalent when ‘‘F ¼G.’’ There are questions, however,
as to what such an equation could or should mean.

When the variables contained in ‘‘F ’’ and ‘‘G ’’ vary over arithmetical entities

(e.g., numbers, or some more particular kind of number), it may seem that there

is a readily available answer: namely, that ‘‘F ¼G ’’ is true when each instance of

‘‘F ¼G ’’ is a truth of arithmetic.58

56 He also called it the Law of the Permanence of Algebraic Forms (cf. [Peacock 1830],

§133). Peacock was the first to call attention to the principle and to name it. He was not,

however, the first to use it. Nor is it clear that he was the first to have recognized its main

idea. Engel and Stäckel (cf. [Stäckel and Bolyai 1913], 35) point out an earlier claim by

Wolfgang Bolyai that seems to have had the same general tendency.
57 This is one of two clauses in the original statement of the principle in [Peacock

1830]—the clause which Peacock referred to as the ‘‘Converse Proposition’’ or ‘‘Converse

Proportion.’’ The other clause, the ‘‘Direct Proposition’’ or ‘‘Direct Proportion,’’ was this:

‘‘Whatever form is Algebraically equivalent to another, when expressed in general symbols,

must be true, whatever those symbols denote’’ ([Peacock 1830], §132). Peacock later dropped
the Direct Proposition from the statement of the principle and identified it simply with the

Converse Proposition ([Peacock 1842–1845], §§630–631): ‘‘Whatever algebraical forms are

equivalent, when the symbols are general in form but specific in value, will be equivalent

likewise when the symbols are general in value as well as in form’’ ([Peacock 1842–1845],

§§630–631).
58 Depending upon the relationship that arithmetic is taken to bear to logic, one might

also include here the instances of ‘‘F ’’ and ‘‘G’’ that are logical truths.
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Such a view is not, however, without problems. There might, for example, be

arithmetic equalities that do not become algebraic equalities (i.e., laws of sym-

bolical algebra) when their variables, which are specific as to nature (i.e., are

restricted to numbers), are replaced by variables that are general as to nature (i.e.,

range over quantities of all types). There is thus a need for a more precise

identification of those arithmetical laws the conservative extension of which is

supposed to be the basis of the fruitfulness of symbolical algebra.

This problem notwithstanding, the central thrust of the PPEF seems clear. It is

intended to mark a distinction between two types or levels of algebra, the arith-

metical and the symbolical, and to make clear that to be fruitful, the latter must

substantially conserve the laws of the former. The PPEF thus requires that the laws

of symbolical algebra be consistent not only with themselves but also with the laws

of arithmetical algebra.

Peacock emphasized, however, that satisfaction of this constraint does not by

itself provide a justification or foundation for symbolical algebra.

[The] . . . derivation of Algebra from Arithmetic, and the close connection which it

has been attempted to preserve between those sciences . . . has led to . . . the opinion,
that one is really founded upon the other: there is one sense, which we shall af-

terwards examine, in which this opinion is true: but in the strict and proper sense in

which we speak of the principles of a demonstrative science, which constitute

the foundation of its propositions, it would appear from what we have already

stated, that such an opinion would cease to be maintainable . . . [the relationship of]

the principles and operations of Arithmetic to those of Algebra . . . is not neces-
sary but conventional. . . .Arithmetic can only be considered as a Science of Sug-

gestion, to which the principles and operations of Algebra are adapted, but by which

they are neither limited nor determined. [Peacock 1830], vii–viii (brackets added)

The rules of symbolic combination which are thus assumed have been sug-

gested only by the corresponding rules in arithmetical algebra. They cannot be said

to be founded upon them, for they are not deducible from them; for though the

operations of addition and subtraction, in their arithmetical sense, are applicable to

all quantities of the same kind, yet they necessarily require a different meaning

when applied to quantities which are different in their nature, whether that dif-

ference consists in the kind of quantity expressed by the unaffected59 symbols, or

in the different signs of affection of symbols denoting the same quantity; neither

does it necessarily follow that in such cases there exists any interpretation which

59 Here’s the characterization of the term ‘‘affected’’ from [Hutton 1795–1796]:

The term, affected, is . . . used sometimes in algebra, when speaking of

quantities that have coefficients. Thus in the quantity 2a, a is said to be

affected with the coefficient 2. It is also said, that an algebraic quantity is

affected with the sign þ or �, or with a radical sign; meaning no more

than that it has the sign þ or �, or that it includes a radical sign.

This seems to be Peacock’s meaning as well.
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can be given of the operations, which is competent to satisfy the required sym-

bolical conditions. [Peacock 1834], 197–19860

Symbolic algebra was thus, in Peacock’s view, suggested by arithmetical al-

gebra, not founded (in Peacock’s strict deductive sense) by it. Its laws were con-

ventional or assumptive in character—even, in a sense, arbitrary.

In arithmetical algebra, the definitions of the operations determine the rules;

in symbolical algebra, the rules determine the meanings of the operations, or

more properly speaking, they furnish the means of interpreting them. . . .We call

those rules . . . assumptions, in as much as they are not deducible as conclusions

from any previous knowledge of those operations which have corresponding

names: and we might call them arbitrary assumptions, in as much as they are

arbitrarily imposed upon a science of symbols and their combinations, which

might be adapted to any other assumed system of consistent rules. [Peacock 1834],

200–201

For Peacock, then, the laws of symbolical algebra were not read off a subject

matter they were intended to describe. Rather, they preceded any such interpre-

tation and, indeed, determined it. This idea—that the laws of symbolical algebra

are essentially assumptions or postulates that precede any interpretation or defi-

nition of the quantities and operations with which they deal—is what I will call

the creativist element of Peacock’s viewpoint.

It is important to note, however, that Peacock took this view of the status of

symbolical algebra only as regards its strict (deductive) foundation. He allowed

that the laws of symbolical algebra are founded upon the laws of arithmetical

algebra in a ‘‘looser’’ sense. Indeed, this is required by his basic distinction be-

tween a symbolic algebra and its so-called suggesting science. Symbolical algebra is

not deducible from arithmetical algebra, but it is suggested by it.

But though the science of arithmetic, or of arithmetical algebra, does not furnish

an adequate foundation for the science of symbolical algebra, it necessarily

suggests its principles, or rather its laws of combination; for in as much as

symbolical algebra, though arbitrary in the authority of its principles, is not

arbitrary in their application, being required to include arithmetical algebra as

well as other sciences, it is evident that their rules must be identical with each

other, as far as those sciences proceed together in common; the real distinction

between them will arise from the supposition or assumption that the symbols in

symbolical algebra are perfectly general and unlimited both in value and repre-

sentation, and that the operations to which they are subject are equally general

likewise. [Peacock 1834], 195 (emphasis Peacock’s)

60 Peacock went on to say, however, that ‘‘. . . the investigation of . . . interpretations,
when they are discoverable, becomes one of the most important and most essential of

the deductive processes which are required in algebra and its applications’’ ([Peacock

1834], 198).
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Peacock thus attached importance to the matter of whether a system of laws was

justified by appeal to a prior scheme of definitions or meanings. He articulated his

ideas in the form of a distinction between definition and interpretation.

Arithmetical algebra, he maintained, begins with definitions—definitions

intended to capture the established meanings of the terms involved. These defi-

nitions determine the rules or laws of arithmetical algebra (cf. [Peacock 1834], 200).

To define, is to assign beforehand the meaning or conditions of a term or op-

eration. . . . It is for this reason, that we define operations in arithmetical algebra

conformably to their popular meaning. . . . [Peacock 1834], 197, note *

Symbolical algebra, on the other hand, begins with conditions or laws. These

conditions determine the meanings or interpretations assignable to them:

. . . to interpret, is to determine the meaning of a term or operation conformably

to definitions or to conditions previously given or assigned. . . .we interpret

[terms or operations] in symbolical algebra conformably to the symbolical

conditions to which they are subject. [Peacock 1834], 197, note *

In sum:

In arithmetical algebra, the definitions of the operations determine the rules; in

symbolical algebra, the rules determine the meaning of the operations . . .we
might call them arbitrary assumptions, in as much as they are arbitrarily imposed

upon a science of symbols and their combinations, which might be adapted to

any other assumed system of consistent rules. [Peacock 1834], 200–201

We see in Peacock’s conception of symbolical algebra the seeds of the more

mature variants of formalism that were to follow. They adopted, albeit with mod-

ification, his essentially creativist conception of symbolic instruments. They also

retained his basic conception of the constraints that should govern the use of such

instruments—specifically, that they should be consistent and should preserve the

laws of basic arithmetic. This notwithstanding, there were also differences. It is to

these differences that we now turn.

5.4. The Axiom of Solvability: Basic Character

By the latter half of the nineteenth century, there was widespread acceptance of

Peacock’s Principle of Permanence.61 Different variants of the principle emerged

61 It enjoyed widespread acceptance in England (cf. the writings of Boole, Gregory,

De Morgan, et al.), on the Continent (cf. the writings of Hankel, Peano, Durège, Hilbert

et al.) and in America (cf. the basic algebra text [Fine 1890] by H. B. Fine). See, in

particular, Hankel’s endorsement ([Hankel 1867], 11); Peano’s discussion ([Peano 1910],

224); Durège’s statement of the principle as that to which mathematics owes its consistency
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over time, but they shared a common theme; namely, that Algebra should pre-

serve (to the greatest extent possible) the arithmetic laws of the simplest quan-

tities, the positive whole numbers. We’ll refer to this general principle as the

Principle of Permanence.

Preservation of the laws of the whole numbers was not, however, the only

factor influencing the development of algebra. Were it otherwise, there would not

have been a reason to extend the basic domain (i.e., the domain of the positive

whole numbers) in the first place. To explain why arithmetic was extended to

successively broader domains requires something other than the Principle of

Permanence.

This is where the Axiom of Solvability seems to have entered the scene. It was,

according to Hilbert, a central precept of correct mathematical method:

However unapproachable . . . problems may seem to us and however helpless we

stand before them, we have, nevertheless, the firm conviction that their solution

must follow by a finite number of purely logical processes.62 Is this axiom of the

solvability (emphasis added) of every problem a peculiarity characteristic of

mathematical thought alone, or is it possibly a general law inherent in the nature

of the mind, that all questions which it asks must be answerable?63 . . .The
conviction of the solvability of every mathematical problem is a powerful in-

centive to the worker. We hear within us the perpetual call: There is the problem.

Seek its solution. You can find it by pure reason, for in mathematics there is no

ignorabimus. [Hilbert 1901], 444–445

The drive to solve problems was thus, in Hilbert’s view, the (or at least a)

central drive of the mathematician. It impelled him to create. Nowhere is this fun-

damental urge more in evidence than in the historical development of the

number-concept, the following ‘‘summary of which expresses the basic ideas well:

One . . . begins by premissing certain propositions whose validity is in no way

doubtful.

and much of whatever simplicity it has ([Dur�eege 1882], 8, 10); and H. B. Fine’s defense

([Fine 1890], §§12, 15, 31, 36). Its influence continued into the twentieth century (cf. the

applications by E. B. Wilson [Wilson 1912], 2); and J. W. Young ([Young 1911], 102, 111–113);
E. W. Hobson’s statement and employment ([Hobson 1926], 20–21); and Hilbert’s refer-

ence ([Hilbert 1930a], 231); and, indeed, continues to the present day (cf. the endorsement

in [Courant and Robbins 1947], ch. II, §5.1).
The principle has also had its detractors, however. See, for example, [Russell 1903],

376–377.

62 To avoid misunderstanding, it is important to note that Hilbert allowed as a ‘‘so-

lution’’ to a problem, a proof of the impossibility of a direct answer to it under a specified

set of conditions or ‘‘hypotheses.’’ Cf. [Hilbert 1901], 444. More on this below.
63 This raises the question of whether, contrary to Kant’s critical epistemology, the

Axiom of Solvability is a general principle of human reason.
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These are:

There does not exist a number (from the sequence 0, 1, . . . ), which when added

to 1 gives 0.

There does not exist a number (integral), which multiplied by 2 gives 1.

There does not exist a number (rational), whose square is 2.

There does not exist a number (real), whose square is �1.

Then one says: in order to overcome such an inconvenience, we extend the

concept of number, that is, we introduce, manufacture, create (as Dedekind says)

a new entity, a new number, a sign, a sign-complex, etc., which we denote by �1,

or 1/2, or
ffiffiffi
2

p
, or

ffiffiffiffiffiffiffi�1
p

, which satisfies the condition imposed. [Peano 1910], 22464

Each of Peano’s ‘‘premises’’ amounts to an observation concerning the nonex-

istence of a number to serve as a solution to a given ‘‘problem.’’ The extension of

the number-concept consists in the successive addition of these ‘‘solutions.’’

This extension reaches a natural end with the addition of the complexes.

Unlike the naturals, integers, rationals, and reals, the complexes form an alge-

braically closed set—that is, a set that contains at least one solution (i.e., root) for

every polynomial whose coefficients are elements of that set. This is essentially

what the Fundamental Theorem of Algebra (in one of its forms) tells us: every

polynomial with complex coefficients has a complex solution. There is therefore

no ‘‘unresolved problem’’—no rootless polynomial—to serve as a basis for extend-

ing the number concept beyond the complexes.

Together, the Axiom of Solvability and the Principle of Permanence guided the

progressive extension of the number-concept. The Axiom of Solvability expressed

the mathematician’s goal to solve problems. The Principle of Permanence acted as

a constraint upon the application of this axiom. It required that newly introduced

numbers preserve the basic laws of arithmetic. More precisely, it required that the

laws governing new numbers be consistent with the laws governing the old ones.

A tidy picture. Tidier, indeed, than the truth. We’ll consider some of the

complications shortly, after a brief survey of the historical background against

which this conception of method arose.

5.5. The Axiom of Solvability: Historical Background

In Hilbert’s own thinking, the Axiom of Solvability was a challenge to the epistemic

pessimism voiced by certain leading scientists of his day. I refer, of course, to such

64 Peano’s ordering is not the historical one. The following description by Gauss is

historically more accurate.

Starting originally from the notion of absolute integers, it has gradually

enlarged its domain. To integers have been added fractions, to rational

quantities the irrational, to positive the negative, and to the real the

imaginary. [Gauss 1831], 175
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figures as Emil and Paul du Bois-Reymond, Rudolf Virchow ([Virchow 1878]), and

even Brouwer. All of these, in one way or another, argued for limitations on human

knowledge. In the case of Virchow, especially, these ‘‘limitations’’ became ‘‘re-

strictions.’’ In particular, they became proposals for reforming the curricula in

German gymnasia and universities. Roughly, the proposal was that only fact, not

theory, was to be taught. Darwin’s theories, in particular, were not to be taught.

Thus arose the well-known Ignorabimusstreit of late nineteenth-century

Germany. The more pessimistic (some would say the more modest) parties to this

controversy advocated a doctrine of ignorance. Specifically, they advocated the

Ignorabimus65 doctrine—the view that there are permanent, irremediable lim-

itations on our knowledge, including our scientific and mathematical knowledge.

The leading exponent of this doctrine was the eminent German physiologist Emil

du Bois-Reymond (1818–1896). In an influential set of essays and scientific ad-

dresses in the 1870s, he argued, in particular, that a complete formulation of the

truths of mechanics is impossible. His mathematician brother, Paul (1831–1889),

extended the idea to mathematics, arguing that there are inherent limitations on

our knowledge of the continuum.66

Such large-scale, principled pessimismwas, of course, a theme familiar fromKant’s

critical epistemology. Kant began the First Critique with the observation that there are

questions we cannot avoid asking, but also can not, without antinomy, answer:

Human reason has this peculiar fate that in one species of its knowledge it is

burdened by questions which, as prescribed by the very nature of reason itself, it

is not able to ignore, but which, as transcending all its powers, it is also not able

to answer. [Kant 1781], A vii

Hilbert’sAxiom of Solvability—the claim that every exactly formulated problem

can be solved—announced his opposition to this pessimism and became a central

theme of his early foundational work. It reflected the general optimism of the

algebraic movement in mathematics. Viète (1540–1603) expressed this optimism

well in one of the founding statements of the algebraic movement:

. . . the analytic art . . . claims for itself the greatest problem of all, which is:

TO LEAVE NO PROBLEM UNSOLVED [Vi�eete 1983], 3267

65 Translated literally, Ignorabimus means ‘‘we shall never know.’’
66 For a useful discussion of the Ignorabimusstreit in mathematics, see [McCarty 2004].
67 Viète traced the root idea of his Art to Plato, writing:

There is a certain way of searching for the truth in mathematics that Plato

is said first to have discovered. Theon called it analysis, which he defined

as assuming that which is sought as if it were admitted and working

through the consequences of that assumption to what is admittedly

true. . . .The ancients propounded only two types of analysis . . . I have
added a third. . . . [T]he whole analytic art . . .may be called the science of

correct discovery in mathematics. [Viète 1983], 12–13
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The optimism expressed in Hilbert’s Axiom of Solvability thus reflected the

general optimism of the algebraic method. As we will now see, there was not only

optimism in Hilbert’s Program but also determination—a determination which

also ran parallel to the thinking of the early algebraists.

To see this, recall the antipathy expressed by Descartes toward the ancient

geometers. In their writings, he said, they presented themselves as proceeding by

synthesis alone. They did so, however, ‘‘not because they were wholly ignorant of

the analytic method’’ ([Descartes 1970b], 49), but ‘‘because they set so high a value

on it that they wished it to themselves as an important secret’’ (ibid.).68 The Greek

geometers thus used algebra to discover their theorems, but they attempted to

conceal this fact from posterity in order to make their work appear more inge-

nious than it truly was. Such, at any rate, was Descartes’s view.

Wallis expressed similar sentiments [Wallis 1685]:

It [the present treatise] contains an Account of the Original, Progress, and

Advancement of (what we now calle) Algebra, from time to time shewing its true

Antiquity (as far as I have been able to trace it;) and by what Steps it hath

attained to the Height at which now it is.

That it was in the use of old among the Grecians, we need not doubt; but

studiously concealed (by them) as a great Secret.

Examples we have of it in Euclid, at least in Theo, upon him; who ascribes the

invention of it (amongst them) to Plato.

Other Examples we have of it in Pappus, and the effects of it in Archimedes,

Apollonius, and others, though obscurely covered and disguised. [Wallis 1685],

preface, a369

It is to me a thing unquestionable, That the Ancients had somewhat of like

nature with our Algebra; from whence many of their prolix and intricate

Demonstrations were derived. And I find other modern Writers of the same

opinion with me therein. . . .
But this their Art of Invention, they seem very studiously to have concealed:

contenting themselves to demonstrate by Apogogical Demonstrations, (or re-

ducing to Absurdity, if denied,) without shewing us the method, by which they

first found out those Propositions, which they thus demonstrate by other ways.

Of which, Nuñes or Nonius in his Algebra (in Spanish) fol. 114. b. speaks

thus: O how well had it been if those Authors, who have written in Mathematics,

had delivered to us their Inventions, in the same way, and with the same Discourse,

as they were found! And not as Aristotle says of Artificers in Mechanics, who shew us

the Engines they have made, but conceal the Artifice, to make them the more

68 See also rule IV of the Regulae, where Pappus and Diophantus are mentioned by

name.
69 Elsewhere (cf. [Wallis 1685], 290), Wallis sarcastically remarked that Apollonius

would indeed have deserved his title ‘‘Magnus Geometra’’ had he indeed ‘‘discover[ed] all

those Propostions, and perplex demonstrations, in the same order they are delivered,

without some such Art of Invention, as what we now call Algebra.’’
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admired! The method of Invention, in divers Arts, is very different from that of

Tradition, wherein they are delivered. Nor are we to think, that all these Proposi-

tions in Euclid and Archimedes were in the same way found out, as they are now

delivered to us. [Wallis 1685], 3

Hilbert held a similar, though not identical, view with regard to the reac-

tionary proposals of Kronecker and Brouwer. He did not accuse them of guile (i.e.,

trying to hide a method of discovery) or vanity (i.e., claiming a degree of respect

they knew they didn’t deserve). He did, however, see them as advocating unnec-

essarily restrictive methods of proof—methods which made the discovery of proof

more difficult. As he put it:

What Weyl and Brouwer do amounts in essence to following the path formerly

trod by Kronecker. They seek to found mathematics by throwing everything

overboard that makes them uncomfortable and erecting a dictatorial prohibi-

tionism (Verbotsdiktatur). This means, however, to mutilate (zerstückeln) and

mangle (verstümmeln) our science, and if we follow such reformers (Reforma-

toren), we run the risk of losing a great part of our most valuable treasures.

[Hilbert 1922], 159

The Axiom of Solvability expressed his determination to overcome such arbi-

trariness and to claim the full measure of his freedom as a mathematician. The

freedom of the mathematician permits him to solve by creation. This freedom is

limited only by the need to be consistent and fruitful. For Peacock and other

formalists of the early nineteenth century, fruitfulness was a matter of preserving

computational utility, and preserving computational utility was essentially a matter

of preserving the basic algebraic laws of number. In other words, it was adherence

to the Principle of Permanence. Fruitfulness, in other words, required consistency

with the basic laws of arithmetic. Later formalists, as we will soon see, broadened

the conception of fruitfulness.

5.6. Complications

I alluded above to possible difficulties in the view that formalism (and, in par-

ticular, Hilbert’s formalism) consists essentially in joint application of the Axiom

of Solvability and the Principle of Permanence—that the principal freedom

claimed by the formalist (in arithmetic) is the freedom to solve arithmetic prob-

lems in any way compatible with the basic laws of the whole numbers. I will now

consider some of these difficulties.

One of them centers on the question of what is to count as a solution to a

problem. Hilbert began his answer to this question by saying:

. . . every definite mathematical problem must necessarily be susceptible of an

exact settlement, either in the form of an actual answer to the question asked, or
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by the proof of the impossibility of its solution and therewith the necessary

failure of all attempts. [Hilbert 1901], 444

He thus allowed that a proof that no ‘‘actual answer to the question asked’’

([Hilbert 1901], 444) is possible be a type of ‘‘solution’’ to that question. How-

ever, if a proof that a question is unanswerable is allowed to count as an answer

to that question, one can only wonder how much difference there is between

Ignorabimus and kein Ignorabimus (cf. [Hilbert 1901], 445). The du Bois-Reymonds

offered arguments for their limitative theses. Is the difference between them and

Hilbert that Hilbert called for proof where the du Bois-Reymonds offered only

argument? Perhaps. But, if so, there is room to wonder whether this isn’t making

too much of the possible differences between proof and (mere) argument.

There are also questions concerning how to rate the severity of departures

from the standard laws of arithmetic. The Principle of Permanence says that the

laws of basic arithmetic are to be retained to the fullest extent possible. But which

departures from standard arithmetic law are to be rated as possible (i.e., admis-

sible) and which as impossible (i.e., inadmissible)?

It is well known that extension of the number-concept to quantities of di-

mension greater than 2 (the complexes being viewed as quantities of dimension 2

in their representation as pairs of reals) require substantial departures from the

standard laws of arithmetic. Hamilton’s quaternions, numbers or quantities of

dimension 4, and Graves’s and Cayley’s octonions, numbers or quantities of di-

mension 8, both involve violations of basic arithmetic laws. Specifically, qua-

ternions violate the law of commutativity of multiplication, and octonions violate,

in addition, the law of associativity of multiplication.

But even the complexes involve violation of conditions that have some right

to be regarded as standard arithmetic laws. In particular, they violate the law that

any number multiplied by itself is either 0 or positive. More accurately, they lack

the conjunction of the following two properties:

(I). For every x, either x< 0 or x¼ 0 or x > 0,

and

(II). For every x, y, if x, y> 0, then xþ y > 0 and xy > 0.

All the ‘‘preceding’’ number systems satisfy this conjunction.70 What, then,

should we say? Do the complexes violate the Principle of Permanence or do they

not? One is tempted, perhaps, to say that they violate the Principle of Permanence

70 (I) doesn’t strictly hold for the postive integers because ‘‘x< 0’’ isn’t defined.

There is, however, an evident disjunctive property that one could put in place of (I) to

accommodate this fact.
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but only minimally, or not in a way that matters. But the difficulty then arises of

saying which exceptions to the standard laws of arithmetic matter, and why.71

That departures from the standard laws of arithmetic arise with the intro-

duction of the complexes is significant. It is significant because it suggests a

possible conflict between the Principle of Permanence and the Axiom of Solv-

ability. Because the complexes are algebraically closed, the Axiom of Solvability

does not enjoin extension of the number-concept beyond them. It does, however,

urge extension to the complexes because, with such extension, certain previously

unsolvable polynomials become solvable. The Principle of Permanence, on the

other hand, is resistant to extension to the complexes because it leads to failure of

a standard arithmetic law, namely, the conjunction of (I) and (II) above.

Certain facts concerning the extension of the number-concept to the com-

plexes thus suggest a possible conflict between the Axiom of Solvability and the

Principle of Permanence. The situation, however, is even more complicated. For if

we do not extend the number-concept to include complexes, then the Funda-

mental Law of Algebra does not hold. Does this imply that failure to extend the

number-concept to the complexes would violate the Principle of Permanence?

Seemingly not. The Fundamental Law of Algebra does not appear to be a law

of the same sort or in the same sense as other basic laws of arithmetic (including, I

would say, the conjunction of (I) and (II) above). Indeed, it isn’t a ‘‘law’’ for the

systems ‘‘preceding’’ the complexes. In particular, it isn’t a law for the reals. It

does not, therefore, appear to be the type of law the preservation of which the

Principle of Permanence was intended to cover.

It does, however, indicate a third type of methodological principle in

mathematics—one distinct from the Axiom of Solvability and the Principle of Per-

manence. This is a preference for simplicity. This preference directs us to extend

the number-concept not only in such ways as maximize the solution of problems

or maximize preservation of the basic laws of arithmetic, but in ways that max-

imize certain types of simplicity—in this case, the simplicity borne of algebraic

closure.

Let me close this subsection by mentioning one final puzzle—this time, a

puzzle concerning the Principle of Permanence. I mentioned above that the

Axiom of Solvability does not compel extension of the number-concept beyond

the level of the algebraically closed system of the complexes. For various thinkers

(e.g., Euler and Hamilton, to mention but two), however, the imaginary number

i ¼ ffiffiffiffiffiffi�1
p

, and the complex numbers constructed from it, did not constitute

genuine solutions to problems. The reason was that they made use of the sup-

posed number or quantity
ffiffiffiffiffiffi�1

p
, and this, for them, was an absurdity. It followed

that any number making use of it was likewise an absurdity and, thus, not a

71 To say that the complexes violate the standard laws as little as possible raises other

questions—for example, the question of what this might or should mean.
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genuine solution to a problem. Viewed correctly, then, the Axiom of Solvability

did not sanction the introduction of the complex numbers.72

In 1837, Hamilton (cf. [Hamilton 1837], sec. 3)73 produced an analysis of the

complex numbers that he believed rescued the complexes from the charge of

absurdity. On this analysis, complex numbers were two-dimensional quantities,

each of whose dimensions was real-valued. As such, he maintained, they were fully

intelligible:

In the THEORY OF SINGLE NUMBERS, the symbol
ffiffiffiffiffiffiffi�1

p
is absurd, and denotes

an IMPOSSIBLE EXTRACTION, or a merely IMAGINARY NUMBER; but in the

THEORY OF COUPLES, the same symbol
ffiffiffiffiffiffiffi�1

p
is significant, and denotes a

POSSIBLE EXTRACTION, or a REAL COUPLE. . . . In the latter theory, there-

fore, though not in the former, this sign
ffiffiffiffiffiffiffi�1

p
may properly be employed. . . .

[Hamilton 1837], 417–418

In Hamilton’s view, then, the meaningfulness of
ffiffiffiffiffiffi�1

p
and signs for complexes

generally depended upon how they were conceived. More particularly, it de-

pended upon what we might call the dimensionality of their conception. Conceived

as one-dimensional quantities, they’re meaningless and ‘‘absurd.’’ Conceived as

two-dimensional quantities, they’re fully intelligible. The same holds for the more

extensive class of imaginary units used in defining higher-dimension hypercom-

plexes (e.g., quaternions and octonions). Viewed as one-dimensional quantities,

they’re absurd; viewed as multidimensional quantities, they’re not. Such, at any

rate, was Hamilton’s view.

We argued above that the failure of the complexes to preserve (I) and (II) can

be seen as a violation of the Principle of Permanence. Hamilton suggests that this

is valid at most for the one-dimensional conception of the complexes. This raises

the question of what should be counted as the permanent ‘‘laws’’ of multidi-

mensional quantities—the laws to be preserved under extension from one dimen-

sionality to another. Alternatively, it raises a question as to whether the Principle

of Permanence should be taken as a valid methodological principle governing the

extension of multidimensional concepts of number or quantity.

The basic point can be illustrated by considering the law of multiplicative com-

mutativity. Hamilton’s treatment of two-dimensional hypercomplexes (i.e., the

complexes) preserved it as a law. His treatment of higher-dimensional hyper-

complexes (viz., the quaternions) did not. One would like to know what he took

72 Similar arguments were made with respect to the negative numbers. See, for ex-

ample, [Frend 1796] and [Maseres 1758].
73 Hamilton had reported the chief ideas of his treatment three years earlier (cf.

[Hamilton 1834], published in 1835. H. G. Grassmann formulated a more extensive and

more general multidimensional approach to quantities ([Grassmann 1844]). It wasn’t until

Hankel’s discussion of Grassmann’s work ([Hankel 1867]), however, that Grassmann’s

study gained significant recognition.
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the significance of this to be. Hamilton gave us little to go on. He argued for a

reconception of number based on an intuition of time. Given the inherent di-

rectedness of time, it would not be surprising for this to lead to an element(s) of

order-sensitivity in arithmetic and, hence, a limited role for such order-insensitive

laws as commutativity. One would not, however, expect preservation of such

order-insensitive laws as multiplicative commutativity more in the case of two-

dimensional quantities than in the case of higher-dimensional quantities.

The multidimensional approach to quantity thus raises questions concerning

the application (even the applicability) of the Principle of Permanence. There is a

clear link between the move to the multidimensional analysis of quantity and the

violation of the basic laws of algebra for one-dimensional quantities. It was Hankel

who, in 1867, first succeeded in proving a link of this type. Hankel presented his

theorem as an answer to a question raised by Gauss—namely: ‘‘. . .why the re-

lations between things which represent a multiplicity of more than two dimen-

sions cannot provide other sorts of permissible quantities in general arithmetic’’

(cf. [Gauss 1870–1927], vol. II, p. 178). He stated it as follows:

A higher complex number system, whose formal operations of calculating are

fixed by the conditions given in §28, and whose products of unity are particular

linear functions of the original unities, and in which no product can vanish

without one of its factors being zero, contains within itself a contradiction and

cannot exist. [Hankel 1867], 10774

In more modern terms, Hankel’s Theorem, as we’ll call it,75 says that the field

C is, up to isomorphism, the only commutative field obtainable by adding roots

of polynomials with complex coefficients to the field C. In still other words, any

attempt to develop the (or a) number-concept in a way that includes C but goes

beyond it will inevitably lead to (further) violations of the Principle of Perma-

nence. Understood in this way, Hankel’s Theorem is a kind of completeness result

for C. It says that C is the most complete (or most nearly complete) of all the

multidimensional elaborations of the number concept in the sense that it pre-

serves the greatest portion of the standard laws of number. We noted earlier that

since the complex numbers form an algebraically closed system, the Axiom of

Solvability would seem not to compel extension of the number concept beyond

the complexes. Hankel’s Theorem, it seems, promises problems for the Principle

of Permanence if the number concept is so extended. The complex numbers thus

seem to form maxima for both the Axiom of Solvability and the Principle of

74 In addition to the conditions named by Hankel in the above statement, the

conditions in his §28 are essentially that addition and multiplication are commutative and

associative (cf. [Hankel 1867], 99) and that multiplication distributes over addition (102).
75 Remmert (cf. [Ebbinghaus et al. 1991], 119) observes that the theorem was used by

Weierstrass in lectures dating from 1863. Hankel is therefore only the first to have pub-

lished a proof of it, not the first to have thought of it.
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Permanence. The maxima are of different types, however. The complexes are the

maximum required by the Axiom of Solvability. They are the maximum per-

mitted by the Principle of Permanence.

5.7. Hilbert’s Formalism

One might think that Hankel’s Theorem would have been the end of the Principle

of Permanence. Such, however, was not the case. It continued to have many

proponents, not the least of whom was Hilbert.76

What seems to have changed is the emphasis placed on the qualifying phrase

‘‘to the fullest extent possible.’’ This is illustrated by Peano’s criticism of Hermann

Schubert’s formulation of the principle. Quoting the (corrected) French edition of

Schubert’s ‘‘Grundlagen der Arithmetik’’ (from the Encyclop€aadie der mathema-

tischen Wissenschaften, vol. I), he wrote: ‘‘. . . one must be ‘guided by a concern

for keeping the formal laws as much as possible.’ ’’ [Peano 1910], 225 (emphasis

added).

Peano argued that this was the strongest plausible form of the principle. His

reasoning, presented in the form of a criticism of Schubert’s misstatement of it,

was that a stronger form requiring complete preservation of laws would lead to

nonsense (e.g., the identity of the integers with the rational numbers):

This principle of permanence reached its apogee with Schubert, who, in the

Encyclop€aadie der mathematischen Wissenschaften, affirmed that one must ‘‘prove

that for numbers in the broad sense, the same theorems hold as for numbers in

the narrow sense.’’ Now, if all the propositions which are valid for the entities of

one category are valid also for those of a second, then the two categories are

identical. Hence—if this could be proved—the fractional numbers are integers!

[Peano 1910], 22577

These days, of course, we would insist on a more careful drawing of certain

distinctions (e.g., between propositions that are true of a set of items versus the

laws or theorems that can be proved of them). There is also a disconnect between

Peano’s criticism of Schubert and his insistence on the qualified version of

the Principle of Permanence. The right idea here, it seems, is not to point to the

importance of the qualificatory phrase ‘‘as much as possible,’’ but to highlight the

76 Other late nineteenth- and early to mid twentieth-century proponents included

H. Durège ([Dur�eege 1882], 8ff.), J. W. Young ([Young 1911], 102, 111–113), H. B. Fine ([Fine

1890], §§12, 19), E. B. Wilson ([Wilson 1912], 2, 478), E. W. Hobson ([Hobson 1926], 20–21),
and R. Courant and H. Robbins ([Courant and Robbins 1947], 88–89).

77 Schubert’s statement in the Encyclopädie is on p. 11 of IA1. It reads: ‘‘. . . zu
beweisen, dass für die Zahlen im erweiterten Sinne dieselben Sätze gelten, wie für die

Zahlen im noch nicht erweiterten Sinne. . . . ’’
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importance of distinguishing between an extension’s preserving the laws of its

predecessors and its having the same laws. The Principle of Permanence does not

prohibit an extension from adding to the laws of its predecessors. Nor does it make

minimization of such additions an ideal. The minimization it seeks is minimiza-

tion of deletions from (or contradictions with) the laws of the predecessor theories.

This said, Peano’s basic point—that the Principle of Permanence can be seen

and appreciated as a methodological principle urging maximal possible preser-

vation of the basic or original laws of number—is sensible enough. It is also

significant because it expresses a preference for freedom (i.e., for the Axiom of Solv-

ability, or freedom to create a solution to a problem) over preservation of the

familiar. A little more accurately, it implies, modulo consistency, a preference for

the Axiom of Solvability over the Principle of Permanence.

Hilbert’s position is more complicated. He wrote approvingly of the Principle of

Permanence as a possible way of working toward completeness in certain theories—

particularly what he referred to as theories of ‘‘higher domains,’’ (cf. [Hilbert 1930a],

231). He did not say what he meant by ‘‘higher domains’’ but it is reasonable to take

him as including both theories of higher-dimension quantities and such abstract

basic theories as set theory.78 He maintained that the Principle of Permanence could

be used to provide a motivation for new axioms.

This, however, was the least important of Hilbert’s applications of something

like a Principle of Permanence. Of much greater significance were the broad

applications he directed toward the laws of set theory and classical logic.

Concerning the former, he wrote:

We shall carefully investigate those ways of forming notions and those modes of

inference that are fruitful; we shall nurse them, support them, and make them

usable, wherever there is the slightest promise of success. No one shall be able to

drive us from the paradise that Cantor has created for us. [Hilbert 1926], 375–37679

His attempt to preserve the classical laws of logic was even more self-consciously

undertaken on analogy with other, more familiar applications of the Principle of

Permanence.

78 Hilbert contrasted the so-called theories of ‘‘higher domain’’ with arithmetic and

analysis, writing:

It is generally maintained that the axiom system for number theory as

well as for analysis are complete. . . .The case of the consistency of S as well
as of :S would be conceivable in higher domains. In that case the

assumption of one of the two statements S and :S as axiomatic is to be

justified by methodological advantages (principle of permanence of laws,

further possibilities of construction, etc.). [Hilbert 1930a], 231

79 Here we see the connection of the ideal of permanence with that of fruitfulness, a

connection Peacock also stressed.
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At all events we observe the following. In the domain of finitary propositions,

in which we should, after all, remain, the logical relations that prevail are very

imperspicuous, and this lack of perspicuity mounts unbearably if ‘‘all’’ and

‘‘there exists’’ occur combined or appear in nested propositions. In any case,

those logical laws that man has always used since he began to think, the very

ones that Aristotle taught, do not hold. Now one could attempt to determine

the logical laws that are valid for the domain of finitary propositions; but this

would not help us, since we just do not want to renounce the use of the

simple laws of Aristotelian logic, and no one, though he speak with the

tongues of angels, will keep people from negating arbitrary assertions, forming

partial judgments, or using the principle of excluded middle. What then shall

we do?

Let us remember that we are mathematicians and as such have already

often found ourselves in a similar predicament, and let us recall how the

method of ideal elements, that creation of genius, then allowed us to find an

escape. I presented some shining examples of the use of this method at the

beginning of my lecture. Just as i ¼ ffiffiffiffiffiffiffi�1
p

was introduced so that the laws of

algebra, those, for example, concerning the existence and number of the roots

of an equation, could be preserved in their simplest form, just as ideal factors

were introduced so that the simple laws of divisibility could be maintained

even for algebraic integers (for example, we introduce an ideal common divisor

for the numbers 2 and 1þ ffiffiffiffiffiffiffi�5
p

, while an actual one does not exist), so we

must here adjoin the ideal propositions to the finitary ones in order to maintain

the formally simple rules of ordinary Aristotelian logic. [Hilbert 1926], 379
(emphasis Hilbert’s)80

Hilbert thus saw the relationship between the Axiom of Solvability and the

Principle of Permanence differently than Peano. He seems to have regarded the

Axiom of Solvability as a means of securing adherence to the Principle of Per-

manence (or some principle like it). We introduce i ¼ ffiffiffiffiffiffi�1
p

because it allows us

to preserve a law—the law (the Fundamental Theorem of Algebra) concerning the

existence and number of roots of an equation—in an attractively simple form.

Even more importantly, we create the ideal propositions in order to preserve the

80 Hilbert makes similar statements elsewhere. One in which he again asserts the

parallel between the use of the so-called ideal propositions and the use of more familiar

ideal elements in mathematics is the following:

. . . if to the real propositions we adjoin the ideal ones, we obtain a system

of propositions in which all the simple rules of Aristotelian logic hold and

all the usual methods of mathematical inference are valid. Just as, for

example, the negative numbers are indispensable in elementary number

theory and just as modern number theory and algebra become possible

through the Kummer–Dedekind ideals, so scientific mathematics be-

comes possible only through the introduction of ideal propositions.

[Hilbert 1928], 471
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simple, psychologically efficient laws of classical logic as the laws governing logical

inference in mathematics.81, 82

Psychological convenience—or avoidance of the type of inconvience repre-

sented by the ‘‘unbearable’’ awkwardness of finitary logic—thus became for Hilbert

a prime objective of proper mathematical method. When faced with awkwardness

or inconvenience in the realm of real mathematics, the mathematician is urged to

remember that she is free to create a more convenient environment in which to

conduct her reasoning.

Hilbert codified this freedom in the form of a methodological principle he

termed the Creative Principle (das sch€oopferische Prinzip).

Having arrived at a certain point in the development of a theory, I may

designate (bezeichnen) a further proposition as correct (richtig) as soon as it is

recognized (erkannt) that its introduction results in no contradiction with

propositions previously admitted as correct. . . . [This is] the creative principle

which, in its freest use, justifies us in introducing ever newer concept-formations

(Begriffsbildungen), the only restriction being that we avoid contradiction.

[Hilbert 1905], 135–136

This was an affirmation of Hilbert’s basic belief in the mathematician’s

freedom—‘‘the freedom of concept-formation and of the methods of inference

ought not to be limited beyond what is necessary’’ ([Hilbert 1920]). Restrictions

on concept-formation and inference ‘‘must be formulated in such a way that

the contradictions are eliminated but everything valuable remains’’ (ibid.). Hilbert

asserted this laissez-faire approach to mathematics as a method greatly to be

81 Hilbert’s conception of the real vs. ideal distinction was essentially this:

. . . elementary mathematics contains, first, formulas to which correspond

contentual communications of finitary propositions . . . and which we

may call the real propositions of the theory, and second, formulas

that . . . in themselves mean nothing but are merely things that are gov-

erned by our rules and must be regarded as the ideal objects of the the-

ory. . . . if to the real propositions we adjoin the ideal ones, we obtain a

system of propositions in which all the simple rules of Aristotelian logic

hold and all the usual methods of mathematical inference are

valid. . . . scientific mathematics becomes possible only through the

introduction of ideal propositions. [Hilbert 1928], 469–71

82 One might also think that, in some sense, Hilbert intended to preserve the laws of

finitary reasoning. He did not, however, advocate their preservation on grounds of their

computational utility or general utility for efficient mathematical reasoning. Rather, he

required their preservation because of their evidentness. Their preservation was thus not

to be secured by application of a methodological principle such as the Principle of

Permanence.
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preferred to the more restrictive approaches of the intuitionists (viz., Brouwer,

Poincaré, Weyl, and especially Kronecker).83

The picture of mathematics and its method that Hilbert constructs is thus

reminiscent of Peacock’s. Like Peacock, Hilbert made a distinction between real

and ideal elements in mathematics.84 Also like Peacock, he saw this distinction as

being at least partially a distinction between those parts of mathematics that

purport to express an independently given reality, and those parts of mathematics

that are ‘‘creations’’ whose purpose is to preserve mathematical reasoning in a

simple and efficient form.85

Further like Peacock, Hilbert subscribed to an essentially Berkeleyan con-

ception of language; a conception according to which the cognitive significance of

some parts or uses of language lies in their capacity to guide reasoning or in-

ference without essential adversion to an interpretation. Finally, like Peacock,

Hilbert accepted the existence of two basic constraints on the use of symbolical

methods in mathematics—namely, that they be (1) consistent86 and (2) fruitful.87

There were thus strong similarities between the formalist viewpoints of Hil-

bert and Peacock. There were also significant differences. Perhaps the most im-

portant of these is that concerning Hilbert’s distinctive view of Begriffsbildung

83 The remarks quoted in this paragraph are taken from §4 of [Hilbert 1920], a section

titled ‘‘The Method of Extreme Prohibition of Kronecker and Poincaré’’ (‘‘Die Methode

der extremen Verbote von Kronecker und Poincaré’’). The German of the larger passage is

Wir sagen vielmehr, die Verbote müssen so gemacht werden, dass die

Widersprüche beseitigt werden, dass aber doch allesWertvolle bestehen bleibt,

und zwar nicht nur alle wertvollen Resultate müssen erhalten bleiben, sondern

auch die Freiheit der Begriffsbildung und der Schlussmethoden soll nicht über

das Mass des Notwendigen hinaus beschränkt sein. [Hilbert 1920], 19–20

84 Peacock expressed his distinction between the ‘‘real’’ and ‘‘unreal’’ elements of

algebra in this way.

Quantities and their symbols are said to be real or possible, when they can

be shewn to correspond to real or possible existences: in all other cases,

they are said to be unreal, impossible or imaginary. [Peacock 1842–45], vol.
II, §557 (emphasis Peacock’s)

85 Peacock said that, in algebra, the laws or axioms precede their interpretation.

Hilbert and Bernays offered a similar view in the context of distinguishing formal axi-

omatization from various other types of axiomatization (cf. [Hilbert and Bernays 1934], 7).
86 Consistent themselves, individually and collectively, and consistent with the real

(i.e., the semantically interpreted) part(s) of mathematics).
87 The Principle of Permanence and the consistency constraint are, or at least can be,

formulated in such a way as to be, related. Specifically, satisfaction of the Principle of

Permanence for a new theory might be seen as essentially requiring consistency with the

laws of an older theory.
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(concept-formation or -construction) in mathematics. Kant had famously main-

tained that

. . .mathematical knowledge is the knowledge gained by reason from the

construction of concepts. To construct a concept means to exhibit a priori the

intuition which corresponds to the concept. For the construction of a concept we

therefore need a non-empirical intuition. . . .Thus I construct a triangle by

representing the object which corresponds to this concept either by imagination

alone, in pure intuition, or in accordance therewith also on paper, in empirical

intuition—in both cases completely a priori, without having borrowed the

pattern from any experience. [Kant 1781], A713, B741

For Kant, this meant that the introduction of concepts in mathematics

proceeds in an essentially different way from the way in which it proceeds else-

where. Generally speaking, that is, outside mathematics, concepts may be intro-

duced without being constructed. Indeed, they may be introduced at will, subject

only to a condition of consistency:

. . . I can think (denken) whatever I want, provided only that I do not contradict

myself, that is, provided my concept is a possible thought. This suffices for the

possibility of the concept, even though I may not be able to answer for there

being, in the sum of all possibilities, an object corresponding to it. Indeed,

something more is required before I can ascribe to such a concept objective

validity (that is, real possibility; the former possibility was merely logical).

[Kant 1781], p. xxvi, preface to the second edition88

Introduction of concepts in mathematics, on the other hand, required ‘‘something

more’’ for Kant than mere consistency. It required construction, that is, a priori

exhibition of an intuition corresponding to the concept.

Hilbert’s view of concept-formation (Begriffsbildung) in mathematics con-

trasted in clear ways with Kant’s. He (Hilbert) accepted that some concepts

(viz., those belonging to what he referred to as realmathematics) were constructed

in the Kantian manner (or something close to it). He explicitly allowed, however,

that other concepts—specifically, the concepts belonging to ideal mathematics—

may be introduced without assignment of any interpretation, much less as-

signment of an intuitive interpretation reached through a priori construction. He

saw the formal axiomatic method as a tool for doing this:

88 The German is

Aber denken kann ich, was ich will, wenn ich mir nur nicht selbst wid-

erspreche, d. i. wenn mein Begriff nur ein möglicher Gedanke ist, ob ich

zwar dafür nicht stehen kann, ob im Inbegriffe aller Möglichkeiten diesem

auch ein Objekt korrespondiere oder nicht. Um einem solchen Begriffe

aber objective Gültigkeit (reale Möglichkeit, denn die erstere war bloß die

logische) beizulegen, dazu wird etwas mehr erfördert.
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When we are engaged in investigating the foundations of a science, we must set

up a system of axioms which contains an exact and complete description of the

relations subsisting between the elementary ideas of that science. The axioms so

set up are at the same time the definitions of those elementary ideas; and no

statement within the realm of the science whose foundation we are testing is held

to be correct unless it can be derived from those axioms by means of a finite

number of logical steps. . . . if it can be proved that the attributes assigned to the

concept can never lead to a contradiction by the application of a finite number of

logical processes, I say that the mathematical existence of the concept . . . is
thereby proved. [Hilbert 1901], 447–44889

In Hilbert’s view there was thus, in addition to Kant’s construction of con-

cepts, a second and radically different way to introduce concepts into mathematics.

This was the means provided for by the axiomatic method. Hilbert described this

method (in the case of the theory of the ‘‘number-concept’’) as follows.

We think (denken) a system of things. We call these things numbers and signify

(bezeichnen) them by a, b, c, . . . . We think (denken) these numbers in certainmutual

relationships whose exact (genaue) and complete (vollst€aandige) description (Bes-

chreibung) is accomplished (geschiet) by the . . . axioms. . . . [Hilbert 1900], 242

For Hilbert, then, concept-introduction in mathematics behaved more like

Kant’s ‘‘denken’’ than his ‘‘anschauen.’’ Because of this, his view of mathematical

reasoning ran contrary to the classical view. Like Berkeley, he allowed reasoning to

include noncontentual manipulation of signs, and he specifically did not require

that all reasoning be with items having intuitional content.

It is also significant that he described the axioms of a theory as constituting

an exact and complete description of the things thought about. The completeness

spoken of here is of particular interest. It does not seem to represent so much a

descriptive goal or ideal of axiomatic concept-introduction as a prerogative of it. It

expresses the idea, that is, that the mathematician has a freedom or authority to

stipulate that the concepts she introduces have exactly the properties that are

provided for them by the axioms by which they are introduced.

It is difficult to know for sure what Hilbert had in mind. The final aim seems

to have been categoricity, a property which (see [Hilbert 1900]) Hilbert seems to

have thought was achievable by postulation.90 This is how he used the term

‘‘completeness’’ in [Hilbert 1900], at any rate. In particular, he posited his so-

called Vollst€aandigkeitsaxiom (i.e., Completeness Axiom) to ensure the categoricity

of his axiom system. It was fairly common practice for early twentieth-century

89 Hilbert made the same point in a variety of places. See, for example, [Hilbert 1900a],

242, and Hilbert’s letter of Dec 29, 1899 to Frege (cf. [Frege 1980], 38–41).
90 A theory is categorical if all of its models are isomorphic. Veblen introduced the

term ‘‘categoricalness’’ in [Veblen 1904], though he attributed the term to Dewey (cf.

p. 346, note {).
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writers to use the term ‘‘complete’’ with this meaning (cf. [Wilson 1907–1908],

[Wilson 1904]).91 The completeness of Hilbert’s early writings thus seems to have

been (some kind of) completeness as a definition.

Hilbert’s later writings (e.g., [Hilbert and Ackermann 1928], [Hilbert 1930a])

modified this somewhat. In [Hilbert 1930a], he noted that categoricity was not a

finitary notion and he introduced the notion of negation-completeness (not Hil-

bert’s term) as a finitary surrogate for it.92 He claimed that the usual systems

of arithmetic and analysis were generally regarded as being complete in this sense.

He also suggested, however, that such completeness was not a forgone conclusion

for theories of ‘‘higher domains’’ (Hilbert 1930a, 231). Additional axioms might be

needed in order to attain completeness in these theories. Choice of such axioms

was to be guided by methodological principles such as the ‘‘principle of the

permanence of laws.’’ These remarks raise some difficult questions concerning the

late Hilbert’s understanding of and attitude toward completeness.

These are heightened by the fact that, in his very latest writings, Hilbert sug-

gested a more Peacockean conception of axiomatization:

In formal axiomatization . . . the basic relations are not taken as having already

been determined contentually. Rather, they are determined implicitly by the

axioms from the very start. And in all thinking with an axiomatic theory only

those basic relations are used that are expressly formulated in the axioms.

[Hilbert and Bernays 1934], 7

The mathematician, on this view, is free to stipulate of a concept she’s introducing

that it have exclusively the properties provided for by the axioms she uses to

introduce it. There is no content belonging to a concept introduced in this way

except that which is provided for by the introducing axioms. The axioms used to

introduce a concept thus guaranteedly take on a kind of completeness—what

might be called constitutive completeness because, together, they constitute the

‘‘content’’ (i.e., the role in reasoning) of the concept.

Concepts are thus identified with the roles they occupy in mathematical

thinking (denken). They do not have to have an intuitive content in order to be

significant.93 Hilbert believed that the inferential roles of concepts are deter-

mined not by contents given prior to the axioms which introduce them, but by

those introducing axioms themselves. Indeed, all reasoning concerning a concept

91 [Huntington 1902] (cf. p. 264) used ‘‘complete’’ (he also said ‘‘sufficient’’) in a more

comprehensive way, to mean that the axioms of a system were consistent, mututally in-

dependent, and categorical.
92 A formal system T whose language is L is said to be negation-complete when, for

every sentence S of L, either S or :S is provable in T.
93 This is not to say that there are no concepts whose significance rests upon their

having intuitive content. Hilbert believed that the cognitive significance of finitary con-

cepts did rest on their intuitive contents.
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is restricted to that which is provided for by its introducing axioms. It follows that

concepts function as signs or sign-complexes in formal axiomatic systems:

Herein lies the firm philosophical viewpoint that I take to be necessary for the

grounding of pure mathematics, and for scientific thinking, understanding and

communication generally: in the beginning—as we mean it here—is the sign.

[Hilbert 1922], 163 (emphasis Hilbert’s)94,95,96

[Remark: There are, I realize, other possible readings of Hilbert’s ‘‘In

the beginning is the sign.’’ One is that it suggests his finitist outlook—

specifically, his belief that the justification of a mathematical theory ul-

timately rests on judgments concerning the shapes of signs. I do not reject

such a reading. Indeed, it is strongly suggested by various things Hilbert

said (cf. [Hilbert 1926], 376, where he speaks of a ‘‘content’’ in mathe-

matics secured independently of all logic). I see no problem, however, in

combining this reading with the reading just sketched. Indeed, the com-

bination of the two readings makes it more reasonable for Hilbert to sum

up his foundational viewpoint in this single phrase.]

The Hilbertian formalist’s claim is thus, at bottom, a claim about the nature of

mathematical reasoning—including, perhaps especially, a view of the nature

94 The German is

Hierin liegt die feste philosophische Einstellung, die ich zur Begründung

der reinen Mathematik—wie überhaupt zu allem wissenschaftlichen

Denken, Verstehen und Mitteilen—für erforderlich halte: am Anfang—so

heißt es hier—ist das Zeichen.

95 Hilbert’s ‘‘in the beginning is the sign’’ is, of course, a reference to St. John’s ‘‘In the

beginning was the Word . . .’’ (John 1:1). (In Luther’s German translation, the verse reads:

‘‘Im Amfang war das Wort, und das Wort war bei Gott, und Gott war das Wort.’’) It is also

reminiscent of Goethe’s ‘‘in the beginning was the act’’ and, as such, makes a lot of sense.

Taken thus, it would represent Hilbert’s siding with God rather than the devil—the devil, in

this case, being personified by Brouwer and his intuitionism. Recall that Brouwer defined

his intuitionism as consisting essentially in two ‘‘acts.’’ The first of these—the so-called first

act of intuitionism—was intended to completely divorce mathematics from language. As

such, it can be seen as the antithesis of Hilbert’s views.
96 Peano (cf. [Peano 1910], 224) and Poincaré made similar suggestions, though

Poincaré’s suggestion was made out of different motivations. He wrote:

To sum up, the mind has the faculty of creating symbols, and it is thus

that it has constructed the mathematical continuum, which is only a

particular system of symbols. The only limit to its power is the necessity

of avoiding all contradiction. . . . [Poincaré 1905], 27

He went on to add a kind of fruitfulness condition, namely, that ‘‘the mind only makes use

of it [i.e. the faculty of creating symbols] when experiment gives a reason for it’’ (ibid.).
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of concept-formation and/or concept-introduction. It allows signs and sign-

complexes to play significant roles in mathematical reasoning independently of any

interpretation that might be given to them. Indeed, when concepts are given ex-

clusively by formal axioms and are regarded as having only such contents as those

axioms provide, there is no significant difference between the roles of those con-

cepts and the roles of signs. They function essentially as signs in a formal axiomatic

system. One can do with them only that which is permitted by the introducing

axioms. There is no preaxiomatic grasp or understanding that the axioms are

intended to capture, and there is no extra-axiomatic model or structure that might

be consulted in a search for new axioms or to correct current axioms.

The history of mathematics contains examples of concepts that appear to have

been introduced in this way. The imaginary and complex numbers are, I believe,

one such example. They were introduced as items obeying certain laws. These laws

were not selected, however, because they captured a preaxiomatic structure given

to intuition or to our understanding. Rather, the complexes were assigned laws

that maximized their utility as computational instruments and that, at the same

time, permitted us to preserve the Fundamental Theorem of Algebra in a pleas-

ingly simple form. They did not simultaneously admit of both a notion of in-

equality and notions of addition and multiplication that were normal. They did,

however, admit of a consistent axiomatization of enough of the usual laws of

arithmetic computation to make them useful as computational devices. The fact

that they were later given a geometrical interpretation by Gauss and others does

not alter these facts, which are the basic facts of interest to the formalist.

They were, indeed, of exceptional utility as computational instruments. As

various sixteenth-century mathematicians (e.g., Cardano, Bombelli, and Viète)

noticed, this included rules—specifically, Cardano’s Rule—useful for finding

even real roots of polynomials.97 Cardano’s Rule is given by the formula: x ¼

97 Sixteenth century algebraists also became aware of instances of the general cubic

where use of complex expressions posed problems for their solution via Cardano’s Rule.

These were the instances of the so-called casus irreducibilis or irreducible case—the case of

x3� pxþ q¼ 0 where

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
� p3

27

q
is negative. The irreducible case was interesting because it

represents a case where a cubic has three real roots but where those roots can not be

expressed, by Cardano’s Rule, without adversion to complex numbers. The problem

caused by this is that extraction of the roots of the imaginary quantities involved in

Cardano’s Rule in this case itself depends upon the solution of a cubic equation. Hence,

the solution of the original problem is not in this case ‘‘reduced’’ by application of

Cardano’s Rule. In 1892, Otto Hölder (cf. [H€oolder 1892]) showed what algebraists for

nearly three hundred years had strongly suspected—namely, that there is no general

formula for solving the cubics of the irreducible case that makes use of only the usual

operations of algebra (i.e., addition, multiplication, subtraction, division and expo-

nentiation) plus root extraction for reals.
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r
, for the so-called general cubic (i.e., a cubic

of the form x3� pxþ q¼ 0, where p, q are real). The general cubic is so-called

because, by making appropriate substitutions, any cubic can be put into this (or a

related) form.98

Of a more ‘‘theoretical’’ nature, perhaps, is the need for complex numbers in

preserving the Fundamental Theorem of Algebra in a simple form. We desire the

simplicity that the Fundamental Theorem of Algebra (in the forms made possible

by the addition of imaginary and complex numbers) brings to the determination of

the numbers of roots of equations. In all cases, however, both practical and the-

oretical, the use of complex numbers is motivated by a desire to preserve arith-

metical laws in forms that are convenient to our reasoning. Something similar, I

submit, holds of the introduction of ideal elements in other fields of mathematics

(e.g., the introduction of points at infinity in projective geometry). When conve-

nience makes their introduction desirable, we introduce ideal elements if we

consistently can. In modern mathematics, we introduce them by giving a system of

axioms that completely specifies their place in our reasoning.

Being of this mind, it was only natural that Hilbert should urge a noncontentual

role for signs and/or concepts in mathematical thinking—a role that does not

make use of any pre- or extra-axiomatic content that might be attached to them:

To make it a universal requirement that each individual formula . . . be inter-

pretable by itself is by no means reasonable;99 on the contrary, a theory by its very

nature is such that we do not need to fall back upon intuition or meaning in the

midst of some argument. What the physicist demands precisely of a theory is that

particular propositions be derived from laws of nature or hypotheses solely

by inferences (allein durch Schl€uusse), hence on the basis of a pure formula

game (Formelspiel), without extraneous considerations being adduced. Only

98 Frege also took an interest in the casus irreducibilis. Consistent with his antipathy

towards the formalist or Berkeleyan conception of reasoning, he saw it as a reason to

require that there be a magnitude that the sign ‘‘
ffiffiffiffiffiffiffi�1

p
’’ refer to.

. . . it is especially important for the derivation of many theorems that

there be . . . higher numbers. And just as for many proofs in geometry,

one needs points or lines which do not occur in the theorems themselves,

and just as in each of these cases it is then necessary to show that there are

such auxiliary points or lines; so too in arithmetic, many theorems are

proved with the aid of
ffiffiffiffiffiffiffi�1

p
, where this magnitude does not itself occur

in the theorems. Now if there were simply no number whose square is 1,
these proofs would collapse. [Frege 1885], 117

Though I will not develop the idea here, I think the correct response would be to press the

Berkeleyan conception of reasoning and to challenge the aptness of Frege’s analogy.
99 The German is ‘‘Die Forderung, wonach dabei jede einzelne Formel für sich allein

deutbar sein soll, allgemein aufzustellen, ist keineswegs vernünftig. . . . ’’
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certain combinations and consequences of physical laws can be checked by

experiment—just as in my proof theory only the real propositions are directly

capable of verification. [Hilbert 1928], 475100

This, in its elements, was Hilbert’s Berkeleyan conception of mathematical

reasoning. It saw mathematical reasoning as allowing interludes of pure symbol-

manipulation (what we’ll generally refer to as ‘‘ideal reasoning’’) within larger,

generally contentual reasoning environments. Signs were allowed to ‘‘come be-

fore’’ their meanings in the sense that reasoning was, at least sometimes, a matter

of technique. Indeed, in his later work, Hilbert seemed to favor the view that, at a

deep level, a great deal of reasoning of all types is technique (what the Greeks

might have termed technē)—a manipulation of signs or symbols in accordance

with psychologically convenient rules. As he put it.

In our theoretical sciences we are accustomed to the use of formal thought processes

(formaler Denkprozesse) and abstract methods . . . [but] already in everyday life one

uses methods and concept-formations (Begriffsbildungen) which require a high

degree of abstraction and which only become intelligible by means of an uncon-

scious (unbewußte) application of axiomatic methods. Examples include the general

process of negation and, especially, the concept of infinity. [Hilbert 1930c], 380

The mathematician is free to exploit the psychological advantage that this type

of reasoning offers. Her only restriction is that she not produce a body of reasoning

that leads to conclusions that contradict the findings of contentual reasoning. Ideal

reasoning does not, therefore, displace contentual reasoning. Rather, it supplements

it by adding signs that produce an overall body of reasoning that is psychologically

more natural and epistemically more productive than contentual reasoning itself.

The question, of course, as Frege repeatedly emphasized, is how purely sym-

bolical reasoning can be epistemically productive. To this we answer that symbolical

reasoning does not, by itself, justify a contentual conclusion to which it leads.

Rather, it is supplemented by contentual metamathematical judgments to secure

contentual conclusions.

Hilbert’s ‘‘metamathematics’’ or ‘‘proof theory’’ was intended to supply the

means for such an application. One would show by contentual metamathematical

means that symbolical (what Hilbert called ‘‘ideal’’) reasoning to contentual con-

clusions is reliable. This would be possible because the rules for the usage of the

noncontentual signs, which form the technique of our thinking, would be precisely

stated in their axiomatic presentation.

The formula game that Brouwer so deprecates has, besides its mathematical

value, an important general philosophical significance. For this formula game is

carried out according to certain definite rules, in which the technique of our

thinking is expressed. These rules form a closed system that can be discovered

100 See [Peacock 1834], 198 (quoted above), for a similar statement by Peacock.
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and definitively stated. The fundamental idea of my proof theory is none other

than to describe the activity of our understanding, to make a protocol of the rules

according to which our thinking actually proceeds. Thinking, it so happens,

parallels speaking and writing: we form statements and place them one behind

another. If any totality of observations and phenomena deserves to be made the

object of a serious and thorough investigation, it is this one . . . . [Hilbert 1928], 475

Hilbert’s attempt to execute this ‘‘serious and thorough investigation’’ of our

mathematical technē came to be known as Hilbert’s Program. It was barely begun

when the announcement of Gödel’s Incompleteness Theorems called its overall

realizability into question. We’ll discuss this challenge after considering other chal-

lenges to formalism, most notably those developed by Frege in the late nineteenth

and early twentieth centuries.

6. Challenges to Formalism

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

What seems to have been the most influential variety of formalism of the late

nineteenth and early twentieth centuries—the neo-Berkeleyan, neo-Peacockean

formalism of Hilbert—was thus essentially a view concerning the nature of math-

ematical reasoning and, in particular, of mathematical concept-formation and/or

-introduction. There were, however, other variants of formalism, some of which

had a certain degree of notoriety among foundational thinkers of the late nine-

teenth and early twentieth centuries.

Chief among these is what I will refer to as empiricist formalism.101 This is a

formalism that drew its inspiration from empiricist views of existence in mathe-

matics. Its chief idea was to reduce the question of the existence of mathematical

entities—in particular, the existence of numbers—to the question of the existence

of perceivable signs. It is this variant of formalism that became the focus of Frege’s

engagement with and well-known criticisms of formalist ideas. Because of Frege’s

great influence on Anglo-American analytic philosophy, the formalism he criticized

has sometimes been identified with formalism per se. This, I believe, is a mistake.

There were thinkers who held positions like those criticized by Frege. They did not,

however, represent the mainstream of formalist thinking in mathematics—the

tradition coming down from Peacock and various others of the Cambridge alge-

braists to various German foundational thinkers, most particularly Hilbert.

Frege described what he took to be the core element of formalism in his 1891

lecture ‘‘Function and Concept.’’ That was ‘‘a tendency not to recognize as an object

101 Others (cf. Resnik in [Resnik 1980], ch. 2) have called this type of formalism game

formalism. I prefer my title because it suggests the basic epistemological motive behind the

view.
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anything that cannot be perceived by means of the senses’’ ([Frege 1984], 138). He

regarded this tendency as ‘‘very widespread’’ (ibid.), and said that it was ‘‘often met

with in mathematical works, even those of celebrated authors’’ (ibid.). Among the

authors Frege had in mind were Helmholtz and Kronecker (cf. [Frege 1984], 139).102

He also named a number of lesser but still well-known figures as having held this or

related views. These included Cantor (cf. [Frege 1893], vol. II, §§68–85), Husserl (cf.

[Frege 1984], 208), Hankel (cf. [Frege 1884], §§98–99; [Frege 1893], vol. II §§141–42),

Heine (cf. [Frege 1893], vol. II, §§59–60, 86–87, 104–105), Stolz (cf. [Frege 1893], vol. II,

§§143–145), Thomae (cf. [Frege 1893], vol. II, §§86, 88–103, 106–137), Schubert (cf. ‘‘On

Mr. Schubert’s Numbers,’’ in [Frege 1984], 249–272) and Korselt (cf. the 1906 essay

‘‘On the Foundations of Geometry: Second Series,’’ in [Frege 1984], 293–340).

Heinrich Eduard Heine, a well-known mathematician at the University of

Halle,103 stated the key idea of empiricist formalism as follows:

Suppose I am not satisfied to have only positive rational numbers. I do not

answer the question, What is a number?, by defining number conceptually, say by

introducing irrationals as limits whose existence is presupposed. I adhere to the

definition of the purely formal standpoint (rein formalen Standpunkt), in which

what I call numbers are certain tangible (greifbare) signs (Zeichen) so that the

existence of these numbers does not, therefore, stand in question. The main

emphasis is to be put on the calculating operations, and the number-signs

(Zahlzeichen) must be selected in such a way or furnished with such an apparatus

as provides a clue to the definition of the operations. [Heine 1872], 173104

102 Frege’s view of Hilbert’s ideas is more difficult to determine, and there is not

enough space to explore the subtleties here. There is little indication, though, that Hilbert’s

formalism was motivated by empiricist concerns or that Frege believed it to be so.
103 He is the Heine whose name is commonly associated with Borel’s in conjunction

with the well-known Heine–Borel covering theorem (i.e., the theorem that a subset of the

reals is compact just in case it is closed and bounded). Arthur Schoenfließ is the first to

have mentioned Heine’s name in conjunction with this theorem. Heine did not prove this

theorem, however. Nor did he formulate the covering property. What he did was to

formulate a notion of uniform continuity and prove the uniform continuity, in his sense,

of every continuous function on a closed, bounded interval. This theorem, which, un-

beknownst to Heine, had been proved by Dirichlet approximately ten years earlier, con-

tained a significant core of the ideas of Borel’s proof.
104 The German is ‘‘Die Frage, was eine Zahl sei, beantworte ich, wenn ich nicht bei

den rationalen positiven stehen bleiben will, nicht dadurch dass ich die Zahl begrifflich

definiere, die irrationalen etwa gar als Grenze einführe, deeren Existenz eine Voraussetzung

wäre. Ich stelle mich bei der Definition auf den rein formalen Standpunkt, indem ich

gewisse greifbare Zeichen Zahlen nenne, so dass die Existenz dieser Zahlen also nicht in

Frage steht. Ein Hauptgewicht ist auf die Rechenoperation zu legen, und das Zahlzeichen

muss so gewählt, oder mit einem solchen Apparate ausgerüstet werden, dass es einen Anhalt

zur Definition der Operationen gewährt.’’ Heine also remarked that he had employed this

viewpoint in his lectures on algebraic analysis for many years.
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Heine seems to have been motivated by epistemological concerns—specifically,

a concern that our knowledge of mathematical existence be as unproblematic as

our knowledge of the existence of empirically observable objects. This is the cen-

tral idea of Heine’s formalism, and the (or at least a) chief focus of Frege’s

criticism of it.

Johannes Thomae, Heine’s colleague at Halle for five years and Frege’s col-

league at Jena for thirty-five, gave a similar indication of epistemological moti-

vation, though not one so clearly empiricist in character:105

The formal conception of the numbers accepts more modest limits than the

logical. It does not ask what the numbers are or must be; rather it asks what one

requires of the numbers in arithmetic. For the formalist conception, arithmetic is

a game (Spiel) with signs (Zeichen) that are well referred to as empty, by which

one means to say that they (in the calculating game (Rechenspiel)) have no

content (Inhalt) given to them beside that which comes from their role in the

rules of combination (rules of the game).

. . .
The formal standpoint allows us to throw off all metaphysical difficulties

(metaphysischen Schwierigkeiten). That’s the gain it offers us. [Thomae 1898], 3

Frege went on to elaborate the ‘‘difficulties’’ referred to.

The difficulties spoken of here may well be those with which we became acquainted

in our reflection on Cantor’s theory, namely, the grasping of actual numbers

(eigentlichen Zahlen) and the proof of their availability (Vorhandensein). In formal

arithmetic we don’t need to ground the game-rules (Spielregeln)—we simply de-

clare them. We don’t need to prove that numbers have certain properties; we just

introduce figures (Figuren) for whose handling we give rules. We then regard these

rules as properties of the figures and thus are able to freely create—seemingly

at least—things (Dinge) having the desired properties. In this way it is evident that

we at least save ourselves intellectual work (geistige Arbeit). [Frege 1893], §89

Frege admitted that there were differences in the viewpoints of Heine and Tho-

mae. Specifically, he took Thomae to essentially reject the question concerning the

nature of numbers. Heine, on the other hand, he believed to accept the question.

He answered it, though, by identifying numbers with signs (cf. [Frege 1893]; 98). In

the end, however, Frege saw little difference between the two viewpoints because

‘‘both agree that arithmetic has to occupy itself with signs’’ (ibid.).

Frege’s criticisms of empiricist formalism centered on this alleged occupation

with signs. Without attempting to survey all the different criticisms he gave, I’ll focus

on the one I take to be of the most fundamental and far-reaching significance—one

reaching, in particular, to Hilbert’s type of formalism.

105 Frege himself observed this, remarking, ‘‘Heine sets out the basic idea more

sharply than does Thomae’’ (cf. [Frege 1893], vol. II, 96).
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This is a criticism that was briefly stated in the 1885 essay on formal theories of

arithmetic (cf. [Frege 1885], 114ff.) and in the correspondence with Hilbert (cf.

[Frege 1980], letter of December 27, 1899). It was developed at greater length in

[Frege 1903] and in the second volume of the Grundgesetze (cf. §91). It received

what was perhaps its most mature statement in ([Frege 1906]).

The basic argument was essentially this: formalism requires that arithmetic

terms be treated as not having reference; but if arithmetic terms have no reference,

arithmetic sentences do not express thoughts (in the Fregean sense); if arithmetic

sentences do not express thoughts, then there can be no genuine demonstration or

proof in and no application of arithmetic; if there is no genuine proof in and no

application of arithmetic, then it can not rightly be considered a science (in the clas-

sical sense of the term); to retain arithmetic as a genuine science, therefore, one

must abandon formalism.

The core element of this argument was Frege’s anti-Berkeleyan conception of

reasoning and proof, a conception according to which (1) genuine inference or rea-

soning cannot consist in a manipulation of signs, and (2) a genuine premise can

not be a mere formula. Frege expressed these ideas in the following remarks:

. . . an inference does not consist of signs. We can only say that in the transition

from one group of signs to a new group of signs, it may look now and then as

though we are presented with an inference. An inference simply does not belong

to the realm of signs; rather, it is the pronouncement of a judgment made in

accordance with logical laws on the basis of previously passed judgments. Each of

the premises is a determinate thought recognized as true; and in the conclusion,

too, a determinate thought is recognized as true. . . .
What is a formal inference? We may say that in a certain sense, every

inference is formal in that it proceeds according to a general law of inference; in

another sense, every inference is non-formal in that the premises as well as the

conclusions have their thought-contents which occur in this particular manner of

connection only in that inference. [Frege 1906], 387

From the fact that the pseudo-axioms do not express thoughts, it . . . follows that
they cannot be premises of an inference-chain. . . . one . . . cannot call . . . groups
of audible or visible signs . . . premises anyway, but only the thoughts expressed

by them. Now in the case of the pseudo-axioms, there are no thoughts at all, and

consequently no premises. Therefore when it appears that Mr. Hilbert nev-

ertheless does use his axioms as the premises of inferences and apparently bases

proofs on them, these can be inferences and proofs in appearance only. [Frege

1906], 390

Frege’s most fundamental challenge to formalism was thus directed at its Berke-

leyan conception of reasoning. He held that mathematical reasoning and proof are

inherently and essentially contentual in character. They are processes whose pur-

pose is to produce warranted judgments (i.e., affirmations of propositional con-

tents or thoughts) called ‘‘conclusions.’’ They are to achieve this purpose by
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exhibiting the thought forming the content of a conclusion as logically implied by

the contents of a group of antecedently justified judgments called ‘‘premises.’’

These premises are ultimately comprised of a groupof judgments called ‘‘axioms’’—

the contents of which are self-evidently true. The axioms thus form the contents

of the fundamental judgments of the subject being investigated.

Various of Heine’s and Thomae’s ideas appear to disagree with the idea that

the premises of proofs are to be axioms in the sense described and with the idea

that the purpose of proof is to exhibit a thought as a logical consequence of such

premises. They may even disagree (albeit perhaps unintentionally) with the still

more basic idea that the ultimate aim of proof is to produce warranted judgment

(i.e., a warrantedly believed propositional content).

Hilbert’s formalism was different. It did not dispute the idea that the purpose

of proof is ultimately to produce warranted judgment. Nor did it dispute the

idea that to achieve this end, a proof must exhibit a logical relationship between

contentual premises and a contentual conclusion. It took exception only to the

idea that the premises of a proof must be axioms of the subject being investigated.

It allowed as well that the premises of genuine proofs should sometimes be

metamathematical propositions concerning a formal system (and/or various of its

items), and not axioms of that system. Since these metamathematical propositions

could be directed at noncontentual as well as at contentual axioms, it (i.e., Hil-

bert’s formalism) allowed that the axioms with which they were concerned should

be noncontentual in nature.

This means, of course, that such axioms cannot be premises of proofs where

‘‘proof ’’ is understood in Frege’s sense. Hilbert permitted noncontentual formulas

to be premises of a certain type of ‘‘proof ’’ that he called ideal proof. But here we

have what is essentially a terminological difference concerning the use of the term

‘‘proof.’’ Frege insisted that it be reserved for what Hilbert generally referred to as

contentual proof. Hilbert allowed it to refer to noncontentual thinking as well.

Unfortunately, this terminological dispute seems to have dominated much of

Frege’s side of the Frege–Hilbert correspondence and controversy. This is no doubt

in part due to the fact that their correspondence occurred at a time when Hilbert

had not yet arrived at a clear understanding of his proof-theoretic conception of

consistency. This kept him from responding in a clear and satisfying way to Frege’s

claim that the only way to prove a body of formal reasoning consistent was to

interpret it—that is, to transform it into a body of contentual reasoning through

the assignment of an interpretation to the formulas that made their truth evident.

In a letter of January 6, 1900, Frege thus remarked to Hilbert:

What means have we of demonstrating that certain properties, requirements (or

whatever else one wants to call them) do not contradict one another? The only

means I know is this: to point to an object that has all those properties, to give a

case where all those requirements are satisfied. It does not seem possible to

demonstrate the lack of contradiction in any other way. [Frege 1980], 43
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He pressed the point again in a letter nine months later:

I believe I can deduce, from some places in your lectures, that my arguments

failed to convince you, which makes me all the more anxious to find out your

counter-arguments.

It seems to me that you believe yourself to be in possession of a principle for

proving lack of contradiction which is essentially different from the one I for-

mulated in my last letter and which, if I remember right, is the only one you

apply in your Foundations of Geometry. If you were right in this, it could be of

immense importance, though I do not believe in it as yet, but suspect that such a

principle can be reduced to the one I formulated and that it cannot therefore

have a wider scope than mine. It would help to clear up matters if in your reply

to my last letter—and I am still hoping for a reply—you could formulate such a

principle precisely and perhaps elucidate its application by an example. [Frege

1980], 49

Frege’s reference to ([Hilbert 1899], §9) is to Hilbert’s proof of the consistency

of his axiomatization of geometry by provision of an interpretation of it in the

real numbers. It was indeed, as Frege suggests, the only type of proof of con-

sistency that Hilbert offered at that time. It would be another twenty years before

he would be able to describe even the outlines of a new conception of consistency

proofs—namely, that arising from his more mature proof-theoretic program.

Frege was right to say that this was a development of potentially ‘‘immense

importance.’’

The ‘‘principle’’ to which Frege referred was a principle for inferring the

existence of an object having a set of properties from the mere fact that a set of

such attributions is not contradictory. Frege dealt with it in the above-mentioned

letter of January 6, 1900:

Suppose we knew that the propositions

(1) A is an intelligent being

(2) A is omnipresent

(3) A is omnipotent

together with all their consequences did not contradict one another; could we infer

from this that there was an omnipotent, omnipresent, intelligent being? This is

not evident to me. The principle would read as follows:

If the propositions

‘‘A has property F’’
‘‘A has property C’’

‘‘A has property X ’’

together with all their consequences do not contradict one another in general

(whatever A may be), then there is an object which has all the properties F, C
and X. This principle is not evident to me, and if it was true it would probably

be useless. Is there another means of demonstrating lack of contradiction besides

304 oxford handbook of philosophy of math and logic



pointing out an object that has all the properties? But if we are given such an

object, then there is no need to demonstrate in a roundabout way that there is

such an object by first demonstrating lack of contradiction. [Frege 1980], 47

This passage illustrates the firmness of Frege’s belief that the only way to demonstrate

consistency was to exhibit a witnessing object or interpretation. He believed that any

potential alternative means of demonstrating noncontradiction would eventually

reduce to this.106 One might therefore just as well produce the witnessing object

directly, without detouring through the supposed alternative means, which at some

point, if it is to be effective, must produce the witnessing object anyway.

It also serves as a powerful illustration of the radical character of Hilbert’s

later proof-theoretic conception of consistency. Frege can hardly be blamed for

shortsightedness or narrow-mindedness in this matter. He failed to see only what

almost everyone else failed to see as well.

In closing, let me briefly mention two further challenges to formalism—challenges

that seem for the most part to have escaped the attention of those writing on the

subject. The first derives from certain remarks of Gödel concerning the basis for

certainty in mathematics. The certainty of mathematics, he maintained,

. . . is to be secured not by proving certain properties by a projection onto ma-

terial systems—namely, the manipulation of physical symbols—but rather by

cultivating (deepening) knowledge of the abstract concepts themselves which

lead to the setting up of these mechanical systems, and further by seeking,

according to the same procedures, to gain insights into the solvability, and the

actual methods of solution, of all meaningful mathematical problems. [G€oodel
1986–1995], vol. III, 383107

A challenge for formalism arises from this and Gödel’s further description of

how cultivation of a knowledge of abstract concepts is to proceed and what its

results may be expected to be. He cites as his inspiration Husserl’s phenom-

enological method, which he describes as follows:

. . . there exists . . . the beginning of a science which claims to possess a systematic

method for . . . clarification of meaning, and that is the phenomenology founded

by Husserl. Here clarification of meaning focuses more sharply on the concepts

concerned by directing our attention in a certain way, namely, onto our own

acts in the use of these concepts, onto our powers in carrying out our acts, etc.

[This] is a procedure or technique that should produce in us a new state of

consciousness in which we describe in detail the basic concepts we use in our

thought, or grasp other basic concepts hitherto unknown to us. I believe there is

106 As he saw it, moreover, the reasoning leading from consistency to existence of

such a witness was dubious.
107 This is from the 1961 essay ‘‘The Modern Development of the Foundations of

Mathematics in the Light of Philosophy.’’
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no reason at all to reject such a procedure at the outset as hopeless. . . . on the

contrary one can present reasons in its favor. . . . In fact, one has examples where,

even without the application of a systematic and conscious procedure . . . a
further development takes place . . . one that transcends ‘‘common sense.’’

Namely, it turns out that in the systematic establishment of the axioms of math-

ematics, new axioms, which do not follow by formal logic from those previously

established, again and again become evident . . . it is just this becoming evident of

more and more new axioms on the basis of the meaning of the primitive notions

that a machine cannot imitate. [G€oodel 1986–1995], vol. III, 384–385

What Gödel suggests is that there is something either in the concepts repre-

sented by a set of axioms, or in our grasp of these concepts, that is not captured by

the axioms themselves. To the extent that this is true, Hilbert’s (and other crea-

tivists’) idea that the axiomatic method expresses our freedom to stipulate the

contents of concepts would seem to be either incorrect or of limited interest. An

important part of the value of a set of axioms, in Gödel’s view, resides in what

arises from our turning our attention to our own acts in using them. Such reflec-

tion, says Gödel, cultivates or deepens our understanding of the concepts repre-

sented by the axioms, and the fruit of this cultivation is the discovery of new

axioms which were in some sense latent in the original ones without being logically

contained in them. To the extent that this is typical, it would be wrong or of little

interest to claim that we have a freedom to create concepts by stipulating exactly

what conditions they are to satisfy. Such stipulations would be routinely super-

seded as a result of proper reflection on our use of the concepts concerned. In other

words, latent in the use of a set of axioms that is used to introduce a concept or sign

are further axioms the uncovering of which will make the original axioms obsolete

and cause us not to view them as the stipulations fixing the concept we originally

took them to fix.

The second challenge is what I will call the Division Problem. This is a prob-

lem for those varieties of formalism which admit a distinction between parts of

mathematics (typically referred to as ‘‘real’’) that behave in a contentual, non-

algebraico-symbolical way and those parts of mathematics that function essentially

as algebraico-symbolical instruments (‘‘ideal’’ mathematics, in Hilbert’s termi-

nology). It concerns how to determine, in a nonarbitrary and descriptively adequate

way, where the dividing line between real and ideal mathematics ought properly to

lie. More specifically, it concerns the problem of whether a real/ideal distinction

can be designed in such a way as to facilitate a proof of the consistency of the ideal

side of the division by methods that can be distinguished in a principled way from

the methods of the ideal side. A genuine proof of consistency must proceed by

contentual methods. If, however, there is no principled way to distinguish between

the methods used in the consistency proof and the methods whose consistency it is

supposed to establish, then a formalist approach to the field in question would

make little sense.
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What we are calling the Division Problem raises the question of whether there

is a plausible, principled way to distinguish between real and ideal methods in

mathematics. It has been suggested by a number of nineteenth- and twentieth-

century mathematicians that there is not. The American mathematician James

Pierpont raised the problem in an interesting way in his widely used 1914 text

Functions of a Complex Variable.

The complex numbers are often called imaginary numbers, and we have in the

present work followed usage as far as to call . . . numbers . . . purely imaginary, the

number i the imaginary unit, and the axis of ordinates the imaginary axis. For

the beginner the term imaginary is most unfortunate; and if it had not become so

ingrained in elementary algebra, much would be gained if it could be dropped

and forgotten.

The use of the term imaginary in connection with the number concept is

very old. At first only positive integers were regarded as true numbers. To the

early Greek mathematician the ratio of two integers as 4
5
was not a number. After

rational numbers had been accepted, what are now called negative numbers

forced themselves on the attention of mathematicians. As their usefulness grew

apparent they were called fictitious or imaginary numbers. To many an algebraist

of the early Renaissance it was a great mystery how the product of two such

numbers as �a, �b could be the real number ab.

Hardly had the negative numbers become a necessary element to the

analyst when the complex numbers pressed for admittance into the number

concept. These in turn were called imaginary, and history repeated itself.

How many a boy to-day has been bothered to understand how the product

of two imaginary numbers ai and bi can be the real number �ab. As well

ask why in chess the knight can spring over a piece and why the queen

cannot. . . .
The symbols (a , a0) or aþ a0i are mere marks until their laws of combi-

nation are defined, they then become as much a number as 2/3 or 5. The student
must realize that all integers, fractions, and negative numbers are imaginary. They

exist only in our imagination. Five horses, three quarters of a dollar, may have an

objective existence, but the numbers 5 and 3/4 are imaginary. Thus all numbers are

equally real and equally imaginary. Historically we can see how the term imaginary

still clings to the complex numbers; pedagogically we must deplore using a term

which can only create confusion in the mind of the beginner. [Pierpont 1914], 10
(emphasis in the last paragraph added)

In Pierpoint we see an example of a mathematician who questioned the possibility

of plausibly making a principled distinction between real and ideal (or imaginary)

methods in mathematics and who moved from that question to the view that

basically all mathematical objects are ideal.

There were, however, at least as many mathematicians who took the opposite

tack—that is, they denied the possibility of making a principled distinction be-

tween a real and an ideal part of mathematics, but moved from there to the view

that all of mathematics is real. This was essentially Gauss’s view.
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Our general arithmetic, so far surpassing in extent the geometry of the ancients,

is entirely the creation of modern times. Starting originally from the notion of

absolute integers, it has gradually enlarged its domain. To integers have been

added fractions, to rational quantities the irrational, to positive the negative, and

to the real the imaginary. This advance, however, has always been made at first

with timorous and hesitating step. The early algebraists called the negative roots

of equations false roots, and these are indeed so when the problem to which they

relate has been stated in such a form that the character of the quantity sought

allows of no opposite. But just as in general arithmetic no one would hesitate to

admit fractions, although there are so many countable things where a fraction has

no meaning, so we ought not to deny to negative numbers the rights accorded to

positive simply because innumerable things allow no opposite. The reality of

negative numbers is sufficiently justified since in innumerable other cases

they find an adequate substratum. This has long been admitted, but the imagi-

nary quantities—formerly and occasionally now, though improperly, called

impossible—as opposed to real quantities are still rather tolerated than fully

naturalized, and appear more like an empty play upon symbols to which a

thinkable substratum is unhesitatingly denied by those who would not depre-

ciate the rich contribution which this play upon symbols has made to the

treasure of the relations of real quantities.

The author has for many years considered this highly important part of

mathematics from a different point of view, where just as objective an existence

may be assigned to imaginary as to negative quantities, but hitherto he has lacked

opportunity to publish these views, though careful readers may find traces of

them in the memoir upon equations which appeared in 1799 and again in the

prize memoir upon the transformation of surfaces. In the present paper the

outlines are given briefly. . . .
. . . in the language of the mathematician . . .þi is a geometric mean between

þ1 and �1, or corresponds to the sign
ffiffiffiffiffiffiffi�1

p
. . . .Here, therefore, an intuitive

meaning of
ffiffiffiffiffiffiffi�1

p
is completely established, and one needs nothing further to

admit this quantity into the domain of the objects of arithmetic. [Gauss 1831],

175–177

The Division Problem thus raises a difficult and important challenge to all

varieties of formalism which admit of a distinction between real and ideal methods:

namely, to provide a plausible, principled way of forging a real vs. ideal distinction.

Supposing this to be manageable, the Division Problem raises another ques-

tion as well—namely, whether within any plausible, principled division of real

mathematics from ideal mathematics, real methods can possess enough strength

to be capable of proving the consistency of the ideal methods. This is a pressing

problem since if there is a way to make a principled distinction between real and

ideal methods at all, that distinction will quite likely take hold at a relatively basic

and elementary place in the hierarchy of number systems.

Hilbert, as is well known, identified the border between finitary and non-

finitary methods as the border of the real/ideal distinction. He did so in part

because he sought a corrective to Kronecker’s reactionary response to the loss of
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geometric intuition in analysis that he (Kronecker) would be obliged to credit.

What we now see is that there may be another, and perhaps even more potent,

reason for choosing the division between finitary and nonfinitary reasoning as the

place at which to divide real and ideal methods—namely, that there may be no

place other than this at which a principled division of real and ideal methods can

be made. Indeed, if Gauss and Pierpont are right, there may be no place at all for

such a distinction. The formalist thus faces a stern challenge.

So, too, however, does the nonformalist. For unless a philosophy of math-

ematics provides for a division between real and ideal elements, it is doubtful that it

can be adequate to those historical ‘‘data’’ by which alone the subject is given.

This brings me to my closing comments, which concern the effects of Gödel’s

Incompleteness Theorems on formalism. Since I have written elsewhere on this

topic, and since my basic views have not changed, I will be brief here.

The formalist creates instruments and, when he does, he is obliged to establish

their consistency. Do Gödel’s Incompleteness Theorems—in particular, his Sec-

ond Incompleteness Theorem—show this to be impossible? In general, my answer

is ‘‘no.’’ There are many aspects to the argument behind this answer. Some of

these are discussed at greater length in [Detlefsen 1986] and [Detlefsen 2001]. Here I

will focus on matters connected to the following two general facts: (1) that the

formalist’s purpose is to create useful instruments, and (2) that his consistency

proofs ought therefore in principle be restricted to the theorems proved by ideal

proofs that are useful (viz., ideal proofs of real theorems that are, in some ap-

propriate sense, ‘‘easier’’ than the ‘‘easiest’’ of the non-instrumental or real proofs

of the theorems they prove).

There are, of course, well-known formalisms (e.g., PA, PA2, and ZF) that

include a wide range of formalist instruments. If we assume that for each such

theory T, every formula of the language of T that expresses T ’s consistency is sub-

ject to Gödel’s Second Theorem, we must accept that there is no proof of T ’s

consistency that is provable by real means codifiable in T. The question remains,

however, whether there is a proper subsystem TU of T such that (1) all the

instrumentally useful proofs in T of real theorems are contained in TU, and (2) the

consistency of TU is provable by real means. The answer to this question is not,

I think, generally known.

One reason why is that it requires general knowledge of the theories T for

which there exist subsystems of the type of TU, and this seems generally not to be

available. A related reason is that it requires clarification of the exact form(s) that

instrumental usefulness is supposed to take. Is it, for example, to reside in proofs

that are easier to verify as proofs? Or should it rather reside in proofs that are

easier to discover and/or easier to understand or otherwise grasp? A final reason is

that it requires partial solution of the above-mentioned Division Problem, and

such solution does not currently exist. Gödel’s Second Theorem, together with

other current knowledge, does not, therefore, provide a refutation of formalism.
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c h a p t e r 9

INTUITIONISM AND

PHILOSOPHY

carl posy

The Two Phases of Intuitionism

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The word ‘‘philosophy’’ in this chapter’s title refers to the philosophical views of

L. E. J. Brouwer, intuitionism’s founder, and also to the views of Brouwer’s stu-

dent Arend Heyting and those of Michael Dummett. Intuitionism has a philo-

sophical program—indeed, a number of apparently diverse programs, as I shall

point out—and it has a philosophical history. That is the main point of this chap-

ter. But the title-word ‘‘Intuitionism’’ itself signifies technical intuitionistic math-

ematics itself and modern intuitionistic logic. For the philosophy or philosophies

of intuitionism are inseparable from their technical core: intuitionistic math-

ematics in Brouwer’s case, and intuitionistic logic in the case of Heyting and

Dummett.1

Israel Science Foundation grant #914/02-1 supported the research for and writing of

this chapter. I benefited from helpful comments by David McCarty, and I am especially

grateful to Stewart Shapiro whose generous advice improved this chapter and whose

encouragement and patience made it possible.
1 Kino et al. [1970], which reports the proceedings of a conference held in 1968, two

years after Brouwer’s death, recognized a distinction between the development of Brou-

werian themes (even in ways that diverged from Brouwer’s own ideas), and quite separate

constructivist themes that take inspiration rather than direct influence from Brouwer. The

present volume is based on a kindred, though far from identical, division of the field.

On the one hand, the present chapter concerns Brouwer’s intuitionistic mathematics, its

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Intuitionism began in Brouwer’s doctoral dissertation (Brouwer [1907]). Brouwer,

a Dutch mathematician of extraordinary scope, vision, and imagination, was a

major architect of twentieth-century mathematics—his fixed-point theorem, for

instance, is a landmark of modern topology—but his dissertation contained a

trenchant attack on the foundations of modern mathematics and the seeds of a

radical revision of the entire field. His views held then, and hold today, great

mathematical and philosophical interest.

Brouwer’s foundational work has special mathematical interest, because it

clashed with the standard mathematics—now misnamed ‘‘classical’’ mathematics—

that came to be solidified in the late nineteenth and early twentieth centuries. His

theory of the continuum is central here. For in the course of solving a pressing

problem about the continuum, he produced a new intuitionistic mathematics that

not only refined the classical set-theoretic picture but also sometimes actually

contradicted classical mathematics. It denies, for instance, that there are any fully

defined discontinuous functions.

Brouwer’s work interests philosophers because his mathematics rests upon a

unique epistemology, a special ontology, and an underlying picture of intuitive

mathematical consciousness. Brouwer used this philosophical picture not only to

found his positive mathematical work but also to ground a sweeping attack on

classical mathematics in general and the classical use of logic and language in

particular. The classical mathematician, in Brouwer’s view, illicitly appeals to logic

and language in order to fill the gaps created by too narrow a view of intuitive

construction. Brouwer was particularly harsh toward Hilbert’s formalist program

in this context.

Had Brouwer won the day, this is the picture we would see of intuitionism: a

new mathematics, based on his account of nonlinguistic intuitive construction and

largely logic-free. And had he won, this would be our picture of all mathematics.

But Brouwer did not win the larger mathematical battle. Contemporary math-

ematics is generally nonconstructive,2 and it is routinely formalized.Moreover, nei-

ther did he prevail unilaterally within the intuitionistic camp. Several of Brouwer’s

mathematical and philosophical doctrines have taken on independent lives and

have been developed in ways that actually diverge from his own views.

This is a ‘‘post-Brouwerian’’ phase of traditional intuitionism. Its main ar-

chitects are Heyting and Dummett. Here, too, there is a technical core and a

philosophical underpinnings, and the philosophical issues that arose from post-Brouwerian

intuitionism. A number of these issues revolve around Heyting’s logic and the subsequent

metalogic, so these technical points will briefly be sketched as well. However, chapter 10, by
David McCarty, covers the strictly mathematical treatment of topics stemming from the

technical core of intuitionism.
2 The return by E. Bishop [1967] to the idea of a constructive mathematics has much

interest but not much following in practice.

intuitionism and philosophy 319



philosophical gloss. Technically, phase-II intuitionism centers not on mathemat-

ics but rather, as I said, upon Heyting’s formal system for ‘‘intuitionistic’’ logic

and the associated metalogic for that system. Heyting’s logical system—differing

though it did from Brouwer’s pronouncements—had enormous impact. For it

spawned decades of research into intuitionistic logic in its own right, and inten-

sive study of connections between intuitionistic logic and other branches of clas-

sical and nonclassical logic. For many logicians, intuitionistic logic and its

metalogic are the only part of intuitionism that they know.

Philosophically, the second phase deviates even more radically from Brouwer:

Heyting himself jettisoned any metaphysical foundation for mathematics and

even adopted a more tolerant attitude to classical mathematics. And, building

on Heyting, Dummett justifies formal intuitionistic logic via a general ‘‘linguistic

anti-realism’’ that replaces the notion of ‘‘truth’’ in our fundamental conception

of language with the notion of ‘‘warranted assertability.’’ In so doing, Dummett

not only eschews Brouwer’s ontological approach to intuitionism and its anti-

linguistic bias, but he even abandons the special mathematical focus of Brouwer’s

philosophy.

Chapter Outline

Part I will show you some main points of Brouwer’s mathematics and the phil-

osophical doctrines that anchor it. It will point out that Brouwer’s special con-

ception of human consciousness spawns his positive ontological and epistemic

doctrines as well as his negative program.3 Part II focuses on intuitionistic logic:

once again a brief picture of the technical field will precede the philosophical

analyses—this time those of Heyting and Dummett—of formal intuitionistic logic

and its role in intuitionism.

That will describe today’s intuitionism. Not a terribly flattering description, I

must say: intuitionism will emerge as technically deviant in both mathematics and

logic, philosophically divided, and, as we shall see, resting on an irreducible in-

ternal tension. Part III, however, aims to show that matters aren’t (or needn’t be)

so bleak. It suggests, in particular, that putting all this in historical perspective—a

look at mathematical precedents starting from Aristotle, and logical and philo-

sophical ones from Kant—will show intuitionism as technically less quixotic and

philosophically more unified than it had initially seemed. This historical hindsight

will also address the internal tension of which I spoke.

3 Dummett (in [1973] and in [2000], ch. 7) stresses the ontological side of Brouwer’s
philosophy of mathematics, and Michael Detlefsen in [2002] sees Brouwer as primarily an

epistemologist. But it is important to note that phenomenology—rather than either pure

ontology or pure epistemology—lies at the base of Brouwer’s philosophical worldview.
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I. Brouwerian Intuitionism

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I.1. Background: The Problem of the Continuum

Let us start with the problem about the continuum that set much of Brouwer’s

mathematical agenda. The problem emerged from the roil of new mathematics and

philosophy that greeted the twentieth century.

This was a period of growing mathematical abstraction: the new functional

analysis and its generalizations in algebra and topology were testaments to this

trend. They took mathematics irrevocably away from any dependence on percep-

tual intuition.

It was a period of unification in mathematics: mathematicians finally closed

the ancient gap between the notion of number and that of a continuous mag-

nitude like a surface or a smooth motion. Weierstrass and Dedekind were chief

architects here. They showed how to build a continuous manifold out of ‘‘real

numbers’’ which were themselves defined from sets or sequences of rational (and

ultimately, natural) numbers.4

And, most important, it was a period in which the notion of infinity finally

came of age in mathematics: Weierstrass’s convergent sequences and Dedekind’s

cuts were infinite sets. Indeed, the continuum was thus defined as an infinite col-

lection whose elements are themselves infinite sets each of whose elements in turn is

an infinite sequence.5 Cantor’s set theory made these all mathematically rigorous. It

made precise, for instance, the heretofore elusive difference between the set of ra-

tional numbers and the set of real numbers: the rationals are countable;6 the reals are

not. The reals are closed under convergence; the rationals are not.7 And, in setting all

of this in order, Cantor developed his beautiful theory of transfinite arithmetic and

provided tools to study the fine structure and ordering of the continuum.

Brouwer actively embraced the move to abstraction. But the set-theoretic con-

struction of the continuum and Cantorian infinity gave him pause. The problem

4 The condition that a sequence b converge is that Vn Am Vk jb(m)� b(mþ k)j< 2�n.
5 The reason for this extra level of infinite set is that a real number has to be an

equivalence class of convergent sequences, all of which converge to the same limit. Thus,

for instance, the two sequences {0.4, 0.49, 0.499, 0.4999, . . .} and {0.5, 0.5, 0.5, . . .} are

distinct as sequences, yet they both converge to the real number ½. See note 13 below.
6 Cantor proved that the set of rational numbers is countable. That is, it stands in

one-to-one-correspondence with the set of natural numbers.
7 That is, every convergent sequence of real numbers converges to a real number. The

sequence {1, 1.4, 1.41, 1.414, 1.4141, 1.41412, 1.414121, 1.4141213, 1.41412135, 1.414121356, . . .}
converges to

ffiffiffi
2

p
, and thus shows that not every convergent sequence of rational numbers

converges to a rational number.
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was not so much that set theory embraced infinite sets and infinite sequences.8

The problem was, rather, the new set-theoretic penchant toward arbitrary sets and

sequences: sets that cannot be described and sequences whose elements cannot be

calculated.

Some mathematicians—Brouwer calls them ‘‘pre-intuitionists’’9—attempted

to restrict mathematics to finitely describable sets and algorithmically generated

sequences. Finite description and algorithmic calculation, they thought, provide

the means by which our human intellects can grasp infinite objects. This attempt,

however, failed conceptually and mathematically. ‘‘Finite description’’ by itself is a

paradoxical notion: think of the smallest set that cannot be finitely described. I

have just finitely described it. And ‘‘algorithmically generated sequence’’—at least

in its ordinary sense— is mathematically too weak to provide all the real numbers

we need. For the set of all algorithms is a countable set.

And so Brouwer took on the task of providing an epistemologically respon-

sible account of the mathematical continuum. It was a philosophical task

(‘‘epistemologically responsible’’ needs a philosophical gloss) as well as a math-

ematical one; and, as I said, his philosophical and mathematical solutions went

hand-in-hand. On the mathematical side he provided a constructive theory of

finite mathematics together with a new set theory encompassing both discrete and

continuous infinities. And philosophically he anchored this with special episte-

mological and ontological doctrines, doctrines that themselves derived from an

overall phenomenological outlook. I will briefly describe Brouwer’s mathematical

solution and the intuitionistic mathematics that he derives from it. Then will I

turn to his philosophy of mathematics: his phenomenological theory together

with the positive and negative philosophical doctrines it spawned.

I.2. Intuitionistic Mathematics

Brouwer’s intuitionistic mathematics naturally divides between discrete—or, as he

calls it, ‘‘separable’’10—mathematics on the one hand, and his theory of the con-

tinuum on the other.

8 That was a nineteenth-century problem: Leopold Kronecker notoriously objected to

infinity per se in mathematics. But Brouwer did not associate himself with this view.
9 Brouwer uses the term ‘‘pre-intuitionist’’ in the historical capsules contained

in [1952a] and [1954a]. He numbers Poincaré, Lebesgue, and Borel as the main pre-

intuitionists. Troelstra [1982] (following Heyting [1934] and [1955] and Bockstaele

[1949]) adds Baire, Lusin, and, marginally, Hadamard to the list and uses the term ‘‘semi-

intuitionists.’’
10 Section III.2, below, discusses the reason behind the word ‘‘separable’’ here.
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Separable Mathematics

Discrete mathematics begins for Brouwer with the operation of forming ordered

pairs of distinguished elements, and continues by considering repeated iterations of

that activity. This produces finite mathematics. For such iterations, says Brouwer,

generate each natural number; and by abstract manipulations we can derive the

standard arithmetic operations, the full complement of integers (i.e., negative whole

numbers as well) and the rational numbers as pairs of integers. Brouwer carries

forward this picture of construction in the discrete realm in two strong ways.

On the one hand, he entertains increasingly complex and abstract structures.

For we can form a set (his word is ‘‘species’’) of objects thus produced or pro-

ducible, and then take that as an element of a yet more complex constructive

continuation. In his dissertation he speaks of constructing sets whose order

types—in Cantorian terms—are of the form m1op
1 þm2op

2 þ . . . . In subsequent

work he specifies even more elaborate ordinal structures.11

Yet on the other hand, Brouwer does not countenance the existence of any

mathematical entity that cannot be produced in this way (i.e., by a predicative

sequential process). This brings him into conflict with Cantor’s theory of higher

cardinals. To be sure, Brouwer allows the species of all (constructible) infinite sets

of natural numbers and accepts Cantor’s proof that this set cannot stand in one-

one correspondence with the natural numbers. But he will deny that we have thus

created a new cardinal number, greater than Q0. The species thus constructed are,

according to Brouwer, merely ‘‘denumerably unfinished.’’12

I should emphasize that despite this anti-Cantorian bent, Brouwer’s basic

constructions of finite mathematical objects match the ordinary (set-theoretic)

picture of the integers and rational numbers fairly well. His theory of the contin-

uum, though, diverges radically from standard mathematics.

The Continuum

To be sure, Brouwer’s mature theory, like classical mathematics, builds the con-

tinuum from infinite convergent sequences. And like the pre-intuitionists, Brouwer

held that a legitimate infinite object must be given by a principle or law. But, unlike

these constructivist predecessors, he did not require the generating laws to be fully

deterministic. Specifically, a Brouwerian sequence, s (whose entries are, say, ra-

tional numbers), might permit a certain amount of free choice to establish the value

of s(n) for some (possibly all) n. The continuum for him was built up from these

‘‘choice sequences,’’ and he used this idea to derive its characteristic properties.

Put formally, a choice sequence, s, is given by a preset finite initial segment

hs(1), . . . , s(n)i together with a principle which, given hs(1), . . . , s(k)i determines

11 See Brouwer [1954a].
12 See Brouwer [1907], ch. 3, and Brouwer [1908].
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the range of possible choices for s(kþ 1). This principle might allow but a single

possible value of s(kþ 1) for each k; in that case we have an ordinary algorithm.

But it might very well allow a broad collection of possible choices. Thus, for

instance, we might start a particular sequence a, of rational numbers, with the

determination a(1)¼½, and then set the rule that for each k, a(kþ 1) must be a

rational number whose distance from a(k) is less than or equal to (½)kþ1. Here we

have an infinite number of possible choices for each a(k).
The definition of a entails that this sequence converges, and thus generates a

real number, ra. The definition, in fact, already shows that ra is in the interval

R[0,1] (the interval of real numbers between 0 and 1, including the end points).

On the other hand, we cannot tell from this definition whether the real number

ra is less than, equal to, or greater than the real number ½. Indeed, we might never

be able to determine that one of these relations holds, for so long as we happen to

choose a(k)¼½, each one of the possible relations remains an open possibility.

This potential for indeterminacy lies at the heart of Brouwer’s mathematics.

Actually, Brouwer toyed with other techniques for producing real numbers

whose properties may be thus indeterminate. He sometimes used what he called

‘‘fleeing properties’’ to produce such real numbers. Here is an example. Let b be

the following sequence of rational numbers:

b(n)¼ (�½)n if by the nth place in the decimal

expansion of p, no sequence of the

form 9999999999 has yet occurred.

b(n)¼ (�½)k if n 6¼ k and the kth place in the

decimal expansion of p is the place

at which occurs the last member

of the first sequence of the form

9999999999 in that expansion

occurs.

So long as no sequence of the form 9999999999 turns up, as we calculate the

decimal expansion of p, b oscillates left and right of ½, getting ever closer. It will

stop and stay at a particular rational distance from ½ if and when such a sequence

occurs. The stopping point will be less than ½ if the k is odd, and greater than ½ if

k is even. We can always determine the nth element for any n and can always

calculate the corresponding real number to any desired degree of accuracy. So,

once again, we know that we are generating a real number that lies in the interval

R[0,1]. But, just as in the case of ra, we cannot tell what relation the number rb has

to the real number ½. Brouwer fully believed that we shall always be able to supply

fleeing properties in order to generate such indeterminate real numbers.

Interestingly, examples like these provide a special intuitionistic proof that the

continuum, built as it is from such indeterminate sequences, is indeed uncountable.
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The proof assumes that a function is defined at a point in its domain only if its

value at that point is calculable. So a function, f, that is to enumerate, say, R[0,1],

must be calculable at the argument x¼½, and at each of its other arguments. And

f must also be one-to-one. (That is if y 6¼ x, then f (y) 6¼ f (x).) But no such f can

meet both of these requirements at the argument x¼ ra or x¼ rb, for we cannot

determine whether any one of these is equal to ½ or not.

Set Theory and Full Mathematics

Brouwer fashioned an intuitionistic set theory to handle sets that include such

unruly sequences, and from this in turn he built a full intuitionistic mathematics.

Brouwer’s set theory has, as we saw, species (collections whose elements share

a common property),13 but he also defines constructive sets of sequences that are

generated in some mutually common way. He calls these spreads. A spread is set

of rules for admissible finite sequences of natural numbers such that each such

admissible finite sequence, hn1, . . . , nki, has at least one admissible successor

hn1, . . . , nk, nkþ1i. An infinite sequence of natural numbers will belong to the

spread if each finite subsequence does. We get infinite sequences whose elements

are more sophisticated objects by assigning such an object to each admissible fi-

nite subsequence. In this way we can get spreads whose elements are convergent

sequences of rational numbers,14 spreads whose elements are sequences of real

numbers, and spreads whose elements are even more abstract.

A spread which admits only finitely many successors to each admissible finite

sequence is called a fan. Brouwer showed that the real numbers falling within a

bounded closed interval like R[0,1] can all be generated by the sequences in a single

fan. Thus the following fan generates R[0,1]:

Let Z be an enumeration of the rational numbers, such that Z(0)¼ 0.


 0 is the only admissible one-member sequence.

 If hn1, . . . , nki is an admissible k member sequence, then hn1, . . . , nkþ1i is an
admissible kþ 1 member sequence if and only if there is a natural number p,

such that Z(nkþ1) is of the form p/2kþ1 and jZ(nk)�Z(nkþ1)j � 1/2kþ1.

 The fan assigns the rational number Z(nk) to the finite sequence hn1, . . . , nki.

13 Thus, for instance, a real number is actually an infinite collection of convergent

sequences, each of which stands in the relation of coincidence with each of the others. The

relation is defined as follows: a b if and only if Vn AmVk ja(m)�b(m)j< 2�n. It amounts

to saying that a and b converge to the same limit.
14 Thus, for instance, we might start a spread by allowing h0i as the only admissible

one-member sequence, and allowing hn1, . . . , nkþ1i to be a successor to hn1, . . . , nki only if
the absolute value difference between nk /2

k�1 and nkþ1/2
k�1 is less than or equal to 2k�1. If

we assign the rational number nk /2
k�1 to the admissible sequence hn1, . . . , nki of natural

numbers, we will get a spread whose elements are sequences of rational numbers that con-

verge to a real number in R[0,1].
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This fan admits a maximum of three successors to any admissible finite sequence.

The real numbers in the interval are given by convergent sequences of rational

numbers of the form p/2k.

The mathematics that emerged from these ideas was sometimes weaker than

classical mathematics; sometimes it refined classical mathematics; and sometimes

actually it contradicted classical theorems.

Here is an example in which intuitionistic mathematics is weaker. In the clas-

sical set-theoretic continuum the ‘‘trichotomy’’ [(rb<½)_ (rb¼½) _ (rb>½)] is

true, as is its counterpart for ra. Indeed, these are special cases of the general classical

theorem: (Vx)(Vy)[(x< y)_ (x¼ y)_ (x> y)]. However, since we cannot deter-

mine the relation of the real numbers ra and rb to ½, Brouwer insists that we

pristinely refrain from asserting the corresponding disjunctions. These particular

disjunctions, and indeed the full general theorem, are thus classically but not in-

tuitionistically true.

Here is an example of refinement. A rational real number, r, is one for which

we can give two natural numbers p and q such that r¼ p/q; thus, by intuitionistic

lights the real number rb is not rational. We cannot find natural numbers p and q

such that rb¼ p/q. On the other hand, rb cannot be irrational. (For if there is a

sequence of the requisite sort in the decimal expansion p, then rb will be rational.

If there is no such sequence, then rb¼½, and is once again rational.) Brouwer

calls this a ‘‘splitting’’ of the classical mathematical concept of irrational number:

there are numbers that are not (so far as we know) rational, and there are numbers

that cannot be rational. Brouwer points out that this is a case of the failure of the

classical principle of double negation: it is impossible for it to be impossible that

rb be rational, but that is not sufficient to claim that rb is rational.

And here is the most striking—indeed, notorious—deviation from classical

mathematics, Brouwer’s Continuity Theorem: Fully defined functions of real num-

bers are always continuous.

Brouwer actually proves this theorem in two forms. He has a weaker (negative)

version saying that a function cannot be both total (i.e., have a value at every point in

its domain) and discontinuous at some point in its domain.15 And he had a stronger

positive version: every function that is total on R[0,1] is continuous.

Here, by the way, is another splitting of a classical notion: classically, the two

versions of the theorem are equivalent. And, of course, classically they are false.

The simple step function defined on R[0,1] is as follows:

f (x)¼ 1 for x<½

¼ 2 for x � ½

15 Pictorially, to say that a function, f, is discontinuous at a point x is to say that its

value ‘‘jumps’’ at x. That is, there is a region of arguments, y, each of which is close to x,

such that f (x) is measurably distant from f (y) for each y in that region.
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is both total and discontinuous at x0¼½. But for Brouwer the versions are

distinct (in particular, the first does not imply the second), and they require sep-

arate proofs.16

To prove the negative version, he defines a convergent choice sequence w so

indeterminate that the question of whether its corresponding real number rw is

less than ½ or equal to ½ remains eternally undecided. This shows that f is not

defined at rw, and hence is not in fact a total function.

Brouwer’s proof of the positive version rests on the assumption that if a

function, g (defined on R[0,1] or alternatively on any set of reals which is generated

by a fan), is actually total—that is, if

Vx(2R[0,1]) Ay[g (x)¼ y]

holds—then there must be a proof of that fact, a proof that makes use only of

definitional information about g. Brouwer goes on to analyze the structure of any

such proof, and shows that indeed any such proof can be turned into a proof that g is

continuous.17 In particular it will be a proof that if s is a convergent choice sequence

whose corresponding real number rs falls in R[0,1], then g (rs) must be calculable on

the basis of a finite initial segment of s.18 And that will guarantee the continuity of g.19

This, by the way, provides an even simpler and more straightforward proof of

the uncountability ofR[0,1]. For, it turns out that any putative function enumerating

16 Both versions are proved in Brouwer [1927]. Brouwer proved the positive version

in earlier papers.
17 For this theorem to hold, the domain of g must be given by a fan. The proof of the

continuity theorem crucially uses this fact in describing the supposed proof that g is a total

function.
18 This in turn shows that for any k there is an n such that an approximation of x up to

an accuracy of 2�n will suffice to determine an approximation of y up to 2–k. Such a function,

g, must be continuous (i.e., ‘‘smooth’’) because, unlike the step function, f, defined above,

one cannot approach any x without the corresponding values approaching g(x).
19 I need to add three remarks to my quick treatment of the positive continuity

theorem:

(1) Brouwer’s actual statement of the theorem is stronger. His claim is that

every such total function is uniformly continuous. In the preceding note,

n depends upon k but not upon x. This is what guarantees the

uniform continuity of g.

(2) Some treatments of this theorem omit Brouwer’s argument altogether,

and simply assume conditions which entail continuity as part of the claim

that g is total function. This, for instance, is the embarkation point in

chapter 10, ‘‘Intuitionism in Mathematics.’’

(3) One can find a concise proof of the theorem in Heyting [1966]. Dummett

[2000] has an extended discussion of Brouwer’s proof and of the un-

derlying ‘‘continuity’’ assumptions on the definition of real-valued and

other functions.
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R[0,1] would have to be discontinuous. In particular, the value of such a function at

rw could not be determined by a finite initial segment of w.
Brouwer and his students went on to apply these methods to the study of

geometry, algebra, calculus, and abstract topology.20

The Inconsistency of Classical Mathematics

Finally, a word about Brouwer’s technical attack on classical mathematical principles.

In publications starting in [1948] Brouwer used what has come to be called

the method of the ‘‘creating subject’’ to form indeterminate sequences.21 The

creating subject is an idealized mathematician who is working on some as yet

undecided mathematical proposition, Q (say Goldbach’s conjecture22). In this

case let g be the following sequence:

g(n)¼ (½) if by the nth stage of his research

the creating subject has neither

proved nor refuted Q ;

g(n)¼ (½–(½)k) if n� k and at the kth stage in his

research the creating subject has

succeeded in proving Q ;

g(n)¼ (½þ (½)k) if n� k and at the k th stage in his

research the creating subject has

succeeded in refuting Q.

In this case we actually make the strong claim rg 6¼½ for the real number rg,
generated by g. (For (rg¼½) would entail Q and Q.23) Just as in the case of

fleeing properties, Brouwer fully believed that we shall always be able to supply

undecided propositions in order to generate such indeterminate real numbers.

Real numbers such as this allowed him to claim that some of the principles of the

elementary classical arithmetic of real numbers—principles like Vx Vy[x 6¼ y !
((x< y)_ (x > y))]—are not merely unprovable, but actually contradictory.24

20 Brouwer used fleeing properties, for instance, in order to invalidate the classical

version of his fixed-point theorem, and provided an intuitionistically valid alternative. See

Brouwer [1952b].
21 Brouwer mentioned a version of the method of the creating subject in his Berlin

Lectures of 1927 (posthumously published as Brouwer [1992]), but he refrained from

putting it in print until 1948.
22 Goldbach’s conjecture is the conjecture that every even number greater than 2 is

the sum of two prime numbers. This has been confirmed up to very high even numbers,

but has not yet been proven or refuted.
23 See note 48, below, for Brouwer’s reasoning here.
24 See, e.g., Brouwer [1954b] and Heyting ([1966], sec. 8.1.2). Quite recently Van

Dalen has extended Brouwer’s method of the creating subject to obtain new results about

the structure of the intuitionistic continuum. See van Dalen [1997] and [1999].
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I.3. Brouwer’s Philosophy: The Phenomenology

of Intuition and Constructivity

Each part of Brouwer’s intuitionistic mathematics—finite and infinite separa-

ble mathematics, the theory of the continuum, and the reductio of classical

mathematics—has a parallel philosophical foundation. Brouwer proposed epi-

stemic and ontological foundations for the discrete and continuous parts of

mathematics, and he authored scathing philosophical critiques of the use of logic

and language in classical mathematics. But all these rest upon a pervasive phe-

nomenological base, a picture of a mathematical subject constructing objects from

intuitive material abstracted from ‘‘primordial consciousness.’’25 In this section

I’ll sketch Brouwer’s theory of primordial conscious experience, his specialized

phenomenology of mathematics, and the mathematical epistemology and ontol-

ogy that flow from it. Then I will turn to his philosophical attacks on the classical

approach to mathematics.

Brouwer’s Phenomenology

General Phenomenology. Primordial consciousness, according to Brouwer, is

a ‘‘dreamlike’’ stew oscillating between sensation and rest; and, he says, conscious

life would stay that way were it not for ‘‘acts of attention’’ by which the subject

focuses on individual changes between different sensory contents. He calls such a

change the ‘‘falling apart of a life moment.’’ Objective consciousness begins when

one focuses on such an event. Through these attentive acts the subject distin-

guishes individual conscious elements together with their contents and discerns

an order between them. The subject iterates this process and thus forms atten-

uated mental sequences. These in turn are the building blocks of the subject’s

awareness of ordinary empirical objects.

Brouwer speaks next of what he calls ‘‘causal attention.’’ The subject discerns

some similarity among distinct conscious moments and then fashions sequences

with similar initial parts and similar subsequent parts (‘‘causal chains’’). In this

way, says Brouwer, the subject produces awareness of the causally ordered world.

Reflecting upon this is the root of science; manipulating it is technology.

Three things should be stressed. First, the subject’s main productive activity is

generating sequences and correlating them with other sequences. Second, the acts

25 Though Brouwer does not refer to Husserl, he clearly shares Husserl’s basic as-

sumption that consciousness itself provides subject matter for disciplined research.

Brouwer’s phenomenological picture is prominent in [1929], [1933], [1948a], and [1950].
Van Atten [1999], Placek [1999], and Van Atten et al. [2002] focus on the phenomeno-

logical side of Brouwer’s thought. Van Dalen [2000] describes the origin of this picture in

Brouwer’s early thought.
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forming the world are willful impositions of structure on the original roil of

consciousness. To be sure, there may be frustrations, and the formative process

includes trial and error; but creative will and the imposition of will are central

here. Finally, and most important for us, Brouwer claims that mathematical ac-

tivity is parallel in both of these respects: It, too, is sequence-centered. It, too, is

willful and creative. But, says Brouwer, it is purer, more abstract.

The Phenomenology of Mathematics. Mathematical abstracting takes place

at the very beginning, in forming what Brouwer calls the basic intuition of math-

ematics: The first act of intuitionism starts, as in ordinary consciousness, with ‘‘the

falling apart of a life moment into two distinct things, one of which gives way to

the other, but is retained by memory.’’ But it then ‘‘divests all quality’’ from ‘‘ the

two-ity thus born.’’ According to Brouwer, ‘‘There remains the empty form of the

common substratum of all two-ities. It is this common substratum, this empty

form, which is the basic intuition of mathematics.’’26

Empty of sensory content though it may be, this two-ity is the material for all

of mathematics. Numbers and finite objects come from manipulating and repli-

cating this empty sequence. This is the source of the individual integers and

rational numbers,27 and it is the phenomenological basis of ordinary arithmetical

identities.

It is important to note that as a mathematician I do my abstracting when,

after that first ‘‘falling apart,’’ I ignore sensory content and form the abstract,

empty ‘‘two-ity’’ of which Brouwer speaks. Brouwer does not start his phenom-

enology of arithmetic with some concrete actual counting or combination, and

then abstract the mathematical counterpart. And in particular he does not sup-

pose that mathematical operations on finite objects are schematic skeletons of

empirical operations. Mathematics is an independent, empirically empty, process

of its own.

This independence is even more evident in what he calls the second act of

intuitionism, an act which generates infinite mathematical entities in two ways:

firstly in the form of infinitely proceeding sequences p1, p2, . . . , whose terms are

chosen more or less freely from mathematical entities previously acquired; in

such a way that the freedom of choice existing perhaps for the first element p1
may be subjected to a lasting restriction at some following pn, and again and

again to sharper lasting restrictions or even abolition at further subsequent pn’s,

while all these restricting interventions, as well as the choices of the pn’s them-

selves, may be made to depend on possible future mathematical experiences of

the creating subject . . .28

26 Brouwer [1952a], 141.
27 See Brouwer [1907], sec. 1.
28 Brouwer [1952a], 142.
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This is the formation of choice sequences, sometimes yielding determinate se-

quences (that is, ‘‘abolition of freedom’’ mentioned here), and sometimes, inde-

terminate ones that depend upon the creating subject.

secondly, in the form of mathematical species, i.e., properties supposable for

mathematical entities previously acquired, and satisfying the conditon that, if

they hold for a certain mathematical entity, they also hold for all mathematical

entities which have been defined to be equal to it, relations of equality having to

be symmetric, reflexive and transitive; mathematical entities previously acquired

for which the property holds are called elements of the species.29

And here we have the formation of more abstract objects—species—by means of

equivalence relations.

The first sort of formation shows how we can grasp infinity: discrete infinity

and even the infinity needed to produce a continuum. The second opens the gates

to ever increasingly abstract mathematical constructions. Individual real numbers

are species of this sort, as are full spaces, and even more abstract products and

quotients of spaces. These mathematical constructions parallel empirical sequence

formation, but it is in fact empirically empty. There are no infinite sequences in

the empirical world, nor are there empirically abstract species.

Thus Brouwer has fashioned a unique phenomenological constructivism. He

is not a finitist, nor does he follow the empiricist abhorrence of abstraction. To

be sure, his homespun phenomenology and ontogenesis may well grate upon some

ears, and I will say something about that a bit later. But if, for now, we grant

Brouwer this way of speaking, then we can say that the outcomes of all of these acts

of creation are straightforward mathematical objects. Each one, no matter how

abstract or complex, is intuitively grasped, and each one exists. From this stylized

picture we can derive his specific doctrines about epistemology and ontology and

his negative critique of classical mathematics. Let me describe these philosophical

‘‘spin-offs’’ of Brouwer’s special constructivism.

Epistemology and Mathematical Intuition

Mathematical knowledge is for Brouwer, as it was for Kant, synthetic a priori

knowledge, based on a notion of pure intuition. But Brouwer has his own unique

version of mathematical intuition and his own special grounds for apriority.

Intuition. Mathematical intuition for Brouwer is temporal, and it is abstract.

Temporality. This is fairly straightforward. The elements distinguished in

that first ‘‘falling apart’’ have a temporal order, and that order, together with the

order of subsequent pairings, is preserved in the sequences produced by the two

acts of intuitionism.

29 Ibid.
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And Brouwer’s mathematics tells us that time, on his view, is tensed. It has a

sense of past, present and future.30 Indeed, Brouwerian time has a somewhat open

future.31

Abstractness. Indeed, not only does Brouwerian mathematics have an in-

tuitive content all its own, empty of sensory, empirical material, but Brouwer’s

version of mathematical intuition far outstrips any sort of sensory grasp. Brou-

wer, for instance, will claim that a, b, g and w are graspable mathematical objects.

And so are the real numbers they generate, as are the spread which gives R[0,1],

the entire continuum, and more and more abstract spaces and points in analy-

sis and topology. There is no limit, Brouwer would say, to the creative ways we

might generate the new mathematical objects from the old, so long as they

conform to the two laws of intuitionism. And all of these new objects—however

abstract and empirically ungraspable they may be—are, in Brouwer’s view, given

in intuition.

Apriority. Mathematics is, for Brouwer, a priori in the two Kantian mean-

ings of the expression. It is epistemologically independent of sensory empiri-

cal experience, and it is a necessary underpinning of empirical science. But

Brouwer fleshes out this independence and necessity in ways that differ from

Kant’s views.

For Brouwer, mathematics is ‘‘independent’’ of empirical experience not be-

cause of its abstractness or because of some special notion of mathematical justi-

fication. It is independent of experience to simply because it proceeds on a special

track of its own. We do not turn to empirical experience to justify, or even to

exemplify, the claims of pure mathematics. Au contraire, we achieve empirical

applications of mathematics by superimposing empirical causal sequences on our

independently formed mathematical structures.32 That, indeed, is also the sense in

which mathematics underlies empirical science.

30 The difference between the initial segment and the tail of a choice sequence shows

that Brouwer respects the past/future distinction. And we see the special status of the

present from the unique position at which assertions about a sequence are made. (We

cannot now say that b>½, even though that may be established in the future.) Brou-

werian time is thus what MacTaggart calls an A-Series.
31 Thus, for instance, the sequence b (defined above) has a future that is simply open

regarding the determination of whether rb<½ rb¼½, or rb>½. But we should be

careful here. There are future dependent disjunctions that we can preassert. We haven’t yet

calculated whether 100100þ 1 is prime or composite. But since we do know how to de-

termine that, and could do so, we can indeed say right now that this number is either

prime or composite. The future is somewhat open.
32 See, e.g., Brouwer [1933, 1948a].
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Ontology

Unlike Husserl, Brouwer does not separate the question of conscious construction

from the issue of objective existence in the world or in mathematics.33 Each object is

given by a particular generating act, and what you build is what there is. This tells us

the Brouwerian attitude toward construction and objects, identity and existence.

Construction and Objects. The real numbers ra, rb, rg and rw are perfectly

respectable—that is, constructible—real numbers. But their generating construc-

tions do not determine the relation of any one of these to the real number ½, and

do not specify their exact location within the interval R[0,1]. Nor do they provide

any guarantee that such determinations can ever be made. We have here concrete

instances demonstrating that in Brouwer’s constructive ontology legitimate objects

need not be fully determinate with respect to all of their potential properties.

Brouwer sometimes toyed with the possibility of ‘‘second-order’’ controls on

this sort of indeterminacy. Thus, while each of the numbers ra, rb, and even rg
might become determinate at some stage of development; the number rw, in his

proof of the negative version of the continuity theorem is specifically designed so

that its relation to ½ will remain forever undetermined.

Identity. And what goes for general properties and relations clearly goes for

identity as well. The numbers ra, rb, and rg are each formed by distinct generative

acts, so they are perhaps intensionally distinguishable. And each one is certainly

less determinate than the real number ½. But from a strictly arithmetic point of

view, we cannot say that any one of them differs from any one of the others, nor

from ½. We have here individual entities without a determination of identity. In

Brouwer’s constructive ontology, legitimate objects need not be distinguishable

one from the other.

Existence. Brouwer, as we have seen, ties existence to constructibility. Putative

mathematical entities that aren’t constructed in the way that Brouwer describes

simply don’t exist. His foes here are the well-known indirect existence proofs

based on the principle of excluded middle. To be sure, Brouwer has no problem

with reductio ad absurdum arguments per se.34And so Brouwer, as I mentioned,

33 See Husserl [1913] (sec. 18, among several places) for the notion of an �eepow�ZZ
(epokh�ee), an agnostic abstention from concern with the existence of consciousness’s in-

tentional objects. There is something like an epokh�ee in Brouwer’s treatment of other minds

in [1948a], but, according to Brouwer there, this does not transfer to a general theory of

objects per se.
34 G. Griss, in a series of papers—[1944], [1946], [1949], [1950] are prime examples—

rejected the role of negation in a proper intuitionistic mathematics, and strove to provide

a negationless version. Brouwer sharply rejected this position in [1948b].
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happily accepts Cantor’s diagonal argument as a proof that the real unit interval is

uncountable. But, as we saw, he does not conclude from that that there exists an

uncountable cardinal number. For, there is no construction here.

Negative Doctrines

From these considerations about intuitive content and intuitive construction

Brouwer draws negative conclusions about classical mathematics, about logic and

about language.

Intolerance Toward Classical Mathematics. Mathematics for Brouwer

has content; it is about something. It is about the objects and structures

produced according to his constructive guidelines. Thus, classical mathematics

must perforce be talking about that same subject matter. And insofar as it

differs from intuitionistic mathematics—for instance, in claims about trichot-

omy or the existence of discontinuous functions—in these matters it is simply

wrong.

Moreover, since mathematics is an a priori science—its truths are necessary

truths—to contradict one of these truths is to assert not merely the false but the

impossible. That is why Brouwer actually speaks of the ‘‘inconsistency’’ harbored

by one or another classical mathematical theory.

To be sure, Brouwer is not claiming that classical mathematics lacks meaning

or reference. It refers to mathematical reality, the same mathematical reality to

which the intuitionist refers. And it is fully meaningful. It is simply and necessarily

false.

Logic. A frequent mistake of classical mathematics is to assert the existence of

things that in fact don’t exist. Brouwer actually provides an etiology for this

classical mistake. He posits an early mathematics concerned only with finite

objects and systems, and tells us that at this stage, excluded middle was indeed a

valid principle. (Presumably because at this stage, mathematical objects were

effectively complete.) Early mathematicians, reflecting on their intuitive con-

structions, formulated general logical principles—the laws of noncontradiction,

syllogism, and excluded middle—and allowed themselves to construct mathe-

matical proofs based on these. However, these rules were simply general prop-

erties of constructions, and the derivations were no more than shorthand for

possible constructions.

Mathematics evolved. Its objects became infinite, constructably infinite to be

sure, but infinite nonetheless; and therefore incomplete. The other logical laws

maintained their validity; excluded middle did not. But mathematicians contin-

ued to apply the old logic as if nothing had changed. They took logical deduction

to be a justification in its own right, the heart of the axiomatic method, but could
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no longer cash it out in actual constructions. That, says Brouwer, is the heart, and

the weakness, of classical mathematics.

In a nutshell: For Brouwer, logic per se follows ontology—classical logic is

appropriate for finite but not for infinite domains—but it can never lead.

Language. The classical mathematician, says Brouwer, looks to language as a

replacement for the now missing intuitive content of mathematics. Language is

supposed to be intuitive because it is quasi-perceptual. But for Brouwer language

is an illegitimate surrogate, and it has no special intuitive value. It is not especially

intuitive because, for him, mathematical intuition is not perceptual. And it is

illegitimate because, on Brouwer’s phenomenological view, no symbolic notation

can ever accurately report the content of a conscious moment.

Brouwer’s polemics against formalism in general and Hilbert’s program in

particular combine all of these criticisms. Hilbert wanted to secure mathematics

against paradox and inconsistency by formalizing each part and then using ele-

mentary intuitive methods to prove the formal systems consistent. Intuition, for

him, was indeed tied to perception: formal languages and formal systems had

intuitive content; abstract, infinitary mathematics did not. Given some part of

mathematics, Hilbert proposed axiomatizing it informally, transforming the ax-

iomatic theory into a formal system, showing the formal system to be faithful

(‘‘sound and complete’’ in modern terminology), and then proving that formal

system to be consistent. Since in his view the formal system is, as I said, intuitively

grounded, intuitive (‘‘finitary,’’ ultimately arithmetic) methods would suffice to

prove its consistency.35

Gödel’s theorems challenged the formal viability of Hilbert’s program, but

well before they appeared, Brouwer objected to this program at every turn.

Abstract mathematics, if practiced constructively, is fully intuitive. Translation

to a formal language—to any language—is at best questionably accurate. (This,

for phenomenological rather than Gödelean reasons.) Formal systems are le-

gitimate mathematical objects, but not necessarily more intuitive than the math-

ematics they are formalizing. And worst of all, the original axiomatization—and

its indiscriminate use of excluded middle—simply perpetuates the original mis-

takes of classical mathematicians. Indeed, says Brouwer, Hilbert’s oft-repeated

slogan that every mathematical problem is ultimately solvable is equivalent

to the principle of excluded middle and, as such, amounts to an outmoded,

ungrounded belief. In the end, for Brouwer, Hilbert’s notion of intuition does

not exhaust mathematical intuition, and his notion of construction is not

constructive.

35 See Ch. 8 in this volume, by Michael Detlefsen, for a fuller picture of Hilbert’s

program.
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II. Intuitionistic Logic and

its Philosophy

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

II.1. Intuitionistic Logic and Metalogic

This, then, is Brouwer’s intuitionism: a revised mathematics resting on a phe-

nomenological philosophy and accompanied by a trenchant critique of logic and

language. Thus, one would scarcely expect intuitionists to formalize an intuition-

istic logic or to produce formal systems for branches of intuitionistic mathematics

built upon that logic. But this is exactly what happened. In the 1930s Arend

Heyting published a series of papers presenting formalized intuitionistic logic and

formal intuitionistic number theory. These gained immediate attention, forHeyting

provided full-dress formal systems for propositional and predicate logic and for

intuitionistic number theory.36 Metamathematical studies of Heyting’s systems

and extensions of them soon followed. They revealed eye-opening syntactic, alge-

braic, and topological properties of the system and its refinements. Ultimately

they led to the model-theory of intuitionistic logic, initiated by Evert Beth and

perfected by Saul Kripke.

All of this acutely raised the question of how such systems and studies fit into

the intuitionistic program. After displaying the system and briefly mentioning

some of its main metalogical properties, I’ll turn to Heyting’s own assessment of

the philosophical significance of intuitionistic logic, and then to Michael Dum-

mett’s treatment of the subject.

The Formal System

Here is an axiomatization of intuitionistic logic (IL) adapted from Kleene [1952]

and van Dalen [1986]. The language is the full language of first-order logic,

without any abbreviations:37

Axiom Schemata

1. A! (B!A)

2. (A!B)! ((A! (B!C))! (A!C))

36 Brouwer’s 1923 refutation of the principle of double negation inspired a spate of

publications about ‘‘la logique de M. Brouwer’’ by a number of authors outside the intui-

tionistic camp. See, for instance, Kolmogorov [1925], Wavre [1926a] and [1926b], Borel
[1927], Glivenko [1929]. But Heyting’s papers created the field of formal intuitionistic logic.

37 One cannot interdefine the logical particles by way of DeMorgan equivalences, so

the language of IL and any extended intuitionistic formal system must contain a symbol

for each of the logical particles explicitly, and the formal system must contain rules and

axioms for each logical particle.
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3. A! (B! (A&B))

4a. (A&B)!A

4b. (A&B)!B

5a. A! (A_B)

5b. B! (A_B)

6. (A!C)! ((B!C)! ((A_B)!C))

7. (A!B)! ((A!B)!A)

8. A(t)! (Ax)A(x)
9. (Vx) A(x)!A(t) (where t is free for x in A and x is not free in A)

10. A! (A!B)

The inference rules are

1. A A ! B

B

2. A ! BðxÞ
ð8xÞBðxÞ

3. AðxÞ ! B

ð9 xÞAðxÞ ! B
.

This version of the system is formulated so that if Axiom Schema (10) is replaced by

100. A!A,

the result will be a system of standard classical logic. (10) is derivable from (100),
so this shows that syntactically intuitionistic logic is a proper subsystem of clas-

sical logic. (That is, ‘ILj)‘CLj but not, of course, vice versa.)

Add the standard axioms for identity and for number theory, and you get a

formal system for intuitionistic number theory, called HA (for ‘‘Heyting Arith-

metic’’). HA is, of course, a proper subsystem of the classical formal system of

number theory (called PA, for ‘‘Peano Arithmetic’’). The 1960s and 1970s saw the

further development of intuitionistic formal systems, including formal systems for

the theory of choice sequences, and even for the theory of the creating subject.38

Modern metamathematical studies of IL followed in quick succession after

Heyting’s formalizations, and these studies have not abated. Here are some stan-

dard syntactic and semantic results:

Syntactic Properties. Intuitionistic logic (and certain extensions) have the ‘‘ex-

plicit disjunction property’’ (if ‘IL(j_c), then ‘ILj or ‘ILc) and the ‘‘explicit def-

inition property’’ (if ‘ILAx j(x), then for some closed singular term ‘‘t,’’ ‘ILj(t)),

38 See, e.g., Troelstra [1977] and [1982] on choice sequences, and Kreisel [1967], Van
Rootselaar [1970], and Posy [1977] for various axiomatizations of the theory of the creating

subject.

intuitionism and philosophy 337



results that might well be expected in a system representing constructive mathematical

thought.

Gödel showed a connection between IL and the formal system S4 of modal

logic,39 and provided a translation * between formulae such that ‘CL j holds

if and only if ‘ILj*. A similar property relates HA and formal classical num-

ber theory. It can even be shown that for any formula, j, HA‘j if and only if

PA‘ j.
That means, in particular, that if a contradiction is derivable in one of these

systems, a related contradiction will be derivable in the other. Thus, although, as I

said, HA is, strictly speaking, a proper subsystem of PA, it is not ‘‘easier’’ to prove

the consistency of HA than it is of PA.40

Semantic Properties. There are mappings between the theorems of IL and the

elements of various abstract mathematical structures. To give just two examples,

the system displays the properties of a particular kind of algebraic ‘‘lattice,’’41 and

the class of provable formulae has be shown to be parallel to certain properties

of the open sets in a topological space.42

Philosophically, however, the most interesting semantic treatment of intui-

tionistic logic is the model-theoretic approach, which interprets quantifiers over

domains of objects and connects formulae with truth-values. Indeed, it provided a

full, precise semantic notion of truth and of logical validity.43

And so—or so the story goes—we get corresponding approaches to ‘‘intuition-

istic truth’’ and ‘‘intuitionistic validity.’’ Evert Beth published a model-theoretic

interpretation of IL in [1947], and Saul Kripke produced one in [1965]. The two

approaches differ in details—Kripke’s is formally simpler—but their underlying

idea is the same: instead of a single model, one has a partially ordered collection of

nodes (generally with a base node), each of which is something like a model in its

own right. The partial order among nodes is called the ‘‘accessibility’’ relation.

Predication at each node can be defined in the standard fashion, but the recursion

clauses for the truth of compound statements may well depend upon the truth-

values of its component simpler parts at accessible nodes.

Thus, for instance, in Kripke’s version

39 See Gödel, [1933b].
40 See Gödel, [1933a].
41 These ideas can be used to show that IL cannot be characterized by any finite set of

truth values. See Gödel [1932].
42 See Rasiowa and Sikorski [1963] for expanded treatments of these algebraic and

topological interpretations.
43 A formal sentence in some mathematical theory will be true simpliciter if it is true

in the standard model of that theory. A sentence is logically valid if it is true in every

possible model, and an inference from A to B will true if every model in which A is true is

also a model in which B is true.
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  A will be true at a node w only if A is not true at any node w 0 that is
accessible to w,


 (A_B) will be true at w only if either A is true there or B is,

 (Ax)A(x) will be true at w only if A(t) is for some t in the domain

of w,44


 (Vx)A(x) will be true at w only if for each w 0 accessible to w, A(t) is true at

w 0 for each t in the domain of w 0.

‘‘Truth’’ for the model structure as a whole can be defined as truth at the base

node, and logical validity will be truth in every model. Both the Beth and the

Kripke semantics are demonstrably faithful to IL.45

Here, using Kripke-models, is a pair of counterexamples to classical logical

truths. The first model structure contains three nodes: w1, w2, w3. where w2 and w3

are accessible to w1 but not to one another. If A is true at w2 but not at w3,then

(A_A) will not be true at w1, thus providing a counterexample to the principle

of excluded middle.

The second model structure contains an infinite collection of nodes {wn}n
which is ordered linearly. wj is accessible to wk if and only if j is greater than or

equal to k. Now suppose that the domain at a node, wn, is the set of numbers

{1, . . . , n} and that F(t, s) holds at any given node, wn, if and only if both t and s

are in the domain and t< s. In this case (Ay)F(1, y) is not true at w1 (since there is

no element of the domain at w1 that is greater than 1). So clearly (Vx)(Ay) F(x, y)
is not true at w1

46 However, (Vy) F(1, y) is clearly not true at w1, and so neither

is (A x)(V y) F(x, y). This thus shows why [(Ax)(Vy)y 6¼ x F(x, y) _ (Vx)(Ay)y 6¼ x

F(x, y)] is not intuitionistically valid.

II.2. Heyting’s Interpretation

Turning to the question of the intuitionistic import of all this, I must say right off

that a formal system itself is a perfectly respectable—indeed, a rather tame—

intuitionistic object, and that most metamathematical mappings would be legit-

imate constructions if they were to be carried out within Brouwerian guidelines.

The real question before us is the philosophical import of this system and its

attendant metalogical studies.

44 In this version, each node has its own domain of objects. If node w 0 is accessible to
node w, then the domain of w must be a subset of the domain of w 0.

45 The standard proofs of these facts are not intuitionistically acceptable. See De

Swart [1976] and [1977], and Veldman [1976], for intuitionistic versions of the model-

theoretic semantics together with corresponding completeness theorems.
46 Indeed, for parallel reasons, the formula (Vx)(Ay)y 6¼ x F(x, y) is not true at any

node. Thus (Vx)(Ay)y 6¼ x F(x, y) is true at w1 , as is (Ax)(Vy)y 6¼ x  F(x, y).
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We might try to adapt Brouwer’s own mode of thought here: logic follows

ontology, and so intuitionistic logic might be a formal statement of the special

intuitionistic ontology. But in fact, Heyting explicitly abjures this way of thinking.

He did this not (merely) on the ground that logic is ontologically neutral, but

mainly because he held that intuitionistic mathematics is itself ontologically

neutral. Classical mathematics, says Heyting, is metaphysically weighted, and that

is its downfall. Intuitionism, he insists, is metaphysically neutral.

Intuitionistic logic, he tells us, reflects something else altogether: the special

intuitionistic meaning of the logical particles. In particular, for Heyting, intui-

tionism’s central philosophical claim is that mathematics has no unknowable

truths. In mathematics, to be true is to be provable; and IL is the result of apply-

ing this tenet to the semantics of the connectives and quantifiers. The main idea

goes as follows. We set out the conditions under which evidence in an epistemic

situation will suffice to count as a proof of a proposition A in that situation. Thus,

in particular:


 A¼ (B & C) is proved in a situation if and only if the situation proves B

and C;

 A¼ (B_C) is proved in a situation if and only if the situation contains

evidence indicating that either B or C will eventually be proved;

 A¼ (B!C) is proved in a situation if and only if the situation contains

a method for converting any proof of B into a proof of C ;

 A¼B is proved in a situation if and only if the situation contains

evidence that B can never be proved (i.e., evidence that shows that a proof

of B could be turned into a proof of a contradiction);

 A¼ (Ax)B(x) is proved in a situation if and only if the situation contains

evidence indicating that B(t) eventually be proved for some t ;

 A¼ (Vx)B(x) is proved in a situation if and only if the situation

contains a method for converting any proof that a given object t is

in the domain of discourse into a proof of B(t).

When we replace the standard notion of ‘‘truth’’ in a model with this notion

of ‘‘proof ’’ in an epistemic situation—or ‘‘assertability,’’ as Heyting put it in

[1966]47—we have a philosophical grounding for intuitionistic logic. Certainly, in

particular, excluded middle will fail, for there are propositions right now for which

we have no evidence that they will ever be decided. And the rest of intuitionistic

logic will follow suit, so that logic is the expression of this proof interpretation of

the logical particles.

47 The term ‘‘warranted assertability’’ was actually introduced by John Dewey in [1938],
but it has now come to be used generically to cover this sort of epistemic theory of meaning.

(Kolmogorov [1932] suggested an interpretation of IL using the notion of mathematical

problems, and pointed out that it was equivalent to Heyting’s proof interpretation.)
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Four things need to be noted. First, Brouwer’s work contains ample evidence

that he embraced this conception of mathematical truth. His proof of the positive

version of the continuity theorem rests precisely on the assumption that truth

(in that case, truth of the claim that the function f is a total function) presupposes

provability. His use of creating-subject sequences also quite openly involves an

assertabilist assumption.48 And perhaps most telling is his repeated equation of

Hilbert’s mathematical optimism (Hilbert’s belief that every mathematical prob-

lem is ultimately solvable) with the principle of excluded middle. This equation

presupposes assertabilism. If we assume optimism, then for any given proposition

B we have a guarantee that either B or B will eventually be proved. The con-

dition for the assertability of disjunctions will then validate (B_B).

Second, if we take this proof interpretation of the logical particles as the

central message of intuitionism, then some of the metalogical studies of IL do take

on philosophical significance. Thus, in particular, Gödel’s mapping between IL

and the modal S4 was actually expressed in terms of mathematical provability.

Gödel used the symbol ‘‘B’’ (for Beweissbarkeit, ‘‘provability’’) rather than the ‘‘&’’

or ‘‘�’’of modern modal logic. His idea was that the notion of mathematical

provability satisfies the axioms of S4, and that is why S4 is an appropriate mapping

for intuitionistic logic. Similarly, Kripke heuristically describes the nodes in an

intuitionistic Kripke-model as ‘‘epistemic situations,’’ and takes the ordering of

these nodes as a model of the monotonic growth of knowledge.

The third point is that Brouwer’s insistence on construction is preserved in all

this. Or at least it is according to Heyting. For when we speak of ‘‘proof ’’ in these

clauses, we must in fact keep in mind that, for an intuitionist, construction is the

basic proof activity.

And last, though he may keep the emphasis on construction, Heyting jettisons

Brouwer’s metaphysical ground for intuitionistic logic—indeed, for intuitionistic

mathematics altogether. For the proof interpretation is—or should be—ontologically

neutral.

I say ‘‘should be’’ because, since proof or evidence is now the criterion of

truth, it is easy to slip into the belief that propositions, understood assertabil-

istically, are about proofs. But that is a mistake. The proof interpretation of the

logical particles says nothing per se about the objects of mathematics. Indeed, the

assumption that a theory of truth must be referential—that it must involve a

theory of objects—is precisely the assumption that Heyting attributes to the clas-

sical mathematician. Having made this assumption, the classical mathematician is

48 In particular Brouwer says that for the real number rg, defined above, we know

rg 6¼½. The basis of this claim is that to assume that rg¼½ amounts to assuming that

neither Q nor Q will ever be proved. That in turn, he says, is equivalent to assuming the

impossible claim that Q and Q are both true. This last move is simply an application

of the assertabilist account of negation.
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then forced to posit a (Platonistic) world of objects with undecidable properties in

order to ‘‘correspond’’ to the demands of his classical logic. This indeed may well

be the best way to express Heyting’s ‘‘anti-metaphysical’’ philosophy of intui-

tionism. Though he finds classical mathematics unpalatable, he himself is tolerant

of it. For, in Heyting’s view, this mathematics has its own subject matter and thus

does not conflict with intuitionism.

II.3. Dummett

Since the 1960s, Michael Dummett has been promoting the assertabilist inter-

pretation of the logical particles in a series of very influential papers and books. But

Dummett generalizes Heyting’s position in a significant way: assertabilist semantics,

according to Dummett, applies to all of language in general, with the language of

mathematics as a single, special case.49 Shifting to so general a scope for assertabilist

semantics means that the game has changed in a fundamental way. There is a new

enemy, there are new arguments, and indeed a new playing field altogether.

The Enemy

Because assertabilism now applies in principle to language as a whole, the as-

sertabilist’s opponent will be anyone who claims that truth in general is somehow

not determined by us humans and our actions. Traditional advocates of an overall

correspondence theory of truth, for instance, fit into this category. And there are

also more focused foes, philosophers who target their ‘‘nonhuman’’ semantic the-

ories in one specific area of discourse or another. The Platonist posited by Heyting

is a good example here.

The Arguments

Dummett has provided quite general linguistic arguments designed to support his

broadly conceived assertabilism. He has an argument from language acquisition:

since, in first acquiring language at all, a child could only be learning the as-

sertability conditions of simple and then complex sentences, these must be the

conditions that ultimately define anyone’s grasp of the language. And he has a gen-

eral pragmatic argument: only an assertabilist meaning theory allows a speaker ac-

tively to demonstrate that he or she understands the language spoken. According

49 Dummett’s initial formulations of his views on the assertabilist reading of the

logical constants can be found in a number of essays collected in his [1978]. His papers

[1973] and [1975] speak directly to this issue. The former essay forms the basis of the

application of assertabilism to mathematical discourse as it is found in his book [2000].
He has continued to refine and apply his views about the theory of meaning. Two im-

portant subsequent books are [1991] and the anthology [1993].
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to Dummett, advocates of nonassertabilist conceptions of meaning cannot provide

speakers with ways of demonstrating their grasp of simple and complex sentences

which are humanly undecidable.

The New Playing Field

This is Heyting’s anti-metaphysical bent, writ large. Much of Dummett’s philo-

sophical labor aims to show that traditional metaphysical debates about reality

and objects can are best translated into modern semantic disputes. Old-fashioned

realisms—about empirical objects, about personality, about past times, for instance—

are each best replaced by a semantic realism that advocates human-independent

truth. And the corresponding idealisms are now to be understood as a semantic

‘‘anti-realism,’’ which bases truth upon human knowledge.50

In all this one must keep in mind that intuitionistic logic is the natural upshot

of a human-based assertabilism. So if one follows Dummett here, intuitionistic

and not classical logic will be the logic appropriate not just for mathematics, but

for all discourse in which there are undecidable propositions.51

And, most important for us, this is how Dummett understands the conflict

between classical and intuitionistic approaches to mathematics. Rather than ad-

vocating some sort of Platonism or metaphysical realism about mathematical

objects, the classical mathematician, on Dummett’s picture, is simply an advocate

of a nonhuman semantic theory applied to mathematics.52 This is a basis for

mathematical intuitionism that may be more palatable to those who were un-

comfortable with Brouwer’s elaborate phenomenology and ontogenesis.

III. Looking Backward

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

III.1. Taking Stock

Here, then, is intuitionism today. Technically, we have Brouwer inventing new

analytic and set-theoretic tools in order to solve a particular problem about

the continuum. And we have Heyting and those who followed him doing just the

50 These applications figure prominently in Dummett [1978] and [1993].
51 To be sure, Dummett questions whether the model-theoretic semantics faithfully

conveys the assertabilist meanings of the logical constants. (See, for instance, [2000], sec.
7.4.) However, that does not undermine the link between the assertabilist meaning theory

and intuitionistic logic.
52 Indeed, Dummett labors valiantly to show that even the special results of intuitionistic

analysis are derivable ultimately from the special assertabilist meanings of the quantifiers.
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opposite: using the full force of traditional existing metamathematical tools

to explore and expand intuitionistic logic. Philosophically, we have Brouwer’s

phenomenology and his attendant metaphysics. And up against this we have Heyt-

ing’s anti-metaphysical proof interpretation and Dummett’s more general asserta-

bility semantics.

Credits

Looking at all this positively, we find rich and fine-grained technical studies to-

gether with a mature constructivism that paints the human aspect of mathematics

in a way that avoids both obsessive finitism and the general empiricist disdain of

abstract ideas. Indeed, we have here a school of thought spanning the gamut of

modern mathematics (the new analysis, set theory, formal logic, metamathemat-

ics) and contemporary philosophy (phenomenology, the latest epistemology, and

modern anti-realist semantics).

Debits

I must, however, mention three problems with all this. First, on the technical side,

intuitionistic mathematics, however bold its deviation from its classical counter-

parts, and the logic of intuitionism, however subtle it may be over against simple

classical systems, are just those things: deviations that stand against the modern

norm. Practicingmathematicians assumediscontinuous functionswithout a second

thought, and intuitionistic logical niceties are viewed as hair-splitting complica-

tions in contemporary mathematical logic. Indeed, even the more philosophical

sides of logic and semantics often view IL as a messy distraction.53 The technical

side of intuitionism seems a quixotic curiosity.

Second, I must sadly add that the very scope and span of intuitionistic phi-

losophy seems in fact a large liability. For Brouwer’s metaphysical grounding—

indeed, any metaphysical grounding of logic—is viewed as a very poor bedfellow

for the Heyting–Dummett assertabilism. Nowadays we see assertabilist semantics

as a replacement—both in content and in style—for an outmoded ontology of

objects and their properties, and even for a referential semantics that may base

truth on correspondence to objects. When it comes to the justification of its own

special logic (or even of its rejection of classical logic), intuitionism is a house

divided. And if, like Heyting, we find in Brouwer’s work a ground for the asserta-

bilist semantics, then Brouwer himself is internally dissonant.

The third worry stems from a small conundrum in the assertabilist semantics,

but in fact betokens an even more profound tension. Suppose, for a minute, that

53 Thus, for instance, Hilary Putnam ([1978], lecture II) invokes the Gödel translation
(mentioned in sec. II.1 above) to argue that assertabilism need not deviate from classical

logic. And Timothy Williamson (in [1994]) takes deviation from classical logic to be a

prima facie argument against the viability for any natural language semantics.
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we were to accept Hilbert’s optimistic view and hold that every mathematical

problem is ultimately solvable, or that every proposition is ultimately decidable.

We needn’t suppose that each proposition is already decided by some omniscient

knower; it suffices to suppose that each one is in principle decidable. In either

case, the assertability clause for disjunction automatically validates the law of

excluded middle; there would be no formal difference between the resultant logic

and standard classical logic.54 Brouwer knew this. He repeatedly equated Hilbert’s

optimism with the validity of the law of excluded middle, and with it, classical

logic. But can the intuitionist assert that there are—or even may be—propositions

that are fully, eternally undecidable? We can’t specify even one of these in math-

ematics. For were we to do so, then the assertability clause for negation would

make us hold this proposition to be false, and thus in effect decide it for us. And

so we certainly can’t ‘‘construct’’ one.55 The intuitionist thus finds himself in the

unenviable position of depending upon the existence of something—an unde-

cidable proposition—that he cannot in fact construct, and whose possible exis-

tence he thus may not assert!

So that is where we are in intuitionism: a house internally divided, bent upon

an eccentric technical mission, and based on a fundamental assumption which

goes against its own internal standards. In the next section I want to show you,

however, that intuitionistic mathematics and logic are far from eccentric curi-

osities: Brouwer’s mathematics, I will suggest, stands in a tradition that goes back

at least to Aristotle, and intuitionistic logic makes precise a mode of thought that

stems from Kant. I will then go on to show that this same Kantian perspective can

serve to reconcile the opposing intuitionistic streams, and can even provide a way

to confront that disturbing internal tension.

III.2. Technical Precedents

Aristotle and the Intuitionistic Continuum

Let me briefly address the problem of mathematical deviance by first compound-

ing it. Here is a straightforward consequence of Brouwer’s continuity theorem: the

54 See Posy [1984] for some refinements of this general point. See also Shapiro ([1997],
sec. 6.7).

55 Posy [1999] shows that a similar difficulty besets Brouwer’s proof of the negative

uniform continuity theorem. He cannot in fact construct a sequence, w, so indeterminate

that the question of whether its corresponding real number rw is less than ½ or equal to ½

remains eternally undecided, as the proof demands. Brouwer never repeated this proof.

Indeed, his description in [1952a] of the second act of intuitionism pointedly refrains from

mentioning restrictions designed to enforce (rather than restrict) freedom of choice. In-

stead he cites the ‘‘creative subject’’ approach to indeterminacy.
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interval R[0,1] (indeed, the entire continuum) cannot be split. That is, there do not

exist two disjoint, nonempty sets A and B such that A[B¼R[0,1]. To see that this

is true, consider an apparently natural splitting of R[0,1], say A¼ {x j x<½} and

B¼ {x j x � ½}. If, in fact, A[B¼R[0,1] for this A and B, then the ‘‘characteristic

function’’ f , defined by

f (x)¼ 0 if x 2 A

¼ 1 if x 2 B,

will have to be a total function defined on A[B ¼R[0,1], and thus, by the con-

tinuity theorem, will have to be continuous. But this function is clearly discon-

tinuous. It is just the step function of section I.2; and, as we saw there, it is in fact

not total. This little argument works for any A and B that purport to split or

separate the interval R[0,1].

Here, by the way, is the origin of Brouwer’s term ‘‘separable mathematics’’ for

the study of countable collections such as the natural numbers and even the rational

numbers: collections such as these are immune from this theorem. They can be

split or separated into disjoint proper subsets.

Now, this ‘‘unsplitability’’ that characterizes the intuitionistic continuum is a

strong topological property.56 But I want to point out now that in fact this modern

Brouwerian concept makes precise a notion that goes back at least to Aristotle.

Aristotle was an architect of the dichotomy between number and magnitude

of which I spoke earlier and that characterized mathematics up to the nineteenth

century. He thought it the best way to avoid Zeno’s paradoxes and the Pythag-

orean problems of incommensurables. Along with this mathematical split Aris-

totle offered a conceptual analysis of the notion of continuous magnitude: its

parts must share borders.57 And he initiated an image of fluid motion that

remained the hallmark of all continuous magnitudes for millennia. We find the

image not only in Aristotle58 but also in Kant in the eighteenth century,59 as late

as Borel in [1898], and even in Brouwer’s dissertation [1907].60

As I said, Aristotle’s conceptual analysis and his accompanying image of

viscosity—you can’t cut a continuous medium without some of it clinging to the

knife—gain precision in the topological notion of ‘‘unsplitability.’’ It is a property

56 Indeed, it is much stronger than the property of ‘‘connectedness,’’ defined as in-

divisibility into open sets A and B. Connectedness is one of the properties that distinguish

the continuum from the set of rational numbers. The continuum, even the classical con-

tinuum, is connected; the set of rational numbers is not.
57 See, for instance, Categories VI, 4b25–26 and Physics V.3.
58 Physics V4 argues for the continuity or ‘‘flowing’’ of motion, and Physics VI. 1

argues that time and (spatial) magnitude must share this same fundamental nature.
59 See Critique of Pure Reason (hereafter abbreviated CPuR) A169–170/B211.
60 See Brouwer [1907] ch. 1, 8–9.
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that characterizes the intuitionistic continuum but that is lost in the classical

version of the continuum.61

So we see, as I claimed above, that far from deviating from the norm, Brouwer’s

topological view of the continuum, and the mathematics he developed to support

that view, actually continue a venerable mathematical tradition.62

But here is another twist. From Aristotle onward, mathematicians and philos-

ophers alike have always believed that this viscosity—this topological unsplitability—

is inconsistent with the view that a continuum is composed of independent points

(atoms). That is to say, they believed that the property of viscosity is inconsistent with

the set-theoretic composition of the continuum. This alleged inconsistency is a

central theme of Aristotle’s physics andmetaphysics.63 Kant endorses the allegation as

well,64 and so does Brouwer, once again, in his early work.65 To be sure, Cantor,

Dedekind, and others succeeded in fashioning a continuum as a collection of inde-

pendently existing points. But they did so only at the expense of abandoning viscosity.

Brouwer has now pushed this all to the side. For, having introduced choice sequences

as autonomously existing mathematical entities, and having shown how to construct

the continuum as a set derived from such entities in an ‘‘epistemologically responsible

way,’’ Brouwer has shown us that we can have a viscous continuum and make it out

of points as well. This is no windmill-tilting; this is a profound mathematical insight.

Kant and Intuitionistic Logic

As for the forerunners to intuitionistic logic, here I turn to Kant. Though Kant

inspired talk of ‘‘construction in intuition,’’ it is not his philosophy of mathe-

matics to which I want to turn here. Indeed, on questions of mathematics, Kant’s

differences from the intuitionists are striking: Brouwer rejects Kant’s claims about

the apriority of space;66 Kant—quite unlike Brouwer—suggests that mathematical

61 Classically, for instance, R[0,1]¼ ({x j x<½}[ {x j x � ½}) does indeed hold.
62 In making this point, I am suggesting a different topological treatment of Aris-

totelian continuity than the one proposed by White [1992].
63 See Physics VI.1, 231a24–26 and Metaphysics III.5.
64 CpuR, A169–170/B211.
65 See [1907], ch. 1, pp. 8–9. Brouwer clung to this opposition to a set-theoretic

construction of the continuum out of points at least as late as [1912]. With the series of

publications starting from [1918] and [1919], Brouwer came to advocate constituting the

continuum out of previously constructed points.
66 Brouwer points out that non-Euclidean geometries show that there is no uniform

set of a priori statements about the nature of space, similar to what can be said about the

nature of time. So while accepting Kant’s view about time as an a priori intuition, he rejects

Kant’s parallel claim that space, too, is a form of intuition. Coordinate systems of real

numbers will go proxy for geometry, and thus, says Brouwer, we have no need to appeal to

an independent spatial intuition. (See Brouwer [1907], ch. 2, and [1912].)
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objects have no independent existence;67 and he will have no truck mathematically

or generally with predicatively incomplete objects or undetermined identity.68

Indeed, I will point out below that for Kant the appropriate logic for mathematics

will be classical logic.

No, the place to find origins of intuitionistic logic is rather in Kant’s general

metaphysics. It is his ‘‘transcendental idealism’’ to which I want to turn, and in

particular to the confrontation between transcendental idealism and its rival

‘‘transcendental realism,’’ and to the ‘‘Antinomy’’ chapter of the Critique of Pure

Reason, where Kant brings that confrontation to a head.

In that chapter he claims that the transcendental realist is confronted with the

following logical dilemma: on the one hand, the realist accepts—as a logical

truth—the claim that the occupied physical world must be either spatially finite or

infinite. That is, the realist claims that the following disjunction is a logical truth:

(9 x) (8y)[ E(x, y) ! F(x, y)] _ (8x) (9y)[ E(x,y)& F(y,x)]

(where x and y range over occupied spatial regions, ‘‘E(x, y)’’ means that x and y

are equidistant from some fixed central point, and F(x, y) means that x is a further

from that point than y).69 But on the other hand, Kant provides arguments

refuting each side of that disjunction.

The transcendental idealist, Kant tells us, escapes this logical dilemma because,

for the idealist, this disjunction is not a logical truth in the first place.70 Here is where

intuitionistic logic comes in. For, though the disjunction above is a logical truth

under classical logic, it is not intuitionistically valid. Indeed, section II.1 displayed a

simple Kripke model that serves as intuitionistic counterexample to this disjunction.

Of course Kant did not express his reasoning here using the formal machinery

of intuitionistic logic. But once again we can use intuitionism precisely to express

ideas that were less precisely adumbrated in an older philosophical school: Kant’s

transcendental idealist, we may say, advocates an intuitionistic logic for empirical

discourse, while the rival transcendental realist goes for classical logic in the

empirical arena.

This is no mere formal analogy. For Kant’s logical moves here—and similar

moves regarding the world’s temporal ordering, causality, and the divisibility of

matter—are best explained by an assertabilist view of the meanings of the VA and
AV quantifier combinations. Indeed, the model in Section II.1 graphically captures

Kant’s claim that under transcendental idealism, finding an occupied region that is

67 See CpuR, A719/B747.
68 See CpuR, A571–572/B599–600
69 Actually, to be precise, the realist will accept this as a logical truth after assuming

that E is an equivalence relation and that F obeys the axioms of a linear order.
70 See CPuR, 504–505/B532–533.
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more distant from a central point than a given region is set as a task, but one cannot

assert the existence of that more distant region unless one has actual sensory contact

with it.71 This is paradigmatic assertabilism applied to empirical cosmology.

Moreover, Kant’s arguments that the world cannot be either spatially infinite or spa-

tially finite are arguments ad ignorantum, arguments from the unknowability of an

assertion to its actual falsity. Space cannot be infinite because we humans cannot

perceive an infinite expanse, and it cannot be finite because we could never verify

that we have come to an outer edge.72 Leaving aside their modern soundness, these

are clearly arguments only an assertabilist could accept as valid.

Kant even goes on to espouse the epistemological pessimism that links as-

sertability to intuitionistic logic. In natural science, he says, ‘‘there are endless con-

jectures in regard to which certainty can never be expected.’’73

His reason, interestingly, is that empirical science depends on evidence re-

ceived passively. (Empirical intuition is ‘‘receptive’’ in Kant’s words.) And so if

there is an empirical question that is as yet unanswered, then we must simply wait

until the appropriate evidence comes in one way or the other; and we have no

assurance as to whether or when such evidence will emerge. This is interesting

because, mathematics, for Kant, suffers from no such similar passivity. And thus

he holds that in mathematics there will be no unanswerable questions. He sides,

that is, with Hilbert on this issue of mathematical optimism!74 That is why I said

above that, in mathematics, Kant should favor a classical logic.75

III.3. Assertability and Ontology

Thus Kant’s transcendental idealism is, as I said, an empirical assertabilism; and he

derives its intuitionistic logic in that way. Here is a true forerunner to IL— one, to be

sure, that appears closer to Dummettian intuitionism than to Brouwer’s ontological

version. But, in fact, Kant also—indeed, regularly—describes transcendental ideal-

ism and its rival transcendental realism as straightforward ontological positions.

The heart of Kant’s ‘‘Copernican Revolution’’ is a new theory about the

nature of objects: the objects must correspond to our intuitive knowledge and not

vice versa.76 Transcendental idealism, he tells us over and over again, holds that

empirical objects are ‘‘appearances’’ and not mind-independent ‘‘things in

71 See CPuR, 518–523/B546–551.
72 See CpuR, A426–429/B454–457.
73 CPuR, A481/B509.
74 See CpuR, A480/B508.
75 And indeed, at CPuR A792/B820, Kant comes close to this: he says that only math-

ematics is entitled to use indirect proofs (i.e., proofs based on the law of excluded middle).
76 See CpuR, Bxvii.
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themselves’’; and transcendental realism holds that these same objects are in fact

things-in-themselves. Indeed, Kant quite explicitly defines truth, the gateway to

logic, as ‘‘correspondence of cognition with its object.’’77 This indeed, is the

source of his empirical epistemic pessimism: ‘‘for natural appearances are objects

that are given to us independently of our concepts,’’ and for that reason there are

times in which ‘‘no secure information [about them] can be found.’’78

So is it objects, ontology, and reference, or is it evidence and assertability that

underlie Kant’s idealism and his intuitionistic logic? It is both. This is quite the

same mix that we find in intuitionism in general and in Brouwer in particular.

But in fact all of this holds together for Kant. There is no uneasiness to this

union, for there is no gap between the ultimate empirical nature of an object and

the sum of what we can intuitively (perceptually) know about that object. Once

the object is perceived, then all of its properties can be intuitively known. So,

similarly, there is no gap between saying, on the one hand, that our judgments are

true because of the ontological properties of their objects and claiming, on the

other hand, that those judgments are true by virtue of our eventual knowledge.79

That is the heart of his transcendental idealism.

The same equation characterizes Kant’s view of transcendental realism.

Transcendental realism, as we saw, applies classical logic in empirical discourse

precisely because the realist does not let our receptive and finite epistemic limits

influence the conditions of empirical truth. That is the effective content of Kant’s

claim that ‘‘reason’’ rather than ‘‘intuition’’ underlies the realist’s conception of

truth. And that, in turn, is the heart of his ontological claim that for the realist,

empirical objects are ‘‘things-in-themselves.’’

So for Kant, ontology and assertabilism go hand-in-hand. And we find in

Kant a worked-out philosophical position advocating and explaining the very

philosophical mix that seemed a problem for the intuitionists.

III.4. The Unknowable

Let’s turn then to our final worry, the tension between intuitionism’s need to

assume the possible existence of unanswerable questions and its inability to do so.

77 See, for instance, CpuR, A58/B82 and A191/B236.
78 CpuR, A481/B509.
79 This is what underlies Kant’s claim at CpuR, A571–572/B599–600, mentioned in the

preceding section, that empirical objects are predicatively complete. For Kant, once we

have evidence to assert the existence of an object, then we have a guarantee that we can

uncover its properties. This doesn’t, however, tell us in advance of empirical experience

which objects will or will not exist. In the end, it is the world that is incomplete, and not

the objects existing in it. Kant says as much at A522–533/B550–551. Posy [2000] details

Kant’s view here, and Posy [2003] traces this view to its Leibnizian roots.
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Here again I want to take a cue from Kant to help understand—though not

resolve—this tension. For this it is wise to look at Kant’s attitude toward that

epistemically unruly faculty of ‘‘reason.’’

Transcendental realism’s mistake, Kant says, is to allow reason to govern the

semantics of empirical discourse. This, we saw, leads the realist to apply classical

logic in empirical contexts, and that, says Kant, is untenable. It generates the

antinomy sketched above and others like it. But he does not dismiss this realism as

incomprehensible or incoherent. Indeed, Kant insists that realism—or, more

precisely, the faculty of reason—actually exerts a positive influence upon em-

pirical discourse.

For one thing, reason makes us think about some sort of ‘‘intelligible,’’ un-

perceivable source for our passively received perceptions. For without presuming

such a ‘‘transcendental object’’ as source, receptivity itself would make no sense.80

This is a tension similar to the one we uncovered in intuitionism: the need to

assume the existence of an object that cannot be constructed by epistemologically

respectable methods.

Kant sets his tension in epistemological terms quite like the ones that pose the

intuitionistic tension. Thus he says that in cosmology reason leads us to consider

the world-whole and ponder its borders in the first place. And though those limits

are unknowable, Kant insists that this sort of thought is empirically essential. For

it is this way of thinking that ‘‘sets the task’’ of expanding our empirical knowl-

edge about the extent of the universe.81 Ultimately it is this ‘‘regulative’’ force of

reason that guides scientific research and goads it to extend its range of discov-

eries. Indeed, it is just this force of reason that aims us at ever more comprehensive

scientific theories, even though we know that we will never form an epistemically

complete theory.82

And, even more closely, the very first line of the Critique of Pure Reason

expresses our epistemic state: ‘‘Human reason has this peculiar fate that in one

species of its knowledge it is burdened by questions, which, as prescribed by the

very nature of reason itself, it is not able to ignore, but which, as transcending all

its powers, it is also not able to answer.’’83

Here, then, is a historical precedent from which we can learn. It doesn’t

reconcile the intuitionistic tension, but if we follow the Kantian line, it tells us that

we shouldn’t try to do so. The tension itself defines our human condition.

80 See CpuR, A494/B522ff.
81 See CpuR, A508/B536.
82 See CpuR, A696–697/B725.
83 CpuR, i Avii.
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c h a p t e r 10

INTUITIONISM IN

MATHEMATICS

d. c. mccarty

Introduction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First, contemporary intuitionism is not a philosophy of mathematics but the

mathematics inspired by L.E.J. Brouwer’s (1881–1966) ingenious discoveries in to-

pology, analysis, and set theory. In that, contemporary intuitionism is unlike those

other ‘‘isms’’—platonism, nominalism, formalism, structuralism, and anti-realism—

with which it is sometimes associated. Intuitionists as such cannot join the ranks

of philosophers of mathematics who insist that words in mathematics refer ex-

clusively to sets, categories, structures, or airy nothing. Nor do intuitionists require

that mathematical or logical terms be assigned meanings different from those they

already possess. They cannot pretend, as do some exponents of the ‘‘isms’’ just

mentioned, to take the results of conventional mathematics as true and beyond

question. Intuitionists respectfully disagree with their conventional brethern first

over mathematical fact, and over meaning or philosophy later, if at all. Often,

introductions to intuitionism lead the reader astray in maintaining that intui-

tionists spurn certain principles of conventional logic and mathematics because

of some philosophy or other, an epistemology, ontology, or semantics peculiar

to intuitionism. Nothing could be further from the truth. Of course, forays

into philosophy may return some profit, but they should not distract us from

the central point: ultimately, the intuitionist erects a mathematical edifice, and

thereby rejects conventional mathematics, on mathematical foundations and on

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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mathematical foundations alone. A presentation of today’s intuitionistic mathe-

matics sets out from meaningful mathematics and, following a clear, bright road

of mathematical reasons, arrives at a firm vantage from which conventional math-

ematics is seen to be generally false and set theory, analysis, arithmetic, algebra—

all the fields of modern mathematics—reappear, scoured clean of fallacy and error.

The following is a brief tour of contemporary intuitionism. One convenient

point of entry into intuitionistic territory is afforded by logical domains and their

attendant mathematics—in particular, the properties of two sets playing prominent

roles in intuitionistic reasoning: P(N), the power set of the natural numbers, and

Prop, the power set of {0}. While clearing intuitionistic customs, one sees posted

some prohibitions, among them, that the law of the excluded third is illegal. Do not

let first impressions mislead you. Not all the souvenirs from our excursion will be

equally negative; intuitionism is a set of accomplishments in pure mathematics and

not a doctrine of denial. For, from our point of entry, we climb quickly through a

more abstract landscape up to the peak that is Brouwer’s Theorem in intuitionistic

analysis, a positive result from which a large terrain of mathematical domains

becomes surveyable. Once on the far side of that peak, we follow a stream that cuts

straight through a broad and fertile expanse, tracing the idea that intuitionistic

mathematics serves as internal mathematics for topological and computability inter-

pretations. This grants intuitionism powers strictly prohibited to conventional

mathematics. Finally, in taking leave of the subject, we pause to assess the prospects

for anti-realism, a philosophical development on the edge of intuitionism proper,

and we attempt to exorcise an old ghost that still haunts the region: the idea that

intuitionistic mathematics is weaker than its conventional counterpart.

I. Logical Domains

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. The Uniformity Principle

The extent to which practicing mathematicians of a conventional tendency are

already intuitionists is reassuring. Today’s mathematicians treat mathematical

claims much as Brouwer once did: as independently meaningful efforts to record

mathematical facts which are, when true, demonstrable from proofs rooted in

basic assumptions or principles. Until they are proven, those assumptions rest

upon intuitions: illuminating, at times fallible, insights into the dynamical be-

haviors of numbers, sets, functions, and operations on them. Much as a conven-

tional set theorist argues for the truth of the foundation axiom by appealing

to images of well-founded sets generated from the empty set £, an intuitionist
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introduces such starting-points as the Uniformity Principle by appealing to in-

tuitions into the natures of numbers and sets.

The Uniformity Principle (UP), which got its first explicit formulation in

Troelstra [1973], is the anticonventional claim that every set of natural numbers can

be labeled with a number only if some number labels every set. When made

available by intuition, UP entails several theorems characteristic of intuitionistic

mathematics, among them the invalidity of the tertium non datur (TND), or law

of the excluded third.

Principle 1 (Uniformity).Whenever an extensional binary relation R links

every set of natural numbers X to some natural number n, there is some

n that gets related by R to all such sets X. In symbols, VX An R(X, n)! An
VX R(X, n).

To see how such a principle might be made plausible, let R be any extensional,

binary relation between sets of natural numbers X and natural numbers n such that,

for every X, there is an n for which R(X,n). For this liaison between sets and numbers

to subsist, there should be a discernible association in virtue of which R links sets to

numbers. That association is expressible as a list of instructions a for determining,

from sets X, suitable n for which R(X,n). In contrast to the natural numbers and

integers, the collection of all sets of natural numbers is not the trace of some recursive

generation process. The relation R and the sets themselves are all extensional. Hence,

the action of a should not depend upon the fine points of a set’s possible specification
in language. Further, since a is a rule with which one can act on all sets X of numbers,

the action of a should not depend upon the membership conditions for any par-

ticular X. Those conditions might well be so complicated as to elude capture in

anything one would rightly call a ‘‘rule.’’ The application of a to sets should therefore
be uniform: what a does to one set, it does to all. The identity badge of intuitionism as

a branch of constructive mathematics is the insistence that every rule underwriting an

existential statement about numbers AnP(n) must provide, if implicitly, an appro-

priate numerical term t and the knowledge that P(t) holds. Therefore, since a is

constructive and labels each set X uniformly with some number, a must yield a des-

ignation for some particular natural number m uniformly in terms of the Xs. Obvi-

ously, for this association to be uniform,mmust be the same for every set of numbers

X. Hence, there is a number related by R to every set, and UP is seen to hold.

2. Consequences of Uniformity: Tertium non Datur,

Cantor’s Theorem, Indecomposability

UP has a number of easy corollaries, some characteristically intuitionistic and

others recognizably conventional. Brouwer proved the first, the invalidity of TND,
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in his early article ‘‘On the Unreliability of the Logical Principles’’ (Brouwer

[1908]). The second was the work of (nonintuitionistic) set theorist Georg Cantor

(1845–1918). Cantor’s proof differed markedly from the one below, relying upon

an impredicative construction that drew critical fire from his contemporaries. No

such construction features here. With the letter p a variable ranging over math-

ematical propositions, the validity of TND can be expressed as

8p (p _ :p):

Mathematically, this is no law at all, but a false generality.

Corollary 1 (TND is invalid ). : Vp (p_:p).
Proof. Assume that TND obtains and reason by reductio. If TND holds for

all mathematical propositions p, it holds a fortiori for any propositions

concerning set membership 2 . Hence, it would be true that for any set X

of numbers, either 02X or 02=X. Define a binary relation R between sets

X of natural numbers and individual natural numbers as follows. R(X, n)

is to obtain just in case either

02X and n¼ 1

or

02=X and n¼ 2.

By assumption, either 02X or not. It follows that, given any X, there is an

n (either 1 or 2, to be specific) for which R(X, n). UP now guarantees that

there is an m such that, for any X, R(X, m). However, this is impossible,

because no m can be correlated by R with both the empty set £ and {0}.

Consequently, the original assumption, that TND is valid, must be

mistaken. &

Let N be the set of natural numbers and P(N) be the power set of N, the set

containing all and only subsets of N. A set is countable when it can be enumerated

by a mathematical function taking only natural numbers as inputs.

Corollary 2 (Cantor’s Theorem). P(N) is uncountable.

Proof. Recall that legitimate mathematical functions are unambiguous: for

any single input, only a single output can be given. Were a function f

capable of enumerating P(N) exhaustively, one could find, for each set X,

an n such that f (n)¼X. In other words, X would appear as item n in the

enumeration by f. Now, apply UP to the relation R such that R(X, n) if

and only if f (n)¼X, which is the relation inverse to function f. Unifor-

mity requires that there be at least one m such that, for any X, f (m)¼X.
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Since mathematical functions are by definition unambiguous, there is no

number m such that f (m)¼£ and, at the same time, f (m)¼N.

Therefore, no function enumerates P(N) exhaustively. &

To claim that P(N) is indecomposable is to claim that P(N) cannot be carved

up mathematically into two nontrivial, disjoint portions. To express the idea

succinctly, intuitionists say that a subset Y of a set X is decidable on X when the

appropriate instance of TND holds, that is, when every element of X is either a

member of Y or not a member of Y:

8x2X(x2Y _ :x2Y ):

If X is indecomposable, then every decidable subset of X has to be trivial, either£
or X itself.

Corollary 3 (Indecomposability of P(N)). The powerset of N is inde-

composable.

Proof. Very much the same argument as that employed in Corollary 1. &

Because P(N) is indecomposable, it has only two decidable subsets: £ and P(N).

3. Quantifiers and Testabililty

Once all agree that no proposition is both true and false, it is readily seen that

although the scheme f_:f is invalid, its close cousin ::(f_:f) retains

validity. Try assuming that p_:p is false for some p. From this assumption, it

follows that p must be false, for were p true, p_:p would also be true. Simi-

larly, :p must be false as well. The reason is the same: were :p true, p _:p
would be true. But p and :p cannot both be false! Therefore, ::(f_:f) is valid
and

8p:: (p _:p)

obtains. Consequently, the familiar rule for dropping double negations ::f ‘ f
is not valid, since it would lead at once from ::(f_:f) to TND. In general, a

proposition p and its double negation ::p are distinct.

The failure of TND and the validity of its double negation have an immediate

effect on the rules for quantifiers. Let QNE (quantifier negation exchange) be the

injunction to interchange universal quantifiers with negations in this way:

:8x f ‘ 9x :f:
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Corollary 4 (QNE is invalid ) Ax:f does not follow logically from:Vxf.
Proof. Because TND is invalid, we know that : Vp (p _:p). If QNE were

valid, then Ap : (p _:p) would hold. However, as shown above, ::(p _
:p) is true, since ::(f_:f) is valid. Therefore, QNE is invalid. &

The intuitionist is naturally prompted to consider a weaker version of TND,

the principle of testability or TEST:

8p (:p_::p):

UP also suffices to how that TEST is invalid.

Corollary 5 (TEST is invalid). :Vp (:p_::p)
Proof. We proceed much as in the proof of Corollary 1, but starting from

the assumption that TEST holds rather than TND. Construct a relation R

between sets X of numbers and individual numbers n so that R(X, n)

obtains just in case

::(02X) and n ¼ 1

or

02=X and n ¼ 2:

As before, it follows that for every set X, there is an n such that R(X, n).

By UP, there is an m such that, for all X, R(X, m). Once again, this is

impossible, since R cannot relate both £ and N to one and the same

number. &

4. Mathematical Propositions and Prop

In our justification for UP, the assumption that sets X were sets of natural

numbers specifically played no special role. One suspects that some manner of

uniformity should therefore obtain for other nontrivial power sets, other sets of all

subsets taken from a given set. To take one example, the set Prop of all truth-

values is identified, as in conventional mathematics, with P({0}), the set of all

subsets of the singleton set {0}. This identification makes sense, since the prop-

ositions or truth-values stand in exhaustive one-to-one correspondence with the

subsets of {0}: just pair proposition p with the set

fx : x ¼ 0 and pg:
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As we shall learn, Prop exerts an intuitionistic fascination much greater than its

conventional counterpart.

Corollary 6 (Uniformity for Prop). If each truth-value in Prop is asso-

ciated by an extensional relation R to some natural number n, there is at

least one number related by R to all elements of Prop. In symbols, Vp An
R(p, n)) An Vp R(p, n).

Proof. It suffices to note that Prop is the result of intersecting all subsets of

N with the set {0}. Every proposition p (as a subset of {0}) can be ob-

tained by intersecting the set {n : p} with {0}. Therefore, if each member p

of Prop is related by R to some number n, then every subset X of N can be

related to a number: first intersect X with {0}, obtain a member p of Prop,

and then relate p with some n via R. By UP, there is a number m asso-

ciated in this fashion with every subset of N. A fortiori every proposition

p, as a subset of {0}, is related by R with m. &

Corollary 7. Prop is both uncountable and indecomposable.

Proof. Employ Uniformity for Prop and the proof ideas from Corollaries 2

and 3. &

But exactly how large is Prop? In conventional mathematics, Prop is finite. It

has precisely two elements: £ and {0}. Intuitionistically, Prop contains at least

these two members. But, as we shall now see, Prop is in reality neither finite nor

infinite. For intuitionists as for conventional mathematicians, a set X is finite

when X is enumerable using the numbers less than some particular natural

number. X is infinite when the set N can be embedded, via a one-to-one function,

into X. Even in conventional mathematics, the notions finite and infinite so de-

fined are logical contraries, not contradictories: it is possible that sets exist that are

neither finite nor infinite. We call such sets Dedekind sets.

Corollary 8. Prop is a Dedekind set.

Proof. First, since the set of natural numbers less than any given nonzero

number is countable, Prop cannot be finite, as the preceding Corollary

shows. Second, assume that Prop contains a member p distinct from both

{0} and£. It follows that p 6¼ {0}. Therefore, 02=p. This means that p¼£.

But that contradicts the original assumption that p is distinct from both

{0} and £. Hence, Prop contains at least two truth values but cannot

have three. A fortiori Prop is not infinite. &

The phenomenon represented by Dedekind sets is nowise uncommon in in-

tuitionistic mathematics. There can be uncountably many Dedekind subsets of N.

Some of these are strong contenders for the title ‘‘potentially infinite’’: each has no

greatest number but none contains all the numbers.
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II. Mathematical Domains

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Natural, Rational, and Real Numbers

Our logical introduction to intuitionism completed, we move into more familiar

mathematical territory, the domains of the natural, rational, and real numbers. The

facts codified in the axioms of Dedekind and Peano characterize N. Zero is a

natural number and not the successor S(x) of any other. The successor function is

one-to-one:m¼ n if S(m)¼ S(n). Full induction holds; any mathematical property

had by 0 and preserved by S is a property of every natural number. For example, it

is easy to show by induction that no number is the same as its successor. The

primitive recursive functions—including addition, multiplication, exponentiation,

and compositions of them—exist with their standard definitions and retain their

basic characteristics. A mathematical property or relation R is decidable on a set X

when, for x, y2X, either R(x, y) or :R(x, y); in other words, R satisfies TND rel-

ativized to X. The equality and less-than relations on N are both decidable, as deft

use of induction will verify. Incidentally, it is easy to prove, as a consequence of UP,

that equality cannot be decidable on either P(N) or Prop.

To say that a set X is nonempty is to deny that it is empty: :Vx. x 2=X. This is
not to say that it is inhabited (i.e., that X actually has a member): Ax. x2X. Since

QNE fails to be valid, the latter is generally stronger than the former. Although

mathematical induction holds of N, it is not well-ordered in the downward sense

under�. It is false that every inhabited subset of N has a least member. This least

number principle will hold, however, for decidable, inhabited sets, as a proof by

induction can demonstrate.

Theorem 1 (N is not well ordered). It is false that every inhabited subset of

N has a least member.

Proof. Let p be any mathematical proposition and let X be this set of

numbers:

f1g [ fn : n ¼ 0 and pg:
X is inhabited since 1 is a member of it. However, if X had a least member

m, then m must be either 0 or 1. If m¼ 0, then 02X and p holds. On the

other hand, if m¼ 1, then 1 is the least member of X and 0 2= X. In that

case, :p holds. Therefore, if X had a least member, p _ : p would obtain

for every p. Hence, were the least member principle to be true of in-

habited sets generally, TND would be valid. &

Intuitionistic theories of the integers Z and the rational numbers Q work out

much as one would expect. Both¼ and� are decidable relations on Z and Q; they
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inherit decidability from the corresponding relations on N. As in conventional

mathematics, there are a number of ways to define the set R of real numbers, the

numbers of the calculus. For instance, they are definable à la Dedekind as Dede-

kind cuts or à la Cantor as Cauchy sequences. Roughly speaking, Dedekind cuts are

proper, inhabited subsets of Q that have no greatest member and are not bounded

below in the usual order on Q. Cauchy sequences are infinite strings of members

of Q whose terms draw nearer as one goes further out in the sequence. In this

writing, we think of real numbers as given by Cauchy sequences.

2. Principles of Choice

With the Axiom of Countable Choice (CC), one can prove that every real number

determined by a Dedekind cut is also determined by a Cauchy sequence and

conversely. CC is the statement that when an extensional relation R associates,

with every natural number n, an x2X so that R(n, x), there is a function f, a choice

function, with the property that f chooses for each n a suitable f (n)2X such that

R(n, f (n)). In symbols,

8n 9x2X R(n, x) ) 9f [8nR(n, f (n)) and f (n)2X]:

To give evidence in support of CC, one calls upon an intuition akin to that

earlier described. When each n is related by such R to some x in X, there should be

a discernible principle a by which members of N get associated with elements of X

via R. Unlike a set of natural numbers, which may well be infinite, individual

natural numbers can be completely represented within a. Thus, a is conceivable as
a rule tagging each n with a definite member xn of X and, because R is extensional,

it should be true that if n¼m, xn¼ xm. Therefore, a can be construed as yielding a

choice function f taking each number n to an allied xn2X so that R(n, xn).

The reader is here cautioned. It is absolutely incorrect to suppose that a

choice principle similar to CC will hold whenever there are sets X and Y and a

relation R such that, for every x2X, there is a y2Y for which R(x, y). No principle

of this kind is licensed by the quantifier combination VA in all its occurrences.

Contrary to an impression that pages 52 and 53 of Dummett [1977] might create,

the general Axiom of Choice (AC), well known to conventional set theorists, is

false. In his [1975], R. Diaconescu showed that AC, even for small sets, implies

TND.

Theorem 2 (AC is false). It is not the case that Vx2X Ay 2Y. R(x, y)) Af
Vx2X. R(x, f (x)).

Proof. Let p be a proposition and X be a set whose sole members are

a¼ {0}[ {n : n¼ 1 and p} and b¼ {1}[ {n : n¼ 0 and p}. Each element of
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X itself has a member. By AC, there is a function f that chooses a member

from each of a and b. Given that the members of a and b are natural

numbers and equality is decidable on N, there are only two possibilities

for the values of f (a) and f (b): either f (a)¼ f (b) or f (a) 6¼ f (b). In the

former case, p has to hold. In the latter, a must itself be different from b,

so :p holds. Therefore, TND follows from AC. &

3. Real Numbers and Brouwer’s Theorem

Familiar basic properties of addition and multiplication on the rational numbers

of Q often extend to R. For example, addition is commutative for real numbers

and multiplication distributes over addition. But not all the conventional prop-

erties of the rationals carry over. For example, we prove, as Corollary 11 below,

that equality between real numbers is undecidable. In addition, as was first noted

in Brouwer [1921], not every real number is represented by a decimal expansion.

Even so, failures in conventional reasoning about R hardly prevent the develop-

ment of intuitionistic real analysis. Brouwer showed how to exploit the sorts of

intuitions earlier encountered—applied to sequences, rather than to sets—to

enrich immeasurably the constructive mathematical theory of R.

As we said, real numbers are given by infinite Cauchy sequences. It would

then be natural to think that some principles governing real numbers should be

derivable from principles governing infinite sequences. Let Seq be the set of all

infinite sequences of natural numbers and let R(s, n) relate members s of Seq to

numbers n2N in strictly extensional fashion. Assume that for every s there is

an n such that R(s, n). As above, there should be a rule a attaching numbers to

sequences in accord with R. Sequences from Seq are infinite strings that are

represented to a. As with P(N), Seq can be obtained neither from recursive

generation nor from linguistic specifications of sequences. Furthermore, since R is

strictly extensional, a should not depend essentially upon the details of linguistic

specifications for sequences. Hence, the members s of Seq can be represented in a
only through the numerical values of the terms that comprise their extensions, in

the case of s:

s1, s2, s3, . . . , sn , . . . .

Because rules are finite and not infinite bearers of information, a can contain

and operate on only the information presented by some finite number of those

terms, perhaps the finite initial segment of s ending with sm:

s1, s2, s3, . . . , sm.
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It should be on the sole basis of such an initial segment that a attaches an n to s so

that R(s, n). Moreover, since a can take only finite initial segments of input se-

quences into consideration, if t is another sequence sharing with s exactly this

initial segment—that is,

t1¼ s1, t2¼ s2, t3¼ s3, . . . , tm¼ sm ,—

a should attach to t the very same n that it attaches to s. This intuitive reasoning is

enshrined in the following Neighborhood Theorem (NT).

Theorem 3 (Neighborhood Theorem). Assume that each sequence in

Seq is related by extensional R to some natural number. Then, for ev-

ery sequence s2Seq, there is a finite initial segment u of s and a number

n related to s by R such that any sequence sharing u is also related by R

to n. &

Brouwer [1918] contained the intuition behind this justification of NT; Heyting

[1930c] gave the theorem a fully explicit formulation. NT is as anti-conventional as

UP in that, as one can easily check, :TND follows from it. The word ‘‘neighbor-

hood’’ is a term from topology: a topological neighborhood is a collection of members

of a set, perhaps numbers or sequences, that can be considered approximately the

same. Hence, two sequences of Seq are approximately the same or ‘‘in the same

neighborhood,’’ if they share an initial segment. NT tells us that infinite sequences

of natural numbers can be related to individual numbers only by relating them in

‘‘clumps’’ or neighborhoods, so that all sequences which are approximately the

same get assigned the same number.

In giving a justification for NT, Brouwer treated members of Seq as choice

sequences. These are sequences of numbers whose successive terms are conceived

as chosen by a mathematician, one by one, over time in a way that may be rela-

tively unregulated by rules or other constraints. In general, all that a mathema-

tician may know of a choice sequence s at a time t is the initial segment comprised

of those terms of s chosen up to t. Hence, because a mathematician can apply a

rule to an infinite sequence only at some particular time, and in so doing he or she

can take cognizance only of the terms of the sequence that have been chosen

before that time, mathematical rules act on choice sequences by acting on finite

initial segments. This concept of a sequence whose terms are so chosen that there

is limited information available about the future behavior of the sequence was

first featured in Paul du Bois-Reymond’s intriguing book Die allgemeine Func-

tionentheorie [1882].

Let X be a set with a topology: an appropriate association, with each element

x2X, of neighborhoods of x. A function f with inputs from X and outputs in N is
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continuous when, for each n2N, f (x)¼ n implies that there is neighborhood of x

such that f (y)¼ n for any y in that same neighborhood. It is plain that NT entails

that every function with inputs from Seq (when initial segments determine

neighborhoods) and outputs in N is continuous.

Corollary 9. Every function from Seq to N is continuous. &

Our interest in Seq is motivated by the close relation between Seq and R, between

sequences and real numbers. In the usual topology on the set of real numbers R,

the neighborhoods of a particular real number r are the finite open intervals

containing r—that is, sets of the form {q2R : a< q< b}, where a and b are fixed

rational numbers.

Theorem 4 (Continuity Theorem). Every function from R into N is con-

tinuous.

Proof. Let f be a function from R into N. One can turn sequences of

Seq into Cauchy sequences in such a uniform fashion b that f will be

continuous as a function on R, provided that the function that takes any

infinite sequence s of Seq into f (b(s)) is continuous on Seq. But, as we have
seen, every function from Seq into N is continuous. Hence, the function

f (b(s)) is continuous. It follows that f is continuous. &

This means that, as with Seq, functions from R into N have to be given by

neighborhoods: if a real number r maps, under f, into n, there is an entire neigh-

borhood of r that f also maps to the same n.

In a topology, a set is open when it is a union of neighborhoods. Under its

usual topology, R is connected. That is, R cannot be the union of any collection of

disjoint, inhabited, open sets. It follows that every function f from R into N is

constant: for all real numbers r and s, f (r)¼ f (s).

Corollary 10 (Constancy). Every function from R into N is constant.

Proof. As we have seen, the values of a function f from R into N are

determined by neighborhoods. Therefore, were f to take on different

values in N, R would have to be the union of the disjoint, inhabited, open

sets that determined those distinct values. Because R is connected, this is

impossible. &

From the statement that every function from R into N is constant, it follows

that equality on R is undecidable and R is indecomposable.

Corollary 11 (Equality is undecidable on R). It is false that for all r and

s2R, either r¼ s or r 6¼ s.
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Proof. Assume that equality is decidable. Then, for any real number r,

either r¼ 0 or r 6¼ 0. Therefore, there is a function f from R into N such

that

f (r)¼ 0 if r¼ 0

and

f (r)¼ 1 otherwise.

However, this function cannot be continuous. Although f (0)¼ 0, there is

no open interval around 0 such that for every real number s in that

interval, f (s)¼ 0 as well. &

With equal ease, one can show that R cannot be divided neatly into rational

numbers and irrational numbers or into any nontrivial pair of exclusive, ex-

haustive subsets.

Corollary 12 (R is indecomposable). Every decidable subset of R either is

empty or includes all of R.

Proof. Similar to Corollary 1. &

In his [1999a], Dirk van Dalen reported on significant and surprising

extensions of this indecomposability theorem for R, among them, that the set of

irrational numbers is also indecomposable.

Brouwer, in his [1924], claimed that every function mapping the closed unit

interval {r2R : 0� r� 1} into R is uniformly continuous, a result often called

Brouwer’s Theorem. A function f from R to R is uniformly continuous when its

continuity is registered by a rule that calculates uniformly from an open interval i

around f (r), an interval j around r that f maps into i. From the truth of Brouwer’s

Theorem, one can infer that every function from R to R is continuous. Intui-

tionists and other constructivists have established suitable generalizations of

Brouwer’s Theorem for metric spaces other than R. A set X with a topology is a

metric space when the neighborhoods of its elements are determined by the values

of a binary function or metric specifying an abstract distance between elements x

and y of X. Naturally, R with its interval topology is a metric space when the

distance between real numbers r and s is the absolute value of the difference r� s.

For X a metric space, it is true that every function from R into X is continuous.

For details, the reader is advised to consult Bridges and Richman [1987].

Thanks to Brouwer’s Theorem, connections between well-structured mathe-

matical domains are forged by functions preserving structure—in this case,

continuous functions.Connectionsbetweenmathematical domains and logical ones

like Prop are also of great significance. Clearly, a function f taking X into Prop is a

propositional function: f maps each x2X into a truth-value f (x) in Prop. For

example, the function g assigning, to each real number r, the proposition ‘‘r is
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rational’’ is a propositional function that, one might say, attaches to each real

number the ‘‘extent’’ to which it is rational. These propositional functions are the

characteristic functions of subsets; g is the characteristic function for the set of

rational numbers from R. However, looking in the other direction—from logical

domains to mathematical ones—uniformity trims functional connections se-

verely. From the failure of the principle of testability TEST, A.S. Troelstra deduced

a general result, described in Troelstra [1980], from which it follows that every

function from Prop or P(N) into any metric space has to be constant.

III. Formal Logic and Internal

Mathematics

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Elementary Formal Logic

Here is a cartoon recipe for ‘‘creating mathematics’’ that captures a common

misconception: to produce mathematics, turn on the mixer of logic, take the

needed assumptions as axioms, feed them into the mixer, press the button marked

‘‘derive,’’ and—voilà—the proofs of mathematics will pour from the nether end.

The idea is that one starts with logic, a fixed set of rules for deductive reasoning

that establish clear norms for thinking rightly about any domain whatsoever.

Then, axioms specific to a mathematical domain are added to the rules as prem-

ises. (How they get ‘‘added’’ and whether this very process of ‘‘addition’’ might

itself prove a legitimate subject for mathematical study are questions not per-

mitted here.) Finally, mathematics is the result of applying the derivational

principles of logic, first on those premises and, in turn, on their deductive con-

sequences. According to this parody of creative thought, the vast array of proofs

in any particular realm of serious mathematical study arises without muss or fuss

as the closure of special axioms under the deductive relations specified by a

general logic.

Intuitionism will have none of this, but not merely because intuitionistic logic

is incomplete or because intuitionistic mathematics begins with intuitions rather

than axioms. In intuitionism there is no logic as caricatured in the cartoon recipe.

There is no set of normatively binding principles for right thinking that (1) hold

sway over all scientific domains, including mathematical ones, and (2) can be set

up once and for all, before we start to pursue mathematics. As for (1), the doc-

trines of intuitionistic logic are one and all statements of mathematics, largely of

an unexciting sort. Ultimately, they owe their correctness to vivid intuition rather
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than to pale generality. As we have already seen, the claim that TND fails of

validity is, as with all other logical results, a theorem of mathematics admitting of

mathematical demonstration. As for point (2), one learns of logical principles

only after the fact, from truths and proofs in mathematics. Intuitionists intuit,

construct, and reason first, and legislate for these activities later.

On the whole, intuitionists do cleave, when they expound or reconstruct proofs,

to regular forms of mathematical communication and persuasion, to certain re-

peated patterns in thinking. The first researcher to do an acceptably comprehensive

job of extracting and assembling principles governing that thinking was the intui-

tionist A. Heyting (1898–1980). His [1930a], [1930b], and [1930c] contain formalisms

for intuitionistic propositional and predicate logic, plus arithmetic and set theory. In

honor of this achievement, logicians have named the standard formal systems for

intuitionistic arithmetic after him: HA for first-order Heyting arithmetic and HAS

for its second-order extension. The beginner can most easily discern the main ideas

of Heyting’s propositional logic in a natural deduction presentation like that given

by G. Gentzen in his [1935], on which derivability is defined in terms of introduction

and elimination rules for each connective.

Assume that we have an ordinary propositional language, based on a collection

of atomic formulas or atoms, and the usual connective signs ^,_ , and ) in

addition to the connective \ or absurdum. Formulas are recursively defined, as is

familiar. The inference rules are familiar as well. A conjunction can be introduced

by immediate inference from its two conjuncts. It can be eliminated by inverting

the process and inferring either conjunct from it. The rules are as follows, with the

introduction rule on the left and elimination rules on the right.

f c f ^ c f ^ c
——— ——— ———

f ^ c f c

The introduction rule for ) is that of conditional proof; it allows one to con-

struct derivations from assumptions made only for the sake of argument. These

assumptions are discharged, in the course of the derivation, by employing con-

ditionalization. The elimination rule for ) is modus ponens. Disjunctions are

introduced by inference from either disjunct. The elimination rule for disjunction

is argument by cases, which also allows assumptions to be introduced for the sake

of argument and to be discharged later. The sign \ is a formalized stand-in for

mathematical absurdity, so there are no introduction rules for it. As one would

suspect, its elimination rule is as liberal as its introduction rule is restrictive; it

captures the old notion ex falso quodlibet :

\
——
f
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On this presentation, one thinks of negation : as a defined sign: :f is

shorthand for the conditional f)\. Logical rules for negation (the ones that are

valid, that is) show up as derived rules. They include the positive form of reductio

ad absurdum: when \ is derived from the assumption f, conclude :f. That this
rule is valid is proven via an easy application of) introduction. The injunction

‘‘when \ is derived from assumption :f, conclude f’’ is reductio ad absurdum

in its negative form. It is not licensed here and cannot be derived, as we shall

prove in a moment. Intuitionistic predicate logic results from the addition to

these rules of standard introduction and elimination rules for the quantifiers:

generalization and instantiation for V, plus generalization and instantiation for A.
Derivations in the system are finite trees generated by applying introduction

and elimination rules recursively to assumed formulas. At the trees’ leaves stand

active and discharged assumptions, and at their roots, conclusions from those

assumptions. As usual, we say that for a set of formulas G and a formula f, G
derives f (in symbols, G‘f) just in case there is a derivation at whose root is f
and whose undischarged assumptions are members of G.

Derivation in intuitionistic logic has the pleasant property that any formula f
derivable from £ can be derived ‘‘directly,’’ without use of lemmas or subproofs

requiring derivations of formulas of greater complexity than f itself. Indeed, the

deductive system has the subformula property : when f is derivable from G, there is a
derivation forf in which every formula that appears is a subformula either off or of

some member of G. Using the subformula property, one can show that the prop-

ositional logic is decidable : for every formula f, either f is a theorem or it is not.

Among the most significant and far-reaching results on intuitionistic formal

logic is the negative translation theorem that K. Gödel reported in his [1933a] and

that Gentzen discovered independently (Gentzen [1974]). The theorem reveals the

existence of an inferentially accurate picture, under translation, of conventional

formal logic within intuitionistic logic. Here, ‘‘g(f)’’ stands for the translation of

a formula f and g(G) for the set of translations of formulas from G.

Translation. If A is an atom but not \, g(A) is ::A. g(\) is \. And g

commutes with ^, ) , and V:

g(f ^ c) ¼ g(f) ^ g(c)

g(f ) c) ¼ g(f) ) g(c)

g(8xf) ¼ 8x g(f):

The g-translations of _ and A are negative, since they call upon the

negative connectives : and ^:

g(f _ c) ¼ :(:g (f) ^ :g(c))
g(9xf) ¼ :8x :g (f):
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Let ‘c stand for derivability in conventional predicate logic.

Theorem 5 (Negative translation). G‘cf if and only if g(G)‘ g(f).

Proof. Because intuitionistic formal logic is a fragment of its conventional

counterpart, it follows from g(G)‘ g(f) that G‘cf. Induction on the

structure of derivations for G‘cf proves the converse. &

Suitable negative translations, with correlative results linking conventional to

intuitionistic derivability, have been devised for higher-order logic, formal arith-

metic, type theory, and versions of set theory formalizable within intuitionistic

predicate logic.

As far as elementary semantics for intuitionistic propositional logic is concerned,

interpretational structures can be defined precisely as in conventional metalogic. A

structure I for a propositional language with D as its set of atoms is simple: a

function taking inputs from D and yielding outputs in the set of propositions Prop

such that \ is assigned the contradictory proposition. I is uniquely extendible to a

function I* mapping all formulas into Prop by taking ^ to mean ‘‘and,’’_ to mean

‘‘or,’’ and so on. Then, we say that I satisfies f (I 	 f) when I* takes f into a true

proposition. For a collection of formulasG, I satisfiesG (I	 G) just in case I* maps

every formula in G into a truth. Last, we say that G entails f (G 	 f) when every

structure that satisfies G also satisfies f. Here, as elsewhere, the formal logic is sound

just in case derivability is certified by entailment: G ‘ f always implies that G	 f. It
is complete when derivability tracks entailment, that is, when the converse of

soundness holds for every G andf. By induction on derivations, one can easily show
that intuitionistic propositional logic is sound. Therefore, since TND is invalid, its

formal version A_:A is underivable. Furthermore, we learn that reductio ad

absurdum in its negative form cannot be a derived rule. Were one allowed to infer f
from the supposition that :f leads to \, one could derive A_:A from a correct

derivation of\ from : (A_:A). An informal analogue to the latter derivation was

our earlier proof that :: (f_:f) is valid.
Only under quite special conditions, conditions independent of the vast bulk

of intuitionistic mathematics, is it provable that propositional logic is complete

for single formulas or finite sets of them. It is obviously incomplete when it comes

to other sets of formulas:

Theorem 6 (Incompleteness). Intuitionistic propositional logic is incom-

plete for arbitrary sets of formulas.

Proof. For a mathematical proposition p, let Ap be a propositional atom so

associated with it that distinct propositions are associated with distinct

atoms. For each such p, consider the set of formulas Gp¼ {Ap : p} [ {:Ap

::p}[ {Ap_:Ap} and take G to be the union of all the individual Gp’s,

so that G¼S
{Gp : p is a mathematical proposition}. The negative
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translation theorem shows that G is consistent because G cannot derive

\. Because G contains, for each p, the formula Ap_:Ap as a member, the

assumption that structure I satisfies G immediately leads to the con-

clusion that the principle of testability TEST holds. Therefore, G	 \,

because \ clearly has no structures that satisfy it. &

Unless one demands fundamental changes in the interpretations of the connective

symbols, as in Veldman [1976], intuitionistic formal logic remains incomplete. For

this, intuitionists are generally thankful: the incompleteness of formal logic is

further confirmation of their insistence, as in point (2) above, that logic must be

ancillary to mathematics.

In his [1932], Gödel proved that intuitionistic propositional logic cannot be

finite-valued. No truth-table procedure based on calculations from a finite

number of truth-values can provide an adequate semantics for it.

Theorem 7. Intuitionistic propositional logic is not finite-valued.

Proof. Assume that the logic is sound and complete with respect to truth-

tables with a finite number k of values. Pick out kþ 1 distinct atoms: A1,

A2, . . . ,Akþ 1, none of which are \, and take the formula F to be a

disjunction of all possible biconditionals constructed from them of the

forms

Ai , Aj ,

where i and j are different and less than kþ 2. If propositional logic is

complete with respect to truth-tables with k truth-values, F is a derivable

formula, since at least two of the atoms Ai would have to be assigned the

same truth-value in any structure. However, by constructing Kripke

models (see the next section) and using the relevant soundness theorem,

one can show that f is underivable. &

2. Models and Modality

Conventional mathematical means can prove the completeness of intuitionistic

propositional and predicate logic with respect to Kripke models, interpretational

structures defined over partially ordered sets. Let P be a set partially ordered by�,

and let a and b be elements or nodes of P. A Kripke model K (after [Kripke 1965])

over P is given by specifying a relation a 	 f (read ‘‘a forces f’’) between

elements of P and formulas. Attached to each node a of K is an inhabited domain

Da in such a way that when a� b, Da � Db. For present purposes, we assume that
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suitable names a for the elements of the domains Da have been adjoined to the

original language; the forcing relation is defined for sentences in this extended

language. For atoms A which are not \, a	A is defined in any way you like,

provided only that when a 	 A and a� b, b 	 A. One says that, for atoms,

forcing is required to be persistent. Understandably enough, \ is never forced at a

node—at least on the standard approach to Kripke models. For more complicated

formulas, we say that

a	f ^ c just in case a	f and a	c

a	f_c just in case either a	f or a	c

a	f)c just in case, for any b � a in P, if b	f, then b	c

a	 Ax f just in case there exists a2Da such that a	f(x/a) and

a	 Vx f just in case, for any b � a and a2Db, b	f(x/a).

Last, :f is defined as f)\, so we deduce that

a	:f just in case, for any b � a, b fails to force f.

We say that a	G if a forces every member of G. G K-entails (in symbols, G 	K

f) whenever, for any Kripke model K and node a in K, if a	G, then a	f. A
proof by induction on formulas shows that forcing is persistent for all formulas f:
if a	f and a� b, then b	f.

When explaining Kripke models, logicians often employ a metaphor of states

of mathematical information. Imagine yourself trying to solve a particular

mathematical problem. The mathematically possible states of information you can

enter while searching for a solution can be conceived as the nodes of a set P

partially ordered by a relation� of ‘‘at least as much information’’ determined by

the problem under consideration. When nodes a and b stand in the relation

a� b, then b is thought of as a possible state of information relative to a: you
might, in investigating your problem further, gain information sufficient to take

you from state a to state b. The atoms (other than \) that get forced at a are

those simplest propositions that are verified from the information available at a.
Forcing is persistent because, once you have gained some information, that in-

formation is never lost to you. The clauses in the definition of forcing are

reminders that you can, with information a, verify a conjunction f^c when

you can verify both its conjuncts. The only way to verify a disjunction in a is to

learn, in a, that one or the other of its disjuncts is verified there. The verification

of a conditional f)c in general requires more information: that no matter

when one gains added information b sufficient to verify f, that extra information

should also verify c, or b	c. This is required if the information that f)c,
once gained, is to persist.
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Familiar methods from conventional mathematics yield the result that

intuitionistic logic is sound and complete with respect to Kripke models.

Theorem 8 (Kripke Soundness and Completeness). G ‘ f if and only if G	K f.

Proof. Soundness is proved using induction on derivations. Completeness

can be proved conventionally by adapting Henkin’s proof to Kripke

models. This and related completeness results are available from Troelstra

and van Dalen [1988]. &

Strictly intuitionistic means suffice to prove that intuitionistic propositional

logic has the finite model property: if f is underivable, there is a finite Kripke

model and a node in it that fails to force f—in order words, there exists a finite

countermodel to f.

Theorem 9 (Finite Model Property). When f is not derivable in intuition-

istic propositional logic, then f has a finite Kripke countermodel.

Proof. The interested reader can find a proof in Troelstra and van Dalen

[1988]. &

Research into partially ordered models for intuitionistic logic was suggested

by another translation proposed by Gödel. This time, propositional logic proves

to be the exact replica of a special fragment of Lewis’s modal system S4, a system

which features the logical sign & for alethic modality and requires that &f always

be equivalent to &&f. Gödel’s translation, here denoted ‘‘m,’’ accepts formulas in

the language of propositional logic and outputs formulas in the language of the

Lewis calculus. The translation m is so defined that, for any atom A, m(A) is &A.

Then, m commutes with ^ and _, and m(f)c) is the modal formula &(m(f))
m(c)). In effect, the intercalation of the modal operator & into a translated formula

enforces the persistence property required by Kripke forcing.

Theorem 10 (Modal Translation). G‘f if and only if m(f) is derivable
from m(G) in S4.

Proof. The ‘‘only if ’’ direction yields to proof by induction on derivations.

Van Dalen [1994] contains a proof of the ‘‘if ’’ direction that uses seman-

tical ideas acceptable to intuitionists. &

Godel [1933b] presented a modal translation alternative to that defined above and

asserted the ‘‘only if ’’ direction of the theorem. Gödel there conjectured the other

direction of the theorem as well. It was first proved, in McKinsey and Tarski

[1948], by algebraic means. The articles in Shapiro [1985] explore extensions to

formalized intuitionistic arithmetic and set theory of the modal translation for

propositional logic.

intuitionism in mathematics 375



3. Internal Mathematics: Realizability

and Computability

In justifying UP and NT, we insisted that rules for computation accompany

certain mathematical operations. This may suggest that concerns of intuitionistic

mathematics stand in proximity to concerns of computability theory. Realizability

interpretations of formalized intuitionistic logic and mathematics provide partial

confirmation for the suggestion. Logician S. Kleene was the first to devise such an

interpretation; the original publication was his [1945]. In discovering realizability,

Kleene was not inspired so much by the markedly computational air of Brouwer’s

intuitionism as by D. Hilbert’s idea that quantified statements be treated finitis-

tically as expressing ‘‘incomplete communications.’’

As with Kripke models, Kleene’s realizability can be glossed using a concept of

information: effective information encoded as a natural number and conveyed by

a mathematical claim. For an atomic formula f (which, in formal arithmetic, will

be decidable) a number n represents the information f conveys or realizes f just

in case f is true. For conjunctions, n realizes f^c if n is of the form 2m� 3p,

where m realizes f and p realizes c. A conditional f)c is realized by n just in

case n encodes a Turing machine that, if m realizes f, takes m as input, processes

for a time, and outputs a number realizing c. In other words, a realizing number

for a conditional denotes a Turing-computable function converting realizers for

its antecedent into realizers for its consequent. Reflecting the constructive char-

acter of intuitionistic arithmetic, n is said to realize Ax f(x) if and only if n is

2m� 3p and m realizes f(x /p), where p is the formal numeral denoting p.

Therefore, a realizing number for an existential sentence literally contains, as a

coded component, a realized instance of that sentence. A number n realizes

Vx f(x) if and only if n encodes a Turing machine computing a total recursive

function such that, for any m, the output of the function on m realizes f(x /m).

In this way, Kleene explained how to associate with each formula f of

Heyting arithmetic a set of numbers, perhaps empty, that realize f. He then

proved that realizability gives a sound interpretation of that formal system: f is

derivable in the formal arithmetic HA only if there is a natural number realizing

f. Since 1945, a panoply of realizability interpretations have been devised not only

for elementary arithmetic but also for higher-order arithmetic, type theory, set

theory, and higher-order logic. Beeson [1985] contains many of the technical

details. In Hyland [1982], Kleene’s original conception, extended to a higher-order

type theory, received an attractive formulation in category-theoretic terms.

Formal versions of many, but not all, results characteristic of Brouwerian

intuitionism are validated on Kleene’s interpretation. When the original realiz-

ability interpretation is applied to higher-order systems, UP, CC, and NT, to-

gether with their consequences, are seen to be realized. This yields a consistency

376 oxford handbook of philosophy of math and logic



proof for them. But there is more: intuitionistic logic provides an internal logic,

and the mathematics that gets realized provides an internal mathematics for the

realizability interpretation. This means that the logic and mathematics are sound

under the interpretation, and can capture expressively and treat deductively

metatheoretic or ‘‘external’’ properties of the interpretational scheme in sur-

prisingly simple and salient ways. In short, facts of pure intuitionistic mathe-

matics become, under realizability, facts of applied computability theory. For

example, the falsity of TND under realizability registers the fact that the halting

problem is unsolvable, that no Turing machine can decide for every e which of

these holds:

machine e eventually halts when e is input

or

machine e never halts when e is input.

Interpreted using realizability, the Neighborhood Theorem NT becomes a close

relative of the theorem on recursive functionals proved in Kreisel et al. [1959].

Yet there are features of Kleene’s realizability that are not intuitionistic. These

are captured by formal statements that hold under realizability but are not ex-

pressions of intuitionistic reasoning. Principal among these are Church’s Thesis (to

be distinguished from the familiar Church-Turing Thesis) and Markov’s Principle.

The former is the claim that every function from N into N is total recursive.

The latter asserts that if two real numbers are unequal, then they are at least a pos-

itive rational distance apart. The former is inconsistent with NT, since a Turing

machine for generating a sequence cannot be constructed reliably from a finite

initial segment of the sequence alone. Although nonintuitionistic, these elements

of realizabilitymathematics possess some attractive features. For example, Church’s

Thesis and Markov’s Principle together suffice to show that there are no non-

standard models of arithmetic in the realizability interpretation: up to isomor-

phism, there is at most one set-theoretic structure satisfying the axioms of the

first-order theory HA [McCarty 1988].

Once taken, it is not a large step from thinking of numbers encoding abstract

programs and realizing formal expressions to thinking of actual computer pro-

grams performing a similar function. A realizing number is replaced by a text for a

program in a suitable programming language; the formal expression that is re-

alized then becomes a specification; and the program a routine that demonstrably

meets the specification. An ordinary metatheoretic proof that every theorem of an

intuitionistic formal system is realized now becomes a proof that every theorem of

the system is a specification for some program and that, from a formal proof that

the specification can be met, a program can be extracted. Such an idea—that

computer programs can be extracted automatically by ‘‘compiling’’ intuitionistic

proofs—has stimulated a vigorous research program at the interface between

intuitionism in mathematics 377



mathematical logic and theoretical computer science, a prominent representative

of which has been the series of the computer systems designed by R. Constable

and coworkers [1986].

4. Internal Mathematics: Topologies and Toposes

A Boolean algebra is an inhabited set with operations that obey the laws of con-

ventional propositional logic; its operations, called ‘‘meet,’’ ‘‘join,’’ and ‘‘com-

plement’’ act in perfect accord with the tautologies governing the logical words

‘‘and,’’ ‘‘or,’’ and ‘‘not,’’ respectively. Boolean algebras, therefore, make up a class

of interpretations for theories in conventional propositional logic, as explained in

Rasiowa and Sikorski [1963]. In analogous fashion, a Heyting algebra is an

inhabited set with operations of meet, join, complement, and implication that

obey the principles that intuitionistic propositional logic lays down for the logical

words ‘‘and,’’ ‘‘or,’’ ‘‘not’’ and ‘‘if . . . then,’’ respectively. In conventional mathe-

matics, every power set P(X) is a Boolean algebra under the operations of in-

tersection, union, and complement. In intuitionistic mathematics, every power set

is a Heyting algebra but not a Boolean algebra. On either approach, the collection

of open sets of a topology comprise a Heyting algebra. Therefore, as reported in M.

Stone [1937] and, independently, in A. Tarski [1938], topological spaces afford

natural interpretations for intuitionistic propositional logic. Using conventional

mathematics as a metatheory, J. McKinsey and Tarski proved in their [1948] that

the logic is sound and complete with respect to interpretations over the usual

topology on R.

In these structures, the invalidity of TND registers internally the fact that the

real numbers form a connected set. D. Scott, beginning with his [1968], showed

how to construct sound topological interpretations for formal systems of intui-

tionistic analysis and described an interpretational structure validating Brouwer’s

Theorem. One can view Kripke models as topological interpretations by taking a

neighborhood of a node a to be a set of nodes X containing a that is upward

closed: if b2X and b� g, then g2X. Since every Boolean algebra is a Heyting

algebra, not all topological interpretations have intuitionistic mathematics as their

internal mathematics; some yield Boolean-valued models of conventional math-

ematics.

A topos is a category, a mathematical structure composed of objects and maps

between objects, that satisfies axioms sufficient to guarantee, among other things,

that every topos contains objects exhibiting the intuitionistic logical behavior of

power sets P(X). Hence, in a topos, the power objects P(X) give rise to topos-

internal Heyting algebras, thus affording interpretations of intuitionistic logic and

mathematics in strictly categorical terms, as explained in Bell [1988] and MacLane

378 oxford handbook of philosophy of math and logic



and Moredijk [1992]. W. Lawvere may have been the first to think of categories

with extra structure as representations of intuitionism; see his [1976], for example.

It turns out that higher-order intuitionistic logic is generally the internal logic of

toposes. Researchers have also discovered that topological, Kripke, and realiz-

ability interpretations of intuitionistic systems can be incorporated in a natural

fashion within the topos-theoretic viewpoint. Nowadays, this subject receives a

goodly amount of well-deserved attention from category theorists, logicians, and

computer scientists concerned with consistency and independence results, and

topos theory often sheds great light on intuitionistic concepts and their formal

representations.

IV. Concluding Remarks

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Intuitionism and Anti-realism

In its bearing upon intuitionism and logic, philosophical anti-realism is suppo-

sition or conjecture rather than established fact. It is the supposition that a

particular kind of scientifically and philosophically respectable semantical frame-

work can be constructed for proving intuitionistic logic correct and conventional

logic incorrect. Anti-realism requires the existence of a semantics S sufficient at

least for interpreting standard formal languages and manifesting several properties

to which M. Dummett has repeatedly directed the attention of philosophers (see

Dummett [1977], [1978] and [1991]). These properties are such that if S possesses

them, conventional mathematicians have always been wrong to think that con-

ventional logic, including TND, is cogent and that mathematical statements

generally carry the meanings they think them to have. Here are the properties.

First, S should support a rigorous proof, acceptable to intuitionists as well as

conventional mathematicians, that Heyting’s intuitionistic predicate logic is

sound and complete relative to S. (As is plain from the foregoing, this implies that

S cannot be any simple variant on Kripke models.) Second, to guarantee the

desired completeness, it is necessary to show that S invalidates TND. For that

purpose, truth according to S is assumed to obey a recognition condition: any

semantically competent speaker must be able in principle, when a sentence f
obtains in S, to recognize that f thus obtains. When f expresses a statement of

pure mathematics, recognition that f is true is to consist in the provision of a

proof of f. Third, the interpretations that S attaches to sentences are to express

their actual meanings, and sentences are to be valid according to S just in case they

are rightly seen as valid. This assumption imposes the further restriction that if
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one can prove that TND is invalid according to S, then TND is invalid simpliciter.

It would seem, then, that truth in S should exhibit many of the features one would

ordinarily expect of a proper notion of truth. For example, truth in S should

commute with disjunction: f_c is true according to S just in case either f is true

according to S or c is.

It is sometimes imagined that the conjectured anti-realistic argument for the

invalidity of TND will proceed along roughly the following lines. Let RH stand for

Riemann’s Hypothesis, that the real parts of all nonreal zeros of the zeta function

have value ½. Today, RH is an open mathematical problem: no one is in a position

either to prove RH or to prove its negation. Now, assume that TND is valid. The

third property of S listed above implies that TND is valid according to S. RHmakes

a meaningful mathematical claim; thus RH_:RH is true according to S. Since

truth in S commutes with disjunction, either RH is true in S or :RH is. However,

because S satisfies the recognition condition mentioned in the second property, if

RH is true in S, then competent speakers should be able to prove that fact. Hence,

RH must be proven. On the other hand, if :RH obtains, then competent speakers

will be able to prove that. Hence, RH should have been disproven. Since RH is

neither proven nor disproven, TND is invalid.

The steps in this argument trace one part of the philosophical distance that an

anti-realist, a proponent for an imagined semantics like S, has yet to travel. He or

she must maintain simultaneously the recognition condition and that truth à la S

commutes with disjunction. So, if a competent speaker is able to recognize in

principle that f_c is true, then f_c will have to be true in S; and since truth in

S commutes with disjunction, either the competent speaker can recognize that f
is true or she can recognize that c is true with respect to S. And this seems false

intuitively. Disjunction, when employed, for example, to make indicative state-

ments in the past tense, would likely lose a great deal of its power were speakers

obliged to verify, even in principle, one or the other of the disjuncts of every

disjunction they assert about the past.

Some investigators have supposed that the clauses of a mathematical defi-

nition that first appeared in Heyting [1934] would form a nucleus for anti-realistic

semantics S. Here, let e and f stand for pieces of mathematical evidence: proofs,

constructions, calculations, or numbers. Heyting’s definition can be understood

as setting down conditions on which pieces of evidence, or abstract representa-

tions of them, witness or confirm mathematical sentences. It is presumed that

evidence can be analyzed or decomposed into subsidiary pieces of evidence: that

any evidence e contains component pieces of evidence e0 and e1, obtainable ef-

fectively from e. One also takes the natural number 0 to be a piece of evidence

comparable with other evidence so that e¼ 0 is a decidable predicate of e. Last,

pieces of evidence e are supposed capable of accepting evidence f as input and

outputting evidence e(f ), the result of applying e to f.
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Under those assumptions, the clauses that follow express the relevant portions

of Heyting’s definition. Evidence e is said to witness a disjunction f_c whenever

e0¼ 0 and e1 witnesses f, or e0 6¼ 0 and e1 witnesses c. This guarantees that if a
disjunction is witnessed, one can tell, via simple operations on the evidence,

which of its disjuncts is also witnessed. Next, e witnesses :f when, if f is evidence

witnessing f, e(f ) would be evidence that witnesses \. If one insists, as seems

perfectly reasonable, that there be no evidence for \, then e witnesses :f just in

case there is no witness for f. Finally, e is evidence witnessing f)c if and only

if, when f witnesses f, e(f ) witnesses c: evidence for a conditional converts evi-

dence for its antecedent into evidence for its consequent.

Difficulties crowd in upon the suggestion that, in the desired S, a sentence f be

true if there exists evidence witnessing f in the manner just described. For ex-

ample, it seems legitimate to ask that the evidence be encoded as natural numbers;

that e0 and e1 be represented by the usual primitive recursive projection functions

applied to e ; and that e(f ), for e and f natural numbers, be the result, if any, of

running the Turing machine with index e on input number f. Barring extra spec-

ifications, these requirements can be seen to yield a perfectly reasonable inter-

pretation of Heyting’s definition; indeed, it is the Kleene realizability interpretation

given above, restricted to propositional logic. However, with conventional logic,

one can prove that, for f in the formalism of propositional logic, e witnesses f
under this interpretation if and only if f is true conventionally. In particular, one

can show that every propositional instance of TND is thus witnessed. Therefore, if

S is to feature the clauses of Heyting’s definition as the centerpiece of its theory of

truth, some further mathematical rider has to be added, a rider that would block

the above interpretation. Given that intuitionistic set theory, together with UP and

Brouwer’s Theorem, are consistent with the truth of every instance of TND in the

language of set theory [McCarty 1984], it would seem that this rider would need to

be of considerable mathematical strength.

However, one need not suppose that the internal workings of S are built on

Heyting’s design to come up with a compelling argument to the conclusion that

an anti-realist’s desire for the semantics S will remain unfulfilled if S has the

properties listed at the start of this section. Here is a sketch of such an argument.

To begin with, one can insist that for each sentence f, there are mathemati-

cal claims G and a stable assertion g such that f_:f obtains just in case g is

derivable from G using predicate logic, that is, G‘ g. Here, ‘‘stable’’ means that

G‘ g just in case G ‘ ::g This insistence can be made intuitively plausible.

Should the formal deductive apparatus of predicate logic not itself be powerful

enough to discover the relevant circumstances under which f_:f is recognized

to be true, there should certainly be information G such that, were we to supply

that information, the apparatus plus the information G would be able to discover

those circumstances.
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Now, as a matter of logic, ::(f_:f) is valid. It follows that there cannot
fail to exist circumstances under which f_:f is recognizably true. Therefore,

predicate logic plus information G cannot fail to detect this fact, that is,

:: (G‘ g). The soundness theorem for Heyting’s predicate logic with respect to S

now implies that the formal argument with premises G and conclusion g cannot

fail to be valid in S. Since validity in S is to be coextensive with simple validity, the

argument with premises G and conclusion ::g will be valid. Further, given that

the S-completeness theorem for Heyting’s predicate logic is provable, G ‘ ::g.
Because g is stable, as described above, g will itself be derivable from G, or G ‘ g.
But g being derivable from G marks the obtaining of circumstances under which

f_:f is recognizably true. Therefore, f_:f holds and, since f was arbitrary,

TND is valid. Therefore, the anti-realist’s suppositions—that semantics S be

sound and complete, that truth in S always be recognizable, and that TND fail—

seem jointly inconsistent.

2. What Weakness?

Our tour is at an end. It is sad that so much is left unexplored: intuitionistic al-

gebra, measure and integration, projective geometry, large cardinals in set theory.

Intuitionistic-type theory and its categorial interpretations offer great benefit to

computation theory and theoretical computer science. Higher-order intuitionistic

logic reigns supreme as the internal logic of toposes. No area of modern math-

ematics has proven resistant to intuitionistic incursion; despite initial skepticism,

as expressed in G. Hellman [1993], even the foundations of quantum mechanics

begin to yield to constructivistic treatment, as F. Richman and D. Bridges have

shown in their [1999]. There are also those structures open to intuitionistic in-

vestigation but closed to conventional study. For example, in the Kleene realiz-

ability structure for set theory, there exist natural models of Church’s l calculus:

nontrivial sets X standing in one-to-one correspondence with the collection of all

functions taking X into X. This is conventionally impossible, thanks to the con-

ventional form of Cantor’s Theorem, but intuitionistically, it affords a lively

mathematical prospect.

The efficacy of the negative translation for set theory, even set theory with

large cardinals, suggests that any evidence of a first-order sort for conventional set

theory would transfer, under negative translation, to intuitionistic set theory. In

these respects, intuitionistic mathematics shows itself not as a system of complete

renunciation, but as standing on a scientific par with its conventional cousin.

These features of intuitionism also draw the teeth of the old objection that in-

tuitionism is somehow scientifically unsatisfactory because its mathematics is

disastrously weak. Hilbert lodged the most famous such objection in his [1927],
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where he wrote, ‘‘Taking the principle of excluded middle from the mathemati-

cian would be the same, say, as proscribing the telescope to the astronomer or to

the boxer the use of his fists’’ (p. 476). Surely this cannot be a complaint about the

fact that TND is underivable in the intuitionistic logic. For TND is provably

invalid. One could not reasonably maintain that conventional logic is weak be-

cause it fails to derive, for example, the invalid principle f_c. Therefore, de-
priving the intuitionist of TND is not like depriving the astronomer of a telescope,

but like depriving the aviator of a diving bell.
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c h a p t e r 11

INTUITIONISM

RECONSIDERED

roy cook

1. Why Reconsider?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The debate between intuitionists and classical logicians is fought on two fronts.

First, there is the battle over subject matter—the disputants disagree regarding which

mathematical structures are legitimate domains of inquiry. Second, there is the battle

over logic—they disagree over which algebraic structure correctly codifies logical

consequence. In this chapter the emphasis is on the latter issue—I shall focus on

what the correct (formal) account of correct inference might look like, and, given

such an account, how we should understand disagreements regarding the extension

of the logical consequence relation.

Intuitionism comes in two or three major forms: L. E. J. Brouwer’s Kantian

metaphysics (e.g., [1948]), Arend Heyting’s semantic elucidation (or perhaps cor-

ruption) of Brouwer’s view (e.g., [1931]), and Michael Dummett’s verificationist

stance (e.g., [1975]). Although each rightly deserves the title ‘‘intuitionism,’’ it is

important to note that there is more than one view on the table. This noted, however,

it is useful to isolate what they have in common (i.e., those aspects of the various

views that justify the common nomenclature). The reader interested in the nuts and

bolts of particular variants of intuitionism is encouraged to read Carl Posy’s ‘‘In-

tuitionism and Philosophy’’ and David McCarty’s ‘‘Contemporary Intuitionism,’’

chapters 9 and 10 of this volume. The most striking characteristic that unites these

views and distinguishes them from classical rivals is their failure to accept certain

formulas (or schemata), such as the law of excluded middle, as logical truths.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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On the face of it, then, the debate seems simple: intuitionists are proposing as

correct a logic that is distinct from the more widely accepted classical formalism,

and we need only determine which account is correct. Once we scratch the surface

a bit, however, we will see that determining where the battle lines of this conflict

should be drawn, and even whether there is a conflict at all, is more complicated

than it at first appears.

In the next two sections of the chapter, two typical sorts of arguments for

intuitionistic logic will be examined. We will then examine exactly what is at stake

when one provides a logic as an account of logical consequence. Two ways of

understanding the debate, both of which imply that intuitionists and classical

logicians are not engaged in the same project, will be rejected. This will provide a

set of default assumptions that must be adopted if the intuitionist and the classical

logician are giving accounts of the same phenomenon. In the final two sections I

will suggest taking a pluralist stance with regard to the debate between intui-

tionists and classical logicians.1 Instead of being caught in a dilemma, whereby we

are forced to choose between two rival logics, we are instead presented with two

equally legitimate codifications of logical consequence. As a result, intuitionistic

logic is not in opposition to classical logic, but instead is an alternative (yet, in a

sense, still incompatible) formalism that stands alongside it.

2. The Epistemic Argument for

Intuitionistic Logic

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The first type of argument for intuitionistic logic that we will consider comes in

three parts. First, the intuitionist proposes certain epistemic principles that con-

strain truth. In doing so, the intuitionist of the Brouwer/Heyting school will usually

refer to the essentially mental character of the subject matter of mathematics:

Even if they should be independent of individual acts of thought, mathematical

objects are by their very nature dependent on human thought. Their existence is

guaranteed only insofar as they can be determined by thought. They have prop-

erties only insofar as these can be determined by thought. But this possibility of

knowledge is revealed to us only by the act of knowing itself. (Heyting [1931]: 53)

An intuitionist of the more recent Dummettian variety will be concerned with

issues of meaning. Dummett argues that the realist position of the classical logician

1 I use ‘‘pluralist’’ to designate any view that allows the simultaneous acceptance of

two distinct logics. This usage should be clearly distinguished from the ‘‘logical pluralism’’

of J. C. Beall and Greg Restall [2000], based on the idea that different logics govern different

subject matters, or ‘‘cases.’’
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. . . violates the principle that use exhaustively determines meaning; or, at least, if

it does not, a strong case can be put up that it does, and it is this case which

constitutes the first type of ground which appears to exist for repudiating clas-

sical in favour of intuitionistic logic for mathematics. For, if the knowledge that

constitutes a grasp of the meaning of a sentence has to be capable of being

manifested in actual linguistic practice, it is quite obscure in what the knowledge

of the condition under which a sentence is true can consist, when that condition

is not one which is always capable of being recognised as obtaining. (Dummett

[1975], p. 106)

Nevertheless, both lines of thought lead to an equation of the truth of a propo-

sition with the existence of a proof.2

The intuitionist then argues that certain classical laws, such as excluded middle,

and certain rules, such as classical reductio, are dubious because they are, from an

intuitionistic perspective, equivalent to overly optimistic claims about our epistemic

powers. Heyting writes:

Does the law of excluded middle hold . . .? When we assert it, this means that for

any proposition A we can either prove A or derive a contradiction from a

supposed proof of A. Obviously we are not able to do this for every proposition

A, so the law of excluded middle cannot be proved. If we do not know whether A

is true or not, we better make no assertion about it. ([1974]: p. 87)

Heyting is not asserting the existence of some explicit counterexample to excluded

middle (nor would any other intuitionist), since in intuitionistic propositional

logic the negation of any classical logical truth leads to absurdity.3 Rather, he is

claiming that, from the epistemic stance of the intuitionist, the inference in

question makes an unjustified (and possibly unjustifiable) claim about the exis-

tence of certain sorts of construction (i.e., the law of excluded middle, for the

intuitionist, entails global decidability). Along similar lines, Michael Dummett

writes:

Brouwer’s reform of mathematics thus led to a revision of the most

fundamental part of logic itself, sentential logic. ‘‘Or’’ was to be explained

by saying that a proof of ‘‘A or B’’ must be a proof either of ‘‘A’’ or of ‘‘B,’’

and ‘‘if ’’ by saying that a proof of ‘‘If A, then B’’ is a construction which we can

recognise as transforming every proof of ‘‘A’’ into a proof of ‘‘B.’’ These

formulations, together with an axiomatic formalisation of intuitionistic logic,

were attained by Heyting on the basis of Brouwer’s practice. . . . It is evident
that many laws of classical logic, such as the law of excluded middle and its

2 There is some question regarding whether various intuitionists regard the relevant

notion of proof to entail the actual existence of a (possibly abstract) proof, or merely the

possibility of providing one.
3 Similar, albeit more complicated, negation-related connections hold between the

corresponding first-order theories (see Troelstra and Van Dalen [1988] for details).
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generalisation ‘‘A or (if A then B)’’4 fail on the intuitionistic interpretation of the

logical constants. (Dummett [1980], p. 612)

Finally, once the distinctly classical inferences have been disposed of, these same

epistemic principles are used to justify the standard rules of intuitionistic logic.5

In the discussion below, our target will be intuitionistic logic motivated by

this sort of epistemic worry. There is another much discussed argument for in-

tuitionism, however, so a brief look at it, and at why we will discard it, is in order.

3. The Proof-theoretic Argument

for Intuitionistic Logic

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The second argument for intuitionistic logic is motivated by an inferentialist view

of meaning—the idea that the meaning of various bits of language is to be ex-

plained in terms of the rules governing reasoning with those bits of language.

Arthur Prior [1960] famously objected to (a naive version of) inferentialism by

formulating the tonk operator:

TONK I
F

F TONK C
TONK E

F TONK C
C

:

If we assume that the consequence relation is transitive, then it is easy to dem-

onstrate that these rules allow us to derive any formula.

In response, inferentialists, and especially intuitionists, have proposed various

constraints on the form that such meaning-constitutive rules can take. Michael

Dummett calls one such constraint ‘‘harmony,’’ and writes:

The best hope for a more precise characterisation of the notion of harmony lies

in the adaptation of the logicians’ concept of conservative extension. Given a

formal theory, we may strengthen it by expanding the formal language, adding

new primitive predicates, terms, or functors, and introducing new axioms or

rules of inference to govern expressions formed by means of the new vocabulary.

4 ‘‘A_ (A!B)’’ is a generalization of ‘‘A_:A’’ according to the standard intui-

tionistic definition of negation in terms of the conditional and an ‘‘absurd’’ formula. For

example,

:A¼dfA! (0¼ 1).

See Cook and Cogburn [2000] for a discussion of the drawbacks of this sort of definition.
5 Although I presume that the reader is familiar with the standard formulations of

intuitionistic logic, the rules for intuitionistic versus classical negation are discussed below.
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In the new theory, we can prove much that we could not even express in the old

one; but . . .we can prove in it no statement expressed in the original restricted

vocabulary that we could not already prove in the original theory. ([1991], p. 251)

As a result, Dummett requires that the rules for each logical operator be

conservative with respect to the other logical operators (and their rules). In the

standard natural deduction presentation of classical logic, however, the rules for

negation:

: I F
(i) :E

F : CF
? CR : CF

(i)

: :
?
: CF

(i)
?
F

ðiÞ

fail to be conservative. For example, they allow us to prove (F!C)_ (C!F),
which is not provable from the standard rules for disjunction and implication

alone. On the other hand, the intuitionistic rules, obtained by jettisoning classical

reductio (CR) while retaining negation introduction (:I) and elimination (:E),
are conservative.

The idea of harmonious introduction and elimination rules providing the

meanings of connectives traces back to Gerhard Gentzen’s proof-theoretic work,

where he notes:

The introductions represent, as it were, ‘‘definitions’’ of the symbols concerned,

and the eliminations are no more, in the final analysis, than the consequences of

these definitions. This fact may be expressed as follows: In eliminating a symbol,

the formula, whose terminal symbol we are dealing with, may be used only

‘‘in the sense afforded by the introduction of that symbol.’’ ([1964], p. 295)

Interestingly, Gentzen is referring not to intuitionistic logic here, but to the rules

for both intuitionistic and classical logic.

In Gentzen’s development of the sequent calculus, the rules for both classical

and intuitionistic negation take the form

D,A ) G
D ) G,:A ) : D ) G,A

D,:A ) G
: )

[D, G sequences of formulas, A a formula].6

The difference between intuitionistic logic and classical logic is that in the former

(but not the latter) we are restricted in having at most one formula to the right of

the inference arrow) in each sequent. Gentzen’s rules for negation in either

6 In a sequent calculus derivation, a sequent D)G is meant to be read as ‘‘If all of

the fomulas in D are true, then at least one of the formulas in G is true.’’
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system are conservative over the (rules for the) other connectives. As a result, the

sequent calculus rules, with multiple formulas allowed to the right of the inference

arrow, provide a harmonious codification of classical logic.7 The requirement that

logical rules be harmonious and/or conservative does not, therefore, weigh more in

favor of intuitionistic logic as opposed to its classical rival.8 As a result we will

constrain our attention in the remainder of this chapter to the epistemic argument.

(For a much more in-depth examination of these issues, see Dag Prawitz’s ‘‘Logical

Consequence from a Constructive Point of View,’’ chapter 22 in this volume.)

4. Logics and Logical Consequence

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Before examining which of two distinct logics is correct, or whether in some sense

both can be legitimate, a bit more needs to be said about what makes a logic

‘‘legitimate’’ and what a logic is meant to provide. Logics are algebraic structures

meant to codify the notion of logical consequence. Thus, it is natural to start with

a description of logical consequence, and Alfred Tarski provides one:

Consider any class D of sentences and a sentence F which follows from

the sentences of this class. From an intuitive standpoint it can never happen

that both the class D consists only of true sentences and the sentence F is

false. Moreover, since we are concerned here with the concept of logical, i.e.

formal, consequence, and thus with a relation which is to be uniquely

determined by the form of the sentences between which it holds, . . . the
consequence relation cannot be affected by replacing the designations of

the objects referred to in these sentences by the designations of any other

objects. ([1936], pp. 414–415)

There are two ideas at work in this gloss. First, if F follows from D, then the truth

of (all members of) D (in some sense) guarantees the truth ofF. Second, the logical
consequence relation is independent of the particular nonformal content of the

7 Intuitionists are not unaware of such systems. In a paper where he examines natural

deduction systems with multiple conclusions, Stephen Read points out that intuitionists

. . . exclude multiple conclusions from consideration because they allow

the assertion of disjunctions neither of whose disjuncts is assertible. But

that is to beg the question. The question is whether intuitionistic logic is

superior proof-theoretically to classical logic. To exclude forms of proof

which are intuitionistically unacceptable is to introduce a circle in the

reasoning. ([2000], p. 145)

8 Of course, one should not conclude that proof-theoretic considerations are irrel-

evant to determining which logic (if any) is correct.
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premises and conclusion—in other words, varying the reference or meaning of

nonlogical terms, predicates, and such cannot affect whether the conclusion is a

logical consequence of the premise. Thus:

LC: A sentence F is a logical consequence of a set of sentences D iff

the truth of every member of D guarantees the truth of F, and
this guarantee is in virtue of the logical form of F and the members

of D.

Intuitionistic and classical logicians have the same goal in mind: to provide a

mathematical structure (a logic) that codifies this notion of ‘‘logical conse-

quence.’’ One provides a logic for a natural language discourse D by following

something like this recipe:

1. We construct a formal language L out of strings of mathematical symbols.

2. We distinguish some subset LV of L, the logical vocabulary of L.

3. We construct a translation function T : LV!D mapping the logical

vocabulary of L to appropriate bits of D.9

4. We define a relation)whose first argument is a subset of L and whose

second argument is a member of L.10

A logic hL,)i (with LV and T) is judged by how well it matches up to logical

consequence in the natural language in question. Someone who believes that there

is a single logic codifying logical consequence in D will be searching for an hL, )i
(and T) such that the correctness principle

CP : For any function I: L!D such that I agrees with T on LV:

For all F2L, D� L:

I(F) is a logical consequence of I(D)11 iff D)F.

holds.

Precise definitions of logical monism and logical pluralism are now straight-

forward:

LM: There is exactly one hL, )i such that CP holds.

LP: There is more than one hL, )i such that CP holds.

9 On this way of viewing things, there are two distinct logical/nonlogical divides.

The first is a purely formal one, given by LV. The second, and more interesting,

appears when this division is projected onto natural language through the translation

function T.
10 I will ignore whether the relation is presented as a semantic one or a deductive one,

because the extension of the relation is our only concern here.
11 I(D) abbreviates {F : F¼ I(C) for some C2D}.
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There are many ways to obtain an uninteresting pluralism, for example, by vary-

ing the formal language L.12 This sort of trivial pluralism is not my interest here,

so I assume that the language is fixed. In particular, I shall assume that the formal

language in question is the standard propositional one. This constraint provides a

ready means for dealing with the idea that logical consequence should hold in

virtue of logical form. Since both parties in the intuitionistic/classical dispute

agree that the propositional letters are the only nonlogical vocabulary, any logic

hL, )i must obey the following substitutivity requirement:

SUB: Given any D� L, F2L, C2L, and Pi a propositional letter,

if D)F, then D[Pi /C])F[Pi /C]. 13

In what follows, the honorific ‘‘logic’’ is reserved for an algebraic structure hL, )i
that obeys SUB.

5. A Disagreement About

Meaning?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It has often been claimed that intuitionists and classical logicians attribute dif-

ferent meanings to the connectives. Proponents of this view will argue that the

classical negation of a formula F means ‘‘F is false,’’ while the intuitionistic ne-

gation of F means something like ‘‘F is refutable’’ (where ‘‘F is false’’ and ‘‘F is

refutable’’ are not synonymous). Such a view is strongly suggested by the clauses

for the propositional connectives in Heyting semantics for intuitionistic propo-

sitional logic (see Dummett [1977], ch. 1):

There is a proof of ‘‘:F’’ iff there is a procedure for transforming any proof

of ‘‘F’’ into a proof of ‘‘\.’’

There is a proof of ‘‘F^C’’ iff there is a proof of ‘‘F’’ and there is a proof of

‘‘C.’’

There is a proof of ‘‘F_C’’ iff either there is a proof of ‘‘F’’ or there is a
proof of ‘‘C.’’

There is a proof of ‘‘F!C’’ iff there is a procedure for transforming any

proof of ‘‘F’’ into a proof of ‘‘C.’’

12 For example, the argument ‘‘All men are mortal, Socrates is a man, therefore

Socrates is mortal’’ is invalid in propositional logic yet valid within first-order formalisms.
13 F[C/S] is the result of uniformly replacing every occurrence of C in F with an

occurrence of S.
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Note that even if we accept the verificationist equation between truth and the

existence of a proof, the clauses for negation and the conditional remain distinct

from the standard semantic clauses for the corresponding classical connectives.14

Viewing the debate as a disagreement about the content ascribed to the

various connectives (whether such a view is coherent or not) causes the disagree-

ment no longer to be one about the correct logic. Of course, the disputants will

disagree regarding which algebraic structure codifies logical consequence. This

surface disagreement stems from a deeper one regarding meaning, however, as

Dummett points out:

Thus the answer to the question how it is possible to call a basic logical law in

doubt is that, underlying the disagreement about logic, there is a yet more

fundamental disagreement about the correct model of meaning, that is, about

what we should regard as constituting an understanding of the statement.

(Dummett [1991], p. 17)

If intuitionists and classical logicians map the logical connectives onto different

natural language locutions, then it is unsurprising that they go on to conclude

that different algebraic structures codify the behavior of these different parts of

language. Nevertheless, such a situation is not necessarily one where the dispu-

tants are disagreeing about truth-conditions or inference relations within natural

language. Instead, the disagreement stems from their failure to find common

ground with regard to what parts of natural language are logical—the disputants

are disagreeing about what is to be codified.

Nevertheless, there are problems with attributing different meanings to in-

tuitionistic and classical connectives. If the rival logicians mean different things by,

for example, negation, and these differences are reflected in the different inference

rules given for classical and intuitionistic negation, then one might reasonably

suppose that we could construct a formal language containing both connectives,

in order to study their interaction. J. H. Harris [1982] has demonstrated the im-

possibility of such a language, however.15

Assume that we have a formal language L with two negations, :I and :C. :I is

governed by the standard natural deduction introduction and elimination rules,

14 This suggests that glossing the intuitionistic negation in terms of the notion of

(classical) refutability is inadequate. Even if truth is equivalent to the existence of proof,

refutability does not necessarily need to be equivalent to the existence of the sort of

procedure described in the relevant clause of the Heyting semantics.
15 This interpretation of Harris’s result depends on a particular understanding of

what it means for a language to ‘‘contain’’ intuitionistic negation. One might claim, based

on the translations of intuitionistic logic into S4, that S4 is a language containing both

classical and intuitionistic negation, where the latter is understood as the necessitation of

classical negation. One problem with this approach is that intuitionistic negation un-

derstood in this way does not obey the standard introduction and elimination rules, i.e.:
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while :C obeys structurally similar analogues of these rules plus a classical rule

such as classical reductio. In any such language, the two negation operators will be

interderivable,16 as illustrated by the following proof schemata:

(1) (1)

:I E F :IF :C E F :C F
:C I ? (1) :I I ? (1)

:C F :IF

If logical equivalence entails sameness of meaning (at least in the case of logical

constants), then we seem forced to the conclusion that intuitionists and classical

logicians do not mean different things by negation, or at least that if they do mean

different things, then we cannot find neutral territory within which to compare

such a difference in meaning.17 Dummett takes the lesson to be that the intuitionist:

. . . acknowledges that he attaches meanings to mathematical terms different from

those the classical mathematician ascribes to them; but he maintains that the

F
ðiÞ

:
?
K:F

ðiÞ

is not an admissible rule of S4 (unless restrictions are placed on the premises upon which

the derivation of absurdity from F rests). See Shapiro [1985b] and section 6 below for

further discussion of such translations.
16 The result is actually stronger—in any language that contains two negations that

both obey the standard introduction and elimination rules, the two negations will be

interderivable, regardless of what other rules are present. It is worth noting that the result

can be proved for suitable formulations in the sequent calculus as well.
17 One possible way of circumventing this argument is to find a set of rules for

intuitionistic negation, distinct from the standard rules, that (a) is well-motivated, (b)

delivers the same consequences as the standard rules in a language containing only the

other intuitionistic connectives, and (c) fails to collapse when combined with classical

negation. One set of rules that achieves (b) and (c) is the standard elimination rule, and

:I I� F
ðiÞ

:

?
:IF

ðiÞ

where no undischarged assumption contains any classical connective (such as ‘‘:C’’ ).

Motivating such a set of rules as the ‘‘correct’’ rules of intuitionistic logic (i.e., [a]) is

another matter entirely, however.
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classical meanings are incoherent and arise out of a misconception on the part of

the classical mathematician about how mathematical language functions. ([1991],
p. 17; emphasis added)

If the idea of different, but simultaneously legitimate, meanings is incoherent,

then we are left with the following possibilities:

[1] Intuitionists and classical logicians attribute the same meanings to the

connectives (whatever this meaning might be).

[2] Intuitionists and classical logicians ascribe different meanings to the

connectives, but one of the following holds:

[2a] Intuitionists attribute legitimate meanings to the connectives, while

classical logicians are talking nonsense.

[2b] Classical logicians attribute legitimate meanings to the connectives,

while intuitionists are talking nonsense.

[2c] Both intuitionistic and classical logicians are talking nonsense.

For the purposes of this chapter, we will take an optimistic stance and ignore

option [2c].

Regardless of the fact that Dummett (and other intuitionists) explicitly en-

dorse [2a], both [2a] and [2b] are implausible. First, such an interpretation of the

situation fails to do justice to the fact that classical logicians can work within

intuitionistic systems of mathematics and logic, and seem to understand what

they are doing when they do so (and vice versa). While the logician in question

might worry about the truth of the theorems thus proved, he does not, as a rule,

claim not to understand them, or to be asserting nonsense when proving them. In

other words, it is just a datum of logical practice that rival logicians (at least in the

intuitionistic/classical case) understand the utterances of their opponents.

Second, the idea that classical logicians ascribe an incoherent meaning to

negation does little justice to the (epistemic) argument proposed in favor of in-

tuitionistic logic. The intuitionist, after arguing for the connection between truth

and knowability, does not claim that it would be incoherent to accept excluded

middle (or any classical principle) as a logical truth. Such a claim would be tan-

tamount to arguing that it is incoherent that the correct conception of logic entail

global decidability (the intuitionistic ‘‘consequence’’ of excluded middle). The idea

that global decidability is (a philosophical consequence of ) a logical truth is indeed

somewhat implausible, but there seems little reason to think that it is a priori

incoherent. Similarly, there seems to be no reason (other than Harris’s result itself)

for the classical logician to ascribe incoherence (instead of just error) to the in-

tuitionistic account of logic.

At any rate, it is highly implausible that an intuitionist can sustain the charge

of incoherence that Dummett suggests he level at his classical opponent. Pre-

sumably, by the intuitionist’s own lights, the claim that the classical interpretation
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of the connectives is incoherent (that is, not coherent) involves (something like) a

refutation of the coherence of the (supposed) classical meanings. The possibility

of such a proof is hard to square with the mathematical fact that the classical laws

of propositional logic are intuitionistically consistent, and in addition are true

(even if not logically true) on finite and decidable infinite domains. As a result, we

should take it as our default view that intuitionistic and classical logicians agree

on the meaning of the connectives—in other words, they agree on the translation

function T mapping the logical vocabulary of the logic onto natural language.

6. A Disagreement About What

Is Preserved?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Even if the language L and translation function T are fixed, there is another way

that intuitionistic and classical logicians might be talking past each other. Intui-

tionists might be codifying a different notion of logical consequence than that

sketched above. Dummett suggests such an interpretation when he writes:

We must . . . replace the notion of truth, as the central notion of the theory of

meaning for mathematical statements, by the notion of proof. . . .As soon as we

construe the logical constants in terms of this conception of meaning, we become

aware that certain forms of reasoning which are conventionally accepted are

devoid of justification. ([1975], p. 107)18

Perhaps the intuitionist understands logical consequence as something along the

lines of

LCV: A sentence F is a logical consequence of a set of sentences D iff the

provability19 of every member of D guarantees the provability of F,
and this guarantee is in virtue of the logical form of F and the

members of D.

On this reading, intuitionist logic would be judged by a different criterion: by

whether or not (something like) the following verification correctness principle

18 I am not suggesting that this is the correct interpretation of what Dummett has in

mind. One more plausible interpretation is that he is advising the replacement of the

classical notion of truth, which he believes has already been shown to be faulty, with a

metaphysically more respectable notion of truth understood as provability.
19 ‘‘Provability’’ is intended to be an open-ended notion, not tied to any particular

formal system, since provability in, for instance, Peano Arithmetic, is, as a result of the

Gödel phenomenon, not codified by intuitionistic logic.
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CPV: For any function I: L!D such that I agrees with T on LV:

For all F2L, D�L:

The provability of I(F) follows from the provability of I(D) iff D)F.

holds.

The idea that classical logicians should understand intuitionists as codifying

the preservation of provability, not truth, is suggested by the translations of in-

tuitionistic logic into the classical modal logic S4. These mappings associate with

each intuitionistic formula, a formula of the classical modal logic S4:

T : {F :F is a I-formula}! {F :F is an S4-formula}

such that

£)IF iff £)S4 T(F)

The first such mapping was provided by Kurt Gödel [1933], and variations can be

found in Tarski and McKinsey [1948]. In addition, some (but not all) of the

translations satisfy

D)IF iff {T(F) :F2D})S4T(F).

Among those satisfying the stronger constraint20 is

T(A) ¼KA (A a propositional letter)

T(F^C) ¼K(T(F)^T(C))

T(F_C)¼K(T(F)_T(C))

T(:F) ¼K:(T(F))

This suggests a strong connection between the designated value of intuitionistic

logic (i.e., intuitionistic ‘‘truth’’) and classical provability.

While few will dispute that there are interesting connections between intui-

tionistic logic and classical provability, interpreting intuitionistic logic in terms of

the preservation of (classical) provability is unsatisfactory. Consider double ne-

gation elimination. The intuitionist denies that

::F
F

20 A translation T that preserves logical truth (i.e., one that satisfies the weaker

constraint) will preserve consequence if and only if:

For all intuitionistic formulae F, C:

[1] £) S4T(F!C) iff £)S4 (T(F)!T(C)) and

[2] £)S4 T(F^C)$(T(F)^T(C))
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is a valid rule of inference. If the interpretation just suggested is correct, the right

response would be to claim that the intuitionist is really objecting to

K::F
KF

:

On the classical understanding of the connectives, however, the provability of the

double negation of P does suffice for the provability of P. In other words, this is an

admissible rule of S4.

The problem is that even if the classical logician interprets intuitionistic logic

as codifying provability, he must understand it as codifying provability in a

language that differs in meaning from the meaning he attributes to his own

connectives. Returning to the translations of intuitionistic logic into S4, the in-

tuitionist, on this reading, is really objecting to

K:K:KF
KF

:

This formulation, however, contains not only prefix occurrences of K but also

internal ones, suggesting that because of the recursive nature of the translation, we

are interpreting the intuitionistic connectives as having a meaning tied up with

provability, a meaning different from the one attributed to the connectives by the

classical logician. Thus, in order to interpret the intuitionist as codifying, not

truth but provability, we must also interpret the intuitionist as attributing dif-

ferent meanings to the connectives. Such a disagreement about meaning, however,

was rejected in the previous section.

7. A Disagreement About Truth!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The issues addressed in the last two sections fall under a general topic often called

the problem of shared content, or the communication problem. Dummett

addressed the problem as follows:

Intuitionists . . . hold, that certain methods of reasoning actually employed by

classical mathematicians in proving theorems are invalid: the premisses do not

justify the conclusion. The immediate effect of a challenge to fundamental ac-

customed modes of reasoning is perplexity: on what basis can we argue the

matter, if we are not in agreement about what constitutes a valid argument?

([1991], p. 17)

There are four distinct questions lurking here. The first two can be usefully

labeled the questions of shared content :
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QSC1: Do the disputants in the intuitionism/classical logic debate attach

the same content to logical operators (i.e., do they mean the same

thing by ‘‘and,’’ ‘‘or,’’ ‘‘not,’’ etc.)?

QSC2: Do the disputants in the intuitionism/classical logic debate attach

the same content to the notion of truth?

The second we can call the questions of communication:

QC1: Do each of the disputants in the debate have the semantic resources to

make sense of the content the other attaches to the logical operators

(i.e., can each understand what the other means by ‘‘and,’’ ‘‘or,’’

‘‘not,’’ etc.)?

QC2: Does each of the disputants in the debate have the semantic

resources to make sense of the content the other attaches to the

notion of truth?

An affirmative answer to QSC1 forces an affirmative answer to QC1 (and

similarly for QSC2 and QC2), but not vice versa. Presumably a negative answer to

either QC1 or QC2 renders debate between the disputants pointless. In section 5 we

considered, and rejected, an interpretation that can be seen as answering QSC1

negatively and QSC2 positively, and section 6 addressed (and also rejected) the

possibility of a positive answer to QSC1 and a negative one to QSC2.
21

We are left with a default view characterized by two claims. First, intuitionists

and classical theorists are attempting to codify logical consequence, and although

they disagree regarding how this notion behaves, they are explicating the same

notion (a positive answer to QSC2). Second, they attribute the same meanings to

the connectives (a positive answer to QSC1), and their disagreement about con-

sequence therefore hinges on whether or not certain unequivocal inferences, such

as excluded middle, are truth-preserving in virtue of logical form. Neil Tennant,

who characterizes the debate in terms of a synthetic principle underlying the

strictly classical inferences in question, usefully summarizes what is at issue:

Indeed, the holding true (as a matter of necessity) of every such instance . . . [of
excluded middle] . . . expresses an essentially metaphysical belief. This belief is to

the effect that the world is determinate in every expressible regard. ([1996], p. 213)

I assume, in what follows, that, at least in broad outline, Tennant’s descrip-

tion of what is at issue is correct (i.e., the dispute traces directly to a disagreement

about the ‘‘behavior’’ of truth). As a result, any pluralistic position must admit the

possibility of distinct, incompatible, yet equally legitimate accounts of the very

21 Presumably we could combine the approaches in the previous two sections to

provide an (unsatisfactory) account that answered both QSC1 and QSC2 negatively and QC1
and QC2 positively.
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same phenomenon—preservation of truth in virtue of logical form. In the next

section I will sketch (but not defend) such a pluralistic position with regard to

logic. In the final section of the chapter I shall argue that the intuitionist, at least,

has some reason for adopting such a position.

8. Logic as Modeling

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

There is an assumption running through most approaches to the philosophy of

logic—the logic-as-description view: a formal logic is an attempt to describe what is

really going on vis-à-vis the truth-conditions, consequence-relation, and so on of

the discourse in question. On this view, every aspect of the formalism corresponds

to something actually occurring in the phenomenon being formalized, and the

logic provides an exact description of correct reasoning. The view incorporates an

optimistic epistemological stance, in that adherents of the view implicitly accept

that there is such an exact description of logical consequence (i.e., a single, ‘‘true’’

logic), and with sufficient intellectual effort we can arrive at such a description.

There is another way to view the task being undertaken by logical theorists—

logic-as-modeling.22 On this view, a logic provides a good model of logical con-

sequence. Logics are not (necessarily) descriptions of what is really occurring, but

are instead fruitful ways to represent the phenomenon, that is, formalization is

merely one tool among many that can further our understanding of the discourse

in question.

The core idea that distinguishes this perspective from accounts falling under

the logic-as-description heading is that although there are logics that are better or

worse with regard to codifying logical consequence, there might fail to be a single

correct, or ‘‘best,’’ logic. In fact, there might be situations in which such ‘‘failure’’

is to be expected. The position agrees with other views in that there can be

different models of logical consequence depending on our goals (i.e., what dis-

courses or ‘‘cases’’ are of interest, what semantic value we wish to preserve, etc.) In

addition, however, the logic-as-modeling framework allows (perhaps even entails)

that even when theoretical goals are fixed, there might not be a single, correct

codification of inference. In other words, natural language might fail to cooperate

fully with attempts to formalize it, and there might be no logic (L,)) such that

the correctness principle (CP) (construed in a precise manner) holds.

22 The logic-as-modeling view can be traced back to John Corcoran’s classic ‘‘Gaps

Between Logical Theory and Mathematical Practice’’ [1973], and has found more recent

expression in Stewart Shapiro’s ‘‘Logical Consequence: Models and Modality’’ [1998]. For
an additional case study presented within the logic-as-modeling framework, the reader is

encouraged to consult Cook [2002].
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If there might be, in principle, no exact fit between natural language and any

logic, then we are left with the possibility that some logical disputes, such as that

between intuitionists and classical logicians, can be explained away on pluralist

grounds. On this picture, the disputants believe that they are disagreeing only

because they have accepted the logic-as-description picture, where one (or both)

must be endorsing an incorrect codification of the consequence relation. Instead,

both are championing equally legitimate accounts (models) of logical conse-

quence. The mismatch between the natural language and any precise logic instead

stems from there being no fact of the matter regarding which of two logics is a

better model—there need be no more complicated logic that correctly codifies

those areas where there is a ‘‘mismatch.’’ Instead, there is indeterminacy regarding

whether or not certain aspects of the model correctly codify certain aspects of that

being modeled (the reader is reminded that in this section I am not yet arguing

that such a pluralism is the correct account of the dispute, but only describing a

possible understanding of the debate which is permitted by the logic-as-modeling

view).23

The situation can usefully be described as a case of vagueness. On the one

hand, we should accept that intuitionistic logic does not contain any inference

that is not a clear, definite case of logical consequence (although it might fail to

contain some valid inferences):

CPI: For any function I: L!D such that I agrees with T on LV:

For all F2L , D� L

If D)IF, then I(F) is a logical consequence of I(D).

On the other hand, we can grant that classical logic contains every inference that

is a clear, definite case of logical consequence (although it might also contain

inferences that are not valid):

CPC: For any function I: L!D such that I agrees with T on LV:

For all F2L, D� L:

If I(F) is a logical consequence of I(D), then D)CF.

There are uncountably many24 logics between the intuitionistic and classical

formalisms. More formally:

23 There is another way we might countenance multiple models of logical conse-

quence. The difference between two incompatible models might be artefactual, not rep-

resentative of anything occurring in the phenomenon being modeled. A full description of

this idea is beyond the scope of this paper, but the interested reader can consult Shapiro

[1998] and Cook [2002] for discussion of the representor/artefact distinction.
24 There is, of course, only a countable infinity of finitely axiomatizable intermediate

logics. For a proof if the uncountability of (a sub-collection) of such logics, see Jankov

[1968], pp. 33–34.
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Given two logics hL,)ai and hL,)bi:
hL,)ai� hL,)bi¼ df For all D� L, F2L, if D)aF, then D)bF.

25

hL,)ai� hL,)bi¼ df hL,)ai� hL,)bi and)a 6¼)b.

Fact: Given a propositional language L with countably many propositional

letters:

{hL,)ai : hL,)Ii� hL,)ai� hL,)Ci}
is uncountable.

As a result, the correctness of intermediate logics might be what Crispin Wright

[1976] calls ‘‘tolerant’’—moving to a slightly stronger or weaker logic (where the

difference in logical strength is sufficiently small) does not affect the correctness of

attributions of logical consequence. 26 We can adopt such a view by accepting one

or both of the following vagueness principles:

For any hL,)ai such that hL,)Ii� hL,)ai� hL,)Ci:
For any function I: L)D such that I agrees with T on LV:

V1: If D)aF implies that I(F) is a logical consequence of I(D),
then there is some hL,)bi such that hL,)ai�hL,)bi and
D)b F implies that I(F) is a logical consequence of I(D).

V2: If I(F) is a logical consequence of I(D) implies D)aF,
then there is some hL,)bi such that hL,)bi�hL,)ai and
I(F) is a logical consequence of I(D) implies D)bF.

27

These principles, plus the following (rather plausible) pair of bounding princi-

ples:

If, for some set of indices X, every (L,)a) such that a2X contains only

codifications of logical consequences, then, if)b¼ [ a2X ()a), (L, )b)

contains only codifications of logical consequences.

If, for some set of indices X, every (L,)a) such that a2X contains all

codifications of logical consequences, then, if)b¼\a2X ()a), then

(L,)b) contains all codifications of logical consequences.

25 � is not the set-theoretic subset-hood relation but is a defined notion that can be

glossed as ‘‘is a sub-logic of.’’
26 Of course, most cases of vagueness involve some sort of metric by which we

can measure the ‘‘distance’’ between particular instances and thereby determine when a

change is sufficiently small. Such a metric is lacking in the present case. We will see in

the final section, however, that a useful notion of sufficiently small change can be res-

urrected in cases where there are infinite chains of logics that asymptotically approach a

given logic.
27 Because of the non-symmetry of the lattice of logics intermediate between hL,)Ii

and hL,)Ci, V1 and V2 are not as similar as they might appear. V2 is rather implausible

and is included primarily for the appealing symmetry it provides. V1 is all that is needed in

the final section of this chapter, however.
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(classically) imply that, for any F2L, D� L, D)CF iff D)IF.
28 In other words,

this description of classical versus intuitionistic logic provides a novel version of

the Sorites Paradox.

It does not follow that the situation described above is incoherent, however—

any more than the existence of a series of pairwise indistinguishable color patches

progressing from a clear case of red to a clear case of orange implies the inco-

herence of color talk. Instead, whatever account applies to more standard cases of

vagueness must also apply to the connection between precise formal logics and the

consequence relation of natural language. As a result, on this picture there is no

logic between intuitionistic and classical that marks the precise boundary where

logical validity stops and invalidity starts.29

Pluralism was defined as the claim that at least two distinct logics satisfy the

correctness principle CP. On the vagueness-inspired picture just discussed, we do

not have exactly this, but we can draw the conclusion that for any logic hL,)ai,
there are distinct logics that are equally good models of logical consequence. As-

suming that we judge the quality of a model by the extent to which it agrees with

logical consequence in natural language, V1 implies that there is a logic hL,)bi such
that hL,)ai�hL,)bi and hL,)bi is at least as good at modeling logical conse-

quence (similar comments apply to the acceptance of V2). As a result of accepting

either V1 or V2, either for every logic (no matter how good a model) there is

another that is a better model of logical consequence, or there are two distinct logics

that are equally good models of logical consequence and are at least as good models

as any other logic. Either option seems worthy of the title ‘‘pluralism.’’

At this point we only have a description of pluralism and a defense of its

coherence. Nothing yet has been said in favor of such as the right way to view the

dispute at hand. In the final section I present some evidence supporting such a

pluralist stance.

9. Intuitionism Reconsidered

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Assume that we are swayed by the verificationist concerns sketched at the be-

ginning of this chapter (i.e., for the sake of argument, truth entails knowability).

Even granting this, the intuitionist has failed to provide an argument that

28 Restricted to intuitionistic logic, we can derive a contradiction from the claim that

there is a F2L,D� L, such that D)IF and not D)CF.
29 For a detailed discussion of vagueness within the logic-as-modeling framework, see

Cook [2002]. Much of the treatment there, which is restricted to more pedestrian sorts of

vagueness, can be adapted to the present context.
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intuitionistic logic is the (only) correct codification of logical consequence. In-

stead, the intuitionist has good reasons for rejecting (or at least abstaining from)

such a monistic position.

It should be emphasized that such a verificationist perspective on truth is

consistent with the idea that intuitionists and classical logicians agree on both the

semantic value preserved by logic and the meaning of the connectives. Indeed, for

the intuitionist to view the situation as a disagreement about logic, he must

interpret things in this way. Thus, the intuitionist is claiming that (1) the classical

logician does (or should) understand the (non-intuitionistic) inferences in

question in the same way as the intuitionist, and (2) the principles in question

clearly are not (or plausibly could fail to be) instances of logical consequence.30

Recall that the (epistemic) argument for intuitionistic logic comes in three

parts. The intuitionist (1) proposes certain epistemic principles that constrain

truth; (2) argues that these principles imply that certain non-intuitionistic laws

such as excluded middle should not be accepted; and (3) uses these epistemic

principles to justify the standard rules of intuitionistic logic.

This attack is not (by itself) an argument for intuitionistic logic as the unique

correct codification of logical consequence. At best, what the intuitionist has ar-

gued for is the claim that the correct logic (if there is a unique such thing) is one

of the continuum of logics between intuitionistic and classical logic (and is not the

latter). The reason is that the intuitionistic objections to strictly classical principles

grow weaker as the classical principles in question are weakened. Heyting argued

against excluded middle as follows:

When we assert it, this means that for any proposition A we can either prove

A or derive a contradiction from a supposed proof of A. Obviously we are not

able to do this for every proposition A. . . . If we do not know whether A is true or

not, we better make no assertion about it. ([1974], p. 87)

For the sake of argument, we can agree with Heyting regarding the epistemic

implausibility of excluded middle, but what about weaker classical principles such

as :A_::A? According to the intuitionist, accepting this formula (as a logical

truth) is equivalent to claiming that we can either refute A or refute the claim that

30 Tennant [1996] is a defence of this sort of interpretation of the dialectical situation,

arguing that classical logicians should accept the implication from truth to knowability,

and as a result recognize excluded middle (if in fact true) as a synthetic a priori principle

implying the determinacy of truth.

Shapiro [2001] contains compelling arguments that such a verificationist interpre-

tation of classical logic is less attractive that it might first appear. Here, however, we agree

for the sake of argument with more traditional intuitionists regarding the implausibility of

excluded middle on such a reading, and focus instead on the plausibility of weaker,

intermediate logics. As a result, we can ignore Shapiro’s criticisms.
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we can refute A. Would Heyting still be willing to claim that ‘‘obviously we are

not able to do this for every proposition A’’?

More generally, there exists a countably infinite chain of principles, each strictly

classical yet intuitionistically weaker than the last (P an arbitrary propositional letter):

A0(P)¼ df \
A1(P)¼ df P

A2(P)¼ df :P
(for all n¼ 1)

A2nþ 1¼ dfA2n(P)_A2n�1(P)

A2nþ 2¼ dfA2n(P)!A2n�1(P)

Ai(P) intuitionistically proves Aj(P) iff there is a path from i to j in the digraph

0 3 7 11 15

1713951

2 6 10 14

4 8 12 16

etc.

Fig. 11.1.

(For details see Troelstra and van Dalen [1988], p. 49). For all n> 4, An(P) is a

classical tautology, as is A3(P). Consider {Ai(P): i¼ 2nþ 1 for some n> 0}:

A3(P)¼:P_ P

A5(P)¼ (:P! P)_ (:P_ P)

A7(P)¼ [(:P!P)! (:P_ P)]_ [(:P! P)_ (:P_ P)]

A9(P)¼ ([(:P ! P)! (:P_ P)]! [(:P!P)_ (:P_ P)])_
([(:P ! P)! (:P_ P)]_ [(:P! P)_ (:P_ P)])

etc.

As we travel further down this list, intuitionistic objections to the formula in

question become less robust. The relatively strong A9(P), even given a more intuitive

gloss, does not assert the possibility of epistemic achievements that, as Heyting puts

it, ‘‘obviously we are not able to do.’’ Given this, how is the intuitionist to rule out

A999(P), or A99999(P)? The intuitionist is faced with seemingly insurmountable dif-

ficulties in arguing that his preferred logic has exactly captured logical consequence.

Corresponding to this infinitely descending chain of principles is an infinitely

descending chain of intermediate logics asymptotically approaching hL)Ii:
For all integers i such that i¼ 2nþ 1 for some n> 0, let

hL,)ii¼df the logic resulting from adding Ai(P) to hL,)Ii and closing

under SUB.
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Theorem: For integers i and j such that i¼ 2nþ 1 for some n> 0 and

j¼ 2mþ 1 for some m> n:

hL,)Ii�hL,)ji �hL,)ii�hL,)Ci.
Even if the intuitionist has legitimate objections to classical logic, it is implausible

that he has similarly strong arguments against each (or all) member(s) of this

infinite chain of sublogics.31

I am not suggesting that there is some hL,) ii that the intuitionist must

accept as a correct codification of logical consequence. One the contrary, he might

have no reason for accepting any of them. The point is that as i increases, the

intuitionist’s epistemic reasons for rejecting hL,) ii become correspondingly

weaker, and as a result, the intuitionist has no grounds for accepting the following

principle of invalidity recognition:

IR: For any logic hL,)ai such that hL,)Ii�hL,)ai�hL,)Ci, there are
reasons for doubting that we can perform the constructions necessary

for the (intuitionistic) truth of the axioms of hL,)ai.
This is a universally quantified statement—its truth, for the intuitionist, is tanta-

mount to the existence of a construction such that, when applied to any intermediate

logic. hL,)ai, it provides reasons for thinking that at least one axiom of hL,)ai
makes a questionable existence claim about constructions. The points of the last few

paragraphs, however, make the existence of such a construction unlikely.

In effect, the intuitionist’s own arguments have been turned against him. The

intuitionist argues that excluded middle (a principle whose logical truth is nec-

essary for the classical logician) expresses an implausible existence claim about

31 The infinitely descending chain of logics allows us to deal with the worry regarding

the lack of a metric noted earlier. Even though there is no obvious metric that gives the

actual ‘‘distance’’ between logics, we can note the following:

Given any function d from pairs of intermediate logics onto the reals such that:

(1) d(hL,)ai, hL,)ai)¼ 0

(2) d(hL,)ai, hL,)bi)þ d(hL,)bi, hL,)gi)� d(hL,)ai, hL,)gi)
(3) If hL,)ai� hL,)bi then d(hL,)ai, hL,)bi)> 0.

(4) If, for some set of indices X,)b¼\a 2 X()a),

then d(hL,)gi, hL,)bi)¼min {d(hL,)gi, hL,)ai): a2X}.

the existence of the infinitely descending chain of logics described above

guarantees that:

For every real e, there is logic hL,)ai such that hL,)Ii � hL,)ai � hL,)Ci
and d(hL,)Ii hL,)ai)< e

In other words, for any reasonable metric on logics intermediate between hL,)Ii and
hL,)Ci (with ‘‘reasonable’’ defined by (1) through (4)), there is are logics arbitrarily close
to intuitionistic logic according to that metric (The proof of this fact, however, is strictly

classical).
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constructions, and thus should not be accepted. Similarly, IR (a principle whose

truth is necessary for the intuitionist logician’s acceptance of logical monism)

expresses an implausible existence claim about constructions. This is not to say that

the intuitionist should accept that there is some particular logic hL,)ai for which IR
fails—the evidence marshaled against IR falls short of sufficient for the intuitionistic

truth of an existential claim. What is more plausible, however, is that the intuitionist

has no reason to reject

There is some hL,)ai such thathL,)Ii�hL,)ai and
D)a F implies that I(F) is a logical consequence of I(D).

This is a particular instance of V1 above.

The intuitionist’s position at this point is rather subtle. The appropriate in-

tuitionist attitude toward IR, and thus logical monism, is analogous to the position

he recommends with regard to excluded middle. The intuitionist, on pain of con-

tradiction, cannot advise the classical logician to accept the negation of excluded

middle—he can merely suggest that his rival abstain from asserting the principle in

question. Analogously, the intuitionist need not explicitly accept that there is some

intermediate logic that is just as legitimate as his own favored codification of logical

consequence. He merely ought to refuse to assert that there is no such logic (i.e.,

refrain from claiming that his logic is the sole correct one). The intuitionist need

not explicitly accept LP, but he has good reason for not asserting LM. This position,

while weaker than the more robust description of pluralism in the previous section,

is still a far cry from the monism espoused by traditional intuitionists.

Of course, the intuitionist could accept a pluralist view of logic. Whether he does

or does not, however, his refusal to assert logical monism should not cause him to

stop using intuitionistic logic. This is the whole point of the pluralism sketched

above—even if the intuitionist accepts V1 (and perhaps V2), this only implies that

other logics are equally good codifications of logical consequence, it in no way implies

that there is a better codification of this notion. The intuitionist need not abandon

intuitionistic logic, but, at worst, he merely needs to abandon some of the metaclaims

he might previously have made regarding the connections between his favored logic

and logical consequence in natural language. To sum up—intuitionist logicians can

retain their use of intuitionistic logic, but they cannot retain logical monism.32

32 An earlier version of this chapter was presented at Queens University Belfast, The

University of Stirling, The University of Nottingham, and The University of Aberdeen.

Substantial improvements were made based on the resulting discussions. Thanks are also

owed to Peter Clark, Neil Cooper, Philip Ebert, Fraser MacBride, Josh Parsons, Nikolaj

Pedersen, Agustin Rayo, Marcus Rossberg, Stewart Shapiro, Neil Tennant, Alan Weir,

Robert Williams, and Crispin Wright for helpful suggestions and/or guidance. This

chapter was written during the tenure of an AHRB research fellowship at Arché: The

Centre for the Philosophy of Logic, Language, Mathematics, and Mind.
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c h a p t e r 12

QUINE AND THE

WEB OF BELIEF

michael d. resnik

1. Introduction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

When W. V. Quine began his philosophical career, logical positivism and logi-

cism both flourished. The positivists distinguished sharply between truths known

empirically through sense experience and truths known a priori or independently

of sense experience. But they resolutely rejected a priori intuition, be it Platonic or

Kantian, as a source of mathematical knowledge, and they believed that the in-

adequacy of Mill’s empiricist philosophy of mathematics shows that sense per-

ception is no source, too.1 Fortunately, logicism’s new and richer conception of

logic and its reduction of mathematics to logic provided the positivists with a

ready-made basis for mathematical knowledge: they took it to be a priori knowl-

edge grounded in our conventions for using logical (and mathematical) symbols.

And this is just what Quine called into question. Neither their a priori-empirical

distinction nor their doctrine of truth by convention survived his criticisms un-

scathed. Even the thesis that mathematics is logic came to be seen in a different

light as a result of Quine’s theorizing about logic. In view of this, it is ironic that

significant themes from both logical positivism and logicism still ran through

Quine’s own work.

I am grateful to Matthew Chrisman, Mark Colyvan, and Stewart Shapiro for com-

ments on an earlier draft of this chapter.
1 For a fuller discussion of Mill’s views, see chapter 3 in this volume.
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Although his negative work brought Quine into philosophical prominence by

the 1950s, he had already developed a positive philosophical vision, which he

expanded and refined during the next forty years. Both the power of Quine’s

criticisms and the depth and scope of his positive views combined to make Quine

an influential—perhaps the most influential—philosopher of mathematics today.

He set the agenda for many current discussions: the role of convention in logic

and mathematics, the nature of the a priori, criteria of ontological commitment,

the indispensability of mathematics in science, the reducibility of mathematics to

logic, the nature of logic, and the value of ontological parsimony.

Here is a very brief overview of Quine’s philosophy of mathematics. Its

fundamental feature is a combination of a staunch empiricism with holism. These

are the ideas that the ultimate evidence for our beliefs is sensory evidence and that

such evidence bears upon our entire system of beliefs rather than its individual

elements (whence the phrase ‘‘the web of belief ’’). This means that our evidence

for the existence of objects must be indirect, and extracted from the evidence for

our system of beliefs. Thus it was essential that Quine develop a criterion for

determining which objects our system commits us to (a criterion of ontological

commitment). Seeing science as the fullest and best development of an empirically

grounded system of beliefs, Quine heralded it as the ultimate arbiter of existence

and truth. Mathematics appears to be an indispensable part of science, so Quine

concluded that we must accept as true not only science but also those mathe-

matical claims that science requires. According to his criterion of ontological

commitment, this also requires us to acknowledge the existence of those mathe-

matical objects presupposed by those claims. Finally, we usually take ourselves to

be talking about a definite system of objects. However, there is enough slack in the

connection between our talk of objects and the evidence for it that one can

uniformly reinterpret us as referring to another system of objects while hold-

ing the evidence for the original system fixed. Thus we have ontological relativ-

ity: only relative to a fixed interpretation of our beliefs is there a fact as to our

ontology.

This chapter will focus on Quine’s positive views and their bearing on the

philosophy of mathematics. It will begin with his views concerning the rela-

tionship between scientific theories and experiential evidence (his holism), and

relate these to his views on the evidence for the existence of objects (his criterion

of ontological commitment, his naturalism, and his indispensability arguments).

This will set the stage for discussing his theories concerning the genesis of our

beliefs about objects (his postulationalism) and the nature of reference to objects

(his ontological relativity). Quine’s writings usually concerned theories and their

objects generally, but they contain a powerful and systematic philosophy of math-

ematics, and the chapter will aim to bring this into focus. Although it will oc-

casionally mention the historical context and evolution of Quine’s philosophy, it

will not attempt to present a scholarly, complete examination and evaluation of it.

quine and the web of belief 413



2. Holism and the Web of Belief

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.1. Holism: The Basic Idea

When I speak of holism here, I shall intend epistemic or confirmational holism.

This is the doctrine that no claim of theoretical science can be confirmed or refuted

in isolation, but only as part of a system of hypotheses. This is different from

another view frequently attributed to Quine, namely, meaning holism, which is

roughly the thesis that an expression depends upon the entire language containing

it for its meaning.

Quine used a number of metaphors to expound his holism. The following pas-

sage from ‘‘Two Dogmas of Empiricism,’’ which is an early and particularly strong

formulation of his view, uses the metaphors of a fabric and a field force:

The totality of our so-called knowledge or beliefs, from the most casual

matters of geography and history to the profoundest laws of atomic physics or

even of pure mathematics and logic, is a man-made fabric which impinges

on experience only along the edges. Or to change the figure, total science is like

a field of force whose boundary conditions are experience. (Quine 1951, 42)

In a later book with Joseph Ullian, the operative metaphor was one of a web,

reflected in the book’s title, The Web of Belief (1970).

Whatever the metaphor, holism is based upon an observation about science

and a simple point of logic. The observation is that the statements of any branch

of theoretical science rarely imply observational claims when taken by themselves,

but do so only in conjunction with certain other statements, the ‘‘auxiliary’’ hy-

potheses. For example, taken in isolation, the statement that water and oil do not

mix does not imply that when I combine samples of each I will soon observe them

separate. For the implication to go through, we must assume that the container

contains no chemical that allows them to homogenize, that it is sufficiently

transparent for me to observe the fluids, that my eyes are working, and so on.

Hence—and this is the point of logic that grounds holism—if a hypothesis H

implies an observational claim O only when conjoined with auxiliary assumptions

A, then we cannot deductively infer the falsity of H from that of O, but only that

of the conjunction of H and A, H & A. Furthermore, insofar as observations con-

firm theories, the truth of O does not confirm H but rather H & A. Strictly speak-

ing, it is systems of hypotheses or beliefs rather than individual claims to which

the usual, deductively characterized notions of empirical content, confirmation,

and falsification should be applied.

Pierre Duhem expounded these ideas at the beginning of the twentieth cen-

tury, and defended the law of inertia and similar physical hypotheses against

the charges that they have no empirical content and are unfalsifiable. One way of
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putting the law of inertia, you will recall, is to say that a body remains in a state of

uniform motion unless an external force is imposed upon it. Since we can de-

termine whether something is moving uniformly only by positing some observ-

able reference system, this law, taken by itself, implies no observational claims.

Furthermore, by appropriately changing reference systems we can guarantee that a

body moving uniformly relative to our present system is not relative to the new

one, and thereby protect the law against falsifying instances. All this troubled the

law’s critics, because they believed that it should have an empirical content and be

falsifiable. Duhem responded to their worry by observing that the law readily

produces empirical consequences when conjoined with auxiliary hypotheses fixing

an inertial system; and that in needing auxiliaries to produce empirical conse-

quences, it was no different from many other theoretical principles of science,

whose empirical content everyone readily acknowledged. Thus the law’s critics

could not have it both ways: to the extent that their critique challenged the em-

pirical status of the law of inertia, it also challenged that of most other theoretical

hypotheses. (Duhem 1954).

Using logic to extract observational consequences from the law of inertia also

depends upon including mathematical principles among the auxiliary hypotheses.

Duhem drew no conclusions from this about mathematics. But Quine subse-

quently did, as the quote above indicates. Using the very strategy Duhem used in

defending the law of inertia, he argued that even mathematical principles, which

by most accounts are just as unfalsifiable and devoid of empirical content as the

law of inertia, share in the empirical content of systems of hypotheses containing

them (Quine 1990, 14–16).

In his later writings Quine toned down his holism. In speaking of ‘‘the totality

of our . . . beliefs,’’ the passage quoted above gives the impression that each of our

beliefs and observations is connected logically to every other belief and obser-

vation. In Word and Object, Quine notes this and qualifies his holism:

. . . this structure of interconnected sentences is a single connected fabric in-

cluding all sentences, and indeed everything we ever say about the world; for the

logical truths at least, and no doubt many more commonplace sentences too, are

germane to all topics and thus provide connections. However, some middle-sized

scrap of theory will embody all the connections that are likely to affect our

adjudication of a given sentence. (Quine 1960, 12–13)

(Note also the footnote to the first sentence of this passage:

This point has been lost sight of, I think, by some who have objected to an

excessive holism espoused in occasional brief passages of mine. Even so, I think

their objections largely warranted. (p.13)

So long as these ‘‘middle-sized scraps’’ of theory contain bits of mathematics,

Quine’s points about its falsifiability and empirical content will continue to hold.
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2.2. Important Consequences of Quine’s Holism

Let us note some important consequences of Quine’s version of holism. First, and

foremost, it entails rejecting the distinction between empirical and a priori truths,

where the a priori truths are those that are known independently of experience

and immune to revision in the light of it. This is because, for Quine, experience

bears upon bodies of beliefs and, insofar as it may be said to bear upon individual

beliefs of a system, it bears upon each of them to some extent. Quine rejects other

means for distinguishing between the a priori and the empirical, such as the use

of a priori intuition, self-evidencing truths, or sentences true by convention or

by virtue of the meanings of their component terms. Thus no belief is immune

to revision in the face of contrary experience. As Quine famously put it in ‘‘Two

Dogmas’’:

. . . it becomes folly to seek a boundary between synthetic statements, which

hold contingently upon experience, and analytic statements, which hold come

what may. Any statement can be held true come what may, if we make

drastic enough adjustments elsewhere in the system. Even a statement very close

to the periphery [of experience] can be held true in the face of recalcitrant

experience by pleading hallucination or by amending certain statements of

the kind called logical laws. Conversely, by the same token, no statement is

immune to revision. (Quine 1951, 43)

Second, although Quine acknowledged abstract objects and their perceptual

inaccessability, and even spoke of some of our beliefs as arising from observation

and others as arising through the exercise of reason, this provided him with no

epistemological distinction for privileging statements about abstract mathematical

objects. The difference here is simply one of degree rather than of kind.

Mathematics does not yield a priori knowledge, though it seems to proceed

largely through the exercise of reason. What, then, of philosophy? Since, for Quine,

there is no a priori or conceptual knowledge, any knowledge that philosophy can

impart about science must be a piece of science. This is part of what Quine calls

naturalism. Here are two passages characterizing it:

. . . naturalism: abandonment of the goal of a first philosophy. It sees natural

science as an inquiry into reality, fallible and corrigible but not answerable to any

supra-scientific tribunal, and not in need of any justification beyond observation

and the hypothetico-deductive method. (Quine 1981b, 72)

. . . naturalism: the recognition that it is within science itself, and not in some

prior philosophy, that reality is to be identified and described. (Quine 1981a, 21)

As we will see below, Quine’s naturalism is a key component of his argument for

mathematical realism (see chapters 13 and 14).
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Several interesting questions now arise concerning Quine’s own philosophical

theory: What is its status? Is it to be a contribution to knowledge? And if it is

knowledge, what is its source? Now philosophers commonly distinguish between

normative and descriptive epistemology. The former assesses our ways of knowing

and systems of beliefs with an eye toward improving upon them; the latter merely

describes them. Many of Quine’s more recent pronouncements concerning epis-

temology indicate quite clearly that he takes himself to be pursuing it descrip-

tively. For example, in ‘‘Epistemology Naturalized’’ we read:

Epistemology, or something like it, simply falls into place as a chapter of

psychology and hence of natural science. It studies a natural phenomenon, viz., a

physical human subject. The human subject is a accorded a certain experimen-

tally controlled input—certain patterns of irradiation in assorted frequencies,

for instance—and in the fullness of time the subject delivers as output a

description of the three dimensional world and its history. The relation between

the meager input and the torrential output is a relation that we are prompted

to study for somewhat the same reasons that have always prompted epistemol-

ogy; namely, in order to see how evidence relates to theory, in what ways one’s

theory of nature transcends any available evidence. (Quine 1969b, 82–83)

Can we interpret Quine’s doctrine of holism as a piece of descriptive episte-

mology? As I noted earlier, holism arises in part from observing scientific practice

and noting that scientists usually make numerous auxiliary assumptions when

designing experiments for testing their hypotheses. That they do so is a straight-

forward descriptive claim that in turn can be scrutinized scientifically. But this is

not enough, since this claim will not yield the conclusion that no statement of

science is immune to revision.

Curiously, I don’t think that Quine intended his claim that no statement is

immune to revision as a description of what scientists have done or as prediction

of what they will do. He would be the first to emphasize how radical it would be

to revise mathematics in order to save a scientific theory. Perhaps he meant the

conclusion as remark concerning the methodological code to which scientists

subscribe. This remark could be counted as descriptive epistemology and again be

subjected to scientific scrutiny, although, due to its imprecision, the results are

likely to be inconclusive. However, I am inclined to read Quine as claiming that

not only do scientists use auxiliary assumptions, they must do so to deduce testable

conclusions from their hypotheses. If scientists must use auxiliary hypotheses,

then it would follow that a negative test result would only call into question the

conjunction of the auxiliaries and the main hypothesis rather than the main

hypothesis alone. So, absent further specification, revising any component of this

conjunction would violate no law of logic. Moreover, given that scientists freely

draw our auxiliary assumptions from the entire body of science, we can arrive at

the more general conclusion that circumstances could arise in which logic would

permit revising any one of our (nonlogical) beliefs.
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On the reading of Quine that I am offering, the claim that none of our beliefs

is immune to revision amounts to the thesis that from a logical point of view,

none of our beliefs is immune to revision. Now, in speaking of what logic permits,

I have been using normative terms. Thus one might wonder whether Quine’s

holism is a piece of normative epistemology after all. I think not. In the case at

hand, apparent normative talk of what logic permits is only a metaphorical sub-

stitute for descriptive speculation about how various arguments would fare when

subjected to standard logical tests. Nor in applying logic do we involve ourselves

in the a priori—provided, of course, that with Quine we reject the distinction

between a priori and empirical knowledge.

2.3. Holism and Logic

But what of logic itself? Doesn’t its role in forging the connections between theory

and experience give a kind of a priori status, some immunity to empirical falsi-

fication? While we know that in ‘‘Two Dogmas’’ Quine counted the laws of logic

as part of the fabric confronting experience, the next passage seems to reflect a

change in his view. Here he is discussing the options we have when revising a set

of sentences S in the face of failed prediction (a ‘‘fateful implication’’):

Now some one or more of the sentences in S are going to have to be rescinded.

We exempt some members of S from this threat on determining that the

fateful implication still holds without their help. Any purely logical truth is thus

exempted, since it adds nothing to what S would logically imply anyway. . . .
(Quine 1990, 14)

Quine’s point here is that giving up a logical truth to repair S is idle. For let L be a

logical truth and W any sentence or conjunction thereof. Then the conjunction of

W and L implies a sentence O only if W alone implies O. To deactivate the fateful

implication, we must revamp logic at least to the extent of refusing to recognize

that S has the implication in question.

Now one might wonder how any revision of logic could even be an option for

us. For without logic a failed prediction would be neither connected to a theory

nor contrary to it. But this kind of worry can be set aside. Of course, without

some logical framework, hypothesis testing could not take place, but that does not

mean that the framework and the hypotheses tested cannot both be provisional.

Obviously, revisions in the framework must come very gradually, since after

changing it, we will need to determine whether previously tested hypotheses still

pass muster. Thus, instead of denying all instances of, say, the law for distributing

conjunction over alternation, we might reject certain applications of it to quan-

tum phenomena. In this way there would be no danger of lapsing into total

incoherence. Nor need we abandon the norms surrounding deduction. While we
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may change, for example, what counts as an implication or a contrary, we need

not abandon norms that commit us to what our theories imply or that prohibit us

from simultaneously maintaining two contraries. Logic is revisable, so long as

major changes result from the accumulation of minor ones.

2.4. Objections to Holism

Several philosophers have been critical of both the theory of confirmation that

seems implicit in holism generally and the account of mathematical evidence that

seems implicit in Quine’s version of it. Science takes mathematics and logic as

fixed points for determining the limits of what we can entertain as serious pos-

sibilities (to borrow a phrase from Isaac Levi (1980)). In allowing for experientially

motivated revisions of mathematics and logic, Quine appears to be riding

roughshod over this feature of scientific practice. Charles Parsons, who has voiced

objections of this sort, also points out that Quine seems to provide no place for

specific kinds of mathematical evidence, such the intuitive obviousness of ele-

mentary arithmetic (Parsons 1979–1980, 1986). In a different vein, Charles Chihara

(1990) has observed that in deciding whether to add a new axiom to set theory, no

set theorist is going to investigate its benefits for the rest of science. Yet on Quine’s

approach the ultimate justification of the axiom will rest upon the acceptability of

the total system of science to which it belongs. One might add that in developing

his own axiomatic set theories, even Quine narrowed his focus to their ability to

smoothly reproduce the standard set-theoretic foundations for mathematics while

skirting contradictions.

In addition to this, some philosophers continue to hold, contrary to both

Quine and Duhem, that observational evidence can be seen to bear upon specific

hypotheses instead of whole systems. Elliott Sober, for example, claims that sci-

entific testing consists in deriving incompatible predictions from competing hy-

potheses. Because these tests share the same auxiliary assumptions, they put

specific hypotheses at risk and, consequently, the data they produce reflect upon

just these hypotheses and not upon the broader systems to which they belong.

Sober also notes that scientific tests never, or hardly ever, put mathematical claims

at the risk of being falsified. Because of this, he argues, mathematics cannot share

in the confirmation afforded to those hypotheses that do pass such tests. In

particular, the mathematical theory of sets, in contrast to, say, the atomic hy-

pothesis, cannot claim empirical support (Sober 1993, 2000).

Now Chihara, Parsons, and Sober are certainly right when it comes to sci-

entific and mathematical practice. Mathematicians tend to keep their focus nar-

rowly mathematical, and their notion of mathematical evidence has much more

room for citing obviousness and self-evidence than it does for citing experimental
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data. But does this refute Quine? Let us take a closer look at these objections. As I

see it, they reduce to two points. The first is that Quine is wrong about the

revisability of mathematics and logic, and they are a priori, or at least Quine has

not shown that they are not. The second is that holism cannot be correct, since it

excludes important forms of reasoning used in science and mathematics. Thus

Quine’s argument, based as it is upon holism, fails to show that mathematics and

logic are not a priori.

Sober seems to be urging the first point when he points out that there are very

few mathematical statements that we know how to test empirically in any rea-

sonable sense of empirical testing.2 Now this would tend to favor the apriority of

mathematics if we knew how to test empirically almost all statements of theoretical

science. But in fact we don’t know how to apply the sorts of specific tests that Sober

has in mind to the framework principles of the various branches of science. They

function as the background principles that we hold fixed when testing lower-level

hypotheses. For example, we don’t know how to test the hypothesis that space–

time is a continuous manifold, and, given quantum mechanics, this may be un-

testable in principle. (To put my point in Kuhnian terms, the framework principles

are part of the paradigms held fixed while we do the testing that is part of ordinary

science.) If we take Sober’s idea to heart, we will count much more as a priori than

fans of the a priori want. Furthermore, we might find ways of testing many more

mathematical statements if we tried. At best we have a notion of the a priori that is

relative to our current ability to design empirical tests.

On the other hand, one might argue against Quine that as a matter of fact, we

have never revised an established branch of mathematics in the face of empirical

findings, and thus have little grounds for thinking that it is revisable.3 Of course,

never revised does not entail not revisable, and even Sober admits that when an

observation falsifies a prediction, there is a choice of revising the main hypothesis

or the auxiliary assumptions. (Sober 2000, 267). The problem with this response is

that no well-formulated methodology recommends taking the choice of revising

the mathematics contained in the auxiliary assumptions. Quine’s own suggestions

(e.g., that we revise so as to obtain the simplest overall theory and try to save as

much of our current theory as we can) are too vague, and fail to lead to a unique

outcome. Furthermore, we have no reason to believe that revising mathematics or

logic will ever lead us to a theory that would even count as optimal in comparison

2 Many philosophers would argue that no mathematical statement can be tested

empirically. However, Sober cites a mathematical conjecture that he takes to have been

tested empirically (Sober 2000, 268–269). I have also argued for the empirical testability of

certain mathematical statements (Resnik 1997).
3 Let us set the case of Euclidean geometry to the side, since there is much contro-

versy as to whether in using non-Euclidean geometry in general relativity theory, Einstein

falsified a mathematical theory of space.
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with its competitors.4 But, perhaps it is enough that revising logic or mathematics

could lead us to a theory that is at least acceptable, if not optimal. Ruling this out

would appear to beg the question by assuming that any theory arising from

revising mathematics or logic is unacceptable. We may have arrived at a standoff

here. Quine and his fans see revising mathematics and logic as a live option to be

used only when we must take extreme measures. His opponents fail to see how it

could ever be appropriate to exercise this option.

We still have to consider the second point: that holism cannot be correct,

since it excludes important forms of reasoning used in science and mathematics.

The strategy I will use here is to try to show that even within the framework of

empiricist holism, one can make sense of the scientific and mathematical practice

to which Sober, Chihara, and Parsons have called our attention.

Duhem noted that scientists often leave their auxiliary assumptions un-

questioned in the course of testing hypotheses, and thereby take the evidence they

obtain as bearing upon the main hypotheses. Duhem said that ordinarily this was

just using ‘‘good sense,’’ but he added, ‘‘These reasons of good sense [for favoring

certain hypotheses] do not impose themselves with same implacable rigor that the

prescriptions of logic do’’ (Duhem 1954, 217–218). Holists may readily admit that

it is rational for scientists to fix certain hypotheses (as auxiliaries) while testing

others, and thus also rational (in the practical sense) for them to act as if the

evidence they obtain bears upon the specific hypotheses being tested. Holists can

thereby accommodate the type of hypothesis testing that Sober applauds. They

will simply deny that, independently of our holding the ‘‘auxiliaries’’ fixed, a

logical (or a priori) evidential relationship obtains between the hypotheses tested

and the evidence.

Let’s develop this point further. In practice the various branches of science

take large blocks of theory for granted. Molecular biology, for example, is de-

veloped within a framework that draws upon principles of more general theories,

such as chemistry, physics, and mathematics. We also find a division of labor in

the sciences: mathematicians normally do not meddle in physics nor physicists in

mathematics, and biologists and chemists are normally not competent to suggest

changes in mathematics or physics even when they might want to see it changed.

As a result, when something goes awry in a relatively local science (say, biology), it

is not likely that practitioners of more global sciences (say, physics or mathe-

matics) will hear of it, much less be moved to seek a solution through modifying

their own more global theories. Nor is it likely that the specialists in a local theory

will tinker with global background theories to resolve local anomalies.

This is not just a matter of sociology; it is good sense, too. Practical rationality

counsels specialists to attempt to modify more global theories only as a last resort;

they probably do not and cannot know enough to tackle the task, and modifying a

4 Field (1998, 13–14) makes this point.
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more global theory is likely to send reverberations into currently quiescent areas

of science. Quine has expressed the point by saying that in revising their theories,

scientists should minimize mutilation.

Specialization has also fostered local methodologies and standards of evi-

dence. These provisionally override more global and holistic perspectives and

declare data, obtained via local methods, to bear on this or that local hypothesis.

These will tell us, for example, that we have more reason to be confident of the

existence of electrons than of gluons or of the existence of prime numbers than of

inaccessible cardinals. Holists will urge, however, that local conceptions of evi-

dence, in particular those that lead us to take data as confirming specific hy-

potheses, are ultimately justified pragmatically via their ability to promote science

as a whole, and not via some a priori basis. Hence the divisions we find in the

practice and scope of the various sciences should not be taken as refuting holism

or as indicating hard-and-fast epistemic divisions between mathematics and the

so-called empirical sciences. Nor do they show that it is invariably irrational to

modify some global principle to fix a more local problem.

These reflections apply to our ordinary conception of mathematical evidence

as well. Empirical success no more confirms individual mathematical claims than it

does individual theoretical hypotheses. However, it does provide a pragmatic

justification for positing mathematical objects, truths about them, and principles

for applying mathematical laws to experience. It encourages mathematicians to de-

velop their own standards of evidence, so long as the result does not harm science

as a whole. Because mathematics is our most global science, we should expect that

many mathematical methods and principles would be justified by means of con-

siderations neutral between the special sciences, and thus often pertaining to

mathematics alone. In this way we can reconcile holism with the features of math-

ematical practice that Chihara, Parsons, and Sober have emphasized.

Considering the place of proof in mathematics will illustrate this. Early math-

ematicians probably took their experience with counting, bookkeeping, carpentry,

and surveying as evidence for the rules and principles of arithmetic and geometry

that they eventually took as unquestionably true. They began to put more emphasis

on deduction after they became aware of the difficulties in deciding certain

mathematical questions by appealing to concrete models—which, for example, are

notoriously unreliable in deciding geometric questions. By the time of the Greeks,

the goal of mathematics was to prove its results. Moreover, proof wins out from

the perspective of science as a whole. For requiring mathematicians to give proofs

increases the reliability of their theorems, and decreases their susceptibility to

experimental refutation.

The development of non-Euclidean geometry and abstract algebra further

promoted the purely deductive methodology of the axiomatic method through

showing mathematicians how to make sense of structures that might not be

realized physically. It also promoted a shift from viewing mathematical sentences
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as unqualifiedly true or false to regarding them as true or false of structures of var-

ious types. These two developments have further insulated mathematics against

empirical refutation. To see how, consider the case of Euclidean geometry. General

relativity did refute it in its original role as a theory of physical space, but it still

has important mathematical models, and survives through being reinterpreted as

a theory of Euclidean spaces. A similar move is available when a scientific model

incorporating a bit of mathematics proves inadequate to a physical application. It

is usually far simpler to save the mathematics from refutation and conclude that

the physical situation to which it was being applied failed to exhibit a suitable

structure. We can use this technique to rescue any consistent theory—even a so-

called empirical theory—by reinterpreting it. However, mathematical theories

need no reinterpretation, since they do not assert that the structures they describe

are realized in this world.

Of course, more needs to be done to answer fully the objections to the holist

account of mathematical evidence. The foregoing paragraphs are offered as an

indication of a way of responding to those objections.

3. Ontological Commitment:

Recognizing Objects

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.1. Quine’s Criterion of Ontological Commitment

One’s first thoughts on the recognition of objects might be that we first ac-

knowledge an object and then learn things about it. For example, we first see the

tiger as it emerges from the brush, and later realize that it is about to attack us.

But this would be contrary to both more sophisticated commonsense and holism.

For to see the tiger we must see it as a tiger, and to do that, we must hold many

beliefs about it. For example, we probably will believe that it is a large, animate

object that looks like other objects we have identified as tigers. According to

holism, recognizing the tiger is a matter of modifying our system of beliefs in

certain ways; thus our evidence for the existence of the tiger ultimately traces to

our evidence for a system of beliefs concerning it. What goes for tigers goes for

objects generally: our evidence for them depends upon our evidence for our

beliefs countenancing them. For this reason it is essential that we have a means for

determining which objects we commit ourselves to in holding a system of beliefs.

Quine’s criterion of ontological commitment serves this purpose.

Quine’s criterion applies directly to sentences and sets thereof (theories), and

only indirectly to beliefs. (The transition from beliefs to sentences is based upon
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assuming we can determine people’s beliefs by seeing what sentences they are

prepared to affirm.) Then the roughest form of the criterion may be put quite

simply: a set of sentences is committed to those entities that must exist in order

for the members of the set to be true. But this happens when the sentences in

question affirm the existence of things through the use of quantifiers. Thus we

may put the criterion more precisely as Sentences are committed to those entities

over which their bound variables must range in order for them to be true. Here is

how Quine puts it in ‘‘On What There Is’’:

. . .We can very easily involve ourselves in ontological commitments by

saying, for example, that there is something (bound variable) which red houses

and sunsets have in common; or that there is something which is a prime

number larger than a million. But this is essentially the only way we can involve

ourselves in ontological commitments: by our use of bound variables. (Quine

1948, 12)
. . .The variables of quantification, ‘‘something,’’ ‘‘nothing,’’ ‘‘everything,’’

range over our whole ontology, whatever it may be; and we are convicted of a

particular ontological presupposition if, and only if, the alleged presuppositum

has to be reckoned among the entities over which our variables range in order to

render one of our affirmations true. (Quine 1948, 13)

Quine came to emphasize the triviality of what’s going on here.

The artificial notation ‘‘Ax’’ of existential quantification is explained merely as a

symbolic rendering of the words ‘‘there is something x such that.’’ So, whatever

more one may care to say about being or existence, what there are taken to be are

assuredly just what are taken to qualify as values of ‘‘x ’’ in quantifications. The

point is thus trivial and obvious. (Quine 1990, 26–27)

However, often it is far from clear as to what the ontological commitments of a set

of sentences are. This is especially true of day-to-day talk in ordinary language.

The common man’s ontology is vague and untidy in two ways. It takes in many

purported objects that are vaguely or inadequately defined. But also, what is

more significant, it is vague in its scope; we cannot even tell in general which of

those vague things to ascribe to a man’s ontology at all, which things to count

him as assuming.

. . . a fenced ontology is just not implicit in ordinary language. The idea of a

boundary between being and nonbeing is a philosophical idea, an idea of tech-

nical science in a broad sense. . . .
We can draw explicit ontological lines when desired. We can regi-

ment our notation. . . .Then it is that we can say the objects assumed are the

values of the variables. . . .Various turns of phrase in ordinary language that seem

to invoke novel sorts of objects may disappear under such regimentation. At

other points new ontic commitments may emerge. There is room for choice, and

one chooses with a view to simplicity in one’s overall system of the world.

(Quine, 1981a, 9–10)
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To illustrate what Quine has in mind, consider this bit of hypothetical dialogue:

John: I saw a possible car for you.

Jane: I have many things occupying my time, but for your sake, I will look at it.

John seems to be committed to possible cars (he says he saw one). Mary, on the

other hand, seems committed to her own time, things that occupy it, and John’s

sake. But what is a sake? Or a thing occupying a person’s time? Or a person’s time,

for that matter? If we simply paraphrase the dialogue, we can avoid such questions

and reduce its apparent ontological commitments.

John: I saw a car that might do for you.

Jane: I am very busy now, but I will look at it, since you want me to.

We have done quite a bit to clean up John’s and Mary’s ontologies! Now we

may take John to commit himself to just the car he actually saw instead of a

possible one, whatever that might be. Mary, though she is quite busy, need no

longer be seen as involved with sakes or things occupying her time. This is just a

somewhat humorous illustration of Quine’s procedure. For Quine the serious

applications are scientific and philosophical theories. By paraphrasing them into

the canonical notation of extensional first-order logic, we try to assess and reduce

ontological commitments.

. . .But the simplification and clarification of logical theory to which a canonical

notation contributes is not only algorithmic; it is also conceptual. Each reduction

that we make in the variety of constituent constructions needed in building the

sentences of sciences is a simplification. Each elimination of obscure constructions

or notions that we manage to achieve, by paraphrase into more lucid elements, is a

clarification of the conceptual scheme of science. The same motives that impel

scientists to seek ever simpler and clearer theories adequate to the subject matter of

their special sciences are motives for simplification and clarification of the broader

framework shared by all sciences. . . .The quest of a simplest, clearest overall pat-

tern of canonical notation is not to be distinguished from a quest of ultimate

categories, a limning of the most general traits of reality. (Quine 1960, 161)

For Quine, one of the philosopher’s major contributions comes from clari-

fying the language of science and mathematics in order to assess and reduce the

ontological commitments of our theories of the world. Though Quine’s criterion

may be trivial in itself, the applications one might make of it are far from trivial.

3.2. The Canonical Language and

Benefits of Regimentation

As we have seen, before applying Quine’s criterion, one must paraphrase the

theory to be assessed into ‘‘canonical notation.’’ Part of the reason for doing so is
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to eliminate spurious ontological commitments. For example, even the language

of working mathematics contains terms, such as, ‘‘1/0’’ or ‘‘(sin x)/x with x¼ 0’’

that appear to be referential, yet may fail to denote anything. Now we might

declare sentences containing such terms to be false just as we might declare pieces

of fiction false. But then what do we do with truths such as ‘‘There is no such

number as 1/0’’? In the face of this, some philosophers have responded that every

name denotes something—even ‘‘the largest natural number.’’ But for Quine there

is a simpler and more economical solution: we avoid the offending expressions by

paraphrasing away names and functional terms altogether. This can be done quite

straightforwardly using Russell’s theory of descriptions. Quine employs it, or an

equivalent device, quite frequently, and in his canonical notation the only singular

terms are variables.

Quine sees logic as ending with first-order logic,5 and his canonical notation

also bans other notable adjuncts to first-order logic, such as modal operators and

substitutional quantifiers. The modal operator ‘‘it is possible that’’ allows us to

formulate the claim ‘‘It is possible that there are numbers but there are (in fact)

no numbers’’—a claim to which some nominalists subscribe. Such talk seems to

recognize a kind of existence intermediate between being and nonbeing. Quine

has never been able to make sense of this idea, and has made relatively little sense

of modal operators themselves. Despite this and Quine’s influence, modal

operators have made a comeback in recent technical philosophy of mathematics.6

Substitutional quantification is also popular with nominalists. Instead of

requiring the existence of F, its truth a substitutional ‘‘AxFx ’’ counts as true if

and only if ‘‘Fx ’’ has a true substitution instance.7 This will count ‘‘Ax(x is a flying
horse)’’ as true so long as we take ‘‘Pegasus is a flying horse’’ as true. Since some

philosophers demur at counting the latter as false, they can use substitutional

quantification to analyze talk of fictional entities. Fans of modal logic have also

used it to deal with problems arising in interpreting quantifications containing

modal operators. What is more significant for our purposes is that philosophers

of mathematics have proposed using it to gain the formal advantages of having

classes without having to pay the price of admitting them into one’s ontology.

5 The acceptability of higher-order logic is a complex and technical issue. Evaluating

it and Quine’s arguments would take a chapter in itself. Fortunately, this volume contains

two chapters devoted to second- and higher-order logic (25 and 26).
6 See chapters 1, 15, and 16.
7 I have used an italicized ‘‘A ’’ to distinguish it from the ordinary (or objectual)

existential quantifier. A substitutional ‘‘AxFx ’’ can be true without F ’s existing so long as

we count one of its substitution instances as true. (E.g., some philosophers count ‘‘Ax(x is
a flying horse)’’ as true by virtue of the supposed truth of ‘‘Pegasus is a flying horse.’’) On

the other hand, the objectual ‘‘AxFx ’’ can be true without having a true substitution

instance when the Fs are unnamed. Thus ‘‘Ax(x is an unnamed real number)’’ is true while

its substitutional counterpart is false.
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Although substitutional quantifiers form no part of Quine’s canonical nota-

tion, he appears to think that, unlike modal operators, they are not intrinsically

unacceptable. However, nominalists should draw no comfort from this.

This does not mean that theories using substitutional quantification and no

objectual quantification can get on without objects. I hold rather that the ques-

tion of the ontological commitments of a theory does not properly arise except as

that theory is expressed in classical quantificational form, or insofar as one has in

mind how to translate it into that form. I hold this for the simple reason that the

existential quantifier, in the objectual sense, is given precisely the existential

interpretation and no other: there are things which are thus and so. (Quine

1969c, 107)

In Quine’s view, rewriting mathematics using substitutional quantifiers would

amount to abandoning the quest for ontological economy rather than achieving it.

Today realists in the philosophy of mathematics use Quine’s criterion largely

to argue for the existence of mathematical entities. ‘‘To do science,’’ they claim,

‘‘we use variables ranging over mathematical entities and are, consequently, com-

mitted to their existence.’’ (More on this in the section 4 below.) Anti-realists, on

the other hand, often appeal to Quine’s criterion to measure the success of their

various attempts at ontological economy. ‘‘My system has no variables ranging

over mathematical entities,’’ they argue, ‘‘so, we need not be committed to their

existence.’’ Ironically, it’s unclear how successful these anti-realist attempts have

been, because they employ languages that exceed Quine’s canonical notation.8

3.3. Ontological Naturalism: Science Is the

Ultimate Arbiter of Existence

Quine often emphasizes that his criterion tells us only what a theory says exists. It

does not tell us what does exist. That, you will recall, is the job of science; this is

Quine’s naturalism.

. . . naturalism: the recognition that it is within science itself, and not in some

prior philosophy, that reality is to be identified and described. (Quine 1981a, 21)

But Quine’s criterion still has a role to play, since by applying it to the theories

that science affirms, we determine what, according to science, exists.

Philosophers are not entirely out of the picture, however. Though they cannot

transcend science, they can work within science and propose clarifications and

8 See chapters 15 and 16 in this volume. Jody Azzouni pursues an atypical anti-realist

program through rejecting Quine’s criterion and arguing that to ‘‘quantify over’’ math-

ematical entities is not ipso facto to presuppose their existence (Azzouni, 1998).
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ontological reductions. It’s in this spirit that Quine regards his own proposals for

reducing mathematics to set theory. Here again is part of an earlier quote:

The same motives that impel scientists to seek ever simpler and clearer theories

adequate to the subject matter of their special sciences are motives for simpli-

fication and clarification of the broader framework shared by all sciences. . . .The
quest of a simplest, clearest overall pattern of canonical notation is not to be

distinguished from a quest of ultimate categories, a limning of the most general

traits of reality. (Quine 1960, 161)

3.4. Introducing New Objects: Positing

Our focus so far has been on how we justify countenancing various objects.

Though one might cite a local conception of evidence as an immediate justification

for recognizing an object, ultimately one tacitly appeals to the success of a broader

system committed to the type of thing in question. For example, having digested a

proof of Cantor’s Theorem, we may feel fully justified in countenancing un-

countable sets. But this is predicated on our prior acceptance of sets themselves,

and of whatever set theory might be needed for carrying out the proof in question

and for inferring the existence of uncountable sets. With Quine, we might justify

acquiescing in sets by citing their benefits to mathematics. We could in turn

justify this by pointing to the importance to science as a whole of having a flour-

ishing mathematics.9

Now, what we have observed concerning sets applies to other types of

objects—even ordinary physical bodies. You know there’s an owl out in the dark,

because you heard it screech, and you know an owl’s screech. But here you are

already presupposing owls and a rich body of beliefs about them, and all these are

contained in a framework provided by your beliefs about birds, animals, and

physical bodies.

Once we have in place a framework that countenances objects of a given kind,

we are in a position to identify and authenticate objects of that kind, whether we

do so via observation, instrumentation, or theoretical deduction. But how do we

come to add new objects of various types to our ontology in the first place? Even

when, according to later theory, we have been observing a type of object with our

unaided senses all along, we seem to have a serious problem. For prior to having a

framework countenancing the objects in question, we need not even be aware that

we are observing any definite thing at all. For example, a layperson looking at the

sky on a clear night may be aware of only the stars and the moon, while astron-

omers will be aware of galaxies, and much more. The difference between the

9 See, for example, Quine (1981a, 13–16).
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layperson and astronomers is that the latter have hypothesized a much richer

ontology along with a rich theory of its members’ behavior and their observable

effects. To introduce an ontology in this way is to posit it. But while to posit some

things is similar to making up a story about them—at least it is initially—this

does not mean that astronomers have created the heavens.

. . .Considered relative to our surface irritations, which exhaust our clues to

external physical objects, the molecules and their extraordinary ilk are thus much

on a par with the most ordinary physical objects. The positing of these ex-

traordinary things is just a vivid analogue of the positing or acknowledging of

ordinary things: vivid in that the physicist audibly posits them for recognized

reasons, whereas the hypothesis of ordinary things is shrouded in prehistory. . . .
To call a posit a posit is not to patronize it. . . . Everything to which we

concede existence is a posit from the standpoint of a description of the theory-

building process, and simultaneously real from the standpoint of the theory

that is being built. (Quine 1960, 22)

Quine no more admits existence by fiat than he does truth by fiat.

This has very important consequences for Quine’s philosophy of mathe-

matics. Mathematics, at least on the realist reading of it that Quine favors, is about

objects that have no place in space or time, and no effects upon our sensory

apparatus. How, one wonders, could we have ever come to have any knowledge of

such things? Not through intuition or other a priori insight—at least not if Quine

is right. But there is nothing mysterious about our building theories that posit

mathematical objects, for theory construction itself requires no contact with the

things the theory purports to concern. And, if the theory forms a workable part of

our overall system, no matter what its subject may be, then the entities to which it

is committed (via Quine’s criterion) have as much title to existence as ‘‘ordinary

things’’ hypothesized ‘‘in prehistory.’’

4. The Indispensability Argument

for Mathematical Realism

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Everyone grants that mathematics is very useful to the pursuit of science. It gives

science the wherewithal for representing empirical findings through statistical and

other numerical means and for explaining these findings using such concepts as

those of acceleration, state vector, random mating, allelic frequency, expected util-

ity, and welfare function. Moreover, mathematical laws permit scientists to deduce

nonmathematical conclusions from assumptions, such as Newton’s laws of mo-

tion, that are formulated in a mix of scientific and mathematical vocabulary. Elim-

inating mathematics would thus drastically alter the practice of working science.
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But what if the theoretical purposes of mathematics could be accomplished

using a more parsimonious ontology without any reduction in the overall sim-

plicity and economy of the resulting scientific theory? Quine would heartily ap-

prove, but he would not ask scientists to stop using mathematics. He would

merely claim that since mathematics could be excised from the canonical for-

mulation of science, science (and thus we) should no longer acknowledge its truth

or ontological commitments.

. . . not that the idioms thus renounced are supposed to be unneeded in the

market place or in the laboratory. . . .The doctrine is that all traits of reality

worthy of the name can be set down in idiom of this austere form if in any idiom.

(Quine 1960, 228)

Although Quine attempted to eliminate mathematics from science and applauded

efforts aimed at showing that the mathematical needs of science can be reduced,

he came to believe that most classical mathematics is indispensable to science

(Quine 1960, 270).

Since there is, so far as we know, no way of eliminating mathematics from the

‘‘austere idiom’’ of the canonical formulation of science, we are bound to admit the

existence of those mathematical objects that science posits. This argument, which

is rooted in Quine’s writings and was propounded explicitly by Hilary Putnam, has

become known as the Indispensability Argument for Mathematical Objects.10

We can formulate a more explicit version of an indispensability argument as

follows: First, mathematics is an indispensable component of natural science.

Second, thus, by holism, whatever evidence we have for science is just as much

evidence for the mathematical objects and the mathematical principles it pre-

supposes as it is for the rest of its theoretical apparatus. Third, whence, by nat-

uralism, this mathematics is true, and the existence of mathematical objects is as

well grounded as that of the other entities posited by science. I call this the

Holism–Naturalism (H–N) Indispensability Argument. It is clearly based upon

principles that Quine accepts, although it is not as clear that it accurately para-

phrases his or Putnam’s arguments.

Now lots of philosophical energy and talent—including some of Quine’s—

has been spent trying to undermine the first premise of this argument by show-

ing that mathematics is dispensable from science.11 More recently, however,

10 Cf. Putnam: ‘‘So far I have been developing an argument for realism along roughly

the following lines: quantification over mathematical entities is indispensable for science,

both formal and physical: therefore we should accept such quantification; but this com-

mits us to accepting the existence of the mathematical entities in question. This type of

argument stems, of course, from Quine, who has for years stressed both the indispens-

ability of quantification over mathematical entities and the intellectual dishonesty of

denying the existence of what one daily presupposes’’ (Putnam 1971, 57).
11 See chapters 15 and 16 in this volume.

430 oxford handbook of philosophy of math and logic



philosophers have questioned other aspects of the argument. Neither Penelope

Maddy nor Elliott Sober thinks that we can count on science to provide evidence

for the truth of mathematics. As we saw earlier, Sober claims that scientific testing

fails to confirm the mathematics used in science.

Maddy’s criticism is based upon observing that much of the mathematics

used in science occurs in theories, such as the ideal theory of gases, that scientists

openly acknowledge as false yet still employ. She argues that this raises the pos-

sibility that the confirmation coming from membership in scientific theories that

are accepted as true covers too little mathematics to be of comfort to mathe-

matical realists. In short, too much of mathematized science may fall outside the

scope of the H–N argument’s naturalism premise to support mathematical real-

ism (Maddy 1992, 281).

It is not clear how Quine or Putnam would respond to this criticism, for it is

not even clear that the H–N argument is theirs. But one can set aside Maddy’s

worry by moving to another version of the indispensability argument. For

whatever attitude scientists take toward their own theories, they cannot consis-

tently regard the mathematics they use as merely of instrumental value. Take

Newton’s account of the orbits of the planets as an example. He calculated the

shape of the orbit of a single planet, subject to no other gravitational forces,

traveling about a fixed star. He knew that no such planet exists, but he also

believed that there are mathematical facts concerning its orbit. In deducing the

shape of such orbits, he presumably took for granted the mathematical principles

he used. For the soundness of his deduction depended upon their truth. Fur-

thermore, in using his (mathematical) model to explain the orbits of actual

planets, he presumably took its mathematics to be true. For he explained the

orbits of planets in our solar system by saying that they approximate the behavior

of an isolated system consisting of a single planet orbiting a single star. For this

explanation to work, it must be true that the type of isolated system (Newtonian

model) has the mathematical properties Newton attributed to it. This illustrates

that even when applying mathematics to idealizations or theories they know are

wrong, scientists use it in a way that commits them to its truth and ontology.

Reflecting on this leads one to the Pragmatic Indispensability Argument,

which runs as follows:

1. In stating its laws and conducting its derivations, science assumes the

existence of many mathematical objects and the truth of much mathe-

matics.

2. These assumptions are indispensable to the pursuit of science;

moreover, many of the important conclusions drawn from and within

science could not be drawn without taking mathematical claims to be true.

3. So we are justified in drawing conclusions from and within science only

if we are justified in taking the mathematics used in science to be true.
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Notice that, unlike the earlier H–N Indispensability Argument, this one does

not presuppose that our best scientific theories are true or even that they are well

supported. It applies wherever science presupposes the truth of some mathe-

matics. Thus, as we noted earlier, it applies even to the mathematics contained in

those refuted scientific theories that scientists still use and to the mathematics of

idealized scientific models. Furthermore, the argument, at least as it stands, con-

tains no claim that the evidence for science is also evidence for mathematics. We

can extend this argument to infer that we should acknowledge the truth of math-

ematics on pragmatic grounds. For given that we are justified in doing science, we

are justified in using (and thus assuming the truth of) the mathematics in science,

because we know of no other way of obtaining the explanatory, predictive, and

technological fruits of science.12

Since much standard mathematics is used in science, the indispensability

arguments support realism about many parts of mathematics. Yet, as Quine was

aware, and Maddy and others have emphasized, indispensability arguments fail to

cover the more theoretical and speculative branches of mathematics. Currently

science neither needs nor employs this mathematics, and it does not even help in

simplifying and systematizing the mathematics that science does apply. Thus it is

not part of the Web of Belief, and not connected even indirectly to experience.

5. Ontology and Ontological

Relativity

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Quine has frequently urged that we take the ontology of mathematics to be one of

classes or sets. Numbers, functions, vectors, groups, spaces, and so on are to be

reduced to them in the familiar ways.13 This is because we need to use classes for

many purposes, both mathematical and nonmathematical, and we obtain a

simpler ontology by having just classes rather than classes plus other mathe-

matical and abstract objects. Here is how Quine argued for countenancing classes

in Word and Object :

The versatility of classes in thus serving the purposes of widely varied sorts

of abstract objects is best seen in mathematics, but it spills over. . . . Such is the

power of the notion of class to unify our abstract ontology. To surrender this

benefit and face the old abstract objects again in their primeval disorder would be

a wrench, worth making if it were all. But we must remember that the utility

12 For further discussion of this argument see Resnik (1997), and for a thorough

discussion of indispensability arguments for mathematical realism, see Colyvan (2001).
13 See Quine (1963).
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of classes is not limited to explication of the various other sorts of abstract objects.

The power of the notion on other counts . . . keeps it in continual demand in

mathematics and elsewhere as a working notion in its own right. . . .Thus it is that
one resolves to keep classes and somehow excise the paradoxes. (Quine 1960, 267)

Here Quine was writing both as a philosopher and as a logician, and advocating

that we need no abstract objects in all of science but classes. This sounds like first

philosophy, but remember that, on Quine’s view, the work of clarifying and re-

ducing the ontological requirements of philosophy and mathematics is the same

type of work that scientists in other fields do when they clarify and simplify

theories in their home disciplines. The work of Frege, Russell, Quine, and others

in unifying the foundations of mathematics using class theory is as much a piece

of theoretical science as Von Neumann’s reformulation of quantum mechanics

using Hilbert spaces.

Some philosophers and mathematicians have argued that mathematics has no

need for a reduced ontology. One might read such an argument into some of

Hilbert’s writings. On this reading, all that mathematicians need are clearly spec-

ified axioms for the branch of mathematics within which they are working. It is

enough that they be assured that some things satisfy those axioms. Otherwise the

nature of these things is of no concern.14 I am not aware of Quine’s responding

explicitly to such reasoning, but a response is implicit in the passage quoted

above. It would run as follows: Mathematics, even on Hilbert’s’ view of it, needs

some ontology in order to be assured that its axioms are not vacuous. There are

too few concrete physical objects to fill the bill. (Ditto for mental objects—if you

are so rash as to countenance them.) Thus mathematics requires abstract objects.

These are best provided through a unified ontology of classes.

Quine was aware of other proposals for ontological foundations for mathe-

matics. For example, some mathematicians have urged that category theory is a

much better vehicle for mathematics than set theory, and that it should take over

that role. In Set Theory and Its Logic (1963), Quine does mention that category

theory is useful for dealing with very large collections. But he does not defend sets

and classes against the attacks from advocates of category theory in that book, and

I am not aware of any place where he does.

As late as Theories and Things (1981c) Quine runs through his usual brief for an

ontology of physical objects and sets of physical objects. But then he takes the

argument a step further. In the name of simplicity we reduce physical objects to the

space–time regions they occupy, and these in turn to sets of space–time coordi-

nates relative to some fixed coordinate system. But space–time coordinates are

ordered quadruples of real numbers, and these in turn reduce in familiar ways to

sets built up from the empty set, leaving nothing but pure sets (Quine 1981a, 16–18).

14 Hilbert expressed views similar to this in discussing his axiomatic work with Frege.

See, for example, Resnik (1980).
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Quine’s discussion then turns from this reduced ontology to other ontological

candidates generated by reinterpreting our theory of the world while preserving

its observational consequences. Here ‘‘we . . .merely change or seem to change

our objects without disturbing either the structure or the empirical support of a

scientific theory in the slightest’’ (Quine 1981a, 19). To do this, it suffices that we

be able to specify a one-one function—Quine calls it a ‘‘proxy function’’—which

maps each object in the original ontology to an object in the new ontology. Then,

using a well-known technique from formal logic, we can reinterpret each predi-

cate of our theory so that it is true of something in the new ontology if and only if

it was true (as originally interpreted) of this things inverse under the proxy

function.

The apparent change is twofold and sweeping. The original objects have been

supplanted and the general terms reinterpreted. There has been a revision of

ontology on the one hand and of ideology, so to say, on the other; they go

together. Yet verbal behavior proceeds undisturbed, warranted by the same

observations as before and elicited by the same observations. Nothing really has

changed. (Quine 1981a, 19)

Quine concludes from this that reference is inscrutable, that is, there is no

saying absolutely whether our words refer to this or that, but what they refer to

relative to a fixed interpretation. As we move from one ontology to another, our

words change their reference, too; yet we have arranged for the truth-values of our

sentences—the facts, so to speak—to stay the same. There is no fact of the matter

concerning the references of our words—at least in the sense that we can vary

their references at will while leaving the facts unvaried. Besides calling this the

inscrutability of reference, Quine refers to it as ontological relativity: there is no

fact as to what the ontology of a theory is absolutely, but only relative to a means

of interpreting it in a language we take at face value (Quine 1981a, 19–20; see also

Quine 1969a, 50–54 and 1990, 30–34).

Notice how nicely this fits with Quine’s holism. According to holism, it is

only relative to a local conception of evidence that we can say that a particular

experience verifies or falsifies a particular sentence of some theory. Otherwise,

experience bears upon the theory as a whole. Similarly, it is only relative to our

parochial ontology and interpretation of our language that we can say that a

particular word picks out a particular object of our experience. But doesn’t

something (e.g., our behavior or the causal relations between our words and the

world) fix the references of our words? No. Just as there are many ways to

reconcile a theory with a recalcitrant experience, so there many candidate refer-

ences for our words, and no way to single out one. After applying a proxy

function, ‘‘verbal behavior proceeds undisturbed, warranted by the same obser-

vations as before and elicited by the same observations. Nothing really has

changed’’ (Quine 1981a, 19).
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Of course, if we take our home language at face value, then we can simply single

out an intended interpretation, using our own words to do so. Thus we simply

state: the intended model of the Peano Axioms is the natural number sequence. So

long as we don’t question the reference of ‘‘the natural number sequence,’’ we have

no trouble distinguishing the standard model from, say, the sequence of even

natural numbers or in ruling out an interpretation that construes the successor func-

tion, s(x), as xþ 2. But once we question the references of our own words, nothing

precludes the phrase ‘‘the natural number sequence’’ from referring to the even

number sequence, the finite Von Neumann ordinals, or any progression.

These considerations led Quine to put an emphasis on the logical structure of

a theory, since this is what remains invariant under applications of proxy func-

tions. As Quine put it, ‘‘structure is what matters to a theory, and not the choice

of its objects.’’ The objects ‘‘serve merely as indices along the way, and we may

permute or supplant them as we please as long as sentence-to-sentence structure

is preserved’’ (Quine 1981a, 20; see also Quine 1990, 31).

Yet after presenting these ideas Quine was moved to reaffirm his realism with

respect to ordinary bodies and the theoretical entities of science and mathematics.

As a naturalist, he is committed to the ontological commitments of current

science. As to his previous reflections that seem to belittle objects, Quine points

out that these belong not to ontology but to ‘‘the methodology of ontology and

thus to epistemology.’’ The considerations showed that we could turn our backs

upon external things and classes and ‘‘ride the proxy functions to something

strange and different without doing violence to any evidence. But all ascription of

reality must come rather from within one’s theory of the world; it is incoherent

otherwise’’ (Quine 1981a, 21).15
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c h a p t e r 13

THREE FORMS OF

NATURALISM

penelope maddy

Many philosophers—from Hume1 to the pre-Fregean German materialists,2 from

Reichenbach to Arthur Fine3—have been classified as ‘‘naturalists,’’ in some sense

or other of that elastic term, but the version most influential in contemporary

philosophy of logic and mathematics undoubtedly comes to us from Quine. For

him, naturalism is characterized as ‘‘the recognition that it is within science itself,

and not in some prior philosophy, that reality is to be identified and described’’

(1981a, p. 21). Agreeing wholeheartedly with this sentiment and the spirit behind

it, some post-Quinean naturalists, including John Burgess4 and myself, occa-

sionally find ourselves uncomfortably at odds with particular doctrines Quine

My thanks to John Burgess for all he has taught me over the years, as well as his

thoughts on earlier drafts of this chapter. I am also grateful to Patricia Marino for helpful

comments and discussions.

1 Mounce (1999) and Stroud (1977) seem to attribute different forms of ‘‘naturalism’’

to Hume.
2 See Sluga (1980), pp. 17–34. As Sluga notes (1980, p. 178), Stroud (1977, p. 222) sees

these ‘‘scientific materialists,’’ rather than the logical positivists, as the true descendants of

Hume.
3 I discuss these last two versions of ‘‘naturalism’’ in (2001a).
4 As the central texts of Burgess’s naturalism, I’ll be using Burgess (1983, 1990, 1998)

and Burgess and Rosen (1997). With apologies to Professor Rosen for downplaying his

contributions, I will treat the ‘‘naturalism’’ of the co-authored work as an elaboration of

the position in Burgess’s earlier papers.
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develops in his pursuit of philosophy naturalized, doctrines that seem to us less

than completely true to his admirable naturalistic principles. Yet Burgess and I

sometimes disagree on just which doctrines those are and on how to go about

correcting the situation!

My plan here is to sketch the outlines of the Quinean point of departure, then

to describe how Burgess and I differ from this, and from each other, especially on

logic and mathematics. Though my discussion will touch on the work of only

these three among the many recent ‘‘naturalists,’’ the moral of the story must

be that ‘‘naturalism,’’ even restricted to its Quinean and post-Quinean incarna-

tions, is a more complex position, with more subtle variants, than is sometimes

supposed.5

I. Quinean roots

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

When Quine describes his naturalism as the ‘‘abandonment of the goal of a first

philosophy’’ (1975, p. 72), he alludes to Descartes, who viewed his Meditations on

First Philosophy as the only hope for ‘‘establish[ing] anything at all in the sciences

that [is] stable and likely to last’’ (1641, p. 12). His approach, of course, was to

doubt everything, including all of science and common sense, in order to uncover

prescientific, first philosophical certainties that would then underpin our knowl-

edge.6 Few would suggest, at this late date, that Descartes succeeded in this, but

Quine goes further, rejecting the project itself:

I am of that large minority or small majority who repudiate the Cartesian dream

of a foundation for scientific certainty firmer than scientific method itself.

(Quine 1990, p. 19)

The simple idea is that no extrascientific method of justification could be more

convincing than the methods of science, the best means we have.

The Quinean naturalist, then, ‘‘begins his reasoning within the inherited

world theory as a going concern’’ (Quine 1975, p. 72). Alongside the familiar pur-

suits of physics, botany, biology, and astronomy, the naturalist asks how it is that

human beings, as described by physiology, psychology, linguistics, and the rest,

come to reliable knowledge of the world, as described by physics, chemistry,

5 Obviously, I won’t do justice to the details and subtleties of the three positions in

this chapter. The interested reader is urged to consult the references for more careful and

nuanced discussions.
6 Broughton (2002) gives a fascinating and wonderfully readable account of how

Descartes took his first philosophical method to work.

438 oxford handbook of philosophy of math and logic



geology, and so on.7 This is the task of epistemology naturalized, ‘‘the question

how we human animals can have managed to arrive at science’’ (Quine 1975, p. 72).

Ontology is also naturalized:

Our ontology is determined once we have fixed upon the over-all conceptual

scheme which is to accommodate science in the broadest sense . . . the con-

siderations which determine a reasonable construction of any part of that con-

ceptual scheme, for example, the biological or the physical part, are not different

in kind from the considerations which determine a reasonable construction of

the whole. (Quine 1948, pp. 16–17)
Ontological questions . . . are on a par with questions of natural science. (Quine

1951, p. 45)

Insofar as traditional philosophical questions survive in the naturalistic context,

they are undertaken ‘‘from the point of view of our own science, which is the only

point of view I can offer’’ (Quine 1981c, p. 181).

One portion of this naturalistic undertaking will be a scientific study of science

itself. Obviously, this intrascientific inquiry can deliver no higher degree of cer-

tainty than that of science. As Quine remarks, ‘‘Repudiation of the Cartesian

dream is no minor deviation’’ (1990, p. 19). ‘‘Unlike the old epistemologists, we

[naturalists] seek no firmer basis for science than science itself ’’ (Quine 1995, p. 16).

The naturalist

sees natural science as an inquiry into reality, fallible and corrigible but not

answerable to any supra-scientific tribunal, and not in need of any justification

beyond observation and the hypothetico-deductive method. (Quine 1975, 72)

Science, on this picture, is open to neither criticism nor support from the outside.

But this leaves ample room for both vigorous criticism and rigorous sup-

port of particular scientific methods: ‘‘A normative domain within epistemol-

ogy survives the conversion to naturalism, contrary to widespread belief . . .’’

(Quine 1995, p. 49).8 What’s changed is that the normative scrutiny comes not

from an extrascientific perspective, but from within science: ‘‘Our speculations

about the world remain subject to norms and caveats, but these issue from science

itself as we acquire it’’ (Quine 1981c, p. 181). Here Quine returns to a favorite

image:

Neurath has likened science to a boat which, if we are to rebuild it, we must

rebuild plank by plank while staying afloat in it. The philosopher and the

scientist are in the same boat. (Quine 1960, p. 3)

7 I depart here slightly from Quine (1969), where epistemology naturalized is said to

take place inside psychology, but he gives more inclusive characterizations later (see II.1
below), so I take this as a friendly amendment.

8 Cf.: ‘‘They are wrong in protesting that the normative element, so characteristic of

epistemology, goes by the board’’ (Quine 1990, p. 19).
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He [the naturalist] tries to improve, clarify and understand the system [science]

from within. He is the busy sailor adrift on Neurath’s boat. (Quine 1975, p. 72)

This process is familiar: norms of confirmation and theory construction often arise

in scientific practice, from simple canons of observation through elaborate

guidelines for experimental design to highly developed maxims like mechanism.9

As science progresses, these are put to the test, sometimes successfully and sometime

not, and in this way their claim to a role in shaping future science is correspond-

ingly strengthened or undermined. As Quine remarks, ‘‘We were once more chary

of action at a distance than we have been since Sir Isaac Newton’’ (1981c, p. 181).

When Quine begins his naturalistic scientific study of science, he is struck by a

simple but important observation of Duhem:

The physicist can never subject an isolated hypothesis to experimental test,

but only a whole group of hypotheses; when the experiment is in disagreement

with his predictions, what he learns is that at least one of the hypotheses con-

stituting this group is unacceptable and ought to be modified; but the experiment

does not designate which one should be changed. (Duhem 1906, p. 187)

This phenomenon undermines the picture of a single scientific claim enjoying

‘‘empirical content’’ by itself, and leads Quine to holism and his famous ‘‘web of

belief ’’:

Our statements about the external world face the tribunal of sense experience not

individually but only as a corporate body. . . .The totality of our so-called

knowledge or beliefs, from the most casual matters of geography and history to

the profoundest laws of atomic physics . . . is a man-made fabric which impinges

on experience only along the edges. . . . (Quine 1951, pp. 41–42)

Somewhat later, Quine tempers this holism to something more ‘‘moderate’’:

It is an uninteresting legalism . . . to think of our scientific system of the world

as involved en bloc in every prediction. More modest chunks suffice . . .
(Quine 1975, p. 71)

But the moral—that particular scientific theories are tested and confirmed as

wholes—remains intact.

Faced with a failed prediction, then, Quine notes that, strictly speaking:

Any statement can be held true come what may, if we make drastic enough

adjustments elsewhere in the system . . . . Conversely, by the same token, no

statement is immune to revision. (Quine 1951, p. 43)

9 I discuss the rise and fall of mechanism in (1997, pp. 111–116). This normative

element is also present, for example, when a physiological, psychological theory of per-

ception indicates why perceptual beliefs are largely reliable, and therefore reasonable,

under certain conditions and largely unreliable, and therefore unreasonable, under others.

440 oxford handbook of philosophy of math and logic



Practically speaking, we are guided by the ‘‘maxim of minimummutilation’’ (Quine

1990, p. 14), ‘‘our natural tendency to disturb the total system as little as possible’’

(Quine 1951, p. 44), so we quite properly prefer to alter simple statements about

observable physical objects—deciding that the swami only seems to levitate—rather

than highly general laws (e.g., the law of gravity) if this is at all possible. In the

image of the web, altering a statement closer to the experiential edges causes less

widespread disturbance than revising a centrally located generality.

Granting that confirmation accrues holistically to scientific theories, on what

sort of evidence is this confirmation based? On what grounds, for example, do we

adopt atomic theory? Quine addresses this question as he continues his pursuit of

a ‘‘scientific understanding of the scientific enterprise’’ (1955, p. 253).

The benefits . . . credited to the molecular doctrine may be divided into five. One

is simplicity. . . .Another is familiarity of principle. . . .A third is scope. . . .A
fourth is fecundity. . . .The fifth goes without saying: such testable consequences

of the theory as have been tested have turned out well, aside from such sparse

exceptions as may in good conscience be chalked up to unexplained inter-

ferences. (Quine 1955, p. 247)

In another place ((1970), ch. V), Quine and Ullian give a slightly different list of

theoretical virtues—conservatism, generality, simplicity, refutability, modesty,

plus conformity with observation—and elsewhere (1990, p. 95), Quine lists econ-

omy and naturalness as examples, but the general flavor is the same throughout.

Finally, as Quine notes, the various virtues can conflict; they must be balanced off

against one another in particular cases.

Quine acknowledges that such a defense of atomic theory is indirect, and he

considers the possibility that

the benefits conferred by the molecular doctrine give the physicist good reason to

prize it, but afford no evidence of its truth. . . .Might the molecular doctrine

not be ever so useful in organizing and extending our knowledge of the behavior

of observable things, and yet be factually false? (Quine 1955, p. 248)

Quine begins his response by pushing this skeptical line of thought even further,

calling into question the tendency to ‘‘belittle molecules . . . leaving common-sense

bodies supreme’’:

What are given in sensation are variformed and varicolored visual patches,

varitextured and varitemperatured tactual feels, and an assortment of tones,

tastes, smells and other odds and ends; desks [and other common-sense bodies]

are no more to be found among these data than molecules. (Quine 1955, p. 250)

This line of thought tempts us to conclude that

In whatever sense the molecules in my desk are unreal and a figment of the

imagination of the scientist, in that sense the desk itself is unreal and a figment of

the imagination of the race. (Quine 1955, p. 250)
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The upshot would be that only sense data are real, but this conclusion

is a perverse one, for it ascribes full reality only to a domain of objects for which

there is no autonomous system of discourse at all. . . .Not only is the conclusion
bizarre; it vitiates the very considerations that lead to it. (Quine 1955, pp. 254, 251)

We can hardly see ourselves as positing objects to explain our pure sense data

when those sense data can’t even be described without reference to objects.

All this, Quine counts as a reductio: ‘‘Something went wrong with our stan-

dard of reality’’ (1955, p. 251). To correct the situation, he urges that we turn this

tendency of thought on its head:

We became doubtful of the reality of molecules because the physicist’s statement

that there are molecules took on the aspect of a mere technical convenience in

smoothing the laws of physics. Next we noted that common-sense bodies are

epistemically much on a par with the molecules, and inferred the unreality of

common-sense objects themselves. (Quine 1955, p. 251)

But surely ‘‘the familiar objects around us’’ are real if anything is; ‘‘it smacks of a

contradiction in terms to conclude otherwise.’’ So,

Having noted that man has no evidence for the existence of bodies beyond the

fact that their assumption helps him organize experience, we should have

done well, instead of disclaiming the evidence for the existence of bodies to

conclude: such, then, at bottom, is what evidence is, both for ordinary bodies

and for molecules. (Quine 1955, p. 251)

This, then, is Quine’s conclusion: the enjoyment of the theoretical virtues is, at

bottom, what supports all our knowledge of the world.

With this quick summary of Quine’s views on science and the scientific study

of science as backdrop, we can turn to his naturalist’s position on logic and

mathematics. He sees our knowledge of both as part of our web of belief, part of

our best scientific theorizing about the world, confirmed with the rest by coop-

erative enjoyment of the theoretical virtues:

A self-contained theory which we can check with experience includes, in point

of fact, not only its various theoretical hypotheses of so-called natural science

but also such portions of logic and mathematics as it makes use of. (Quine 1954,
p. 121)

Confining our attention to logic for the moment, this means, for example, that

the pursuit of the theoretical virtues might one day lead us to revise one or an-

other of our current laws:

Revision even of the logical law of the excluded middle has been proposed as a

means of simplifying quantum mechanics; and what difference is there in

principle between such a shift and the shift whereby Kepler superseded Ptolemy,

or Einstein Newton, or Darwin Aristotle? (Quine 1951, p. 43)
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The great weight of the maxim of minimum mutilation would stand against such

a move, and Quine remarks, skeptically, that ‘‘the price is perhaps not quite

prohibitive, but the returns had better be good’’ (1970, p. 86; 1986, p. 86).10

Readers familiar with this classical Quinean position on the revisability of

logic are sometimes puzzled by later remarks to the effect that a deviant logician

cannot disagree with the classical logician because his embrace of different logical

laws shows that he actually means something different by the logical connectives.

As Quine puts it: ‘‘Here, evidently, is the deviant logician’s predicament: when he

tries to deny the doctrine he only changes the subject’’ (1970, p. 81; 1986, p. 81).

This is less jarring than it might seem, given that a change to new connectives can

apparently be motivated by the same scientific reasons that were first imagined as

motivating a change of logical laws:

By the reasoning of a couple of pages back, [the deviant logician] changes the

subject. This is not to say that he is wrong in doing so. . . . he may have his

reasons. (Quine 1970, p.83; 1986, p. 83)

It is undoubtedly odd to hear Quine distinguishing change of meaning from

change of theory,11 but the central thesis of the revisability of logic on empirical

grounds remains untouched.

However, a real departure on the revisability of logic can be found in a late

discussion of the holism. Here Quine returns to the scientist facing a falsified

prediction:

We have before us some set S of purported truths that was found jointly to imply

the false [prediction]. . . .Now some one or more of the sentences in S are going

to have to be rescinded. We exempt some members of S from this threat by

determining that the fateful implication still holds without their help. Any purely

logical truth is thus exempted. . . . (Quine 1990, p. 14)

This qualification of the revisability doctrine to rule out revision of logic is

perhaps not unwelcome: one common objection to the original Quinean web has

been that some laws of logic are needed for the simple manipulations of web

maintenance12 (the law of noncontradiction, for example, is what tells us we have

10 In his (1981b), Quine discusses the costs of retaining the law of the excluded middle,

but he reports, ‘‘My inclination is to adhere to it for the simplicity of theory it affords’’

(p. 32). Other proposed deviations from classical logic meet with even less enthusiasm.
11 Cf. Quine (1951, pp. 36–37): ‘‘It is obvious that truth in general depends on both

language and extra-linguistic fact. . . .Thus . . . it . . . seems reasonable that in some state-

ments the factual component should be null; and these are the analytic statements. But, for

all its a priori reasonableness, a boundary between analytic and synthetic statements

simply has not been drawn. That there is such a distinction to be drawn at all is an

unempirical dogma of empiricists, a metaphysical article of faith.’’
12 For example, see Wright (1986) or Shapiro (2000).
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to change something when we reach a falsified prediction13), so it is hard to see

how these laws could be revised without crippling the scientific enterprise. But we

are left with no replacement for the holistic justification of the assumption that

our logic (with our meanings), as opposed to some deviant logic (with deviant

meanings), is more suitable for our scientific theorizing about the world.

Finally, mathematics. First, we observe that our scientists typically make use

of mathematics in their theorizing. This might be a mere manner of speaking—

like saying ‘‘patience is a virtue’’ to mean that a patient person is to that extent

virtuous—but strenuous efforts to reconstrue science in a mathematics-free

idiom, from Quine and Goodman to Field, have all failed.14 Second, as natural-

ized metaphysicians, we take science to be our best guide to what there is and how

it operates. Third, as holists, we take a scientific theory to be confirmed as a

whole, the mathematical along with the physical hypotheses.15 To conclude, we

apply Quine’s criterion of ontological commitment (Quine 1948), which takes

science to establish the existence of precisely those things that appear in its ex-

istential claims. Thus we arrive at Quine’s mathematical realism by means of his

‘‘indispensability argument.’’ Notice that the evidence for mathematical objects is

the same as for molecules and for common-sense objects—participation in a

theory with the theoretical virtues—and recall that ‘‘such . . . at bottom . . . is what

evidence is’’ (Quine 1955, p. 251).

This famous argument only supports the existence of those mathematical

entities that appear in our best scientific theory. But there is more to mathematics

than this, as Quine recognizes:

A word finally about the higher reaches of set theory itself and kindred

domains where there is no thought or hope of applying in natural science. When

13 Perhaps Quine has this case in mind when he writes: ‘‘On learning ‘not’ and ‘and,’

the child already internalizes a bit of logic; for to affirm a compound of the form ‘p and

not p’ is just to have mislearned one or both particles’’ (1995, p. 23). But, of course, there
are those who defend dialetheism (see Priest and Tanaka 2002).

14 See Goodman and Quine (1947), Field (1980, 1989). This claim remains debatable,

of course.
15 In the late discussion of holism that ‘‘exempts’’ logic, mathematics seems to retain

its original status: the maxim of minimum mutilation ‘‘constrains us . . . to safeguard any

purely mathematical truth; for mathematics infiltrates all branches of our system of the

world, and its disruption would reverberate intolerably. . . . Simplicity of the resulting

theory is another guiding consideration, however, and if the scientist sees his way to a big

gain in simplicity he is even prepared to rock the boat very considerably for the sake of it’’

(Quine 1990, p. 15). And in (1995), he stresses ‘‘the difference between logic, narrowly

construed, and the rest of mathematics. . . .However, I am inclined to lighten somewhat

the emphatic contrast usually drawn between mathematics and natural science. I already

equated the roles of mathematical laws and laws of nature in implying [empirical pre-

dictions]’’ (pp. 52–53).
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I likened mathematical truths to empirical ones . . . I was disregarding these

mathematical flights. . . . how should we view them? (Quine 1995, p. 56)

At one point, they’re dismissed as meaningless:

So much of mathematics as is wanted for use in empirical science is for me on a

par with the rest of science. Transfinite ramifications are on the same footing

insofar as they come of a simplificatory rounding out, but anything further is on

a par rather with uninterpreted systems. (Quine 1984, p. 788)

Later on, Quine grudgingly relents:

What of the higher reaches of set theory? We see them as meaningful because

they are couched in the same grammar and vocabulary that generate the applied

parts of mathematics. We are just sparing ourselves the unnatural

gerrymandering of grammar that would be needed to exclude them.

(Quine 1990, p. 94)

Having allowed them meaning, he also allows truth-value, but given their com-

plete isolation from the data of experience, no evidence is available either way.

In the absence of holistic confirmation or disconfirmation from experience,

Quine proposes we proceed simply by applying the remaining theoretical virtues.

In particular, he suggests, simplicity or economy supports Gödel’s axiom of

constructibility, V¼ L, and opposes large cardinal axioms. This choice ‘‘inacti-

vates the more gratuitous flights of higher set theory’’ (Quine 1990, p. 95), Quine

remarks with approval. He insists this approach is ‘‘no threat to the starry-eyed set

theorist for whom the sky is the limit,’’ because the set theorist’s statements are

still meaningful and his theory of large cardinals ‘‘still makes proof-theoretic

sense’’ (Quine 1995, p. 56). But this concession can’t mask the fact that Quine’s

preference for V¼ L contradicts the near-unanimous opinion of practicing set

theorists.

II. Two Post-Quineans

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Given this sketch of Quine’s naturalism and its consequences, as he sees them, for

logic and mathematics, let’s turn to the views of our two post-Quinean nat-

uralists, to illuminate both their departures from Quine himself and their dis-

agreements with each other. To bring some order to this three-ringed circus, I’ll

break down this exercise in compare-and-contrast under a series of headings.

Let’s begin by considering the ‘‘science’’ in which ‘‘reality is to be identified and

described.’’
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II.1. Science

Quine plainly acknowledges that ‘‘I use ‘science’ broadly,’’ including not only the

‘‘hard sciences’’ but also ‘‘softer sciences, from psychology and economics through

sociology to history’’ (1995, p. 49). All these presumably display the markers of

‘‘observation and the hypothetico-deductive method’’ (1975, p. 72) and some

attention to the theoretical virtues. And, conversely, any undertaking that shares

these markers is likewise science, regardless of whether or not it falls squarely

within some established branch. For Quine, the scientific study of science, a part

of naturalized epistemology, is of this sort:

The inquiry proceeds in disregard of disciplinary boundaries but with respect for

the disciplines themselves and appetite for their input. (Quine 1995, p. 16)

We theorize about science, using the results and methods of science itself.

Burgess’s ‘‘science’’ seems in some ways narrower than Quine’s; for example,

he speaks of the ‘‘scientific community . . .whether understood narrowly, as in-

cluding only specialist professionals, or broadly, as including also informed lay-

people’’ (Burgess 1990, p. 5). Even the broad sense here seems limited to the

established scientific disciplines, each a specialty unto itself, which may leave us

wondering where the naturalist’s scientific study of science is to find a home. And

the semblance of a serious departure from Quine is encouraged by Burgess’s

insistence that the naturalist’s project must be purely descriptive: ‘‘It seems that

prescriptive methodology could not be a branch of science, though descriptive

methodology is’’ (Burgess 1990, p. 6).16

In tone, at least, this tune diverges from Quine’s. ‘‘The busy sailor adrift on

Neurath’s boat’’ is out to ‘‘improve, clarify and understand the system from

within,’’ not simply to describe the behaviors of the tribe of credentialed scientists.

For Quine, the naturalistic study of science examines the methods of science with

an eye to understanding how and why they are effective. Shoulder to shoulder

with scientists, the naturalist strives to appreciate the reasons behind their design

of experiments, their evaluation of evidence, and their preference for one theo-

retical elaboration over another; the ideal practicing scientist should be prepared

to explain these things in terms of the general canons of scientific inquiry they

both share. If the naturalist is a member of the scientific community, she should

have the same grounds for scientific ratification and critique of scientific methods

as are available to her fellow scientists. Science is a self-corrective process in which

the naturalist participates.

At least on the score of normativity, I suspect that the semblance of dis-

agreement here is largely illusory. Burgess (writing in collaboration with Gideon

16 See also Burgess and Rosen (1997, pp. 208–209).
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Rosen) clearly holds that the naturalist is a ‘‘citizen of the scientific community’’

(Burgess and Rosen (1997), p. 33).17 And there is this important passage:

science is not a closed guild with rigid criteria of membership. Philosophers

professing naturalism often do contribute to debates in semantical theory or

cognitive studies or other topics in the domain of linguistics or psychology, even

though they are not officially affiliated with a university department in either of

those fields. In principle nothing would bar such philosophers from participating

in discussions on topics in the domain of chemistry or geology, though in practice

they seldom do. The naturalists’ commitment is at most to the comparatively

modest proposition that when science speaks with a firm and unified voice, the

philosopher is either obliged to accept its conclusions or to offer what are recog-

nizably scientific reasons for resisting them. (Burgess and Rosen 1997, p. 65; added)

This leaves room for Quine’s naturalistic justification and critique of scientific

methods, for normative, prescriptive stands, since his ‘‘busy sailor’’ was never

tempted to offer anything other than ‘‘recognizably scientific’’ grounds. Thus, it

seems that Burgess’s insistence that the naturalist’s task is purely descriptive

doesn’t contradict Quine’s insistence that normativity survives the move to nat-

uralism because Quine is endorsing evaluations internal to science and Burgess is

rejecting evaluations external to science.

But perhaps one more subtle difference remains. In Burgess’s phrasing, the

philosopher ‘‘should become a citizen of the scientific community . . . should

become naturalized’’ (Burgess 1990, p. 5). In contrast, Quine’s ‘‘busy sailor’’ would

seem to be a native, not someone in need of conversion. Perhaps this is merely

stylistic, but for my part, I much prefer the latter formulation. My naturalist

‘‘begins his reasoning within the inherited world theory as a going concern’’

(Quine 1975, p. 72). Such a naturalist, asked why she believes in, say, atoms, will

react as an ordinary scientist, citing the usual scientific evidence (more on this

below). Another sort of naturalist, the sort who started as a first philosopher and

subsequently became a naturalized citizen of science, might be tempted to reply to

the same question by citing the fact that her fellow scientists so believe and that

she now believes as her fellow citizens do (i.e., ‘‘science says there are atoms and

I, the naturalist, believe the utterances of science’’). I have no reason to think that

the Quinean or Burgessite naturalist would give the second answer, but my

naturalist would certainly give the first.18

Where our three naturalists’ views of ‘‘science’’ clearly diverge is on the status

of mathematics. As we’ve seen, Quine includes mathematics as scientific, but only

insofar as it takes part in empirical science, plus a bit more for ‘‘simplificatory

roundings out’’ and a bit more again to avoid ‘‘unnatural gerrymandering of

17 Burgess and Rosen are speaking of Quine here, but they voice no dissent of their

own. See also Burgess (1990, p. 5).
18 See Maddy (2001a) or (2002), I.
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grammar.’’ But evidence, for Quine, is always empirical evidence; proper methods

are always those of natural science. Even in the grudgingly admitted higher

reaches of set theory, it is the familiar theoretical virtues common to empirical

theories that carry the day.

My naturalist sees things differently.19 She begins, as Quine’s does, within

empirical science, and eventually turns, as Quine’s does, to the scientific study of

that science. She is struck by two phenomena: first, most of her best theories

involve at least some mathematics, and many of her most prized and effective

theories can only be stated in highly mathematical language; second, mathematics,

as a practice, uses methods different from those she’s turned up in her study of

empirical science. She could, like the Quinean, ignore those distinctive methods

and hold mathematics to the same standards as natural science, but this seems to

her misguided. The methods responsible for the existence of the mathematics she

now sees before her are distinctively mathematical methods; she feels her re-

sponsibility is to examine, understand, and evaluate those methods on their own

terms; to investigate how the resulting mathematics does (and doesn’t) work in its

empirical applications; and to understand how and why it is that a body of

statements generated in this way can (and can’t) be applied as they are.

Burgess (with Rosen) goes further in his disagreement with Quine, sharply

criticizing any naturalism according to which

the mathematical sciences—so often considered by non-philosophers the very

model of a progressive and brilliantly successful cognitive endeavor—must some-

how be expelled from the circle of ‘‘sciences.’’ (Burgess and Rosen 1997, p. 211)

To do this is to ‘‘mak[e] invidious distinctions . . .marginaliz[e] some sciences

(the mathematical) and privileg[e] others (the empirical)’’ (Burgess and Rosen

1997, p. 211). Here it must be admitted that both Quine and I are guilty of so

privileging natural science and of giving special attention to mathematics only

because of its role in science.

But I do not follow Quine in the final move decried by Burgess (with Rosen),

the one taken by those who ‘‘simply discard whatever of pure mathematics has not

yet found application in the empirical sciences’’ (Burgess and Rosen 1997, p. 211).

My naturalist, unlike Quine’s, does not hold that those parts of mathematics that

have been used in applications should be treated differently from the rest. She notes

that branches of mathematics once thought to be far removed from applications

have gone on to enjoy central roles in science20 and, perhaps more important, that

the methods that have led to the impressive practice she now observes, the practice

so liberally applied in our current science, are the actual methods of mathematics,

not the methods of natural science (as the Quinean naturalist would have it) nor

19 See Maddy (1997, pp. 183–184).
20 See Maddy (2001b).
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some artificially gerrymandered subset of mathematical methods (as exclusive

attention to the methods of applied mathematics, as distinct from pure mathe-

matics, would require). She concludes that the entire practice of mathematics

should be taken seriously, a practice including both applied and unapplied por-

tions of contemporary pure mathematics, intricately intertwined.21

One more question arises for naturalists like Burgess and myself who venture

beyond Quinean naturalism. Addressed to my version of naturalism, it takes this

form: If the naturalist, engaged in her scientific study of science, discovers that

one practice of human beings (namely, mathematics) is carried out using methods

different from those of her natural science, why should she view this mathematical

practice as different in kind from other practices with methods of their own, like

astrology or theology? Addressed to Burgess, this becomes: Why should mathe-

matics, but not astrology or theology, figure in the list of sciences?

My answer to this question, suggested above, has been that mathematics is used

in science, so the naturalist’s scientific study of science must include an account of

how its methods work and how the theories so generated manage to contribute as

they do to scientific knowledge. Astrology and theology are not used in science—

indeed, in some versions they contradict science—so the naturalist needs only to

approach them sociologically or psychologically.22 Perhaps Burgess intends a sim-

ilar answer to the analogous question for his view, for he writes (with Rosen):

You cannot simply dismiss mathematics as if it were mythology on a par with the

teachings of Mme Blavatsky or Dr. Velikovsky. A geologist interested in earth-

quake prediction or oil prospecting had better steer clear of Blavatsky’s tales

about the sinking of lost continents and Velikovsky’s lore about the deposition of

hydrocarbons by passing comets; but no philosopher will urge that the geologist

should also renounce plate tectonics, on the grounds that it involves mytho-

logical entities like numbers and functions. (Burgess and Rosen 1997, p. 5)

Presumably, Burgess would also join my naturalist in holding that mathematics as

a whole, not just its applied portion, is so-separated from Blavatsky tales and

Velikowsky lore, perhaps for reasons not unlike those my naturalist gave a mo-

ment ago.23

21 It seems to me that the two can’t be separated without serious distortion. Tap-

penden (2001, p. 497) quite reasonably proposes that this claim be tested by a detailed

study of the actual interactions between the various branches of mathematics.
22 See Maddy (1997, pp. 203–205). Tappenden (2001, pp. 496–497) gives a fair outline

of the debate on this score between my naturalist and her critics (in particular, Hale,

Dieterle, Rosen, and Tennant; see Tappenden for references).
23 Burgess rightly emphasizes that the ‘‘scientific’’ uses of mathematics include those

of common sense and everyday belief, as in ‘‘stock indices, precipitation probabilities and

batting averages’’ (personal communication, quoted with permission). See Burgess (1983,
p. 94) on the slippery slope.
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In sum, then, ‘‘science’’ for Quine and for me is natural science, while for

Burgess it is a variety of natural and mathematical sciences,24 but Quine and I

differ on the status mathematics earns for itself in the course of our scientific

study of natural science. I’ll examine the differing results of this study for our

three naturalists in more detail below, but first a brief look at logic.

II.2. Logic

The status of logic is not often the focus of Burgess’s discussions, but passing

comments (with Rosen) suggest that he would adopt something like the second

Quinean position sketched above: ‘‘logical and analytic knowledge . . . is ultimately

knowledge of language’’ (Burgess and Rosen 1997, p. 42). It isn’t clear whether he

would then follow the Quine who continues to count logic as empirically revisable

or the Quine who exempts logic from holistic jeopardy (or takes some other

stance entirely). As indicated above, I think both Quinean moves have their

downsides.

My own rather speculative suggestion (see Maddy 2002) has been that humans

are so constructed as to conceptualize the world in terms of some simple funda-

mental categories (e.g., as comprised of individual objects standing in various

relations); that the world, to a large extent, is properly described as so structured

(up to the point of quantum mechanics, at least); and that a rudimentary logic

is implicit in these shared structures (e.g., fair versions of ‘‘or,’’ ‘‘and,’’ cruder

counterparts to ‘‘not’’ and ‘‘if/then,’’ and simple quantifications). This much logic,

then, is obvious to us, as part of our most basic conceptual machinery, true of the

world (for the most part), and, furthermore, can be known by us when we verify

that the simple structures required for its support are present in the situations to

which logic is applied. Beyond this rudimentary basis, we add idealizations of

various sorts—bivalence, the truth-functional conditional, assumptions about our

domains of quantification—whose wisdom must be judged as the wisdom of any

scientific idealization is judged: by their appropriateness in particular contexts.

Most cases for deviant logics can be seen largely as arguments that the relevant

idealization is not advisable for one reason or another.

This brief sketch may well be too quick to be decipherable; I commend the

interested reader to the longer sketch (Maddy 2002), and (I hope) to more detailed

future elaborations. For present purposes, one point is worth noting: simple ar-

ithmetical claims like ‘‘2þ 2¼ 4’’ can be expected to correspond to logical truths of

the most rudimentary sort, and thus to robust truths about the world.

24 Burgess writes, ‘‘I believe in the community, but not the unity, of science’’ (per-

sonal communication, quoted with permission).
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II.3. The Scientific Study of Science

We’ve seen that Burgess disagrees with Quine on the scope of ‘‘science’’ and that

I disagree on what the scientific study of science tells us about mathematics, but

both Burgess and I also depart from Quine on fundamental aspects of the sci-

entific analysis of natural scientific method. This in turn impinges on how we

understand the notion of ‘‘best current scientific theory,’’ the central notion of

our naturalized metaphysics and epistemology.

Recall that Quine’s analysis of the method of natural science comes down to

holism and the theoretical virtues. Burgess’s critique focuses on the virtue of econ-

omy, in particular the preference for theories that posit fewer things. According to

Quine, this virtue implies that if we could do science without mathematical

objects (and without seriously compromising other theoretical virtues), we should

do so, for this would rid our theory of a vast ontology of abstracta, yielding a

more economical, and thus better, scientific theory. Thus it is only the failure of

his attempt to reconstruct science without abstracta that leads Quine to his in-

dispensability argument for the existence of mathematical entities.

In contrast, Burgess doubts that scientific standards actually include a prefer-

ence for theories with smaller ontologies of abstracta.25 Most often, such economy

is ‘‘a matter to which most working scientists attach no importance whatsoever’’

(Burgess 1983, p. 98). In most cases, ‘‘proposed changes in the mathematical ap-

paratus of physics that have received ultimate acceptance have increased its power

and freedom’’ (Burgess 1990, p. 11). On occasions when scientists have hesitated

over adding new mathematical ontology (e.g., the introduction of analytic methods

into geometry or of infinitesimals in the calculus), he argues that ‘‘decrease in rigor

and/or a danger of inconsistency,’’ not the new ontology, was the cause of concern,

and points out that ‘‘rigor and consistency are already usually conceded . . . to be

weighty scientific standards’’ (1990, pp. 11–12). Thus Burgess (with Rosen) proposes

a modification of the list of theoretical virtues to reflect, among other things, a

more limited version of economy (Burgess and Rosen 1997, p. 209).

On the main point here I completely agree: scientists feel free to adopt any

mathematical apparatus that is convenient and effective, without concern for its

abstract ontology.26 But my own discomfort with the Quinean picture goes be-

yond the detail of the theoretical virtues, to the holistic model of confirmation

itself. Based on a look at the historical case of atomic theory, I suggest that the

theory enjoyed the Quinean virtues in abundance by 1860, when its successes in

chemistry were crowned by the computation of stable atomic numbers, and even

more so by 1900, after the rise of kinetic theory in physics. But scientists were

25 See Burgess (1983, 1990), and Burgess and Rosen (1997, pp. 214–219).
26 See Maddy (1997, pp. 154–157).
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not satisfied until the direct detection of atoms by Perrin, verifying the crucial

predictions of Einstein’s 1905 calculations. This, I claim, means that the theoretic

virtues are not enough; that enjoyment thereof is not what evidence is; that our

best scientific theory is not confirmed as a whole; that some of its posits are

properly regarded as fictional until further, more specific testing is possible.27

This anti-holistic point of view makes room for the wider range of things that

scientists want to say—for example (in 1900), that atomic theory is one of our

most highly accepted theories, but we don’t yet know whether or not atoms exist,

or (right now) that general relativity is one of our most highly accepted theories,

but we don’t know for sure if space-time is a continuous manifold.28 The actual

attitudes of practitioners toward their best theories are complex and nuanced, as

when scientists worry over whether or not some aspect of their best theory is or

isn’t an artifact of their mathematical modeling, or when Einstein admits to using

the continuum to formulate general relativity because ‘‘I have been unable to

think of anything organic to take its place’’ ((1949), p. 686). Burgess (with Rosen)

expresses some sympathy for this line of thought: it ‘‘might be that science itself

makes invidious distinctions’’; to show this would require ‘‘presenting studies of

the distinctions and divisions observed within the community of working sci-

entists’’ (Burgess and Rosen 1997, p. 213). This is what I’ve tried to do.

Finally, we post-Quineans owe one more item in our scientific study of

science, namely, an account of mathematical methods. Burgess’s general obser-

vations on this line have already been noted: rigor and consistency are important

mathematical standards; economy of ontology is not. He also clearly regards the

methods of mathematics as distinct from those of the natural sciences:

Among sciences, mathematics is, owing to its distinctive methodology of

deductive proof, a special case (Burgess 1992a, p. 437)

. . .Rigorous proof is clearly distinguishable from systematic observation or

controlled experiment. (Burgess 1992b, p. 10)

Beyond this, however, he sets aside the problem of axiom selection and, it seems,

the related dynamics of concept formation, which have been my focus. Let me

take a quick look at how this goes.

One moral of metaphysics naturalized is that natural science itself tells us a

considerable amount about ontology. For example, medium-sized physical objects

27 See Maddy (1997, pp. 135–143). Oddly enough, Burgess’s naturalist might disagree

with mine about the current status of atoms; he writes (with Rosen): ‘‘The naturalized

epistemologist may largely accept the sceptic’s description according to which our method

of positing a physical system with parts we do not perceive is just the only effective way for

us, with such cognitive capacities as we have, to cope with what we do perceive’’ (Burgess

and Rosen 1997, p. 33; see also p. 212).
28 See Maddy (1997, pp. 143–151).
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exist in space and time, interact with one another causally, are as they are largely

independently of our thought and knowledge of them; unobservable atoms also so

exist and compose these more familiar objects; and so on. As my naturalist begins

her study of the methods, justificatory procedures, and conclusions of pure

mathematics, she might well ask an analogous question: What does mathematics

tells us about its ontology? Some answers come quickly—there are numbers, sets,

spaces, and so on—but very little is forthcoming about the nature of this exis-

tence. Further claims—that mathematical things exist in a non-spatiotemporal,

acausal world; that mathematical things are mental constructions of an idealized

mathematician; that mathematical things exist only as fictions—can be found in

the literature, but a look at their role, especially in resolution of various historical

debates, suggests that they are not integral parts of mathematical method, but

extramathematical philosophizing.29 If this is right, the upshot is that mathe-

matics, in contrast to natural science, tells us nothing about the metaphysical

nature of its objects beyond the bare claim that they exist.

In her analysis of mathematical methods, then, the naturalist should ignore

such extramathematical metaphysical debates and attend to the explicit or implicit

intramathematical reasons being offered for one course of action or another. The

hope is that an understanding of the goals of a particular mathematical undertaking

can be reached, and that alternative methods can then be evaluated in terms of their

effectiveness as means toward those goals.30 In (2001b), I sketch such analyses of the

development of the concepts ‘‘group’’ and ‘‘topological space.’’ In (1997, pp. 206–

232), I argue on such grounds that the set theorist’s rejection of V¼ L is rational,

given the goals of set-theoretic practice. This highlights the contrast between

Quine’s naturalist and mine: the Quinean endorses V¼ L, applying the methods of

natural science, while my naturalist rejects it, applying the methods of the relevant

branch of mathematics, that is, the methods of set theory.

Finally, let me emphasize that a purely internal, methodological study of

mathematics is not the only investigation of the subject that my naturalist can

undertake. Mathematics is a form of human activity, a distinctive linguistic prac-

tice, and as such it can be studied like any other such practice: by linguistics,

psychology, and so on, as well as various natural scientific studies spanning the

standard disciplines. Here the naturalist will face questions about the similarities

and dissimilarities between mathematical and natural scientific language, and

questions about how this practice manages to function so effectively in natural

science. These inquires will raise naturalized versions of traditional philosophical

questions about the ontology and epistemology of mathematics. This naturalized

29 This is a difficult distinction to draw. See Maddy (1997, pp. 185–193).
30 See Maddy (1997, pp. 193–200). Notice that this is the sort of intramathematical

justification and critique that ought to be acceptable to Burgess.
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philosophy of mathematics31 is distinct from the naturalized methodology of

mathematics discussed above but, given that we want a philosophical analysis of

mathematics as it is, our naturalized philosopher must respect the practice; jus-

tification and criticism are internal to the practice, the province of internal meth-

odology, not philosophy, even naturalized philosophy.

II.4. The Indispensability Argument

We can now assess the effects of these post-Quinean departures on the crucial

indispensability argument. On Burgess’s analysis, economy of abstract ontology is

not among the theoretical virtues, so our ‘‘best scientific theory’’ will include

mathematical entities regardless of the success or failure of strenuous nominalistic

efforts to remove them.32 There is still room here for a naturalistic argument to

the existence of mathematical entities via holism and the criterion of ontological

commitment,33 but this is not the line Burgess takes. There are, no doubt, various

more subtle reasons for this, but one straightforward motivation is clear:

A thorough-going naturalist would take the fact that abstracta are customary and

convenient for the mathematical (as well as other) science to be sufficient to

warrant acquiescing in their existence. (Burgess and Rosen 1997, p. 212)

For Burgess (writing with Rosen), mathematics is a science in its own right, and

fully capable of justifying its own existence claims.34 Thus, Burgess embraces an

ontology of mathematical entities, but on grounds quite different from those of

the Quinean naturalist.

Since I share Quine’s starting point in natural science, my own engagement

with his indispensability argument focuses on our disagreement over holism. If

cases like atomic theory show that proper scientific method does not regard the

31 Critics of Maddy (1997) have sometimes complained that the position leaves no

room for philosophy (as opposed to methodology) of mathematics, but naturalized phi-

losophy of mathematics, as understood here, is described and endorsed on pp. 200–205.
32 Burgess (1998) calls this ‘‘unconditional anti-nominalism.’’ Of course, if the

nominalists were to produce math-free scientific theories that improved on our current

ones on other theoretical virtues, these would be preferred, but Burgess argues in some

detail that they have not done this.
33 Burgess (with Rosen) expresses some doubts about Quine’s criterion (Burgess and

Rosen 1997, pp. 225–232), but in the end, he seems happy to conclude that current science

is committed to mathematical entities.
34 He writes, ‘‘Numbers, even if real, aren’t physical, and so the physicist can pass the

buck to the mathematician . . .mathematical existence questions are questions for math-

ematicians and not for . . . empirical scientists’’ (personal communication, quoted with

permission).
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existence of all posits of our best scientific theory as confirmed, then we have to

look more carefully at the status of its mathematical posits in particular. Obviously

much mathematics occurs in explicitly idealized situations, when physical situa-

tions are mathematized in terms of simple geometrical structures, when large finite

collections are treated as infinite, when discrete situations are treated as continuous,

and so on; surely no simple ontological morals should be drawn from these ap-

pearances of mathematics.35 In more fundamental theories, the most convenient

and effective mathematics is used, seemingly without qualm, as Burgess suggests.

But it is also true that the appearance of, say, a continuous manifold in our best

description of space-time does not seem to be regarded as establishing the conti-

nuity of space-time; the microstructure of space-time remains an open question.36

These observations suggest, first, that holism is incorrect, that our best sci-

entific theory is not simultaneously confirmed in all its parts, that at least in cases

like atomic theory, some variety of ‘‘direct detection’’ is required. Recall Quine’s

claim that the theoretical virtues served to establish the existence of atoms and of

medium-sized physical objects—that this is, in the end, what evidence is; applying

this conclusion to mathematical objects yields the indispensability argument. But

if the evidence for atoms is something more direct—and surely medium-sized

physical objects are ‘‘directly detectable’’ if anything is—it follows that the ‘‘ev-

idence’’ for mathematical objects is not the same as for the others. And, second,

when we look more closely at the considerations that actually move scientists to

include the mathematical posits they do, we find the likes of convenience and

effectiveness. Perhaps unsurprisingly, when structures are posited on such a basis,

the success of the overall theory in which they appear is not regarded as con-

firming their existence. On this analysis, the indispensability argument fails be-

cause ordinary scientific standards do not confirm all parts of our best theory, and

because the mathematical posits are not among the posits that are confirmed.

There are passages where Burgess might be taken to agree with this conclusion:37

An ontology of abstracta may be one feature of [our] current theories that

is merely conventional. (Burgess 1983, p. 99)

Our science [is] the way it is in part because the universe is the way it is and in

part because we are the way we are . . . the presence of ‘‘Avogadro’s number’’

in the language of science is not caused by the presence of Avogadro’s number

35 See Maddy (1997, pp. 143–146).
36 We should distinguish between the purely mathematical existence assumptions in-

volved in this application of mathematics—the existence of a continuous manifold—and the

physical structural assumptions that accompany it—continuous space-time. Both seem to be

added for convenience and effectiveness (we know of no other way to represent space-time),

and neither seems to be regarded as confirmed. For more, see Maddy (1997, pp. 154–157).
37 Though, in contrast, the passage quoted in note 27 seems more in sympathy with a

holistic view like that of Quine (1955).
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in the universe. The relation between name and object is thus in one crucial

respect unlike that between mirror image and object in the scene reflected.

(Burgess 1990, p. 13)

And with Rosen:

The naturalized epistemologist may largely accept the nominalist’s description

according to which our method of positing mathematical systems as models

is just the most efficient way for us, with such cognitive capacities as we have,

to cope with physical systems. (Burgess and Rosen 1997, p. 33; see also
pp. 238–244)

If we can see, in the course of our scientific study of science, that certain parts of

our theory are there by convention, that they don’t reflect what’s actually present

in the physical situation, that we posit them merely because we have no better way

of describing things, then it seems reasonable to conclude that these parts of our

theory are not, in fact, confirmed by our scientific methods. But we’ve seen that,

for Burgess, this is beside the point; the ground of mathematical ontology lies in

mathematics, not natural science.

So, in short, Burgess sees the indispensability argument as flawed—it con-

cedes toomuch to the nominalist in requiring that mathematics be indispensable—

and beside the point—because mathematical science by itself gives us grounds for

accepting the existence of mathematical entities. My own position is both more

Quinean, in granting that natural science is the final arbiter of existence, and more

firmly non-Quinean, in its explicit rejection of holism. The upshot, for my natu-

ralist, is that the role of mathematics in natural science does not seem to support

the claim that mathematical things exist.

II.5. Post-Quinean Philosophy of Mathematics

The outlines of Burgess’s naturalism should now be clear, but there remains an

open question for my version: Does pure mathematics provide support for the

existence of mathematical objects? It surely implies that there are numbers, sets,

functions, geometric and topological spaces, real numbers, continuous manifolds,

Hilbert spaces, algebraic structures, complex numbers, and much more. Burgess

would count this as the end of the story: the existence of these items is implied by

one among our best sciences. But for my naturalist, natural science is the final

arbiter of what there is, and it doesn’t seem to support its mathematical ontology,

so my story will have to be more complex.

Granting that mathematics itself offers no ontological guidance beyond the

minimal ‘‘mathematical things exist,’’ naturalized methodology of mathematics is

of no further use; we can only turn to naturalized philosophy of mathematics.

One chapter of this study is the aforementioned conclusion that the confirmation
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of natural scientific theories in which mathematics figures does not confirm its

ontology, that the empirical confirmation does not transfer holistically to themath-

ematical existence claims. But perhaps support will come from other quarters of

this study—for example, from the investigation of the semantics of mathematical

language,38 or from the analysis of human mathematical experience, or of how

pure mathematics comes to be so effective in applications.39

My guess is that, in the end, the explanations and accounts of naturalized

philosophy of mathematics will not involve a literal appeal to the objects of pure

mathematics.40 But even if this is so, it would not settle the case between, say, ‘‘set-

theoretic claims are true, and sets just are the kind of things that are referred to

and known about by set-theoretic methods’’ and ‘‘set-theoretic claims aren’t true

and sets don’t exist, but it’s perfectly rational and proper to say that they are and

do while developing set theory in the pursuit of various mathematical goals.’’ In

fact, I suspect that a decision on these matters will have more to do with the

theory of truth than with the methodological or naturalized philosophical facts

about mathematics or natural science.41

But I leave this for another time, along with a large number of other worthy

naturalistic undertakings: for example, a more complete account of set-theoretic

methods, of the distinctive methods of the various other branches of mathematics,

and of their interrelations;42 a full discussion of how mathematics works in

natural science, from the sorts of detailed analyses given by applied mathemati-

cians (e.g., an explanation of why it’s proper to regard fluids as continuous

substances when we do fluid dynamics), to consideration of general questions

38 As we’ve seen, Burgess admits that there are significant differences between math-

ematical and natural scientific terms: ‘‘the presence of ‘Avogadro’s number’ in the lan-

guage of science is not caused by the presence of Avogadro’s number in the universe’’

(Burgess 1990, p. 13). I wouldn’t have chosen this example—given the suggestion that

claims like 2þ 2¼ 4 correspond to rudimentary and robust logical truths about the

world—but I second the point about most of mathematics. Whether or not this is a fact

about reference will depend on one’s theory of reference (see below).
39 Steiner (1998) draws strong ‘‘anti-naturalistic’’ conclusions from his analysis of

the way mathematics works in application. He takes ‘‘naturalism’’ to be the view that ‘‘the

human race is [not] in some way privileged, central to the scheme of things . . . that the
universe is indifferent to the goals and values of humanity’’ (p. 55). This does seem to

be the view of natural science, and hence of all three naturalisms considered here.
40 That is, any appeal outside the context of some idealized or conventional mathe-

matical modeling.
41 Burgess (with Rosen) follows Quine in holding that the naturalist must embrace a

disquotational theory of truth (Burgess and Rosen 1997, p. 33). I disagree, taking the

decision between disquotational and more robust theories to be an open scientific question

(see Maddy 2001a, III), but I don’t think this disagreement is what’s at issue here.
42 As urged by Tappenden (2001, p. 497).
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about the applicability of mathematics (the ‘‘miracle’’ of applied mathematics); a

broad and careful study of how science can assess the ontological morals of its

own best theories, beginning with a study of how we tell when an aspect of our

best scientific theory is an artifact of the mathematical modeling; and so on. My

more modest aim here has been to illuminate the outlines of three versions of

naturalism, and perhaps to demonstrate that philosophizing naturalistically

involves attention tomatters of considerable subtlety and detail. My hope is that the

reader may be inspired to further investigation of one or another of these, or some

improved descendant thereof !
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c h a p t e r 14

NATURALISM

RECONSIDERED

alan weir

We’re all naturalists now, aren’t we? Well, not quite. It may be said, moreover,

that the term ‘‘naturalism’’ means so many different things to different philos-

ophers that calling someone a naturalist has very little substantive content; but

this would also be an exaggeration. In what follows, I will not spend too much

time on terminological matters; in my view, the phrase has a fairly definite con-

tent, in the context of discussions in the philosophy of mathematics and science

such as this one, and picks out a program which attracts a great deal of support.

I will, though, make one terminological distinction: between methodological

naturalism and ontological naturalism. The methodological naturalist assumes there

is a fairly definite set of rules, maxims, or prescriptions at work in the ‘‘natural’’

sciences, such as physics, chemistry, and molecular biology, this constituting ‘‘sci-

entific method.’’ There is no algorithm which tells one in all cases how to apply this

method; nonetheless, there is a body of workers—the scientific community—who

generally agree on whether the method is applied correctly or not. Whatever the

method is, exactly—such virtues as simplicity, elegance, familiarity, scope, and

fecundity appear in many accounts—it centrally involves an appeal to observation

and experiment. Correct applications of the method, the methodological naturalist

goes on, have enormously increased our knowledge, understanding, and control of

the world around us to an extent which would scarcely be imaginable to generations

living prior to the age of modern science. The methodological naturalist therefore

My thanks to Penelope Maddy and Stewart Shapiro for very helpful comments on

earlier drafts.
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prescribes that one ought to follow scientific method, at a level of sophistication

appropriate to the problem at hand, whenever attempting to find out the truth

about anything and whenever attempting to understand any phenomenon.

The ontological naturalist holds first of all that the ontology of the natural

sciences consists of physical objects and perhaps also physical properties and

relations. Explaining just exactly what these are is a somewhat delicate matter,

even in the case of physical objects. The most obvious account in the latter case is

a Cartesian one: physical objects are extended in space and time; they occupy a

region of space and an interval in time or, in post-Einsteinian terms, occupy a

region of space-time. Even that is not entirely unproblematic, given interpreta-

tions of quantum mechanics in which, it is claimed, fundamental particles lack

definite position. Explicating what it is for a property to be physical is more tricky

still.1 At any rate, let us concede to the ontological naturalist that we have a rough

idea what is meant by a physical ontology. The ontological naturalist’s position is

then straightforward: everything which exists is physical, either a physical object

or, if such entities are countenanced, a physical property or relation.

Further light on the nature of naturalism can be shed by contrasting it with

paradigmatically anti-naturalist positions, in methodology or in ontology. In the

former case, the paradigm of an anti-naturalist is someone who holds a view on

the basis of an appeal to an authority whose credentials are not in turn based on

experiment or observation: the authority of religious leaders and sacred texts is

the standard example, since this does not typically seem to rest on observation or

experiment in the usual sense. A related anti-naturalist method is appeal to in-

ternal ‘‘intuition’’ or some mystical form of revelation or apprehension, distinct

from ordinary sense perception, in order to justify a belief or attitude whose object

is supposed to be an external entity or phenomenon. A classic anti-naturalist

ontological position is that of Cartesian dualism, with its commitment to disem-

bodied souls existing in time but not extended in space, though mysteriously

interacting with physical bodies and in particular human brains.

As noted at the outset, not all contemporary philosophers are naturalists in

one or other of these senses; but it would be fair, I think, to say that a naturalistic

attitude predominates among ‘‘analytic’’ philosophers. This is why philosophy

of mathematics, quite apart from its intrinsic interest, is of such importance in

contemporary philosophy. For, on the face of it, mathematics is an enormous

TrojanHorse sitting firmly in the center of the citadel of naturalism.Modern natural

science is mathematical through and through: it is impossible to do physics, chem-

istry, molecular biology, and so forth without a very thorough and quite extensive

knowledge of modern mathematics (indeed, this is true to an increasing extent of

social sciences such as psychology and economics). Yet, prima facie, mathematics

provides a counterexample both to methodological and to ontological naturalism.

1 Cf. Weir (2003) for some suggestions.
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The central mathematical method of proof from axioms shares one feature with

empirical science, namely, the key role of deduction of conclusions from premises;

indeed, this role is far more central to mathematics than to science. But there is a

crucial difference: where the ultimate premises in science are hypotheses and

conjectures up for testing against experiment, in mathematics they are ‘‘axioms,’’

traditionally held to be known a priori, in some accounts by virtue of a form of

intuitive awareness. The epistemic role of the axioms in mathematics, then, seems

uncomfortably close to that played by the insights of a mystic.

When we turn to ontology, matters are, if anything, worse: mathematical

entities, as traditionally construed, do not even exist in time, never mind space.

Difficult though it may be to see how Cartesian souls can interact with physical

bodies, since they persist and change through time, such interaction does at least

make some sort of sense, certainly on broadly Humean notions of causality. If, by

contrast, mathematical entities are abstract and causally inert, how on earth do we

have any knowledge of them?2 This classic epistemological problem provides both

a ground for ontological naturalism, for denying the existence of abstract entities,

and a severe internal problem, since naturalism seems to presuppose mathe-

matics, which seems in turn to presuppose abstract objects.

In this chapter I intend to look critically at some responses which naturalists

have made to these difficulties. I will not examine each with the same detail, of

course. Since many of the positions which are discussed elsewhere in this volume

are motivated, in part, by a desire to deal with the questions raised above, this

would be superfluous, not to mention impossible. Rather, I will attempt to give

some sort of overview or map of the strategies of response, looking in more detail

only at a select few.

I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First, then, I will look at three responses the methodological naturalist might make.

I start with logicism. It is undeniable that logical inference is part of scientific

method, whatever else is. But mathematics raises the additional problem of our

knowledge of the axioms: the naturalist does not want to base this on some mys-

terious intuition or direct apprehension that the axioms characterize the appro-

priate mathematical domain. If, however, logicism is right and mathematics is just a

branch of logic (plus definitions), then will these problems not simply disappear?

This might seem a very unpromising route for the naturalist. Was not logicism

conclusively refuted both by the paradoxes flowing from Frege’s Axiom V and by

2 A highly influential exposition of this problem is found in Benacerraf (1973).
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Gödel’s incompleteness results? Moreover, there are clear differences between logic

and mathematics; the most a sensible logicist could maintain is that mathematics has

the same status as logic, as a priori, or analytic, or some such. But then the natu-

ralistic logicist faces criticism from Quineans—supporters, in these matters, of the

views of W. V. Quine—for they contend that such notions have been discredited.

The first two problems are not insuperable, according to the ‘‘neologicists’’ or

‘‘neo-Fregeans’’ such as Crispin Wright and Bob Hale, who seek to found mathe-

matics not on the inconsistent Axiom V but on formally similar but consistent

abstraction principles such as ‘‘Hume’s Principle’’ for arithmetic and, for set theory,

weakened forms of Axiom V such as George Boolos’s ‘‘New V.’’ The recent trend

among neologicists has been to treat such abstraction principles as implicit defi-

nitions of the relevant concepts—‘‘number,’’ ‘‘set,’’ and so forth. Even if not all

mathematical truths are derivable (given an effectively decidable notion of theo-

remhood), the logicists’ goals will be achieved if the main branches of contemporary

mathematics, certainly of those areas utilized in modern science, can be founded on

abstraction principles (i.e., if axiomatizations of each branch can be derived).3

As to the Quinean problem, it is worth remarking that the later Quine seems

to step back somewhat from the very extreme empiricism on logic which appears

to be entertained in Quine (1951), ‘‘Two Dogmas of Empiricism.’’ Examples of his

retreat start with §13 of Word and Object (Quine 1960), on translating the con-

nectives. This retreat, in my view, is essential for the coherence of the Quinean

position. The famous quotation ‘‘Any statement can be held true come what may,

if we make drastic enough adjustments elsewhere in the system. . . .Conversely, by

the same token, no statement is immune to revision’’ (Quine 1951, p. 43) is either

trivially true or incoherent, at least if we extend the position from one concerning

the holding of statements to one concerning the adoption of inference rules.4

Certainly anyone who believes in determinacy of meaning for logical particles will

3 The launch pad for contemporary neologicism is Wright (1983). See also Hale (1987).
The most important articles on neologicism by Wright and Hale, jointly and severally, are

to be found in Hale and Wright (2001). For a different, constructivistic strand of neolo-

gicism, see Tennant (1987, 1997). Much work in neologicism is in response to the detailed

criticisms of (and technical elucidations of ) the position to be found in the work of George

Boolos, most of it collected in his (1998, §II). See chapter 6 of this volume.
4 Puzzlingly, for one well acquainted with natural deduction systems, Quine seems

wedded to the misconception of logic as a body of theorems rather than as the study of

inference and the relation of consequence. Even by the stage of The Roots of Reference

(1974), his qualification of radical empiricism in logic focuses on laws such as P! (P_Q)

rather than inference rules such as _I (Quine 1974, p. 78). The abstraction principles of

the neologicist can also be seen as principles of inference rather than as axioms, if we treat

them as pairs of schematic inference rules in which, in the one case, all instances of the left

side of the embedded biconditional are derivable from the other side, and vice versa for

the other form of the rule.
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find it trivial: any rule we accept could be abandoned if the particles involved in it

take new meanings (whether of old particles or not); likewise, mutatis mutandis,

for rules we reject. The nontrivial version of revisability says that any rule is

revisable in a way which does not require us to impute meaning change (of course

someone who rejects determinacy of meaning for logical particles will be com-

mitted to the nontrivial version, since we will never be required to impute meaning

change, there being no meanings to change).

But now the proponent of the nontrivial thesis faces a dilemma. What are the

(syntactic) consequences of theory T ? Any sentence A derivable from T using some

system of rules we could come to accept without changing the meaning of terms

in T and A? But any sentence A is a consequence in this sense, according to the

nontrivial revisability thesis, so every theory ends up having the same useless

content, the set of all sentences of the language. Yet theories are individuated by

their consequences—according to Quine, by their observational or empirical

consequences—so if logical consequence is wholly indiscriminate in this way, the

notion of a theory is, too. Thus critics of the radical Quinean position maintain

that if there are no a priori principles, consequence is trivially undiscerning:

everything entails anything.5 If logic is nontrivially and unrestrictedly revisable,

the connections which determine the web of belief dissolve.6

If not every sentence which could be derived by some rule or other is a conse-

quence of T, what does determine T ’s consequences, for the radical Quinean? The

most obvious response would be to say that T ’s consequences (or its consequences

relativized to today) are all those sentences derivable by rules we accept, or are

disposed to apply today (or perhaps some canonical subset of them). However, those

inferential dispositions and practices could change; we might even be disposed

to change them in systematic ways. Quine’s theory of language, for instance, has a

prominent place for higher-order dispositions to change lower-order ones (e.g., in

the account of observation categoricals). On this horn of the dilemma we debar

sentences derivable by means of the changed rules from counting as consequences of

the theory, from determining the identity of the theory. But this position is just a

traditional ‘‘logical connections are analytic’’ one. Change today’s rules and you are

no longer working with today’s theory. It would be merely an uninteresting ter-

minological maneuver to deny that the rules in question are ‘‘meaning-constitutive;’’

they are not revisable except trivially, and thus are presumably a priori.

The only other option available to a Quinean is a type of ultraholism. We take

the networks which face the tribunal of ‘‘experience’’ to be pairs comprising a logic

5 See, for example, Dummett (1981, pp. 596ff.) and, for a somewhat different argu-

ment along these lines, Wright (1986).
6 Cf. Maddy’s ‘‘one common objection to the original Quinean web has been that

some laws of logic are needed for the simple manipulations of web maintenance’’ (Maddy

1997, ch. 13, §I).
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L and a theory T. The right (or a right) notion of logical consequence is any such

L which in combination with some T or other yields all true (pegged) observational

sentences (or observation categoricals), and in that sense faces the tribunal of

experience successfully. But this ultraholist view makes logical consequence un-

knowable, since we have no idea what the set of all true observation categoricals is;

hence logical consequence becomes potentially divorced from even best inferential

practice.

So Quine was wise to move on this issue of the analyticity of logic. Even so,

this restriction of empiricism on logic does not necessitate a blanket welcome to

all of logic in Quine’s sense—namely, first-order classical predicate calculus with

identity—back into the analytic fold. For the failure of a radical revisability of

logic thesis does not entail that all the logic we uphold must be validated by rules

which are meaning-constitutive or in some sense analytic (forced on us by the

verdict matrices, say). A ‘‘moderate’’ Quinean might argue this is true only of

some very basic rules, such as &E, and _I; other rules or principles—excluded

middle, distributivity principles, various of the structural rules needed to generate

a suitable proof architecture, and so forth—may be nontrivially revisable in the

light of empirical experience, it might be urged. Logic, as usually construed,

divides up into ‘‘analytic’’ and ‘‘synthetic’’ parts, on this view. And similarly, even

if the considerations advanced above against total revisability are accepted, the

Quinean might still claim that mathematics, as well as substantial portions of

logic, is empirical and not a priori.

This point illustrates a serious problem for the neologicist. In order to gen-

erate standard mathematics from her favored abstraction principles—the Peano–

Dedekind axioms from Hume’s Principle, for example—the neologicist needs a

powerful background logic: second-order logic with the full axiom scheme of

comprehension and untrammeled by the restrictions on first-order and second-

order VE and AI found in free logic systems. The anti-naturalist might well argue

that these components of the powerful logic wielded by the neologicist pose the

same epistemological problems as the axiom systems of standard mathematics

which the neologicist is hoping to put on a sound footing by deriving them, in

this potent logic, from abstraction principles.

Moreover, even if it is legitimate for the neologicist to exclude classically in-

consistent abstraction principles such as Axiom V from functioning as analytic or as

implicit definitions, this still leaves too many abstraction principles in play, since

there are indefinitely many consistent but pairwise inconsistent abstraction prin-

ciples. Setting out a non-ad-hoc criterion for winnowing out kosher from non-

kosher principles is no easy task. Whether, then, the neologicist route is a promising

one for the naturalist cannot be decided without further, more detailed debate.7

7 For more, see the contributions on logicism in this volume (chapters 5–7) and

Shapiro and Weir (1999, 2000); Weir (2003b).
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A diametrically opposed strategy for naturalizing mathematics is to be found in

Quine. The anti-naturalist argues that the methodology of mathematics goes

beyond scientific methodology by laying down axioms as a priori starting points,

in contrast with the provisional and contingent hypotheses of empirical science.

But where the naturalistic neologicist attempts to show that it is naturalistically

acceptable to take the axioms as a priori starting points, Quine adopts a radical

empiricism. The axioms of mathematical systems are hypotheses just like the

hypotheses of physics or chemistry, each confirmed or disconfirmed not directly,

but indirectly by dint of contributing to a total theory of the world which directly

confronts experimental and observational data. The difference between empirical

science, on the one hand, and mathematics (and the synthetic parts of logic, if the

considerations of the last section are accepted), on the other, is not a qualitative

one. Mathematics and (synthetic) logic pervade all areas of science, with the result

that alterations to the mathematics or logic have very far-reaching and disrup-

tive effects; consequently we are more loath to make changes there than in a more

localized discipline. But the difference is purely one of degree. Though we are

more likely to revise an inflationary hypothesis in cosmology than the distributive

laws of logic, in principle we may do the latter, too (as quantum logicians, in fact,

have done); neither the cosmological nor the mathematical hypothesis is directly

confirmed or disconfirmed by experiment, both can be confirmed or disconfirmed

indirectly.

Though the Quinean position falls foul of pretty strong intuitions that some,

at least, mathematical truths—Kant’s 7þ 5¼ 12 and so forth—are necessary and

a priori certain, this is a brilliantly bold naturalist response to the problem posed

by mathematics. The main problem I will raise for it comes under the heading of

‘‘ontological naturalism.’’ But a methodological worry can be raised by consid-

ering that old favorite in discussions of positivism, ‘‘The Absolute is lazy.’’

Suppose T is a wonderfully successful total theory of the world. Add to T, ‘‘The

Absolute is lazy’’ (abbreviate it by A) and we still get, at least as far as empirical

adequacy is concerned, a successful total theory. Does this mean that ‘‘The Ab-

solute is lazy’’ is confirmed just as much as the fundamental theorem of calculus

(cf. Bergstrom 1993, p. 333)?

The obvious response is to say that T,A contains some unnecessary fat.

Economy being a scientific virtue, we should hone it down to T. The problem is:

Where does this honing stop? If E is the set of T ’s empirical consequences, why

not treat everything in T minus E as blubber and slim our total theory down to

the lean, mean E, excising theoretical ‘‘fat’’—all of mathematics along with the-

oretical science? If our accepted theory T is recursively enumerable, our language

is countable, and there is an effective way of deciding whether a sentence is
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observational or theoretical, then the set of observational consequences E of T is

also recursively enumerable. Indeed, Craig’s method shows how we can construct

a decidable set ‘‘visibly equivalent,’’ as Quine says, with it. Why not work simply

with the program for enumerating E? To be sure, this will involve some mathe-

matics, but only a weak amount, sufficient arithmetic for proof theory.

Quine’s answer is that we have no realistic chance of getting at E except via

deduction from T, or rather a formulation of T : ‘‘The theory formulation is a

device for remote control and mass coverage’’ (1975, p. 324)—mass coverage of

observation sentences, that is. Furthermore, if E turns out to contain falsehoods,

revision to a more acceptable E 0 will be practically possible only by looking at ways
of amending formulations of T. Quine’s empiricism counsels, then, adopting the

leanest, meanest theory which we can grasp and which is empirically adequate.

True, Quine also admits scientific virtues other than empirical adequacy, scope,

and coverage; he admits, for instance simplicity and conservatism (Quine 1955, p.

247, 1990 p. 95; see Maddy 1997, ch. 13, §I).8 But his empiricist emphasis on

economy and empirical adequacy leads him to jettison parts of mathematics

which seem to play no role in scientific applications—for example, the higher

flights of transfinite set theory. This rejection takes a number of forms. Penelope

Maddy charts the different nuances (ch. 13, §I this volume). Sometimes Quine is

tempted to write off the investigation of large cardinal axioms as a purely logical

enterprise—the investigation of logical connections among essentially meaning-

less sentences (1984, p. 788). At other times (1990, p. 95) he advocates the adoption

of the axiom of constructibility, V¼ L; this ‘‘thins’’ out the bloated hierarchy V of

sets and commits him to the nonexistence of a vast range of sets which he views as

empirically redundant.

However, this vast range of nonconstructible sets form the main topic of

research for contemporary set theorists. They may be reluctant to accept that they

are engaged merely in logic-chopping with empty formulas. Are they to be ac-

cused of delusions of transfinite grandeur which have led them to expend their

energies arguing about nonentities? Must we urge them to get a life and join their

colleagues across the corridor working in analysis or group theory and dealing

with respectable denizens of reality? Quine’s naturalism has led him into a radical

revisionism with respect to pure mathematics, which might seem at odds with his

insistence that there is no first philosophy and with his reluctance to let philos-

ophy decide matters of objective existence and nonexistence.

8 These additional methodological desiderata and others often adduced—elegance,

explanatory power, and so on—pose problems for naturalism independently of any raised

by mathematics. Prima facie, they pick out human-relative virtues of an ‘‘aesthetic’’ na-

ture; naturalists thus have a job explaining why any such species-relative virtue yields a

reliable guide to objective reality. Steiner (1998) makes similar points with respect not to

science in general but to mathematics in particular.
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Maddy, therefore, proposes a variant on Quinean naturalism which recognizes the

autonomy of mathematics. She joins (ch. 13, §I) Quine in that ‘‘large minority or

small majority who repudiate the Cartesian dream of a foundation for scientific

certainty firmer than scientific method itself ’’ (Quine 1990, p. 19).9 Maddy adds:

‘‘The simple idea is that no extra-scientific method of justification could be more

convincing than the methods of science, the best means we have.’’

However Maddy then goes on to urge that no extramathematical method of

justification (including naturalistic philosophizing) could be more convincing

than the methods of mathematics, which lead most set theorists, for instance, to

affirm V 6¼ L. Philosophers should eschew any imperialistic ambitions to interfere

in the internal affairs of the mathematical community.

To judge mathematical methods from any vantage-point outside mathematics,

say from the vantage-point of physics, seems to me to run counter to the fun-

damental spirit that underlies all naturalism: the conviction that a successful

enterprise, be it science or mathematics, should be understood and evaluated on

its own terms, that such an enterprise should not be subject to criticism from,

and does not stand in need of support from some external, supposedly higher

point of view. (Maddy 1997, p. 184)

Note that whereas Quine seemed to be congenitally hostile to boundaries

(leaving aside those on maps, at any rate), seeking to replace them with differences

of degree across spectra, Maddy’s naturalism, taken neat, presupposes fairly de-

terminate boundaries between philosophy, science, and mathematics. They need

not be totally precise, nor need there be nontrivial necessary and sufficient condi-

tions which characterize the distinctions, but if there is not even a vague boundary

between philosophy and science or philosophy and mathematics then it does not

make sense to say that ‘‘if our philosophical account of mathematics comes into

conflict with successful mathematical practice, it is the philosophy that must give’’

(1997, p. 161).

9 Note that one can reject the Cartesian dream without following Quine any further in

rejecting any firm, relatively determinate, and principled distinction between (legitimate)

philosophy and natural science. One could adhere to a traditional view of philosophy as a

priori conceptual analysis, for example, while still being a fallibilist about the results of that

analysis (a priori 6¼ certain), a fallibilist in science, and an anti-foundationalist in episte-

mology. More plausibly, one could accept some looser version of the view of philosophy as

discontinuous from science and as nonempirical, one which does not place much store on

finding tight necessary and sufficient conceptual connections, while still being a fallibilist.

Quineans sometimes move too quickly from rejection of Cartesian foundationalist epis-

temology to acceptance of a full Quinean package.

468 oxford handbook of philosophy of math and logic



A treaty of noninterference across boundaries makes sense only where the

boundaries exist. How can a Quinean class something as respectable philosophy

and simultaneously deny it the right, so to speak, to criticize science? Maddy

seems to accept this: ‘‘I do not assert that philosophy is irrelevant to the assess-

ment of mathematical methodology; I could hardly do so without a principled

distinction between philosophy and mathematics’’ (1997, p. 200). Yet she denies

(1997, 197–198) that there is such a principled distinction. The upshot seems to be

a less absolutist, more fallibilistic, prescription on interference: ‘‘What I do assert,

on the basis of the historical analysis, is that certain types of typically philo-

sophical considerations have turned out to be irrelevant in the past’’ (ibid.).

At any rate, if naturalistic philosophers should only describe, not prescribe,

where the methods and results of mathematics are concerned, why does this not

apply also to astrology or theology or ‘‘creation science’’ (cf. Dieterlie 1999)? Con-

sider, for example, cosmologists who believe in a plurality of causally isolated mini

universes, as a response to the ‘‘fine-tuning’’ problem; in this multiverse plurality

all parametric values which have to be put in ‘‘by hand’’ in current physics are

randomly distributed. Imagine, in addition, there is subgroup with specific views

about what types of mini universe there are. In particular, one cosmological sect

says there are exactly forty-two subuniverses in which there are Twin Earths where

there has developed a parallel human or humanlike form of life, in exactly one of

which John F. Kennedy (i.e., his parallel clone) is not assassinated; exactly one

in which Scotland, not England, wins the (Association) Football World Cup in its

equivalent of 1966 (our cosmologists call this mini universe Paradise); and so on.

Perhaps these twists on (a substrain of ) modern cosmology are based on scrip-

tures they hold sacred or on interpretations of revelations of the sect leaders,

grounds about which they debate apparently quite fruitfully and using methods

they mostly seem to agree on. Since their position does not disagree at all with

what standard science says about the universe we are all causally connected to,

why is this not a successful enterprise with an extra flourish, a flourish comparable

to the higher flights of transfinite set theory or some other branch of pure math-

ematics remote from any obvious possibility of empirical application?

Maddy answers that she is not advocating a quietist tolerance of all systems of

thought and belief. She is a scientistic naturalist like Quine, but one who disagrees

with Quine, on scientific grounds (for the Quinean considers epistemology and

methodological prescriptions a subdiscipline of natural science), about scientific

methodology. Science is less of a seamless whole than Quine suggests, even when

he allows that science is ‘‘neither discontinuous nor monolithic. It is variously

jointed, and loose in the joints in varying degrees’’ (Quine 1975, p. 314). Possession

of the theoretical virtues adumbrated by Quine is insufficient to generate belief in

a theory, in all circumstances and departments of science. Using a detailed in-

vestigation of the fate of the atomic theory in the nineteenth and early twentieth
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century, up to its general adoption after the experimental work of Perrin, Maddy

concludes:

The theory enjoyed the Quinean virtues in abundance by 1860, when its successes

in chemistry were crowned by the computation of stable atomic numbers, and

even more so by 1900, after the rise of kinetic theory in physics. But scientists

were not satisfied until the direct detection of atoms by Perrin, verifying the

crucial predictions of Einstein’s 1905 calculations. This, I claim, means that the

theoretic virtues are not enough, that enjoyment thereof is not what evidence is,

that our best scientific theory is not confirmed as a whole, that some of its posits

are properly regarded as fictional until further, more specific testing is possible.

(Maddy 1997, ch. 13, §II.3)

Maddy’s conclusion seems to be that science as a whole is rather more het-

erogeneous than Quine thinks, that some parts of our overall system we may not

believe in, but nonetheless accept ‘‘as fictional.’’ She even moots the possibility

that the existential deliverances of mathematics may come under that score—‘‘My

guess is that, in the end, the explanations and accounts of naturalized philosophy

of mathematics will not involve a literal appeal to the objects of pure mathematics’’

(Maddy 1997, ch. 13, §II.5)—with one way to cash that out being ‘‘mathematical

claims aren’t true and mathematical things don’t exist, though it’s rational and

proper to assert that they are and do in the course of doing mathematics’’ (ibid.).

Moreover, given the tight interconnections inside mathematics, pure and applied,

the same ontological reading should apply to all such deliverances, from the ex-

istence of infinitely many primes to the existence of inaccessible cardinals.

To distinguish different types of ontological commitment in different types

of existential assertions, to discern fundamental ambiguities in ‘‘exist’’ in this way,

is to proceed on very un-Quinean lines (see Quine 1960, pp. 131, 241–242) which

certainly need substantive justification. If, on the other hand, the claim is that

mathematicians and nonatomistic chemists hold that atoms and prime numbers

do not exist, in the only sense of ‘‘exist’’ which exists (!), but nonetheless find it a

useful fiction to pretend that they do, then there certainly needs to be some work

doing making that claim good, at least for the mathematical community. More-

over, one does not need to be a Quinean to ask what makes the atomic hypothesis

part of the overall theory ‘‘held’’ by chemists such as Ostwald who treated (pre-

Perrin) the hypothesis as a useful instrument. How is atomism part of their theory

if they did not actually believe in atoms?10 At any rate, even the second-class,

nonliteral existence accorded by some to atoms in the nineteenth century, and

10 Furthermore, Maddy’s argument requires ruling out the possibility that the refusal

of Ostwald and company to accept the existence of atoms was based on empiricist meta-

physics, proto-verificationism perhaps, rather than on scientific reasons alone. Cf. Colyvan

(2001, ch. 5).
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which might perhaps be accorded to prime numbers in the twenty-first, Maddy

certainly does not want to allow to the cosmological sect’s forty-two Twin Earths.

Speaking as a scientific naturalist from within the perspective of current sci-

ence, for she knows of no higher or better perspective, Maddy would reject the

weird cosmology because there are no scientific reasons to believe in the forty-two

Twin Earths. But there are overwhelming scientific reasons (the indispensability

argument) for believing in, or at least ‘‘accepting,’’ contemporary mathematics.

Moreover, detailed investigation of current mathematics, Maddy conjectures, will

show that, unlike science in general, it is, if not a seamless whole, at least highly

interconnected. It may well prove very difficult to separate out those parts which

are clearly ‘‘pure’’ mathematics, with no possible practical applications, from those

which are applied or liable to be applicable, especially when one considers the

highly esoteric branches of mathematics—non-Euclidean geometry, infinite di-

mensional Hilbert vector spaces—which later have turned out to be highly useful.

For Maddy, the direct reasons for believing that V 6¼ L are mathematical

reasons—not scientific ones but still worthy of respect because of the indispens-

ability of mathematics as a whole in science; so in that sense, indirectly scientific.

The Twin Earth cosmologist might claim that her scriptural, or whatever, reasons

for believing in the forty-two Twin Earths have a similarly indirect scientific jus-

tification. The idiosyncratic parts of her cosmology cohere very well, she may

claim, with the more standard parts of her cosmological and scientific views in

such a way that it would spoil the overall elegance of the theory to rip the idio-

syncratic, scriptural parts out and leave the rest. Insofar as the rest is indispensable

in accounting for the phenomena, so are the details of the forty-two Twin Earths.

Such a cosmologist might claim this, but without any plausibility. True, much

will depend on providing a philosophical justification for the claim that ‘‘scientific

methodology,’’ whatever it is, exactly, is more rational than the methods used by

creationists and others to arrive at results contrary to science. But it would be

obtuse to deny that the methods of set theory, ‘‘higher’’ and ‘‘lower,’’ are much

closer in nature to the mathematical methods utilized in, for example, quantum

physics than the imagined disputations and dogmas of the forty-two Twin Earths

sect. However, Quine himself allowed into his total theory some currently

unapplied parts of pure mathematics for ‘‘simplificatory rounding out’’ (1984,

p. 788) and to spare oneself ‘‘unnatural gerrymandering of grammar’’ (1990, p. 94).

So maybe the difference here between Maddy and Quine is largely one of judg-

ment as to how far one should go in ‘‘rounding out.’’

Furthermore, Maddy may still be vulnerable to less extreme theistic views than

those considered or imagined above. After all, there have been, and continue to be,

eminent scientists who have been or are theists, often theists of a rationalistic,

nonfidiestic stamp. Many of them do not see their religious beliefs as sharply dis-

continuous in content or in their underlying justification from their scientific ones,

but rather as complementing or even enhancing the coherence of their scientific
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worldview. Only a belief in a beneficent God, they might argue, renders reliance on

inductive extrapolation reasonable, or explains adequately the ‘‘fine-tuning’’ of

natural constants to values which permit stable complex molecules to exist or

explains the ‘‘unreasonable effectiveness’’ of mathematics, some of it highly esoteric

and without obvious physical application when introduced, in generating deep and

plausible scientific theories with staggeringly good records of predictive accuracy.11

The Quinean may say that in order to make a sharp break with theistic sci-

entists of this type, one should adhere only to total theories which meet Quine’s

empiricist theoretical virtues, and that will necessitate excluding not only theism

but also much of transfinite set theory. Maddy could retort that the examples of

esoteric pure mathematics turning out to have unexpected empirical applications

provide a purely empiricist reason for accepting the methods and results of

mathematicians as a whole, pure and applied. Alternatively, an atheistic naturalist

could nonetheless allow that some theists provide naturalistic reasons, albeit ones

the atheist does not accept, for their theism, in much the same way as some

methodological naturalists are led to the prima facie anti-naturalist doctrine of

Platonism in mathematics—that is belief in abstract, eternal, mind-independent

numbers, functions, sets, and the rest.

IV

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I turn, finally, to ontological naturalism. The ontological naturalist holds that we

have a reasonably determinate conception of what it is to be physical and avers

that everything is physical; in particular, all objects are physical, as are all prop-

erties and relations (trivially, for a nominalist in the medieval sense, who believes

there are no properties or relations). Providing a characterization of physicality is

not an entirely straightforward matter (cf. Burgess and Rosen 1991, §1.A.1), but I

will assume for present purposes that it is not impossible. Certainly we seem to

have a clear idea in particular cases: the sun is a physical object (albeit its bound-

aries are vague) and the mass of the sun a physical property, while Cartesian souls,

if they exist, are nonphysical.

We can then divide naturalists in general into two camps with respect to

ontological naturalism: the ontological naturalists and the revolutionary defeat-

ists. The second group reject ontological naturalism but argue that this rejection is

11 Mark Steiner (1998) has provided some thought-provoking examples of general-

izations or extensions of physical theories on the basis of what seem to be purely math-

ematical, often even notational, similarities which have been highly successful empirically;

he argues that this is hard to explain naturalistically (cf. the more general comment—note

8—on aesthetic considerations in scientific methodology).
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compatible with—perhaps even implied by—their methodological naturalism, the

strand of naturalism which is important to them. Logicists and Quineans typically

belong to this grouping, taking mathematics pretty much at face value and ar-

guing, if in Quine’s case somewhat reluctantly, that this commits us to the ex-

istence of an infinite mathematical ontology of objects and (for the logicists)

properties which are clearly nonphysical.

The ontological naturalist camp divides further into fictionalists such as Field,

who deny the existence of mathematical entities but seek to account for the im-

portance of mathematics via its instrumental utility, and less radical philosophers

who seek to construe or reinterpret mathematics so that its theorems come out as

true but with no commitment to abstract, nonphysical objects and properties. One

strategy here is to take modality as primitive and read mathematics as dealing not

with an actual infinity of abstract objects but with possibilities that infinite

structures could exist or with endless possibilities for constructing concrete but

nonetheless mathematical objects—tokens of mathematical formulas for exam-

ple.12 Examples include the modal structuralism of Geoffrey Hellman (1989), the

modalized type theory of Charles Chihara (1990), and perhaps Philip Kitcher’s

empiricist constructionalism (1983). The main difficulties here, from a naturalistic

perspective, are the legitimacy of taking modality as primitive or, more radically,

the respectability of modality from a naturalistic perspective. Quine, of course,

took a very dim view on this score.

A rather different strategy builds on the idea that the finite cardinals are

properties of properties: two is a property shared by all doubly instantiated prop-

erties, and so on (Bigelow 1988 is an example of this strategy). This is quite an

attractive strategy for anyone who believes in the objective existence not only of

first-order physical properties but also of higher-order ones, arguably a reasonable

position for a physicalist to take. If position properties exist, should we not see

velocity as dependent on higher-order properties of position properties, acceler-

ation as dependent on third-order properties of velocity properties, and so on?

The classic difficulty with this position is that if there are in actual fact only

finitely many first-order properties, then arithmetic, never mind analysis and

so forth, will not get off the ground. There certainly seems to be no a priori reason

for supposing there are infinitely many physical objects or properties. Logicism

runs into similar difficulties, at least if the argument of Shapiro and Weir (2000) is

right.13

12 Intuitionism can also be seen as a ‘‘modalize mathematics’’ strategy for rejecting

Platonism. But intuitionism, even if shorn of the highly Kantian elements in Brouwer’s

original formulation, is perhaps not very promising for naturalists, given its radically

revisionary nature and the question mark, to say the least, as to whether it allows for

sufficient mathematics to meet the needs of the sciences, today and tomorrow.
13 Which it is. (Ed.).
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Since these problems are treated more fully elsewhere, I want to focus finally

on a problem which afflicts, I will urge, both Quine’s account of mathematics and

also Field’s, despite their opposing stances on indispensability. We might call it

the problem of the conceptual indispensability of mathematics for theoretical

science as opposed to any deductive or methodological reliance on mathematics

for churning out predictions from theories, or ontological dependence of science

on mathematical objects as playing a role in causal explanation—Field’s ‘‘heavy-

duty platonism’’ (Field 1980).

According to scientific realists, many, at least, of our theoretical terms refer to

objects way too small or large for us to come into contact with them through nor-

mal perceptual means. How do we manage to do this referring? Naturalists, who

generally adopt a realist position14 ought to want to explain this. True, the enor-

mous problems which have beset all attempts at giving a naturalistic explanation

of language understanding, at accounting for the normativity of language, and so

on, are very daunting and it is not surprising that many philosophers have

thrown in the towel and adopted a sort of Wittgensteinian quietism. Even so non-

Wittgensteinian a philosopher as Tim Williamson writes:

The epistemic theory of vagueness makes the connection between meaning

and use no harder to understand than it already is. At worst, there may be no

account to be had, beyond a few vague salutary remarks. Meaning may supervene

on use in an unsurveyably chaotic way. (Williamson 1994, p. 209)

But it would be unnaturally defeatist for a naturalist to adopt this stance.15

Now what account does Quine have of the mechanism by which theoretical

words link to theoretical objects? It is largely a negative account: operationalist,

verificationist and other ‘‘reductionist’’ explanations of this link are hopelessly

14 Perhaps some anti-realist philosophers would want to adopt the ‘‘naturalist’’ label.

At least if one restricts to ‘‘methodological’’ as opposed to ontological naturalism, this

does not seem incoherent. To such philosophers I would say that the following criticisms

apply only to ‘‘realist naturalists,’’ but that for convenience (and because I think this

represents the usual naturalist position) I will restrict the term ‘‘naturalist’’ to apply only

to realists.
15 Perhaps there really is a plurality of mini universes with Twin Earths. Perhaps on

some of them sophisticated culture and philosophy flourish, but only a stunted science

and technology exists because anti-naturalism has gained an unshakable hold on the

intellectuals. On one Twin Earth, Wittgenstein’s twin, Ludwig Twittgenstein, say, declared

that the wandering stars roam round the night skies in an unsurveyably chaotic way and

not even Babylonian astronomy emerged. On another, L. Twittgenstein II persuaded ev-

eryone that the basic elements combine to form the vast array of substances around them

in a similarly chaotic and nonsystematizable way and chemistry did not emerge. Elsewhere

(metaphorically speaking) Twittgenstein III pointed persuasively to the incredibly chaotic

nature of the brain and physiology was killed at birth. It is the mark of the naturalist, it

seems to me, to soldier on regardless, looking for system amid the chaos.
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inadequate: the holistic points of ‘‘Two Dogmas’’ alone show this. On the positive

side, Quine develops an account of empirical meaning for observation sentences—

the stimulus theory (albeit one which he held with less and less assurance and

more and more qualification in his later work; see George 1997))—and argues that

we grasp theoretical terms solely by grasping the interconnections among theo-

retical sentences and the empirical meaning of their empirical consequences. As

we saw in section II, ‘‘consequences’’ can mean little more, for Quine, than the

basic analytic logical connections. Constraints imposed by ‘‘synthetic logic,’’

mathematics and nondeductive methodology are simply further nodes in the over-

all theory.

Suppose an interpreter selects a set of operators O of our language as subject

to meaning-constitutive constraints.16 Call a sentence nonlogical if no member of

O is its dominant connective; and consider pairs of functions h f, gi where f maps

the nonlogical sentences (including open sentences) onto sentences (logical or

nonlogical) and g is a permutation of the members of O. Let an interpretation

function I be a mapping of the language such that (1) if S is nonlogical, I(S)¼ f (S);

and (2) where C2O, I[C(S1, . . . , Sn)]¼ g[C](I(S1), . . . , I(Sn)), where the Si are the

immediate constituents of the sentence [C(S1, . . . , Sn)] (in which C is dominant).

Finally, declare an interpretation to be Quinean if f preserves empirical content

and g maps connectives onto connectives with the same meaning, according to

our meaning-theory (e.g., the verdict matrix theory) for logical connectives.

If all Quinean interpretations are correct, if they all preserve objective

meaning, then will there not be a plurality of widely diverging, indeed incom-

patible, interpretations? For the only constraints on interpretation are to preserve

empirical meaning and the meaning of the logical connectives, as given by the

verdict matrices, or something similar. Quine, of course, agrees. This is indeter-

minacy ‘‘from above’’ (Quine 1970), and the argument need not rely on any de-

mand for behavioristic reduction of meaning: the main premises are that the above

two constraints are the only ones, plus a modest Quine/Duhem holist denial that

the typical theoretical sentence has any empirical meaning. What conclusions

should then be drawn, with respect to realism? Compare Quine’s indeterminacy

from below, his argument for ontological relativity. I am not concerned here with

the plausibility of the argument, merely with the conclusions he draws.

Quine claims that for some singular terms, ‘‘Bugs Gavagai’’ and ‘‘Bugs Gava-

gai’s left ear,’’ say, we can have ‘‘the objective meaning of ‘Bugs Gavagai’¼ the

objective meaning of ‘Bugs Gavagai’s left ear.’ ’’ But surely we also have the fol-

lowing principle concerning the dependence of reference on meaning (omitting,

for simplicity, a uniform relativization to context). ‘‘If the objective meaning of

singular term t¼ the objective meaning of singular term u then the referent of

t¼ the referent of u.’’

16 The following proposal generalises easily to interpretation of other languages.
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Putting the above two together, we infer that the referent of ‘‘Bugs Gavagai’’¼
the referent of ‘‘Bugs Gavagai’s left ear’’ and then, disquoting with respect to ref-

erence, that Bugs Gavagai¼Bugs Gavagai’s left ear, which is absurd. But Quine does

not conclude from all this that his thesis of indeterminacy from below is absurd.

Rather,

Reference is nonsense, except relative to a coordinate system. . . .What makes

sense is to say not what the objects of theories are, absolutely speaking, but how

one theory of objects is interpretable or reinterpretable in another. (Quine 1969,
pp. 48, 50)

Now, however, consider the ‘‘argument from above,’’ the interpretation of

(late) Quinean holistic empiricism as saying that the only constraints on inter-

pretation are preservation of empirical content and of the meaning (as given by

the verdict matrices, say) of the logical connectives. Take as example Newton’s

inverse square law Vx VyN where N is

Fxy ¼ g mxmy

r2
,

stating that the gravitational force exerted on the line between massive objects x

and y is proportional to the product of their masses and inversely proportional to

the square of the distance r between them. The law has no empirical content on its

own, independent of auxiliary hypotheses concerning the other forces in play and

boundary conditions telling us what other objects there are in their world. Neither

has the negation of Newton’s law, Vx VyN, any empirical content, and the same

is true of each instance of N and each of its negations N. If O contains just the

usual sentential logical operators, the function f, which is trivial except that it

maps Newton’s law to its negation, preserves empirical content. Thus by a blunt

application of the Quinean ‘‘argument from above,’’ Newton’s law and its nega-

tion have the same objective meaning.17 Add the corresponding principle of de-

pendency of truth on meaning—‘‘If the objective meaning of sentence p¼ the

objective meaning of sentence q then the truth-value of p¼ the truth-value of q’’—

and the disquotational schema—‘‘The truth-value of p¼ the truth-value of q iff

A $ B’’—whose instances are generated by substituting a name of the substituend

17 We can add the quantifiers into O and retain the trivial g by letting f map the open

sentence N to N and otherwise be the identity map. This generates an interpretation

which maps Newton’s Law to Vx VyN so that the same principles yield 8x 8y N $
8x 8yN , again absurd (in a nonempty domain). If all of this is too blunt, consider

subtler examples of empirically equivalent (for us) but genuinely incompatible (at least on

a realist perspective) sentences, such as a formulation of a standard big bang theory

together with one which posits our old favorite, a multiverse of big bang universes.
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for A for p and similarly a name of the substituend for B for q. Now we are able to

conclude, in parallel fashion to the ontological relativity argument,

8x 8yN $8x 8yN ;

which is absurd, not only in classical logic but in many weaker ones, too.

How to avoid this contradiction? The parallel conclusion to draw is a deep

relativism regarding truth:

Truth is nonsense, except relative to a coordinate system. . . .What makes sense is

to say not whether a theory is true or not, absolutely speaking, but how one

theory is interpretable or reinterpretable in another, taken to be true.

Even Newton, then, had he been a Quinean(!), could not have said that the

inverse square law was true absolutely. It is true relative to a ‘‘homophonic’’

interpretation and false relative to others. The only sentences true or false abso-

lutely are observation sentences which wear their empirical meaning on their

sleeve. The problem for the naturalist is that Quineanism leads to radical in-

strumentalism, for on the Quinean picture there is a radical asymmetry between

truth for observation sentences (absolute) and truth for theories (relativistic), and

it is this metaphysical asymmetry between theory and observation which is the

essential feature of instrumentalism.18

Now Quine recoils from relativity of truth—partly, I think from a residual

realism, partly as a result of the false notion that any substantive form of rela-

tivism is paradoxical, and partly because he thinks his rejection of first philosophy

immures him to relativism: ‘‘there is no extra-theoretic truth, no higher truth

than the truth we are claiming or aspiring to’’ (Quine 1975, p. 327). But this is to

confuse epistemological with metaphysical issues. The instrumentalist can adopt

Quine’s methodology, espouse nothing not endorsed or at least compatible with

best scientific practice, but give a metaphysical reading of theoretical sentences at

variance with that given to observational. Quine is in fact that instrumentalist.

Thus the dilemma for a naturalist who adopts a Quinean empiricism on math-

ematics based on a general holism plus empiricism about meaning: how to buy

into so very much of the Quinean package without swallowing all the relativistic

18 Some use ‘‘instrumentalism’’ to mean the doctrine that theoretical sentences have

no truth-value (cf. Quine 1975, p. 327). But this is, at least in current philosophy, a rather

uninteresting doctrine. Instrumentalists are prepared to affirm current science, so they

should be prepared to affirm its truth, at least on a disquotational account of truth. They

differ on the metaphysical interpretation of theoretical sentences, finding a cleavage be-

tween the metaphysical grounding of observation sentences and that, parasitic on the first,

of theoretical ones. Thus I do not think Quine can escape a charge of instrumentalistic

anti-realism as he seeks to do (1975, p. 327) simply by endorsing disquotational truth.
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instrumentalism, which of course will apply to mathematics through and through.

The least prime number theorem and its negation will have the same meaning for

Quine, both being devoid of empirical content and a reinterpretation of, say, the

theory of rationals in the theory of the natural numbers, will be perfectly licit.19

There is, though, an obvious strategy of response here, but it is one which

brings no comfort to the naturalist. Let O be a Quinean observation sentence and

consider O, O&O and O_O. These three sentences, being logically equivalent,

are empirically equivalent. Furthermore, the interpretation I based on f(O)¼O&O

and the trivial mapping g sending all sentential operators to themselves is a good

Quinean one, as is I* based on f *(O)¼O_O and the same g. Yet there are clear

materials within the Quinean philosophy of language itself for distinguishing the

meaning of O, O&O and O_O. The phrase structure tree associated with the first

is very different from that for the other two, and although those two in turn have

structurally identical phrase trees, the constituents on the corresponding nodes

where they differ—& and _—differ in meaning according to purely Quinean con-

ceptions of meaning. So even an empiricist can discern a notion of meaning nar-

rower than sameness of empirical content, narrower than mutual interpretability

according to Quinean interpretation functions. The notion is evidently close to

Carnap’s notion of intentional isomorphism—same grammatical structure, syn-

onymous ultimate constituents—though for semantic purposes it would be sen-

sible to widen somewhat: to allow, for example, that sentences transformable into

one another by very simple means, such as active/passive transformations, are

synonymous. Quine himself objects to this sort of use of the Carnapian notion to

stymie indeterminacy, but the main reason he gives is question-begging: that if we

use intentional isomorphism to characterize a more fine-grained notion of syn-

onymy, then the indeterminacy thesis fails.20

However, merely appealing to the meanings of the logical connectives in a

Carnap-style account of meaning will not of itself explicate how logically in-

compatible but empirically equivalent sentences can differ in meaning. To do that,

we need to explain how ultimate constituents other than logical operators (and

observation sentences) can differ in meaning. One way is to steal some leaves out

of the logicist’s book. If S differs from R only in that S has the numerical operator

Nxjx where R has a class operator {x : jx}, then they differ in meaning because the

rule governing the meaning of the numerical operator—the rule form of Hume’s

19 Indeed, if we have a countable infinite set F of false scientific claims devoid of

empirical content, none of which has one of our ‘‘meaning-constitutive’’ logical operators

as the dominant operator, then there will be a good Quinean interpretation which maps all

the nonlogical arithmetical truths into F (with g trivial). Arithmetic can perfectly well be

interpreted as about phlogiston as about the numbers. Though Quine might be prepared

to bite the bullet, I take this as a reductio.
20 At least that is how I read Quine (1960, §42), especially the paragraph pp. 205–206.
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Principle, perhaps—differs from that governing the class operator, perhaps a

weakening of the rule form of Axiom V.

In what way could all this lay the basis for a naturalistic explanation of how

our theoretical terms reach out to items utterly inaccessible to perception? Here’s

a very crude story. Imagine we grasp a four-place predicate xy Cong zw which we

apply to observable rods (or rodlike segments of surfaces) and whose meaning is

that the rod whose two end slices are x and y is congruent with that whose end

slices are zw. We might manifest our grasp of this purely empirical predicate by,

among other things, transporting rods and laying them end to end before issuing

in a judgment. (How closely our grasp of such empirical predicates is tied to such

verificatory behavior is, of course, a highly controversial matter.) As well as simple

judgments that one segment is congruent (or not) with another, we will be able to

grasp such ideas as that there is a point t between the end points zw of a segment

such that xy is congruent with zt and with tw.

Now imagine that we also have an independent grasp of basic arithmetic. We

might then be taught that pthere is a point t between the end points zw of a

segment such that xy is congruent with zt and with tw.q is synonymous21 with pzw
is 2 times the length of xyq. And so on for three times, four times, and so on. If, in

our system, ab is a standard unit, like the old Parisian standard meter, then for

many values n, pzw is n times the length of abq will be synonymous with an

expression which language users utterly innocent of arithmetic can produce. But

in other cases not: we might find ourselves saying that zw is 1045 times the size of

ab or 10�45 the size of ab, and neither sentence may have any translation back into

our purely empirical notion of congruence. Yet it may be suggested that by this

means we are able to refer to lengths vastly greater than, or less than, anything

perceptually discernible.

This suggestion may, of course, be strongly resisted. I am not intending to

suggest here that this naturalistic strategy for explicating how we get beyond

acquaintance solely with medium-sized dry objects is obviously going to succeed

in the case of length (far less other physical magnitudes), or indeed that this is the

only model for the introduction of theoretical terms; there is, of course, the

Lewisian structuralist model in terms of Ramsey sentences (Lewis 1970), although,

as Lewis himself seems to accept, this will not take us from observation to theory

on its own. My claim is just that it is hard to see another route for the naturalist to

follow in attempting to explain our grasp of the nonobservable. But now the

whole strategy depends on our having an independent grasp of arithmetic, or more

generally mathematics, that is an independent understanding of the sentences of

these disciplines and some significant, albeit fallible, ability to differentiate correct

from incorrect mathematical sentences. Granted that, and a disquotational notion

of truth, we are committed to the existence of a body of truths grasp of which is

21 Or at least paraphrasable in an interesting sense.
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independent of our understanding of empirical theory—indeed, the latter pre-

supposes it. Grasp of the highly theoretical sector of language T presupposes, first

grasp of observational fragment O and also grasp of a fragmentM of mathematics.

So now the naturalist has the problem explaining our grasp of M, and Quinean

holism cannot provide the answer.

Moreover, this problem is also Field’s, despite his rejection of Quinean in-

dispensability. Suppose Field can show us that mathematics is ontologically dis-

pensable in science—that is, that mathematical objects play no role in scientific

explanation—and also that it is deductively indispensable—we do not need

mathematics, other than as a useful proof-shortening device, either in the de-

duction of predictions from scientific theory or in a scientific explanation of de-

duction (so that model theory and proof theory are dispensable). Even if Field can

achieve this much, he still has to give us a naturalistic explanation of how we

manage to grasp the meanings of theoretical terms which refer to items far re-

moved from those we are acquainted with through our normal perceptual abil-

ities, and he has to do this without appeal to an independent grasp of mathematics.

I am suggesting that this cannot be done.

V

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I said earlier that one of the strongest, if not the strongest, versions of naturalism

is Quine’s radical empiricism. If the conclusions of the last section are correct,

then mathematics proves to be a fatal stumbling block for that project. But I do

not conclude that naturalism is fatally wounded. The conclusion to draw is that

accommodating mathematics continues to pose an extremely thorny and as yet

unresolved problem for naturalism, and that the attempts to accommodate it (as

also the attempts to show it cannot be accommodated) have generated some of

the best and most illuminating philosophical work of recent times.
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c h a p t e r 15

NOMINALISM

charles chihara

Undoubtedly, the most enlightening published work dedicated to giving knowl-

edgeable readers an overview of the topic of nominalism in contemporary philos-

ophy ofmathematics isA Subject with No Object by John Burgess andGideon Rosen.1

So I shall begin with a brief description of that work, in order to provide readers of

this chapter with a solidly researched account of nominalism with which my own

account of nominalism can be usefully compared. Part I, then, will briefly present the

Burgess–Rosen account. My contrasting account will be given in the longer part II.

I. The Burgess–Rosen Account

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

According to Burgess and Rosen, nominalism is the philosophical view that ev-

erything that exists is concrete and not abstract (Burgess and Rosen, 1997, p. 3).

Thus, according to these authors, one can also characterize contemporary nom-

inalism as the view that there are no abstract entities. They view the contemporary

nominalist, then, as someone who ‘‘denies that abstract entities exist, as an atheist

is one who denies that God exists’’ (Burgess and Rosen, 1997, p. 11).

These characterizations raise a number of tricky questions: (1) What makes

something abstract and not concrete? (2) Why should one not believe in the

1 The subtitle of the book is Strategies for Nominalistic Interpretations of Mathematics.

In their book the authors write: ‘‘The aim of this book is to chart the main currents in the

nominalist stream’’ (Burgess and Rosen 1997, p. 8).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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existence of any abstract entities? (3) Why should philosophers who do not believe

in abstract entities try to produce nominalistic interpretations or constructions of

mathematics? That is, why should nominalists attempt to reconstrue or ‘‘recon-

struct’’ mathematics in such a way that its assertions can be seen not to assert the

existence of abstract entities?2

Burgess and Rosen devote a whole section to question (1), but for reasons that

will become clear later, I shall not go over their worries about the distinction at

issue. I turn instead to (2) and (3). The latter question needs some preliminary

discussion. What is a nominalistic interpretation or construction of mathematics?

The answer: the nominalist attempts to construct a system of mathematics and/or

physics that is consistent with his/her skepticism about abstract entities.3 Thus, it

is an attempt to reproduce what ordinary mathematics accomplishes without

presupposing the existence of such things as numbers and sets.

Let us now reconsider question (2): Why should one not believe in the existence

of any abstract entities? Burgess (1990) quotes the nominalistic reconstructivists

Daniel Bonevac, Dale Gottlieb, and Hartry Field, who cite an argument of Paul

Benacerraf ’s published in his article ‘‘Mathematical Truth’’4 as providing motivation

for undertaking their reconstructions. This argument, based upon ‘‘a causal account

of knowledge,’’ is supposed to show that ‘‘belief in an assertion or theory implying or

presupposing that there are numbers or objects of some similar sort cannot be

knowledge’’ (Burgess 1990, p. 1). Burgess then spends most of the article blunting this

argument,5 arriving in the end at the rather awkward double negative conclusion

that ‘‘it is not known that it cannot be known that there are numbers’’ (p. 12).

Burgess and Rosen (1997) take up, with great attention to detail and to sub-

tleties, not only Benacerraf ’s original ‘‘causal theory’’ argument, but also refine-

ments of that argument which nominalists have put forward to motivate their

reconstructive programs. In particular, they take up Hartry Field’s argument

based upon a ‘‘reliability thesis’’ (pp. 41–49), as well as an epistemological ar-

gument involving the theory of reference (pp. 49–60). Burgess and Rosen provide

2 Burgess and Rosen (1997), p. 12.
3 Burgess and Rosen have in mind such nominalists as Hartry Field, Geoffrey Hell-

man, and myself. The reader can find expositions and references of those nominalist’s

works in Burgess and Rosen (1997); Field (in chapters II.A and III.B.1.a); Hellman (in

chapters II.C and III.A.1.a); and Chihara (in chapters II.B and III.B.2.a and b). I also give

an exposition of the above three nominalistic accounts of mathematics in Chihara (2004,
ch. 5, sec. 3). My own approach to reconstructing mathematics nominalistically will be

explained in part II of this essay. I explain my doubts about the Hellman and Field

accounts in (2004, ch. 11) for Field and in (2004, Appendix A) for Hellman.
4 Benacerraf (1973).
5 I do not agree with some of Burgess’s arguments against the causal account of

knowledge. In part II, I shall give a specific objection to one of Burgess’s refutations of the

causal account of knowledge.
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assessments of these arguments concluding, in each case, that a kind of stalemate

between the nominalist and the anti-nominalist (sometimes referred to as ‘‘re-

alist’’ or ‘‘Platonist’’) results, where no decisive conclusion can be drawn. For

reasons to be articulated shortly, that there is such a stalemate between the two

antagonists in this dispute is taken by these authors to be very significant.

Burgess and Rosen are clearly most sympathetic with a position that may

be called ‘‘moderate realism’’ or ‘‘minimal anti-nominalism.’’6 Minimal anti-

nominalists do not present arguments for their belief in mathematical objects as

does the typical realist. Nor do they attempt to explain how set theorists have

come to know that, say, the null set exists or that the pair set axiom is true.

Instead, the minimalist anti-nominalist starts with a ‘‘fairly uncritical attitude

towards, for instance, standard results of mathematics.’’

Having studied Euclid’s Theorem, we are prepared to say that there exist infi-

nitely many prime numbers. Moreover, when we say so, we say so without

conscious mental reservations or purpose of evasion. . . .
For those of us for whom something like this is the starting-point, any form

of nominalism will have to be revisionary, and any revision demands motivation.7

In other words, minimalists start with their ‘‘fairly uncritical attitude’’ about math-

ematical existence, and demand of the nominalist a proof or convincing argument

that their starting point cannot be maintained. It is a strategy that consists in

throwing the onus upon the nominalist to show that the minimalists’ anti-

nominalist position is untenable. Thus, having arrived at the important stalemates

described above, they can argue that no compelling argument justifying the revisions

demanded by nominalism has been provided and hence that the minimalists are

justified in maintaining their anti-nominalistic stance.

Additional Reasons for Rejecting the Nominalist’s Position

In the last section of their book, ‘‘Conclusion,’’ Burgess and Rosen (1997) question

the philosophical motivation for developing the kinds of nominalistic recon-

structions of mathematics discussed above. ‘‘What good are these reconstruc-

tions?’’ they can be understood to be asking. The authors confine themselves to

two possible rationales for such reconstructions: hermeneutic and revolutionary.

6 Burgess (1983) characterized his own philosophical position as a ‘‘moderate version

of realism’’: it was a moderate kind of realism insofar as it held merely that our current

scientific theories seem to assert the existence of mathematical entities and that we do not

have good reason to abandon these theories. (Burgess’s moderate realism will be discussed

in more detail in part II.) The position that I am describing here as ‘‘minimal anti-

nominalism’’ is essentially Burgess’s moderate kind of realism.
7 Burgess and Rosen (1997), pp. 10–11.
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On the one hand, the nominalist’s reconstructions of mathematics might be part

of an attempt to give analyses of the mathematical propositions being asserted by

actual practicing mathematicians. In other words, the nominalist might be claim-

ing that the propositions of his or her reconstructions are what practicing math-

ematicians are actually asserting. A philosopher who held such a view would be

classified by these authors as a hermeneutic nominalist. On the other hand, the

nominalist might be proposing a new kind of mathematics that scientists ought to

accept in place of their current mathematical theories. On this view, there is no

suggestion that our actual mathematical theories are nominalistic; instead, it is ar-

gued that we ought to replace our current mathematical theories with the nomi-

nalistic reconstructions being developed. A philosopher who took this route

would be classified as a revolutionary nominalist.

To understand adequately the reasoning underlying the Burgess–Rosen eval-

uations, it is necessary to review a paper cited earlier in which Burgess attacks

reconstructive nominalism and defends his ‘‘moderate realism.’’ What follows is a

sketch of the argument.

We first need some definitions that Burgess gives:

An instrumentalist maintains that ‘‘science is just useful mythology, and no

sort of approximation to or idealization of the truth.’’

A hermeneutic nominalist holds that when the language of mathematics is

properly analyzed, one will see that the scientist, in asserting mathematical

propositions, is not really asserting the existence of any abstract mathematical

objects.

A revolutionary nominalist is a nominalist who proposes a new version of

science—a nominalistic version—in which there are no assertions of the exis-

tence of abstract mathematical objects.

The argument proceeds from just one premise:

[%] A nominalist is either an instrumentalist, or a hermeneutic nominalist,

or a revolutionary nominalist.

Burgess’s strategy is to argue that none of the above three positions is really tenable.

So let’s turn to the details of his reasoning.

Few philosophers are ‘‘instrumentalists’’ in the extreme form given by the def-

inition above. And I agree with Burgess that this sort of instrumentalism is not

plausible. Thus, if one accepts Burgess’s premise, one is faced with choosing between

being a hermeneutic nominalist or being a revolutionary nominalist. Hermeneutic

nominalism is a thesis about the proper analysis of sentences of mathematics—and

since ordinary mathematics is expressed in English or some such natural language,

it is a thesis about the proper analysis of sentences of ordinary languages. Now

Burgess can find no linguistic evidence supporting the hermeneutic nominalist’s

thesis. And no philosopher has adduced any convincing evidence supporting such a

thesis (that is, evidence that a linguist would take seriously).
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The revolutionary nominalist, on the other hand, is proposing a new version

of science. So the question is: Why should we adopt the revolutionary version?

What grounds are we given for accepting such a new version of science? There are,

he claims, no good scientific grounds for such a revolution, and there are strong

practical reasons for not proceeding with such revolution. For example:

[A]ny major revolution involves transition costs: the rewriting of text books,

redesign of programs of instructions and so forth. [I]t would involve reworking

the physics curriculum [to allow the student to take courses to learn the logical or

philosophical concepts required to understand the nominalist’s reconstruc-

tions].8

Thus, Burgess concludes:

Unless he is content to lapse into a mere instrumentalist or ‘‘as if ’’ philosophy of

science, the philosopher who wishes to argue for nominalism faces a dilemma.

He must search for evidence for an implausible hypothesis in linguistics, or else

for motivation for a costly revolution in physics. Neither horn seems very

promising, and that is why I am not a nominalist. (Burgess, 1983, p. 101)

In a more recent work, Burgess argues that the hermeneutic and the revo-

lutionary nominalists both make weighty claims the burdens of proof of which

have ‘‘not yet been fully met’’ (1990, p. 7). Returning to the even more recent work

by Burgess and Rosen (1997), they concentrate, for the most part, on the revo-

lutionary nominalist’s rationale for their reconstructions. Specifically, they ques-

tion ‘‘the scientific merits of a nominalistic reconstruction as an alternative to or

emendation of current physical or mathematical theory’’ (p. 205), and they argue

that the ultimate judgment of the scientific merits of the nominalist’s reconstruc-

tions should be made by the scientific community and not by the philosophical

community. They go so far as to claim that ‘‘the true test would be to send in the

nominalistic reconstruction to a mathematics or physics journal, and see whether

it is published, and if so how it is received.’’9 They then write:

8 Burgess (1983), p. 98. Klaus Stelau has suggested to me, in response to the above

argument against revolutionary nominalism, based upon such pragmatic considerations,

that the position being attacked is not committed to requiring physicists to do mathe-

matics in the reconstructive way being advocated: there could be a ‘‘division of labor’’

according to which physicists would continue to practice their physics in the way being

done today, while knowing that the mathematics they make use of could be done (in

principle by foundationalists) in the nominalistic way being advocated.
9 Burgess and Rosen (1997), p. 206. In Chihara (2004), p. 163, I question the idea that

a true test of the merits of a paper detailing a nominalist’s reconstruction of mathematics

is whether the editors of a physics journal would judge the paper worthy of publication in

their journal. I see no reason to conclude from a negative decision to publish that the

editors are passing on the scientific value of the paper (after all, they could reasonably

judge that such a paper is simply not appropriate for the readership of their journal).
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If nominalistic reconstruals are not plausible as analysis of the ordinary meaning

of scientific language, and if nominalistic reconstructions are not attractive by

our scientific standards as alternatives to current physical or mathematical

theories—if nominalism makes no contribution to linguistic science, nor to

physical or mathematical science—then must the programme of nominalistic

reconstrual be judged . . . an intellectual entertainment addressed to no serious

purpose? (Burgess and Rosen 1997, p. 208)

This last question is addressed at the very end of their book, where they ask:

‘‘What is accomplished by producing a series of such distinct and inferior theo-

ries?’’ (Burgess and Rosen 1997, p. 238; italics added).

Notice that the nominalist’s reconstructions are now judged to be ‘‘inferior.’’

It is not clear to this writer why Burgess and Rosen feel justified in using the term

‘‘inferior’’ in their question.10 My own view is that their judgment of inferiority is

based upon a mistaken understanding of what the reconstructions were devised to

accomplish. If one thinks tweezers are nail pullers, then one would undoubtedly

regard tweezers as inferior tools indeed.

In any case, they answer their question (the one that ends the paragraph

preceding the last one) with ‘‘No advancement of science proper, certainly; but

perhaps a contribution to the philosophical understanding of the character of

science.’’ Here is how they imagine such a contribution being made:

Devising alternatives distinct from and inferior by our standards to our actual

theories, but in principle possible to use in their place, is a way of imagining

what the science of alien intelligences might be like, and as such a way of

advancing the philosophical understanding of the character of science.

It is just such an advance, we want to suggest, that is accomplished by the

various reconstructive nominalistic strategies surveyed in this book. (Burgess and

Rosen 1997, p. 243)

Thus, the work of the nominalist is likened to the work of science fiction writers,

who help us to imagine what the intellectual products of alien intelligences might

be like—quite a damning simile.11

All in all, Burgess and Rosen have assembled quite a case against the nominalist.

Judging from the pun in the title of their book, ‘‘A Subject with No Object,’’12 it

would seem that the Burgess–Rosen criticisms were aimed at undermining the very

10 They write: ‘‘Since anti-nominalists reject all hermeneutic and revolutionary

claims, from their viewpoint the various reconstruals or reconstructions are all distinct

from and inferior to current theories’’ (Burgess and Rosen 1997, p. 238). I can see why they

infer that the reconstructions are distinct from current theories, but I fail to see why these

authors conclude that such reconstructions must be inferior to current theories.
11 See Burgess (1990), pp. 13–14, for amplifications of his view of how reconstructive

nominalism might be regarded as suggesting what the science of aliens might be like.
12 The pun suggests that there is no objet (goal) to the nominalistic reconstructions

of mathematics.
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object or goal of nominalism. Shapiro, for one, thinks that the authors of that book

have succeeded admirably in raising ‘‘sharp and penetrating criticisms of the

nominalistic projects and of the whole point of nominalism.’’13

Part II. A Nominalist’s Response

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I shall now give reasons for holding that Burgess and Rosen have not succeeded in

undermining nominalism, at least when it is directed at the sort of nominalism I ad-

vocate. I shall first present a rationale for the nominalist’s reconstructions of mathe-

matics that is very different from the epistemological one described by Burgess and

Rosen. To understand this rationale, one needs to appreciate the view of philosophy

which motivates much of the work done by the nominalist of the kind I have in mind.

1. A Nominalist’s View of Philosophy

The field of philosophy is divided into a number of specialties: philosophy of

language, philosophy of mind, philosophy of science, philosophy of logic, phi-

losophy of art, and so on. For practically any area X of intellectual study, there is a

philosophy of X. As a general rule, one can say that the philosophy of X is aimed

at achieving a kind of understanding of X that is unique to philosophy. One might

call this sort of understanding ‘‘big picture understanding.’’ What one seeks in

philosophy is the really ‘‘Big Picture:’’ What, in general and in broad outlines, is

the universe like? What, in general and in broad outlines, is our (i.e., humanity’s)

place in the universe? How, in general and in broad outlines, do we (humans)

gain an understanding of the universe? And, more specifically, how, in general and

in broad outlines, does X fit into this big picture?

Of course, this goal of producing such a big picture should not mislead one

into thinking that subtle distinctions, careful and detailed examination of con-

ceptual matters, and lengthy and intricate reasoning about minute points should

not matter. Philosophers are concerned with very fundamental concepts, so that

their analyses, even about apparently small matters, have very far-reaching con-

sequences for the big picture being constructed.

13 Shapiro (1998), p. 600. Burgess and Rosen suggest that the last chapter of their book

should be titled ‘‘In Lieu of Conclusion’’ (instead of ‘‘Conclusion’’), because their final

remarks about reconstructive nominalism are neither ‘‘conclusions drawn from anything

established in previous chapters’’ nor ‘‘conclusive’’ (Burgess and Rosen 1997, p. 205). Sha-
piro responded to this suggestion by claiming that these final remarks of Burgess and Rosen

are ‘‘about as ‘conclusive’ as polite, professional philosophy gets nowadays’’ (1998, p. 600).
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In this search for the big picture, coherence is an essential ingredient. We seek

an understanding of X that is consistent with, and holds together with, the other

views we accept about the universe and about us. Take the philosophy of lan-

guage, for example. Here, we seek an understanding of the nature of language and

our mastery of language that is consistent with our general scientific, epistemo-

logical, and metaphysical views, both about the universe we inhabit and also about

us as organisms with the features attributed to us by science. An account of the

nature of language that made our ability to learn a language into a complete

mystery would be considered by most philosophers of language to be in serious

trouble. We seek a coherent and comprehensive big picture, where all the different

Xs fit together. In general, one would not expect a contemporary philosopher’s

account of language to contradict any of our prevailing views of science and

scientific knowledge without very compelling reasons.

Revolutions in Science

This conception of philosophy suggests an explanation of a striking feature of the

history of philosophy. Following the development and acceptance of a revolu-

tionary scientific theory—a theory that undermines fundamental and central beliefs

of the well-educated elite—there tends to appear a heightened amount of phil-

osophical theorizing. Think of the important (and radical) philosophical writings

that appeared following the seventeenth-century scientific discoveries that

undermined much of the medieval conception of the universe. Or consider the

philosophical activity that arose from the publication of Darwin’s work on evo-

lution.14 Other examples: the enormous number of philosophical works dealing

with Freud’s writings on mental illness and childhood sexuality, and the lively

discussions in present-day philosophy of science dealing with the remarkable

implications of relativity theory and quantum mechanics that conflict with so

many fundamental beliefs underlying Newtonian physics.

The above-noted activity of philosophers is fitting, given the conception of

philosophy I have been describing. When science undermines fundamental and

central beliefs—fractures our big picture of the universe—then philosophers feel a

pressing need to put the pieces together again, to develop a new and coherent big

picture of the universe.

The Importance of Paradoxes

Another characteristic of philosophy is its great attention to, and serious interest

in, uncovering and solving paradoxes or antinomies. A paradox is an argument

14 A work that emphasized the philosophical responses to these two cases, the

seventeenth-century scientific discoveries and the Darwinian theory of evolution—is

Girvetz et al. (1966).

490 oxford handbook of philosophy of math and logic



that starts with premises that seem to be incontestable, that proceeds according

to rules of inference that are apparently incontrovertible, but that ends in a con-

clusion that appears to be obviously false. In many cases, a paradox ends in a

conclusion that is downright self-contradictory. From the earliest beginnings of

philosophy in classical Greece (think of Parmenides, Heraclitus, and Zeno),

paradoxes have played an important role in motivating and developing philo-

sophical theories.

Consider what is undoubtedly one of the most striking cases of philosophical

fervor brought about by the discovery of paradoxes: the discovery of the various

paradoxes of mathematics and set theory in the late nineteenth and early twen-

tieth centuries. These paradoxes stimulated much research in the foundations of

logic and mathematics.15 They led Frege eventually to abandon his logicism.16

They also stimulated Poincaré to come up with his vicious-circle principle.17 The

paradoxes figured in Zermelo’s defense of his axiomatization of set theory.18

Russell, who discovered the paradox that bears his name, was led to develop his

Theory of Types and his ‘‘no-class’’ theory during the many years he spent search-

ing for a solution to the paradoxes.19 Hilbert motivated certain aspects of his

formalist philosophy of mathematics by the need to make certain that such par-

adoxes would never again be produced in mathematics.20

Reasons for the importance philosophers attach to paradoxes are not hard to

find, given the above view of philosophy. An antinomy starts from premises that

appear to be obviously true and proceed according to principles of inference that

seem to be clearly valid. These premises and principles may be fundamental to our

belief system (some may belong to a body of beliefs classified as ‘‘folklore’’). An

antinomy may show that some such beliefs and/or principles clash with recent

developments in science, mathematics, or logic, or are simply inconsistent.

Alfred Tarski once wrote: ‘‘The appearance of an antinomy is for me a symp-

tom of disease’’ (1969, p. 66). What is diseased, evidently, is a body of beliefs or

system of principles that had been largely unquestioned or taken for granted. In

those cases, philosophers take it upon themselves to try to heal the body or system.

15 Cf. Raymond Wilder’s assessment that ‘‘symbolic logic itself had its beginnings

long before the discovery of the contradictions. . . . There can be little doubt, however, of

the great impetus given to its development by the logical contradictions’’ (1952, p. 56).
16 Near the end of his life, Frege completely abandoned his logicist view and came to

the conclusion that the source of our arithmetical knowledge is what he called ‘‘the

Geometrical Source of Knowledge.’’ See Frege (1979).
17 See Chihara (1973, ch. 1, sec. 1) for a discussion of Poincaré’s reasoning.
18 See Bach (1998, pp. 21–22) for supporting arguments.
19 Chihara (1973, ch. 1) contains a detailed discussion of Russell’s attempt to solve the

paradoxes and his development of the Theory of Types, as well as of his ‘‘no-class’’ theory.
20 In Hilbert (1983, pp. 190–191).
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In the case of the mathematical and set-theoretical paradoxes, it was thought that

the basic principles of mathematics or logic were shown to be diseased.21 It is

no wonder that the discoveries of these paradoxes brought about so much unease

and disquiet.22 One can see why foundationalists—mathematicians, logicians, and

philosophers—put so much effort into an attempt to put the mathematical house

in order. Since a paradox is a symptom that our body of beliefs and principles is not

coherent, the above account of one of the principal goals of philosophy allows us to

see why philosophers feel such a need to try to refashion our beliefs and principles

into a coherent big picture in which the paradoxes can no longer be constructed.

2. Why Nominalistic Reconstructions of Mathematics?

I shall now present a picture of what at least one type of nominalistic recon-

structivist is attempting to accomplish—a picture that is very different from the

one Burgess and Rosen have sketched in their work. First of all, the kind of

nominalist I have in mind does not begin with the thesis that there are no abstract

entities. I see the nominalist, rather, as an anti-realist. So to understand this kind

of nominalism, one needs some acquaintance with realism in mathematics.

What Is Realism (Platonism)?

In the philosophy of mathematics, the realist maintains that mathematical objects

exist and that the mathematician is attempting to provide us with information

about these objects. Thus, realists base much of their view of mathematics on the

hypothesis that such things as numbers, sets, functions, vectors, matrices, spaces,

and such truly exist: they generally assert, for example, that the theorems of set

theory are true statements that tell us what sets in fact exist and how these math-

ematical objects are related to one another by the membership relationship.

Mathematical entities are not supposed to be things that can be seen, touched,

heard, smelled, tasted, or even detected by our most advanced scientific instru-

ments. So a problem for the realist is to explain how mathematicians have been

able to gain knowledge of such things. Realists, however, have backed their belief

in the existence of such mathematical entities with a variety of philosophical

arguments. One such argument has been especially influential.

21 Cf. Russell’s attitude toward the paradoxes. He was convinced that logic itself

needed to be reformed. See Chihara (1973, p. 1).
22 Frege was dismayed because the very foundations of his system of arithmetic were

shaken by Russell’s paradox. Russell, at first, thought that some relatively trivial error was

responsible for the paradoxes. It was only later that he came to think some radical changes

in logic were necessary to resolve the paradoxes. See in this regard Chihara (1973, ch. 1).
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Quine’s Challenge

It was Willard Quine who advanced the well-known ‘‘indispensability argument’’

for the existence of mathematical objects, by making such declarations as

Mathematics—not uninterpreted mathematics, but genuine set theory, logic,

number theory, algebra of real and complex numbers, differential and integral

calculus, and so on—is best looked upon as an integral part of science, on a par

with the physics, economics, etc., in which mathematics is said to receive its

applications. (Quine 1966, p. 231)

With such a view of mathematics, it is not surprising that Quine would maintain

that the mathematical nominalist ‘‘is going to have to accommodate his natural

sciences unaided by mathematics.’’ Earlier, he had advanced a criterion of onto-

logical commitment, according to which a theory T, expressed in a first-order

logical language, is ontologically committed to entities of kind K iff such entities

would have to be in the range of the bound variables of T in order that T be

true.23 Thus, when he asserted that ‘‘Mathematics, except for some trivial portions

such as very elementary arithmetic, is irredeemably committed to quantification

over abstract objects,’’24 he was in effect claiming that science itself was onto-

logically committed to the existence of mathematical objects. If the truth of all but

trivial portions of mathematics requires that the quantifiers of the mathematical

language range over mathematical objects or logically similar abstract objects,

then it is hard to see how a nominalist can accept the pronouncements of the

natural sciences without implicitly accepting the existence of mathematical ob-

jects. It is no wonder, then, that Quine thought that the nominalist would have to

‘‘accommodate his natural sciences unaided by mathematics’’ (Quine 1960, p. 269).

In my Ontology and the Vicious-Circle Principle (Chihara 1973), I took Quine

to be proposing not so much a direct argument for the existence of mathematical

objects, as a kind of challenge to the nominalist to produce a nontrivial system of

mathematics which would be adequate for the needs of the natural scientist, but

which would not require its quantifiers to range over mathematical objects.25 I

regarded him are arguing roughly as follows:

Let’s see you nominalists accommodate science without committing yourself to

mathematical objects. Let’s see you produce a system of mathematics which would be

adequate for the needs of the natural scientist, but which would not require its

quantifiers to range over abstract objects.

If this challenge cannot be met, then it can be plausibly argued, by a sort of

inference to the best explanation, that we have good grounds for believing in the

23 See Chihara (1973, ch. 3, sec. 3) for a detailed discussion of Quine’s criterion.
24 Quine (1960, p. 269, italics added).
25 I was willing to grant Quine a version of his ‘‘criterion of ontological commit-

ment.’’ See my reconstruction of his argument in (Chihara 1973, ch. 3, sec. 5).
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existence of mathematical objects (i.e., for being mathematical Platonists).26

Burgess and Rosen put the argument as claiming that ‘‘we should believe in

abstract entities, but only because nominalistic alternatives to standard scientific

theories cannot be developed’’ (1997, p. 64).

Of course, Quine was convinced that no such nominalistic system of math-

ematics will ever be devised—the reason being that he believed mathematical ob-

jects were indispensable to the practice of science—so he reluctantly adopted the

view of mathematics for which he is now famous: ‘‘reluctant Platonism.’’27

Mark Steiner has suggested that what Quine was getting at with his indis-

pensability argument can be expressed in the following way:

[T]o describe the experience of diversity and change requires mathematical

entities. Imagine defining rate of change without the resources of analysis. We

cannot say what the world would be like without numbers, because describing

any thinkable experience (except for utter emptiness) presupposes their exis-

tence. (Steiner 1978, pp. 19–20)

Steiner’s formulation can also be regarded as a form of challenge to the nomi-

nalist: defenders of the argument can be understood to be saying, ‘‘Let’s see you

describe any thinkable experience without making reference to or quantifying

over mathematical objects.’’

Naturalized Epistemology

Another Quinean view that has been extremely influential is his doctrine of

naturalized epistemology. Quine rejected the traditional a priori way in which

philosophers tended to practice epistemology and advocated instead taking epis-

temology to be a subarea of psychology. He suggested that epistemology should

study a ‘‘natural phenomenon, viz. a physical human subject’’:

This human subject is accorded a certain experimentally controlled input—

certain patterns of irradiation in assorted frequencies, for instance—and in

26 The reader should be warned that the term ‘‘the indispensability argument’’ has been

used to refer to several quite different kinds of arguments for the existence of mathematical

objects. In particular, many scholars apply the term to an argument based upon Quine’s

holism: an argument that supposedly shows that we have strong empirical evidence sup-

porting the hypothesis that mathematical objects exist. For discussions of this version of the

indispensability argument, see Maddy (1997), Sober (1993), Resnik (1997), and Vineberg

(1998). An over all assessment of this version of the argument is given in Chihara (2004, ch. 5).
27 It is possible that one reason Quine was so sure no nominalist could meet his

challenge is that he also adopted a strong thesis about the kind of language that science can

legitimately be expressed in. This is the thesis that the language of science ought to be a

logical first-order extensional language—a thesis that severely restricts what can be an

acceptable nominalistic version of mathematics. For a discussion and criticism of this

thesis, see Chihara (1990, pp. 8–14).
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the fullness of time the subject delivers as output a description of the three-

dimensional external world and its history. The relation between the meager

input and the torrential output is a relation that we are prompted to study for

somewhat the same reasons that always prompted epistemology; namely, in

order to see how evidence relates to theory, and in what ways one’s theory

of nature transcends any available evidence. (Quine 1969, pp. 82–83)

Quine’s naturalized view of epistemology was adopted by Burgess and Rosen.

Since these authors regard the typical nominalist as attempting to justify his (or

her) position on epistemological grounds, it was reasonable for them to pay spe-

cial attention to the field of epistemology. Thus, they contrast ‘‘the traditional

alienated conception of epistemology’’—the advocates of which they describe

with the words ‘‘the epistemologist remains a foreigner to the scientific commu-

nity, seeking to evaluate its methods and standards’’—with the Quinean ‘‘natu-

ralized conception of epistemology,’’ according to which the epistemologist

‘‘becomes a citizen of the scientific community, seeking only to describe its meth-

ods and standards, even while adhering to them.’’ They argue that since the

alienated epistemologist attempts to evaluate the methods and standards of the

scientific community, he or she needs to use methods and standards of evaluation

that are ‘‘outside and above and beyond those of science’’ (Burgess and Rosen

1997, p. 33).

It is clear where the sympathies of these two authors lie when they describe

the ‘‘the pretensions of philosophy to judge common sense and science from

some higher and better and further standpoint,’’ and then go on to characterize

the following words of David Lewis as giving an especially forceful expression of

the rejection of such ‘‘pretensions’’:

Renouncing classes means rejecting mathematics. That will not do. Mathematics

is an established, going concern. Philosophy is as shaky as can be. To reject

mathematics on philosophical grounds would be absurd. . . . I laugh to think how

presumptuous it would be to reject mathematics for philosophical reasons. How

would you like to go and tell the mathematician that they must change their

ways, and abjure countless errors, now that philosophy has discovered that there

are no classes? . . .Not me!28

28 Burgess and Rosen (1997, p. 34). The passage quoted can be found in Lewis (1991,
p. 58). Burgess and Rosen do not tell the reader, nor note the irony, of the fact that this

same philosopher is willing to proclaim to the whole world (and presumably to astron-

omers) that he has made the remarkable discovery that there are planets in existence,

distinct from those in our solar system, on which there are intelligent beings who speak

English, who philosophize as we do, who have developed mathematics and science

identical to our own, and who have a political system that is indistinguishable from the

American system, with a president who looks, talks, thinks, and acts exactly like G. W.

Bush—all this on the basis of philosophical reasoning! For a discussion of how Lewis

thinks he has achieved such a discovery, see Chihara (1998, ch. 3).
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Why Some Nominalistic Reconstructivists Should Not Be

Classified as Alien Epistemologists

The nominalistic reconstuctivists of the sort I have in mind do not attempt to

judge common sense and science from some higher, better, and further stand-

point. They seek to piece together their account of mathematics in a way that

is compatible both with what science teaches us about how we humans ob-

tain knowledge and also with what we already know about how humans learn and

develop mathematical theories. Furthermore, these nominalists do not reject

mathematics—a fortiori, they do not reject mathematics on the basis of ‘‘some

higher and better and further standpoint.’’ On the contrary, their goal is to

understand the nature of mathematics in a way that is compatible with the other

features of the ‘‘big picture’’ they are attempting to construct.

It is true that, as nominalists, they do not believe that sets, classes, or ex-

tensions of concepts actually exist. But their skepticism about the existence of

such things is not based upon the conviction that they have some decisive knock-

down, a priori argument showing that mathematical objects cannot (or do not)

exist. Rather, it is based upon a lot of different considerations such as:

(a) That set theorists, sitting in their offices and merely thinking about sets, were

able to discover somehow the truth of the axioms of set theory (taken to be

assertions about mathematical objects) is something that nominalists typically

find either utterly mysterious or unintelligible.29

(b) Nominalists have serious doubts about the arguments (such as the various

versions of the indispensability argument discussed earlier) that Platonists have

given to support their belief in such things. All such arguments have seemed to

them to be highly questionable.30

(c) They find implausible and unscientific the philosophical theories that Pla-

tonists have advanced to account for their supposed knowledge of the things they

postulate.31

29 Maddy (1990, ch. 2) has attempted to give explanations, based upon the work of

the neurophysiologist Donald Hebb, as well as her theory of perception, for how the truth

of some of the axioms of set theory (understood realistically) have been discovered.

Needless to say, I have not found her explanations believable. However, because Maddy

has now abandoned her realism, I shall not give here my reasons for rejecting her

explanations.
30 There is an enormous literature on this topic. See, for example, Vineberg (1998) for

an assessment and other references.
31 For example, Gödel’s appeal to mathematical intuition, which is supposed to be

something like a faculty of perception. (See Chihara 1982 for details). Another example is

Maddy’s (1990) view that humans are able to literally see sets.
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(d) The Platonist’s position that empirical scientists need to discover complex

and complicated relationships between entities that do not exist in the physical

world32 in order to develop their empirical theories has seemed bizarre and

counterintuitive to nominalists. They question the explanations that Platonists

have given of why knowledge of mathematical objects is required in order to

obtain sophisticated scientific knowledge of the physical universe.33

(e) Their assessment of the many doctrines, advanced by philosophers over the

ages, that postulate some type of nonphysical, undetectable substance or object in

order to account for some feature of language or belief has taught them to be

skeptical of all such doctrines.

(f ) They are convinced that the descriptions Burgess and Rosen give of the

nominalist (‘‘the pretensions of philosophy to judge common sense and sci-

ence’’), as well as Lewis’s diatribe against the presumptuousness of philosophers,

are fundamentally misleading. First of all, contrary to what Lewis has suggested,

there are many nominalists who maintain neither that our mathematical theories

consist of false assertions nor that mathematicians have to change their ways

because of what philosophers have discovered.34 Second, one could easily get the

impression from the above-mentioned Platonists that it is only the presump-

tuous philosopher (with pretensions of having some special means of judging the

affirmations of science) who has doubts about the existence of mathematical

objects. In fact, many (if not most) of the outstanding researchers in mathematics

have serious doubts about the Platonist’s account of mathematical theorems and

knowledge.35 And it has certainly been my experience that many empirical sci-

entists find the Platonic view of mathematics quite fantastic. Also, anyone who

has taught philosophy of mathematics (as I have for a great many years) will no

doubt remember the look of disbelief, and sometimes of amazement, on the faces

of some students on being told that highly respected philosophers and mathe-

maticians at major universities believe that, in addition to planets, stars, galaxies,

atoms, electrons, molecules, and photons, such things as numbers, sets, and

32 Gödel explicitly asserted that the objects of transfinite set theory do not exist in the

physical world. See Gödel (1964), p. 271.
33 See, for example, Brown (1999, ch. 4, esp. pp. 47–49).
34 See, in particular, Chihara (2004), where I advance an analysis of mathematics that

implies neither of the positions being attributed to nominalists.
35 Paul Cohen has opined that ‘‘probably most of the famous mathematicians who

have expressed themselves on the question have in one form or another rejected the Realist

position’’ (1971, p. 13). Soloman Feferman has expressed his anti-realist views quite

forcefully: ‘‘Briefly, according to the Platonist philosophy, the objects of mathematics such

as numbers, sets, functions, and spaces are supposed to exist independently of human

thoughts and constructions, and statements concerning these abstract entities are sup-

posed to have a truth value independent of our ability to determine them. Though this

accords with the mental practice of the working mathematician, I find the viewpoint

philosophically preposterous’’ (Feferman (1998, p. ix)).
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functions also exist. These reconstructivists feel that any account of mathematics

should take account of the skeptical attitudes of nonphilosophers about the Pla-

tonic account. It suggests to them that the belief that Platonists have in math-

ematical objects is not at all like the belief that, essentially, everyone has in

ordinary material objects like tables and chairs, despite what some Platonists

have argued.36

Such considerations as the above lead these nominalists to doubt the appro-

priateness of the Platonist’s conception of mathematical theories as descriptions

of a realm of objects that do not exist in the physical world. These nominalists are

skeptical of the Platonic doctrine that to achieve genuine mathematical knowl-

edge, one needs to know that such objects truly exist and are related to one an-

other as the theory in question affirms. As a result, these nominalists search for an

alternative way of understanding the nature of mathematics, and their recon-

structions are seen as an aid to achieving their overall goal of arriving at such an

understanding.

I would like to emphasize that my own reconstructive works were never

motivated by Benacerraf-type epistemological arguments. My first reconstructive

book, Ontology and the Vicious-Circle Principle, was published in 1973—the year

Benacerraf ’s paper ‘‘Mathematical Truth’’ was published—and almost all of the

main reconstructive ideas were developed many years earlier. I certainly based

nothing in my book on the Benacerraf paper. Indeed, I began the book with the

quotation from Quine’s Word and Object (1960), in which Quine declares that the

nominalist would have to ‘‘accommodate his natural sciences unaided by math-

ematics,’’ followed by these words:

When I first read these words inWord and Object several years ago, I wrote in the

margin: ‘‘This philosophical doctrine should be soundly refuted.’’ It was only

much later, while I was working on an essay on the vicious-circle principle, that

an idea came to me as to how one might construct such a refutation.37

What I felt should be refuted was Quine’s claim that the nominalist would be

unable to develop a nontrivial system of mathematics for the natural sciences that

would not be ‘‘ontologically committed’’ to mathematical objects. I had this

conviction long before any talk of causal theories of knowledge or Benacerraf-type

anti-realist arguments were heard in philosophical circles. The aim of my re-

construction, then, was to refute the Quinean claim by producing a nontrivial sys-

tem of mathematics that does not require quantification over mathematical

objects. But the nominalistic reconstruction was not supposed to be the end of the

36 Penelope Maddy, at one time, argued that Gödel is not required to supply a

theoretical justification for his belief in sets since we humans have perceived and believed

in sets since prehistoric times, suggesting that our belief in sets is very much like our belief

in material objects. See (Chihara, 1982), Part 2, especially p. 226.
37 Chihara (1973, p. xiii). The essay mentioned was written in 1964–1965.
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story: it was to be an aid toward gaining an understanding of the actual func-

tioning of the mathematical theories mathematicians actually use and develop.38

3. A Nominalistic Reconstruction of Mathematics

In order to give you some idea of what these nominalistic reconstructions of

mathematics are like, I shall here very briefly sketch the main ideas of the Con-

structibility Theory of my book Constructibility and Mathematical Existence (1990).39

A Brief Exposition of the Constructibility Theory

Set theory is a theory about sets. It tells us what sets exist and how these sets are

related to one another by the membership relationship. The Constructibility

Theory is a theory about open sentences: it tells what open sentences (of a certain

sort) are constructible and how these constructible open sentences would be

related to one another by the satisfaction relation. (Thus, in this theory, one open

sentence can satisfy another.) The theory is formalized in what is basically a many-

sorted, first-order logical language40 that utilizes, in addition to the existential and

universal quantifiers of standard first-order logic, constructibility quantifiers.

Constructibility quantifiers are sequences of primitive symbols: either (C—)

or (A—), where ‘‘—’’ is to be replaced by a variable of the appropriate sort. Using

‘‘Cf’’ to be short for ‘‘f satisfies C,’’ ‘‘(Cf)Cf’’ can be understood to say

It is possible to construct an open sentence f such that f satisfies C,

whereas ‘‘(Af)Cf’’ can be understood to say

Every open sentence f that it is possible to construct is such that f
satisfies C.

And just as ‘‘(Ax)Fx ’’ is equivalent to ‘‘�(x)�Fx,’’ and ‘‘(x)Fx ’’ is equivalent to

‘‘�(Ax)�Fx,’’ we have ‘‘(Cf)Cf’’ is equivalent to ‘‘�(Af)�Cf,’’ and ‘‘(Af)Cf’’
is equivalent to ‘‘�(Cf)�Cf’’.

The assertions of this theory are the sentences of the theory that can be

derived from a set of axioms, which yield what is basically the mathematics of

38 How the Constructibility Theory is supposed to aid the nominalist in obtaining

such an understanding is explained in detail in Chihara (2004).
39 This account has been criticized in detail by Stewart Shapiro (1997, ch. 7, sec. 4)

and Michael Resnik (1997, ch. 4, sec. 2). A detailed and extensive reply to their objections

appears in Chihara (2004, ch. 4).
40 For a clear and rigorous discussion of such languages, see Enderton (1972, sec. 4.3).
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Principia Mathematica. Essentially, the mathematics is what foundationalists call

‘‘the simple theory of types.’’

It needs to be emphasized that what are said to be constructible by means of

the constructibility quantifiers are open-sentence tokens as opposed to open-

sentence types. Open-sentence types are classified by Charles Parsons as ‘‘quasi-

concrete’’ objects (in contrast to purely mathematical objects), because ‘‘they are

directly ‘represented’ or ‘instantiated’ in the concrete’’ (Parsons 1996, p. 273).

Despite the fact that these objects are ‘‘quasi-concrete,’’ it can be argued that they

are as epistemologically disreputable as numbers and sets. Open-sentence tokens,

however, are not open to the same objection: typically, an open-sentence token

consists of particular marks on paper, which exist at a particular place in the

universe and at a particular time. Furthermore, to say that an open sentence of a

particular sort is constructible is not to imply or presuppose that any such open-

sentence token actually exists or, indeed, that anything exists. Constructibility

quantifiers do not carry ontological commitments as do the quantifiers of stan-

dard extensional logic.

What Does ‘‘Possible’’ Mean?

In the phrase ‘‘it is possible to construct,’’ the term ‘‘possible’’ needs some ex-

planation. There are, of course, many different kinds of possibility: logical,

metaphysical, physical, epistemological, technological, to name just a few. Epis-

temological possibility is concerned with what is known. Thus, to say that f is

epistemologically possible for agent X is to say that f is not logically precluded by

what X knows—that is, f is logically compatible with everything X knows. To say

that f is physically possible is to say something like ‘‘f is logically compati-

ble with all the physical laws of our universe.’’ The possibility talked about in

the Constructibility Theory is what is called ‘‘conceptual’’ or ‘‘broadly logical’’

possibility—a kind of metaphysical possibility, insofar as it is concerned with how

the world could have been. Every purely logical truth is necessary in this sense, but

the set of conceptual necessary truths will include much more. What are called

‘‘analytic truths’’ (such truths as ‘‘All bachelors are unmarried’’) are also held to

be necessary in this broadly logical sense.41 As a rough guide, Graeme Forbes

suggests that ‘‘it is possible that P ’’ should be taken to mean ‘‘There are ways

things might have gone, no matter how improbable they may be, as a result of

which it would have come about that P ’’ (Forbes 1985, p. 2). Another way of

expressing this sort of possibility is to take it to mean that the world could have

been such that, had it been this way, P would have been the case. There are many

different systems of modal logic, but the type of system that is generally believed

41 See Plantinga (1974, ch. 1, sec. 1) and Forbes (1985, ch. 1, sec. 1) for more examples

and discussion.

500 oxford handbook of philosophy of math and logic



to correctly formalize the logical features of this broadly logical sense of necessity

is S5.42

What ‘‘(Cf)Cf’’ Does Not Mean

‘‘(Cf)Cf’’ does not mean that one knows how to construct such an open sentence

or that one has a method for constructing such an open sentence. Hence, the

constructibility quantifier is not at all like the Intuitionist’s existential quantifier.

Furthermore, it does not mean that one can always, or even for the most part,

determine what particular objects would satisfy such an open sentence or how one

would determine what objects would satisfy f. Nor does it mean that one can

determine if a series of marks, sounds, hand signals, or what have you is or is not

such an open sentence.

The Many Levels of the Constructibility Theory

The Constructibility Theory is similar to Frege’s theory of concepts: just as Frege’s

hierarchy of concepts is stratified into levels, so the open sentences that are talked

about in the Constructibility Theory are of different levels. Thus, consider the

following situation. On the desk in my office, there are two pieces of fruit, which

I have named Tom and Sue. On the blackboard in my office, I write the open

sentence

x is a piece of fruit on the desk in my office.

Both Tom and Sue satisfy this open sentence. The desk does not. This open-

sentence token is of level 1. Now suppose that I write the open sentence

There is at least one object that satisfies F

in the bottom left corner of my blackboard, where ‘‘F ’’ is being used as a variable

of level 1. This open-sentence token is satisfied by the open-sentence token I

constructed earlier—the level 1 open sentence I first wrote on the blackboard. The

second open sentence I constructed is a second-level open sentence. Clearly, then,

we can go on to construct open sentences of levels 3, 4, 5, and so on.

In the next section, I shall sketch the development of finite cardinality theory

within the framework discussed above.

42 Thus, Kit Fine writes, ‘‘S5 provides the correct logic for necessity in the broadly

logical sense’’ (Fine 1978, p. 151). For an interesting discussion of the development of S5
modal logic, see Kneale and Kneale (1962, ch. 9, sec. 4). See Chihara (1998) for a discussion
of a variety of S5-type systems of modal logic.
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Notation I Shall Use to Refer to the Entities of Different Levels

Level 0: Objects x, y, z, . . .

Level 1: Properties F, G, H, . . .

Level 2: Attributes F, G, H, . . .

Level 3: Qualities F, G, H, . . .

It needs to be emphasized that what I am calling ‘‘properties,’’ ‘‘attributes,’’ and

‘‘qualities’’ are just open sentences. Thus, the open sentences of level 1 that will

be talked about in this theory are to be called ‘‘properties’’ and the uppercase

letters F, G, H, and so on are to be used as variables to refer to these open

sentences. Extrapolating from the level 1 case, one can see that the level 2 open

sentences to be talked about will be called ‘‘attributes’’ and the script uppercase

letters F, G, H, and so on will be used as variables to refer to these second-level

open sentences. Thus properties, attributes, and qualities are not being used to

refer to universals or abstract entities of some sort, as is generally the case in

philosophical works. I use this terminology simply to facilitate our keeping distinct

and ordered the open sentences of different levels I shall be talking about.

Quantifiers

(a) Quantifiers containing occurrences of level 0 variables are just the stan-

dard quantifiers of first-order logic.

(b) Quantifiers containing occurrences of level 1 or higher variables are con-

structibility quantifiers.

Relations

All the open sentences to be talked about in this theory will be monadic open

sentences (i.e., such open sentences as ‘‘x is a human’’ that contain occurrences of

only one variable). The reason I restrict the theory to just monadic open sentences

is simplicity: it makes the task of formalizing the theory so much easier.

In what follows, I shall define relations à la Kuratowski.

Couples

A couple {x, y} is a property that is satisfied by only the objects x and y.

Example: ‘‘x¼Tom v x¼ Sue’’ is a couple {Tom, Sue}.

Notice that I have given here an example of a monadic open sentence: only one

variable (i.e., ‘‘x’’) occurs in the open sentence—of course, there are two occur-

rences of this one variable.
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Notice also that I say ‘‘a couple’’ (instead of ‘‘the couple’’), because it is possible

to construct indefinitely many different such couples. Thus, ‘‘x is the very same

person as Tom or x is the very same person as Sue’’ is also a couple {Tom, Sue}.

Ordered Pairs

An ordered pair hx, yi is an attribute that is satisfiable by all and

only couples {x, x} and {x, y} that could be constructed.

Note that an ordered pair is an open sentence satisfied by other open sentences—

it is not satisfied by the objects x and y.

Example: The open sentence

F is a couple {Tom, Tom} or F is a couple {Tom, Sue}

is an ordered pair hTom, Suei.

Relations A relation R is a quality that is satisfiable only by ordered pairs such

that if an ordered pair hx, yi could be constructed that satisfied R, then R is

satisfiable by every ordered pair hx, yi that could be constructed.

Example: ‘‘H is an ordered pair hx, yi such that x is married to y’’ is a

quality which is a relation corresponding to the intuitive relation of

being married to.

A Notational Definition If R is a relation, then

‘‘xRy ’’ meansdef ‘‘an ordered pair hx, yi satisfies R.’’
Notice that, as the term ‘‘relation’’ has been defined, if an ordered pair hx, yi
satisfies some relation R, so that xRy, then every ordered pair hx, yi that is con-
structible would also satisfy R.

In what follows, many of the definitions will look exactly like those given in

Frege’s theory of cardinal numbers.

Relation R correlates F to G

iff for every x that satisfies F, there is a y that satisfies G such that

xRy ;

and for every y that satisfies G, there is an x that satisfies F such that

xRy .
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Relation R is a one-one relation

iff for every x, y, and z,

if xRy and xRz, then y¼ z;

if xRy and zRy, then x¼ z.

F is equinumerous with G

iff it is possible to construct a one-one relation that correlates F to G.

Example: Let us suppose that the objects under consideration here are

people. Then consider the following open sentences:

J: ‘‘x is the junior senator from some state’’

S: ‘‘x is the senior senator from some state’’

and let R be the open sentence:

H is an ordered pair hx, yi such that x is the junior senator from a state

in which y is the senior senator.

It can be seen that R is a one-one relation correlating property J with property S.

Hence, J is equinumerous with S.
The developments in the following section deviate somewhat from the

Fregean developments, because we don’t have objects to serve as the cardinal

numbers.

Cardinal Number Attribute of a Property

An attribute N is a cardinal number attribute of property F iff N is satisfiable by

all and only those properties equinumerous with F.

Example of a cardinal number attribute of a property:

G is equinumerous with ‘‘x is the senior senator from some state’’

Cardinal Number Attribute

An attribute N is a cardinal number attribute iff it is possible to construct

some property F such that N is a cardinal number attribute of property F.

The next step is to define the natural number attributes. Thus, I first define

A zero attribute is any cardinal number attribute that is satisfied by

‘‘x 6¼ x.’’
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Then the following four definitions yield what is desired:

1. The immediate predecessor relation P

MPN iff it is possible to construct a property F which is such that

some object x satisfies it and N is a cardinality attribute of F and it is

possible to construct a property G such that M is a cardinality attribute

of G and G is satisfiable by all (and only those) objects different from x

which satisfy F.

2. P-hereditary qualities

A quality Q is P-hereditary iff, for all cardinality attributes M, N,

if M satisfies Q and MPN, then N satisfies Q.

3. P-descendants

A cardinality attribute N is a P-descendant of cardinality attribute M

iff N satisfies every P-hereditary quality that M satisfies.

4. Natural number attributes

A natural number attribute is any P-descendant of a zero attribute.

Specific Natural Number Attributes

A natural number attribute is

a one attribute iff it is possible to construct a zero attribute which immediately

precedes it;

a two attribute iff it is possible to construct a one attribute which immediately

precedes it;

a three attribute iff it is possible to construct a two attribute which imme-

diately precedes it;

and so on.

Because of space restrictions, I shall end my exposition of the Constructibility

Theory here. One can find a more detailed and expansive discussion of the

constructibility development of finite cardinality theory in Chihara (2004, ch. 7).

I turn now to the Burgess–Rosen objections.

4. An Examination of the Burgess–Rosen Evaluation

According to Burgess’s principal premise, the reconstructive nominalist must es-

pouse one of three positions: scientific instrumentalism, hermeneutic nominalism,

or revolutionary nominalism. Since I do not espouse scientific instrumentalism

(certainly not in the form characterized by Burgess), Burgess’s argument, directed at

my nominalistic account, can be regarded as resting on the view that my choices are

restricted to either hermeneutic nominalism or revolutionary nominalism.
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Now the position I developed in my book (Chihara 1990) does not fit com-

fortably any of the above descriptions of the possible types of nominalism that

Burgess provides. I was not espousing an instrumentalist view of science, since I in

no way considered science to be a myth. My view was that a great many (if not

most) of the assertions of scientists are, if not literally true, at least close to being

true, when the proper conditions are expressed.

I also made it clear in my book that my constructibility theory was not meant

to be an analysis of the mathematical statements asserted by practicing mathe-

maticians. Here’s what I wrote in the first chapter:

If we are puzzled about certain aspects of classical mathematics, why not

construct another kind of mathematics that will avoid those features of the

original system that gave rise to the puzzles? A study of these alternative math-

ematical theories will give us a new perspective from which to view classical

mathematics, which could prove to be extremely enlightening. (p. 23; italics
added)

So was I proposing a revolutionary nominalism? Not at all. What I was

proposing was an answer to the highly theoretical and deeply philosophical

question posed by Quine: Can our contemporary scientific theories be reformu-

lated or reconstructed in a way that will not require the assertion or the pre-

supposition of abstract mathematical objects? My Constructibility Theory was

meant to show how the mathematics needed for our contemporary scientific

theories can be developed without requiring a commitment to quantification over

abstract mathematical objects. I was not advocating that mathematics developable

in my system be actually used by scientists and mathematicians. The system was

devised to undermine a philosophical argument.

This point can be illustrated by taking up again Steiner’s version of Quine’s

argument. Recall that he had suggested that one cannot describe ‘‘any [genuine

nontrivial] thinkable experience’’ without presupposing numbers, since any such

description would involve rate of change: ‘‘Imagine defining rate of change

without the resources of analysis,’’ he had challenged, confident that such a

definition was impossible. In response, the nominalist can define rate of change

using the Constructibility Theory, and this without presupposing numbers. Thus

Steiner’s challenge can be met.43

43 My research assistant William Goodwin has responded to Steiner’s argument by

asking if Steiner thinks that before the nineteenth century arithmetization of analysis, and

certainly before Newton and Leibniz came up with their versions of the calculus, no

human was able to describe any genuine nontrivial thinkable experience. Do contempo-

rary humans with no understanding of analysis lack the means of describing any nontrivial

thinkable experience? The implications are staggering.
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Does the Use of Classical Mathematics in Science Ontologically

Commit One to the Existence of Mathematical Objects?

These developments also raise the question as to whether the use of even standard

classical mathematics in science genuinely commits one to accepting the existence

of abstract mathematical entities. If, as I have been arguing for many years, science

can be done using the Constructibility Theory instead of standard versions of

classical mathematics, without serious theoretical loss, this suggests that the role

that mathematics is required to play by our contemporary scientific theories is not

that of referring to and providing information about esoteric objects that do not

exist in physical space (since the Constructibility Theory does not do these

things). It encourages the thought that our contemporary scientific theories do

not truly require belief in mathematical objects, as Quine and other Platonists

have thought. Thus, we need to address the question: Does the use of even

standard versions of classical mathematics in science logically commit one to the

belief in abstract mathematical objects? But the answer to this question depends

crucially on answering the following question:

[#] Does the use scientists make of standard versions of classical mathematics

depend upon (or presuppose) taking the theorems of classical mathematics

(literally and platonically construed) to be true?

Most Platonists have simply assumed that [#] is true. For example, Michael

Resnik has included the following principle as a premise of several of his argu-

ments for the existence of mathematical objects:

[*] We are justified in drawing conclusions from and within science only

if we are justified in taking the mathematics used in science to be true.44

Resnik gives no justification for [*], perhaps because he thinks it is just obviously

true. However, I have heard philosophers argue for [*] along the following lines:

If the mathematics used in science and engineering were not true, how

could we, in good conscience, use it in the way we do to build bridges and

to design rockets? If the mathematical theorems upon which we base our

scientific inferences and theories were false, would not our bridges collapse

and our rockets go off target more often than not?

44 See Resnik (1998, p. 234), where the quoted sentences expresses a premise of an

argument that is formed by coupling his indispensability argument with a pragmatic

argument. The quoted sentence also expresses a premise of his ‘‘indispensability argument

for mathematical realism that separates questions of indispensability from questions of

confirmation’’ given on p. 233. See chapter 12 of this volume.
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5. How the Constructibility Theory Is Used in Analyzing

Mathematical and Philosophical Reasoning

The Constructibility Theory plays a role in undermining the above indented

argument, as well as the plausibility of [*] and [#]. Although I do not have the

space here to explain my strategy in detail, I can at least indicate one kind of role

that the Constructibility Theory plays in my refutation.45 In this way, I can give

additional grounds for doubting the Burgess–Rosen suggestion that the nomi-

nalist’s reconstructions of mathematics are good only for showing how an alien

mathematician might reason.

To show how the inferences drawn in science and engineering can be sound,

even if the mathematical theorems used in drawing the inferences are not true, I

set out to show two things:

1. The standard inferences involving the use of mathematics are indeed

sound; and

2. These inferences, justified by appeal to mathematical theorems, can

be legitimately drawn, without assuming that the mathematical

theorems (literally and platonically construed) are true.

To justify claims (1) and (2), I needed to analyze mathematical reasoning and

applications of mathematics in a way that does not presuppose the truth of the

very mathematical theorems being analyzed. The Constructibility Theory is used

in such an analysis, as is illustrated by the following examples.

Standard Arithmetical Inferences

Consider the case in which one concludes:

There are twelve coins on table A at time t

from the following premises:

[1] There are five dimes on table A at time t.

[2] There are seven quarters on table A at time t.

[3] A coin is on table A at time t iff it is either a dime or a quarter.

[4] Nothing is both a dime on table A at time t and a quarter on table

A at time t.

[5] 5þ 7¼ 12.

The Constructibility Theory can be used to establish the soundness of this

inference in the following way. For each of premises [1]–[4], as well as the

45 The details of my response to the indented argument are given in Chihara (2004,
ch. 9).
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conclusion, there is a corresponding sentence of the Constructibility Theory

(which I shall call the c-version of the sentence) such that the sentence of the

natural language is true iff the c-version of the sentence is true. It can be shown,

using the Constructibility Theory, that if the c-version of the premises are all true,

then the c-version of the above conclusion must also be true. We can thus see that

(1) if the premises are all true, the conclusion must also be true; and (2) nowhere

in this justification is it assumed that [5] must be literally true. All of this is

worked out in detail (Chihara 1990, pp. 89–92) to show that our intuitive rea-

soning using arithmetic is indeed sound.

The above example indicates the kind of role that the Constructibility Theory

can play in the nominalist’s analyses of reasoning involving mathematics: here, it

functions in the nominalist’s metatheory as a sort of tool, which helps the theore-

tician to understand (and to explain) the workings of real mathematics without

assuming that theorems of mathematics, literally and platonically construed, are true.

In the above account, I am not claiming that the c-versions of the premises

give the meaning of the premises. I am not a hermeneutic nominalist. However, as

a native speaker of English, I am in a position to know that each premise is true iff

the c-version of the premise is true, even if I cannot confidently give a semantic

analysis of the premise. Taking a page from G. E. Moore’s philosophy, I take the

position that I can know, for example, that this (pointing at my right hand) is a

hand iff that (pointing at my left hand) is a hand, even when I am not in a

position to give any precise semantic analysis of statements I may make using the

sentence ‘‘This is a hand.’’

The Use of the Constructibility Theory to Evaluate

Philosophical Arguments

The Constructibility Theory can also be used in the assessment of philosophi-

cal arguments involving arithmetic and cardinality theory. Consider Burgess’s

attempted refutation of a version of the causal theory of knowledge. Burgess

(1990) notes that the statement

Avogadro’s number is greater than 6� 1023

has been judged by scientists not only to be true, but to be even known to be true

(p. 6). He also points out that the statement seems to imply that there are

numbers. Evidently, we have scientific grounds for asserting that it is known that

there are numbers. Consequently, Burgess suggests, science provides us with

grounds for rejecting the version of the ‘‘causal theory of knowledge’’ according to

which any statement or theory implying that there are objects of a certain sort

cannot be known to be true unless some objects of that sort causally interact

directly or indirectly with us.
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Let us evaluate this reasoning. Certainly, scientists do claim to know such

things as

The number of planets whose orbits are smaller than that of the Earth is two.

The question is: Are these scientists claiming to know something that implies the

actual existence of abstract mathematical objects? Suppose we put to these sci-

entists the question

What justification do you have for making this claim?

I am confident that whatever scientific grounds these scientists would provide in

response to our question would amount to no more than the grounds they have

for asserting that the open sentence ‘‘x is a planet whose orbit is smaller than that

of the Earth’’ satisfies a two-attribute. In other words, the grounds that the

scientist would supply would be no more than the grounds we have for asserting

the constructibility version of the cardinality statement.

Would any of the grounds that scientists supplied in answer to our question

justify, over and above the constructibility cardinality statement, the proposition

that there exist entities with which we are in no direct or even indirect causal

relations? Not likely. I am confident that these scientists would provide a rea-

sonably cautious person with no good reason for asserting, ‘‘Now I know that

there exist in the actual world abstract entities from which we are completely and

totally cut off causally.’’ Hence, I am skeptical that science has provided us with

grounds for rejecting the causal theory in the way Burgess has suggested.

Here again, the Constructibility Theory functions as a tool of the nominalist’s

metatheory, enabling the theoretician to more easily assess the soundness of

certain philosophical arguments. These uses of the theory should not be lumped

with science fiction.

The Vineberg defense

Against the earlier Burgess–Rosen objection to the reconstructive nominalist, Susan

Vineberg has marshaled a case supporting the relevance of nominalistic recon-

structions for deciding whether belief in mathematical objects is required by sci-

ence.46 Vineberg investigates various views of compelling evidence that do not

require a causal connection between the scientist and what she has evidence for. Of

the above sort, Vineberg finds three: the well-known Bayesian view; the eliminativist

view, advocated by Philip Kitcher47; and the contrastive view, proposed by Elliot

46 This was done at the Pacific Division Meeting of the American Philosophical

Association in 2001.
47 See Kitcher (1993, esp. pp. 237–247).
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Sober and Larry Laudan.48 Omitting here the details of her reasoning, Vineberg

concludes that, regardless of which of the above theories of evidence one may

choose, ‘‘substantial confirmation requires eliminating, or revealing as improbable,

alternative theories.’’ Not surprisingly, it is common scientific practice to look for

alternate theories that fit or explain the relevant experimental data and observations

that have been gathered, and to attempt to find evidence that allows us to eliminate

all but one of these theories. Within this context of scientific theory evaluation, the

nominalistic reconstruction of mathematics discussed above can be seen to be fitting

and reasonable: in the absence of genuine evidence (as opposed to mere pragmatic

considerations such as ‘‘familiarity with established theory’’) that allows the Platonist

to eliminate this alternative, the nominalistic reconstruction provides us with ra-

tional grounds for being skeptical about the existence of mathematical objects.

Vineberg’s point can be illustrated by the following: it is thought by Platonists

that the existence of mathematical objects is required to solve certain problems or

puzzles, and that this fact alone counts strongly in favor of belief in mathematical

objects. For example, according to Steiner, Frege completely solved what Steiner

calls the ‘‘metaphysical problem of applicability’’.49 Since Frege’s solution pre-

supposes the existence of mathematical objects, it is thought that the very success

of Frege’s solution amounts to a reason for believing in the existence of mathe-

matical objects.50

The Constructibility Theory, however, allows one to devise an alternative so-

lution to the ‘‘metaphysical problem of applicability’’51—a solution that does not

presuppose the existence of mathematical objects—thus undercutting the idea

that the postulation of mathematical objects is required to solve the problem. We

can thus see how a nominalistic alternative can serve to undermine various claims

of the Platonist that we have compelling scientific grounds for postulating the

existence of mathematical objects.

48 Sober’s eliminativist view is discussed in Sober (1993). Laudan’s view is presented

in Laudan (1997), which contains the idea, relevant to the discussion above, that ‘‘The

evaluation of a theory or hypothesis is relative to its extant rivals. To accept H is to hold

that it is more reliable than its known rivals; to reject H implies that it is worse than at

least one of its known rivals’’ (p. 314). As Vineberg has noted, James Hawthorne has

analyzed Bayesian induction in such a way that it can be seen to be a probabalistic form of

eliminative induction, i.e., ‘‘a method for finding the truth by using evidence to eliminate

false competitors’’ (Hawthorne 1993, p. 99).
49 See Steiner (1995, p. 132). Steiner attributes the formulation of this problem to Carl

Posy.
50 Frege’s solution is supposed to consist in showing how mathematical entities

relate, not directly to physical objects but rather through concepts. Commenting on this

solution, Steiner writes: ‘‘That physical objects may fall under concepts and be members of

sets is a problem only for those who do not believe in the existence of sets’’ (1995, p. 138).
51 Such a solution is given in Chihara (2004, ch. 9).
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I should like to emphasize that the nominalistic reconstruction of mathe-

matics described here was not put forward either as an analysis of the systems of

mathematics used by practicing mathematicians or as a theory to be used in place

of the standard mathematical systems in use today all over the world. But this

does not mean that the only use left for the reconstruction is as an imaginative

exercise in how alien mathematicians might have reasoned.

6. Summation

It makes a big difference whether one sees realism in the positive way Gödel did—

as part of a positive account of the nature of mathematical truth and of how

mathematics is related to science—or in the purely negative (‘‘anti-nominalist’’)

way Burgess and Rosen do. Burgess and Rosen seem to have hit upon a brilliant

strategy for defending realism. By characterizing their own version of realism in

the negative way they did, they seem to have succeeded both in shifting the onus

of justification onto the nominalist and at the same time absolving themselves of

the enormous burden of explaining how they obtained their supposed knowledge

of mathematical objects. However, I find their minimal anti-nominalism very

unsatisfying. I am inclined to call the Burgess–Rosen brand of realism ‘‘aphilo-

sophical realism’’ instead of ‘‘moderate realism’’ or ‘‘minimal anti-nominalism,’’

since it does not subject the doctrine being advanced to philosophical analysis or

development, being content merely to assert the existence of mathematical objects

without attempting to make sense of the doctrine, to reconcile the doctrine with

the various epistemological views that are widely accepted, or to explain a number

of very puzzling questions that arise in connection with what mathematicians and

scientists do and say. If risk aversion is one’s chief concern, then minimal anti-

nominalism may be a good strategy, but from the perspective of those sympa-

thetic to the view of philosophy described in the beginning of part II, minimal

anti-nominalism will simply be a cop-out.
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c h a p t e r 16

NOMINALISM

RECONSIDERED

gideon rosen

john p. burgess

1. Nominalism and Its Varieties

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Nominalism is usually formulated as the thesis that only concrete entities exist or

that no abstract entities exist. But where, as here, the interest is primarily in phi-

losophy of mathematics, one can bypass the tangled question of how, exactly, the

general abstract/concrete distinction is to be understood by taking nominalism sim-

ply as the thesis that there are no distinctivelymathematical objects: no numbers, sets,

functions, groups, and so on. As to the nature of such objects (if there are any), we

need only say that it has come to be fairly widely agreed, under the influence of Frege

and others, that they are very different both from paradigmatically physical objects

(bricks, stones) and from paradigmatically mental ones (minds, ideas)[Frege 1884].

Modern nominalism emerged in the 1930s as a response to the view of Frege and

others that numbers, sets, functions, groups, and so on belong to a ‘‘third realm.’’1

1 [Goodman and Quine 1947] is the first important manifesto of modern nominalism,

but the view was widely discussed among the Warsaw logicians in the 1930s; Lesniewski and
Kotarbinski were its main advocates. In his autobiography, Quine reports conversations

with Lesniewski in 1933 in which ‘‘I would argue far into the night, trying to convince him

that his system of logic did not avoid, as he supposed, the assuming of abstract objects

[Quine 1985: 104]. See [Simons 1998] for a survey of Polish nominalism between the wars.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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This modern nominalism was not intended as a reactionary movement back

toward pre-Fregean views that would take mathematics to be directly concerned

either with the contents of the physical universe or with those of the human mind.

It did not say, ‘‘Yes, there are numbers, but they are somehow parts of nature or

of the mind,’’ but rather, ‘‘There are no numbers. Mathematics is not a descriptive

science with a special subject matter of its own. Either it is a body of general truths

with no distinctive subject matter, or it is not a body of truths at all.’’ Our concern

here will be with nominalism thus conceived.

One way to classify the varieties of nominalists is by considering their re-

sponses to the following methodological/epistemological argument for anti-

nominalism. It has three premises that seem scarcely deniable.

(1) Standard mathematics, pure and applied, abounds in ‘‘existence theo-

rems’’ that appear to assert the existence of mathematical objects, and to be true

only if such objects exist; which is to say, to be true only if nominalism is false.

Such, for instance, are

There are infinitely many prime numbers.

There are exactly two abstract groups of order four.

Some solutions to the field equations of general relativity contain closed

timelike curves.

(2) Well-informed scientists and mathematicians—the ‘‘experts’’—accept

these existence theorems in the sense both that they assent verbally to them without

conscious silent reservations, and that they rely on them in both theoretical and

practical contexts. They use them as premises in demonstrations intended to

convince other experts of novel claims, and together with other assumptions as

premises in arguments intended to persuade others to some course of action.

(3) The existence theorems are not merely accepted by mathematicians, but are

acceptable by mathematical standards. They, or at any rate the great majority of

them, are supplied with proofs; and while the mathematical disciplines recognize a

range of grounds for criticizing purported proofs, and while it occasionally happens

that a widely accepted proof is undermined by criticism on one or another of these

grounds, nonetheless the proofs of the existence theorems, or at any rate the great

majority of them, are not susceptible to this kind of internal mathematical criticism.

There are four other premises a nominalist might try to challenge:

(4) The existence theorems really do assert and imply just what they appear

to: that there are such mathematical objects as prime numbers greater than 1000,

abstract groups of various orders, solutions of various equations of mathematical

physics with various properties, and so on.

(5) To accept a claim in the sense of assenting verbally to it without conscious

silent reservations, of relying on it in theoretical demonstrations and practical de-

liberations, and so on, just is to believe what it says, to believe that it is true.
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(6) The existence theorems are not merely acceptable by specifically mathe-

matical standards, but are acceptable by more general scientific standards. Not only

do empirical scientists in practice generally defer to the mathematicians on math-

ematical questions, existence questions included; they are by scientific standards

right to do so. There is no empirical scientific argument against standard math-

ematical theorems, existence theorems included.

(7) There is no philosophical argument powerful enough to override or

overrule mathematical and scientific standards of acceptability in the present

instance.

From (1), (2), (4), and (5) there follows an intermediate conclusion:

(8) Competent mathematicians and scientists believe in prime numbers

greater than 1000; abstract groups of various orders, solutions of various equa-

tions of mathematical physics with various properties, and so on. Hence, if nom-

inalism is true, expert opinion is systematically mistaken.

From (8) together with (3), (6), and (7) there follows the ultimate anti-

nominalist conclusion:

(9) We are justified in believing (to some high degree) in prime numbers

greater than 1000, abstract groups of various orders, solutions of various equa-

tions of mathematical physics with various properties, and so on, which is to say

we are justified in disbelieving (to the same high degree) nominalism.

Nominalists who concede (8) are revolutionaries: They concede that their phil-

osophical position is at odds with established mathematical and scientific opinion.

Revolutionaries must reject either (6) or (7). Those who reject (6) are naturalized

revolutionaries. They seek to correct entrenched errors of established mathematics

and science only by appeal to the sorts of argument that typically weight with the

experts themselves. Those who concede (6) but reject (7) are alienated revolu-

tionaries. They seek to correct entrenched errors of established mathematics and

science by appeal to arguments that may have little or no weight with mathe-

maticians or scientists, but might come to have such weight if the experts could be

persuaded to take a more philosophical view of the matter.

Nominalists who wish to stop the argument before (8), by rejecting either (4)

or (5), are hermeneuticists. Those who reject (4) are content hermeneuticists, and

those who reject (5) are attitude hermeneuticists. The former reject the straight-

forward ‘‘face value’’ construal of what the existence theorems themselves say,

while the latter reject the straightforward ‘‘face value’’ construal of what mathe-

maticians are doing when they assent verbally to such theorems. If either variety

of hermeneuticism is correct, nominalist philosophy is fully compatible with the

‘‘deliverances’’ of ordinary mathematics and science.

We accept the schematic argument, and so reject both revolutionary and

hermeneutic nominalism in all their guises. Our aim here, however, is not to refute

the nominalists once and for all, but simply to point out some of the obstacles a

compelling case for nominalism would have to overcome. We content ourselves
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with only a rather brief review of revolutionary nominalism and related versions of

content-hermeneutic nominalism. We have treated these positions at considerable

length in our book A Subject with No Object [1997] (henceforth SWNO), and to our

knowledge nothing substantially new has been added concerning these positions in

subsequent years. Under the label ‘‘fictionalism,’’ attitude-hermeneutic nominal-

ism (whichmakes play with a distinction between two verbs, ‘‘accept’’ and ‘‘believe,’’

that can be used interchangeably when discussing other forms of nomnalism) has

become quite influential in recent years, and we turn to it next. Finally we consider

the distinctive form of hermeneuticism advocated by Stephen Yablo.

2. Naturalized Revolutionary

Nominalism

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The revolutionary nominalist concedes that scientists and mathematicians rou-

tinely assert and believe that mathematical objects of various sorts exist, and that

the great majority of their assertions and beliefs of this kind are prima facie

acceptable, given the standards that are brought to bear within mathematics and

the sciences. Perhaps the best evidence is that existence theorems are often

published in journals with the most stringent peer review procedures, and the vast

majority of these published theorems survive subsequent scrutiny on the part of

competent practitioners. A naturalized revolutionary nominalist must claim these

theorems are nonetheless unacceptable by mathematical or scientific standards.

As we have already said, calling claim (3) of the preceding section ‘‘scarcely

deniable,’’ the claim will almost surely have to be that the existence theorems

are unacceptable by broader scientific standards, not by narrowly mathematical

standards. Such a position—one that criticizes mathematical results by ‘‘extra-

mathematical’’ standards, even scientific as opposed to distinctively philosophical

ones—is one that already will be dismissed out of hand by some anti-nominalists,

those Penelope Maddy calls the ‘‘mathematical naturalists.’’ Their credo is that

Mathematics is not answerable to any extra-mathematical tribunal and not in

need of any justification beyond proof and the axiomatic method. Where Quine

takes science to be independent of first philosophy, [the] naturalist takes

mathematics to be independent of first philosophy and natural science—in short,

from any external standard. [Maddy 1997:184]

By contrast, scientific as contrasted with mathematical naturalism (whose most

famous and influential representative, W. V. Quine, is mentioned by Maddy in

the preceding passage), will at least be prepared to listen to an appeal beyond

narrowly mathematical to broadly scientific considerations. Though there is a good
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deal to be said for mathematical naturalism, we will not rehearse the case for it

here, but rather will pass on to consider what arguments a nominalist might

present to a scientific naturalist.

Of course there will be nothing like a direct empirical ‘‘disconfirmation’’ of,

say, the claim that the number 1 has three complex cube roots, in the sense that

there may be a direct empirical ‘‘disconfirmation’’ of the claim that spontaneous

generation occurs. The nominalist argument will have to be less direct and more

‘‘theoretical.’’ The most common form of the argument runs as follows:

There is no a priori objection to standard mathematics, any more than to the

phlogiston theory of combustion or the doctrine of metempsychosis. But

mathematics is a body of theory, and as such is subject to correction as science

progresses. One ground for rejecting a scientific theory that purports to describe

a special domain of objects is a demonstration that we can account for the

phenomena without invoking those objects, by constructing an alternative theory

whose substantive commitments are in some sense weaker, or at least less

problematic, but which is nonetheless capable of ‘‘doing the work’’ of the

original. And it turns out that it is possible to construct nominalist alternatives to

standard mathematically formulated theories.

This is the inverse of what is known as the ‘‘Quine–Putnam indispensability ar-

gument’’ against nominalism, and might be called the ‘‘dispensability argument’’

for nominalism.

Of course, the larger part of the task of arguing for nominalism along the lines

indicated must be the construction of the alternative theories. This has been

attempted in different ways by different writers in the literature, and we have

surveyed many of these in SWNO. Limitations of space preclude undertaking any

such survey here. Suffice it to say that each of the proposed alternatives, while

avoiding mathematical objects, involves auxiliary apparatus that will not be to

everyone’s liking (points and regions of physical space-time considered as sub-

stantive objects on one approach, and on other approaches, considerations of

things there aren’t but could have been, and how, if they had been, they would

have compared with things there are). And even waiving any objections to the

apparatus invoked, these alternatives still have the feature that they are signifi-

cantly less perspicuous, tractable, familiar, and (so far as one can judge) fruitful

for the further development of science.

The nominalist advocates of such alternatives hold that these drawbacks are

outweighed by the fact that they avoid ‘‘ontological commitment’’ to mathemat-

ical objects. But can we really say that this avoidance is a factor that by scientific

standards counts more than perspicuity, tractability, familiarity, fruitfulness, and

the like? It is unclear why it should. There is no clear evidence from the history of

science or mathematics that these disciplines are concerned to minimize their

inventory of mathematicalia. Maddy has argued that, so far as the internal

standards of mathematics are concerned, there is, on the contrary, evidence that
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mathematics seeks to maximize the number and variety of the mathematical

objects it can accommodate [Maddy 1997]; and it is also easy to understand why

empirical scientists, who turn to mathematics for models and tools, would be

happier to have more of them rather than fewer.

Thus there are grounds to suspect that, in valuing avoidance of mathematical

objects as highly as they do, the revolutionary nominalists of the kind we have

been discussing are in fact promoting a distinctively philosophical rather than

scientific, let alone mathematical, standard of evaluation. That they are themselves

to some degree conscious that this is what they are doing is suggested by the fact

that they generally publish their proposals not in scientific but in philosophy

journals. If the nominalist argument does involve such appeal over the head of

science to a philosophy outside, above, and beyond it, then scientific as well as

mathematical naturalists will reject it out of hand. But as with mathematical

naturalism, so with scientific naturalism; we are not going to rehearse the case for

it here but, rather, will pass on to consider naturalist arguments that reject it.

3. Alienated Revolutionary

Nominalism

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If one is prepared to appeal above and beyond science to some superior and ulterior

philosophy, however, then there are much more direct ways to argue for nominal-

ism than by citing some alternative to current scientific and mathematical theories

that is superior to them by philosophical, though inferior by scientific, standards.

Some nominalists, for instance, report ‘‘intuitions’’ (though few have propounded

arguments) to the effect that the positing of abstract, mathematical objects is mean-

ingless. Many more nominalists express epistemological qualms about numbers, sets,

and the rest, and propound epistemological arguments for nominalism.

Such arguments do not seek to show that mathematical existence claims are

false (let alone meaningless), but rather seek to show that while such claims may be

justified by mathematical and scientific standards, they are nonetheless not really

justified, all things considered. Naturally such arguments, according to whichmeet-

ing mathematical and scientific standards just isn’t enough, are always published in

philosophy, not in cognitive science, journals and are distinctively philosophical.

There can be no question of surveying here all the different distinctively philo-

sophical arguments for nominalism that might be found in the literature, but the

epistemological type, because of its popularity, does call for comment.

Behind all epistemological arguments lies a certain picture. One key respect in

which mathematical objects differ from physical and mental objects is that they

are causally inactive and impassive—or, as nominalists like to say, causally isolated

520 oxford handbook of philosophy of math and logic



from us. This fact leads to a picture of some great wall or gulf separating and iso-

lating us on the one side from the mathematical objects on the other side, and the

picture leads to the worry, ‘‘How can we possibly know what is going on over on

the other side?’’ Those nominalists who take it upon themselves to go beyond a

mere picture to an articulated argument would seem to need an analysis or theory

of some key epistemic notion, such as rational opinion or justified belief or war-

ranted assertion. But in assuming the burden of producing such a theory, these

nominalists place themselves at a disadvantage.

For it is notoriously difficult to produce convincing analyses in this area, and no

one proposal is likely to have even a majority of nominalist party members behind it.

Though there can be no question of an extended survey of epistemological argu-

ments, the survey in SWNO (I.A.2) shows that nominalist epistemological premises

typically turn out to be either too weak or too strong. (For instance, the principle that

one cannot justifiably believe in objects of a certain kind unless they are mentioned

in the causal explanation of how one came to believe it is too weak to have the

implications the nominalist wants, since mathematical objects are appealed to in the

detailed scientific explanation of almost anything, cognitive processes included

[Steiner 1975]. The principle that one cannot justifiably believe in objects unless they

exert a causal influence on oneself, by contrast, is too strong and has consequences

the nominalist does not want, such as the impossibility of knowledge of the future.)

And waiving all objections of detail, assuming one has somehow found an

epistemological principle that is not too strong, not to weak, but ‘‘just right’’ for

nominalist purposes, there is a further, general difficulty. The development of

theories in epistemology is a quasi-inductive affair. Typically one begins with what

one takes to be clear cases of justified belief and clear cases of the opposite, and

looks for a formula that covers the data and rings true on reflection. A theory

developed in this spirit can then be used to correct pretheoretical verdicts at the

margins. But it would seem that it cannot be used to undermine a vast and

significant class of normally uncontroversial verdicts about justification.

If the theory really has the implications the nominalist wants, implying that

our apparent mathematical knowledge is error or delusion, the anti-nominalist

can simply claim that the novel theory, however meritorious in other respects,

stands refuted by the counterexample of mathematical knowledge. It would be

a gross mistake to repudiate the central claims of Mesozoic paleontology or

Byzantine historiography on the basis of a theory of justification that had been

developed and tested on examples drawn exclusively from, say, particle physics.

The nominalist who wields a theory of justification developed by reflection on

cases of empirical belief as a club against the mathematicians can with consid-

erable plausibility be charged with a similar mistake.

We should not overstate the case, however. Philosophical theories of justified

belief are only ‘‘quasi’’-inductive. We may begin by extracting principles to cover a

list of paradigms and foils, and find that once extracted, the principles strike us as so
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obviously correct that they could motivate a significant redescription of part of the

data. What can be said without overstatement, however, is that in the present case

no one has yet produced an independently compelling general theory of justification

that would support the view that scientists and mathematicians are systematically

mistaken about what it takes to justify an existence claim in mathematics.

This being so, nominalists are likely to want to shift the burden to the other

side, claiming it is not up to them to articulate a theory of justification showing

that belief in mathematical existence is not justified, but rather is on their oppo-

nents to articulate a theory showing that it is justified. The epistemological chal-

lenge then might be put like this:

Mathematicians (to whom empirical scientists defer in these matters) generally

obtain their existence theorems by deduction from previously established results,

which ultimately depend on existence axioms. But such a deduction provides

a justification of the theorems only if the axioms are themselves justified. (This is

not a ‘‘theory’’ of justification, but just a platitude.) Now has anyone shown

that the kind of process by the axioms were arrived at is a reliable one, tending to

lead to true axioms? Have the axioms been justified? Not by the main corps

of mathematicians, who seldom if ever consider such questions. Only a small

cadre of specialists, with one foot in philosophy, ever bother to consider the

epistemic status of the axioms, and even they do not manage to agree among

themselves as to what the justification for them is supposed to be.

And indeed this last observation is quite true: There is no consensus among anti-

nominalists who take upon themselves the burden of articulating a theory of

justification according to which belief in the axioms is justified.

Some claim that the axioms ‘‘force themselves upon us as true’’ [Gödel 1947], to

which the nominalist will reply that this kind of subjective conviction is not accepted

as sufficient for justified belief in any other area [Chihara 1973]. Some claim the

axioms are ‘‘constitutive of the meaning’’ of mathematical terms [Wright 1983], to

which nominalists will reply that no existential assertion can be analytic [Field 1984].

Some claim that the axioms are justified by their consequences, since the mathe-

matical theories deduced from them are indispensable for scientific applications

[Putnam 1971], to which the nominalist will reply that (even setting aside the

question broached in the preceding section as to whether mathematical objects really

are indispensable) it is unclear that indispensability in the relevant sense is a cogent

reason for belief [Maddy 1997; Melia 1995]. Moreover, in the case of each specific

anti-nominalist epistemological claim, a large segment of the antinominalist party

will sympathize with the nominalist objection to that specific claim.

But there is another kind of anti-nominalist response, which simply rejects the

presupposition of the nominalist challenge that our basic mathematical assump-

tions require some sort of positive defense. To see how rejection of the challenge

might be motivated, consider the following skeptical parallel to or parody of the

nominalist challenge itself:
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Scientists generally derive their results from ordinary perceptual judgments

(about their observational instruments and experimental apparatus). But such a

derivation provides a justification only if ordinary perceptual judgments are

themselves justified. (This is not a ‘‘theory’’ of justification, but just a platitude.)

Now has anyone shown that the kind of process by ordinary perceptual judg-

ments are arrived at is a reliable one, tending to lead to true judgments? Have

ordinary perceptual judgments been justified? Not by the corps of scientists, who

never consider such questions. Only a small cadre of specialists, with both feet in

philosophy, ever bother to consider the epistemic status of perceptual judgments,

and even they do not even manage to agree among themselves as to what the

justification for them is supposed to be.

And indeed this last observation is quite true: There is no consensus among anti-

skeptics who take upon themselves the burden of articulating a theory of justi-

fication according to which belief in ordinary perceptual judgments is justified.

But many anti-skeptics simply reject the presupposition of the skeptical

challenge that our basic ways of forming judgments of perception require some

sort of positive defense. They take a standard for the justification of beliefs to be

something that emerges from our evolving practice of criticizing the beliefs people

actually form, one central feature of which practice is that we take our sponta-

neous perceptual beliefs for granted until we are given some sort of positive rea-

son to doubt them. Perceptual judgments are justified by default, innocent until

proven guilty, on this view. It is beyond dispute that we unhestiatingly accord

them just such a status, as the view in question implies, when engaged in serious

inquiry about matters of real importance. Why should we accept the demand of

the skeptics that we hesitate to accept the results of important inquiries until a

substantive justification for perceptual judgment is provided that would satisfy

them? That is the question raised by one line of thought in response to the skep-

tical challenge, and insofar as the nominalist and skeptical challenges are parallel,

a similar response would seem to be available to the anti-nominalist.

4. Content-Hermeneutic

Nominalism

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

So far we have been discussing the admirably straightforward nominalists who

agree that scientists and mathematicians typically believe standard existence

theorems, and that these beliefs are justified by internal scientific and mathe-

matical standards. Nominalists of this sort are self-conscious revolutionaries.

They may struggle in a losing cause, but at least we know what sort of struggle

they’re engaged in: the struggle to correct a mistake embedded in existing science.
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We did not attempt in our discussion in the preceding section to show that

theirs is clearly a losing cause, but only that it is not clearly a winning one. A main

lesson to take away from our discussion is that it is very difficult to settle issues

when one rejects scientific standards for settling them. Argumentation over

epistemology (or almost anything else) from an alienated, extrascientific, as op-

posed to a naturalized, intrascientific, standpoint usually tends to be inconclusive

and often tends to bog down in issues of burden of proof. So it was that we saw

that whichever side is saddled with the onus of articulating a detailed theory of

justification finds itself at a serious disadvantage.

According to hermeneutic nominalism, to which we next turn, there is no

need to enter into such inconclusive debates, since there is no conflict between

nominalism and science at all. Of course, the hermeneuticist must explain away as

somehow unreal the apparent conflict between the mathematician who affirms,

‘‘There are prime numbers greater than a thousand’’ and the nominalist who

insists, ‘‘There are no numbers at all.’’ Such is the task confronting nominalists

who are not so straightforward as to admit that they are engaged in the business of

correcting the errors of scientists and mathematicians. They must defend some

subtle interpretation, either of the content of the existence theorem, or of the

attitude of the mathematician who verbally affirms it, so as to reveal that the

apparent or ‘‘surface’’ conflict is not, ‘‘deep down,’’ a real one.

One way a nominalist might attempt to go about this would be to claim that

one or another of what in our discussion of naturalized revolutionary nominalism

we called nominalist alternatives to standard mathematical and scientific theories

is not in fact an alternative, but a revelation of what ‘‘deep down’’ the standard

theory has really meant all along. For instance, it might be maintained that

(A) ‘‘There exist prime numbers greater than a thousand’’

is innocent because all it really means is

(A*) There could exist a prime numeral greater than a thousand.

or something of the sort.

There are, however, two serious difficulties with such a view. For one thing,

such a nominalistic translation seems to work too well. If (A) is nominalistically

acceptable because ‘‘deep down’’ all it means is (A*), then it would seem that

(B) ‘‘There exist numbers’’

must be acceptable, too, because all it means is

(B*) There could have been numerals.

But to concede (B) (and the corresponding statement about other kinds of math-

ematical objects) is to concede all the anti-nominalist maintains [Alston 1958].
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For another thing, there is a total lack of scientific evidence in favor of any

such nominalistic reconstrual as a theory of what ordinary mathematical asser-

tions mean. Or at least, no nominalists favoring such a reconstrual have ever

published their suggestions in a linguistics journal with evidence such as a linguist

without ulterior ontological motives might accept.

But there is another hermeneutic claim, not dependant on associating with

mathematical existence assertions like (A) above another form of words such as

(A*), and presumably not subject to the same kind of objections as views that are

dependent on such an association. On this other view, there is simply an ambi-

guity in the word ‘‘exists,’’ between a strong and a weak sense, which we may write

as ‘‘exists’’ and ‘‘exists.’’ (A) is supposed to be quite true if by ‘‘exists’’ one means

‘‘exists,’’ and to become false only if one takes ‘‘exists’’ to mean ‘‘exists.’’ Adherents
of such a viewmaintain that there is no conflict between their species of nominalism

and science or mathematics, since scientists and mathematicians, when immersed

in their practice, are only talking about existence. The nominalist’s quarrel is only

with those ‘‘Platonist’’ philosophers who misread scientific and mathematical

practice, and claim existence for mathematical objects.

Any proposal along these lines faces a considerable explanatory burden. The

first task, obviously, will be to explain the distinction between the two supposed

senses of existence. The second task will be to make it plausible that philosophical

claims involve one sense, and internal mathematical and scientific claims the other.

Suppose it is said, for instance, that for a thing to exist is for it to part of the

ultimate furniture of the universe. However this last phrase is interpreted, it seems

quite plausible that large, composite objects like the Eiffel Tower do not exist in
this sense. But an anti-nominalist may be perfectly willing to grant that the Euler

function may not exist in this sense either. The most the anti-nominalist wishes to

claim that the Euler function exists in the same sense that the Eiffel Tower does. To

put the matter another way, it is supposed to be uncontroversial that mathematical

objects exist, and controversial whether they exist. But the genuinely controversial

question is whether or not numbers, functions, and the like exist in the sense in

which the planet Venus does and the planet Vulcan doesn’t. The positing of two

senses, strong and weak, of the same verb does nothing to settle this controversy.

5. Attitude-Hermeneutic

Nominalism

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A different but not unrelated nominalist view, instead of distinguishing between

two senses of ‘‘exists,’’ and two corresponding contents that a statement like (A)
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might have, distinguishes two attitudes with which a statement like (A) might be

put forward. Often the view in question is expressed using a distinction between

‘‘acceptance’’ of and ‘‘belief ’’ in existence theorems: mathematicians and scien-

tists, it is said, only ‘‘accept’’ the existence theorems; ‘‘Platonist’’ philosophers err

by believing them.

The advocates of such a nominalist view may avoid the task of explaining the

differences between two senses of ‘‘exist,’’ but they still have some explaining to do.

The nominalist can hardly deny that informed practitioners routinely put forward

existence theorems in serious conversation without conscious qualms, rely on

existence theorems in high-stakes deliberations, and so on. So ‘‘acceptance’’ must

be compatible with all of this and yet still somehow fall short of belief.

Now one doesn’t have to be a behaviorist to think that when a person un-

derstands a sentence S, confidently affirms it without qualification and without

conscious insincerity, organizes serious activity just as would be done if S were

believed, and so on, then we have a powerful case for attributing to that person a

belief that S: the attitude-hemeneuticist posits an attitude called ‘‘acceptance’’ that

is supposed to be distinct from belief but to have all the most salient behavioral

and instrospectable consequences of belief. But attitude types cannot be brutely

different. There must be some difference between a believer and a mere accepter,

and if there is such a difference, surely it is reasonable to expect that its presence

will be betrayed somehow in behavior [Horwich 1991].

It would be one thing if scientific neophytes were regularly taken aside at

some stage in their training by their mentors and told, ‘‘Don’t believe it, just accept

it. No one around here really believes what he says.’’ We can imagine a community

in which this happened, in which scientists and mathematicians were explicitly

encouraged to regard the mathematics they employ in roughly the same spirit in

which the aeronautical engineer regards Newtonian physics—as a theoretical

instrument to be used in many important contexts, but not to be believed [Rosen

2001]. But while we can imagine such a community, we don’t live in one. It is not

part of the practice of ordinary mathematics to take steps to disavow belief in the

standard existence theorems, to warn students against believing, or the like. Thus

we lack what would be the best kind of direct evidence that the practice of math-

ematics and science involves something less than belief in existence theorems.

There are some phenomena of the behavior of mathematicians for which

attitude-hermeneuticism can give a plausible partial explanation, and which there-

fore constitute some kind of indirect evidence in favor of that nominalist position.

Perhaps the most important is the fact that scientists and mathematicians are

strikingly lighthearted when it comes to the introduction of novel mathematical

entities. Once theorists have convinced themselves that some new mathemati-

cal theory is consistent (internally and with previously accepted mathematics),

nothing further seems to be needed to persuade them to accept the new theory,

existence claims and all, when it would suit to do so. The attitude-hermeneuticist
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has a partial explanation of this phenomenon: since the theorists’ decision to

accept the new existence claims is not a decision to believe them, it is not sur-

prising that they are unconcerned about the possibility that the theory may not be

true because the objects it posits do not exist.

Another phenomenon is that of the indifference of mathematicians to certain

kinds of questions about the identity mathematical objects. Mathematicians speak

of numbers and of sets, but never concern themselves with such as questions as

which set (if any) is identical with, say, the number 2. Such an attitude is readily

intelligible on the supposition that the mathematician regards number theory and

set theory only as useful fictions. For there are no end of questions about fictional

characters one is quite prepared to leave undecided [Field 1989].

Yet another phenomenon is the reaction—or, rather, the varied reactions—of

mathematicians when pressed by philosophers with questions about the existence

of the entities mentioned in their theorems. Some dismiss the question as of no

interest, some freely concede any skeptical charge their philosophical inquisitor

raises, some frankly do not know what to say. All this is readily intelligible if

mathematicians do not regard themselves as committed to the truth of their

theorems, which would presuppose the existence of the entities those theorems

are about, in a way the mere utility of the theorems would not.

But considerations of these kinds lend only rather weak support to attitude-

hermeneuticism, because there are many alternative explanations of the cited

phenomena available. Thus the lightheartedness about new existence assumptions

may be accounted for by the fact that assurance of consistency—and mathema-

ticians are seldom quite so lighthearted as to accept new existence assumptions

without such assurance—is generally provided by describing models consisting of

objects already recognized. But then the new entities, being identifiable with those

already recognized objects, may not really be ‘‘new’’ after all. Again, the indif-

ference to questions of identity may be accounted for by the fact that pure

mathematicians are generally interested only in properties that structures share

with all isomorphic structures. If statements ostensibly about 2 are really general

statements about the two-element in any structure of a certain kind, then there

can be no meaningful question about which set 2 is identical with, because the

two-elements of different structures may be identical with different sets. Many

other alternative explanations—more than there is space for here—will occur to

readers of the literature in philosophy of mathematics.

As for mathematicians becoming flustered when grilled by skeptical philoso-

phers, don’t ordinary people become flustered when pressed by skeptical philos-

ophers to defend the statement ‘‘I am awake’’? And does this fact in any way suggest

they don’t ‘‘believe’’ they’re awake, but only ‘‘accept’’ it? The indirect evidence for

attitude-hermeneuticism is thus weak, and seems insufficient to overcome the

presumption against the view established by the lack of direct evidence—by the

absence of self-conscious disavowal among working mathematicians and scientists.
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Moreover, it strains credulity to suggest that the internal norms governing sci-

entific inquiry somehow demand such disavowal nonetheless. We conclude that

attitude-hermeneutic nominalism is untenable. A philosopher may advocate the

adoption of some attitude toward mathematics weaker than belief, considering that

only this weaker attitude is ever justified. But such a philosopher is an alienated

revolutionary nominalist, and subject to the doubts raised in the section above on

that type of position.

6. Yablo’s Figuralism

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The most developed hermeneutic position in recent years has been that of Stephen

Yablo [1998, 2000a, 2000b, 2001, forthcoming]. Yablo distinguishes figurative from

literal statements or uses of statements. His position will be treated here as a form

of content-hermeneuticism, though different from those considered two sections

back, in that it is a form according to which an existence theorem is ambiguous

between a literal and a figurative sense, which latter sense need not coincide with

the literal sense of any form of words. Arguably his position could also be con-

sidered a form of attitude-hermeneuticism, a form according to which a verbal

affirmation of an existence theorem may be an act of putting it forward as a literal

truth, or putting it forward as a useful pretense. But regardless of how it is clas-

sified, Yablo’s position deserves a section to itself.

Yablo’s claim is that existence theorems are false when taken literally but true

when taken figuratively. He makes the hermeneutic claim that ordinary uses of

existential idioms in mathematics are mostly figurative, whereas in philosophy

we are concerned with the literal. Thus the nominalists’ philosophical claim—

mathematical objects do not literally exist—is supposed to be compatible with the

immersed practitioner’s commitment to their figurative existence.

Here is a rough sketch of Yablo’s account, in the case of arithmetic. Suppose,

to begin with, we speak a language in which number-words are not used as nouns.

We can use them as adjectives and say, ‘‘There are two cats in the yard,’’ which

can be explained without number-words as meaning simply, ‘‘There is a cat and

another cat distinct from it, and the former is in the yard and so is the latter.’’

What we cannot say is ‘‘The number of cats in the yard is the number two.’’

Now suppose that we begin to notice a regularity: there were two cats in the

yard on Monday, three cats in the yard on Tuesday, four cats in the yard on

Wednesday, and so on. We lack the resources to describe the pattern. These

resources are ultimately provided by indulgence in a certain game of make-believe

or ‘‘let’s pretend’’ which we next describe.
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We pretend there are some objects called numbers—zero, one, two, and so on—

and there are some operations on them: successor, addition, multiplication, and so

on. We pretend these objects satisfy certain laws, including those known as the

Peano postulates and, more important in the present context, the following laws:

The number of Fs is zero if and only if there are no Fs.

The number of Fs is the successor of n if and only if for some y,

y is an F and the number of Fs other than y is n.

Having adopted the pretense just described, it becomes appropriate, given

certain facts about the world, to assent to yet further statements about numbers

beyond those listed. Notably, if there are two cats in the yard, it is appropriate to

say, while playing the game, that the number of cats in the yard is two. But this is

only a pretense kept up while playing the game: we aren’t really committing

ourselves to there being such things as numbers.

We have here an instance of the general phenomenon, described by Kendall

Walton, that in general what is true under a pretense depends in part on the

content of pretense and in part on the way the world is [Walton 1990]. If we are

playing a game in which we pretend tree stumps are bears, and you run toward a

tree stump, then it is ‘‘true in the game’’ that you are running toward a bear. But

of course we aren’t really committed to the existence of a bear that you are

running toward.

As Walton observes in his discussion of ‘‘prop-oriented make-believe,’’ it may

be difficult or impossible to say in sober, literal terms just how the world has to be

in order for a claim to be true in a given game of make-believe [Walton 1993].

Suppose someone asks where Woods Hole is located on Cape Cod. The easiest

thing for me to do may be to say, ‘‘Pretend Cape Cod is a human arm bent like

this. Woods Hole is at the elbow.’’ In this process, I convey the requested geo-

graphical information by invoking a pretense. And it may well be that this is the

only way I’m in a position to supply that information. Of course, in supplying the

information in the way I do, I am in no way committing myself to Cape Cod’s

being really anyone’s arm, Woods Hole’s being really at anyone’s elbow, or

anything of the sort.

The case is similar with arithmetic, according to Yablo. In the case of our

number-game, we can say that the figurative meaning of ‘‘The number of cats in

the yard on Monday was two’’ is the same as the literal meaning of ‘‘There were

two cats in the yard on Monday’’ (which we have seen how to express without

using number-words at all). But with ‘‘The number of cats in the yard on the nth

day is n,’’ the fictional meaning does not coincide with the literal meaning of any

statement in our original language. Indulging in the pretense extends our de-

scriptive resources. Indeed, that is precisely the point of indulging in it.
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In general, even statements normally taken figuratively do have a literal mean-

ing which may exceptionally be the appropriate one to consider. Thus ‘‘She has

butterflies in her stomach’’ is normally taken figuratively, as meaning that she is

nervous. But a doctor reading an X-ray of a patient with a gastric complaint might

say, ‘‘Incredible! She has butterflies in her stomach!’’ and literally mean that there

are insects of a certain kind in a certain portion of her digestive tract.

Similarly, according to Yablo, number-talk is normally meant figuratively by

mathematicians, but it does have a literal meaning, and that is the meaning at

issue in philosophical discussions. When Yablo says there are no numbers, he

means that the assertion of the existence of numbers is false taken literally; he does

not mean it is false when made by mathematicians, for he claims that they mean it

only figuratively. This is how he reconciles his nominalism with ordinary math-

ematical practice, and this is why we have classified his nominalism as being of the

hermeneutic variety.

Some questions of detail can be raised about this hermeneutic view, but let us

focus on the fundamental issue. Yablo’s claim that number-talk is systematically

ambiguous is presumably an empirical hypothesis in semantics. What evidence is

there for it?

Yablo’s main argument is a version of the argument from lightheartedness

considered in the preceding section.2 Mathematicians and scientists pass unhes-

itatingly from statements about ordinary things to statements in the mathematical

idiom, and back again:

Taken literally, the item in the right column in each case entails the existence of

some mathematical object, while the corresponding item in the left column does

not. But ordinary practitioners treat the claims as equivalent. Not only do they

freely pass back and forth between the two columns, but as they do so, it may be

with a palpable sense that nothing more is at stake with the one formulation than

There are n Fs The number of Fs is n

There are just as many Fs as Gs. There is a one-one correspondence

between the Fs and the Gs.

The argument from P to Q

is invalid.

There is a model in which P is true

but Q is false.

Line a is to line b as the

circumference of a circle is

to its diameter.

The ratio of the length of line a to

the length of line b is the ratio of

the circumference of a circle to its

diameter.

2 See [Yablo 2000a, §XVI] for a list of ‘‘suggestive similarities’’ between figurative

utterances and mathematical utterances. For reasons of space, our discussion is restricted

to three exemplary arguments for Yablo’s hermeneutic hypothesis.
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with the other. This is readily explicable if the ordinary practitioner is concerned

only with what, according to Yablo, is figurative content of the mathematical

claim. For the figurative content of each item in the right column, according to

Yablo, is simply the literal content of the corresponding item on the left.

A subsidiary argument involves appeal to intuitions as to what statements

‘‘are about.’’ When someone says the number of cats in the yard today is greater

than the number of cats in the yard yesterday, the speaker feels the statement to be

about the cats, and not about anything over and above. When someone says the

number of starving people is enormous, the speaker feels the statement is about a

matter of great moral importance, and that the same matter of great moral im-

portance could be equally well spoken of by saying instead that there are enor-

mously many starving people.

Another subsidiary argument turns on a fantasy. Suppose the Oracle of Phi-

losophy tells you that everything is concrete and nothing is abstract, and suppose

that you believe her.

Impressed by what the Oracle has told you, you return to civilization to spread

the concrete gospel. Your first stop is [your school here], where researchers

are confidently reckoning validity by calculations on models, equinumerosity

by calculations on 1-1 functions, and so on. You demand that the practice be

stopped at once. Given that models and functions don’t really exist, all theoretical

reliance on them should cease. They of course tell you to bug off and am-scray.

Which, come to think of it, is exactly what you yourself would do if the situation

were reversed. [Yablo, forthcoming]

The suggestion is that since working mathematicians would be utterly unfazed by

the philosophical discovery that, literally speaking, there are no mathematical

objects, it must be that their ordinary uses of existential idiom do not involve a

commitment to the literal truth of the existence theorems.

Needless to say, none of these arguments is decisive. We have already dis-

cussed the first of them, and said that the phenomenon of lightheartedness admits

of other explanations. The specific case cited by Yablo could in fact by explained

by any assumption implying that for whatever reason, mathematicians don’t

regard the existence of numbers as problematic. They treat ‘‘There are n Fs’’ and

‘‘The number of Fs is n’’ as equivalent because they are equivalent modulo a

background theory whose truth is not for them in question.

The second argument can be met by observing that the intuitions of about-

ness are unstable and context-dependant. If someone says ‘‘The number of cats in

the yard is two,’’ and you ask what his statement is about, he may indeed say

‘‘cats.’’ But suppose you then point out to him that his statement implies that the

number of cats in the yard is a prime number, and ask him what this claim is

about. At least after helpful prompting—‘‘We’re talking about a number here,

aren’t we?’’—it is immensely likely that he will say, ‘‘Yes, I suppose we are.’’ Think
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how bizarre it would be for him to say, ‘‘Certainly not; we’re still just talking

about cats.’’ Now return to the original claim with this dialogue fresh in mind and

ask, ‘‘Are you sure your original claim wasn’t also about a number?’’ Who knows

what he will say? But it seems well within reason that he will now report that his

original claim was in part about the number 2, and not just about the cats.

The third argument can be met in a number of ways. Perhaps the mathe-

maticians don’t share your faith in the Oracle of Philosophy, and put zero value

on her pronouncements. Perhaps they will quite naturally adjust to the striking

philosophical discovery that the objects they had thought of themselves as study-

ing do not exist, given that this revelation comes accompanied by an assurance

that the pretense that they do, may still be relied on in all practical deliberations.

To use hackneyed examples, people adjusted to Copernican astronomy, but went

right on speaking of sunrise and sunset. People adjusted to special relativity, but

went right on speaking of events that are simultaneous within the limits of ob-

servation in the most salient local frame of reference as being simultaneous sans

phrase.

Against these three far-from-conclusive indirect arguments for Yablo’s posi-

tion and the many others he adduces must be set arguments opposing it, of which

the most important is, as in our earlier discussion of attitude-hermeneuticism, the

lack of direct evidence for it where one would expect to find it.

We fully grant that someone speaking figuratively may lack the ability to

express in literal language just what is meant by the figurative speech. Even ‘‘She

has butterflies in her stomach,’’ which we earlier parsed as ‘‘She is nervous,’’ really

means that she is experiencing a certain physiological accompaniment of ner-

vousness for which there may be no better description than the metaphorical

‘‘butterflies in the stomach.’’ Likewise, we fully concede that someone speaking

figuratively need not be consciously aware of doing so. Again, ‘‘butterflies in the

stomach’’ is such a cliché that most users of it probably do not have a recognition

of its metaphorical character present to consciousness in the act of uttering it. But

it seems that in all uncontroversial cases of nonliteral language, the competent

speaker can promptly recognize that the language was meant nonliterally if the

question arises. If a child or a foreigner responded to ‘‘She has butterflies in her

stomach’’ by asking, ‘‘Are you sure they’re not moths?’’ would not the explanation

‘‘Oh, it’s just a figure of speech’’ be immediately forthcoming?

Or consider the following exchange:

‘‘Where’s Woods Hole?’’

‘‘Cape Cod is an arm extending eastward into the Atlantic Ocean, and

bent like this. [Demonstrates.] Woods Hole is at the elbow.’’

‘‘It must be an enormous arm! Whose is it, King Kong’s? Is it very hairy?

Will I have trouble finding my way through the hair?’’

‘‘Hold on; you’ve got me wrong. It’s not literally an arm. That was just a figure

of speech. Cape Cod is a spit of land that is roughly shaped like an arm.’’
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We submit that whenever a bit of language is used nonliterally, it is possible

for an interlocutor to misconstrue it by taking it literally, and for the competent

speaker to recognize this misunderstanding and correct it by pointing out that the

remark was not meant literally. Certainly in all clear cases of figurative language—

and it is worth stressing that the boundary between figurative and literal is as

fuzzy as can be—the nonliteral character of the linguistic performance will be per-

fectly obvious as soon as the speaker is forced to turn attention to the question of

whether the remark was meant literally.

We further submit that mathematical discourse fails this test for nonliteral-

ness. What would it be to misunderstand a mathematical remark like ‘‘There are

two abstract groups of order four’’ by taking literally what is meant only figu-

ratively? What would be the analogue of the risible misunderstanding of the

directions to Woods Hole? The best we can do is the following:

Mathematician: There are two abstract groups of order four.

Interlocutor: Fascinating. Where are these groups? What are they like intrinsi-

cally? How do you know that they exist?

And what would be the analogue of the original speaker’s reply to the obvious

misconstrual? Yablo himself no doubt would say something like this:

Hold on; you’ve got me wrong. I didn’t mean to say literally that any abstract

groups exist. I was just speaking figuratively. It’s hard to say in strictly literal

terms what I did mean, but I only meant to commit myself to the view that

assuming standard mathematics, there are two abstract groups of order four.

But we submit that an actual mathematician would be much more likely to say

something like this:

Groups don’t exist in some special location. They’re abstract. Abstract groups are

equivalence classes of ordinary groups under isomorphism. I know abstract

groups exist because I can describe concrete instances of them—for instance, the

integers modulo 4 (and because I can always define an equivalence class, given a

suitable equivalence relation).

These answers may not be satisfactory—no nominalist will be satisfied with them,

obviously—but the fact that the ordinary practitioner would be disposed to reach

for answers of this sort suggests that the questions do not constitute a ‘‘literalistic’’

misconstrual of remarks meant figuratively. And if there can be no literalistic

misconstrual, then the language was not figurative in the first place.

In SWNO we were concerned with ambitious programs for nominalistic re-

construction or reconstrual of mathematics and mathematically formulated sci-

entific theories. We argued that these nominalist theories were neither clearly

better than standard theories by recognizably scientific criteria, nor at all plausible

as hypotheses about what the standard theories had ‘‘really meant all along.’’ In

the present work we have been especially concerned with nominalist positions
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turning on some distinction between literal and figurative belief, between belief

and acceptance, or something of the sort, since that kind of nominalism is the one

that has been most actively pursued in recent years. We have just been expressing

doubts about whether the actual attitude of working mathematicians and scien-

tists is weaker than literal belief, having earlier expressed doubts about nominalist

epistemological arguments that, if cogent, would show that anyone who does have

a literal belief in mathematics ought to retreat to some weaker attitude.

As matters stand, the recommended attitude seems to be one that is adopted

only by certain philosophers, who on account of worries engendered by a certain

picture—us on one side of a wall or gulf, mathematical objects on the other—feel

impelled to take back in their philosophical moments what they say at other

times. We have to admit, however, that the picture is a perennially powerful one,

and that until it can be exorcised—something we do not claim to have done—

critics of existing varieties of nominalism can hardly hope to accomplish more

than to inspire the development of new ones. We therefore expect the topic of

nominalism to remain a lively one for years to come.
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c h a p t e r 17

STRUCTURALISM

geoffrey hellman

1. Introduction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

With the rise of multiple geometries in the nineteenth century, and the rise of

abstract algebra in the twentieth century, the axiomatic method, the set-theoretic

foundations of mathematics, and the influential work of the Bourbaki, certain views

called ‘‘structuralist’’ have become commonplace. Mathematics is seen as the in-

vestigation, by more or less rigorous deductive means, of ‘‘abstract structures,’’ sys-

tems of objects fulfilling certain structural relations among themselves and in

relation to other systems, without regard to the particular nature of the objects

themselves. Geometric spaces need not be made up of spatial or temporal points or

other intrinsically geometric objects; as Hilbert famously put it, items of furniture

suitably interrelated could satisfy all the relevant axiomatic conditions as far as pure

mathematics is concerned. A group, for instance, can be any multiplicity of objects

with operations fulfilling the basic requirements of the binary group operation;

indeed, the very abstractness of the group concept allows for its remarkably wide

applicability in pure and applied mathematics. Similar remarks can be made re-

garding other algebraic structures, and the many spaces of analysis, differential

geometry, topology, and so on. Of course, mathematicians distinguish between ‘‘ab-

stract structures’’ and ‘‘concrete ones’’ (e.g., made up of familiar, basic items such as

real or complex numbers or functions of such, or rationals, or integers, etc.). (For

example, the space L2 of square-integrable functions from R (or Rn) to C, with

inner product (f, g)¼ $ f *g dm, where m is Lebesgue measure, is a ‘‘concrete’’ ex-

ample of a Hilbert space.) But it is characteristic of a thoroughgoing structuralism

to treat even these systems as like the more ‘‘abstract’’ ones, in that the ‘‘objects’’

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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involved serve only to mark ‘‘positions’’ in a relational system; and the ‘‘axioms’’

governing these objects are thought of not as asserting definite truths, but as defining

a type of structure of mathematical interest. In some sense to be clarified, the

objects serve only as relata of key relations, and their ‘‘individual nature’’ is of no

mathematical concern, if one can even speak of such a nature. Sometimes it is even

said that such objects—‘‘structural objects’’—have only the properties and bear

only the relations to other such objects as required by the relevant axioms or

defining conditions laid down in the branch of mathematics in question.

Now in the course of one paragraph, we have gone from a commonplace of

the modern mathematical point of view to some pretty deep-sounding issues that

will require some sorting out. We have various notions of ‘‘abstract’’ and ‘‘con-

crete’’ to contend with. Moreover, we have the tantalizing suggestion that perhaps

mathematical objects ‘‘have no nature’’ at all, beyond their ‘‘structural roles.’’ Does

this make sense? And we confront the question of whether structuralist tenets

apply at the most fundamental levels at which we speak of mathematical objects:

numbers, sets, functions, even relations themselves; and if they do apply, how so?

It is one thing to study algebraic, geometric, or topological structures indepen-

dently of any particular objects making them up, in the sense that none are pre-

ferred, except for special purposes in particular contexts. But are we to understand

talk of the natural numbers in the same way? And what about collections and op-

erations, or more generally relations (which can include collections as unary

relations)? In short, where does structuralism start ? And then, where does it take us?

Does it provide novel insights, perhaps even answers to, or dissolutions of, any

long-standing metaphysical and epistemological problems concerning mathemat-

ics, or does it just shift these with some new terminology?

As we shall see, there are some strikingly different ways of developing the

informal, intuitive ideas associated with structuralism, and a large part of our task

in this chapter will be to delineate and compare these alternatives along several

important dimensions. As will emerge, there are a number of interesting trade-

offs, and it is surprisingly difficult—perhaps impossible—to formulate a version

that combines all the advantages exhibited by some version or other while avoid-

ing the pitfalls. At this stage, it will help guide our investigation to formulate a

number of central questions which any developed version of structuralism ought

to answer. Here are five such:

(1) What primitive notions are assumed and, in particular, what is the back-

ground logic? Does it go beyond first-order logic? If higher-order logic is pre-

supposed, what is the status of relations and functions as objects? What limitation

does this imply on the structuralist approach in question?

(2) Already we have hinted that the term ‘‘axiom’’ is ambiguous, meaning

either ‘‘defining condition’’ on a type of structure, in which case nothing is being

asserted, or meaning ‘‘basic or initial assumption,’’ as an assertion that can be true

or false, rationally credible to some degree or not, and so forth. It is characteristic
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of a ‘‘structuralist’’ approach to a branch of mathematics to appeal to ‘‘axioms’’ in

the former sense, and this is precisely what Dedekind did in his treatment of

arithmetic [9], which justifies calling his approach ‘‘structuralist’’ at least in a

minimal sense. (Similarly, this was Hilbert’s conception in his famous correspon-

dence with Frege [13].) But then what are the assertory axioms of the framework in

question? (To modify a good saying, ‘‘Not by definition alone!’’)

(3) Is there a thoroughgoing elimination of structures-as-objects? If not, what

is a structure? Moreover, what is a mathematical structure? [21]

(4) As a special case of (2), what assumptions are made governing the math-

ematical existence of structures, and how is this understood? In particular, how, if

at all, is the indefinite extendability of the realm of mathematical structures ac-

counted for?

(5) How is reference to structures understood, and what account can be

provided of our epistemic access to structures?

The main types of mathematical structuralism that have been proposed and

developed to the point of permitting systematic and instructive comparison are

four: structuralism based on model theory, carried out formally in set theory (e.g.,

first- or second-order Zermelo–Fraenkel set theory), referred to as STS (for set-

theoretic structuralism); the approach of philosophers such as Shapiro and Resnik

of taking structures to be sui generis universals, patterns, or structures in an ante

rem sense (to be explained below), referred to as SGS (for sui generis structur-

alism); an approach based on category and topos theory, proposed as an alter-

native to set theory as an overarching mathematical framework, referred to as CTS

(for category-theoretic structuralism); and a kind of eliminative, quasi-nominalist

structuralism employing modal logic, referred to as MS (for modal-structuralism).1

Let us take these up in turn, guided by questions (1)–(5), with the aim of un-

derstanding their relative merits and the choices they present.

2. Structuralism in

Set Theory

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This approach has, of course, arisen within mathematics itself and is the standard

way of articulating a kind of structuralism. Mathematical structures are certain

sets, ordered tuples of a domain together with distinguished relations, functions,

and possibly individuals (members of the domain). (We take as familiar the

1 For further details on these types of structuralism and their comparison, see [19],
[33], and [20]. For a somewhat different, but largely overlapping, way of dividing up the

subject (less category theory), see [29].

538 oxford handbook of philosophy of math and logic



interdefinability of functions and relations.) Structures can be models of certain

theories, satisfying their theorems. Such theories would include all the ones nor-

mally encountered in mathematics. Furthermore, structures may be related by

isomorphisms, relation-preserving bijections, or embeddings, homomorphisms, and

so on, all defined in set theory in familiar ways. Various important properties of

theories, such as consistency, completeness, categoricity, and so on, correspond to

or are defined by conditions on their models, a central concern of model theory.

In order to answer questions (1)–(5), framed above, it is necessary to identify a

particular set theory in which model theory is carried out. The standard choice is

Zermelo–Fraenkel set theory, usually with the Axiom of Choice (ZFC). But var-

ious other choices present themselves (e.g., are there to be Urelemente (in addition

to the empty set) and—of greater significance—is the background logic to be first-

order logic, or is it (an axiomatic part of) second-order logic? If proper classes are

admitted, are they done so conservatively with respect to set theory proper, as is

the case in the (two-sorted, first-order) system NBG, or as an essential enrichment

of set theory, as in the second-order system of Morse-Kelly (with impredicative

class comprehension)? To some extent, the answers to questions (1)–(5) depend

on these, and perhaps other, choices. But let us approach them with first-order

ZFC in mind, as the central and most common case.

Concerning (1) and (2), then, the logic is first-order with equality; the

sole nonlogical primitive is set membership, and the nonlogical axioms, in the

assertory sense, are those of ZFC. (3), the nature of mathematical structures ac-

cording to STS, has already been described. Structures-as-objects are just certain

sets, and so they are not eliminated. There is, however, elimination of any non-

set-theoretic structures (e.g., for the natural numbers, or the reals, etc., as sui

generis objects, as Dedekind, e.g., viewed them). [10] On STS, one identifies such

objects in a particular way, but this is for convenience (e.g., for a smooth de-

velopment of ordinal number theory, etc.). But it is recognized that the branch of

mathematics in question (number theory, real analysis, etc.) concerns any struc-

tures of the relevant isomorphism type.2 On this view, a question such as ‘‘What

are the natural numbers, really?’’ is dismissed as misguided. As to the question of

what distinguishes ‘‘mathematical’’ from other structures, a natural answer is forth-

coming: that, typically, there is vocabulary (predicates, functional expressions)

underlying given structures and that the source of that vocabulary indicates the

2 Equivalence in somewhat weaker senses than isomorphism may of course be rec-

ognized, allowing for definitional extensions of given structures (e.g., adding addition and

multiplication to successor in second-order arithmetic). Note that model theory can treat

second- and higher-order theories and their models as objects, even if the background

logic for the set theory is first-order. Also, note that our talk of ‘‘isomorphism types’’ is

only a manner of speaking. In first-order ZFC, the relevant types cannot exist, as they

would be proper classes.
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field of inquiry (e.g., space-time physics, as opposed to purely mathematical

geometry, although in a field such as mathematical mechanics, the line may not be

sharp, especially if the theory in question is being explored not as an actual de-

scription but as merely a theoretical possibility).

Turning to question (4), one virtue of STS is the clarity of its standard of

mathematical existence of structures, as this just means existence as sets in ZFC.

Of course, many questions are not answered by these axioms, but for the most

part these concern extraordinary mathematics (e.g., large cardinals, not the struc-

tures and spaces of ordinary mathematics, for which a system such as ZFC is more

than adequate). What about the issue of extendability? While there is a built-in

indefinite extendability of structures in the strict, set-theoretic sense (since the

ordinals ‘‘go on and on’’), there is a certain crucial limitation when it comes to

structures for set theory itself. Here we encounter a massive exception to the

structuralist point of view, in that, on its face-value interpretation, set theory itself

is not treated structurally: its axioms are not understood as defining conditions on

structures of interest but are taken as assertions of truths in an absolute sense. One

speaks of ‘‘the cumulative hierarchy,’’ or even ‘‘the real world of sets.’’ In first-

order ZFC, of course, no such thing is officially recognized, although in NBG or in

second-order ZFC, one has ‘‘the universe’’ as a proper class. Clearly these latter

theories explicitly violate extendability as a general principle, but first-order set

theory as practiced violates it as well, for it implicitly recognizes ‘‘the sets,’’ if only

in a plural sense, as the very subject matter of the theory. Why should such

higher-type totalities not be a subject of mathematical investigation? Why should

not higher-order ‘‘collections’’ be recognized (i.e., what prevents the ‘‘collect-

ibility’’ of ‘‘all sets,’’ in a logical sense inherent in set theory itself)? And why aren’t

such collections subject to operations analogous to those of set theory itself,

including formation of singletons, power collections, and so on? (Of course, this

latter question applies to theories of proper classes as well, which is one of the

reasons they are an embarrassment to set theory.)

As to question (5), reference to structures is just a special case of reference to

sets, and this is usually just taken for granted. Once given a starting point, the null

set, we know what its singleton is, what the pair of it and its singleton is, what the

finite von Neumann or Zermelo ordinals are, what the hereditarily finite sets built

on the null set are, what the power set of this is, and so on. Whether all these

things, as intended—and this includes full power sets (containing all subsets of

given sets) and enough ordinal levels to satisfy the Replacement Axiom—actually

occur in ‘‘the real world of sets,’’ and how we can know, are esoteric questions

that surely no mathematician qua mathematician would bother about.

As this brief overview indicates, STS, despite its clarity and definiteness, is not

without its problems. Three in particular stand out:

(i) As already indicated, set theory itself is not treated structurally, and this

despite the fact that there are multiple set theories around, all legitimate as avenues
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of mathematical investigation. Thus, STS is deprived of one of the most natural

ways of ‘‘justifying axioms’’ from a mathematical point of view, that is, by appeal

to our interests in a particular kind of structure. For example, consider well-

foundedness (Axiom of Regularity): rather than ‘‘defend’’ this as true in some

absolute sense, a structuralist would simply cite our interest in exploring well-

founded sets, without denying that non-well-founded sets ‘‘exist’’ or are a fit math-

ematical subject. Similar remarks can be made about the axiom of Replacement. It

need not be guaranteed by ‘‘the meaning of ‘set’ ’’ or by some a priori insight into

‘‘set-theoretic reality;’’ it is sufficient as a coherent condition on domains or uni-

verses of sets, guaranteeing their largeness relative to any of the members. But such

an answer is not available to STS (for why should the real world of sets be large?).

In short, this view fails to block bad questions about set theory.

(ii) STS is saddled with a maximal totality (or plurality) of sets, hence of

structures, in conflict with intuition and with mathematical practice, which al-

ways has the potential of transcending any domain proposed as a limit. It violates

a truly general extendability principle.

(iii) It confronts mathematically esoteric and seemingly intractable onto-

logical and epistemological questions (e.g., in connection with the null set, with

‘‘full power sets,’’ with ‘‘the order type of the universe,’’ and so forth).

Thus, despite the great successes of model theory, considerations such as these

have motivated some mathematicians, logicians, and philosophers to seek alter-

native ways of articulating structuralist ideas.

3. Structures as Sui Generis

Universals

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Like STS, this approach conceives of structures as absolute objects, but not as

abstract particulars—rather, as universals, patterns in Resnik’s terminology, an-

swering to ‘‘what all particular systems of a given type—whether made up of

concreta or abstracta such as sets—have in common.’’ Patterns are thus reified;

they are the types. One thus speaks literally of ‘‘the natural number structure’’: its

constituents, the numbers, are not sets but are conceived as mere ‘‘places’’ or

‘‘positions’’ defined by the structural relations, themselves determined by math-

ematical axioms or conditions. To be the number two, for instance, is just to be

the third place in this natural number structure (if we begin, with Frege, with 0).

Since places are here treated as objects in their own right, rather than as ‘‘offices’’

to be filled by particulars, Shapiro uses the term ‘‘ante rem’’ for these structure

types, in contrast to the usual in re structures of set theory or concrete realizations.
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Many of the latter are instances of a unique one of the former.3 Thus, SGS is not

eliminativist at all. So long as some mathematical conditions—normally given as

statements in second-order logic—are coherent, there will be an ante rem structure

which they automatically describe. The various number systems, for instance, can

be instantiated multiply by sets, but—in answer to Benacerraf ’s puzzle—no such

instantiation is the true ante rem number structure. It is to such a structure that

our ordinary designators actually refer, and set-theoretic reductions are merely

convenient representations. Since ante rem structures are conceived as abstract

types standing ‘‘above’’ already abstract instances (e.g., of sets) and moreover as

instantiating themselves (i.e., as made up of objects fulfilling the structural de-

fining conditions), the term ‘‘hyperplatonist’’ seems apt for this view.

In addressing questions (1)–(5), we will follow Shapiro’s presentation which

outlines a formal framework.4 Concerning (1) and (2), Shapiro assumes a second-

order background language, assumed ‘‘to include a rudimentary theory of col-

lections’’ and the machinery for speaking of functions and relations among places

in structures. It is natural to understand by this an axiomatic second-order logic

including the usual unrestricted (impredicative) comprehension scheme for col-

lections and relations. A system of axioms—structure theory—governing the

primitives, structure and places, is presented: these include axioms very much like

those of second-order ZF, including axioms of Infinity, Power Structure, and

Replacement. In addition, there is a Coherence Axiom: ‘‘If F is a coherent formula

in a second-order language, then there is a structure that satisfies F.’’ Here

‘‘coherent’’ is a further primitive, corresponding to model theory’s notion of sat-

isfiability. (As Shapiro points out, it is not reducible to a formal condition such as

consistency or even o-consistency.) As a direct consequence of this axiom, the basic

distinction introduced above between axioms-as-defining-conditions and axioms-as-

assertions collapses: any conditions that might possibly be satisfied are in fact satisfied

(i.e., are true of an ante rem structure), but since the axioms are understood to be

about such a structure, according to SGS, they are true simpliciter.

In addition to these axioms, a (second-order) Reflection Principle can be as-

sumed, guaranteeing large structures (corresponding to strongly inaccessible

cardinals).

Turning to (3), its main part on the conception of structures as objects has

already been addressed. And presumably we have also addressed the subsidiary

question of distinguishing mathematical structures from others: it is natural to

take these to be structures specified by coherent second-order conditions in the

language of structure theory. Of course, only a very special subcollection of these

3 Parsons [28], citing Tait, has described the thought process of moving from par-

ticular in re realizations to the ante rem structure as ‘‘Dedekind abstraction.’’
4 Alternative presentations, such as Resnik’s, which is more informal, may not be

entirely accurately represented by Shapiro’s formulation.
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would be of genuine mathematical interest, and it would surely be misguided to

attempt any general characterization of these; but physical and other nonmath-

ematical structures would presumably not be found, insofar as their description

requires vocabulary beyond that of pure structure theory (second-order logic plus

the primitives ‘‘structure’’ and ‘‘place’’).

As to (4), existence of structures is of course spelled out in the axioms of

structure theory. What about extendability? Clearly SGS improves on STS in ap-

plying to set theories without having to recognize any one as ‘‘the one true one,’’

and so it avoids any maximal plurality or collection of sets. Still, there is a maximal

collection of places in structures as a consequence of the second-order compre-

hension principle which structure theory presupposes. And while there is no

collection of all structures, since this would be a third-order object, still there are,

speaking plurally, all the structures (i.e., an inextendable ‘‘universe of structures’’),

informally speaking, whether or not the formalism allows talk of such a collection.

Finally, regarding (5), as indicated, reference to ante rem structures and their

places is just supposed to occur when we gain mastery over the relevant mathe-

matical vocabulary. Just as in learning the English alphabet, we learn to refer to

the letters as types, so we learn to refer to the natural numbers, and then, some-

what later, to the rationals, the reals, and maybe even the complexes.

How does SGS fare with respect to the problems (i)–(iii) affecting STS, de-

scribed above? (i) is overcome in SGS, as it treats set theory (theories) structurally

like other mathematical theories. Sets are not conceived of as abstract particulars,

existing in their own right and forming the subject matter of mathematics. Rather,

like numbers or elements of algebraic structures, they are conceived merely as

places in an abstract structure. The multiplicity of set theories fits nicely into the

view; for instance, well-founded sets are realized in one ante rem structure (ac-

tually in many such), but there are others realizing non-well-founded sets. The

‘‘membership relation’’ of the latter simply behaves differently. Likewise with

regard to other structure-characterizing axioms such as Replacement. In sum, SGS

succeeds in blocking a number of bad questions about set theory where STS only

encouraged them. Similarly, the puzzles for STS under (iii) do not arise for SGS.

There is no mystery about the null set, for example. This is just a structural

‘‘starting point’’ in an ante rem structure for set theory, an object to which no

other place bears the relevant two-place relation (ordinarily called ‘‘member-

ship’’). Moreover, there is no question about ‘‘real-world power sets,’’ for such are

not distinguished. So long as ‘‘full power set’’ (of a given infinite set) is coherent,

an ante rem structure will have a place for such (as places). Of course, there are

also many structures with less-than-full power sets, but that does not matter. The

question of coherence can certainly be raised (and typically is by predicativists),

but the issue is not an ontological one, according to SGS. This seems right.

Similarly, there is no problem about ‘‘the order type of the universe,’’ since no

‘‘universe’’ of all sets need be recognized. Many universes are possible; hence
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actual as ante rem structures. If power sets are full and second-order Replacement

holds, the order type of such a universe will be a strongly inaccessible cardinal,

but, presumably, there are boundlessly many of these.

At first blush, it seems that SGS also handles problem (ii) quite deftly, for

there simply is no maximal totality of sets forming an ante rem structure. As far as

these structures for set theory go, the extendability principle is respected. How-

ever, as already pointed out in connection with point (4) above, SGS is still

saddled with maximal totalities of its own, namely, the class of all places (ex-

plicitly delivered by second-order logical comprehension in structure theory) and

the plurality of all ante rem structures, implicit in the overall system with the

Coherence Axiom. In effect, SGS has merely traded ‘‘the totality of sets’’ for ‘‘the

totality of structures,’’ and so does not endorse the general extendability principle.

There are, moreover, further problems that have been raised against SGS,

problems that do not confront STS. Two interrelated such problems should be

mentioned here. (Our numbering continues that of the list of problems begun

above.)

(iv) Places as objects in ante rem structures raise questions concerning their

very identity.5 It seems, from a structuralist perspective, that intrastructural

relations alone should suffice to distinguish these objects, without appeal to ex-

ternal relations or individual constants. But then places in a structure should

satisfy a Leibnizian principle of identity of structural indiscernibles: any items

bearing exactly the same intrastructural relations to other items should be not

many but one.6 But this immediately implies that the structure in question must

be rigid (i.e., admitting no nontrivial automorphisms). While that is true of some

key mathematical structures (e.g., the natural numbers, the field of real numbers,

segments of the cumulative hierarchy of sets, etc.), nonrigid structures never-

theless abound in mathematics (e.g., the complex numbers [interchanging i and

–i], the additive group of integers [interchanging þ1 and �1], geometric figures

with reflectional symmetry, homogeneous Euclidean n-space, etc.). While it is

true that all these nonrigid structures can be recovered inside rigid ones (via

reduction to sets), that seems counter to the whole thrust of SGS. Another reply

suggests simply not seeking any criterion of identity for places. The debate over

this continues.7

5 This objection has been raised independently by Keränen [22] and Burgess [8].
6 Note that this is weaker than the claim, sometimes made, that places in ante rem

structures have only the properties—or only the essential properties—required by the

axioms defining the structure in question. These latter conditions seem impossible to

realize: for example, surely the natural numbers (according to SGS) are abstract, non-

spatiotemporal, nonphysical, and so on, even essentially so; yet the axioms are silent on

such matters.
7 See Shapiro’s ‘‘Structure and Identity,’’ Keränen’s ‘‘The Identity Problem for Realist

Structuralism II,’’ and Shapiro’s ‘‘The Governance of Identity’’ in [23].
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(v) Are purely structural relations intelligible in the context of putatively

structural objects—places—as relata? This objection challenges the very notion of

ante rem structure, whether rigid or not. If we do not appeal to the relata of a

structure as somehow independently given (e.g., invoking reference by singular

terms in our background language as standard Platonism does), but as determined

by structural relations—which is surely part and parcel of the SG view—what have

we to go on in specifying structural relations other than the axioms (defining

conditions) themselves?8 But, as Russell pointed out in his criticism of Dedekind’s

early expression of SGS [9], [10], the axioms don’t distinguish any particular re-

alization from among the many systems that satisfy them.9 What, for example, can

it mean to speak of ‘‘the ordering’’ of ‘‘the natural numbers’’ as objects of an ante rem

structure unless we already understand what these numbers are apart from their

mere position in that ordering ? Surely the notion of ‘‘next’’ makes no sense except

relative to an ordering or function or arrangement of some sort, something Dedekind

was careful to take into account when describing simply infinite systems, which

always involve objects ‘‘set in order by transformation j.’’ (Clearly, anything

whatever can be ‘‘next after’’ anything else in some system or other.) Thus the notion

of an ante rem structure seems to involve a vicious circularity: such a structure is

supposed to consist of purely structural relations among purely structural objects, but

understanding either of these requires already understanding the other. Whereas the

Keränen–Burgess objection granted the relations and raised questions about how

these alone could determine the objects (unless the structures are rigid), this ob-

jection questions such talk of relations in the first place, and thereby the very notion

of ‘‘Dedekind abstraction,’’ which is supposed to lead to them.10

8 As Parsons put it in assessing the idea of structural objects as ‘‘incomplete objects,’’

this view is ‘‘itself incomplete for it neglects the fact that the relations of a structure are

themselves given only by formal conditions . . .’’ ([28], 334).
9 As Russell wrote, ‘‘It is impossible that the ordinals should be, as Dedekind suggests,

nothing but the terms of such relations as constitute progressions. If they are to be anything

at all, they must be intrinsically something; they must differ from other entities as points from

instants, or colors from sounds. . . .Dedekind does not show us what it is that all progres-

sions have in common, nor give any reason for supposing it to be the ordinal numbers,

except that all progressions obey the same laws as ordinals do, which would prove equally

that any assigned progression is what all progressions have in common . . .’’ ([31], p. 249).
10 In correspondence, Shapiro has pointed to ‘‘finite cardinal structures’’—strucures

with finitely many distinct ‘‘places’’ but no relations at all (other than (non-)identity)—as

showing that places should not be thought of as dependent on structural relations. Neither

places nor relations are prior to the other. But such structures seem an ultimate offense

against Leibnizian scruples. For what distinguishes one ‘‘place’’ from another? How can we

even make sense of mapping the places to or from the many finite collections such a

structure is supposed to exemplify (e.g., all pairs, or triples, or quadruples, etc.)? Does it

even make sense to think of labeling these ‘‘things’’? In the case of identical bosons of

quantum mechanics (a famous case where labeling is problematic), we ultimately have the
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In fact, SGS seems ultimately subject to the very objection of Benacerraf [4] that

helped inspire recent structuralist approaches to number systems in the first place.

Suppose we had the ante rem structure for the natural numbers, call it hN, j, 1i,
where j is the privileged successor function and 1 the initial place. Obviously, there

are indefinitely many other progressions, explicitly definable in terms of this one,

which qualify equally well as referents for our numerals and are just as ‘‘free from

irrelevant features’’; simply permute any (for simplicity, say finite) number of

places, obtaining a system hN,j0, 10i, made up of the same items but ‘‘set in order’’

by an adjusted transformation, j0. Why should this not have been called ‘‘the

archetypical ante rem progression,’’ or ‘‘the result of Dedekind abstraction?’’ We

cannot say, for instance, ‘‘because 1 is really first,’’ since the very notion ‘‘first’’ is

relative to an ordering; relative to j0, 10, not 1, is ‘‘first.’’ Indeed, Benacerraf, in his

original paper, generalized his argument that numbers cannot really be sets to the

conclusion that they cannot really be objects at all, and here, with purported ante

rem structures, we can see again why not, since multiple, equally valid identifica-

tions compete with one another as ‘‘uniquely correct.’’ Hyperplatonist abstraction,

far from transcending the problem, leads straight back to it.

Other problems can be raised for SGS, in particular problems concerning the

Coherence Axiom and the primitive ‘‘coherent.’’ It can be thought of as a post-

Gödelian substitute for formal consistency: the axiom mimics Hilbert’s idea that

consistency suffices for mathematical existence. But of course it is not a formal notion

and seems no clearer than a primitive notion of (second-order) logical possibility—

indeed, perhaps less so, for do we have anything as developed as modal logic gov-

erning ‘‘coherent?’’ And if we identify these notions, then the Coherence Axiom

appears even more problematic, for why should mere logical possibility suffice for

existence? Indeed, why not just rest with the former, which, as we shall see below,

enables avoidance of the very maximality problems that plague both STS and SGS?

For all these reasons, then, we are motivated to look at some alternative,

nonabsolutist approaches to structuralism.

4. Structuralism in

Category Theory

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Like set theory, category theory (CT) has arisen within mathematics both as a

branch of mathematics making its own special contributions (in the case of

option of dropping the notion of two particles, say, in favor of a ‘‘boson-pair system.’’ But

such a move in the case of finite cardinal structures would destroy their cardinality (at

least for any n> 1)!
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category theory, to algebraic topology and algebraic geometry) and also as a general

framework or setting for vast amounts of mathematics. Mac Lane and others have

taken the further step of proposing topos theory as providing an alternative

foundation for mathematics, comparable to and in some ways superior to set the-

ory, and, more recently, Awodey has explicitly suggested that category theory

provides a natural framework for realizing structuralism, one that philosophy of

mathematics should employ and pursue.11

The basic idea behind Awodey’s suggestion is that category theory provides an

effective way of codifying and illuminating mathematical structure through its

focus on families of structure-preserving mappings between objects having the

relevant kind of structure and through functorial relations between different cat-

egories, which exhibit important relationships among different kinds of structures,

of special interest in advanced mathematics. Moreover, the CT approach to math-

ematical structure has advantages over the Bourbaki (set-theoretic) approach, in

that descriptions via mappings (morphisms, also functors) abstract from the initial

means by which structures of a given type may have been introduced. Topological

structure, for example, is determined via continuous maps to and from other

spaces regardless of the details of their original introduction, via open sets, limit

points, closure operations, and so on. Indeed, it is remarkable how much of what

are normally thought of as operations and relations internal to a structure can be

recovered via morphisms to and from other ‘‘objects’’ (what would normally be

called ‘‘structures,’’ formally treated as pointlike in CT). It is even possible, for

example, to get the effect of elementhood itself, via morphisms between a terminal

object and a given object (where an object 1 is terminal just in case, for any object

C in the category there is a unique morphism from C to 1). Moreover, CT con-

structions exhibit in a precise way how mathematical structure is significant only

‘‘up to isomorphism,’’ and they bring out ‘‘shared structure’’ through novel

methods of generalization (e.g., via universal mapping properties of, for instance,

products, generalizing the notion of Cartesian product in set theory).

Clearly, CT provides important insights into various kinds of mathematical

structures and into ‘‘mathematical structure’’ in a general sense. But does it

provide a genuine structuralist framework for mathematics on a par with STS or

SGS? In assessing this, some basic distinctions must be borne in mind. First, it is

essential to distinguish between CT as mathematics in its own right and CT as a

foundational framework. Texts on CT as mathematics typically make reference to a

background set theory or universe of sets relative to which CT is to be understood

and carried out.12 If generally enforced, this would make CT dependent on set

11 In this discussion, we will presuppose a familiarity with the basic notions of

‘‘category’’ and ‘‘topos.’’ Awodey [1] presents an accessible overview, as do Mac Lane [24]
and Bell [2]. See also McLarty [27].

12 See, for example, Mac Lane and Moerdijk [25], Bell [3], and Freyd and Scedrov [14].
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theory, and it could not be considered to provide an autonomous framework.

Thus, the issue of autonomy vis-à-vis set theory must be addressed. In particular,

Mac Lane has proposed that mathematics generally can be developed in a certain

kind of topos (satisfying a condition called ‘‘well-pointedness,’’ leading to ex-

tensional discrimination of morphisms as in classical mathematics), and that this

is an alternative to set-theoretic foundations. But then it must be possible to make

sense of such topoi without falling back on set theory, either conceptually or

ontologically. Similarly, Bell has proposed that any topos with a natural number

object can serve as a background universe for (ordinary) mathematics, and that

this results in an interesting relativity of ordinary mathematical concepts (e.g.,

‘‘real number,’’ ‘‘continuous function on reals,’’ etc.) to background topos (whose

internal logic is in general intuitionistic, but which may be classical if stronger

conditions, such as well-pointedness, are built in). Some core mathematics turns

out to be invariant over the relevant totality of topoi, but many things are not. To

sustain this local, relativist view, again it must be possible to carry out the math-

ematics and metamathematics of topoi without falling back on set theory.

A second important distinction concerns the term ‘‘category theory’’ itself.

On the one hand, there are the ‘‘first-order axioms on categories,’’ the standard

conditions interrelating the domains and codomains of morphisms with the bi-

nary ‘‘composition’’ operator and governing identity morphisms. To these may be

added a variety of further conditions defining various kinds of topoi: for ‘‘ele-

mentary topoi,’’ the basic requirements generalizing Cartesian products, func-

tional exponentiation, and set theory’s apparatus for (Boolean) propositional

functions (‘‘subobject classification’’); for foundational purposes, further condi-

tions guaranteeing a natural number object; and stronger principles such as an

axiom of choice, well-pointedness, and so on. It is clear, however, that these are

not ‘‘theories’’ in the sense in which ZFC is a theory, for these ‘‘axioms’’ on

categories and topoi are merely defining conditions, simply telling us what first-

order conditions must be satisfied by anything to qualify as a category or a topos.

Thus, the primitives (‘‘domain,’’ ‘‘codomain,’’ ‘‘composition’’) need not have any

particular meanings, and these axioms assert nothing by themselves. As Awodey

himself puts it:

A category is anything satisfying these axioms. The objects need not have

‘‘elements,’’ nor need the morphisms be ‘‘functions,’’ although this is the case

in some motivating examples. . . .We do not really care what non-categorical

properties the objects and morphisms of a given category may have. . . . ([1], 213)

Thus, categories and topoi are conceived in the manner of algebraic structures

such as groups, rings, and so on, and the informal ‘‘theory of categories,’’ which of

course contains genuine assertions including foundational ones about categories

and topoi, must not be identified with these first-order ‘‘axiom systems,’’ but must
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somehow be rich enough to express substantive claims about structures satisfying

these axioms. This is essential in assessing the status of CT vis-à-vis set theory. For

example, just because notions of ‘‘collection’’ and ‘‘operation’’ are not used in the

first-order defining conditions does not mean that they are really bypassed in

theorizing about categories in the relevant sense.

This is an appropriate place to recall an early critique by Feferman of Mac

Lane’s claims on behalf of CT as providing a foundational alternative to set theory

[11]. In essence, Feferman argued that category theory presupposes and uses,

informally, notions of collection and operation, both in saying what a category (or

topos) is, and in relating categories to one another through homomorphisms or

functors. Moreover, a foundational framework for mathematics must provide

some systematic account of these notions, something set theory does but category

theory does not. It was explicitly recognized that alternatives to standard set the-

ory might also provide this, so that the claim was not that CT depends on set

theory per se, but rather that, as it stands, it is inadequate.

Now there is a temptation to respond to this by taking CT to be a theory of

families of functions related by composition, and to claim that this in principle is

no different from set theory as a theory of sets (and possibly individuals) related

by membership. The notion of ‘‘function’’ is one that mathematicians use all the

time, and even set theory can be derived from an analogous theory of functions, as

was originally carried out by von Neumann [34]. CT could be viewed as an

alternative, perhaps more interesting, systematic approach based on the familiar

notion of function. What’s wrong with that?

The problem is that this depends on a special, privileged interpretation of

‘‘composition,’’ hence of ‘‘morphism,’’ in diametric opposition to the algebraico-

structuralist reading that category theorists apply to their own systems (cf. the quo-

tation from Awodey, above). Moreover, the ‘‘axioms’’ defining categories and topoi

are silent on the matter of mathematical existence of these structures, leaving un-

resolved basic questions concerning their sizes and their scope. (E.g., is there really a

category of all categories? If so, how is Russell’s paradox avoided?, and so forth.)

Thus we see that an algebraico-structuralist reading of the CT axioms actually

underlay Feferman’s critique;13 moreover, it simply vitiates the above response,

which in any case is inadequate, as just indicated.

Turning back to questions (1)–(5) we have been putting to each version of

structuralism, we find ourselves now in the awkward position of being unable to

13 As Feferman originally wrote, ‘‘when explaining the general notion of structure and

of particular kinds of structures such as groups, rings, categories, etc., we implicitly

presume as understood the ideas of operation and collection; e.g., we say that group consists

of a collection of objects together with a binary operation satisfying such and such con-

ditions’’ ([11], 150).
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answer any of them with any definiteness, save perhaps (3), concerning elimination

of structures as objects. (For future reference, let us number this problem of

underspecification (vi).) Consider (1) on primitives and background logic. Of

course we know what the primitives of the first-order CT axioms are; however, the

question is not about the definition of ‘‘category,’’ but rather about the primitives

of the background (informal) substantive mathematical-foundational (meta-)

theory, which, as Feferman observed, employs notions of collection and operation

and functor. The fact that these are not among the primitives of the definitional CT

or topos-theoretic axioms is irrelevant. We cannot even say that the background

logic is to be first-order, nor that it is intuitionistic, like the internal logic of a

topos. Almost certainly classical logic is required for some of the results of category

theory as substantive mathematics. Bell’s approach, for example, which treats topoi

as models of ‘‘local set theories,’’ requires some substantial metalogic. The lan-

guages of local set theories are type-theoretic, but with no cardinality restrictions

on the type symbols that may occur. (Bell even acknowledges at the outset that for

some purposes, a background set theory such as NBG may be needed.)

The situation regarding (2) is no better. We are simply not in a position

to identify agreed-upon substantive (assertory) axioms explicitly or implicitly as-

sumed in category and topos theory qua genuine mathematics or metamathe-

matics, without falling back on set theory.

Presumably, structures-as-objects are not eliminated in CT structuralism, for

they make up one of the sorts (the objects) of typical categories (e.g., of groups, of

vector spaces, of topological spaces, etc.).14 This is a short answer to the first part

of (3), but what about the second and third parts, concerning the nature of

structures and what distinguishes mathematical from other structures? As objects

inside categories, structures are treated as ‘‘pointlike,’’ and everything is expressed

in terms of morphisms and functorial relations, leaving the nature of structures

themselves up in the air. While it is true that CT has the resources to express its

own account of various spaces (e.g., topological), one wonders whether such an

account would be intelligible without prior acquaintance with ordinary set-

theoretic constructions (e.g., via open sets).

The first part of (4), of course, as a special case of (2), remains unanswered.

Questions of mathematical existence of structures, including categories and topoi,

are usually deferred to an unspecified background set theory or model thereof, but,

as already said, this is appropriate only when pursuing CT as pure mathematics, but

surely not when proposing it as a foundation or structuralist framework. Con-

cerning the second part of (4), extendability, this principle is certainly in the spirit

14 Even this point, however, is somewhat debatable, since the objects of a category

can actually be dispensed with in favor of special morphisms, identity morphisms. In any

case, morphisms carry structure, and clearly they are not eliminated, so that in a broad

sense, distinctively mathematical objects are recognized.
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of CTS, as Mac Lane’s remarks on the open-endedness of mathematics attest.15 But

we saw above that SGS, while critical of ‘‘the real world of sets,’’ nevertheless runs

into violations due to second-order logic, and it remains to be seen how CTS can

avoid such problems. As to (5), how CTS contributes to our understanding ref-

erence and epistemic access to structures, we remain quite in the dark.

Even without enough development to answer these questions, CTS does

appear to escape the problems (i)–(iii) affecting STS and (iv) and (v) affecting

SGS, on the proviso that it can avoid commitment to maximal totalities. Clearly it

treats set theories structurally along with other branches of mathematics. The null

set, for example, is treated simply as an initial object of a category, not as a

mysterious empty abstract container. And there need be no commitment to any

unique set-theoretic reality. Nor is CTS plagued by the special objects and rela-

tions of ante rem structures.

On the positive side, category theory has much to offer by way of insights into

mathematical structure and through its novel approach to generalization via

morphisms and functors. Equally clearly, however, in light of the foregoing dis-

cussion, it is inadequate as a foundational framework as it stands. If it is not to fall

prey to a dependence on set theory after all, some alternative way of developing it

which is responsive to the above basic questions must be found. In the final

section below, we will mention one such alternative.

5. Modal-Structuralism

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A good way into this approach (developed in [17] and [18]) is via Russell, who

wrote early on in [32]:

It might be suggested that, instead of setting up ‘‘0,’’ ‘‘number,’’ and ‘‘successor’’

as terms of which we know the meaning . . . , we might let them stand for

any three terms that verify Peano’s five axioms. They will then no longer be terms

15 Thus, he writes:

Understanding Mathematical operations leads repeatedly to the forma-

tion of totalities: the collection of all prime numbers, the set of all points

on an ellipse . . . the set of all subsets of a set . . . , or the category of all

topological spaces. There are no upper limits; it is useful to consider the

‘‘universe’’ of all sets (as a class) or the category Cat of all small categories

as well as CAT, the category of all big categories. After each careful de-

limitation, bigger totalities appear. No set theory and no category theory

can encompass them all—and they are needed to grasp what Mathematics

does. ([24], 390)
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which have a meaning that is definite though undefined: they will be ‘‘variables,’’

terms concerning which we make certain hypotheses, namely, those stated in the

five axioms, but which are otherwise undetermined. . . . our theorems . . .will
concern all sets of terms having certain properties. (p. 10)

No sooner had Russell offered this suggestion than he retracted it for what we

today would regard as quite spurious reasons (the definition did not provide for the

existence of models—this from a critic of the ontological argument!—and you

could not account for ordinary counting on the proposed interpretation),16 and

pursued the Fregean absolutist line (cardinal numbers as definite classes of equi-

numerous concepts or classes), only to encounter various problems and paradoxes

leading to the abandonment of classes. In the end, we find this remarkable sug-

gestion concerning logical and mathematical propositions generally:

We may thus lay down, as a necessary (though not sufficient) characteristic

of logical or mathematical propositions, that they are to be such as can be

obtained from a proposition containing no variables . . . by turning every con-

stituent into a variable and asserting that the result is always true or some-

times true. . . . logic (or mathematics) is concerned only with forms. . . .’’
([32], p. 199)

When we consider that relations (propositional functions) as well as individuals

count as ‘‘constituents’’ of propositions, then we realize that this criterion is met

by formulating mathematics in higher-order logic without constants. In fact,

second-order logic suffices. In the case of number theory, for example, an ordi-

nary statement A naturally goes over to a conditional of the form

VR [PA2!A] (S/R),

in which ‘‘PA2’’ stands for the conjunction of the (Dedekind–) Peano axioms and

‘‘S/R’’ indicates systematic replacement of the successor constant with the relation

variable ‘‘R’’ throughout. (Here ‘‘0’’ can be dropped because it is definable from

successor.) If A is logically implied by the axioms, this is a truth of second-order

logic; if not, the result of replacing ‘‘A’’ with ‘‘:A’’ is, in light of Dedekind’s

16 On the eliminativist strategy suggested, counting would be understood, roughly

speaking, as indicating, with numerals, or related symbols, a one-one correspondence

between the enumerated items and an initial segment of any progression (or any that there

might be, on a modalized version). One can even put it constructively: counting provides a

means of building a one-one correspondence between the enumerated items and a seg-

ment of any given progression. On such an account, standing in such correspondences plays

the role that membership plays on the Frege–Russell account (i.e., the enumerated class (or

concept) belongs to a Frege–Russell number).
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categoricity theorem.17 Even better, taking the predicate ‘‘number’’ into account

as suggested, and generalizing, we obtain

VX VR [PA2!A]X (S/R),

where the superscript indicates relativization of all quantifiers to domain X. Thus,

Russell has come full circle (at least ‘‘up to negation!’’), for this is just the general

interpretation ‘‘through variables’’ that he had suggested and dismissed at the

outset. (But no matter. Russell eventually got there.) It is already a kind of

structuralist interpretation, expressing that truths of arithmetic are what hold in

any progression whatever. Formulated as it stands, however, it is inadequate, for

suppose there are no progressions; then all such conditionals are vacuously true,

regardless of the content of A. A better plan is to construe the generalization

‘‘always true’’ modally (i.e., as meaning ‘‘in any progression there might be,

logically speaking’’), prefixing the last displayed formula with a necessity operator

(‘‘&’’). Then, to avoid vacuity, we may categorically lay down

�AX AR [PA2]X (S/R),

affirming the logical possibility of a progression, which of course is compatible with

the actual absence of any. The same plan works for the real number system, for the

complexes, for cumulative hierarchies of sets (characterized by cardinality of Urel-

emente and ordinal height), and, indeed, for any mathematical structure categori-

cally characterized by second-order axioms. (For noncategorical theories—as, for

instance, in abstract algebra—the result is incompleteness, but that is as it should

be. Of course, more specific types of structures—e.g., transitive permutation groups

of a given order, and so on—can be treated.) So far we have the basic plan of

modal-structural interpretations of mathematical theories (the conditionals form-

ing the ‘‘hypothetical component,’’ the possible existence claims forming the ‘‘cate-

gorical component ’’).

The background logic is second-order, with quantified S-5 modal logic,

without the Barcan formula.18 However, care must be taken in formulating sec-

ond-order logical comprehension. In a modal context, unrestricted comprehen-

sion leads to intensions, transworld classes and relations. For example, suppose

17 The question may be raised here as to what background theory this categoricity

theorem is proved in. It need not be anything so strong as impredicative set theory.

Indeed, as shown in [12], essentially only a weak axiomatic fragment of weak second-order

logic is really required, in which quantification over finite subsets of the domain is taken as

given. More precisely, the theorem is recovered in ‘‘EFSC,’’ an elementary theory of finite

sets and classes of individuals, conservative over Peano Arithmetic.
18 That is, the inference from �Axj to Ax�j is to be avoided.

structuralism 553



the predicate ‘planet’ is available; then we would generate a class not merely of

existing planets, but also of those together with ‘‘any that might have existed.’’

That is, we would be recognizing possibilia. (Notice that this follows even if the

class quantifier is understood as a plural quantifier.) In general, we would be

quantifying over relations, not merely relating objects in the actual world or in

any hypothetical one being entertained, but across worlds.19 In particular, we

would generate a universal class of all possible objects, and corresponding uni-

versal relations among possibilia, directly violating the extendability principle

(modally understood, appropriately, as ‘‘Any totality there might be, might be

extended’’). Ordinary mathematical abstracta seem tame compared to such

extravagances; indulging them would deprive MS of much of its interest as a dis-

tinctive program. To avoid such commitments, therefore, an extensional version

of comprehension is chosen:

(Logical Comp) &AR Vx1 . . . Vxn (R(x1 . . . xn)$F),

where F lacks free ‘‘R’’ and is also modal-free. Note that the universal quantifiers

are not boxed. In effect, (n-tuples of ) individuals form collections and relations

only within a world, not across worlds. (Officially, of course, neither worlds nor

possibilia are recognized.)

This leaves us, however, with a level of abstract classes and relations or Fre-

gean concepts as second-order entities. This can be dispensed with, however, by

appealing to a combination of mereology and plural quantification, provided (the

possibility of) an infinity of individuals is assumed. This itself can be expressed

using mereology and plural quantifiers, for example, by

(Ax?) There are some individuals one of which is an atom and

each of which, combined with an atom not part of it, is also

one of them,

where an atom is an individual without proper parts. Given this, one can get the

effect of ordered pairing of arbitrary individuals,20 and this effects a reduction of

polyadic second-order quantification to monadic, which itself can be interpreted

plurally. Thus, the relation quantifier in the above second-order comprehension

scheme can be replaced with a class quantifier. Also, F can contain the part–whole

relation of mereology.

19 Note that it is quantification over transworld relations that is to be avoided. There is

nothing to prevent us from applying particular predicates to entertain relations among

given objects and ‘‘others that there might have been,’’ as when we say innocous things such

as ‘‘There might have been a horse larger than any existing one,’’ and so on. This does not

commit us to possible horses as objects nor, of course, to worlds containing such beasts.
20 See [6].
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Completing the core system is a ‘‘comprehension’’ scheme of mereology itself,

guaranteeing the whole (‘‘sum,’’ or ‘‘fusion’’) of any individuals satisfying a given

(non-null) predicate:

(S Comp) AxC(x)! Ay Vz[y � z$ Au(z � u & C(u))],

where ‘‘ � ’’ ‘‘overlaps’’ is defined via ‘‘part of ’’,< , as x � y$ Av(v< x & v< y);

and, in C, monadic second-order variables are allowed, free or bound. Thus

formulated, MS is ontologically neutral to this extent: any objects whatever may

stand in relevant structural relationships so long as it makes sense to speak of

wholes, or of pluralities, of them, which is all that this machinery requires. In

particular, a physical or spatiotemporal interpretation of ‘‘part–whole’’ is not

required.21

This framework turns out to be surprisingly powerful. On the assumption of

(the possibility of) just a countable infinity of atoms, not only can the modal

existence of progressions (or N-structures) be derived, but by repeated use of plu-

rals and mereology, full, polyadic classical third-order number theory, equiva-

lently second-order analysis, can be recovered. If one postulates the possibility of a

continuum of atoms, this can be pushed up to fourth-order number theory. Even

second-order is already rich enough to represent vast amounts of ordinary math-

ematics, yet there is no use of set-membership or even an abstract ontology of

classes and relations. Structures and structural relations are gotten at indirectly;

set-theoretic and higher-order logical constructions can be encoded by talk of

pluralities (invoking pairing for relations), but without actually reifying structures

or relations. We have a ‘‘structuralism without structures.’’

We have now provided answers to the questions under (1) for MS in some

detail. Concerning (2), assertory axioms, the initial Axiom of Infinity (Ax?) and

the displayed comprehension schemata form the core system, to which can be

added more specific modal-existence claims for particular kinds of structures.

That for N-structures is already derivable from (Ax?) and instances of com-

prehension, as can even the modal-existence of continua or R-structures, ob-

tained by following well-known classical constructions (e.g., via Dedekind cuts).

For atomic R-structures, with reals as atoms, however, further postulation is

necessary. Similarly, further postulates are needed for structures of higher car-

dinality (e.g., for Zermelo set theory and beyond). It should also be mentioned

that the unicity (uniqueness up to isomorphism) of N- and R-structures is also

derivable in the core system.

21 It is worth noting, for example, that Goodman [15], who helped promulgate

mereology (which he called the calculus of individuals), applied it to sense qualia, them-

selves conceived as ‘‘abstract’’ in the sense of ‘‘multiply instantiable’’ and not themselves

spatiotemporally bound.
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As to (3), this version of structuralism is thoroughly eliminativist, as already

described.22 Concerning what distinguishes mathematical from other structures,

the same second-order logical criterion mentioned in connection with SGS is

available (appealing to translation via plurals).

Concerning (4), MS is uniquely explicit in distinguishing mathematical ex-

istence from ordinary existence. Zermelo spoke of the former as ‘‘ideal existence,’’

an idea similar to the notion of logical possibility. By bringing this to the fore,

however, MS permits explicit principles of extendability of (pluralities of )

structures (which Zermelo [35] articulated for models of set theory), but without

generating any universal classes of structures or structural objects (as arise in SGS

and in a straightforward second-order logical formalization of Zermelo [35] as

well), due to the natural limitations set by extensional second-order compre-

hension. It simply makes no sense to speak of a collection or plurality of all

structures or items in structures that there might be. (This builds on the more

mundane fact that, on an ordinary understanding of ‘‘collecting,’’ you cannot

actually collect anything which only might have existed.)

As to (5), MS is distinguished from other versions in eliminating the need for

reference to mathematical structures, since it is only possibilities of structurally

interrelated objects that are entertained, and these are given by general descrip-

tions. Ordinary designators (e.g., numerals) occurring in everyday use can be

accounted for in various ways, e.g., as indicating relevant places in structures; as

convenient devices in counting, measuring, and computing; as introduced in

mathematical reasoning modulo the assumption of (the possibility of ) a structure

of a given type (e.g., N-structures), following the logical move of existential

instantiation, and so forth. But the usual puzzles (and ‘‘bad questions’’) concern-

ing Platonistic reference to abstracta do not arise.

The real challenge for MS lies in the last question, concerning epistemic

access, not in this case to structures themselves—since these are eliminated on this

interpretation—but with respect to the possibilities of structures. What sort of

evidence can we have for the various modal-existence postulates arising in math-

ematics, as illustrated above? Of course, we may gain evidence of formal con-

sistency of the associated axiomatic systems (including various strong forms of

consistency, such as o-consistency), even if we cannot have a finitistic proof in the

central cases of interest. But the second-order machinery of MS is adopted so that

standard models of theories (e.g., number theory, analysis, set theories) will be

describable, and the possibility of these is not guaranteed by formal consistency

claims. It seems that we must fall back on indirect evidence pertaining to our

successful practice internally and in applications, and, perhaps, the intuitive

pictures and ideas we have of various structures as supporting the coherence of

22 Of course, the elimination is for pure mathematics, without prejudice to any actual

instantiations of structures there may happen to be in the material world.
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our concepts of them. Perhaps that is the best that any version of structuralism

can hope for. We will return to this below, when we come to address some specific

challenges that have been raised for MS.

Turning briefly to the problems (i)–(v) raised above, it should be clear that none

of them affects MS. Set theories are interpreted structurally, and questions about

‘‘the real world of sets’’ do not arise. Multiple structural possibilities are allowed

for, including full ‘‘power sets’’; less-than-full-power sets; well-founded domains;

non-well-founded; and so on. Extendability principles are explicitly part of the in-

terpretation of set theory, leading to the ‘‘small’’ large cardinals (inaccessible, hyper-

inaccessible of all orders, Mahlo, n-Mahlo, etc.). And, as explained, extensional

comprehension does not permit recognition of maximal totalities such as that of ‘‘all

possible structures.’’ Finally, the whole thrust of MS is to avoid postulating special

abstract objects, so the puzzles concerning ‘‘places’’ and ‘‘purely structural relations’’

do not arise. The MS route to ‘‘abstractness’’ consists not in attempting to introduce

‘‘featureless objects,’’ but in simply not building into the descriptions of hypothetical

structures anything beyond what is of mathematical interest. Benacerraf ’s puzzle is

solved by accepting his conclusion: numbers as objects are officially eliminated,

although number-words can be introduced as aids in computation and reasoning.

Finally, regarding (vi), MS is as explicit as any version regarding its assumptions.

The main new problem for MS is reliance on primitive modality (call this

(vii)), analogous to SGS’s reliance on the primitive ‘‘coherent.’’ One would like a

formal criterion for these notions, but that is not to be hoped for, and the ap-

proach confronts the epistemological questions broached above.

Space permits us to consider, briefly, only the core Axiom of Infinity (Ax ?),

which, with the MS machinery (as already explained), suffices for the vast bulk of

ordinary mathematics.

The possibility of a countable infinity of objects seems so entrenched in, and

indispensable to, our scientific and mathematical thinking that it is difficult to argue

against the skeptic. Intuitionists who insist on human mental constructions of

course cannot be satisfied because, of course, we have only finite resources to work

with and can work only so fast. From the classical MS perspective, the issue of

supertasks is entirely beside the point. As Hale recognized [16], it is the ready

conceivability of situations in which infinitely many mind-independent objects exist

that we naturally appeal to if pressed. Of course, the Platonist can claim, in a variety

of ways, that our present situation is such, since, for instance, a proposition p exists

and, for every proposition q, the statement ‘‘It is true that q’’ expresses a propo-

sition, distinct from q (Bolzano); or that some object o is given, and that for any

object a, the singleton of a exists and is distinct from a (Zermelo), and so on.

But nominalists are not deprived of the possibility of infinities just for not

going along with propositions, sets, and such. It is sufficient if, for example, it could

be the case that there is a moment of time and that for every moment of time there

is a later one (perhaps forming a convergent series), or—as Dummett concedes to
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be perfectly intelligible—that there be stars such that, for any one of them, another

one exists some further distance away, and so on. Now, in examining the move

from conceivability to possibility, Hale [16] explicitly distinguishes between re-

quiring that the conceived situation be one in which it could be verified that there

are infinitely many things—a condition he (rightly) regards as too strongly ver-

ificationist—and requiring rather that the conceived situation be one of which it

can be recognized that, were it to obtain, there would indeed be an infinity of things.

The latter can be satisfied if a sufficiently detailed description is available from

which it can (here, in our world) be inferred that an infinity exists wherever the

description holds, whereas the former might be quite impossible without super-

tasks. And it is the latter requirement that is to govern, according to Hale ([16],

137–138).

So what, then, is wrong with the appeal to moments of time, stars, and such, as

above? Our descriptions straightforwardly entail the existence of infinitely many

things in those situations, and Hale seems to grant the possibility that those

descriptions could hold. We certainly can see the entailment of infinity, right here

and now. It appears that, several pages later, however, there is a slide in Hale’s

discussion back to a verificationist requirement, for he writes that ‘‘the imagined

situation would have to be given by a description of which we could tell . . . that,

were it to be satisfied, this would mandate acceptance of a theory which entails the

existence of a completed concrete o-sequence’’ ([16], 145, my emphasis), and just

prior to this he writes that only ordinary tasks are relevant in assessing an imagined

situation ‘‘as being one of which we could recognize that, were it to obtain, a

concrete o-sequence would exist’’ (ibid., my emphasis).23 Then, not surprisingly,

the MS appeal to situations in which there is always a later moment of time or

another star further away, and so on, will be found wanting. It seems that, after all,

we would have to be able to determine such things in the imagined situations, in a

strong sense (e.g., have evidence that could not be explained on a strictly finitistic

basis). It seems that the red herring of supertasks is again out of the jar.

23 Lest it be thought that we are resolving some subtle ambiguity of modal usage in a

biased way, we note that, in the ensuing discussion, Hale writes:

[the structuralist] must supply a description—necessarily finite—of a

possible situation, no empirically adequate theoretical account of which

could avoid postulating the existence of a completed concrete

o-sequence. But any desription which could—in the present context—be

reckoned unproblematic will perforce mention only finitely many ob-

servationally ascertainable facts . . .which an empirically adequate theory

must explain’’ (p. 145).

This then rules out closure conditions involving quantification (e.g., ‘‘for any moment of

time, there is a later one’’), on the grounds that its satisfaction is not ‘‘observationally

ascertainable.’’ The slide back to a verificationist requirement is complete.
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A further criticism sometimes leveled against MS concerns its use of second-

order logic. There are two interrelated parts to this: first, second-order logic, in its

intended sense, is not formalizable; and, second, this reflects the fact that a sub-

stantial amount of mathematics is thus presupposed, raising the specter of circu-

larity. In reply, the first point is correct and is a corollary of Gödel’s incompleteness

theorems (in the context of Dedekind’s categoricity of the Dedekind–Peano

axioms). It is the price paid for the gain in expressive power along with the failure

of logical compactness. In seeking a systematic formulation of structuralism, however,

one is not attempting to formalize all of mathematics. The advantages of explicitness

and clarity concerning one’s assumptions speak for themselves, despite the unat-

tainability of completeness. Indeed, the open-endedness and extendability of

mathematics are reasons enough to forgo the latter aim. Moreover, concerning the

second part of the criticisim, there is no need to insist on an absolute distinction

between logic and mathematics, for MS does not seek a reduction of mathematics to

logic in anything like the traditional sense(s) (e.g., to demonstrate the ‘‘analyticity’’

of mathematics). It should be granted that some core mathematical content must be

built into one’s primitive notions if structuralism is to be articulated at all. Indeed,

the notions of ‘‘arbitrary plurality’’ of infinitely many objects and ‘‘arbitrary part’’

of an infinitude of atoms are inherently mathematical, as the work they can do in

the detailed development of MS makes clear. Nevertheless, it should be emphasized

that no primitive notion of ‘‘relation’’ or ‘‘function’’ is needed: as noted above,

monadic plural quantification, combined with mereology, enables a reduction

of polyadic second-order quantification (i.e., of a full theory of relations). This is

a nontrivial gain vis-à-vis versions of structuralism which presuppose ‘‘set-

membership’’ or ‘‘function’’ or ‘‘relation.’’ The claim would be that while far-

reaching in their mathematical import, the notion ‘‘some of these things,’’ in the

plural sense, and that of ‘‘part of a whole’’ of pairwise discrete things, are accessible

to us in ordinary contexts and not special to mathematics. Moreover, surely plural

quantifiers belong to logic in a general sense, even if mereology’s status remains

moot. Thus, MS could be said to establish a partial logicism, less ambitious than the

full program, to be sure, but significant nonetheless.

Other criticisms of MS have been offered, especially in connection with ap-

plications of mathematics, an issue that space has not permitted us to deal with in

this chapter.24 In general, structuralists are well-positioned to treat applications

because these are naturally understood in terms of full or partial instantiation of

24 Resnik ([30], pp. 74–75), for example, has argued that MS cannot treat ordinary

scientific applications of probability and statistics, because of the need for abstract objects

such as ‘‘events’’ (e.g., possible outcomes of experiments) and numbers. While Field-style

nominalism may be threatened by his objection, I believe it has no force against MS, which

can readily invoke the possibility of rich enough structures to represent or model appli-

cations of probability and statistics. What matters is not the metaphysical category of
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mathematical structures by material systems, or, in some cases, just via mappings

between these. As an eliminativist version, MS does require some artful maneu-

vering to express relevant relationships between material systems and hypothetical

objects that merely might form mathematical structures (e.g., N-structures, R-

structures, the various spaces of analysis, etc.). But the methods worked out in ([17],

ch. 3), together with improvements from [7], I believe, essentially solve this problem.

6. Summation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Our comparative investigation thus far can be summarized in the following table,

most of which should now be self-explanatory (a check means that the objection

applies; the goal is to ‘‘draw a blank’’):

STS SGS CTS MS

(i) Sets exceptional H — — —

(ii) Maximal totalities H H ? —

(iii) Possibility of gross error H — — —

(iv) ‘‘Places’’ as objects — H — —

(v) Purely structural relations? — H — —

(vi) Underspecification — — H —

(vii) Primitive modality ? (informal) H ? H

The reason for the ‘‘?’’ in the last row under STS has to do with various informal

appeals to possibility in motivating certain points of the theory (e.g., starting with

the null set; explaining power sets, via all possible ways of selecting; and moti-

vating largeness conditions, ‘‘. . . the hierarchy go[es] on as long as possible’’).25

As anticipated, none of the approaches is free of problems. But the paucity of

checks in the last two columns encourages us to seek some kind of synthesis of CTS

and MS. This is in fact achievable, with the effect of removing the check under CTS

(vi) while replacing the ‘‘?’’ under (ii) with a blank and replacing that under (vii)

objects in such a model but rather the (applied) mathematical information they carry,

which depends on our stipulations and on structural roles. Numbers in an absolute sense

are no more required as values of probability functions than they are for ordinary

counting or measuring. (Cf. n. 16.)
25 See, e.g. ([26], p. 141). For a fuller discussion of these points, see [19].
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with a check. Instead of relativizing CT to background universes of sets, one can

introduce hypothetical large domains (corresponding to inaccessible cardinalities)

merely by employing the language of mereology and plurals, as in MS; CT can be

carried out relative to such domains, any one of which will also support many

topoi, incorporating the relativity that Bell has described as well (resulting in an

overall double relativity).26 At the same time, set theory itself can be developed

structurally, relative to such domains. Extendability principles can readily be for-

mulated and adopted applying to these domains, and the same considerations that

ensure a blank under (ii) for MS carry over. Puzzles about proper classes in set the-

ory and large categories in category theory are handled in parallel fashion, by rel-

ativization to large domains (recovering, for set theory, Zermelo’s method, and for

CT, the Grothendieck method of universes). If we are right, use of modal notions is

the price we must pay if we are to have a well-specified structuralism which

respects the indefinite extendability of universes of discourse for mathematics.

REFERENCES
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1] Awodey, S. ‘‘Structure in Mathematics and Logic: A Categorical Perspective,’’

Philosophia Mathematica (3) 4 (1996): 209–237.
[2] Bell, J.L. ‘‘From Absolute to Local Mathematics,’’ Synth�eese 69 (1986): 409–426.
[3] Bell, J.L. Toposes and Local Set Theories (Oxford: Clarendon Press, 1988).
[4] Benacerraf, P. ‘‘What Numbers Could Not Be’’ (1965), reprinted in P. Benacerraf

and H. Putnam, eds., Philosophy of Mathematics, 2nd ed. (Cambridge: Cambridge

University Press, 1983), pp. 272–294.
[5] Bolzano, B. Paradoxes of the Infinite, D.A. Steele, trans. (London: Routledge &

Kegan Paul, 1950).
[6] Burgess, J.P., A. Hazen, and D. Lewis. ‘‘Appendix on Pairing,’’ in D. Lewis, Parts of

Classes (Oxford: Blackwell, 1991), pp. 121–149.
[7] Burgess, J.P., and G. Rosen. A Subject with No Object: Strategies for Nominalistic

Interpretation of Mathematics (New York: Oxford University Press, 1997).
[8] Burgess, J.P. Review of Stewart Shapiro [1997], Notre Dame Journal of Formal

Logic, 40 (1999), pp. 283–291.
[9] Dedekind, R. Was sind und was sollen die Zahlen? (Brunswick: Vieweg, 1888),

trans. as ‘‘The Nature and Meaning of Numbers’’ in W.W. Beman, ed., Essays on

the Theory of Numbers (New York: Dover, 1963), pp. 31–115.
[10] Dedekind, R. Letter to Heinrich Weber, in R. Fricke, E. Noether, and O. Ore, eds.,

Gesammelte mathematische Werke, vol. 3 (Brunswick: Vieweg, 1932), pp. 489–490.
[11] Feferman, S. ‘‘Categorical Foundations and Foundations of Category Theory,’’ in

R.E. Butts and J. Hintikka, eds., Logic, Foundations of Mathematics, and

Computability Theory (Dordrecht: Reidel, 1977), pp. 149–169.

26 For details, see [20].

structuralism 561



[12] Feferman, S., and G. Hellman. ‘‘Predicative Foundations of Arithmetic,’’ Journal

of Philosophical Logic 24 (1995): 1–17.
[13] Frege, G.Wissenschaftlicher Briefwechsel, G. Gabriel, H. Hermes, F. Kambartel, and

C. Thiel, eds. (Hamburg: Felix Meiner, 1976), trans. as Philosophical and
Mathematical Correspondence (Oxford: Blackwell, 1980).

[14] Freyd, P., and A. Scedrov. Categories, Allegories (Amsterdam: North Holland,

1990).
[15] Goodman, N. The Structure of Appearance, 3rd ed. (Dordrecht: Reidel, 1977).
[16] Hale, B. ‘‘Structuralism’s Unpaid Epistemological Debts,’’ Philosophia

Mathematica (3) 4 (1996): 124–147.
[17] Hellman, G. Mathematics Without Numbers: Towards a Modal-Structural

Interpretation (Oxford: Oxford University Press, 1989).
[18] Hellman, G. ‘‘Structuralism Without Structures,’’ Philosophia Mathematica (3) 4

(1996): 100–123.
[19] Hellman, G. ‘‘Three Varieties of Mathematical Structuralism,’’ Philosophia

Mathematica (3)9 (2001): 184–211.
[20] Hellman, G. ‘‘Does Category Theory Provide a Framework for Mathematical

Structuralism,’’ Philosophia Mathematica (3)11 (2003), pp. 129–157.
[21] Hersh, R. What Is Mathematics, Really? (Oxford: Oxford University Press, 1997).
[22] Keränen, J. ‘‘The Identity Problem for Realist Structuralism,’’ Philosophia

Mathematica (3)9 (2001): 308–330.
[23] MacBride, F. ed., Identity and Modality: New Essays in Metaphysics (Oxford:

Oxford University Press, forthcoming).

[24] Mac Lane, S. Mathematics: Form and Function (New York: Springer, 1986).
[25] Mac Lane, S., and Moerdijk, I. Sheaves in Geometry and Logic: A First Introduction

to Topos Theory (New York: Springer, 1992).
[26] Maddy, P. Realism in Mathematics (Oxford: Oxford University Press, 1990).
[27] McLarty, C. ‘‘Numbers Can Be Just What They Have To,’’ Noûus 27 (1993):
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c h a p t e r 18

STRUCTURALISM

RECONSIDERED

fraser macbride

1. Introduction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The properties and relations that perform a role in mathematical reasoning arise

from the basic relations that obtain among mathematical objects. It is in terms of

these basic relations that mathematicians identify the objects they intend to study.

The way in which mathematicians identify these objects has led some philoso-

phers to draw metaphysical conclusions about their nature. These philosophers

have been led to claim that mathematical objects are positions in structures or

akin to positions in patterns.

Let us retrace their route from (relatively uncontroversial) facts about the

identification of mathematical objects to high metaphysical conclusions. Begin with

the natural numbers. How are they identified? The mathematically significant

properties and relations of natural numbers arise from the successor function that

orders them; the natural numbers are identified simply as the objects that answer to

this basic function. But the relations (or functions) that are used to identify a class

of mathematical objects may often be defined over what appear to be different kinds

Thanks to audiences in Edinburgh, Geneva, Helsinki, London, and Oxford for

helpful discussion of this and related material on structuralism more broadly conceived. I

am also indebted to Patrick Greenough, Geoffrey Hellman, Keith Hossack, Mark Kal-

deron, Mike Martin, Alex Oliver, Crispin Wright, and, especially, Stewart Shapiro. I

gratefully acknowledge the support of the Leverhulme Trust, whose award of a Philip

Leverhulme Prize made the writing of this chapter possible.
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of objects. The successor function, for example, may be defined over real numbers,

Zermelo ordinals (etc.). It follows that the identification of mathematical objects in

terms of their basic relations fails to settle whether mathematical objects of one kind

(natural numbers) are identical to or distinct from objects of an apparently different

kind (real numbers, Zermelo ordinals). The identification of mathematical objects

in terms of their basic relations also fails to establish what, if any, intrinsic features

mathematical objects possess. The natural number 2 is not picked out by any in-

trinsic features it may have. 2 is identified only by its relation to other natural

numbers—the fact that it is the successor of 1 and succeeded by 3 (etc.).1

The fact that mathematical objects are identified in terms of their basic

relations leaves the mathematician unable to answer certain questions: whether

mathematical objects of one kind are identical to objects of a different kind, or

what intrinsic features mathematical objects possess. This suggests that the math-

ematician’s knowledge of mathematical objects is essentially incomplete, that

there are aspects of mathematical reality—the identity of its objects, their intrinsic

features—that lie ineluctably beyond the bounds of mathematical inquiry. But

this is not the only way to interpret the mathematician’s inability to answer certain

questions. For perhaps it is not the mathematician’s knowledge that is incomplete

but the mathematical objects themselves: it is not ignorance that hinders the

mathematician from settling whether 2 is {{£}}; it is the very absence of answers

to such questions. It is to make sense of this idea—the idea that mathematical

objects are incomplete in re—that some philosophers identify (or compare) these

objects with positions in patterns or structures.

The most extended and influential elaborations of the claim that mathe-

matical objects may be fruitfully compared or identified with positions in patterns

or structures are to be found in Michael Resnik’s Mathematics as a Science of

Patterns and Stewart Shapiro’s Philosophy of Mathematics: Structure and Ontology

(hereafter MSP and PMSO, respectively).2 For the purpose of assessing whether

1 These remarks introduce one version of the much-discussed ‘‘Caesar problem.’’ In

connection with the issues raised in the present chapter, the interested reader may usefully

consult Frege [1884], §66; Benacerraf [1965], [1998], pp. 45–57; C. Parsons [1965], [1971],
pp. 154–157; Quine [1969], pp. 43–45; Kitcher [1978]; Wright [1983], pp. 123–127; Field
[1989], pp. 20–25; and Maddy [1990], pp. 80–98. MacBride [forthcoming] distinguishes

some of the different dimensions along which versions of the Caesar problem may vary.
2 MSP and PMSO draw upon and develop the views presented by their authors in a

number of earlier papers. The most important of these include Resnik [1975], [1981], [1982],
[1988] and Shapiro [1983], [1989], [1993]. However, it should not be assumed that MSP or

PMSO advocates views that are identical to or even cohere with the structuralist ideas ar-

ticulated in these papers. See Chihara [1990], pp. 125–145, for an outline and critique of some

of these earlier ideas. C. Parsons [1990] develops an important and independent position that

embeds both Kantian and structuralist components. For reasons of space, an evaluation of

Parsons’s rich and subtle views will have to be postponed until another occasion.
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such conceptions of mathematical objects may be sustained, the (incompatible)

views of Resnik and Shapiro will be explored and evaluated in turn.

2. Resnik on Ontology

and Incompleteness

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

According to Resnik, the incompleteness of mathematical objects is to be en-

thusiastically embraced, simply a predictable and intelligible consequence of the

fact that mathematical objects are akin to positions in patterns. He offers two

complementary considerations in favor of this view.

Here is the first. Take an equilateral triangle ABC (MSP, pp. 202–203). Relative

to this triangle, the points A, B, and Cmay be distinguished. But now ask yourself,

Do these points—conceived in isolation from the triangle—enjoy any features that

distinguish them from one another or, indeed, from any other points? Resnik

recommends the answer: no: our intuitions speak in favor of the view that geo-

metrical positions lack any features other than those that relate them to the other

positions in the patterns they inhabit. Now take the corner A of a right triangle and

the corner A* of a rectangle (MSP, pp. 210–211). Ask yourself, Is A identical to A*?

Again Resnik answers: no: our intuitions simply deliver no verdict on this question.

He surmises that positions (points) in geometrical patterns are incomplete

objects—they lack intrinsic features and there is no ‘‘fact of the matter’’ concerning

whether they are identical to or distinct from positions drawn from different

patterns (or, indeed, any other kind of object). Resnik then proposes that math-

ematical objects themselves be conceived as positions in patterns—the natural

numbers, for example, as positions in the natural number sequence. From this

perspective it then appears that there is no more mystery to mathematical objects

being incomplete than there is a puzzle concerning the incompleteness of geo-

metrical points:

But what would strike one as a problematic oversight if one thought of math-

ematical objects along the lines of ordinary objects, seems quite natural when it

comes to positions in patterns. For restricting identity in the same pattern goes

hand in hand with their failure to have any identifying features independently of

a pattern. (MSP, p. 211)

Here is the second consideration that Resnik offers in favor of the incom-

pleteness of mathematical objects. Is there is any mathematical evidence that

speaks for or against the identity of (e.g.) the natural number 1 and the real num-

ber e ? According to Resnik, there is no (local) mathematical evidence that could

be adduced in favor of identifying or distinguishing between objects drawn from
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different mathematical structures, no novel theorem that could finally settle

whether the natural numbers are real numbers, whether the real numbers are sets,

and so on (MSP, pp. 219, 246, 269–70). It is out of respect for this feature of

mathematical practice that Resnik disavows facts of the matter concerning the

identity or character of mathematical objects that transcend the capacity of math-

ematics to settle. Resnik describes his ‘‘epistemic turn’’ in the following terms:

Epistemology enters the picture through motivating my disclaiming these facts:

since nothing mathematics countenances would fix these facts if we counte-

nanced them, I have opted for denying that there is anything to be decided,

instead of enlarging the notion of evidence applicable to the putative facts. (MSP,

p. 270)

Resnik, then, is unwilling to countenance the possibility that the truth-values of

sentences that affirm the identity of objects drawn from different structures (or

ascribe extrastructural features to them) are irresolvable and inscrutable, in prin-

ciple inaccessible to the best techniques of mathematical research (MSP, pp. 89,

219, 244, 248). So to avoid this kind of transcendental realism Resnik denies such

sentences are either true or false, and modifies his logic to embrace the possibility

that these sentences may be neither true nor false. Any impression we may have to

the contrary is generated, Resnik suggests, by the fact that other sentences of the

same grammatical form that identify positions drawn from the same pattern are

either true or false. The view that emerges from these reflections has it that within

a mathematical theory, classical logic obtains, each sentence being either true or

false. But if attempts are made to frame identities between objects that are de-

scribed by different theories, or to employ predicates from one theory to describe

objects drawn from another theory, then excluded middle fails (MSP, pp. 245–246,

257).3

Resnik endeavors in this way to place the incompleteness of mathematical

objects in perspective, a perspective from which it no longer appears troublesome

that these objects lack internal features or determinate identity conditions. It is

tempting to conceive Resnik’s project as an attempt to provide thereby a novel

ontological foundation for mathematics, a foundation in positions and patterns.

To feel the pull of this interpretation, just read the title of his book. Or consider

the declaration ‘‘Mathematics is a science of patterns with mathematical objects

being positions in patterns’’ (MSP, p. 199; see also p. 9). But it would be a mistake

to fall prey to the temptation. Resnik resists any ontological foundationalist

reading of his structuralism (MSP, pp. 222–223, 258, 272–273). He seeks only to

3 Resnik makes two further suggestions: (i) the underlying logic without a given

theory (that is, internally classical) may be intuitionistic; (ii) bivalence will also have to be

dropped (MSP, p. 245, n.4; p. 270).
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provide ‘‘another way of viewing numbers and number theory’’ that places the

problems that confront the understanding of numbers and number theory ‘‘in a

clearer light.’’ The idea that mathematical objects are positions in patterns may

even be ‘‘a ladder ultimately to be kicked away,’’ part of an ‘‘analogy’’ that—for

one reason or another—‘‘must be given up’’ (MSP, p. 261).

It is critical to a proper appreciation of Resnik’s philosophy of mathematics

that these remarks not be dismissed as coy disclaimers. They reflect the deep

character of Resnik’s enterprise and his conception of mathematical practice. To

make progress toward a proper appreciation of this somewhat surprising fact,

consider again the geometrical examples that Resnik employs to convince us that

there is nothing intrinsically problematical about incomplete objects (whether

they be points or numbers). Your responses may well have been different from

those that Resnik predicted. You might have responded to the questions raised

that the geometrical examples given are underdescribed, that we have yet to be

supplied with sufficient information to determine whether, for example, A¼A*

or not. You might have said, It’s not indeterminate whether A¼A*, it’s episte-

mologically underdetermined; we just don’t know whether A¼A* or not, so

there’s no reason to think that geometrical points are ontologically incomplete in

some way that is credible or intelligible to the understanding. The way in which

Resnik responds to this concern is highly revealing.

The counterintuition that the identity of A and A* is left epistemologically

underdetermined—rather than indeterminate—presupposes that geometry is the

theory of a single space, a space where each point enjoys a unique location and

consequently there is a determinate fact of the matter concerning the identity of

each point (MSP, p. 210). But geometry might have developed differently without

commitment to a single space that brings each point into a determinate relation

with every other. Instead, geometry might have developed as a collection of

theories of shape without commitment to a single space of points, but only to a

collection of spaces, a space for the positions of each shape so introduced. Then it

would be indeterminate whether the points from one space were identical to the

points drawn from another space. In fact, Resnik claims, this is just the situation

that arises in mathematics. Number theory and analysis introduce, respectively,

the positions in the natural number structure and the positions in the real number

structure. But neither number theory nor analysis evinces a commitment to a

common universe of positions such that there is a determinate fact of the matter

concerning whether, for example, the natural number 1 is the real number e.

From a cursory reading one might be forgiven for thinking that Resnik’s view

derives from an act of intuitive insight into the ontological character of geomet-

rical points. But, as we’ve just seen, this would be wrong. It is not geometrical

intuitions—an intuitive appreciation of what it is to be a position in a geometrical

pattern—that ultimately underwrites Resnik’s view that mathematical objects are

incomplete. It is, rather, an interpretation ofmathematical theories, an interpretation

structuralism reconsidered 567



according to which mathematical theories are neither ontologically committed to a

common domain of discourse nor ideologically committed to a universally appli-

cable identity predicate. It is true that Resnik has avowed an epistemic turn. But it is

now evident that he has also taken a ‘‘linguistic turn,’’ a transposition of intellectual

key that plays no less of a role in legitimating Resnik’s conception of mathematical

objects. And it is a way of thinking about mathematical objects that does not rely

upon commitment to a favored ontology of positions or patterns; it results from an

appreciation of the manner in which mathematical objects are introduced into

discourse by the theories that denote them.

Unfortunately, the way in which Resnik conceives of mathematical theories

threatens to conflict with mathematical practice. This is because the mathematical

properties of a domain of objects d will often be graspable only when d is embed-

ded within a larger domain d* (Kreisel [1967], p. 166). Therefore mathematicians

are very often obliged to establish isomorphisms or, more generally, embeddings

between the objects described by different mathematics theories in order to es-

tablish results that would otherwise be unobtainable (consider, for example, the

embedding of the integers in the complex plane). But as we have just seen, Resnik

denies that different mathematical theories enjoy a common universe of dis-

course. He also endorses the usual assumption that there cannot be an embedding

between objects unless they belong to a common domain (MSP, p. 211). Conse-

quently Resnik cannot admit any embedding between the domains of different

theories (d, it appears, cannot be embedded in d*).

In the same way, Resnik cannot admit any significant set-theoretic or category-

theoretic reduction of mathematical objects. In these reductions the pattern or

structure of the objects characterized by one theory (e.g., the natural number

structure) is usually identified with an object (e.g., o) in another theory. But

Resnik is not in a position to admit such identities. Not only does he deny the

intelligibility of identities between the domains of different theories, he also denies

that mathematical theories typically denote the structure their objects exhibit;

typically they do not even ‘‘countenance’’ the existence of such structures (MSP,

p. 211). For example, Peano Arithmetic refers to and quantifies over the natural

numbers but does not name or quantify over the natural number structure itself.

Similarly, set theory quantifies over sets but not over the set-theoretic hierarchy.

Resnik therefore offers the following picture of existential commitment: whereas a

mathematical theory is existentially committed to the positions (the numbers, the

sets) that lie within a structure, it is not committed to the existence of the struc-

ture that prima facie encompasses these positions (the natural number structure,

the set-theoretic hierarchy). But this appears to leave him unable to counte-

nance the identification of the structure of the objects characterized by a math-

ematical theory with a set-theoretical object.

Resnik strives to overcome these apparent clashes with mathematical practice

by employing what I will dub the ‘‘replacement strategy’’ (MSP, pp. 214–219, 222,
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246–248). It can hardly be denied that mathematicians establish embeddings and

isomorphisms between different collections of objects. So Resnik denies, instead,

that mathematicians establish embeddings or isomorphisms between the domains

of distinct theories. We are in the grip of a picture according to which the math-

ematician begins with two independent theories, t and t*, and then establishes an

embedding of the domain d of the former theory in the domain d* of the latter.

But Resnik wishes to reject this picture of mathematical practice, to loosen its grip

upon us. According to Resnik, the embedding takes place not between d and d*,

but between the subdomains D and D* of the larger domain of a novel theory y.
His idea is that the embedding of one collection of objects in another makes sense

only because the mathematician replaces two theories between whose domains

there is no intelligible mathematical connection with a new theory that subsumes

collections between which such a connection can be made out. What is critical

from Resnik’s point of view is that there ‘‘would be no fact of the matter as to

whether the old and new theories had the same ontology’’ (MSP, p. 219).4 The

mathematician has simply replaced old theories with a new one and there can be

no embeddings or isomorphisms between the domains of distinct theories.

Turning to the set-theoretic case, it can hardly be denied that mathematicians

identify some structures with sets. But it can be denied that the structures in

question are the structures of collections of objects characterized by theories that

are developed outside the aegis of set theory. There can be no fact of the matter

concerning whether the natural number structure described by number theory is

an object of another theory (e.g., the set o). Nor, indeed, can there be a fact of the

matter concerning the identity of the objects denoted by number theory with the

objects that pass for ‘‘natural numbers’’ in set theory. But, applying the re-

placement strategy, there can be a fact of the matter in the set theory that replaces

(or supersedes) number theory concerning whether the ‘‘natural numbers’’ in its

domain form a particular set.

Resnik’s conception of how the domains of different theories relate not only

threatens to conflict with mathematical practice, it also threatens to conflict with

his own philosophical theorizing (MSP, pp. 248–250). According to Resnik, there

is no fact of the matter concerning whether the structure or pattern a mathe-

matical theory describes is an object or an entity of any other kind. Nevertheless,

Resnik continually treats mathematical patterns as objects. He refers to them,

quantifies over them, and applies predicates to them throughout the course of his

study. Consider, for example, his definition of the subpattern relation: ‘‘A pattern

P is a sub-pattern of another pattern Q just in case P occurs within Q and every

position of P is a position of Q’’ (MSP, p. 206).

4 Resnik sometimes speak of ‘‘explication’’ of the old theory by the new. But it is

explication in ‘‘the Carnap–Quine sense of explication as elimination,’’ and therefore no

different from what I have described as replacement (MSP, p. 248, n.6).
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Resnik’s response to this difficulty provides further insight into his denial

that patterns provide any kind of ontological foundation for mathematics.

Resnik admits that a mathematically rigorous theory might be developed that

would refer to and quantify over patterns and their positions in very much the

same way that set theory quantifies over sets and their members (MSP, pp. 249,

254–257). But the utility of developing a mathematical theory of patterns would

be questionable. For one thing, it is doubtful whether such a theory would

constitute any mathematical advance over set theory or category theory. More

significantly, no pattern theory could be foundational in the sense of revealing

the kinds of things that mathematical theories had been talking about all along.

Why? Well, because a mathematical theory of patterns would be just one more

theory among others. So there would be no fact of the matter—from Resnik’s

point of view—concerning whether the patterns and positions quantified over

by the envisaged theory were identical to or distinct from the structures and

objects characterized by mathematical theories already established. It is for this

reason that Resnik cannot accept a foundationalist reading of his slogan that

mathematical objects are positions in patterns. It is a consequence of his own

denial—the denial that distinct theories ever share a common domain—that

Resnik is constrained to claim no more than an ‘‘analogy’’ between mathe-

matical objects and positions in patterns. He can claim no more than that

mathematics ‘‘treats the numbers as if they were positions in a pattern’’ (MSP,

p. 250; my italics).

What assessment, then, is to be made of Resnik’s ‘‘structuralism’’? At

first glance it may appear that his position admits of refutation. According to

Resnik, there is no fact of the matter concerning whether the natural number 2 is

identical to or distinct from the real number 2 (since these numbers are intro-

duced by distinct theories). So, according to Resnik, it is indeterminate whether

2natural¼ 2real. But it appears self-contradictory to assert that there are objects such

that it is indeterminate of them whether they are identical or distinct. Here’s the

reason. Suppose that it is indeterminate whether 2natural¼ 2real. Then 2natural and

2real differ with respect to the property of being determinately identical to 2natural
(2natural has that property, whereas 2real lacks it). Since 2natural and 2real differ with

respect to this property, it follows by contraposition on Leibniz’s Law (if x¼ y,

then x and y share all the same properties) that 2natural 6¼ 2real.

This objection to Resnik’s position should have a familiar ring to it. In fact it

is a version of Evans’s famous argument against vague objects. Chihara has also

independently advanced a version of the argument targeted specifically against

Resnik (Evans [1978]; Chihara [1990], p. 143). Unfortunately, it is an objection that

cannot be logically decisive. Arguments of this kind presuppose the rules of

classical logic. For example, the Evans/Chihara argument sketched here presup-

poses the rule of contraposition. But, as has become all too familiar from the vague-

ness debate, proponents of indeterminate identity all too often reject classical
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logic, in particular the rule of contraposition in contexts involving an indeter-

minacy operator.5

This does not mean that another version of this argument might not be given,

one that does not rely upon the questionable use of Leibniz’s Law. For example,

the Evans/Chihara argument relies upon the principle that if a and b have dif-

ferent properties, then a 6¼ b. This principle—sometimes called the Diversity of

the Dissimilar—is derived by contraposition from Leibniz’s Law. If, however, we

are willing to entertain the Diversity of the Dissimilar as a logical principle (or, at

least, a highly compelling principle) in its own right, then the argument can easily

be rewritten so as to obviate the questionable use of contraposition. Simply as-

sume the Diversity of the Dissimilar as a premise and forget about deriving it

from Leibniz’s Law. But the package of views to which Resnik is committed—his

denial that identity is everywhere determinate, his disavowal of any domain

shared among theories—runs counter to the Diversity of the Dissimilar along

with many other presuppositions of classical reasoning. It is correspondingly

doubtful whether a refutation of Resnik’s system of beliefs might be constructed

that is compelling by the lights of both Resnik and his opponents.

In a way this should come as no surprise. As an advocate for classical logic

might put the point: if someone refuses to employ reason, then, of course, it’s

going to be difficult to hit upon an argument that persuades him of much about

anything. Nevertheless this suggests another means of taking the attack to Resnik,

an attack that does not threaten to become bogged down in discussion of what

counts as logic. Resnik cannot accept that certain rules of inference or certain

‘‘logical’’ principles are compelling because there are other things he refuses to say

(for example, that 2natural¼ 2real or 2natural 6¼ 2real). But it may be that this refusal

prevents Resnik from sayings other things that really need to be said. So Resnik’s

position may admit of pragmatic confutation even if it cannot be logically refuted.

It is to avoid confutation of this kind that Resnik adopts the replacement

strategy. He refuses to allow that there can be any embeddings between the

domains of distinct theories. But mathematicians appear to say that there are such

embeddings. To avoid this pragmatic clash, Resnik reinterprets what mathema-

ticians are doing so that it coheres with his own account.

Unfortunately, Resnik’s response to this pragmatic difficulty is hardly credi-

ble, certainly no more credible than Russell’s valiant attempts to accommodate

the restrictions imposed by the theory of types. If Resnik is correct, then math-

ematical theories are inherently incommensurable in the very sense that will

disturb a mathematician most: there can be no comparison of the size or structure

of their domains unless—behind our backs, as it were—they are merely passages

of a larger theory. (Why? Well, because size and structure are established by laying

down forbidden embeddings between domains.) As a consequence, each novel

5 See T. Parsons [2000], pp. 16–30.
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embedding between theories signals a Kuhnian paradigm shift, the dawn of a new

theory that subsumes the embedding in question, and the history of mathematics

is a succession of Kuhnian revolutions of this kind. But this cannot be right; this

picture belies the underlying rationality of mathematical practice. What sense can

be made of the fact that mathematicians choose to replace two or more old

theories with a new one? The only answer that appears to be available is this:

because of the embeddings that obtain between the domains of these different

theories and the novel theory introduced. But Resnik cannot say this. From his

perspective it appears that each shift in practice is nothing more than an arational

transition between subjects of enquiry.

It is a further corollary that there can be no intelligible attempt—of the kind that

Zermelo and Fraenkel undertook—to unify mathematical practice. From Resnik’s

point of view, any attempt to do so will inevitably miss its mark. Any new theory that

attempts to comprise the subject matters of established theories will simply intro-

duce a domain of its own such that there is no fact of the matter concerning whether

the objects in this novel domain are identical to or distinct from objects drawn from

the domains of already familiar theories. The attempt to unify will inevitably result

only in further fragmentation, never in the unification of practice.

These are not the only pragmatic difficulties that threaten to confute Resnik’s

account. His refusal to admit embeddings between domains leaves Resnik unable

to say how mathematics gains application in the physical world. There is no

sterner criticism (short of contradiction) to be made of a philosophy of mathe-

matics. As Frege insisted, it is the fact that mathematics is capable of gaining ap-

plication that elevates it from the status of a game to the rank of a science (Frege

[1893–1903], vol. 2, §91).

Resnik says very little about the applications of mathematics.6 However, it

seems, at least, that he is committed to something like the following. It is because

physical objects instantiate mathematical patterns (or segments of them) that the

study of mathematical objects—objects that are positions in the aforementioned

patterns—is capable of illuminating the character of the physical realm. For Resnik,

instantiation is a special case of an embedding (a congruence) between mathe-

matical objects and the physical things that exhibit the same pattern, a case where

‘‘the objects ‘occupying the positions’ of a pattern have identifying features over and

above those conferred by the arrangements to which they belong’’ (MSP, p. 204).

By now it will be clear what problem arises. Since, for example, number the-

ory does not include physical objects in its domain, it follows that there cannot

be any kind of congruence between the natural numbers and physical things.

6 Resnik does say a good deal by way of defense of the Quine–Putnam thesis that

mathematics is indispensable to science (MSP, pp. 40–81). However, determining that

mathematics is indispensable to science in general does not settle, but rather leaves

a mystery, how, in detail, mathematics gains application to the physical realm.
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It follows that the natural numbers cannot be instantiated by the physical realm

and are therefore intrinsically incapable of application. The same goes for other

kinds of mathematical objects that are introduced independently of physical the-

ory. It is Resnik’s distinctive claim that mathematical objects are incomplete by

nature, incomplete in the sense that there is no fact of the matter concerning

whether they are identical to or distinct from objects of other kinds and do not

even belong to a common domain of discourse. Insofar as Resnik is correct to say

this, he cannot account for the applications of mathematics7

Is there no ‘‘way out’’ for Resnik? The difficulties confronted so far turn upon

the assumption (among others) that there can be an embedding between collections

of objects only if they belong to the same domain. Perhaps, however, this as-

sumption can be put under pressure. Consider the usual definition of isomorphism:

Fs 1–1Gs iff ARVx((Fx! A!y(Gy&Rxy))& (Gx! A!y(Fy&Ryx)). This definition

presupposes that the Fs and Gs that are 1–1 correlated occupy the same domain of

discourse. This presupposition is revealed by the fact that the universal quantifier

‘‘Vx’’ ranges over both Fs and Gs. However, it appears that an alternative definition

might be offered where the Fs and Gs are ranged over by separate quantifiers, and

no assumption is made that they belong to a common domain: Fs 1–1Gs iff ARVx
((Fx! A!y(Gy&Rxy))&Vy (Gy! A!x (Fx&Ryx)). If there is a difficulty that con-

fronts this proposal, it is nothing to do with the absence of facts of the matter

concerning the identity of the Fs with the Gs. Such facts are not required to

determine an isomorphism. For this, facts of identity and distinctness are required

among the Gs and among the Fs—so that it is determined that each F bears R to a

unique G and each G bears R to a unique F—but not between the Fs and the Gs. If

this modified definition is tenable, then perhaps there can be isomorphisms (or,

more generally, embeddings) between distinct domains after all.

Is this a ‘‘way out’’ for Resnik? An answer to this question will depend (in

part) on what is meant by ‘‘relation’’ and ‘‘domain.’’ There is certainly a very per-

missive notion of domain according to which the mere obtaining of a relation

provides a sufficient condition for its relata to belong to a common domain. But

there are also more restricted notions of domain that require some privileged kind

of relation to obtain between the elements of a domain. For example, it is built

into the idea of a spatiotemporal domain that the elements that fall within a

domain of this kind are spatiotemporally related. Any proponents of the ‘‘way

out’’ we are considering therefore face a substantial challenge. If they wish to allow

embeddings between distinct domains, then they cannot merely mean ‘‘domain’’ in

7 Russell and Dummett insist that structuralism cannot account for applications for

another reason, the reason that structuralism fails—in some suitable sense that remains to be

properly clarified—to incorporate the principles governing the application of mathematics

into its foundations (Russell [1919], p. 9; Dummett [1991], pp. 295–297). For defense of

structuralism against this charge, see Quine [1969], pp. 44–45 and C. Parsons [1990], p. 309.
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the permissive sense. But if they mean ‘‘domain’’ in some more restricted sense,

then whatever types of relation in fact embed distinct domains, these relations had

better not be privileged for the kind of domain in question. For example, if the

relation R that in fact correlates the F s and G s is privileged for the kind of domain

under consideration, then the embedding between the F s and G s will indicate that

they share a common domain after all. Whether appropriate notions of domain

and relation—that are neither too permissive nor too restrictive—can be made

out remains to be seen. This is an area that is too little investigated. It is disap-

pointing that Resnik does not subject his own assumptions—concerning what he

means by relation and domain—to scrutiny.

Suppose, however, that Resnik manages somehow to resolve the pragmatic

difficulties so far considered. Does it follow that he has succeeded in coming to

terms with the incompleteness of mathematical objects? No. Here is a preliminary

indication to the contrary. It is usually assumed that it is mathematical objects

rather than, say, concrete objects that are incomplete. Resnik shares this as-

sumption, maintaining that mathematical objects are unlike ‘‘ordinary objects,’’

and thus fit to be considered as positions in patterns (MSP, p. 211). But there is a

tension here. Resnik ‘‘accounts’’ for incompleteness by denying any facts of the

matter concerning the identity of mathematical objects to other kinds of objects

drawn from the domains of other theories. But this makes every kind of object

incomplete. Just as there is no fact of the matter about whether 2natural¼ 2real, so

there is no fact of the matter about whether Julius Caesar¼ 2natural (indeterminate

identity is symmetric). Hence ordinary objects turn out to be no less incomplete

than mathematical objects themselves.8

Perhaps finessing the kind of incompleteness involved may assuage this

concern. Even if it transpires that ordinary objects are incomplete in one sense—

that of failing to be everywhere determinately identical or distinct—it does not

follow that they are incomplete in another sense—namely, that of failing to

possess any intrinsic nature. So long as ordinary objects do not turn out to be

incomplete in this latter sense, there need be no deep objection to the position

that says they are incomplete in the former sense.

Yet even if this response is acceptable, there are deeper methodological ob-

jections to the way in which Resnik treats of the phenomenon of incompleteness.

He begins from the premise that mathematics recognizes no facts of the matter

concerning the identity of mathematical objects outside of the domains of the

theories that introduce them. He then develops a truth-value gap account to

accommodate this phenomenon:

8 It should be noted that Resnik does countenance the possibility that all objects are

incomplete, but later refrains from endorsing it (MSP, pp. 92, 267–268). If I am right, then

Resnik is in fact committed to the claim that all objects are actually incomplete.
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I would like to add that mathematical realists are not committed to claims about

mathematical objects beyond those they hold by virtue of endorsing the claims

of mathematics. Since mathematics recognises no facts of the matter in the

puzzling cases, mathematical realists are free to develop solutions that do not

recognise them either. (MSP, p. 92)

However, the failure of mathematics to register facts of the matter in the relevant

class of cases may be symptomatic of a variety of underlying causes. It may indeed be

the case that mathematics fails to register these facts because none of the relevant facts

are out there waiting to be discerned. But mathematics may fail to register these facts

for reasons other than their nonexistence. It may simply be that they are epistemo-

logically inaccessible to mathematical techniques (see Steiner [1975], p. 91). After all,

no mathematician—not even an ideal mathematician—is a god. So why suppose that

every fact about a mathematical object must be accessible to inquiry by mathema-

ticians? Alternatively, the failure of mathematics to register any of the relevant facts of

the matter may arise from indeterminacy in the language of mathematics rather than

the quirky incomplete natures of mathematical objects. In other words, the failure of

mathematics to settle whether 2natural¼ 2real may result from the semantic fact that

the expressions ‘‘2natural’’ and ‘‘2real’’ are systematically ambiguous. Consequently,

there is no fact of the matter about whether they absolutely refer to the same math-

ematical object (see Field [1974], pp. 221–222 and McGee [1997], p. 39 for different

versions of this proposal). Until these (and other) alternative explanations of in-

completeness are ruled out, Resnik is hardly ‘‘free’’ to draw the ontological conclusion

he favors from a purely epistemological premise.9 Until then, his claim that math-

ematical objects are incomplete in re can hardly be justified.10

This is not the only difficulty that confronts Resnik’s account of incom-

pleteness. His account also rests on the assumption that the incompleteness

9 It is important to note that the difficulty Resnik confronts here—that of circum-

scribing the character of the incompleteness exhibited by mathematical objects—is entirely

general. It applies not only to structuralists but also to supervaluationists, neologicists, and

so on. See MacBride [2003], pp. 133–134 and [forthcoming] for further discussion.
10 Resnik does briefly offer some justification for his position. The justification of-

fered is contained in the following remark: ‘‘My dicta concerning identities between

various kinds of mathematical objects are based upon likening them to positions in

patterns. Thus they derive from an insight concerning the nature of mathematical objects.

They are, if you will, consequences of my philosophical premises’’ (MSP, p. 246). But this
suggests we have gone round in a circle. To be convinced that mathematical objects are

like positions in patterns, we have to be assured that there are no facts of the matter of the

relevant kind (that the facts in questions are not merely inscrutable from our point of

view). But it seems, by the lights of the remark given, that we can be assured of the absence

of these facts only if we are already convinced that mathematical objects are akin to

positions in patterns. Resnik endeavors to pull himself up by his bootstraps. It is difficult

to see how any stable justification results for his dicta concerning identities.

structuralism reconsidered 575



of mathematical objects arises from the way in which they are introduced into

discourse:

Mathematical objects are incomplete in the sense that we have no answers within

or without mathematics to questions of whether the objects one mathematical

theory discusses are identical to those another treats; whether, for example,

geometrical points are real numbers. This springs from the way mathematics

defines its terms. (MSP, p. 90)

But what sense are we to make of this? How can the manner in which an object is

introduced into discourse—the way in which a term that first denotes an object is

defined—determine that the object introduced is thereby constrained to have no

more of a nature than is given expression by whatever served as an initial char-

acterization of it?

Of course, there is one class of entities for which, arguably, it is true that their

initial characterization exhausts their nature. This is the class of fictional objects.

One might think that there is no more to a fictional character than arises from the

descriptions of the author who invented them: there is, for instance, no more to

Nostromo—no hidden aspect of his nature—that is not already contained in

Conrad’s descriptions of the character; it is not open to a future author to discover

Nostromo’s true nature concealed beneath these (perhaps) deceptive characteri-

zations. But this does not hold for objects about which we are realist. For instance, it

does not follow from the fact that we are first introduced to tables in macroscopic

terms that tables are not also swarms of microscopic particles. It is worth noting that

Resnik is keen to emphasize the contrasts between mathematics and fiction. He

denies, in particular, that mathematical objects are, in any sense, constructed or in-

vented by us (MSP, pp. 188–189). But if we are also realist about numbers, it no more

follows that where the natural numbers are introduced by (e.g.) the axioms of Peano

Arithmetic, they are not also real numbers (where the real numbers are introduced

independently by a different axiomatic theory). Consequently, Resnik fails to pro-

vide sufficient reason to doubt that relevant facts of the matter about the identity of

mathematical objects obtain in such cases. As a result, Resnik fails to establish or

shed light upon the doctrine that mathematical objects are incomplete in re.

3. Shapiro on Ontology

and Incompleteness

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Does the structuralism that Shapiro avows make any more sense of the idea that

mathematical objects are incomplete? By contrast to Resnik, Shapiro does en-

deavor to provide an ontological foundation for mathematics. According to the

‘‘ante rem structuralism’’ he favors, structures are universals and mathematical
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objects are identified (literally) with positions within these structures (PMSO,

pp. 10–11, 100). According to this view, the progression of natural numbers, for

example, is itself a structural universal, the individual numbers being places or

positions within the structure, their properties and relations determined solely by

the structural role they perform there, and every property or relation of a number

n consequent upon its being the nth position in the natural number structure.

Mathematical structures and positions are, in this sense, said to be ‘‘freestanding.’’

Ante rem structuralism accounts for the instantiation of structures in the

following terms. A structure is instantiated (realized) when objects occupy the

positions of the structure. Objects occupy positions when they exhibit the relevant

battery of relations to the other objects in a system that exhibits the structure to

which these positions belong; in effect, positions are conceived as relational

properties, the overarching structure they participate in being a complex relation

that obtains when these properties are satisfied. The objects that occupy these

positions may in turn be positions drawn from other structures. More radically, a

structure S will instantiate itself and may embed substructures that are also

instances of S. This is made possible by the fact that—according to the ante rem

view—the notion of ‘‘place’’ admits of a significant relativity; pronouncements

about place are understood either relative to the ‘‘places-are-offices’’ perspective

or to the ‘‘places-are-objects’’ perspective.

To see this last point, consider once more the progression of natural numbers.

From the places-are-offices perspective, the natural numbers are offices or roles

(the 0-role, the 1-role, the 2-role . . . ) waiting to be filled by objects drawn from

some background ontology (for example, the sets £, {£}, {{£}} . . . ). But from

the places-are-objects perspective, the numbers are objects in their own right,

conceived independently of any objects—set-theoretic or otherwise—that may

occupy these positions. From this perspective, the series of natural numbers

instantiates the natural number structure (0 fills the 0-role, 1 fills the 1-role, 2 fills

the 2-role . . . ). Moreover, the natural numbers also embed indefinitely many

series of numbers—for example, the even numbers, the odd numbers, and so

on—that satisfy Peano’s Axioms and instantiate the natural number structure. So,

from the places-are-objects perspective, the natural numbers can also occupy

different positions within the natural number structure (for example, in the even

numbers series 0 fills the 0-role, 2 fills the 1-role, 4 fills the 2-role . . . ).

Against this ontological backdrop Shapiro offers two contrasting accounts of

incompleteness. According to the first account, identities between the elements of

different structures are indeterminate:

But it makes no sense to pursue the identity between a place in the natural

number structure and some other object, expecting there to be a fact of the

matter. Identity between natural numbers is determinate; identity between other

sorts of objects is not, and neither is identity between numbers and the positions

of other structures. (PMSO, p. 79)
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This much Shapiro shares in common with Resnik. Yet unlike Resnik, he con-

tinues to espouse classical logic, insisting that ‘‘each well-formed, meaningful

sentence has a determinate and non-vacuous truth-value, either truth or false-

hood’’ (PMSO, p. 4). Shapiro does not explain how indeterminacy and classical

logic can peacefully coexist. But he does hint that to ask after the identity of objects

of different kinds is to commit a category mistake (‘‘It is similar to asking whether

1 is braver than 4, or funnier’’ [PMSO, p. 79]). This suggests that the identity

‘‘statements’’ in question are actually meaningless. If such meaningless utterances

lack a truth-value, this hardly constitutes a violation of classical logic (excluded

middle).

Shapiro’s account faces a now familiar difficulty. It threatens to conflict with

mathematical practice, the fact that mathematicians routinely embed and even

‘‘identify’’ the elements of different structures. To accommodate these facts,

Shapiro offers a threefold theory of the copula, distinguishing the ‘‘is’’ of identity,

the ‘‘is’’ of prediction and the ‘‘is’’ of fiat. Even if it is indeterminate whether 2

isidentity {{f}}, it may still be the case that 2 ispredication {{f}} in the sense that {{f}}
performs the ‘‘2’’-role (occupies the ‘‘2’’ position) in the Zermelo system of

arithmetic. In the same sense it is also true that 2 ispredication {f, {f}}, for {f, {f}}
performs the ‘‘2’’-role in the von Neumann system. To accommodate the practice

of identifying elements of different structures, Shapiro also acknowledges a fur-

ther use of the copula: ‘‘For example, when set theorists settle on the von Neu-

mann account of arithmetic, and thereby declare that 2 is {f, {f}}, they invoke

what might be called ‘‘ ‘the is of identity by fiat’ ’’ (PMSO, p. 83).

There are (at least) three obstacles faced by this account. The first, perhaps the

most significant, is shared with Resnik’s treatment of incompleteness. It cannot

simply be a matter for declaration that identity between the elements of different

structures is everywhere indeterminate, that there might not (e.g.) be facts of the

matter that fall beyond our epistemic capacity to register or the precision of our

language to encode. Shapiro owes us an argument for the absence of any under-

lying facts of the matter, but he gives none. Second, Shapiro must provide some

means of policing the boundary between genuine category mistakes and statements

that are just plain obviously false. If any of the ‘‘statements’’ of identity at issue fall

on the wrong side of this boundary, then—at least on some occasions—the

identity between places in different structures will be determinate. But it is difficult

to foresee how the boundary between grammatical nonsense and self-evident

falsity could be reliably policed. Notoriously, our linguistic intuitions do not speak

in unison on distinctions of this kind, and it is unclear what else there is to go on.

Third obstacle: the notion of ‘‘identity by fiat’’ makes dubious sense. If we are

realist about our subject matter—Shapiro staunchly advocates such ‘‘realism in

ontology’’ (PMSO, p. 4)—then the facts of identity cannot be manufactured by us.

Moreover, it is mysterious how utterances that are category mistakes in some

contexts can turn out to be true in others.
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It is the clash with realism in ontology that motivates Shapiro to develop an

alternative account of incompleteness. This second account says that positions

drawn from different structures are determinately false (rather than neither true nor

false, as Shapiro’s first account suggested) (Shapiro [forthcoming]). Mathematical

objects of different kinds (2natural, 2real, {f, {f}}) belong to different structures. For

example, 2natural belongs to the natural number structure and therefore has an

immediate successor (3natural). By contrast, 2real belongs to the real number structure

and enjoys no such successor. Mathematical objects drawn from different structures

therefore ‘‘enjoy different relations to different objects.’’ Because these objects are

dissimilar—because (e.g.) 2natural enjoys relations that 2real lacks—it follows that

they are distinct. Therefore identity statements to the contrary are strictly false.

This reasoning relies upon two key assumptions: (i) the same object cannot

belong to different structures; (ii) mathematical objects of different kinds belong to

different structures (natural numbers belong to the natural number structure,

whereas real numbers belong to the real number structure). (i) derives from

Shapiro’s structuralist slogan that ‘‘mathematical objects are tied to the structures

that constitute them.’’ It is, Shapiro claims, ‘‘part of the essence’’ of a mathematical

object that it belongs to its parent structure. But even if this is granted, it does not

follow that the same object cannot belong to different structures. Nothing has been

established that precludes the possibility that a single object might belong essen-

tially to different structures, constituted jointly by them, much as a child might—if

Kripke is right—be essentially the offspring of distinct parents.11

(ii) appears no less precarious an assumption. It is certainly built into the

concept of structure that the natural number structure and the real number struc-

ture are different. However, it does not follow that the former cannot be a sub-

structure of the latter. If indeed the natural number structure is a substructure of

the real number structure, then—contrary to Shapiro—it is not in general the case

that natural numbers and real numbers enjoy different relations to different

objects. For example, 2natural will enjoy the relation of having an immediate

natural successor, but this does not preclude 2natural from lacking an immediate

real successor. Consequently, Shapiro has said nothing to preclude the possibility

that 2natural is 2real. More generally, if one is willing to multiply different types of

relation (natural successor, real successor, and so on), there is no need to multiply

kinds of objects (structures and the objects that inhabit them). In fact, there is

strong motivation for opting to multiply relations rather than structures and their

objects. For by doing so, we are able to provide a smooth and natural reading of

mathematical practice.

To see this, consider an objection that Shapiro raises to Resnik’s structuralism

(Shapiro [forthcoming]). He observes that it may, to choose just one pertinent

example, be an interesting mathematical question whether a given closed integral

11 See Kripke [1980], pp. 110–115.

structuralism reconsidered 579



is a natural number. Shapiro complains that Resnik cannot make sense of

questions of this kind. This is because, according to Resnik, there can be no fact of

the matter—and so no interesting mathematical question—about whether objects

drawn from different structures are the same or different. Resnik actually anti-

cipates this complaint. He argues that even if mathematical practice sometimes

allows that interesting questions may be raised concerning the identities among

mathematical objects of different kinds, we may nevertheless make sense of this

practice without supposing there to be any facts of the matter about the identity

of objects drawn from different patterns or structures.12 For, Resnik claims, there

will be a fact of the matter about whether, say, a given integer is a natural number

if we liken the historical development of the integer number system to ‘‘the step-

by-step construction of a complicated pattern through adding positions to an

initially simple one’’ (MSP, p. 215). If, in this way, the integer structure is con-

ceived as an extension of the natural number structure, it will be true that some

natural numbers are integers. Of course, in that case—as Shapiro points out and

Resnik readily admits—there will be no fact of the matter concerning whether the

natural numbers and integers so conceived are identical to or distinct from

naturals and integers conceived as the objects posited by independent theories

(MSP, p. 247; Shapiro [forthcoming]).

What is important for present purposes is that a version of the complaint that

Shapiro raises against Resnik may be turned against his own brand of structur-

alism. Consider the question—that a mathematician may surely raise—of whether

a given integer is a natural number. If the natural numbers and integers belong to

the same structure, this question may receive a clear and straightforward answer.

It will be true or false depending upon whether the integer in question is identical

to a natural number. But if Shapiro’s account is right, the answer to this question

(if it is taken at face value) can only be ‘‘false,’’ since, according to Shapiro, in-

tegers and natural numbers belong to different structures. Moreover, it can hardly

be an interesting question—it only takes a metaphysician who knows precious

little about mathematics to figure out that answer. So Shapiro is obliged to deny a

face-value reading of questions of this kind and is forced to uncover instead a

subterranean interest in establishing whether an embedding obtains between

distinct structures. But, other things being equal, a face-value reading of math-

ematical practice is to be preferred. It cannot be credible to suppose that math-

ematicians persist in speaking falsely even though the vocabulary of embeddings is

so readily to hand for expressing what—by Shapiro’s lights—they must really

mean.

12 Resnik considers the following example: ‘‘equations of the form ‘‘x2¼ a’’ have

complex roots for any choice of a, but their roots are integers only when a is the square of a

natural number’’ (MSP, p. 214). Here integers and natural numbers are conceived as

species of complex number.
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In sum, neither account that Shapiro presents provides a convincing treatment

of the ‘‘incompleteness’’ of mathematical objects. There remains, however, the

further question of whether structures—conceived as ante rem universals—provide

an otherwise credible ontology for mathematics. Hellman has suggested otherwise:

that purely structural relations on the ante rem conception are not even intelligible.

He argues the point in the following terms. The positions of a purely structural

relation are identified merely as its terms (they are purely structural positions). But

the relation cannot be identified simply as the structure that formally satisfies

whatever axioms may be available for the purpose. This is because any system that

exhibits the relation in question will answer to the axioms, too. In short, the relation

will be indistinguishable from the systems that exhibit it unless we already have

access to the relata of the relation and can identify the relation as the relation of

those relata. This, Hellman maintains, is a ‘‘vicious circularity’’: ‘‘to understand the

relata we must be given the relation, but to understand the relation, we must already

have access to the relata’’ (Hellman [2001]; also ch. 17 in this volume).

This difficulty does not appear to be critical. It presupposes that we are able to

understand a relation only if we are able to uniquely identify it. But there seems no

reason to assume that reference to structures is or ought to be determinate. It is

certainly true that many proponents of the view—Shapiro included—have accepted

this assumption, presenting structuralism as an antidote to referential indetermi-

nacy. But since indeterminacy appears to be an ineliminable aspect of reference to

mathematical objects (structural or otherwise), there appears no reason to accept it.

And once this assumption is discarded, Hellman’s criticism appears to express only

a concern about the impredicative dependencies that obtain between structures and

positions, a concern that should hardly carry force once it is recognized that

structures and positions are not constructed by us (cf. Gödel [1944], pp. 455–456).

Far more worrisome is the concern that Shapiro’s notion of a structural

position cannot be made to cohere with the existence of structures admitting

nontrivial automorphisms. The concern arises from structuralist slogans like ‘‘The

essence of a natural number is its relation to other natural numbers . . . there is no

more to the individual numbers ‘‘in themselves’’ than the relations they bear to

each other’’ (PMSO, pp. 72–73).13 This makes it appear as if Shapiro is committed

13 Slogans of this kind trace back to Benacerraf’s articulation of the structuralist

conception: ‘‘Mathematical objects have no properties other than those relating them to

other ‘elements’ of the same structure’’ (Benacerraf [1965], p. 285). It is worth noting,

however, that Dedekind—the philosopher-mathematician with whom the structuralist

conception originates—did not commit himself to the claim that mathematical objects are

entirely constituted by their relations to other elements of their parent structure. Instead,

Dedekind offers the following claim: ‘‘If, in considering a simple infinite system N, or-

dered by a mapping f, we entirely disregard the particular nature of its elements, retaining

only their discriminability from each other, and having only regard to the relations to one

another imposed by the mapping . . .’’ (Dedekind [1888], par. 73; my italics).
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to a version of the Identity of Indiscernibles for mathematical objects: if x and y

share just the same intrastructural relations to other items, then x¼ y. There are,

however, systems of mathematical objects that contain structurally indiscernible

elements (systems that admit nontrivial automorphisms): the complex numbers

(i and �i), the additive integers (þ1 and �1), points in the Euclidean plane,

geometric figures with reflectional symmetry, and so on. This means that Shapiro

is committed to identifying these indiscernible elements: i with �i, þ1 with �1,

and so on. But we know mathematically that these elements are distinct. It follows

that ante rem structuralism must be rejected (see Burgess [1999], pp. 287–288; and

Keränen [2001]).

Whether this objection ultimately carries any force turns upon whether a

version of the Identity of Indiscernibles really does follow from the structuralist

slogans. But these slogans may be interpreted in a way that does not evince a

commitment to the Identity of Indiscernibles. However, interpreting them in this

way leaves ante rem structuralism almost indiscernible from traditional Platonism.

Thus a dilemma arises for Shapiro: either bad news (i¼�i) or old news (ante rem

structuralism¼ good old-fashioned Platonism).

To work toward an appreciation of this dilemma, let us assemble some of the

considerations that speak in favor of a structuralist commitment to the Identity of

Indiscernibles. Keränen argues that general considerations to do with the meta-

physics of identity elicit this commitment (see his [2001], pp. 312–318). According

to Keränen, whenever a type of object O is introduced into discourse, it must be

possible to supply necessary and sufficient conditions for Os to be identical. Next,

he remarks: ‘‘All extant theories of ontology maintain that the identity of objects

is governed by their properties.’’ Such an account of identity may appeal either to

purely general properties or else to haecceities. Keränen now develops a dilemma

of his own for the ante rem structuralist. Suppose the structuralist appeals to

purely general properties to provide necessary and sufficient conditions for the

identity of mathematical objects. Then the properties he has available for the

purpose of fashioning an account of identity are all structural properties and

relations. This means that mathematical objects can be distinct, from the struc-

turalist perspective, only if they differ in their structural properties and relations.

However, we know this is wrong. We know mathematically that there are struc-

turally indiscernible but distinct mathematical objects. Alternatively, if the struc-

turalist appeals to haecceities, then structurally indiscernible objects may be

distinguished by their possession of nonstructural properties (i enjoys the prop-

erty being identical to i, whereas �i lacks it). But then the structural slogan—

‘‘There is no more to the individual numbers ‘in themselves’ than the relations

they bear to each other’’—will have been given up.

The most questionable feature of this argument is its most basic assumption,

the thesis that necessary and sufficient conditions for the identity of objects can

and should be stated in exclusively property-theoretic terms. The idea that we
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should be able—at least in principle—to uniquely characterize each object in our

ontology provides one motivation for upholding this thesis. That such a motive

is operative in Keränen’s mind is suggested by the frequent shifts he makes be-

tween talking about ‘‘identity’’ and talking about ‘‘individuation.’’ But, as Shapiro

points out, it is highly questionable to suppose that we should be able to indi-

viduate—even in principle—the elements of an uncountable ontology (see Sha-

piro [forthcoming]). More generally, Keränen has articulated a metaphysical

thesis about identity (reductionism) that seems no less dubious. Why should the

relevant class of identity facts not turn out to be metaphysically basic rather than

reducible? Why should it be supposed that there is invariably a supply of prop-

erties sufficient to provide a reductive base for the facts of identity? To these and

other relevant questions Keränen supplies no answers.

There are, however, less global considerations that speak in favor of an ante

rem structuralist commitment to the Identity of Indiscernibles. For the slogan

‘‘There is no more to the individual numbers ‘in themselves’ than the relations

they bear to each other’’ may be interpreted as articulating a local reductionist

thesis about mathematical objects. According to this interpretation, the struc-

turalist is committed to a bundle theory of mathematical objects: there are no

‘‘bare particulars’’ hidden behind the façade of structural relations; there are only

bundles of these relations. But if mathematical objects are reducible to bundles of

structural relations, then mathematical objects that are structurally indiscernible

must be numerically the same. Since there are structurally indiscernible but nu-

merically distinct mathematical objects, it follows that the structuralist slogan

must be rejected. Mathematical objects cannot be just bundles of structural

relations.

It is far from evident, however, that the ante rem structuralist is committed to

a bundle theory (object reductionism) of this kind. For there is a further reading

available of the slogan ‘‘There is no more to the individual numbers ‘in them-

selves’ than the relations they bear to each other.’’ Instead of offering a reduc-

tionist thesis about mathematical objects, the slogan may be interpreted as a

reductionist thesis about mathematical properties. According to this reading, there

is no more to the properties of individual numbers than arise from the relations to

other positions in their parent structure. But the fact that the properties of

mathematical objects are reducible to structural ones does not imply that math-

ematical objects are themselves capable of such reduction. So it is consistent with

this reading of the structuralist slogan that there are structurally indiscernible but

numerically distinct mathematical objects.

Unfortunately, a property reductionist conception of ante rem structuralism

is beset by difficulties of its own. To start with, it is far from evident that all the

properties mathematical objects exhibit are reducible to structural relations

(Hellman [1999], [2001]). There are three classes of plausible counterexamples to

this claim. First, there are categorical properties such as being abstract. Second,
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there are intentional properties like being Stewart’s favorite number. Third, there

are properties of application (e.g., being the number of planets).

Some of these examples may be less troublesome than others. It may be

doubted whether there are any genuine categorical properties rather than mere for-

mal predicates. For example, the predicate ‘‘x is abstract’’ may be taken to be true

of objects that lack a certain property (being spatiotemporally located) rather than

of objects that possess some definite feature of their own. In a similar way, it may

be doubted whether there are genuine intentional properties. For example,

Nostromo may be my favourite fictional character, but it doesn’t follow that there

is some genuine property possessed by him (how could there be a property pos-

sessed by him? he doesn’t exist!). But if there aren’t any categorical or intentional

properties, then these nonstructural properties cannot serve as counterexamples

to the thesis that the properties of mathematical objects are reducible to structural

ones.

Of course, these arguments against categorical or intentional properties are

far from decisive. But even if it is granted—for whatever reason—that there are no

such properties, properties of application present a more troublesome case. Recall

that it is the possession of these properties that makes mathematical objects worth

believing in. Properties of application cannot be dismissed as mere lacks or

shadows of thought. For what use are the cardinal numbers if they can’t be

employed to count? What merit is there in the real numbers if they cannot serve

to measure? But while properties of application cannot be dismissed in this way,

they cannot be reduced to the obtaining of structural relations either. The fact that

9 has the property of being the number of planets is not reducible to the structural

relations (derived from the obtaining of the successor function) that 9 bears to the

other natural numbers. Those relations might have obtained among the numbers

even if (e.g.) Neptune had never existed. The structuralist slogan cannot be

sustained as a general thesis.

Recall the dilemma posed for ante rem structuralism: either it’s bad news or it’s

old news. We have seen how Shapiro may avoid the first horn of this dilemma—the

horn that says structurally indiscernible objects must be numerically the same. This

horn may be avoided by insisting upon a property-theoretic reading of structuralist

slogans. But now Shapiro is impaled on the other horn of the dilemma—ante rem

structuralism collapses into Platonism. Why? The first horn of the dilemma reveals

that object reductionism fails. Mathematical objects cannot simply be bundles of

structural relations; they are a separate, irreducible category of existent. So the

structuralist must admit (at least) a two-category ontology of objects and relations.

The failure of property reductionism indicates that mathematical objects are also

the bearers of properties and relations that take them outside their parent struc-

tures; for example, to the items in the physical world they are used to count and

measure. But then ante rem structuralism turns out to be just a kind of traditional

Platonism that also posits a two-category ontology and conceives mathematical
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objects as the bearers of structure-independent properties and relations. How, then,

has the ante rem structuralist enabled us to pass beyond this traditional picture?

Where’s the news?

Shapiro may seek to evade this dilemma by pointing to what is ontologically

innovative in his view, something that traditional Platonists do not routinely coun-

tenance, namely the identification of mathematical objects with positions in struc-

tures. But can this identification legitimately be made? Structures are conceived by

ante rem structuralism to be a species of universal; they are considered to be relations

(complex relations in the mathematically interesting cases) that obtain among sys-

tems of objects. Positions in structures then turn out to be the argument slots that are

filled by objects when the universal (relation) in question is instantiated. However,

the identification of mathematical objects with positions in structures rests upon the

prior credibility of the thesis that positions are objects in their own right. But this

thesis—it will be seen—is more incredible than credible, and it is far better to

conceive of positions in a nominalistic spirit. Note the consequences of this: if the

notion of a ‘‘position’’ is not that of a kind of object, if ‘‘positions’’ do not exist, then

clearly Shapiro’s identification of mathematical objects with positions misfires.

If there is a reason to believe in positions (as objects), then it should surely be

a reason of the following kind. It should be because the positing of them oils the

wheels of a theory of differential application. What does this mean? It means that

positing positions should enable us to explain why relations obtain one way rather

than another (why aRb rather than bRa, where R is asymmetric). Now it is indeed

familiar enough for philosophers to introduce the notion of a position in the

following terms: positions are ‘‘slots’’ in the relation universal, and the relation

applies differently (in a different order) when the terms of the relation fit different

slots. Speaking in these terms, it is a fact that aRb rather than bRa because a fits

into the x slot, and b fits into the y slot rather than the other way around. But does

an explanation of this kind—perhaps unexceptional in itself—provide any

grounds for supposing that positions or slots are entities?

The problem is that this explanation goes awry if positions are conceived as

self-standing objects. The proposed explanation of the differential application of

relations to objects goes via the assignment of objects to slots (a and b to x and y, in

that order). However this explanation will be effective only if it is presupposed that

some other objects—the slots—are related to each other in the right order: the

right order to secure the result that the objects assigned to them are then related in

a given order (so that aRb rather than bRa). The application of a to x and b to y will

therefore suffice for aRb rather than bRa only if x lies in the further relation (call it

R*) to y such that if a fills x and b fills y, then aRb. This shows that the purported

explanation of the differential application of R presupposes the further relational

fact that xR*y rather than yR*x (this is not, of course, the only relational fact

presupposed). A regress now arises. In order to explain the relational ordering of

the slots x and y, the relation R* will require further slots z and w into which x and y
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must fit to explain the differential application of R* to x and y. But then the fur-

ther relational fact wR**z will have been presupposed, and so on.14

This regress may be avoided by refusing to posit further entities to explain the

ordering of the slots. In that case it will just be a brute fact that the slots x and y

are so ordered. But, if that is the case, the differential application of relations (R)

might have been explained all along by appeal to the brute ideology of order. Then

there will simply have been no reason to inflate our ontology to include positions.

And if there is no reason to believe in positions (conceived as objects), then there

is no reason to believe that positions are candidates eligible to be identified with

mathematical objects.

Of course the ante rem structuralist may continue to insist that positions are

objects (to be identified with mathematical objects) for reasons other than their

potential contribution to an account of order. But it is important to keep in focus

that it is the raison d’être of relations to account for order and that positions are

essentially the positions of relations. Therefore, unless positions (conceived as

objects) are assigned some significant role in the account of order, the insistence

that ‘‘positions’’ are objects will not differ from simply insisting that there are

objects (for no content will have been given to the notion that these objects are

positions). So unless such a role for positions is made out, the ante rem struc-

turalist will differ no whit from the traditional Platonist who simply posits math-

ematical objects outright.

The ante rem structuralist faces a challenge, a challenge to explain how order

obtains in the world. Unless ante rem structuralists—Shapiro included—answer

this challenge, they will be unable to justify the critical thesis for which an ar-

gument remains wanting in all their writings: the thesis that positions are objects.

4. Conclusion

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

What are the primary obstacles that confront any attempt to vindicate the claim

that mathematical objects are incomplete in re, to be fruitfully compared or

identified with positions in patterns or structures? A variety of criticisms have been

made of the attempts by Resnik and Shapiro to convince us that mathematical

objects should be conceived in such a spirit. Nevertheless, two general difficulties

stand out. They arise not only for Resnik and Shapiro but also for anyone else who

would claim that mathematical objects are incomplete in re. First difficulty: that

14 This regress argument is akin to, but distinct from, Bradley’s famous regress ar-

gument (see his [1893], pp. 31–33). For whereas Bradley’s regress concerns instantiation per

se, the regress that threatens Shapiro’s conception of positions as objects concerns order.
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the evidence adduced (so far) in favor of the incompleteness of mathematical

objects underdetermines whether it is the objects themselves that are incomplete

rather than our knowledge or descriptions of them. Second difficulty: that holding

mathematical objects to be incomplete conflicts or fits uncomfortably with the

practice of mathematics. These concerns are not independent of one another. The

fact that the incompleteness of mathematical objects fits ill with mathematical

practice places even greater pressure upon the assumption that the evidence ad-

duced in favor of the incompleteness of mathematical objects is at all convincing.

These and other difficulties that the views of Resnik and Shapiro encounter

point toward the contrary view, that it is our knowledge or our description of

mathematical objects that is incomplete rather than the objects themselves. So

rather than speaking completely about objects that are incomplete in re, the

mathematician should be interpreted as speaking incompletely about objects that

are complete in themselves. Just over a century ago Russell advanced this idea in

an especially pure form. He claimed that the role of mathematics is not to speak

about a special realm of privileged objects—the ‘‘mathematical’’ objects—but

rather to speak conditionally about objects of any kind whatsoever:

We start, in pure mathematics, from certain rules of inference, by which we can

infer that if one proposition is true, then so is some other proposition. These

rules of inference constitute the major part of the principles of formal logic. We

then take any hypothesis that seems amusing, and deduce its consequences. If our

hypothesis is about anything, and not about some one or more particular things,

then our deductions constitute mathematics. Thus mathematics may be defined

as the subject in which we never know what we are talking about, nor whether

what we are saying is true. (Russell [1901], p. 75)

Russell went on to express this idea more formally in the opening sentence of The

Principle of Mathematics:

Pure mathematics is the class of all propositions of the form ‘‘p implies q,’’

where p and q are propositions containing one or more variables, the same in the

two propositions, and neither p nor q contains any constants except logical

constants. (Russell [1903], p. 3)

The difficulties that confront the claim that mathematical objects are in-

complete in re indicate that it is in this direction—the direction that Russell

pointed—that structuralism can expect to receive its most fruitful development.
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c h a p t e r 19

PREDICATIVITY

solomon feferman

What is predicativity? While the term suggests that there is a single idea involved,

what the history will show is that there are a number of ideas of predicativity which

may lead to different logical analyses. I shall uncover these only gradually.1 A central

question will then be what, if anything, unifies them. Though early discussions are

often muddy on the concepts and their employment, in a number of important

respects they set the stage for the further developments, and so I shall give them

special attention. Note that, ahistorically, modern logical and set-theoretical nota-

tion will be used throughout, as long as it does not conflict with original intentions.

1 The subject of predicativity is one that has been of great interest to me and has

periodically commanded much of my attention over the last forty years. It involves sub-

stantial developments in logic and mathematics and is of significance for the philosophy of

mathematics. However, it is still unsettled how best to assess these various aspects of

predicativity. On March 28, 2002, for a joint meeting of the American Philosophical As-

sociation and the Association for Symbolic Logic, Jeremy Avigad, Geoffrey Hellman, and I

participated in a symposium organized by Paolo Mancosu titled ‘‘Predicativity: Problems

and Prospects.’’ In my lecture I concentrated on the idea of predicativity in its historical

development and particularly its logical analysis, which has led to new problems of current

interest; the present chapter is based on that lecture. Complementarily, Avigad and Hell-

man dealt respectively with questions concerning the mathematical and philosophical

significance of predicativity. As of my checking proof for this chapter, an article based on

Hellman’s lecture ‘‘Predicativism as a philosophical position’’ is to appear with a response

by me in an issue of the Revue Internationale de Philosophie. Avigad has reported to me that

preparation of his symposium lecture, ‘‘Methodological predicativity,’’ is still in progress. I

greatly appreciate the help that Paolo Mancosu has given with this chapter, especially the

part having to do with early developments.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



Predicativity Emerges:

Russell and Poincaré

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To begin with, the terms predicative and nonpredicative (later, impredicative) were

introduced byRussell (1906) in his struggles dating from 1901 to carry out the logicist

program in the face of the set-theoretical paradoxes. Russell called a propositional

function j(x) predicative if it defines a class (i.e., if the class {x :j(x)} exists), and
nonpredicative otherwise. Thus, for example, the propositional function x2=x
figuring in Russell’s paradox is impredicative. Since the admission of classes de-

fined by arbitrary propositional functions in Frege’s execution of his logicist

program led to its demise as a result of this paradox, if the program were to be

resurrected, it would somehow have to incorporate a criterion for distinguishing

predicative from impredicative functions. Russell’s first attempts to separate these

were highly uncertain, and it was only through the engagement of Henri Poincaré

in the problem, starting in his article (1906a) that progress began to be made.

Poincaré took several paradoxes as examples to try to elicit what was common

to them: the Burali–Forti paradox of the largest ordinal number, König’s paradox

of the least nondefinable ordinal number, and the Richard paradox defining, by

diagonalization, a real number different from all definable real numbers; it was this

last that Poincaré took as a paradigm. Note that in doing so, Poincaré shifted

attention away from purported definitions of set-theoretical objects involving only

purely set-theoretical notions such as those of class, membership, ordinal number,

and cardinal number, to purported definitions of mathematical objects more

generally in which the notion of definability itself was an essential component. In

doing so, he could be considered to be at cross-purposes with Russell. At any rate,

Poincaré came up with two distinct diagnoses of the source of the paradoxes via

what he regarded as ‘‘typical’’ examples. The first was that there is in each case a

vicious circle in the purported definition. For example, in the case of Richard (1905),

since each definition of a real number via its decimal expansion can be written out

using a finite number of symbols, the set D of definable real numbers is countable.

Then, by Cantor’s diagonal construction, one can define a real number r which is

distinct from each member of D ; but since r is defined, it is a member of D, which

is a contradiction. According to Poincaré, in this case the vicious circle lies in trying

to produce the object r in D by reference to the supposed totality of objects in D ;

indirectly, then, r is defined in terms of itself, as one of the objects in D. Poincaré’s

second diagnosis is distinct in its emphasis, that the source of each paradox lies in

the assumption of the ‘‘actual’’ or ‘‘completed’’ infinite. Again with reference to the

Richard paradox, one cannot assume that there is a completed totality of all definable

objects of a certain kind; rather, each one ‘‘comes into existence’’ through a defi-

nition in terms of previously defined objects. As we shall see, in his ownmathematics
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Poincaré did not hew to the injunction against the actual infinite. And that is related

to the issue of impredicative definitions as they occur in mathematical practice, to

which Poincaré was to return a few years later. We’ll also that take up below.

Russell’s Elaborations

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In his article ‘‘Les Paradoxes de la logique’’ (1906b), Russell quickly took both the

vicious circle diagnosis and, to an extent, the objection to the completed infinite as

the point of departure for his further work on predicative versus impredicative

definitions of classes:2

I recognize . . . that the clue to the paradoxes is to be found in the vicious

circle suggestion; I recognize further this element of truth in M. Poincaré’s

objection to totality, that whatever in any way concerns all or any or some of a

class must not be itself one of the members of a class. (Russell 1973, p. 198)

Russell then went on to make the first of his several attempts to formulate the

VCP (Vicious Circle Principle) in syntactic terms that would be appropriate for a

formalism in which to redevelop logicism:

In M. Peano’s language, the principle I want to advocate may be stated:

‘‘Whatever involves an apparent variable must not be among the possible values

of that variable.’’ (ibid.)

Insofar as this form of the VCP proscribed certain formulas j(x) from defining

classes, its effect would be to exclude from j any bound variables whose intended

range includes the class {x :j(x)} as one of its values. But also the bound variable

‘‘x ’’ in the designation {x :j(x)} of that class must not be in that range. These

restrictions were then the lead-in to the formalism proposed in Russell’s article

‘‘Mathematical Logic as Based on the Theory of Types’’ (1908), and on whose plan

Principia Mathematica was erected. As is well known, Russell formulated the VCP

in several different ways, and their precise significance and relation to each other

has been the subject of much scrutiny and critique by a number of scholars,

including Kurt Gödel (1944), Charles Chihara (1973), and Philippe de Rouilhan

(1996). The formulation that is tied most closely to Russell’s theory of types was

given in the 1908 article as the following sharpening of the above:

[The VCP], in our technical language, becomes: ‘‘whatever contains an apparent

variable must not be a possible value of that variable.’’ Thus [it] must be of a

2 The quotation is from the English translation in Russell’s Essays in Analysis (1973).
Many of the original texts on the antinomies and predicativity in the period 1906–1912 are
conveniently assembled in Heinzmann (1986).
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different type from the possible values of that variable. Thus we will say that

whatever contains an apparent variable must be of a different type from the

possible values of that variable; we will say that it is of a higher type. (Russell 1908,
in van Heijenoort 1967, p. 163)

Before going into the actual structure of types in Russell’s setup, let me draw

attention to an earlier section of the article, headed ‘‘All and Any’’ (ibid., pp. 156–

159). Here, in contrast to the first quotation from Russell above, a distinction was

made between the use of these two words. Roughly speaking, in logical terms, the

statement that all objects x of a certain kind satisfy a certain condition j(x) is

rendered by the universal quantification (Vx)j(x) in which ‘‘x’’ now is a bound

variable, while the statement thatj(x) holds for any x is expressed by leaving ‘‘x’’ as
a free variable. In modern terms, the logic of the latter is treated as a scheme to be

coupled with a rule of substitution. The importance of this distinction for Russell

has to do with the injunction against illegitimate totalities. In particular, with p a

variable for propositions, he would admit ‘‘p is true or false, where p is any

proposition’’ (i.e., the scheme p_:p, but not the statement (Vp)(p_:p) that ‘‘all
propositions are true or false’’ (in both cases using truth of p to be equivalent to p).

Similarly, for properties P(x); significantly, Russell pointed out that the proposed

definition of the natural numbers in the form ‘‘ ‘n is a finite integer’ means

‘Whatever property j may be, n has the property j provided j is possessed by 0

and by the successors of possessors’ ’’ (ibid., p. 159). That is, in symbols,

N(n):¼ (Vj)[j(0)^ (Vx)(j(x)!j(x 0))!j(n)]

cannot be replaced by dropping the universal quantifier over properties ‘‘(Vj).’’
Though the simplest paradoxes, such as Russell’s of the class of all non-self-

membered classes or the heterologicality paradox, can be construed as involving

arbitrary classes or properties in the form of apparent variables, they do not in-

volve them in the form of quantified variables. Nevertheless, these considerations

led Russell to ban the use of ‘‘all’’ in the form of unrestricted quantification over

propositions and properties, among other things. He then faced the question of

when it is legitimate to apply universal quantification over any given kind of

object, and here he veered away from Poincaré’s injunction against the ‘‘actual’’

infinite:

It has often been suggested that what is required in order that it may be legiti-

mate to speak of all of a collection is that the collection should be finite. Thus ‘‘all

men are mortal’’ will be legitimate because men form a finite class. But that is not

really the reason why we can speak of ‘‘all men.’’ What is essential . . . is not
finitude, but what may be called logical homogeneity. This property is to belong to

any collection whose terms are all contained within the range of significance of

some one function. It would always be obvious at a glance whether a collection

possessed this property or not, if it were not for the concealed ambiguity in

common logical terms such as true and false, which gives an appearance of being
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a single function to what is really a conglomeration of many functions with

different ranges of significance. (ibid., p. 163)

Here a new idea became central:

. . .we can speak of all of a collection when and only when the collection forms

part or the whole of the range of significance of some propositional function,

the range of significance being defined as the collection of those arguments for

which the function in question is significant, that is, has a value. (ibid.)

That is, in more modern terms, like all functions in ordinary mathematics, prop-

ositional functions are partial in the sense that they have a prescribed domain

which is given in advance of the function, and outside of which they are unde-

fined. In particular, the arguments x of a propositional function j must somehow

be ‘‘prior’’ to the function itself. This is achieved by the type distinction and an

ordering of types, which makes the type of x lower than the type of j. Without

further restrictions, this would lead to the formalism of the simple theory of types.

But the VCP in the form given above requires that each apparent (bound) variable

in j also have lower type than j. Together these result in the formalism of the

ramified theory of types. At the bottom are variables of type 0 ranging over an

unspecified nonempty domain of ‘‘individuals.’’ In the simple theory of types,

types can be identified with natural numbers; classes of individuals are of type 1;

classes of classes of individuals, of type 2; and so on. In the ramified theory of

types, (e.g., as elucidated by Myhill 1974), types are finite descending sequences

t¼hm1, m2, . . .mki of natural numbers m1>m2> � � �>mk¼ 0, of order or level

m1. If j(x) has x of type t and m is least such that m>m1 and all bound variables

of j have order less than m, then j and its extension {x : j(x)} are of type

hmi_t¼hm, m1, m2, . . .mki, and variables of that type are interpreted as ranging

over all such classes. The atomic formulas of this language are of the form x¼ y

where x, y are of the same type and x2 y where x is of a type t and y is of a type

hmi_t. Russell says that the type of one object is lower (resp. higher) than that of

another if its level is lower (resp. higher).

If the domain of individuals is finite, then under this interpretation, for each

type t the domain of objects of type t is finite, and the ramified interpretation

collapses to the simple interpretation. Thus, if one is to define the notion of natural

numbers in purely logical terms, as would be required by the logicist program, it

must be assumed that the domain of individuals is infinite. The assumption of this

Axiom of Infinity was the first crack in Russell’s attempt to continue the logicist

program within the ramified theory of types. The second came with the definition

of natural number itself in the form, as above:

N(a):¼ (Vj)[j(0)^ (Vx)(j(x)!j(x 0))!j(a)],

where 0 is the empty class at a given type t and the successor operation takes

objects of type t to objects of type t, j is of a type hmi_t, and the variable ‘‘a ’’ is

594 oxford handbook of philosophy of math and logic



also of type t. Here, with natural numbers interpreted as cardinal numbers in the

sense of equivalence classes under the relation of one–one correspondence, t must

be of a type of classes of classes.

There were two problems with this. First, the notion of natural number is rel-

ative to any such type t, and second, most usual proofs of induction can’t be carried

out. To show, for example, for any given natural number a that (Vx) [N(x)!
N(aþ x)], whereþ is suitably defined in cardinal-theoretic terms, one usually has

to carry out an induction as follows: take c(x) :¼N(x)!N(aþ x), and establish

(Vx) c(x) by showing c(0)^ (Vx)(c(x)!c(x 0)). But c is of a higher type (level)

than that of the quantified variable j in the definition of N, so we can’t apply that

definition to carry out the required induction. As Russell says, ‘‘[i]t is obvious that

such a state of things renders elementary mathematics impossible’’ (ibid., p. 167).

In order to get around this quite serious obstacle, Russell introduced his ‘‘oddly

devious’’ (in Quine’s words3) Axiom of Reducibility. This is formulated in terms of

a notion of predicative function j!x which may be described as one in which the

bound variables, if any, are all of the same or lower type than the type of x. (Note

that here ‘‘predicative’’ is used in a very restricted sense.) Using variables f, g, . . . to

range over predicative functions, the Axiom of Reducibility states that any prop-

ositional function is coextensive with some predicative function. Schematically:

(Af )(Vx)[j(x) $ f !x]

(ibid., p. 171). In particular, that allows one to carry out the blocked induction

above by replacing c with an associated predicative function g.

Evidently, the Axiom of Reducibility completely vitiates the system of ramified

types and makes it equivalent to simple type theory, for which, however, there is no

predicative justification if one assumes the Axiom of Infinity. In the introduction

to the second edition of Principia Mathematica, (presumably) Russell wrote:

[The Axiom of Reducibility] has a purely pragmatic justification: it leads to the

required results, and to no others. But clearly it is not the sort of axiom with

which we can rest content. On this subject, however, it cannot be said that a

satisfactory solution is as yet obtainable. (Whitehead and Russell 1925, p. xiv)

More specifically, at the end of that introduction Russell points out various

places in the development of mathematics on the basis of his formalism, where the

Axiom of Reducibility is required to carry out not only the usual inductions on the

natural numbers, as well as their generalizations to transfinite ordinal numbers, but

also in the foundations of the theory of real numbers. In conclusion, he writes:

It might be possible to sacrifice infinite well-ordered series [i.e., well-ordering

relations] to logical rigour, but the theory of real numbers is an integral part of

3 In his introductory note to Russell (1908) in van Heijenoort (1967), p. 151.
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ordinary mathematics, and can hardly be the object of a reasonable doubt.

We are therefore justified in supposing that some logical axiom which is true will

justify it. The axiom required may be more restricted than the axiom of

reducibility, but, if so, it remains to be discovered. (ibid., p. xlv)

Poincaré versus the Logicists

and the Cantorians:

From Paradoxes to Practice

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In view of the lack of justification for the Axiom of Infinity and the Axiom of

Reducibility, one must count as a failure Russell’s attempt at a purely logical pred-

icative foundation of mathematics beginning with the definition of the natural

numbers. But even if it had been successful, it would have done nothing for Poincaré.

In his excellent article, ‘‘Poincaré Against the Logicists,’’ Warren Goldfarb writes:

Although the great French mathematician Henri Poincaré wrote on topics in the

philosophy of mathematics from as early as 1893, he did not come to consider

the subject of modern logic until 1905. The attitude he then expressed toward the

new logic was one of hostility. He . . . dismissed as specious both the tools devised

by the early logicians and the foundational programs they urged. His attack was

broad: Cantor, Peano, Russell, Zermelo, and Hilbert all figure among its objects.

Indeed, his first writing on the subject is extremely polemical and is laced with

ridicule and derogation. Poincaré’s tone subsequently became more reasonable

but his opposition to logic and its foundational claims remained constant.

(Goldfarb 1988, p. 61)

In this article Goldfarb on the whole legitimately critiques various of Poin-

caré’s objections to the indicated foundational programs, but the nature of those

objections is relevant to a fundamental shift in the further development of the

idea(s) of predicativity and its relation to mathematical practice, so we shall review

them here. First, as Goldfarb explains, Poincaré’s attack on the new logicians

begins

. . .with the avowed aim of showing that [they] have not eliminated the need for

intuition in mathematics. By showing this, he says, he is vindicating

Kant. . . .This avowal is misleading, for in Poincaré’s hands the notion of intu-

ition has little in common with the Kantian one. (ibid., p. 63)

Rather,

For Poincaré, to assert that a mathematical truth is given to us by intuition

amounts to nothing more than that we recognize its truth and do not need, or do
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not feel the need, to argue for it. Intuition, in this sense, is a psychological term;

it might just as well be called ‘‘immediate conviction.’’ (ibid.)

In particular, for Poincaré the structure of natural numbers and the associated

principle of induction are given in intuition and do not require a foundation;

indeed, in his view, they are presupposed in any attempt at such a foundation. In

the case of the logicist program, this is seen in the very description of the axi-

omatic system, with its inductive generation of formulas and proofs; hence that

enterprise assertedly involves a petitio principii. Goldfarb argues that Poincaré is

mistaken in ascribing a petitio in this case, as he is in other cases. In a useful

review of Goldfarb’s article, Michael Hallett (1990) defends Poincaré on this point,

at least in part. What is important for us here is not which side is correct, but the

content and influence of Poincaré’s views.

Poincaré’s objections to the Cantorians rests on their essential use of im-

predicative constructions violating the VCP. Curiously, he accepted the Axiom of

Choice on the grounds that it ‘‘is a synthetic judgment a priori [note the Kantian

terminology]; without it the theory of cardinals would be impossible, for finite

numbers as well as for infinite ones.’’4 But he criticized Zermelo’s 1904 proof—

from the Axiom of Choice—that every set can be well-ordered, at a point that

made use of the very common set-theoretical operation of the union U of a set S

of sets X, U¼ {x : (AX)(X2S^ x2X)}, on the grounds that what members U has,

depends on which sets belong to S and what their members are. In particular, it

depends on whether U belongs to S and what its members are; thus, Poincaré

identified the operation of union as illegitimately impredicative. In his response to

this criticism, Zermelo (1908, pp. 190–191) pointed out that ‘‘proofs that have this

logical form are by no means confined to set theory; exactly the same kind can be

found in analysis wherever the maximum or the minimum of a previously defined

‘completed’ set of numbers . . . is used for further inferences. This happens, for

example, in the well-known Cauchy proof of the fundamental theorem of algebra,

and up to now it has not occurred to anyone to regard this as something illogical.’’

The particular proof cited by Zermelo proceeds by forming the minimum of

the set of values of jp(x)j where p is a polynomial over the complex numbers.

Relatedly, if f (x) is a continuous function on a closed interval [a,b] in the real

numbers, then f has a minimum value (as well, of course, as a maximum value)

in that interval. This seems to appeal to the general greatest lower bound (g.l.b.)

principle for the real numbers R (i.e., any bounded subset S of R has a g.l.b.

[and least upper bound, l.u.b.]). The existence of the g.l.b. can be recognized set-

theoretically as the formation of a union in terms of the association of real num-

bers x with their upper Dedekind sections Dx in the rational numbers Q, where

Dx¼ {r : r2Q^ x< r}.

4 Poincaré (1906), p. 313.
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Let S*¼ {Dx : x2S}. Then the union U of the sets in S* is the Dedekind section Dm

where m¼ g.l.b.(S); in this, one invokes the Dedekind completeness (or continuity)

of R, according to which every Dedekind section determines a real number.

Dually, the l.u.b.(S) is determined by the intersection of all the sets in S*. (If one

uses lower Dedekind sections, these operations are reversed.)

Poincaré responded to Zermelo’s specific example by asserting that the

minimum of jp(x)j is equally described as the minimum of {jp(x)j : x is rational}.
More generally, for any continuous function f (x) on a compact set S in the real or

complex numbers, its minimum is the same as the minimum of the countable set

{f (x): x2S^ x is rational}, and that does not require an impredicative step.

Poincaré was correct in this response, though his argument was faulty. Simply,

any bounded set S of rational numbers has a g.l.b. (and l.u.b.) by selecting a

subsequence that converges to the same. In this case, one invokes Cauchy com-

pleteness of R, for which, in contrast to Dedekind completeness, there is a pred-

icative argument, as will be explained below.

Though Poincaré rejected the actual infinite in his polemical writings (e.g.,

‘‘There is no actual infinite; the Cantorians forgot that, and they fell into con-

tradiction.’’—1906, p. 316), his acceptance of the structure of natural numbers and

of the principle of induction on it, coupled with the implicit use of classical logic

and its assumption of the law of excluded middle, at least takes quantification

over the natural numbers to be definite, and that is a form of acceptance of the

actual infinite. No doubt Poincaré assumed this and much more in his mathe-

matical practice in analysis and topology, though he might have said that he could

always account for his work predicatively by more careful considerations of the

sort given in his response to Zermelo. There would be some historical interest in

putting Poincaré’s ‘‘philosophical’’ principles (to the extent that they can be made

precise) up against the details of his practice, but that is neither here nor there for

our present survey. What counts is what influence those principles had on the

development of predicativity, not whether he abided by them himself. And what is

most significant about Poincaré’s dispute with Zermelo in 1906–1909 is that at-

tention was shifted away from the role of purportedly circular definitions in the

production of the paradoxes to their role at the very center of mathematical

practice, namely, in the l.u.b. principle for the real numbers.

The other aspect of Poincaré’s dispute with Cantorians lies in their extension

of the actual infinite to the transfinite. Of course he was not alone in this. Other

prominent critics were Leopold Kronecker in the nineteenth century and L. E. J.

Brouwer in the twentieth century; but both were more radical than Poincaré, in

rejecting it also at the level of the natural numbers. In Brouwer’s case it lay in the

identification of the law of excluded middle as the culprit in the Cantorian crimes,

in its supposedly illegitimate employment when applied to infinite totalities.

Since, as I have argued, Poincaré did not go that far, he can be considered to be
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laying out a middle ground between the constructivists and the set-theoretical

Platonists: the position of being a realist with respect to the natural numbers and a

definitionist in all else.

Weyl’s Predicative Development

of Analysis

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hermann Weyl was the first to give substance to this middle ground, in his

famous 1918 monograph Das Kontinuum. An exegesis of that work is contained in

the article ‘‘Weyl Vindicated’’ (Feferman 1988), and its significance has been

discussed in several other articles reprinted in my collection In the Light of Logic

(1998). There is thus no need to go over those here at any length. Rather, for the

present purposes, a relatively brief summary is sufficient, and that is most simply

accomplished by quoting from myself (1988, pp. 51ff.):

In the introduction to [Das Kontinuum] Weyl criticized axiomatic set theory

as a ‘‘house built on sand’’ (though the objects of, and reasons for, his

criticism are not made explicit). He proposed to replace this with a solid

foundation, but not for all that had come to be accepted from set theory; the rest

he gave up willingly, not seeing any other alternative. Weyl’s main aim in this

work was to secure mathematical analysis through a theory of the real number

system (the continuum) that would make no basic assumptions beyond that of

the structure of natural numbers N. . . .Weyl did not attempt to reduce . . .
reasoning about N to something supposedly more basic. In this respect Weyl

agreed with Henri Poincaré that the natural number system and the associated

principle of induction constitute an irreducible minimum of theoretical

mathematics, and any effort to ‘‘justify’’ that would implicitly involve its

assumption elsewhere . . . unlike Brouwer, Weyl accepted uncritically the use

of classical logic at this stage (though at a later date he was to champion

Brouwer’s views).

In Weyl’s redevelopment of analysis, the rational numbers are reduced to the

natural numbers in a standard way going back to Kronecker. But to do analysis,

one needs representations of real numbers either as sets or as sequences of rational

numbers, and that reduces to the question of what sets or sequences of natural

numbers may be asserted to exist. Having accepted the natural number system

with its basic inductively defined operations such as addition and multiplication,

Weyl accepted that each subset of N of the form {n2N: A(n)} exists, where A is

an arithmetical formula (i.e., one that contains no quantifiers ranging over sets,

only over natural numbers). Beyond those, what other kinds of sets may be
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asserted to exist on predicative grounds? Adapting ramified type theory to

this specific second-order context, one could consider sets of level 1, 2, 3, and so

on, where the sets of level 1 are the arithmetically definable ones, those of

level 2 are defined by formulas in which all second-order quantifiers range over

sets of level 1, those of level 3 allow second-order quantifiers to range only over

sets of level 1 or sets of level 2, and so on. Carrying this over to analysis, one

would correspondingly then have real numbers of different levels 1, 2, 3, . . . . But

if S is a bounded set of real numbers of some level k, its g.l.b. and l.u.b. are defined

by applying the operations of union (resp. intersection) to corresponding sets

S* of upper Dedekind sections of the rational numbers, and that requires quan-

tification over sets of level k. Thus the g.l.b. (resp., l.u.b.) of S would be of level

kþ 1.

Weyl concluded that a development of analysis in such ramified terms would

be unworkable; at the same time, he rejected the Axiom of Reducibility as un-

tenable on predicative grounds. His solution was to confine himself to arith-

metical sets of natural numbers and the associated sets and sequences of rational

numbers. With real numbers identified not as Dedekind sections but rather as

Cauchy (or fundamental) sequences hrnin2N of rational numbers, sequences of

real numbers can be treated as double sequences rk,n of rational numbers.

Then one can show that if s¼hxkik2N is a Cauchy sequence of real numbers

given as xk¼hrk,nin2N, then its limit t¼hqnin2N exists arithmetically definable

from the double sequence hrk,nik,n2N. Thus, in this form, the Cauchy complete-

ness of the real number system is justified by the arithmetical comprehension

axiom.

With the real number system secured in this way, Weyl could move on to see

which parts of analysis could be redeveloped in this restricted version of pred-

icativity, given the natural numbers, which one might call arithmetical analysis.5

His main achievement was to show that substantially all of nineteenth-century

analysis of piecewise continuous functions could be accounted for in this way,

since any continuous function f of real numbers is completely determined by its

behavior at rational arguments, and hence can be represented at the second-order

level. Subsequent research beginning in the 1970s has been able to extend Weyl’s

program much farther into twentieth-century analysis; more details about the

reach of that will be described below. What is important for this part of our story

is not that Weyl brought forth a new idea about predicativity, but rather that he

showed mathematically the exceptional viability of the restricted part of pred-

icativity, given the natural numbers, that is based unramifiedly on the second-

order arithmetical comprehension axiom.

5 The first formulation of arithmetical analysis in modern logical terms was given by

Grzegorczyk (1955).
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Predicativity Sidelined: 1920–1950

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If predicativity was to progress following these early developments, it would need

a leader and practitioners. As it turned out, neither were there, for a number of

reasons. Its first champion, Poincaré, died in 1912, and in any case he had not

engaged in the essential clarification or implementation of his ideas. As for

Russell, predicative logicism in the form of ramified type theory was compro-

mised by the Axiom of Reducibility. Then, following the exhausting task of

producing the first edition of Principia Mathematica (1910–1913), Russell turned to

general problems in philosophy from an analytic perspective, and during World

War I was drawn aside into pacifist politics. Finally, Wittgenstein’s critiques of

Russell’s logic and philosophy struck serious blows to his confidence in his ideas.

The case of Weyl is different: despite the relative success of his arithmetically

predicativist program in Das Kontinuum, he fell under the spell of Brouwer as he

became more familiar with the work of that crusading intuitionist. In 1921 he

wrote, ‘‘I now abandon my own attempt and join Brouwer.’’6 He then engaged in

contributing to intuitionistic ideas and their relation to practice, and championed

these in the following years, but eventually he became rather pessimistic about its

prospects. Years later he wrote:

Mathematics with Brouwer gains its highest intuitive clarity. He succeeds in

developing the beginnings of analysis in a natural manner, all the time preserving

the contact with intuition much more closely than had been done before. It

cannot be denied, however, that in advancing to higher and more general the-

ories, the inapplicability of the simple laws of classical logic eventually results in

almost unbearable awkwardness. (Weyl 1949, p. 54)

The foundational program most prominently in competition with that of Brouwer

was Hilbert’s proof-theoretical consistency program. By restricting to finitist

methods, it was more radical than Brouwer’s, but it was much more ambitious in

its aim to ‘‘secure’’ the practice of nonconstructive mathematics via consistency

proofs of appropriate formal systems. Though that was dashed by Gödel’s theorem

on unprovability of consistency in 1931, the program took on new life withGentzen’s

consistency proof for arithmetic and was transformed by the employment of lim-

ited transfinite methods.

What really pushed predicativity to the sidelines, though, was the success of

axiomatic set theory—as developed by Zermelo, Skolem, and Fraenkel—in allaying

fears about the paradoxes. Though not demonstrably consistent, intensive devel-

opment of the subject without running into any difficulties gave comfort and

confidence to its practitioners and gradually won the support of mathematicians at

6 Weyl’s intuitionistic excursion is fully described and exemplified with relevant

articles in part II of Mancosu (1998); see p. 98 for the 1921 quote.
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large. Nor did the impredicativity that Poincaré and Weyl had located in the l.u.b.

principle in the real numbers generate any concern. For, in mathematical practice,

the real numbers are regarded as a definite, completed totality independent of

human constructions and definitions, not some vague collection of numbers ‘‘grow-

ing’’ under successive definitions. Then the l.u.b. of a bounded subset S of Rmerely

serves to single out a specific element of R, not to ‘‘bring it into existence.’’ In this

respect, it is like the least number operator in the set of natural numbers, which

serves to single out a specific number in N without our always being able to say

which one it is in ordinary systems of representation. (For example, in the solution

of Waring’s problem, given k, there is a least n such that every natural number is a

sum of at most n k th powers; for all but the first few k, the specific value of n is

unknown.) Mathematicians were thus insensitive to impredicativity in practice.

A story recounted in Feferman 1998 is apropos here:

. . . a famous wager was made in Zürich in 1918 between Weyl and George Pólya,

concerning the future status of the following two propositions:

(1) Each bounded set of real numbers has a precise upper bound.

(2) Each infinite subset of real numbers has a countable subset.

[The latter requires the Axiom of Choice.] Weyl predicted that within twenty

years either Pólya himself or a majority of leading mathematicians would admit

that the concepts of number, set and countability involved in (1) and (2) are
completely vague, and that it is no use asking whether these propositions are true

or false, though any reasonably clear interpretation would make them

false. . . . the loser was to publish the conditions of the bet and the fact that he lost

in the Jahresberichten der Deutschen Mathematiker Vereinigung . . . . (p. 57)

The wager was never settled as such, for obvious political reasons. According to

Pólya (1972), ‘‘The outcome of the bet became a subject of discussion between

Weyl and me a few years after the final date, around the end of 1940. Weyl thought

he was 49% right and I, 51%; but he also asked me to waive the consequences

specified in the bet, and I gladly agreed.’’ Pólya showed the wager to many friends

and colleagues, and, with one exception, all thought he had won.

In axiomatic Zermelo–Fraenkel (ZF) set theory, the fundamental source of

impredicativity is in the Separation Axiom scheme, which asserts for each well-

formed formula j(x) (possibly with parameters) of the language of ZF the ex-

istence of the set {x : x2a^j(x)} for any set a. Since the formula j may contain

quantifiers ranging over the supposed ‘‘totality’’ of all sets, this is impredicative

according to the VCP. Mathematically, this is given teeth by the assumption of

the Axiom of Infinity, guaranteeing the existence of the set o of finite ordinals (or

the natural numbers) and by the assumption of the Power Set Axiom, guaran-

teeing for any set a the existence of }(a)¼ {x : x � a}. Without the Axiom of

Infinity, the impredicativity of the Separation Axiom becomes innocuous, since

the system has a model in the hereditarily finite sets. With the Axiom of Infinity,

power set and separation lead, among other things, to the existence of the real
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number system, represented, for instance, as the set of all upper Dedekind sections

in the rational numbers, and thence to the l.u.b. principle for arbitrary bounded

sets of real numbers.

Though predicativity went into hibernation until the 1950s, one important

technical development in axiomatic set theory would prove to be significant for it.

This was Gödel’s model of the constructible sets (1939). The ‘‘standard inter-

pretation’’ of ZF set theory, due to Zermelo in 1930, is in the cumulative hierarchy

hVaia2On, defined by transfinite recursion on the class On of (finite and trans-

finite) ordinal numbers a by transfinite iteration of the power set operation }

starting with the empty set £ as follows:

V0 ¼ £,Vaþ1 ¼ }(Va), and for limit a,Va ¼
[

b<a
Vb:

This is a cumulative theory of types, unlike simple type theory, since, as may be

shown by induction on a, if b< a, then Vb � Va. Gödel defined the constructible

hierarchy hLaia2On by modifying the successor step, replacing the power set

operation with an operation }Def (a) which, for any set a, consists of all sets of the

form {x : x2a^ja(x)} where the superscript ‘‘a ’’ indicates that all quantifiers in

j are restricted to range over a, and where all parameters in j are elements of a.

Then La is defined recursively by

L0 ¼ £, Laþ1 ¼ }Def (La), and for limit a, La ¼
[

b<a
Lb:

The constructible hierarchy thus stands to the cumulative hierarchy as Russell’s

ramified theory of types stands to the simple theory of types. In fact, the con-

structible hierarchy may be considered to be entirely predicative except perhaps in

its free use of arbitrary ordinals. Since ordinals are the order types of well-ordered

sets and those are defined impredicatively by the condition that any nonempty

subset has a least element, the constructible hierarchy is not on the face of it pred-

icative. But it may be considered to be predicative in a modified sense, relative to

the notion of arbitrary well-ordering or ordinal number. An interesting restriction

of that notion is the constructible hierarchy taken up to the least uncountable

ordinal o1, which comes into the next part of our story.

Predicativity in Transition,

as a Chapter of Definability Theory

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The logical analysis of predicativity reemerged in the 1950s as a chapter in the

extension of recursion theory to various ‘‘higher’’ definability notions, especially
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for sets of natural numbers. A systematic study of hierarchies of definitions of sets

of natural numbers was undertaken in the early 1950s by Kleene and, indepen-

dently, Davis and Mostowski. In Kleene’s hands, this took the following form,

using the ‘‘Turing jump’’ operator which takes one from any set X to a set X 0

which is universal for sets that are S0
1 in X. The sets which are obtained from N by

finite iteration of the jump operation are, up to relative recursiveness, all the

arithmetically definable sets. These thus take for granted the definiteness of

quantification over N, and in that sense N as a completed totality. Kleene (1955)

defined a transfinite extension of this hierarchy, using the set O of Church–Kleene

notations for constructive ordinals. The details of the latter are not important

in the following. Roughly speaking, there is a notation for 0 in O, and each n2O

has a notation for its successor; finally, any effectively enumerated increas-

ing sequence in O has a notation for its limit. For n2O, we write jnj for the

ordinal a it denotes. As an analogue of the least uncountable ordinal o1, the least

ordinal not constructive in the sense of Church–Kleene (i.e., the least a such that

there is no n2O with jnj ¼ a), is denoted oCK
1 . It was shown by Spector (1955)

that the order types of recursive well-orderings of N are exactly the ordinals less

than oCK
1 . Kleene’s extension of the finite jump hierarchy, and thence of the

arithmetical sets, is defined inductively for each n2O yielding a subset Hn of N, as

follows. H0¼£ and the step from Hn to its successor set is by the jump oper-

ation; finally, at a limit notation, one takes the direct sum of the sets associated

with the sequence approaching it. Then a set is called hyperarithmetic if it is

recursive in Hn for some n2O. The collection of all such sets is denoted HYP,

which properly extends the class of arithmetical sets. One of the main results of

Kleene (1955) is that

HYP ¼ D1
1

where D1
1 is by definition P1

1 \ S1
1. That is, it consists of all sets S such that for

some arithmetical predicates A(n,X) and B(n,X), and all n2N,

n2S $ (VX)A(n, X)

and

n2S $ (AX)B(n, X)

The connection with predicative definitions in the sense of the ramified an-

alytic hierarchy was established as follows. The basic step in that hierarchy consists

in passing from a collection D of subsets of N to a new collection D* by putting a

set S in D* just in case there is a formula j(x) of second-order arithmetic such

that for all n,

n2S $ (j(n))D,
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where the superscript ‘‘D ’’ indicates that all second-order quantifiers in j are

relativized to range over D. Then we can define the collections Ra for arbitrary

ordinals a by

R0 ¼ £,Raþ1 ¼ (Ra)
*, and for limit a, Ra ¼

[
b<a

Rb:

Thus the definition of the Ra proceeds exactly like the La in Gödel’s constructible

hierarchy, except that at each stage one is confined to collections of subsets of N.

Though Ra is defined for all a, it is not hard to show that we get nothing new for

uncountable a; in fact there is a countable a such that Ra¼Raþ 1. Kleene (1959)

proved that

HYP ¼ RoCK
1
:

However, HYP does not exhaust the ramified hierarchy, as follows from results of

Gandy (1960) and Spector (1960).

It was tentatively proposed by Kreisel (1960) to identify the predicatively de-

finable sets, given the natural numbers, with the members of HYP, essentially for

the following reasons. Call an ordinal a predicative(ly definable) if it is the order

type of a predicatively definable well-orderingW of the natural numbers; then a set

should be considered to be predicatively definable if it belongs to Ra for some

predicative a. Clearly, then, on those grounds all recursive ordinals are predicative,

and so by Kleene’s equation above, each member of HYP ought to be accepted as

predicative. For the converse, the predicative ordinals should be taken to be only

those generated by the following ‘‘bootstrap’’ condition: if a is a predicative ordinal
and W is a well-ordering relation in Ra and if b is the order type of W, then b is

predicative. But then the predicative ordinals do not go beyond the recursive

ordinals, using the result of Spector (1955) that every hyperarithmetic well-ordering

has order type less thanoCK
1 : for if a is recursive and the well-orderingW2Ra, then

W2HYP, and hence the order type of W is recursive. This part of the argument

shows that the predicative sets do not go beyond HYP.

Actually, analogous considerations leading to this identification had been

proposed somewhat earlier by Wang (1954), who introduced ramified formal

systems Sa, which have as a natural model the constructible sets to level oþ a
(since Wang starts with the hereditarily finite sets). The ordinals regarded to be

predicative are again generated by a ‘‘bootstrap’’ condition: if a is predicative and

b is defined by a well-ordering relation expressed in Sa, then b is predicative. The

system S is taken to be the union of the Sa for a predicative. Spector (1957)

established that the predicative ordinals in this sense are exactly those less than

oCK
1 and the sets of natural numbers definable in S are exactly the HYP sets. In a

suitable sense, the sets definable in S are those which have HYP structure on their

transitive closure.
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Independently of Wang, Lorenzen (1955) dealt with systems Sa of a character

similar to the Sa but did not impose precise conditions on the ordinals to be

admitted. Lorenzen’s main concern there is with what parts of mathematics can

be developed predicatively. Incidentally, both Lorenzen and Wang claim that the

l.u.b. principle holds for sets of reals defined at any limit level a, in particular for

a¼o. In their systems, the members of a set at any level are all at a lower level.

Hence, if a bounded set X of real numbers is defined in Sa for limit a, then it lies

in Sb for some b< a, and then l.u.b. (X ) belongs to Saþ 1. However, the applica-

bility of this form of the l.u.b. principle has to be questioned, since the sets of reals

one deals with in practice, even if defined arithmetically, do not have members of

a level restricted in advance.

Though the considerations leading to the identification of the predicative

ordinals (resp. sets of natural numbers) with the recursive ordinals (resp. hyper-

arithmetic sets) have a certain plausibility, they ignored one crucial point if

predicativity is only to take the natural numbers for granted as a completed

totality: namely, that they involve in an essential way (both from above and

below) the impredicative notion of being a well-ordering relation. A step away

from that would be to talk of predicatively provable well-orderings in a way to be

explained next.

Predicative Provability

in the 1960s

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The idea, to begin with, is that instead of dealing with the collections Ra, one deals

(as in the systems Sa) with a transfinite progression of formal systems of ramified

analysis RAa, using variables Xb, Yb, Zb, . . . for each b� a. Here ordinals are not

to be considered set-theoretically but rather as notations chosen from O by some

natural procedure. The formal systems RAa incorporate as axioms comprehension

principles expressing closure under the appropriate ramified definitions. These

can provide closure conditions only on the sets at each level; the minimal model

of RAa is given by hRbib� a, but larger collections can also satisfy the axioms of

RAa. In particular, we can interpret the variables X 0, Y 0, Z 0, . . . as satisfying the

closure conditions of any larger Rb.

The crucial new point (compared to Wang’s systems) is that the predicative

ordinals not only are those that can be defined by (what happen to be) well-

ordering relations in the given systems, but also must previously be proved to be

such relations. The problem is how to meet this requirement without unrestricted

second-order quantification; the answer comes from the provability condition as
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follows. GivenW, a binary recursive relation in the natural numbers, letWOb (W)

express thatW is a linear ordering such that every nonempty subset X b of the field

of W has a W-least element. Then if one proves WO 0(W), it follows that one can

‘‘lift’’ the proof to establishWOb(W) for each b that comes to be accepted. In this

sense, the proof of the predicatively meaningful statementWO0(W) can ensure all

predicatively meaningful consequences WOb(W) of the impredicative statement

of well-ordering WO(W ); indeed, from the outside it ensures that W is a well-

ordering. Now Kreisel’s proposal (1958, 1960) can be formulated as follows. The

predicative(ly provable) ordinals are generated from 0 by the bootstrap or

autonomy condition: if a is predicative and RAa proves WO0(W) for a given re-

cursive W, and b is the order type of W, then b is predicative. The least nonpred-

icatively provable ordinal is then proposed to be the least ordinal which cannot be

obtained in that way.

Kreisel called for an independent characterization of that limit of the predi-

catively provable ordinals in the sense just described. That problem was solved

independently by Schütte (1965a, 1965b) and me (‘‘Systems of Predicative Anal-

ysis,’’ 1964), in terms of the Veblen hierarchy hwaia of critical functions of ordinals
defined for each ordinal a by w0(x)¼ox, and when a 6¼ 0, wa enumerates in order

of size the set of common fixed points x of all wb for each b< a; that is, {x: for all
b< a, wb(x)¼ x}. Then the function of x given by wx(0) is normal; let Ga be the

ath fixed point x of the equation wx(0)¼ x. Then what Schütte and I showed is

that the least nonpredicatively provable ordinal is G0. Outlines of proofs are to be

found in the cited references. A full exposition can be found in Schütte’s book

Proof Theory (1977), Chapter VIII.

Predicatively Reducible Systems

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Taking the intrinsic interest of predicativity given the natural numbers for granted,

after determining G0 to be the least nonpredicatively provable ordinal according to

the above proposal, one had to return to the question of how much mathematics

could be developed predicatively. This was pursued both theoretically, via alter-

native formal systems, and by means of case studies, to be discussed below. On the

theoretical side, since (asWeyl stressed) ramified theories are unsuitable as a frame-

work for the development of analysis, the first question was to see which unramified

systems could be justified on predicative grounds. A formal system T is said to be

(locally) predicatively reducible if it is proof-theoretically reducible to the auton-

omous progression of ramified systems described in the previous section.7 If T has

7 See Feferman (1998), p. 193 for the notion of proof-theoretic reduction.
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the same proof-theoretic strength as that progression, then its proof-theoretic

ordinal is G0. In that case, though the system T as a whole may not be justifiable

predicatively, each theorem j of T rests on predicative grounds, at least indirectly.

In practice, more can be said: T is conservative over the autonomous ramified

progression for arithmetic sentences (i.e., if j is arithmetical and provable in T,

then it is provable in that progression). For second-order T this can often be

strengthened to conservativity for P1
1 sentences (i.e., for j of the form (VX)A,

where A is arithmetical), which on the ramified side is taken to be (VX 0)A. In par-

ticular, in that case, any provable well-ordering of T is also predicatively provable.

The first two examples of unramified second-order predicatively reducible

systems were given in Feferman (1964). The first of these was obtained by replacing

the progression of ramified theories RAa with a progression HCa of unramified

second-order theories, based on the Hyperarithmetic (or D1
1) Comprehension

Rule:

(�1
1-CR) From (Vx)[P(x)$Q(x)] infer (AX)(Vx)[x2X$P(x)],

where P(x) is any P1
1 formula and Q(x) is any S1

1 formula (parameters allowed).

The motivation for D1
1-CR is the recognizable absoluteness (or invariance) of

provably D1
1 definitions, in the following sense. At each stage one has recognized

certain closure conditions on the ‘‘open’’ universe of sets, and the definitions D(x)

of sets introduced at the next stage should be independent of what further closure

conditions may be accepted. In the words of Poincaré, the definitions used for

objects in an incomplete totality should not be ‘‘disturbed by the introduction of

new elements.’’ Thus, if U represents a universe of sets (subsets of N) satisfying

given closure conditions and is extended to U 0 (satisfying the same closure

conditions and possibly further ones), one wants D to be provably invariant or

absolute in the sense that (Vx)[DU(x)$DU 0
(x)]. This requirement is easily seen to

hold for provably D1
1 formulas in the sense that (Vx)[D(x)$P(x)] has been

proved, where P and Q satisfy the hypothesis of the rule D1
1-CR.

8 The progression

of theories HCa is then obtained by suitable transfinite iteration of the rule HCR.

Again, one can apply the notion of autonomy to such a progression: it was shown

that the least nonautonomous ordinal of this progression is G0; that the union of

the HCa for a<G0 is of the same proof-theoretical strength as the union of the

autonomous ramified progression; and that one has conservativity for P1
1 for-

mulas.

The second predicatively reducible system introduced in Feferman (1964) was

obtained by replacing the autonomous progression of the HCa with a single

second-order system, denoted IR. This is axiomatized by the rule D1
1-CR together

8 It has been shown in Feferman (1968) that every provably invariant formula is

equivalent to a provably D1
1 formula, so the rule D1

1-CR is fully general for this require-

ment.
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with what is called the Bar Rule in the proof-theoretic literature, which allows one

to infer the full scheme of transfinite induction on a recursive ordering W when

WO(W ) has been established; correspondingly, one has a rule for inferring a

scheme of transfinite recursion onW under the same hypothesis. (The ‘‘I’’ in ‘‘IR’’

is for Induction, and the ‘‘R’’ is for Recursion.) The main result concerning IR

stated in Feferman (1964) is that it proves the same theorems as the union of the

HCa for a<G0, and thus it is predicatively reducible with conservativity for P1
1

formulas.

The system of what is often referred to as second-order arithmetic has the full

(P1
1 ) comprehension axiom,

(�1
1 -CA) (AX)(Vx) [x2X$j],

where j is an arbitrary second-order (P1
1 ) formula which does not contain ‘‘X ’’

free. In 1976, Harvey Friedman introduced several subsystems of second-order

arithmetic whose common feature is that induction is restricted to its second-

order form, the induction axiom,

(IA) (VX) [(02X)^ (Vx)(x2X! x 0 2X)! (Vx)(x2X)].

In the presence of the full comprehension axiom, one can infer from the in-

duction axiom IA the induction scheme, considered as the collection of all formulas

of the form

(IS) j(0)^ (Vx)[j(x)!j(x 0)]! (Vx)j(x)

for arbitrary second-order formulas j. But in the restricted systems considered by

Friedman, in which the comprehension axiom is considerably weakened, that step

is not possible. Following Friedman, these systems are indicated by a subscript 0.

An obvious choice for such to consider with respect to the present subject is the

system ACA0, obtained by replacing the full comprehension axiom scheme with

the subscheme in which only arithmetical formulas j (no bound second-order

variables) are admitted. It is a classical result of proof theory that the system ACA0

is a conservative extension of the first-order system of Peano Arithmetic (PA). On

the other hand, the system ACA, which is obtained by use of the full induction

scheme (IS) in place of (IA), is stronger than PA; it is still predicatively reducible,

but its proof-theoretical ordinal is far below G0.

Another predicatively reducible system introduced in Friedman (1976) is

denoted ATR0. It has a certain similarity to IR, using axioms in place of rules, as

follows. In place of the D1
1-CR one has the D1

1-CA, that is, the axiom scheme

(Vx)[P(x) $ Q(x)]! (AX )(Vx)[x2X $ P(x)],

where P isP1
1 andQ is S1

1. In place of the transfinite recursion rule of IR, one has an

axiom expressing that for all well-ordering relations Z, one can construct the Turing

jump hierarchy along Z starting with any set X (i.e., the relative hyperarithmetical
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hierarchy along Z ). The transfinite induction rule in IR is not replaced by the

corresponding axiom, since that would be too strong; in place of it, the systemATR0

uses only the induction axiom (IA) for natural numbers as above. Friedman’s main

result announced in 1976 was that ATR0 is predicatively reducible with proof-

theoretical ordinal G0 and is conservative over IR for P1
1 sentences; a full proof of

this with further interesting results about ATR0 is given in Friedman, McAloon,

and Simpson (1982).

Various predicatively reducible systems of higher type are surveyed in Avigad

and Feferman (1998), sections 8.2 and 8.3. Predicatively reducible systems of set

theory related to IR were treated in Feferman (1974), and ones related to ATR0

have been dealt with in Simpson (1982). See also Simpson (2002),‘‘Predicativity:

The Outer Limits.’’

The Mathematical

Reach of Predicativity:

Positive Developments

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Having established theoretical bounds to predicativity and workable unramified

predicatively reducible systems, the next questions of interest are to see what parts

of ‘‘everyday’’ mathematics can be carried out within those bounds, and what

parts are essentially impredicative; the latter question is treated in the next section.

It turns out in practice that if a known mathematical result can be established

predicatively, it can already be done in a system conservative over Peano Arith-

metic (PA). In other words, the predicative part of everyday mathematics is

robustly predicative. There is no theorem which can establish this; one can only

depend on various case studies for confirming evidence. One avenue is that

pursued in the so-called Reverse Mathematics (RM) program due to Friedman

and carried on most extensively by Simpson in his book Subsystems of Second

Order Arithmetic (1999). The primarily relevant system for the positive work on

predicative mathematics in that framework is ACA0, described above, and con-

servative over PA. Another relevant system is much weaker, being based only on

the weak König’s Lemma (i.e., the tree lemma for infinite branching binary trees;

it is shown in Simpson (1999) that the associated system WKL0 is conservative

over the system PRA of Primitive Recursive Arithmetic. A second avenue in which

the positive reach of predicative mathematics has been studied is via a system W

(for Weyl) of flexible finite types introduced in the final part of the article ‘‘Weyl

Vindicated’’ (Feferman 1988). The main proof-theoretical result concerning W is

that it is a conservative extension of PA (Feferman and Jäger 1993, 1996). Only
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some points of general character concerning both of these approaches will be

indicated here.

In W, types are variable; for any two types X and Y, one has existence of their

Cartesian product X� Y, and the type X�! Y of all partial functions from X to Y;

finally, for any type X and bounded formula j one has the subtype {x2X: j(x)}
of X determined by j. Starting from the type N of natural numbers, one can

introduce, as usual, the type Q of rational numbers, and then, by separation from

N�! Q, the type R of real numbers, considered as Cauchy sequences of rational

numbers identified under the usual equivalence relation. Then (partial) functions

of real numbers can be treated as members of R�! R, and various spaces of such

functions (e.g., continuous, measurable, etc.) form examples for Hilbert spaces

and Banach spaces. Given any such space S, the functionals from S to R are then

certain members of S�! R. In practice, only separable spaces can be treated

predicatively, via a given countable dense subset.

As for the program initiated by Weyl in 1918, the full classical analysis of

continuous functions can be carried out directly in W. Turning to more general

classes of functions from twentieth-century analysis, such as come out of the

Lebesgue theory of measure, one first notes that the general notion of outer

measure can’t be defined in W, since it makes essential use of the g.l.b. as applied

to sets of reals, not sequences of reals. But the notion of measurable set can be

treated via sequences of open covers whose measure is directly defined, and the

notion of measurable function can be defined in terms of that or in terms of

sequences of approximating step functions. One cannot prove the existence of

Lebesgue nonmeasurable sets of reals; put in other terms, it is consistent with W

that all sets of reals are Lebesgue measurable. Various parts of standard functional

analysis have been verified in unpublished notes: the Riesz representation theo-

rem, the Hahn–Banach theorem, the uniform boundedness theorem, and the

open mapping theorem for separable Hilbert and Banach spaces. Finally, one can

obtain the principal results of the spectral theory of bounded as well as

unbounded self-adjoint linear operators on a separable Hilbert space. Subsequent

to this work, it has been shown in the dissertation of Feng Ye (1999) that much of

this work can already be carried out in a constructive subsystem of W, con-

servative over PRA.

By comparison, in the RM program, sharper results have been obtained, of

the form that over a weak base system RCA0, various of these results in analysis

are actually equivalent to ACA0 (if not already to WKL0); these are detailed in

Simpson (1999). However, since the systems considered in the RM program are all

subsystems of second-order arithmetic, there is a cost involved, namely, that

higher-type notions, such as those of functions of real numbers, function spaces,

and functionals, cannot be dealt with directly but must somehow be coded in

second-order terms. If one is not concerned with obtaining exact equivalences

between mathematical results, and the second-order set and function existence
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principles on which they ultimately rest, the positive predicative development of

analysis is carried out much more naturally in systems like W.

The Outer Mathematical

Bounds of Predicativity

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Turning now to mathematical results which cannot be carried out predicatively,

the easiest proofs of independence are those which can be established by models

in the hyperarithmetic sets. For example, independence of the existence of non-

measurable sets of reals stems from the fact that every D1
1 set of reals has HYP

Lebesgue measure. Another example using HYP, was found by Kreisel (1959), is

the impredicativity of the Cantor–Bendixson theorem, which asserts that every

closed set of reals is the union of a perfect set and a countable (scattered) set. The

HYP model can also be used to obtain examples of impredicative theorems in

algebra. For example, in the Ulm structure theory of countable Abelian p-groups

G, one starts by dividing out G by its largest divisible subgroup H, to yield a

reduced group G=H. An example is given in Feferman (1975) of a recursive

Abelian p-group G for which the union H of its HYP divisible subgroups is not

HYP ; thus the existence of a largest divisible subgroup of any countable Abelian

p-group is not predicatively provable.

For independence results closer to the bounds of predicativity, one must

fall back on proof-theoretic results. For example, any theorem equivalent to ATR0

is at the exact limit G0 of predicativity, and is thus impredicative. Simpson (2002)

gives a number of examples of theorems from descriptive set theory that are

equivalent to ATR0 over RCA0, including the following: (i) every disjoint pair of

analytic sets can be separated by a Borel set; (ii) every uncountable closed (or

analytic) set contains a perfect subset; (iii) clopen (or open) determinacy. Also,

ATR0 is equivalent to (iv) comparability of countable well-orderings, and (v) Ulm

theory for countable reduced Abelian p-groups. Other independence results

have come from combinatorics rather than analysis, set theory, or algebra. They

are of interest because the statements are arithmetical, in fact, in P0
2 form. One

group of these has to do with variants of the Ramsey coloring theorem, such as

the Paris–Harrington (1977) version independent of PA. Friedman, McAloon,

and Simpson (1982) gave a mathematically natural finite combinatorial theo-

rem which is equivalent to ATR0 over RCA0. Friedman showed that certain

simple P0
2 consequences of Kruskal’s theorem about embeddings of finite trees

are not even provable in ATR0 (cf. Simpson 2002 for references and further

developments).
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Predicativity and

the Indispensability Arguments

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The idea that natural science justifies a part of mathematics because of its in-

dispensability to science—and that that is the only part of mathematics that is

justified—is due to Willard Quine and Hilary Putnam, among others. Famously,

Quine has written:

So much of mathematics as is wanted for use in empirical science is for me on a

par with the rest of science. Transfinite ramifications are on the same footing

insofar as they come of a simplificatory rounding out, but anything further is on

a par with uninterpreted systems. (Quine 1984, p. 788)

(See chapters 12 and 13 above.) Quine argued that we need the power set operation

in set theory to establish the existence of the real numbers R and then its

application once more to obtain such sets as that of all functions from R to R.

That led him by a ‘‘simplificatory rounding out’’ to acceptance of finite iterations

of the power set, but not its oth iteration over the natural numbers. In other

words, Quine was led thus to accept Zermelo set theory but nothing stronger,

which he looked upon as ‘‘mathematical recreation and without ontological

rights’’ (Quine 1986, p. 400). Penelope Maddy has characterized the indispens-

ability arguments (for critical purposes) as follows:

We have good reason to believe our best scientific theories, and mathematical

entities are indispensable to those theories, so we have good reason to believe in

mathematical entities. Mathematics is thus on an ontological par with natural

science. Furthermore, the evidence that confirms scientific theories also confirms

the required mathematics, so [that part of] mathematics and science are on an

epistemological par as well. (Maddy 1992, p. 278)

In (Feferman 1993, reprinted 1998) I considered the significance for the in-

dispensability arguments of the positive developments of parts of mathematics by

predicative means described above in the following terms (1998, p. 284): ‘‘If one

accepts the indispensability arguments [of course one might argue against them

on philosophical grounds] there remain two critical questions:

Q1. Just which mathematical entities are indispensable to current scientific

theories?

Q2. Just what principles concerning those entities are needed for the required

mathematics?’’

The positive developments described above are brought to bear on these questions

as follows. On their basis, I had formulated the working hypothesis that all of

scientifically applicable analysis can be developed in the system W, and argued that

this has been verified in its core parts (cf. 1998, pp. 280–283, 293–294). Of course,
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there are results of theoretical analysis which cannot be carried out predicatively,

either because they are essentially impredicative in their very formulation or be-

cause they are independent of predicative systems such as the examples given

above. However, none of those affects the working hypothesis because they do not

figure in the applicable mathematics. What is more to the point are examples closer

to the margin scientifically (e.g., the proposed use of certain nonseparable spaces

for a quantum-mechanical model involving infinitely many degrees of freedom in

Emch [1972, p. 103]; contra that, one can appeal to the arguments on physical

grounds by Streater and Wightman [1978, p. 87]).9 Of course the working hy-

pothesis may yet prove to be wrong by other examples, but as of now, all evidence

is in its favor. If one accepts it, one can return to questions Q1 and Q2 as follows:

By the fact of the proof-theoretical reduction of W to PA, the only ontology it

commits one to is that which justifies acceptance of PA. But even there, the

answer to Q1 and thence to Q2 is underdetermined. One view of PA is that it is

about the natural numbers as independently existing abstract objects; that is . . . a
platonistic view, albeit an extremely moderate one. . . .Or one can make use of

the fact that PA is reducible to HA [Heyting Arithmetic] to justify it on the basis

of a more constructive ontology. (Feferman 1998, p. 296)

From this and related arguments, I drew the conclusion that

. . . if one accepts the indispensability arguments, practically nothing philo-

sophically definitive can be said of the entities which are then supposed to have

the same status—ontologically and epistemologically—as the entities of natural

science. That being the case, what do the indispensability arguments amount to?

As far as I’m concerned, they are completely vitiated. (ibid., p. 297)

Rethinking Predicativity II:

1970–1996

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In Kreisel’s ‘‘Principles of Proof and Ordinals Implicit in Given Concepts’’ (1970),

he criticized existing proof theory for ‘‘the lack of a clear and convincing analysis of

the choice of methods of proof,’’ and took as his ultimate aim ‘‘the discovery of

objective criteria for such a choice’’ (italics in the original). ‘‘What one is after is a

(phenomenological) description of certain kinds P of mathematical reasoning; the

objective question is then simply this: whether the proofs represented . . . by deri-

vations of a given formal system F are in P (soundness of F); [and] whether all

proofs in P are represented in F (completeness with respect to . . . provability in

P).’’ The particular kinds of reasoning P considered with respect to this aim were

9 See Feferman (1998), p. 282 for a full discussion.
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described as an answer to the following: ‘‘What principles of proof do we recognize

as valid once we have understood (or, as one sometimes says, ‘‘accepted’’) certain

given concepts?’’ (Kreisel 1970, p. 489). As a further elaboration, ‘‘[t]he process of

recognizing the validity of such principles (including the principles for defining

new concepts, that is, formally, of extending a given language) is here conceived as

a process of reflection . . . . Granted that we have to do with an area P which lends

itself to the kind of analysis indicated, it is evident that ordinals play a basic role.

They index the stages in the reflection process.’’ (ibid.)

The two principal basic concepts considered by Kreisel (p. 490) are, in his

terminology:

1. The concepts of o-sequence and o-iteration
2. The concepts of set of natural numbers and numerical quantification.

Kreisel pointed out that this is related to earlier work on autonomous progres-

sions for finitist mathematics (in Kreisel 1958, 1965) and for predicative mathe-

matics (in Feferman 1964).

This rethinking of predicativity and, relatedly, of finitism was persuasive to me

except for the idea that one would expect the stages of reflection to be indexed by

(possibly) transfinite ordinals, though such ordinals might well be used meta-

mathematically in an evaluation of the proof-theoretical strength of the system F

proposed to represent P. In my view, the F considered for a given P should not be

taken to involve the notions of ordinal or well-ordering in any way that is not

already contained in the basic concepts of P. The formulation of this went through

several stages, marked by, among others, the publications Feferman (1979, 1991),

arriving most recently at the general notion of unfolding, as first explained in

‘‘Gödel’s program for new axioms: why, where, how, and what?’’ (Feferman 1996).

That also pointed to the possible applicability of the notion to systems of set theory

at the other extreme to finitism, in which certain axioms for ‘‘large cardinals’’

would be derived that one could argue would fulfill Gödel’s view that the familiar

systems such as ZFC ‘‘can be supplemented without arbitrariness by new axioms

which are only the natural continuation of those set up so far’’ (Gödel 1947, p. 520).

The idea of unfolding is outlined next.

Predicativity as Unfolding

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is of the essence of the notion of unfolding that we are dealing with sche-

matically presented formal systems.10 In the usual conception, formal schemata for

10 This section is extracted from Feferman (1996).

predicativity 615



axioms and rules of inference employ free predicate variables P, Q, . . . of various

numbers of arguments n � 0. An appropriate substitution for P(x1, . . . , xn) in

such a scheme is a formula j(x1, . . . xn), possibly with additional parameters.

Familiar examples of axiom schemata in the propositional and predicate calculus

are

:P! (P!Q) and (Vx)P(x)!P(t).

The induction axiom scheme in nonfinitist arithmetic is given by

P(0)^ (Vx)[P(x)!P(x 0)]! (Vx)P(x).

In set theory, familiar axiom schemes which can be represented similarly are those

for the Separation and Replacement axioms.

Also, rules of inference may be represented schematically, such as modus

ponens in the propositional calculus and universal generalization in the predicate

calculus, given respectively by

P, P!Q =Q and [P!Q(x)] = [P! (Vx)Q(x)].

In finitist arithmetic, in which quantification over the natural numbers is not

accepted, the basic principle of induction is given by the rule:

P(0), P(x)!P(x 0) = P(x).

The informal philosophy behind the use of schemata in the concept of

unfolding is their open-endedness. That is, they are not conceived of as applying to

a specific language whose stock of basic symbols is fixed in advance, but rather as

applicable to any language which one comes to recognize as embodying mean-

ingful basic notions. Put in other terms, implicit in the acceptance of given sche-

mata is the acceptance of any meaningful substitution instances. But which ones

those substitution instances are, need not be determined in advance. Thus, for

example, if one accepts the axioms and rules of the classical propositional calculus

given in schematic form, one will accept all substitution instances of these

schemata in any language which one comes to employ.

The question which the notion of unfolding is supposed to address is: given a

schematic system S, which operations and predicates—and which principles con-

cerning them—ought to be accepted if one has accepted S? The answer for operations

is straightforward: any operation from and to individuals is accepted which is de-

termined explicitly or implicitly from the basic operations of S. Moreover, the prin-

ciples which are added concerning these operations are just those which are derived
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from the way that they are introduced. Ordinarily, we would confine ourselves to

the total operations obtained in this way (i.e., those which have been proved to be

defined for all values of their arguments), but it should not be excluded that the

introduction might depend on prior partial operations (e.g., those introduced by

recursive definitions of a general form). The question concerning predicates in the

unfolding of S is treated in operational terms as well; that is, which operations on

and to predicates—and which principles concerning them—ought to be accepted if

one has accepted S? For this, it is necessary to tell at the outset which logical

operations on predicates are taken for granted in S. For example, in the case of

nonfinitist classical arithmetic, these would be (say) the operations :, ^, and V,
while in the case of finitist arithmetic we would be limited to positive proposi-

tional connectives and (in one formulation) the A operator.

As a general background theory to unfolding for arbitrary S, one assumes a

kind of protomathematical theory of operations and predicates, which makes only

those assumptions that appear in every mathematical theory. The theory of

operations can be typed or untyped; the latter, which is formally simpler, is taken

to be a form of partial combinatory algebra with pairing and projection opera-

tions. These provide for closure of both operations and predicates under explicit

definition. In addition, the combinatory setup allows one to construct a gener-

alized recursion or fixed point operator r, satisfying

r( f ) ¼ f (rf )

for any f. In other words, we allow implicit definitions of operations g via

g ¼ f (g)

for any given f. One general (logic-independent) operation on predicates is given

a distinguished role, since we consider the case when it is not used. Given an

operation f on a domain M to n-ary predicates over M, fx¼ Px for each x2M,

form the join predicate J(f )¼ P, where

P(x, x1, . . . , xn)$Px(x1, . . . , xn).

The operational unfolding of a schematic system S, in symbols U0(S), makes

use only of the background theory of operations over the given operations of S

(i.e., it does not make use of any operations on or to predicates. The full (oper-

ational and predicate) unfolding of S, in symbols U(S), also admits the background

theory of operations on and to predicates over the given logical operations of S,

including the join operator J. The intermediate (operational and predicate)

unfolding of S, in symbols U1(S), is the same without the join operator. Systems
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are unfolded by establishing the definedness and uniqueness of more and more

operations of the various kinds. These serve to expand the language, and thence

the S formulas j which can be admitted to the

(Substitution Rule) A(P)/ A(x̂x.j(x)).

As an example, the schematic system NFA of nonfinitist arithmetic is given

with basic operations on individuals of successor Sc, predecessor Pd, and the 0-ary

operation (constant) 0, and a schematic predicate symbol P(x). In the intermediate

and full unfoldings, the basic logical operations assumed are :, ^, and V. The basic
axioms of NFA are simply the following three, where we write x 0 for Sc(x):

Ax 1. x 0 6¼ 0.

Ax 2. Pd(x 0)¼ x.

Ax 3. P(0)^ (Vx)[P(x)!P(x 0)]! (Vx) P(x).

In my paper with Thomas Strahm, ‘‘The Unfolding of Non-finitist Arith-

metic’’ (2000), the following theorem is proved, where � is the relation of proof-

theoretical equivalence, PA is the usual system of Peano Arithmetic, and RA < a is

the union of the systems RAb of ramified analysis to level b, for b< a.

Theorem 1.

(i) U0(NFA)�PA

(ii) U1(NFA)�RA < o

(iii) U(NFA) �RA < G0
.

In other words, the full operational and predicate unfolding of NFA is proof-

theoretically equivalent to predicative analysis as characterized via the autono-

mous progression of ramified theories. The first step in getting PA contained in

U0(NFA) is to establish successively the definedness of all primitive recursive

functions.11

In an abstract with Strahm, ‘‘The Unfolding of Finitist Arithmetic’’ (2001) we

announced the following result for a system FA of Finitist Arithmetic with the

restricted operations on predicates indicated above, and with the induction axiom

replaced by the quantifier-free induction rule. Here we obtained, in terms of the

system PRA of Primitive Recursive Arithmetic:

Theorem 2. U0(FA)�U1(FA)�U(FA)�PRA.12

11 Actually, in Feferman and Strahm (2000) we made use of a background theory of

typed operations with general least fixed point operator, but we have also verified the

results as stated here for the untyped background theory.
12 Preparation of a full presentation of the system FA and the proof of theorem 2 is in

progress.
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This is in accord with Tait’s argument (1981) that finitism is formally represented

by PRA.

Kreisel’s work on finitism in terms of certain autonomous progressions (1958,

1965) led to a system whose proof-theoretical strength is Peano Arithmetic (PA).

It should be possible to expand the system FA to a system FA* whose unfolding is

exactly PA in strength. The guess is that this would be obtained by adding a

suitable form of the Bar Rule in the language of FA, informally expressed as

follows: if W is a decidable ordering and it has been proved (with free variable f )

that f is not descending in W, then one can apply transfinite induction to W.

CONJECTURE. U(FA*)�PA.

If this is right, what gives Kreisel’s characterization of finitism its unexpected

strength is his implicit use of a notion of finitist well-ordering.

What Is Predicativity? Summary

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The idea of predicativity started in a negative frame of mind with the identifi-

cation of a vicious circle in the use of definitions purported to single out an object

D from a supposed totality V by essential reference to the entirety of V. Such a

definition was considered to be problematic when V is in some sense essentially

ill-defined, not ‘‘actual’’ or ‘‘complete.’’ To begin with, the focus was on the sup-

posed totalities of all sets or all ordinal or cardinal numbers in the framework of

Cantorian set theory. The radical diagnosis of Kronecker, Poincaré, and Brouwer

saw a threat to mathematics in all assumptions of the actual infinite, even down to

the natural numbers. Hilbert, too, in his consistency program to secure infinitistic

mathematics, was infected in this way and, in the words of Paul Bernays, ‘‘It

became his goal to do battle with Kronecker with his own weapon of finiteness’’

by way of inoculation.

Less radical at first, Weyl accepted the setN of natural numbers as a completed

totality, but not the real numbers or, what comes to the same thing foundationally,

the totality of all subsets of N. Thus was born the concept of predicativity given the

natural numbers, and the investigation of its reach in practice. That there is a

fundamental difference between our understanding of the concept of natural num-

bers and our understanding of the set concept, even for sets of natural numbers, is

undeniable. The study of predicativity given the natural numbers is thus of special

foundational significance, and is the one that has received the most detailed study,

as described above. This is not to say that only what is predicative in that sense is

justified. What we are dealing with here are questions of relative conceptual clarity

and foundational status. Parallel to the development of predicative mathematics

predicativity 619



was the pursuit of finitist mathematics in the hands, to begin with, of Skolem (1923)

and, much later, Goodstein (1957). Both were overshadowed in the foundational

wars by the intuitionists, the most radical of the radicals.

With the rise in the 1950s of metamathematics as a substantial discipline and

broadly applicable tool, these directions became the subject of logical analysis at

the hands of philosophically motivated but not necessarily ideologically committed

logicians such as Kleene and Kreisel. Kleene was concerned, in effect, with what

definition processes (recursive, hyperarithmetic, etc.) were implicit in accepting

given notions. Kreisel shifted the attention to what proof processes were implicit in

these. The notion of unfolding of schematic formal systems evolved from his 1970

paper ‘‘Principles of Proofs and Ordinals Implicit in Given Concepts.’’ The aim

was to put that in more general form by not assuming the notion of ordinal as part

of the basic description. The first results (theorems 1 and 2 above) are gratifying in

this respect: the full unfolding of the system NFA of nonfinitist arithmetic is

equivalent to the characterization in terms of the autonomous progression of

ramified systems of predicativity, given the natural numbers, while that of the

system FA of finitist arithmetic is equivalent to primitive recursive arithmetic.

Are those the only two senses of predicativity to be considered? In one di-

rection, stronger notions of predicativity than that, given the natural numbers,

were suggested by work in the late 1950s of Paul Lorenzen, John Myhill and Hao

Wang. In particular, Lorenzen and Myhill (1958) involves the acceptance in a

certain constructive form of the countable ordinals and of inductive proof and

definition on them. In metamathematical terms, their principles would legitimate

a system of strength at least that of ID1, the theory of one generalized inductive

definition. In quite the opposite direction, Edward Nelson published a mono-

graph, Predicative Arithmetic (1986), which perhaps more properly should have

been titled Strictly Finitist Arithmetic, whose admissible principles place it within

the systems of ‘‘feasible’’ or ‘‘poly-time’’ arithmetic that have been developed by

Sam Buss and others, systems that form a very weak fragment of primitive re-

cursive arithmetic (cf. Buss 1986). And somewhere between these are papers by

Geoffrey Hellman and myself, ‘‘Predicative Foundations of Arithmetic’’ (1995)

and ‘‘Challenges to Predicative Foundations of Arithmetic’’ (2000), where we

argue in particular for a concept of predicativity given the notion of finite set, and

in general for predicativity as a relative rather than an absolute concept. In ad-

dition, concepts of predicativity, given the notion of finitist ordinal, and even of

predicativity, given the notion of the cumulative hierarchy of sets, have been

indicated above. These open up a series of more or less specific problems to be

tackled in terms of the concept of unfolding. To begin with, these problems call

for the formulation of basic schematic systems as simple and natural as NFA and

FA for the weaker or stronger notions indicated in the various mentioned

developments, and then the determination of the reach of the corresponding

systems of unfolding.
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So if one accepts this more general standpoint, one answer to the question

‘‘What is predicativity?’’ is that it is a concept applicable to different foundational

stances given by the rejection of the actual infinite for various domains, coupled

with its possible limited acceptance for others. Then the logical problem in each

case is to characterize exactly the limits of that particular stance. To the extent that

such stances are restrictive, the potential positive value of this enterprise for

mathematics is—to quote another Kreiselian slogan—to tell us what more we

know if we know that something has been proved by limited means. And for

philosophy, its value is to provide sharp, informative explications in terms of

which arguments can more pointedly be mounted in favor of, or opposed to, one

or another of those foundational stances.
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—(1947), What is Cantor’s continuum problem?, American Mathematical Monthly

54, 515–525; errata, 55, 151. Reprinted in Gödel (1990), 176–187.
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c h a p t e r 20

MATHEMATICS—

APPLICATION AND

APPLICABILITY

mark steiner

I.
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At the beginning of a book titled Symplectic Techniques in Physics (Guillemin and

Sternberg 1990a), the authors (both mathematicians) state: ‘‘Not enough has been

written about the philosophical problems involved in the application of mathe-

matics, and particularly of group theory, to physics.’’1 While I applaud this state-

ment, and mean this chapter to address their concerns, if only partially (hoping to

avoid replacing their ‘‘not enough’’ with ‘‘too much’’), I must point out that the

disregard by the philosophical community of issues of mathematical application is

quite recent.

To an unappreciated degree, the history of Western philosophy is the history

of attempts to understand why mathematics is applicable to Nature, despite ap-

parently good reasons to believe that it should not be. A cursory look at the great

books of philosophy bears this out.

1 I would like to thank Professor Sternberg for valuable discussions concerning the role

of symmetry in physics; Stanley Ocken for his insights into advanced aspects of elementary

mathematics; and Mark Colyvan for his detailed suggestions. This research was supported by

the Israel Science Foundation (Grant no. 949102), and I am very grateful for the support.
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Plato’s Republic invokes the theory of ‘‘participation’’ to explain why, for in-

stance, geometry is applicable to ballistics and the practice of war, despite the Theory

of Forms, which places mathematical entities in a different (higher) realm of being

than that of empirical Nature. This argument is part of Plato’s general claim that

theoretical learning, in the end, is more useful than ‘‘practical’’ pursuits.

Descartes’s Meditations invokes no less than God to explain why the ideas of

‘‘true and immutable essences’’ of mathematics (triangle, circle, etc.) that we grasp

with ourmindmust represent existing entities in nature (meaning empirical space).

Thus the applicability of mathematics is co-opted by the mind–body problem. And

Spinoza’s monism, such as it is, is intended to solve the same problem without

invoking the explanatory, or other, power of the Deity.2

Berkeley’s problem is the same as Plato’s, except in reverse: for Berkeley, stan-

dard mathematics is an obfuscation, and is even incoherent; examples of inco-

herent ideas in mathematics are the dimensionless point, the infinitesimal, and

numbers (understood as abstract objects). His problem, then, is: How does an

inconsistent theory like Newtonian calculus give the right numbers? (Note that

Hartry Field’s explanation in the twentieth century would not help Berkeley, be-

cause it applies only to consistent mathematical theories.) His instrumentalist

explanation is ingenious: the infinitesimal calculus gives the right predictions by a

sort of canceling out of errors, which reminds me of our contemporary practice of

renormalization in quantum field theory.

Kant’s Critique of Pure Reason returns mathematics to its status of synthetic a

priori truth without a return to Plato. Kant’s transcendental idealism, according

to which the mind itself imposes mathematical order on empirical reality, is an

answer to the question of how a synthetic a priori truth can be applied to em-

pirical reality, an answer which avoids the Theory of Forms, theology, and in-

strumentalism. It turns out, contrary to Plato, that the only synthetic a priori

truths are about empirical reality.

John Stuart Mill’s account of the applicability of mathematics to nature is

unique: it is the only one of the major Western philosophies which denies the

major premise upon which all the above accounts are based. Mill simply asserts

that mathematics itself is empirical, so there is no problem to begin with.3

This short sample of Western philosophy illustrates that the central philo-

sophical doctrines of these major philosophers were conceived in great measure

2 I once heard this idea from Stuart Hampshire.
3 Colyvan points out that I could have listed Quine as also holding that mathematics

is empirical. This makes sense, but Quine rejects the empirical/a priori dualism in the first

place, so it is far from clear what the doctrine as espoused by Quine comes to. Also, Quine

believes that mathematics is the science of objects that have no empirical properties

whatever. See also note 28.
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to explain the applicability of mathematics to Nature. What is more, we conclude

that (though they didn’t use the word ‘‘apply’’) all the doctrines presupposed

the same concept of application: they all assumed that application is a relation

(some approximation to a homomorphism) between mathematical theorems and

empirical facts, a relation which can be used to ‘‘read off ’’ empirical facts from

mathematical theorems. The question they ask is: Given the nature of mathe-

matics, why should such a homomorphism exist? And their strategy is either to

provide an explanation (participation, God, etc.) or to deny the existence of

applicability in the first place—like Berkeley or Mill, but to explain only why it

looks as though mathematics were applicable (what my teacher, Professor Sidney

Morgenbesser, called ‘‘explaining away’’ the phenomenon).

We must now ask a question which is not often asked: What do we mean

when we say that mathematics is ‘‘applicable’’? And before this question, another:

What are we doing when we ‘‘apply’’ mathematics to Nature?

II. Canonical and Noncanonical

Empirical Applications

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The sort of applications the classical philosophers puzzled over could be called

‘‘canonical empirical applications’’ of mathematics, because the available empir-

ical applications of mathematics were either canonical or reducible to canonical

explanations. The classical philosophers, like their counterparts today, mostly did

not realize that some of the canonical applications of (even elementary) mathe-

matics are not empirical, nor of course could they have predicted the rise of

empirical applications that are not canonical. But let’s define these terms.

I call an application of a mathematical theory canonical if the theory was de-

veloped in the first place to describe the application. For example, suppose we

have an apparent empirical regularity R of some kind; mathematics M is devel-

oped in an attempt to describe this regularity; perhaps we should say that math-

ematics M is developed so that R should be, at least approximately, its model.

Then R is a canonical empirical application of M. Our classical philosophers want

to understand this procedure and how it could work—but they don’t need an

explanation why R, rather than some other regularity R*, is an application of M,

because M was introduced for this purpose.

An obvious case of canonical empirical application is the use of the differ-

ential calculus to describe accelerated motion. This was developed by Newton

precisely for this purpose. Any philosophical problem concerning this that we find
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in the philosophers would be equally a problem concerning any canonical em-

pirical application.4

Ironically, it is much harder to see the role of canonical empirical applications

in elementary mathematics, because in these cases, typically, the mathematics

evolved together with the applications over a long period of time, rather than being

invented; and there is thus a tendency to confuse the applications of elementary

mathematical theories with the theories themselves.

An example of what I speak is the ‘‘application’’ of addition to finding the size

of collections of bodies. Many people, even mathematicians, find it hard to rec-

ognize that we are speaking of application of mathematics rather than mathe-

matics itself, but let me try to get things clear.

Consider a set S of bodies. Consider the scattered physical object S* which is

the ‘‘mereological sum’’ of the elements of S. (The mereological sum of a set of

objects is the smallest body of which each of the objects is a part.) A mereological

sum is not a set and does not have members, but only parts; a set has both mem-

bers and subsets.5 Another difference is that the sum of a sum of bodies is no

different from the sum itself; yet the set containing a set of objects is different

from the latter.

Suppose, however, we think of bodies as maximal irregular polyhedrons (i.e.,

polyhedrons not part of larger polyhedrons). Then these bodies play the role, to

some extent, of set members—since the parts of these bodies are not themselves

bodies. There is, therefore, a sense in which a mereological sum of bodies is a model

or image of a set of those same bodies. And since this is true because of the em-

pirical properties of those bodies (stability, for example, as well as discreteness), we

can say that mereological sums of bodies are empirical applications of the set con-

cept. Let us call the mereological sum of bodies a ‘‘collection’’ of those bodies, so

that collections are empirical applications of sets.6

But this works in the opposite direction as well: we can read some of the

properties of the sets from the collections for reasons which are both mathe-

matical and empirical.

4 One caveat, nevertheless, is in order. Modern foundational achievements in analysis

have turned the ‘‘calculus’’ almost into a logical device, analytic truths concerning ac-

celerated motion. So it’s not clear that we have here an empirical application, one which

could be refuted by experience. In the seventeenth century, however, I believe it would be

fair to say that Newton was ‘‘reading off ’’ the characteristics of accelerated motion from

his ‘‘calculus,’’ which justifies the name. At the same time, the calculus was developed for

just this purpose, justifying the label ‘‘canonical.’’
5 There is a sense in which sets also have parts—we can view the subsets of S as parts

of S. See Lewis (1991).
6 The reader will find it instructive to compare the present approach with the

thoughtful discussion of the relationship between sets and physical bodies in Maddy

(1990).
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Consider ‘‘counting.’’ This is basically an empirical process in which we point

to all the bodies in a collection while reciting numerals in order. The last numeral

recited expresses the number or size of the set of those same bodies. This is true

because, as we say, the collection is a physical model of the set. But it is also true for

a mathematical reason: the finite numbers are both ordinal and cardinal numbers.

(For infinite sets, it matters a great deal in what order we place them—the ordinal

number of the natural numbers in the standard ordering is called o, but if we
‘‘count’’ the numbers starting from 1 and put 0 after the rest, we get the ordinal

oþ 1.) This means, for example, that it matters not in what order we count the

bodies in a collection—we will get the same result. The result, invariant over order,

is thus the size of the set of those bodies. Once again reversing the story, if we know

the cardinal number of a set of bodies, we can predict the result of counting the

collection of the bodies, an empirical prediction which has a mathematical ex-

planation.

Next consider addition. Thought of as an operation on cardinal numbers, m

and n, which are the sizes of disjoint sets X and Y,mþ n is the size of the union of X

and Y. Suppose X and Y are sets of bodies, as before, and X* and Y* the corre-

sponding collections of those same bodies. Then the mereological sum of X* and

Y* is an image or model of the union of X with Y. If we know the sum mþ n in

canonical notation, we can then predict the result of counting the collection of X*

with Y*. This is, of course, because of the above-mentioned identity between

cardinal and ordinal finite numbers.

But the cardinal–ordinal equivalence has another implication, and a profound

one. This is that cardinal addition is equivalent to ordinal addition; extensionally,

they are the same operation. But ordinal addition is based on recursion (iteration),

and recursion yields computational algorithms, such as the ones we learn in school.

Many educators today decry the emphasis placed on these algorithms, and they

have a point: these algorithms are for ordinal arithmetic, which has little to do with

the more applicable cardinal arithmetic, which measures the sizes of various sets.

On the other hand, the mathematicians have a point as well, since ordinal arith-

metic can be immediately applied to cardinal arithmetic to make calculation a

cinch. The mathematicians suffer from the lack of algorithms in infinite cardinal

arithmetic, and as a result cannot make the simplest calculations, such as

2@0 :

Cardinal arithmetic, then, is of great application but does not allow calcu-

lation; ordinal arithmetic has no great application, but does allow algorithmic

calculation. Together we have the following story: take two distinct collections—

of bodies—and count them both. We then have the ordinal number, and thus the

cardinal number, of the two sets corresponding to the collections. The cardinal

number of the (disjoint) union of the sets corresponds to the sum of the two
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cardinal numbers. This can be calculated using ordinal arithmetic (i.e., algo-

rithms). From this we can predict the result of counting the (mereological) sum of

the two collections, the smallest collection of which the two original collections

are parts.

It is a considerable intellectual strain, we see, to separate pure arithmetic from

its canonical empirical applications. Small wonder that the distinction is seldom

made.

To sum this all up (pardon the pun), the applicability of addition algorithms

to counting physical collections is based on an amazingly complicated series of

facts and mathematical ‘‘accidents’’: (a) the empirical stability of many objects;

(b) the resulting model of sets of physical objects as collections of those objects;

(c) the equivalence of cardinal and ordinal finite addition, which allows (1) finding

the cardinal number of a set by counting the corresponding collection and (2) the

use of powerful algorithms of ordinal arithmetic to solve problems in cardinal

arithmetic.

A noncanonical, yet still empirical, application of addition would be to weights.

Seven unit weights and another five give twelve unit weights. This is an empirical

application, so empirical that it is even (slightly) wrong—according to Einstein’s

General Theory of Relativity, weight is not quite linear, just as velocity is not

quite linear in Special Relativity. However, for ordinary purposes we can speak

of the ‘‘linearity’’ of weight. In that case, we can use arithmetic to predict the

weight of a collection of unit weights. (Of course, for a fuller story one would dis-

cuss the application of the theory of real numbers to weights which are incom-

mensurable.)

This is not, strictly, a canonical application, insofar as the theory of arithmetic

operations was not put together to do weights, but to count. However, weight is

‘‘near’’ canonical, in that (given the empirical properties of the magnitude

‘‘weight’’) we can reduce weighing to counting. (I again stress that for simplicity I

am discussing only commensurable weights.)

A more advanced empirical, yet noncanonical, application is the application

of the Apollonian theory of conic sections by Kepler to planetary orbits. Obvi-

ously the Greeks had not introduced this theory to describe the orbits of the

planets, which in any case were thought of as strictly circular. Indeed, as far as I

know, Kepler was the first to apply the theory in physics.

An even more advanced case is the application of non-Euclidean geometry to

gravity, as in Einstein’s General Theory of Relativity. What is noncanonical here is

not necessarily the description of space as ‘‘curved’’ (it is plausible that both Gauss

and Riemann had this in mind), but rather the application of Riemannian ge-

ometry to space-time.

This raises the question of whether all mathematics is applicable in physics. Of

any given mathematical theory it is quite risky to say that it has no physical
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application.7 Nevertheless, we can say that the beautiful theory of prime numbers,

which so caught the imagination of the Pythagoreans, has to this day no certified

applications in physics. Of course, arithmetic itself is applicable in physics, and

arithmetic does treat prime numbers, but this is not the sense of ‘‘applicability’’ I

have in mind, which demands that the concept ‘‘prime number’’ should actually

appear in a physical theory. Suppose that the nth energy level of hydrogen had a

certain property if and only if n is a prime number—that would be an example, but

there aren’t any like that.8 If string theory is ever confirmed empirically, the role of

the prime numbers in science will finally be established, because string theory

actually does rest on some characteristic concepts of the theory of numbers.

The converse issue, raised by the celebrated physicist EugeneWigner in a famous

paper (Wigner 1967), is whether the level and type of applicability we do see in these

noncanonical applications is ‘‘unreasonable.’’ Wigner argued that it is, because:

(1) Mathematical concepts—at least in the last 150 years—are subject pri-

marily to criteria internal to the mathematical community. Among

these criteria are aesthetic ones; and most of the criteria are not such

as to make it likely that mathematical concepts should be applicable at

all. In some cases, the mathematical concepts have, and had, no

canonical empirical applications.

(2) In physics, the reliance on mathematical concepts in formulating

laws of nature has led to laws of unbelievable accuracy.

Skeptics argue that Wigner suppressed the failures in applying mathematics

(there are hundreds monthly). Other skeptics argue the reverse, that we should

expect mathematics to be applicable because (unlike what Wigner asserts) the real

and ultimate source of mathematical concepts is experience; thus it is not at all

unreasonable that mathematical concepts should return the favor.

I’m not particularly impressed by these objections (particularly because they

contradict one another), since I think that each of the examples that Wigner gives

is so extraordinary that it requires explanation.9 For example, I feel that even

7 Most physicists before 1930 would have said this of group theory—it is now, of

course, the centerpiece of elementary particle physics. The famous mathematician G. H.

Hardy argued that no truly mathematical theory could be applied to warfare, but this was

wishful thinking, since one of his examples of a ‘‘truly mathematical theory’’ was E¼mc2.
8 As Professor Sternberg pointed out to me, however, the concept of a prime number

is crucial to cryptography, and of course he’s right. This is another—rather whopping—

counterexample to Hardy’s wishful thinking (see note 7), since a lot of research in number

theory today must be classified.
9 I regret that Wigner, no doubt out of modesty, left out of his article the most

striking examples of the unreasonable effectiveness of mathematics: his own contributions

in the field of applying group theory to quantum mechanics.
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Newton’s law of gravitation, based on astronomical observations which were

wildly inaccurate by today’s standards, nevertheless has withstood the increase in

the accuracy of our measurements to the extent that we can now say that the

elementary particle known as the neutrino falls to earth just like the moon. There

is nothing like the accuracy of the inverse square law, for example, in economic

models, which retain roughly the experimental error of the data which suggested

them in the first place. Kant once argued that the inverse square law is to be

expected (if not a priori), because gravity spreads out spherically, and the area of

the (surface of) the sphere is proportional to the square of its radius. But Charles

Peirce already answered this by the telling rejoinder that what spreads out in space

is the potential, not the force, and the gravitational potential goes as the inverse,

not the inverse square, of the radius! Thus it’s not clear that we have anything that

would count as an explanation for how much more we ‘‘got out’’ of the inverse

square law than we ‘‘put in.’’

My objection to Wigner’s thesis is completely different: it’s not a thesis at all.

He gives persuasive examples of successes that cry out for explanation—but he

doesn’t prove that they add up to one phenomenon that cries out for explanation.

Each success is a story in itself, which may or may not have an explanation. Wigner

does not make a case that what is unreasonably effective is mathematics, even

though the individual examples he gives are of concepts that happen to be math-

ematical. In other words, Wigner may give examples of a number of applications

which are ‘‘unreasonably effective’’—applications of concepts which happen to be

mathematical. But he doesn’t show that these successes have anything to do with

the fact that the concepts are mathematical. Of course this is connected with

Wigner’s failure or inability to give a definition of ‘‘mathematical concept.’’

III. Canonical Nonempirical

Applications

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I would like now to speak, finally, of canonical applications of mathematics that

are not empirical at all—these are applications in which one uses mathematics to

‘‘read off ’’ results in another theory which itself is mathematical. One might think

that these kinds of applications would have to be quite advanced, yet I was sur-

prised to find that there is a very elementary example: multiplication.

Multiplication is often ‘‘defined’’ as repeated addition, but this, I hold, is a

confusion between a definition and an application.

An intuitive way to see that something has gone wrong with the pseudo

definition ‘‘multiplication is repeated addition’’ is to inquire concerning the
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commutativity of multiplication. Why is it always the case that adding x, y times,

gives the same result as adding y, x times? To be sure, this fact can be proved by

mathematical induction. But the proof is far from trivial, and my experience

teaching this material from textbooks like Mendelson (1997) is that most college

students are not capable of discovering the proof. Morever, proofs by mathe-

matical induction usually prove only that, but not why, a theorem is true.10

The ‘‘definition’’ of multiplication as repeated addition has its source in

ordinal arithmetic (i.e., recursion). We have already seen that ordinal arithmetic is

dandy as algorithm, horrible for applications. Small wonder that children cannot

understand why multiplication is commutative (the noted philosopher and lo-

gician Saul Kripke recalled—in a class I attended—being amazed as a child at

the commutativity of multiplication). Nor can they understand why one can ‘‘add

candies to candies’’ but not ‘‘multiply candies by candies.’’ What we need is a

cardinal definition of multiplication.

Now let’s look at the matter from the logician’s point of view. To see that

‘‘repeated addition’’ cannot be a definition of multiplication, consider the for-

mula xy, having two free variables. The ‘‘repeated addition’’ definition (so called)

would dictate that xy means

yþ yþ y þ � � � þ y (x times).

But the ellipsis here ( . . . ) is not defined mathematically; and the paren-

thetical comment (x times) means only that the letter y is repeated an unspecified

number x of times. The most coherent interpretation of this ‘‘definition,’’ then, is

a schema containing infinitely many definitions of the following type:

1� y¼ y

2� y¼ yþ y

3� y¼ yþ yþ y

. . . . . . . . . . . . . . . . . .

The numbers 1, 2, 3, . . . count the number of occurrences of the letter ‘‘y ;’’ to

put it another way, x is a metalinguistic, rather than a mathematical, variable,

where y is a ‘‘true’’ variable.11 To see what is wrong with this, take a spe-

cific example: 7� 5¼ 35, which, according to the standard pseudo definition is

to mean 5þ 5þ 5þ 5þ 5þ 5þ 5¼ 35. But standard rules of logic allow the

inference

(E) There is x such that x� 5¼ 35

10 See Steiner (1978a) for a discussion.
11 Interestingly enough, Wittgenstein in RFM (Wittgenstein 1978) points this out.
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from 7� 5¼ 35, but not from 5þ 5þ 5þ 5þ 5þ 5þ 5¼ 35. Hence the defini-

tion of multiplication in terms of repeated addition is wrong. The most we can

say is that 5þ 5þ 5þ 5þ 5þ 5þ 5¼ 35, if we assume the axioms of Peano

(which of course contain multiplication as a primitive, undefined notion), is

equivalent to 7� 5¼ 35 (and therefore implies E), but the equivalence is not

purely logical.

A good way to look at multiplication is, in fact, set-theoretic: xy is the

(cardinal) number of x disjoint sets, each of which has the cardinal number y. The

role of x here is different from that of y (though it is not metamathematical);

suppose we are calculating the number of candies we need to give four children

five candies each—this is the same as calculating the number of elements in four

disjoint sets with five candies each. Five, then, tells us the number of candies,

where four tells us the number of sets. In other words, the ‘‘second-order’’

concept of ‘‘set of sets’’ is inherent in multiplication. We have already seen that

though collections, in a sense, can be considered physical models for sets, there is

no such model for ‘‘sets of sets.’’ This is the deeper reason why we can’t ‘‘multiply

candies by candies,’’ though we can ‘‘add candies to candies’’: adding candies to

candies is to model addition by mereological sum, forming a larger collection

from two smaller ones; for multiplication there is no such model.

At the same time, we see from this definition that each multiplication is

equivalent to (though not synonymous with) a repeated addition—we can ‘‘read

off ’’ the results of a repeated addition from a product of two numbers. In this

sense, it could be said that multiplication is being ‘‘applied’’ to addition! But this

is not an empirical application at all!

Consider, now, the following table.

Fig. 20.1.

We have labeled the candies with capital letters. If we have four children and

have to give each child three candies, we need 4� 3 candies, the cardinal number

of a disjoint union of 4 disjoint sets with 3 members each. The rows of the table,

marked out as above, symbolize the sets of candies. If we permute ‘‘candy’’ with

‘‘child’’ everywhere and switch rows for columns, we get:
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Fig. 20.2.

It is clear from this that multiplication is commutative; from the abstract

mathematical point of view, what we have done here is set up a one–one map

between

SjAj
i¼1

Bi,

all the Bs equinumerous, and A� B, the set of ordered pairs

{hx, yi:x2A^y2B},

B being any set eqinumerous to the Bs, and then noted that, obviously,

jA� Bj ¼ jB�Aj.

In effect, we have two set-theoretic definitions of multiplication here which

are equivalent: in terms of disjoint unions, or in terms of Cartesian products. The

former definition is the one that leads to applications—but distinguishes between

the operands m and n in that the latter numbers sets; the former numbers sets of

sets. In the latter definition, both m and n number sets.

A final comment: I maintained that ‘‘repeated addition’’ should be regarded

as a nonempirical, if canonical, application of multiplication; what of areas, as in

geometry? Is this not a canonical empirical application? Didn’t the Egyptians and

the Greeks develop this application of multiplication?

Yes and no. Though it is true that area is certainly an application of multi-

plication, it originally was not an application of the operation we teach today in

school. The Greeks regarded multiplication as an operation on magnitudes, not

numbers; when we multiply linear magnitudes, we get square magnitudes. In

other words, multiplication of magnitudes was not a closed operation.

Furthermore, the use of multiplication in areas is connected with the Eu-

clidean structure of the plane. If space is not Euclidean, then the area of a square is

not actually the product of the lengths of two sides. We will still need multipli-

cation to find the area, which is still definable (as an integral) as long as space is
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still locally Euclidean (the smaller the space we take, the ‘‘flatter’’ it gets). However,

I don’t think that we have here anything like a canonical application anymore.

Let us leave elementary arithmetic, and look at some of the modern theories

of mathematics. Indeed, let us heed the call of the mathematicians we began with,

and discuss group theory.

Group theory is known today as the theory of symmetries—we define a

symmetry as a property which is invariant under a group of transformations. The

classical symmetries, which are visual symmetries, involve transformations of

space, such as rotations, translations, and reflections. For example, a cube is in-

variant under rotations of multiples of 90 degrees around axes that go through, and

are perpendicular to, its faces. And one might have thought that group theory

developed in order to describe these symmetries, for example, in crystallography—

and it is true that group theory can indeed be applied to ‘‘read off ’’ results in that

field. Once we know, for example, the symmetry group of a substance like salt, we

can predict all the possible forms of the salt crystal, even the forms that occur

‘‘naturally’’ and are not regular polyhedra. We can even use group theory to explain

why so few visual symmetries are seen in nature—crystals are made up of a lattice

structure (atoms), which restricts the number of symmetry groups possible.12

Yet this is not how group theory came into existence. In fact, group theory was

constructed to be applied not to empirical reality, but internally—in mathematics.

Namely, group theory was introduced into mathematics by Galois, to be applied to

algebra. The Galois group of an equation, for example, can be thought of as a group of

certain permutations of the roots of that equation.13 By studying the group of an

equation, mathematicians are able to extract information about the equation itself—

in fact, the application of group theory inmathematics has precisely this form: we find

that a certain group characterizes a much more complicated structure, and we can get

needed information about that structure by studying the properties of the group.

(This is how group theory is used in topology, for example.) Thus what Galois did was

to inaugurate modern mathematics, in which the main applications of mathematics

are—to mathematics itself. It would be fair, then, if surprising, to state that the ca-

nonical applications of group theory are mathematical, not empirical. Ironically, the

origins of group theory in pure mathematics not only did not prevent physicists from

applying group theory (after a period of resistance), but made it possible.

Briefly, the reason is this (for a detailed account, cf. Sternberg 1991; Sternberg

also graciously offered his help in cleaning up this entire section). Already in

12 Perhaps the best treatment of this subject is Sternberg (1994, ch. 1).
13 Given an equation E with coefficients in field K, one can construct an extension

fieldM in which the equation ‘‘splits’’ (can be factored, has roots). The Galois group of the

equation is the group of automorphisms of M which leave K fixed. Since the image of a

root of the equation under any element of the Galois group is also a root, the Galois group

can be thought of as a group of permutations of the roots.
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classical mechanics it was discovered (by the mathematician Emmy Noether) that

there is a mathematical connection between symmetry groups and conservation

laws. For each continuous group G of symmetries14 of the laws of nature, there is

a magnitude PG which is conserved. If the law has rotational symmetry, then

angular momentum is conserved, for example.

In quantummechanics, the state of a system is represented by a unit vector in a

(complex) vector space V of infinite dimension. The group G must act on this

vector space V, rather than directly on physical space.15 This action is called a

‘‘representation’’ of the group, in which each element of the group is represented

by a square matrix.16 Suppose that a particle has a determinate value n for property

14 Technically, a one-parameter group of symmetry transformations. In addition,

these transformations must not change the ‘‘symplectic’’ geometry of the phase space (see

note 15). In the case of quantum mechanics, to generate a conservation law the action of

the group must not change the geometry of the Hilbert space—hence it must be repre-

sented by unitary matrices (these are invertible complex square matrices M such that the

inverse is equal to the adjoint, MM *¼ I). So in both classical and quantum mechanics,

conserved quantities arise from the action of continuous symmetry groups that preserve

both the laws of nature and the geometry of the abstract space (not necessarily space-time)

which is the mathematical ‘‘arena’’ of these laws.
15 Even in classical mechanics, symmetry groups need not act on physical space. The

fact, for example, that the orbit of a planet does not precess (turn) is a conservation law

which arises from the action of a group of rotations, but not rotations of three-dimensional

physical space as we now describe:

A deep comparison of classical physics with quantummechanics is through themedium of

geometry. In classical mechanics, the state of a system is given as a point in ‘‘phase space.’’ For a

free particle (no constraints or forces) this will be a six-dimensional vector space with three

coordinates of position and three of momentum. As soon as we introduce forces or constraints,

as in a particle in a central gravitational field, however, the coordinates are no longer rectilinear

(Cartesian) but curved. Only at each point (locally) can we say that phase space looks like a

vector space. Phase space is thus what is called a ‘‘manifold,’’ indeed, a symplectic manifold (the

term ‘‘symplectic’’ refers to the particular geometry of the manifold). The rotation group, when

acting on the space dimensions, yields conservation of angular momentum for the planet; when

acting on another submanifold of this ‘‘phase space’’ (namely, the submanifold of the phase

space which contains all the possibilities for planetary motion), it yields a different conserva-

tion law. For details of this, see Guillemin and Sternberg (1990b). In quantum mechanics, on

the other hand, the state of a system is given by a unit vector in an infinite dimensional

complex vector space, known as a Hilbert space. (The term ‘‘Hilbert space’’ expresses the par-

ticular geometry of the vector space.) The coordinates remain rigidly rectilinear (even if com-

plex), and thus the restrictive theory of group representations by square matrices must apply.
16 We are, again, interested primarily in representation by single parameter groups of

unitary matrices because, as stated above, unitary transformations do not change the

geometry of the Hilbert space. The geometry of a Hilbert space is given by the scalar

product of two vectors, analogous to the scalar product of Euclidean space, and unitary

matrices preserve the scalar product.
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PG, which is conserved under the action of G. Then,17 as G acts, (a) the unit vector

never moves out of a subspaceW of Vwhich is associated with that very value v and

(b) there is no subspace Y ofWwhich so confines the unit vector.W, taken together

with the action ofG, is called an ‘‘irreducible representation’’ ofG. SupposeW is an

n dimensional subspace of V. The physical meaning of this is that a particle with

value v of property PG can assume n different states. It should not be assumed

without proof that G has such an irreducible representation for every dimension n.

Consider as an example the electron and let PG be the property known as

‘‘spin,’’ so called because the electron is a little magnet analogous to a spinning

charged ball in classical physics. As one might expect, rotating an electron (or,

equivalently, rotating the measuring device relative to the electron) does not

change the value of its spin (which remains at ½ Planck’s constant). Yet rotating it

360 degrees does not bring the electron back to its original state (the unit vector is

multiplied by �1); this requires two full turns. What is most significant is that no

matter how we rotate the electron (or the coordinates), the electron is observed in

only one of two states: (a) with its north pole ‘‘up’’ or (b) with its north pole

‘‘down.’’ (This is of course utterly unlike a classical spinning ball, which can be ob-

served spinning in any direction.) Rotating the electron changes only the prob-

ability of observing the electron in an up or down position. Thus it has two states

corresponding to its spin value.

This might suggest the following group-theoretical description of the electron

(in fact, this picture was actually resisted by physicists for quite a while): the

symmetry group of electronic spin is the one called SU(2). This is a continuous

group which has a two-dimensional representation18 just as required, and is also

the ‘‘double covering group’’ of the rotation group in ordinary space (i.e., a con-

tinuous action of this group which brings a unit vector back to itself is homo-

morphic to two rotations, again as required).

So far the group-theoretical description does not seem to add anything to the

physical facts, which is why physicists referred to Hermann Weyl and his colleagues

in the mathematical community as the ‘‘Gruppenpest.’’ Yet, as Sternberg points out,

one can reverse this procedure, and go from the group description to the physical

facts. For example, in 1932, Heisenberg argued that the neutron and proton are

actually two different states of the same particle (today called the ‘‘nucleon’’), with

the value ½ of some property yet to be explored, and with the same symmetry

group as the electronic spin. He called the property, again by analogy, ‘‘isotopic

17 The success of group theoretical methods in physics has actually made this state-

ment into a definition: what we mean by a ‘‘particle with a fixed value of a physical

magnitude’’ is described by definition as an irreducible representation of the group asso-

ciated with the conservation of that magnitude.
18 The way SU(2) is usually defined, as a group of 2� 2 ‘‘unitary’’ matrices, this

statement is trivial, true by definition; but there are other ways to define the group.
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spin,’’ though this is nothing more than saying ‘‘the property conserved in the

nucleus by the spin group SU(2).’’ Actually, even today, there is no known physical

connection between the spin of the electron and the isotopic spin (known today as

isospin) of the nucleus—nature merely utilizes the same symmetry in both places.

Having gone from physics to group theory, we now go back to physics: SU(2)

also has a three-dimensional irreducible representation, which means that it is

possible that there is a particle which can take on three different states (we can

think of these particles as being ‘‘made out of,’’ respectively, a neutron-neutron, a

proton-proton, and a neutron-proton). The different states of the particle will

look like three different particles in the laboratory, just as the nucleon looks like

two different particles. Sure enough, the three pions were found: particles anal-

ogous to the neutron and proton in that they are hadrons—they exert the pow-

erful nuclear force. The three ‘‘directions’’ of the pions are marked out by their

charge: positive, neutral, and negative. By now the group-theoretical method

began impressing physicists. These predictions were being made with no knowl-

edge of the properties of hadrons, except for their symmetry groups.

The next step was even more startling. The neutron and proton themselves

turned out to be part of a family of eight hadrons with comparable rest mass.

Aside from them, there were nine more hadrons with comparable mass (though

by no means the same), greater than that of the first family. This suggested to

Yuval Ne’eman and Murray Gell-Mann (independently) that there was a higher

symmetry than SU(2). Mathematical analogies suggested a group known as

SU(3), of which SU(2) is a subgroup, which has representations of dimensions 3,

8, 10, . . .And, indeed, experimental evidence suggested that the neutron and

proton belonged to a family of eight similar hadrons. Furthermore, there was a

family of nine heavier hadrons. But if SU(3) were the right symmetry group of the

hadrons, the family of nine particles would require a tenth. Hence, both Gell-

Mann and Ne’eman predicted the tenth, calling it in advance the omega minus

particle, which was later discovered. Gell-Mann then predicted the existence of

the triplet from the three-dimension representation, none of which had been

observed—and for good reason: mathematical considerations indicated that such

a triplet, called by Gell-Mann ‘‘quarks’’ after Joyce, would have to have fractional

charge. At the same time, the quark hypothesis (if one could come up with an

excuse why nobody had ever detected these ubiquitous particles) could serve as a

partial explanation of the SU(3) symmetry: one could use quarks to ‘‘construct’’

all the families of the hadrons (as we ‘‘constructed’’ the pions out of neucleons).

Note, however, that this explanation was ex post facto, like most explanations: the

success of SU(3) symmetry led to quarks, not the other way around.

One could push back the use of group-theoretic methods even earlier than I

have done, by including in this story the saga of ‘‘identical particles.’’ This is, in

fact, what Steven French does, in an illuminating attempt to account for the

success of the group-theoretical method in physics (cf. French 2000).
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The principle of identical particles is that there is no physical difference

between a state of two identical particles, A and B (e.g., two photons in which A is

in state X and B in state Y, or one in which A is in state Y and B in state X. The

most straightforward application of this principle is the situation where the state

vector of the system of two particles simply does not change on permuting A with

B. Let us also consider the case in which A and B must be either in state X or state

Y. Then there are three cases: both particles are in state X, both in state Y, or they

are in different states (not four cases where we distinguish A in state X, B in state

Y, from the converse case with A in state Y, B in state X). This means that the

probability of finding the particles in the same state is 2/3, rather than 1/2, which

we might have thought. Another application of this principle is that permuting A

with B brings the state vector to minus itself, since there is no observable dif-

ference in quantum mechanics between the vector c and the vector �c. These
two group actions lead to an important classification of particles: those that

change sign are called ‘‘fermions,’’ and those that do not are called ‘‘bosons.’’

Now there is no question that we can see this is as an application of group

theory—in hindsight, though, the historical players would mostly have rejected

this characterization. They did not see the category of ‘‘groups’’ as a natural way

to categorize phenomena; hence the ‘‘success’’ of applying one group could not,

for them, suggest the application of a completely different one (such as SU(2)).19

The fact that we today see the permutation group and SU(2) as examples of the

‘‘same thing’’ and as relevant to physics does not mean that the previous gen-

erations did. Our inclination to see the quantum mechanical treatment of

‘‘identical particles’’ as a triumph of group theory betrays our implicit belief that

mathematical language is the deepest language of physics and that mathematical

classification of structures is the ultimate physical classification, too. But this

belief amounted to nothing less than a revolution in thinking about nature, and

prominent in this revolution was Eugene Wigner, one of the greatest pioneers of

the group-theoretical approach to physics. For him, it could be said, a physical

object is not much more than the sum of all its symmetries, including the sym-

metries of the geometry of space-time.20

19 Suppose we have a physical theory, like string theory, which postulates a 26-
dimensional space. The number 26 happens to be the numeral value of the Divine Tetra-

grammaton in Hebrew. Should this encourage us to try other of the Hebrew Names of God?
20 Let’s for the record make precise what we mean by ‘‘geometry,’’ at least for a two-

dimensional vector space. If we consider two vectors (x1, x2) and (y1, y2), then the different

quadratic expressions we can make from the two define different kinds of geometries:

Euclidean geometry would be defined by x1y1þ x2y2; a (two-dimensional complex) Hil-

bert space would be defined by x1�yy1 þ x2�yy2, thinking of the numbers here as complex

numbers; Minkowsky geometry by x1y1� x2y2; and symplectic geometry by x1y2� x2y1.

We also have the four corresponding symmetry transformations which leave each of these

quadratic forms invariant.
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We have, then, a new kind of application of mathematics. In the past, mathe-

matics was used to get quantitative descriptions of phenomena that could also be

described qualitatively. Today mathematics gives even the qualitative descriptions,

because we often have no deeper language than mathematics. Related to this is the

use of mathematics to make discoveries and ‘‘predictions.’’ Our story here has shown

that pure mathematics was the basis of analogies for which there was (at least at the

time) no underlying physical basis. Scientists postulated symmetries without

knowing what they were symmetries of. ‘‘Predictions’’ were made in a new way: in

the past, mathematical calculations were made to show what necessarily had to be

the case. In our story here, mathematics was used to show what is possible, the

assumption being that what is mathematically possible is physically actual.

All of this suggests (and Ne’eman has recently written this explicitly) that mod-

ern physics has a Pythagorean streak to it. So far, at least the quality ofmass has not

been shown to be amenable to a group-theoretical treatment. If that one day

happens, however, the world itself could turn out to be nothing but a mathematical

structure: a reducible representation of the ultimate symmetry group,21 a bizarre

possibility we will nevertheless discuss in the concluding section of this essay.

IV. Logical Applications

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Another nineteenth-century development that influences our subject is the de-

velopment of modern logic and the foundations of mathematics. An attempt was

made to put mathematical deductions on an a rigorous footing and, at the same

time, to find the foundations of mathematics. This research program presupposed,

or perhaps introduced, concepts of application of mathematics which could not

have been formulated before. These are the logical concepts of application which

we can now survey.

For example, one sense in which mathematics is applied is as an engine of

deduction. Even if mathematics is not literally logic, as Frege and many others

once thought, one of its functions is certainly akin to that of logic: as what some

called a ‘‘juice extractor’’ in which we use mathematics to derive consequences of

nonmathematical premises. Of course, any set of sentences can be used to derive

consequences from others, but mathematical sentences seem ‘‘topic neutral’’ in a

way other sentences are not.

But for this purpose, attention must be paid to the logical form both of pure

mathematics and of ‘‘mixed’’ contexts, in which the same sentence contains both

mathematical and nonmathematical references. An elementary example is that of

21 This is a point made by Steven Weinberg (1986).
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the use of arithmetic to shorten or eliminate counting, as when we conclude that

there are twelve fruits on the table after observing that there are seven apples and

five pears, and no other fruits on the table, from the pure mathematical propo-

sition 7þ 5¼ 12.

The question arises: What does the pure mathematical proposition, which on

its face is about ‘‘natural numbers,’’ have to do with fruits? This question has two

aspects, the logical and the metaphysical. The metaphysical question arises from

the ontological gap, noted already by Plato, between mathematical and empirical

objects. How can truths about mathematical objects be in any way relevant to the

empirical world?

The logical question arises from the difference between the numerals ‘‘seven’’

and ‘‘five,’’ used as adjectives, and the numerals 7 and 5, used as nouns. This am-

biguity produces an equivocation which threatens to spoil the logical validity of

our deduction. Obviously the two questions are related.

A strategy which suggests itself to many observers, past and present, is to argue

that there is no such thing as pure mathematics, or at least that there are two kinds

of mathematics, pure and applied. Applied mathematics (whether or not it is the

only mathematics) is the empirical theory of certain properties, such as ‘‘seven’’ and

‘‘five.’’ There are no mathematical entities, but only mathematical properties, and

these are empirical properties like any other. The seven apples are a collection with

the property ‘‘seven,’’ for example. The arithmetical statement 7þ 5¼ 12, then, is a

general empirical law about any such collections. This is the position, in fact, of the

great nineteenth-century British philosopher J. S. Mill in his A System of Logic.

However, there are so many problems with this view that, strikingly, even the

empiricists have by and large rejected it—with some notable exceptions. Most of

the objections have been epistemological—the empiricist account of arithmetic

does not seem to account for the various peculiarities of mathematical knowledge.

I would like, however, to draw attention to a logical objection: What is the status

of a ‘‘collection’’ of which a number is a property? If a collection is a physical

object (as is probably intended) rather than, say a set, then there is no one number

that characterizes it: A heap of socks could be characterized by the number of

socks, the number of pairs of socks, or the number of molecules in the heap, or

perhaps the number of atoms, and so on. Thus numbers cannot be regarded as

properties of empirical bodies like collections. This objection was raised by Frege

in his Grundlagen, which contains a scathing critique of ‘‘pebble and gingerbread

arithmetic,’’ referring to Mill. Frege does not seem to be aware, however, that

basically the same objection was raised by Plato in the Theaetetus, against the

more general view that ‘‘perception is knowledge.’’22

22 ‘‘[Soc.] Very good; and now tell me what is the power which discerns, not only in

sensible objects, but in all things, universal notions, such as those which are called being

and not-being, and those others about which we were just asking—what organs will you
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Instead, Frege, like Plato before him, took the opposite tack: he eliminated the

adjectival numerals, and with them the numerical properties, entirely, leaving

only the mathematical entities. Plato’s solution, however, is not entirely coherent

(as he himself pointed out in various places): he thought of the empirical world as

participating in the mathematical world. Since, however, as he himself had argued,

the empirical world can participate in the mathematical world in conflicting ways,

he ended up arguing that the empirical world itself is subject to logical conflict

(and thus is not the object of knowledge). Frege, though he gives no credit to

Plato, in fact made two revisions in Plato’s account: first, he replaced ‘‘partici-

pation’’ with something like ‘‘class membership.’’ Second, he eliminated the

logical incoherence by denying outright that arithmetic relates directly to the

world of empirical objects. Rather, it is the empirical (and nonempirical) concepts

which are members of the different numbers. Thus, the number two is the class of

all concepts which are true of two objects.23 The metaphysical problem (How can

facts about the world of abstract entities be relevant to the empirical world? also is

dissolved: in Frege’s scheme, numbers are related (directly) only to concepts.

Frege’s account of (deductive) applicability comes with a price, however. It is

heavily committed to the existence of nonmaterial objects (and, of course, con-

cepts), and thus heir to all the traditional attacks on Platonism. I cannot discuss

those attacks here, except to point out that some philosophers have been influ-

enced enough by these attacks to attempt to gain the benefits of Frege’s account of

logical applicability without paying the price. One of these strategies is ‘‘fiction-

alism,’’ understood as the doctrine that the Platonist commitments of Frege’s

account are real, in the same way that Shakespeare’s The Merchant of Venice is

committed to Shylock as well as to Venice.

The version of fictionalism set forth in Field (1980) is actually a research

project: given a theory MT of mathematical physics, to find a ‘‘nominalist’’ theory

assign for the perception of these notions? [Theaet.] You are thinking of being and not-

being, likeness and unlikeness, sameness and difference, and also of unity and other

numbers which are applied to objects of sense; and you mean to ask, through what bodily

organ the soul perceives odd and even numbers and other arithmetical conceptions. [Soc.]

You follow me excellently, Theaetetus; that is precisely what I am asking. [Theaet.] Indeed,

Socrates, I cannot answer; my only notion is, that these, unlike objects of sense, have no

separate organ, but that the mind, by a power of her own, contemplates the universals in

all things.’’
23 Though this seems circular, in fact it is not, when the whole definition is written

out. The ‘‘class of all concepts true of two objects,’’ on the other hand, is a very tricky

notion, and when Frege tried to axiomatize it, he landed up in Russell’s Paradox. This is

not the place to discuss the (by now) hoary question, is Frege’s definition of the numbers

‘‘correct’’—and what, indeed, constitutes ‘‘correctness’’ in this context? Since his defini-

tion cannot even be given in standard set theory (ZF), mathematics students are usually

deprived of the pleasure of studying Frege’s interesting ideas.
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T which has the same ‘‘nominalist’’ consequences as MT. Field claims to have

done just that for the classical equation of the gravitational field. Success in such a

replacement program shows that mathematics is theoretically not necessary and

thus can be regarded as pure fiction. Mathematics, Field argues, has only an

instrumental value in shortening proofs. Hence it need not be regarded as true,

but only as useful.

Field’s book occasioned a great deal of comment and criticism, much of it

centering around his major example of classical gravity: whether his replacement

for it was truly nominalist (he helps himself to the entire continuum of space-time

points, whereas Aristotle had rejected even one space-time point as too Platonist

for his liking); whether he had truly demonstrated that it was a replacement;

whether he had demonstrated that mathematics is really not deductively necessary

in physics;24 whether he could reproduce his success in other areas of physics,

particularly quantum mechanics, where, as we have already seen, the mathe-

matical formalism is central in a way that it is not in classical mechanics. Many of

these criticisms seem to me cogent; in fact, I made some of them myself,25

although in Hebrew.26

I would like to point out something else in this connection that seems to have

been missed: we have seen already that mathematics is not only a medium of

proof; it is an engine of discovery. We have seen, that is, how the mathematical

form of a theory can serve as a springboard for its development or even, para-

doxically, its replacement. The great scientists relied on mathematical analogies to

suggest replacements or at least generalizations of existing theories. The idea was

to replace false theories by (hopefully) true ones, in which what was preserved was

mathematical structure.

Consider the following example. Measuring devices, no matter how accurate,

give results in rational numbers only. On the other hand, the solutions of dif-

ferential equations are functions on the continuum. One could presumably re-

place current theories, involving the continuum, with physical theories invoking

only rational numbers—with no observable difference. Differential equations, for

example, can be replaced by ‘‘difference equations,’’ which are used as algorithms

24 In this category, we can cite an ingenious paper (Shapiro 1983), which exposes a

rather subtle error in Field’s argument that mathematics does not add any logical power to

(nominalist) physics. Field has confused the notion of logical consequence with deductive

consequence, so that even if it is true that physics with mathematics does not imply more

facts than physics without mathematics, there are nevertheless facts, so implied, which

cannot be deductively proven without mathematics. The distinction between logical con-

sequence and deductive consequence arises in Field’s book because he does not use first-

order logic (for which there is no difference between logical and deductive consequences)

as his underlying logical system.
25 In the next section, however, I will point out a great virtue of Field’s book. Hang on.
26 Cf. Steiner (1982).
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to calculate the solutions of differential equations. In so doing, however, we would

destroy the mathematical form of the latter; and it is the mathematical form

which was used in finding generalizations or corrections of present equations.

Physicists insist on the form of equations even when their content is obscure. For

example, Richard Feynman introduced mathematical notation for calculations in

quantum electrodynamics which he himself suspected of inconsistency and which,

in any case, lacks a consistent mathematical interpretation even today. The in-

consistency of this notation, however, has not prevented scientists from using it to

calculate the magnetic moment of the electron correctly to twelve decimal places!

Why is this relevant to Field’s program? Field regards Platonism as refuted if,

for each ‘‘Platonist’’ physical theory A with nominalist consequences N, we can

replace it with a ‘‘nominalist’’ theory B with the same nominalist consequences N.

Since, then, B ‘‘can do everything that A can,’’ Ockham’s razor suggests that we are

committed only to what B is committed to. This being a pragmatist concept of on-

tology, one could argue that epistemic values should be factored into this equa-

tion: there is an epistemic sense in which B cannot do everything that A can.27

V. Speculative Concluding Remarks

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

What philosophical problems are presented by the applicability of mathematics?

Since we have seen there is more than one concept of applicability, there is

more than one problem. In discussing them, I will begin with the issues raised by

the logical application of mathematics.

We saw that Frege showed how to use pure arithmetic alone in making

deductions about the number of physical bodies. He did this by standardizing the

expressions of the form ‘‘There are n Fs’’ as ‘‘The number of Fs¼ n,’’ an equation.

The variable F, for Frege, takes concepts as values. Hence the number n is directly

associated only with a concept when saying ‘‘The number of Fs is n.’’ The number

n is not related to the Fs themselves, thus eliminating the traditional puzzlement

concerning the relevance of mathematical objects to the empirical world. In fact,

they are not relevant, and need not be.

However, Frege’s solution raises the specter of Platonism, since his reduction

of applied to pure mathematics involves the commitment to mathematical objects

at the most elementary level. One can, of course, say that Frege’s accomplishment

was to reduce the (logical) problem of applicability (of arithmetic, since his

success with analysis is questionable) to that of Platonism. Of course, Platonists

27 After writing this, I discovered that Mark Colyvan (2001) already made this point.

See chapter 4 there, which contains some nice examples.
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don’t see any problem with Platonism; they feel entitled to say that Frege has

solved the (logic) problem of applicability. What of the nominalists?

Earlier, we saw how Hartry Field attempts to have his cake and eat it, too: he

accepts all the details of the Fregean solution, but whisks away the ontological

commitment involved with the claim that one ‘‘could,’’ in principle, dispense with

numbers (i.e., ‘‘number-talk’’) entirely. Fregean or ‘‘Platonist’’ mathematics can

be regarded instrumentally. Field thus claims that he can get all the benefits of

Frege’s program without paying any ontological price.

Although I have given some of my reasons for being skeptical about Field’s

‘‘free lunch’’ solution, I would like to point out an underappreciated virtue of

Field’s ‘‘piecemeal’’ approach to eliminating Platonism. That Field aims to replace

each physical theory individually with a nominalist counterpart is regarded as a

serious flaw to his argument by writers such as Dummett (cf. Dummett 1991), who

complain that what he really should do is replace all the theories simultane-

ously, or are suspicious that Field won’t be able to carry through the program

in other, more intractable cases (like quantum mechanics). Yet the very piece-

meal character of the project makes it ideal for solving a completely different

problem of applicability, Wigner’s problem of the noncanonical empirical ap-

plications of mathematics. This is not a logical problem but a descriptive problem,

involving the use of mathematics in describing nature—rather than in making

deductions.

For, as I suggested above,28 Wigner’s problem is not one problem: every

unreasonable success in using mathematics to describe any physical phenomenon

is a separate problem. Field’s reduction of classical gravitational field theory to a

theory of spatial regions may not be a nominalist reduction, but it does give an

account of the usefulness of analysis in physics without using analysis. The

bugaboo of Platonism—and the inability of most philosophers, including perhaps

Field himself—is to see that there is more than one problem of the applicability of

mathematics. Wigner’s problem is not Frege’s. Wigner’s problem, for each ap-

plication of a mathematical theory M, is solved by articulating, without using M,

the conditions under which M applies.

Wigner’s problem—or really problems, as I believe—is to give an account of

various noncanonical empirical applications. Wigner says this is difficult to do on

account of the gap between the goals of mathematics and the goals of physics, so

that it is unreasonable to expect a mathematical concept to describe an empirical

phenomenon with asmuch precision as we find in physics, typically. Field’s method

gives an example of a solution.

We have seen, moreover, that there are also philosophical problems connected

with canonical empirical applications. Here, of course, Wigner’s problem does not

arise—by definition. But the opposite problem arises—the close relationship

28 In section 2. See Steiner (1998) for more argumentation on this point.
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between the mathematics and its application makes it often quite difficult to

distinguish between them. We saw an example of this in the application of ad-

dition to predict the result of empirical counting. Inability to distinguish between

mathematics and its canonical applications leads to positions like that of J. S. Mill,

according to which mathematics is a crudely empirical science, a position which

most philosophers regard as severely flawed.29

Finally, we discussed the application of mathematics within mathematics itself.

For example, we use one kind of mathematical structure in order to characterize

another. A striking illustration of this is the concept of group representations, in

which the elements of a single group G are homomorphically ‘‘represented’’ by

square matrices (i.e., linear transformations of a vector space). The existence of

irreducible representations of various dimensions characterizes G by its possible

actions.

The reason that these internal applications are so important to our subject is the

existence of mathematical formalisms in physics. These are mathematical structures

which, though they do not directly describe physical systems, nevertheless contain an

enormous amount of information about those systems, which can be extracted from

the formalism by rules whose major justification is that they work (or at least, they

worked). Of course the mathematical structure of quantum mechanics is such a

formalism. In this formalism a particle ‘‘is’’ (Pythagoreans will remove the scare

quotes) not much more than an irreducible representation of its most compre-

hensive symmetry group. In that case, the theory of group representations, and the

categories it works with, turn into the fundamental classification of reality, deeper

than the fire/air/earth/water of the ancients, and even deeper than the periodic table

of the elements. And this classification, in turn, makes it possible to draw analogies

even from false theories in the process of guessing the true ones, using the mathe-

matical hierarchies as (what Nelson Goodman called) ‘‘projectible predicates,’’ or

what were called, in the Middle Ages, natural kinds.

My claim, then, is that a good deal of what passes for applications of mathematics

in physics, is really the application of mathematics to itself.30 The end result remains

empirical—make no mistake—because there are rules connecting the mathematical

formalism to empirical predictions which could, but don’t, fail. Nevertheless, the

procedure is deeply Pythagorean, because the classification of empirical phenomena

is induced by the classification of mathematical structures by mathematicians.

29 By ‘‘crudely’’ empirical, I mean that the arithmetical operations are identified with

everyday operations such as gathering (for plus). Even Quine, who regards mathematical

theories as part of our entire scientific doctrine, which does face the tribunal of experience,

rejects such a crude interpretation of arithmetic. Arithmetical theory for him is more like the

theory of quarks than the theory of pebbles and gingerbread (to borrow phrases from Frege).
30 This claim is analogous to the one I made (Steiner 1978b) concerning mathematical

explanations in science.
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There is a great vindication here of Galileo’s vision of the ‘‘Book of Nature,’’

written in the language of circles and triangles, except of course that the circles

and the triangles themselves are replaced by their symmetry groups. The vision

is still empiricist, as long as we distinguish between the Book and Nature itself. It

is Nature which gives validity to the Book, but we use the Book as a map of

Nature.

Yet the boundary between the Book and Nature itself has recently been be-

coming more and more blurred. Good old space-time is now in some quarters

regarded as a mere low-energy approximation to what there really is in the way of

dimensions (I have heard lectures in which over fifty dimensions were postu-

lated).31 We can detect by observation only four dimensions, or at least it appears

to us that we do—and these appearances remain the basis for accepting the various

hypotheses offered. Other dimensions may be, for example, cylindrical, so tightly

rolled up that we cannot detect them. We may fundamentally misrepresent what

we do detect—for example, when we think that the four dimensions of space-time

are continua (they may, for all we know, be lattices). Finally, mass itself, together

with gravitation, may be amenable to the group-theoretic approach. This would

be the ultimate irony: Pythagoras and Democritus might turn out ultimately to

have been saying exactly the same thing—of course, the world is made only of

matter, but look what matter is! Materialism as a doctrine might turn to be not so

much wrong as pointless—in a world in which matter, energy, and space-time

turn out to be mathematical structures. What of atomism? Well, what are atoms?

When we say ‘‘protons are made of quarks,’’ all we might mean is that a certain

irreducible representation of the symmetry group SU(3) is ‘‘constructed’’ from its

basic (‘‘atomic’’), three-dimensional, irreducible representation, by means of

mathematical operations such as ‘‘tensor product.’’32 (Pythagoras thought the

world is made of numbers, but that is too simple: it’s made of matrices of

numbers, and the numbers are not real, but complex!) In such a world, by the

way, causality itself would be a pointless concept,33 valid only of the world as it

appears to our poor receptors (as Bertrand Russell argued almost one hundred

31 Charles Peirce (1999) foresaw this possibility.
32 For the definition of the tensor product of representations, see Sternberg (1994,

Appendix B, pp. 320ff.). The tensor product of two irreducible representations is again

irreducible, which is the basis of our Pythagorean ‘‘atomism.’’
33 I am referring to the pointlessness of causal laws. Causal reasoning will continue

to play a role in physics, for example, in the labeling of certain solutions of a valid

equation ‘‘nonphysical’’—as in Einstein’s controversial rejection of travel faster than the

speed of light on causal grounds, in Special Relativity. Ironically enough, however, in

General Relativity, recent studies of black holes seem to allow the kind of ‘‘time travel’’

that Einstein ruled out! (Thanks to Shlomo Sternberg for pointing out this work to me.)

This just shows that causal reasoning (even of Einstein) is fallible, not that it doesn’t

exist.
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years ago). For as the late Pythagoreans argued, Aristotle’s Four Causes can them-

selves be reduced to mathematical properties and relations.34

Does this raise any philosophical problems? You bet. First of all, there is the

question of whether Pythagoreanism is a coherent doctrine—I believe that it is. I

am persuaded by John Locke’s central insight that the world could turn out to be

fundamentally unlike what it appears to be, and the framework of space and time

is no exception. Of course, Locke’s rigid separation of primary from secondary

qualities makes it seem as though it is some kind of an a priori truth that the

world has the geometric properties it seems to have. Yet some astute commen-

tators have pointed out passages in the Essay that hint that Locke saw that even

the primary qualities may not be the last word, and that if we had the ability to

perceive what is going on at the atomic level, even the primary qualities might

turn out to be appearances.

The ultimate problem, then, would be whether Pythagoreanism is an ac-

ceptable doctrine.35 If it is, then we end this article with the greatest irony of all.
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c h a p t e r 21

LOGICAL CONSEQUENCE,

PROOF THEORY, AND

MODEL THEORY

stewart shapiro

1. Proof Theory and Model Theory

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The first entry under ‘‘logic’’ in the Oxford English Dictionary is ‘‘the branch of

philosophy that treats of the forms of thinking in general, and more especially of

inference and of scientific method.’’ The corresponding entry in Webster’s New

Twentieth Century Unabridged Dictionary is ‘‘the science of correct reasoning; the

science that deals with the criteria of valid thought.’’ Of course, it is not a good

idea to let Oxford and Webster dictate our agenda, but they are correct that logic

is, at root, a philosophical enterprise. Since at least the beginning of the twentieth

century, however, logic has become a branch of mathematics as well as a branch of

philosophy. As a youngster, I was informed of the four great fields of mathematical

logic: proof theory, model theory, set theory, and computability. Our main ques-

tion here concerns how that wonderful mathematics relates to the philosophical

targets: correct reasoning, valid thought, inference. Model theory and proof theory

each provide for a notion of logical consequence, but the notions employed by

these two branches are quite different from each other, at least conceptually.

Although set theory and computability are interesting and important in their own

right, their connection to ‘‘correct reasoning’’ is more indirect. Set theory deals

with the realm of models for model theory, and computability relates to the

notion of a formal deductive system, in proof theory.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Textbooks and advanced treatments in mathematical logic work with formal

languages, which are rigorously defined sets of strings on a fixed alphabet. The

resulting mathematics is, of course, interesting and important, but we can query

its philosophical ramifications and its relation to correct reasoning.

Typically, parts of a formal language roughly resemble parts of a natural

language. Characters like ‘‘&,’’ ‘‘_ ,’’ ‘‘! ,’’ ‘‘:,’’ ‘‘V,’’ and ‘‘A’’ correspond to the

English expressions ‘‘and,’’ ‘‘or,’’ ‘‘if . . . then,’’ ‘‘it is not the case that,’’ ‘‘for

every,’’ and ‘‘there is,’’ respectively. These are sometimes called the logical terms of

the formal or natural language. Some formal languages include specific nonlogical

terms, such as the sign for the ‘‘less-than’’ relation over the natural numbers, but

it is more common to include a stock of schematic letters which stand for arbi-

trary, but unnamed, nonlogical names, predicates, and functions.

In this chapter, I shall use lower-case Greek letters for items from formal

languages and upper-case Greek Letters for corresponding sentences from natural

languages (or propositions, or whatever the medium of correct reasoning is). Let g
be a set of formulas and f a single formula of a formal language. A typical logic text

formulates two rigorous notions of consequence, two senses in which f follows

from g. For one of them the author presents a deductive system D. The simplest of

these consist of a list of axioms and rules of inference. An argument hg,fi in the

formal language is deductively valid (via D) if there is a sequence of formulas

ending with f, such that each member of the sequence is either a member of g or
an axiom of D, or follows from previous formulas in the sequence by one of the

rules of inference of D. Natural deduction systems and sequent calculi are a bit

more complex, but similar in spirit. In each case, there is a rigorous notion of

deductive validity. If hg,fi is deductively valid in a system D, we write g‘Df, or
simply g‘f if it is safe to suppress mention of the deductive system.

The other notion of consequence invokes a realm of models or interpretations

of the formal language. Typically, a model is a structure M¼hd, Ii, where d is a

set, the domain of M, and I is a function that assigns extensions to the nonlogical

terminology. For example, if c is a constant, then Ic is a member of the domain d,

and if R is a binary predicate, then IR is a set of ordered pairs on d. Then one

defines a relation of satisfaction between interpretations M and formulas f. An
interpretation M satisfies f, written M	f, if f is true under the interpretation

M. Finally, one defines f to be a model-theoretic consequence of g if every in-

terpretation that satisfies every member of g also satisfies f. In other words, f is a

model-theoretic consequence of g if there is no interpretation that satisfies every

member of g and fails to satisfy f. In this case, we write that the argument hg,fi is
model-theoretically valid, or g	f.

Recall that the deductive notion of consequence is defined relative to a de-

ductive system. Although, to be consistent, one should define the model-theoretic

notion relative to the background set theory, or the background class of models,

this is not often done. It is usually assumed, perhaps tacitly, that either the back-

652 oxford handbook of philosophy of math and logic



ground set theory is ZFC, or else that all of the reasonable, competing set theories

deliver the same relation of logical consequence.

Since model-theoretic consequence (via a set theory) and deductive validity

(via a deductive system D) are sharply defined notions on a given formal lan-

guage, relations between them are mathematical matters. The system is sound if

every deductively valid argument is also model-theoretically valid, and the system

is complete if every model-theoretically valid argument is also deductively valid.

Typically, soundness is easily established. One just checks each axiom and rule

of inference to make sure that it does not lead from true premises to a false

conclusion in any interpretation. Virtually every system presented in treatments of

logic is sound. When completeness obtains, it is a usually a deep and interesting

mathematical result. Gödel’s [1930] completeness theorem entails that first-order

logic (with or without identity) is complete. It is a corollary of Gödel’s incom-

pleteness theorem that second-order logic is not complete (see Shapiro [1991,

ch. 4]). Its consequence relation is not recursively enumerable, and so no effective,

sound deductive system is complete for it.

Our main concern here is the notion of model-theoretic consequence. What

does it have to do with correct reasoning? We will take on deductive consequence

only by way of contrast. Do these two notions answer to different intuitive notions

of consequence? Is one of them primary, and the other secondary? Or perhaps they

are autonomous and independent. Maybe there are two distinct notions of correct

reasoning, valid thought, and/or inference.

For what it is worth, treatments of mathematical logic usually presuppose that

the model-theoretic notion is the primary one. For example, one says that a

deductive system is sound or complete (or not) for the semantics—not the other

way around. If a deductive system is not sound for a given semantics, then that

alone disqualifies the deductive system. Why? Because the deductive system allows

us to deduce a falsehood from truths in some interpretation of the language. But

one could perhaps argue instead that it is the model theory that is at fault. Any

counterexample to soundness—any ‘‘interpretation’’ in which we can deduce a

false conclusion from true premises—is perhaps not a legitimate interpretation of

the language. For better or worse, however, most mathematical logicians do not

think that way.

To a lesser extent, it is the same for completeness. Suppose that a given

deductive system is not complete for a given semantics. Again, a typical, but not

universal, response is that the deductive system is at fault. Why? Because the

deductive system does not have the resources to establish every valid argument.

Again, one might argue instead that it is the semantics that is at fault. It does not

have enough interpretations to provide counterexamples to every argument that is

not deducible in the deductive system.

In this case, some logicians do put things this way. As noted, the usual

deductive systems for second-order languages are not complete for the so-called
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standard semantics. It is not a matter of having left out one or two invalid

deductions. No effective deductive system is sound and complete for second-order

validity—assuming standard semantics. Among those who accept second-order

logic, the most common conclusion is that no sound, effective deductive system

captures the relevant notion of consequence. But some thinkers take a differ-

ent line. The usual deductive systems for second-order languages are complete

for Henkin semantics. This last, in effect, contains more interpretations of the

language—so-called nonstandard interpretations (see Shapiro [1991, ch. 4] for

details). Some philosophers and logicians argue that Henkin semantics (or

something equivalent to it) is the appropriatemodel theory, not standard semantics.

We won’t delve any deeper here into the specific issues concerning second-

order logic (see chapters 25 and 26 of this volume), except occasionally for pur-

poses of illustration. Present concern is with the general notion, or notions, of

logical consequence, and how those relate to model theory.

2. Logical Consequence

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Our next task is to explore the intuitive, or pretheoretic, notion of logical con-

sequence. What are correct reasoning, valid thought, and inference—the sup-

posed subject matter of logic? Answers to this question will lend perspective to the

mathematical notions of model-theoretic consequence and deductive conse-

quence. What follows is based loosely on Shapiro [1998] and [2002].

2.1. Modality

Aristotle provided the earliest systematic treatment of logical consequence (or at

least the earliest surviving treatment):

A syllogism is a discourse in which, certain things having been supposed,

something different from the things supposed results of necessity because these

things are so. By ‘‘because these things are so,’’ I mean ‘‘resulting through them’’

and by ‘‘resulting through them,’’ I mean ‘‘needing no further term from outside

in order for the necessity to come about.’’ (Prior Analytics, book I, ch. 2)

Aristotle thus holds that a given proposition F is a consequence of a set G of

propositions only if F is different from any of the propositions in G. Nowadays,
logicians reject this and allow that F trivially follows from G when F is a member

of G. But this is not a substantial issue. Aristotle’s phrase ‘‘because these things

are so’’ might indicate that in order to have a consequence, or ‘‘syllogism,’’ the
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premises in Gmust all be true. We will not enter into this exegetical issue. With the

possible exception of Gottlob Frege, most modern conceptions of consequence

allow instances of logical consequence in which the premises are false. For example,

‘‘Socrates is a puppy’’ follows from ‘‘All men are puppies’’ and ‘‘Socrates is a man.’’

With the phrase ‘‘results of necessity,’’ Aristotle introduces a modal element

into the definition. He glosses the phrase ‘‘because these things are so’’ as ‘‘re-

sulting through them,’’ and he glosses that as ‘‘needing no further term from

outside in order for the necessity to come about.’’ These clauses seem to indicate

that in a valid argument the premises alone guarantee the conclusion, or that the

premises are sufficient for the conclusion.

Our first conception of logical consequence is modeled on this reading of

Aristotle’s definition:

(M) F is a logical consequence of G if it is not possible for the

members of G to be true and F false.

Following the contemporary practice of phrasing modal notions in terms of

possible worlds, the thesis (M) becomes

(PW) F is a logical consequence of G if F is true in every possible

world in which every member of G is true.

According to (M) and (PW), ‘‘Bill is heavier than Joe’’ follows from ‘‘Joe is

lighter than Bill,’’ since it is impossible for Joe to be lighter than Bill and for Bill to

fail to be heavier than Joe. Surely, Bill is heavier than Joe in every possible world in

which Joe is lighter than Bill. Or so one would think. To adapt an example from

Bernard Bolzano, a religious person who accepts (M) or (PW) would say that

‘‘Caius has an immortal soul’’ follows from ‘‘Caius is a human’’ since (according

to the person’s theology) the premise cannot be true and the conclusion false.

On most contemporary accounts of logic, neither of these conclusions is a

logical consequence of its corresponding premise. It is a routine exercise to for-

malize these arguments and show that the conclusions do not follow on either

model-theoretic or deductive notions of consequence. Perhaps we can bring (M)

and (PW) closer to the contemporary notions by invoking a special notion of

logical possibility and necessity. It is perhaps physically or metaphysically or an-

alytically impossible for Joe to be lighter than Bill and Bill to fail to be heaver than

Joe, but it is logically possible for this to happen. Along similar lines, there are

perhaps no theologically possible worlds in which Caius is human and fails to

have an immortal soul, but perhaps our theologian will concede that there are

logically possible worlds where this happens.

To pursue this tactic, we would have to articulate the distinctive notion of

logical possibility. Aristotle’s final clause, that a syllogism needs ‘‘no further term
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from outside in order for the necessity to come about,’’ seems appropriate for this

purpose. In the example about Bill and Joe, we need to invoke some ‘‘outside’’

fact about the relationship between heaviness and lightness in order for the

‘‘necessity to come about,’’ or at least in order to understand the necessity. In the

theological example, we need the fact (if it is a fact) that, necessarily, all humans

have immortal souls. ‘‘Caius has an immortal soul’’ does follow logically from

‘‘Caius is a human’’ together with the relevant theological thesis that all humans

have immortal souls.

On the other hand, I would think that there just is no possible world in which

Bill is heavier than Joe without Joe being lighter than Bill. Joe being lighter than

Bill is part of what it is for Bill to be heavier than Joe. And I presume that most

theologians would insist that having an immortal soul is part of what it is to be a

human. There is no possible world in which Caius is a man and yet fails to have an

immortal soul. To adequately understand the formal notions of model-theoretic

and deductive consequence, we must supplement the modal notions.

2.2. Semantics

According to Alberto Coffa [1991], a major concern of philosophers throughout

the nineteenth century was to account for the necessity of mathematics without

invoking Kantian intuition. Coffa proposed that the most successful line came

from the ‘‘semantic tradition,’’ running through the work of Bolzano, Frege, and

Ludwig Wittgenstein, and culminating in the Vienna Circle. The idea is that the

relevant necessity lies in the use of language, or meaning. Although this is a

departure from Aristotle, we can invoke the semantic program to further artic-

ulate the notion of logical consequence:

(S) F is a logical consequence of G if the truth of the members of G
guarantees the truth of F in virtue of the meanings of the terms

in those sentences.

Thesis (S) takes care of our theologian. I presume that even the most religious

linguist or philosopher of language does not take it to be part of the meaning of

the word ‘‘human’’ that humans have immortal souls. If someone who denies that

humans have immortal souls merits divine or earthly retribution, it will not be on

account of a linguistic deficit. Indeed, outside the classroom, one does not usually

get punished for failing to understand certain words. So everyone should agree

that according to (S), ‘‘Caius has an immortal soul’’ does not follow from ‘‘Caius

is human.’’

Nevertheless, our other troubling example is left intact. According to (S), ‘‘Bill

is heavier than Joe’’ does indeed follow from ‘‘Joe is lighter than Bill,’’ since the
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meanings of ‘‘heavier’’ and ‘‘lighter’’ determine that these relations are converses

of each other. Someone who understands the meaning of the two sentences has all

she needs to know that if the premises are true, then so is the conclusion.

The thesis (S) captures what is sometimes called ‘‘analytic consequence,’’

which is often distinguished from logical consequence, due to examples like the

one considered here. We now refine the semantic idea.

2.3. Form

There is a long-standing view that logical consequence is a matter of form. The idea

is that an argument is valid if and only if every argument with the same (logical)

form is valid. As far as I know, Aristotle does not explicitly say that validity is a

matter of form, but his work in logic presupposes this. He sometimes presents

‘‘syllogisms’’ by just giving the forms of the propositions in them, not bothering

with their content. More telling, perhaps, is that when Aristotle wants to show that

a given conclusion does not follow from a given pair of premises (i.e., that a given

sequence is not a syllogism), he typically gives an argument in the same form with

true premises and false conclusion. Prima facie, this practice presupposes that if an

argument is valid, then every argument in the same form is valid. The presented

‘‘counterargument’’ is surely invalid, since its premises are true and its conclusion

is false. The original given argument has the same form as the presented count-

erargument. Thus, the original argument is not valid.

Consider a paradigm case of a valid argument:

All men are mortal; Socrates is a man; therefore, Socrates is mortal.

The validity of this argument does not turn on anything special about mortality

and Socrates. Any argument in the following form is valid:

All A are B; s is an A; therefore s is a B.

That is, if one replaces the schematic letters A, B with any predicates or common

nouns and s with any name or definite description that describes something, the

result is a valid argument.

However, one might say similar things about our examples. Consider the

following ‘‘forms’’:

s is lighter than t ; therefore t is heavier than s.

s is human; therefore s has an immortal soul.
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An argument in one of these forms has the same status, vis-à-vis (M), (PW), and

even (S), as the argument it was taken from. So one can still think of the argu-

ments about Bill, Joe, and Caius as valid in virtue of their forms.

Nevertheless, the prevailing view is that neither of these arguments has a valid

form. Although the argument about weight does not turn on anything special

about the denotations of ‘‘Bill’’ and ‘‘Joe,’’ it does turn on specific facts about (the

meaning of ) ‘‘heavier’’ and ‘‘lighter,’’ namely, that these relations are converse to

each other. Similarly, the argument about immortal souls does not turn on any-

thing about Caius, but it does turn on putative theological facts about humans. On

the prevailing view, the requisite logical form of both of the above arguments is

s is A; therefore s is B.

It is, of course, straightforward to find an argument in this form with a true

premise and a false conclusion. Consider: ‘‘Kansas City is in the United States,

therefore Kansas City is in Ohio.’’ Thus the original arguments are not valid in

virtue of this form, and for the arguments at hand, this is the form that matters.

If someone wanted to be stubborn, he could point out that even though the

paradigm valid argument does not turn on anything special about Socrates, hu-

manity, or mortality, it does turn on the specific meaning of ‘‘all,’’ ‘‘are,’’ and ‘‘is.’’

We can give the following ‘‘form’’ to the paradigm valid argument:

P A is B; s is A; therefore, s is B,

and then give a counterargument in that ‘‘form’’:

Some people are senators; Jorge Posada is a person; therefore Jorge Posada is

a senator. This has true premises and a false conclusion. So even the paradigm

argument is not valid in virtue of the last-displayed ‘‘form.’’

Of course, the standard response is to claim that the last-displayed ‘‘form’’ is

not a logical form of the paradigm argument. But this raises the next question.

How are we to characterize logical form? One might say that a form is logical if

the only terms it contains (besides the schematic letters) are logical terms.

We now face the task of characterizing the logical terms. How do we go about

designating a term as logical? The logician, or philosopher of logic, has three

options. One is to attempt a principled definition of ‘‘logical term,’’ perhaps by

focusing on some of the traditional goals and purposes of logic (see, e.g., Peacocke

[1976], Hacking [1979], McCarthy [1981], Tarski [1986], Sher [1991]). The pro-

posals and theories cover a wide range of criteria and desiderata, such as a priori

knowledge, analyticity, formality, justification, and topic neutrality. It would take

us too far afield to examine the proposals here. A second tactic, implicitly followed

in most logic textbooks, is to merely provide a list of the logical terms and leave

our task with this act of fiat. Typically, logical terms consist of truth-functional
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connectives (‘‘not,’’ ‘‘and,’’ ‘‘or,’’ ‘‘if . . . then’’), quantifiers (‘‘some,’’ ‘‘all’’), var-

iables, and perhaps the sign for identity. This might leave the readers wondering

what is going on, and of course it provides no insight into the choice of logical

terms. A third option (following Bolzano [1837] and Tarski [1935]) is to make the

notions of logical form and logical consequence relative. That is, one defines an

argument to have a certain logical form relative to a given choice of logical terms.

The same argument might be valid relative to one set of logical terms and invalid

relative to another. Here we just adopt the easier, second course.

Our next notion of consequence combines the notion of logical form with a

semantic conception like (S) above:

(FS) F is a logical consequence of G if the truth of the members of G
guarantees the truth of F in virtue of the meanings of the logical

terminology.

2.4. Epistemic Matters

We still have not addressed the role of logical consequence in organizing and

extending knowledge. As noted above, a common slogan is that logic is the study

of correct reasoning. Truth be told, we have not said much about reasoning yet. It

seems that one reasons from premises to conclusion via valid arguments. If we

believe the premises, we must believe the conclusion, on pain of contradiction.

Let us propose another definition of consequence:

(R) F is a logical consequence of G if it is irrational to maintain that

every member of G is true and that F is false. The premises G alone

justify the conclusion F.

This much also seems consonant with at least part of Aristotle’s definition of

syllogism.

Back to our examples. A theologian might admit that it is not irrational to

hold that Caius is a human being without an immortal soul. Indeed, our theo-

logian should concede that someone can know that Caius is a human without

knowing that he has an immortal soul. Some wretched folks are simply ignorant

of the relevant theology, or too stubborn to understand it. On the other hand,

there does seem to be something irrational in maintaining that Bill is shorter than

Al while denying that Al is taller than Bill—unless, of course, one does not know

the meaning of ‘‘shorter’’ or ‘‘taller.’’ But perhaps one can also rationally deny

that Socrates is mortal while affirming that all men are mortal and Socrates is a

man—if one pleads ignorance of the meaning of ‘‘all.’’
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Surely, in attributing rationality and irrationality to our subjects, we must

credit them with understanding of the meanings of the terms in their arguments.

So (R) seems related somehow to the semantic notion (S) from section 2.2.

What is the penalty for being irrational? What, exactly, is the ‘‘pain’’ of

contradiction? The idea is that one who affirms the premises and denies the

conclusion of a valid argument has thereby said things which cannot all be true.

This broaches modal notions, as in (M) and (PW) from section 2.1. I submit,

however, that the pain of contradiction goes further than this. The charge is not

merely that our subject has said something impossible, but that she could have

known better, and indeed should have known better. In this sense, logical conse-

quence is a normative notion. It concerns the epistemic burdens on those who

reason.

The most common way to articulate the normativity here is in terms of

deduction. A sentence F is a consequence of G in this sense if there is a process of

inference taking one from members of G to F. The purpose of deduction is to

provide a convincing, final case that someone who accepts the members of G is

thereby committed to F. So we have:

(Ded) F is a logical consequence of G if there is a deduction of F from

G by a chain of legitimate, gapfree (self-evident) rules of inference.

Arguably, this notion also has its pedigree with Aristotle. He presents a class of

syllogisms as ‘‘perfectly’’ valid, and shows how to reduce other syllogisms to the

perfectly valid ones by inference (see Corcoran [1974]).

2.5. Recapitulation

I do not claim that the foregoing survey includes every notion of logical conse-

quence that has been seriously proposed and maintained. For example, there is a

tradition, going back to antiquity and very much alive today, that maintains that

F is not a logical consequence of G unless G is relevant to F (see chapter 23 of the

present volume). But to keep the treatment from getting any more out of hand,

we will stick with the above notions. Here they are:

(M) F is a logical consequence of G if it is not possible for the

members of G to be true and F false.

(PW) F is a logical consequence of G if F is true in every possible

world in which every member of G is true.

(S) F is a logical consequence of G if the truth of the members

of G guarantees the truth of F in virtue of the meanings of the

terms in those sentences.
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(FS) F is a logical consequence of G if the truth of the members

of G guarantees the truth of F in virtue of the meanings of the

logical terminology.

(R) F is a logical consequence of G if it is irrational to maintain that

every member of G is true and that F is false. The premises G
alone justify the conclusion F.

(Ded) F is a logical consequence of G if there is a deduction of F from

G by a chain of legitimate, gap-free (self-evident) rules of inference.

3. Proof Theory and Model

Theory Again

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Each of these ideas captures, or models, a different notion of logical consequence,

and there are some issues concerning their interrelations. The framework lends

some perspective to the differences between the formal, mathematical notions of

deductive consequence and model-theoretic consequence.

Deductive consequence is a formal analogue, or model, of (Ded). Let us say

that a deductive system is correct if—or to the extent that—each of its primitive

rules of inference corresponds to a legitimate, gapfree move in reasoning. This is

a measure of the extent to which a deductive system is an accurate account of

reasoning in natural language, or whatever the medium of actual reasoning is.

Unlike soundness and completeness, which are sharp mathematical notions, cor-

rectness is a vague matter, not an all-or-nothing affair. If a deductive system D is

(more or less) correct, then each deduction in D (more or less) corresponds to a

legitimate, or valid, derivation in ordinary reasoning. That is, g‘Df only if (Ded)

holds for any natural language argument in that form. And (Ded) entails (R). So if

g‘Df, then for any natural language argument in that form, it is not rational to

maintain the premises and deny the conclusion.

What of the converse of correctness? Say that a deductive system D is ade-

quate if every chain of legitimate gapfree inferences in natural language (or every

chain that turns on certain features of certain natural language terms, or on

certain formal features) can be recaptured in D. That is, D is adequate if, for each

correct chain of reasoning (of the right sort), there is a deduction in D that

captures its form. Like correctness, adequacy is a vague matter, especially if we are

limiting its scope to certain kinds of arguments.

Prima facie, we have intuitions concerning what is a legitimate, gapfree in-

ference in ordinary language. Aristotle’s perfect syllogisms are a perfect example

(pun intended). If there are such intuitions, they can pronounce on the correctness
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of a given deductive systemD. We just check each primitive rule ofD, to make sure

that it corresponds to a gapfree inference. I take it, without much in the way of fur-

ther argument, that standard first- and higher-order deductive systems are correct.

The intuitions in question, plus a bit of mathematical work, might tell us that

a given deductive system D is not adequate. This will happen if we recognize a

gapfree inference in ordinary language that has no counterpart in D. However,

said intuitions concerning instances of correct, gapfree inference give us little clue

on how to establish, or even argue for, adequacy. Do we have intuitions con-

cerning the full extent or range of legitimate inference patterns? The thesis that a

given deductive system is adequate is the same sort of thing as Church’s thesis. It

can perhaps be argued for on quasi-empirical grounds, noting that no exceptions

are known so far. And different deductive systems, constructed independently,

might converge on the same consequence relation. Also, adequacy is subject to

analysis. I give an argument for adequacy below, restricted to first-order languages

which, I claim, is (and ought to be) convincing.

To place the model-theoretic consequence relation in the present framework,

let us focus briefly on satisfaction, the relation that holds between a set-theoretic

interpretation and a formula of the formal language that is true on that inter-

pretation. I suggest that the recursive clauses in the definition of satisfaction

represent the relationship between sentences in natural language and the world. In

other words, satisfaction conditions are a formal analogue of (part of ) the truth

conditions of sentences in natural language. As Hodes [1984] once put it, truth in a

model is a model of truth. This recapitulates the slogan that validity is truth-

preserving.

Model-theoretic consequence does not correspond very well to the semantic

notion (S) of analytic consequence. Any ‘‘meaning’’ assigned to nonlogical terms

is quite irrelevant, since these terms get different extensions from interpretation to

interpretation. The definition of validity has a bound variable ranging over the

entire class of interpretations, and this includes all possible extensions for each

nonlogical term, independent of the meaning of any term from natural language

corresponding to it.

Not so the logical terminology. In the context of model-theoretic semantics,

the logical terminology of the formal language derives its meaning from the

recursive clauses in the definition of satisfaction. For example, a formula in the

form f_c is satisfied in an interpretation (under an assignment) just in case

either f is satisfied in that interpretation or c is satisfied in that interpretation

(under the same assignment). This fixes the meaning of the connective ‘‘_’’: it is
the same truth function in every interpretation. In other words, model-theoretic

consequence does turn on the meaning of the logical terminology (as it is manifest

in the recursive definition of satisfaction). Nevertheless, the model theory does

not recapitulate the formal notion (FS), since the meaning of the logical termi-

nology is not all that matters. A modal element remains.
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From this perspective, an interpretation in the model theory represents a way

the world might be—a possible world—and the relation of satisfaction tells us

which formulas would be true, had the world been that way. In particular, the

different domains of discourse represent various possible contents to the universe.

But this is a rather attenuated use of modality, due to the range of extensions of

the nonlogical terminology.

Two interpretations M1, M2 are isomorphic if there is a one-to-one function f

from the domain of M1 onto the domain of M2 that preserves the relations. For

example, if R is a binary relation in the language, then the pair ha, bi is in the

extension of R in M1 if and only hfa, f bi is in the extension of R in M2. Inter-

pretations are isomorphic if they have the same structure.

Any model-theoretic semantics worthy of the name has the isomorphism

property : if M1 and M2 are isomorphic; then for any sentence f in the formal

language, M1 satisfies f if and only if M2 satisfies f. In other words, isomorphic

interpretations are equivalent. The formal language does not distinguish between

them. The isomorphism property is established by induction on the complexity of

each formula.

It follows from the isomorphism property that the individual objects in a

domain of discourse do not matter. Suppose that M¼hd, I i is an interpretation,

and let d 0 be any set that is the same size as d. Then we can define a function I 0

such that the interpretation M 0 ¼ hd 0, I 0i is isomorphic to M. Indeed, let f be a

one-to-one function from d 0 onto d. Then, for example, if R is a binary relation

symbol, let a pair ha, bi of elements of d 0 be in I 0R if and only if the pair hfa, f bi is
in IR. As above, M 0 is indistinguishable from M, even if the objects in the two

domains are radically different from each other.

What does matter for model-theoretic consequence is the size of each inter-

pretation. The class of interpretations represents the range (or a range) of sizes the

universe might be. I submit that this is the only modality that is registered in

model-theoretic consequence.

Model-theoretic consequence thus has elements of (M), (PW), and (FS). Let

us say that a sentence F (in natural language) is a consequence of a set G of

sentences in a blended sense if it is not possible for every member of G to be true

and F false, and this impossibility holds in virtue of the meaning of the logical

terms. In the terminology of possible worlds, F is a logical consequence of G in

this blended sense if F is true in every possible world under every reinterpretation

of the nonlogical terminology in which every member of G is true. Perhaps it is

not too much of a stretch to see this blended notion of consequence as in line with

Aristotle’s notion: ‘‘a discourse in which, certain things having been supposed,

something different from the things supposed results of necessity because these

things are so (see §2:1 above).’’ The blended notion also recapitulates the slogans

that logical consequence is truth-preserving, and that consequence is a matter of

logical form.
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There is a direct analogue of the above treatment of deductive consequence.

Define a model-theoretic semantics to be correct if—or to the extent that—for any

model-theoretically valid argument in the formal language, each argument in

natural language with that form is a logical consequence in the blended sense. It

might be clearer if we focus on the contrapositive. The model-theoretic semantics

is correct if it has enough interpretations to refute any argument that is not valid

in the blended sense. Suppose that a given sentence in natural language fails to be

a logical consequence, in the blended sense, of a given set of such sentences. Then

there is a possible world and an interpretation of the nonlogical terminology that

makes the premises true and the conclusion false. If the model-theoretic semantics

is correct, then there is an interpretation in the model-theoretic semantics that

satisfies the formal counterparts of the premises but does not satisfy the formal

counterpart of the conclusion.

Notice that the correctness of a model-theoretic semantics does not entail that

its realm of interpretations has a counterpart to every possible world. Consider,

for example, ordinary set-theoretic model theory. It may be that in some possible

world (like this one), the range of the variables is not a set, in which case there is

no interpretation in the model theory that corresponds to it. All that correctness

requires is that if an argument is not valid in the blended sense, then at least one

item in the realm of interpretations in the model theory refutes (a formal coun-

terpart to) it.

Turning to the converse, define a model-theoretic semantics to be adequate if

each argument in natural language that is valid in the blended sense—or each

argument whose validity in the blended sense turns on certain features of the

language—corresponds to amodel-theoretic consequence. Again, consider the con-

trapositive. Suppose that a given formula is not a model-theoretic consequence of

a given set of formulas. Then there is an interpretation in the model theory that

satisfies every premise but does not satisfy the conclusion. If the semantics is

adequate, then there is also a possible world in which one can interpret the non-

logical terms to make the premises true and the conclusion false. In other words,

the model-theoretic semantics is adequate if each interpretation in the semantics

corresponds to a genuinely possible world. In light of the isomorphism property,

all that adequacy requires is that each interpretation represent a possible size of the

universe.

For model theory, adequacy is the easier property to establish, or at least

support. We seem to have intuitions concerning what is a correct interpretation,

or at least what is a possible size of the universe, and we have intuitions con-

cerning what is a legitimate interpretation of the nonlogical terminology. I take it

for granted that the interpretations of standard model theory are indeed legiti-

mate possibilities for first- and higher-order languages, and so for these languages,

at least, model-theoretic consequence is adequate. Correctness is another matter,

supported indirectly or in a quasi-empirical manner.
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Correctness and adequacy concern how the formal notions of deductive and

model-theoretic consequence relate to their informal counterparts: (Ded) and the

blended notion, respectively. We can also ask how the informal notions relate to

each other. If there is a deduction of a sentence F in natural language from a set G
of premises by a chain of legitimate, gapfree (self-evident) inferences, then is F a

consequence of G in the blended sense? In other words, does (Ded) imply that the

argument is a logical consequence in the blended sense? This is the counterpart to

soundness. Conversely, if F is a consequence of G in the blended sense, then is

there a deduction of F from G by a chain of legitimate, gapfree (self-evident) rules

of inference? Does validity in the blended sense imply (Ded)? This is the coun-

terpart to completeness.

The pretheoretic or intuitive version of soundness is a sine qua non of ra-

tionality. If there were a chain of legitimate, gapfree inferences that were not valid

in the blended sense, then it would be possible to reason correctly from truth to

falsehood. In other words, there would be a possible world and an interpretation

of the nonlogical terminology in which the premises are true, and the chain of

supposedly correct, gapfree reasoning would deliver a falsehood (in that world).

We had better not have that—at least for deductive reasoning. Fortunately, the

pretheoretic version of soundness is easily checked. We would not call an infer-

ence legitimate (let alone gapfree) unless it is evident that it will not lead from

truth to falsehood.

The counterpart of completeness is less crucial. It might well be the case that

there are arguments that are valid in the blended sense whose conclusions cannot

be deduced from their premises via a chain of gapfree inferences.

Let us assume, for now, that the deductive and semantic behavior of the

logical terms of first-order formal languages (_, &, V, etc.) corresponds to the

deductive and semantic behavior of their natural language counterparts. An in-

stance of Kreisel’s [1967] ‘‘informal rigor’’ can be adapted to show, or at least

make it plausible, that the intuitive counterpart of completeness holds for argu-

ments whose validity turns on the first-order logical terminology. Suppose that a

given natural language sentence F is a consequence of a set G of sentences in the

blended sense, and that this turns on the (counterparts to) the logical terminology

of first-order languages. Let f be a formula in the form of F, and let g be the set of
formulas that correspond to the sentences in G. By the adequacy of first-order

model-theoretic consequence, f is a model-theoretic consequence of g. As noted
above, this is checked by noting that each model-theoretic interpretation does

indeed correspond to a possibility (in the sense of being a possible size of the

universe). By the completeness theorem, f can be deduced from g in a standard

deductive system for first-order logic. From the correctness of first-order deduc-

tive systems (checked by noting that each rule of inference in the deductive system

corresponds to a correct inference in natural language) it follows that there is a

chain of legitimate, gapfree inferences from members of the original G to the
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original conclusion F. In other words, (Ded) holds. So we have the pretheoretic

counterpart of completeness.

Essentially the same result also indicates that for first-order languages, the

standard deductive systems are adequate, in the sense that for each correct chain

of reasoning (that turns on first-order structure) there is a deduction in a stan-

dard deductive system that captures its form. Suppose that a natural language

sentence F is deducible from a set G of premises by a chain of legitimate, gapfree

inferences. Again, let f be the formal counterpart of F and let g be the set of

formal counterparts of the premises. If f were not deducible from g in a standard

deductive system, then, by completeness, there would be an interpretation

M¼hd, Ii in which the members of g are true and f is false. By the adequacy of

the model-theoretic semantics, M corresponds to a possibility (i.e., a possible

size), and thus the original F does not follow from G in the blended sense. This

undermines the pretheoretic notion of soundness.

Similarly, we have good reason to hold that for first-order languages, the

model-theoretic semantics is correct, in the sense that for any model-theoretically

valid argument in the formal language, each argument in natural language with

that form is a logical consequence in the blended sense. Again, let F be a sentence

in natural language, and f a formal counterpart, and let G be a set of premises,

with g a set of formal counterparts. Suppose that g	f. Then, by completeness, f
can be deduced from g in a standard, first-order deductive system. So, by the

pretheoretic version of soundness, the original sentence F is a consequence of the

original G in the blended sense.

In short, for first-order languages, we can safely assume that the deductive

systems are correct, the model-theoretic consequence is adequate, and the pre-

theoretic version of soundness holds. In the case of first-order formal languages

and their natural language counterparts, it follows from this, and the complete-

ness theorem, that the pretheoretic version of completeness holds, that the deduc-

tive system is adequate, and that the model-theoretic consequence is correct. Not

bad for a series of supposedly informal notions.

However, these Kreisel-style arguments turn on Gödel’s completeness theorem,

and so are limited to first-order languages. Since second-order languages are in-

herently incomplete, one would think that the pretheoretic version of completeness

fails as well, but this depends on the extent of legitimate, gapfree inference patterns.

As far as I know, we have no way to ascertain that.We do know that the collection of

second-order logical truths is not recursively enumerable (see Shapiro [1991, ch. 4]).

So if the pretheoretic version of completeness holds, then the totality of legitimate,

gapfree inference patterns available to us humans is not recursively enumerable. We

thus broach issues of mechanism, and I won’t speculate further on this.

Nevertheless, we can maintain the correctness of standard deductive systems

(every inference in the formal system corresponds to a correct inference) and we

can maintain the adequacy of model-theoretic consequence (each argument in
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natural language that is valid in the blended sense corresponds to a model-

theoretic consequence). These are verified by an intuitive check of the rules of

inference (to make sure they do not lead from truth to falsehood) and of the

model-theoretic semantics (to make sure that each set-theoretic interpretation

corresponds to a possible size of the universe). In contrast, the adequacy of the

deductive system and the correctness of the model-theoretic consequence are left

open. In Shapiro [1987] (and Shapiro [1991, ch. 6]), I argue that the correctness of

the model theory is independent of ordinary set theory, in that it implies the

existence of so-called small large cardinals.

To summarize so far, I submit that model-theoretic consequence (	) and

deductive consequence (‘D) each correspond to a different intuitive notion of

logical consequence: the blended notion and (Ded), respectively. Both of the latter

are legitimate notions, and they are conceptually independent of each other. So

there is no dispute between advocates of model theory and advocates of deductive

systems. However, I know of no arguments to support this eclectic attitude. How

does one show that a given, intuitive notion of consequence is legitimate? And

how does one show that one notion of consequence is conceptually independent

of or dependent on another?

The formal notion of deductive consequence (‘D) depends on the particular

deductive system D. It is clear that not just any collection of axioms and rules has

a claim to be a (let alone the) notion of logical consequence. A. N. Prior’s ‘‘The

Runabout Inference Ticket’’ [1960] introduces an extension of an ordinary de-

ductive system with a strange connective ‘‘tonk.’’ It has an elimination rule like

‘‘&’’ and an introduction rule like ‘‘_.’’ In the runabout deductive system the

following are legitimate inference forms:

from f infer (f tonk c)
from (f tonk c) infer c.

The deductive system that results is not very interesting. Every formula is a run-

about consequence of each set of formulas. The inference system, if one can call it

that, does not represent any notion of logical consequence.

The existence of ‘‘systems’’ like Prior’s raises the question of what makes a

deductive system legitimate. What conditions are necessary (and perhaps suffi-

cient) for a proposed deductive system to be a candidate formalization of a notion

of consequence like (Ded)?

With the exception of intuitionists, relevance logicians, opponents of higher-

order logic (see chapters 9, 10, 23, and 26 of this volume) and some others, ev-

eryone agrees that the common deductive systems for first- and second-order

languages are legitimate. But what makes those deductive systems legitimate (if

they are)? How are we to distinguish between deductive systems that represent

logical consequence and those, like Prior’s runabout system, that do not?
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The most common response to questions like this is to cite the soundness

theorems, and perhaps the completeness theorem for first-order logic, as above.

The argument is that the deductive systems are acceptable and legitimate just

because they are sound for the model theory. This way of thinking presupposes

that model-theoretic consequence, and its pretheoretic counterpart, are the prior

or more important notions. We use model theory to determine which deductive

systems are legitimate. Soundness to an adequate model theory is a necessary

condition for a deductive system to be correct.

Advocates of the deductive notion of consequence reject this claim of priority.

They argue that a notion in the neighborhood of (Ded) is the primary notion of

consequence. Accordingly, each logical term is characterized by its inference rules.

We need not, and should not, refer to a separate model theory.

The most common claim by advocates of the deductive notion is that the

introduction and elimination rules in natural deduction systems provide each

logical term with its meaning. But the connective ‘‘tonk’’ has introduction and

elimination rules, and the resulting deductive system is clearly illegitimate. Ap-

parently, the connective simply has no meaning. In these terms, our question

becomes: Which rules of inference confer legitimate meaning on a logical con-

nective, in order for the deductive system to represent a legitimate notion of

logical consequence?

The response from the advocates of deductive consequence is that a pair of

rules successfully characterizes a logical term only if they are in harmony (see, for

example, chapters 22 and 23 of this volume). We are to think of the logical terms

as introduced into the vocabulary one at a time. The result of adding a proposed

new term, like ‘‘_’’ or ‘‘tonk,’’ must be a conservative extension of the old system.

In other words, if an inference that does not involve the new term is deducible

in the new system, then it should be deducible in the old one, before the new

connective was added. The rules for ‘‘_’’ meet this requirement, but those for

‘‘tonk’’ fail it miserably (unless the system was already useless).

The thesis is thus that (harmonious) rules of inference give the meaning of the

logical terms of formal languages. Model theory—if there is to be one—must

respect this meaning. The logic must be complete. Soundness is a bonus.

To repeat, the other school, in which model theory is primary (or at least

autonomous), holds that the meanings of the logical terms are given by their

satisfaction conditions. That is, the truth conditions of a compound are given in

terms of the truth conditions of the parts. A deductive system—if there is to be

one—must respect this. The logic must be sound. Completeness is a bonus.

Frankly, I am not sure just what the dispute is, let alone how to adjudicate it.

When it comes to formal languages, there should be no dispute at all. It is just a

matter of terminology. I think we can agree that when we are doing model theory,

the meaning of a formal connective like ‘‘_’’ is given by its satisfaction conditions.

After all, that is how the connective is presented and studied in model-theoretic
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semantics. There is no ‘‘_’’ in natural language. When the connective is intro-

duced into logical theory, it has the meaning that the theorist confers on it.

Similarly, we should agree that when we are doing proof theory, the meaning of

‘‘_’’ is given by its inference rules. The ‘‘_’’ of model theory thus has a very

different (sort of ) meaning of the ‘‘_’’ of deductive systems. Can we go on to

wonder about the real meaning of the formal connective ‘‘_ ,’’ independent of

whether we are doing model theory or proof theory, or if we are doing both at

once (e.g., proving soundness and completeness)? I don’t think we can. The

meaning of a formal connective depends on what one is doing with it, and this is

different in model theory and in deductive systems.

Perhaps the serious issue turns on the meaning of the English word ‘‘or’’ (or

the German word ‘‘oder’’, etc.) when that particle is used to connect sentences. If

so, then our dispute is an empirical one, to be decided by a controlled, blind study

of the correct use of the word in ordinary conversation and writing by ordinary,

competent speakers of the language. This would be conducted by the standards of

professional linguistics. Or should the issue be decided with a study, conducted by

child psychologists, of how the word is learned as children acquire facility with

language? As far as I know, studies like this are not cited in the literature on

model-theoretic and deductive consequence. The issue seems to be one that can

be argued from an armchair. If it is an issue concerning the meaning of words in

natural language, the participants in the debate consider themselves sufficiently

expert, and do not feel a need to consult empirical linguistics or developmental

psychology.

Perhaps the issue is to be decided on some sort of holistic grounds, looking

for the overall theory that gives the best account of logical consequence. Perhaps it

is meant as a quasi-empirical claim concerning the English word ‘‘consequence’’

or ‘‘entails.’’ Or perhaps it is a normative claim that this is what the phrase ought

to mean.

Against this, I would urge the thesis of this chapter, that there are different,

but closely related, notions of logical consequence. Model-theoretic consequence

and deductive consequence provide formal accounts of two such notions, one in

the neighborhood of the blended semantic notion above and the other in the

neighborhood of (Ded). Both notions are legitimate, and epistemological insight

is provided by studying them and their interrelations. So neither proof-theoretic

consequence nor model-theoretic consequence is primary. Instead, they illumi-

nate the various informal, pretheoretic notions of logical consequence, and they

illuminate each other. However, I do not know how to further defend this package

of views against the theses proposed by advocates of deductive consequence or by

advocates of model-theoretic consequence. The rules of the holistic enterprise are

rarely articulated, and it is notoriously difficult to agree on what counts as re-

flective equilibrium, independent of logical theory. So I close by referring the issue

to the reader’s intuitions.
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c h a p t e r 22

LOGICAL

CONSEQUENCE FROM

A CONSTRUCTIVIST

POINT OF VIEW

dag prawitz

In spite of the great advancement of logic in our time and the technical sophis-

tication of disciplines such as model theory and proof theory, the concept of

logical consequence—the most basic notion of logic—is still poorly understood.

Basic intuitions are often in conflict with each other, and rather few attempts have

been made to sort this out in a systematic fashion. Here I shall critically review

some of the attempts that have been made to articulate intuitions about logical

consequence,1 but the review makes no claim to be comprehensive or to settle the

issues. Most attention will be given to how the notion of logical consequence may

be developed from a constructivist point of view.

The idea of logical consequence has been with us since the time of Plato and

Aristotle, and since then has been central for our understanding of philosophy and

science. Presumably it arose at least partly in reflections upon Greek mathematics.

It must have been a challenge to Greek intellectuals to explain the noteworthy form

1 This article was written after I had seen a draft of Stewart Shapiro’s contribution to

this volume, ‘‘Logical Consequence, Proof Theory, and Model Theory’’ (chapter 21), the
aim of which is similar to mine. As the reader can see, our viewpoints have some common

elements but our conclusions are very different.
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that mathematics took in their time. How could it be that the Greeks could not

only calculate such things as the length of one side of a right-angled triangle given

the lengths of the other two—something that the Babylonians already knewperfectly

well how to do—but also could prove general laws such as Pythagoras’ theorem?

Somehow the idea occurred that the new practice was to be seen as involving the

drawing of logically valid inferences. The idea of such inferences is present in

Plato’s writing and is clearly formulated by Aristotle.

From this beginning there have been at least three basic intuitions about what

it is for an inference to be logically valid—or, as we also say, for its conclusion to

follow logically from its premisses, or to be a logical consequence of its premisses.2

The most basic one, which goes almost without saying, is that a valid inference is

truth-preserving: if the premisses are true, so is the conclusion. If the conditional

here is understood as material implication, this means only that it is not the case

that the premisses are true and the conclusion is false. Of course, the satisfaction of

this condition is not enough to make the inference valid. Two further conditions,

which occur more or less explicitly in Aristotle’s writings, must also be satisfied:

(1) It is because of the logical form of the sentences involved, and not

because of their specific content, that the inference is truth-preserving.

(2) It is impossible that the premisses are all true but the conclusion is

false—or, in positive terms, it is necessary that if the premisses are

true, then so is the conclusion.

It remains to be discussed to what extent these two conditions are inde-

pendent of each other, but there has been a general consensus that both condi-

tions are necessary. While the modal notion that occurs in (2) is notoriously

difficult to explicate, the main idea of (1) is comparatively easy to develop into a

more precise form. Let us therefore first turn to that.

Variations of Specific Contents

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Condition (1) comes into play in a well-known manner, already employed by

Aristotle, when giving counterexamples to the logical validity of an inference.

2 Here I take the field of the consequence relation to consist of sentences and also

take the premisses and conclusions of inferences to be sentences. Consequences and

inferences are thus treated to be on a par in this respect. However, it may be said that an

inference act is a transition from judgments to judgments while consequence is a relation

between propositions. This distinction is made by Martin-Löf [1985] and Sundholm

[1998], who discuss validity of inferences and consequence in partly the same direction as

I, but plays no role in my discussion here.
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When a conclusion B is inferred from premisses A1, A2, . . . , An, one may object to

the logical validity of the inference by presenting true sentences A1*, A2*, . . . , An*

and a false sentence B*, of the same logical form as A1, A2, . . . , An and B, re-

spectively. To make this more precise, one must specify the logical forms and the

different categories of nonlogical terms. This is indeed something that has been

done in modern logic for various languages, the first-order languages being one

kind of example.

Given a language where these things have been specified, we may quantify

over all variations of the content of nonlogical terms. Let A be the conclusion and

G the set of premisses of an inference considered in this language, and let a

substitution S be a pairing of the nonlogical terms in these sentences with other

nonlogical terms, each pair consisting of terms of the same category. Let AS be the

result obtained from A by replacing the nonlogical terms in A with the ones they

are paired to by S, and let GS be the result of carrying out such a substitution in

each sentence of G. A counterexample to the inference then consists of a set GS of

true sentences and a false sentence AS. Since S replaces only nonlogical terms with

other nonlogical terms, the counterexample has the same logical form as the

original inference.

The idea of (1) may be expressed by saying that there is no counterexample to

a logically valid inference or, in positive terms, an inference is logically valid only

if all inferences of the same logical form as the given one are truth-preserving.

Letting S vary over all substitutions of the kind described above, condition (1), or

at least part of its content, may now be expressed by saying simply:

(10) For all substitutions S, if all the sentences of GS are true, then so is AS.

This way of expressing condition (1) occurs already in medieval times and is taken

up again by Bolzano, except that he considered propositions instead of sentences

and concepts instead of terms. Disregarding some minor further conditions, which

we need not consider here, Bolzano took (10) also as a sufficient condition for A

being a logical consequence of G. This last idea we shall discuss in the next section.

An obvious objection to (10) (when one comes to think about it) is that (10)
may be satisfied simply because of a poverty of the language that limits the

number of substitutions S. One should therefore consider extensions of the given

language by introducing names of all existing things in the categories involved,

and demand that (10) hold for all such extensions of S. Or, alternatively (and

better, not having to consider languages with uncountably many terms), one

speaks of interpretations instead of substitutions. An interpretation of a given

language is an assignment I to the nonlogical terms of the language which assigns

denotations appropriate for the various categories of nonlogical terms. Speaking

of truth under such assignments, as this is nowadays defined in elementary

textbooks of logic, we can replace (10) with
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(100) For all interpretations I, if all sentences of G are true under I, then

A is true under I.

This is how Tarski [1936] developed condition (1). If we take quantifiers to be

always relativized by explicit specification of the domains, the interpretations also

take care of the variations of these domains. Sentences such as ‘‘everyone is

mortal’’ and ‘‘some numbers are prime’’ may then rendered ‘‘(Vx2humans)(x is

mortal)’’ and ‘‘(Ax2numbers)(x is prime)’’; and an interpretation of these sen-

tences then also assigns some extensions to the domain names ‘‘humans’’ and

‘‘numbers.’’

Like Bolzano, Tarski takes his variant of (1) not only as a necessary but also

as a sufficient condition for logical consequence. This is what is done also in

model theory, where (100) is slightly modified by making the domains explicit.

Restricting ourselves to first-order languages and letting all the quantifiers range

over the same individual domains D, we say that a structure or a possible model

for a first-order language is a pair M¼hD, I i where D is a set and I is an

interpretation in D of the nonlogical terms of the language. This means that I

assigns set-theoretical objects that can be obtained from D (i.e., individual

constants are assigned elements of D, first-order functional symbols are assigned

functions from D to D, one-place first-order predicates are assigned subsets of

D, and so on). Saying that a possible model hD, I i is a model for a sentence A

when A is true in D under I (i.e., A is true when the domain of the quantifiers is

taken to be D and the values of the nonlogical terms are taken to the ones

assigned by I ), and that it is a model for the set G of sentences when it is a model

for all the sentences of G, we may replace (100) by the simple and well-known

condition

(1000) All models of G are models of A.

I consider condition (100) to be a reasonable explication of the idea expressed

in (1), and condition (1000) to be a way of expressing a slight variation of (100) in set-

theoretical terms. However, the idea of making a condition of this kind a defining

one for the concept of logical consequence must be discussed.

In discussing this question it is sometimes convenient to consider the closely

related notion of logical truth instead of logical consequence. Logical truth may be

considered the special case of logical consequence arising when the set G is empty.

All the variants of (1) thus give a necessary condition for a sentence to be a logical

truth, and this condition is turned into a definition of logical truth by Tarski and

the model theory inspired by him. Hence, according to these analyses, a sentence

A is logically true if and only if A is true under all interpretations of A, or in all

possible models of A, respectively.
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Criticism of the Tarskian Analysis

of Logical Consequence

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tarski agrees that there is a modal ingredient in our intuitive idea of logical

consequence and that it can be formulated in the way of (2). He must thus claim

that condition (100), which he equates with A being a logical consequence of G,
contains a modal element that takes care of the intuition expressed in (2). Not-

withstanding that our modal intuitions may be obscure, there is reason to be

suspicious of that claim.

The validity of inferences is not a small theme of philosophy. It is said that

with the help of valid inferences, we justify our beliefs and acquire knowledge. The

modal character of a valid inference is essential here, and is commonly articulated

by saying that a valid inference guarantees the truth of the conclusion, given the

truth of the premisses. It is because of this guarantee that a belief in the truth of

the conclusion becomes justified when it has been inferred by the use of a valid

inference from premisses known to be true. But if the validity of an inference is

equated with (1) (or its variants), then in order to know that the inference is valid,

we must already know, it seems, that the conclusion is true in case the premisses

are true. After all, according to this analysis, the validity of the inference just

means that the conclusion is true in case the premisses are, and that the same

relation holds for all inferences of the same logical form as the given one. Hence,

on this view, we cannot really say that we infer the truth of the conclusion by the

use of a valid inference. It is, rather, the other way around: we can conclude that

the inference is valid after having established for all inferences of the same form

that the conclusion is true in all cases where the premisses are.3

To say that a valid inference guarantees the truth of the conclusion, given the

truth of the premisses, is to give the modal character of an inference an epistemic

ring, and it seems obvious that condition (100) has no connection with such a

modality. What, then, about a modality of a more ontic kind that is pruned from

epistemic matters? Does the claim that (100) contains a modal ingredient (and in

that way explicates condition (2)) fare better for a modality of that kind?

3 This is a point made essentially by Etchemendy [1990] (e.g., on p. 93). As for the
question how we establish the validity of an inference (in the sense of (100)), it is to be

noted that this has to be done on the metalevel by the use of some inference. As is pointed

out in Prawitz [1985], this is typically done by simply using the very same type of inference

on the metalevel, provided the inference is not naturally broken down into simpler

inferences. In the latter case, we may of course resort to these simpler inferences on the

metalevel. But then the given inference could have been supported equally well on the

object level by replacing it with a series of such simpler inferences; see Dummett [1991]
(pp. 200–204) on this point.
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A verdict on that question may most easily be arrived at by considering

the Tarskian definition of logical truth. One may then note that the definition

equates the logical truth of a sentence A with the actual truth of a closely related

sentence, namely, the universal closure of the open sentence A* obtained from A by

replacing all its nonlogical terms with variables of the same category. This obser-

vation enforces the suspicion that there is no modal ingredient at all in (100). Clearly,
the actual truth of the universal closure of A* in no way implies the necessary truth

of its instance A.4 It is therefore difficult to see how the Tarskian analysis of logical

consequence, which proceeds entirely in terms of actual truth (although under

different interpretations of the descriptive terms), touches any modality.

But perhaps there is another way to look at the Tarskian analysis, or at least at

the closely related model theory which grew out of Tarski’s semantics. The basic

intuitions behind our conditions (1) and (2) may be summarized by saying that

two kinds of invariance are required of a logically valid inference: it must be truth-

preserving regardless of the meaning of the descriptive terms of the sentences

involved, and also regardless of the facts of the world. Etchemendy [1990] coined

the term interpretational semantics for a theory that describes how the truth-value

of a sentence varies with what the nonlogical terms of the sentence mean, and the

term representational semantics for a theory that describes how it varies with how

the world is. If it now has to be admitted that the Tarskian semantics occurring in

(100) is formulated as an interpretational semantics, it may be thought that at least

the model theory occurring in (1000) can be viewed both as an interpretational and

as a representational semantics. If so, there would be a modal ingredient in

condition (1000) after all.
This stand seems to be the one taken by Shapiro (in his contribution concerning

logical consequence in this volume). He argues that in a possible model hD, Ii, the
domain D gives the size of a possible world, and by assigning values (extensions) to

the descriptive terms, I gives the facts of a possible world. The possible model may

therefore be seen as representing a way the world might be. The idea is thus that a

possible model can be viewed in two ways, either as depicting the meaning of

descriptive terms or as representing a possible world. Viewed in the first way, (1000)
says that the inference is truth-preserving regardless of meaning, and viewed in the

second way, it says that it is truth-preserving regardless of the world.

This standpoint is exactly one of the main targets of Etchemendy’s criticism.

Etchemendy argues that the standpoint is reasonable only if it can be made

4 This criticism against the Tarskian definition was leveled by Prawitz [1985] and is a

main topic of Etchemendy [1990]. That (100) deals with actual relations between the truth-

values of the involved sentences rather than with any necessary links between them is quite

obvious but seems nevertheless often to be overlooked. Tarski [1936] is, however, close to
making this observation when he observes that a sentence that contains no descriptive

constants is logically true just in case it is true.
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plausible that the semantic theory simultaneously represents both all possible

meanings of the descriptive terms and all the ways the world might be. There are

simple instances where this is the case, but for several reasons ordinary model

theory is not such a case according to Etchemendy. One objection is that some

models cannot coherently be looked upon as representing a possible world for

example, ones in which analytically true sentences such as 2þ 2¼ 4 come out

false. A second, equally serious objection is that there are possible worlds that are

not represented by any model.

The question of whether the model-theoretical notion of consequence con-

tains a modal ingredient is thus controversial. The view that it does, is, in my

opinion, not very well developed, and has to meet a number of challenges raised

by Etchemendy. In any case, there is certainly general agreement that if the

Tarskian or model theoretic notion of logical consequence contains a trace of

modality, then it is not of an epistemic kind. Let us therefore now turn to

condition (2) stated in the introduction and ask how it can be explicated.

Necessity of Thought

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Two ways to articulate condition (2) have already figured in the discussion of the

previous section, one ontic and one more epistemic. The ontic alternative is to

speak, with Leibniz, of possible worlds and to say simply:

(2a) A is true in all possible worlds in which all the sentences of G are true.

In a more epistemic formulation I spoke of the truth of the premisses

guaranteeing the truth of the conclusion. Another way of bringing out an epi-

stemic force of necessity more clearly is to say

(2b) The truth of A follows by necessity of thought from the truth of

all the sentences of G.

In the same direction there are formulations such as one is committed to holding

A true, having accepted the truth of the sentences of G; one is compelled to hold A

true, given that one holds all the sentences of G true; on pain of irrationality, one

must accept the truth of A, having accepted the truth of the sentences of G.
To develop the idea of a necessity of thought more clearly we must bring in

reasoning or proofs in some way. It must be because of an awareness of a piece of

reasoning or a proof that one gets compelled to hold A true given that one holds

all the sentences of G true.
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Let us call a verbalized piece of reasoning an argument, and let us speak of an

argument for A from G, if G is the set of hypotheses on which the reasoning

depends and A is the conclusion of the reasoning. By a proof of A from G we may

understand either a valid argument for A from G or, more abstractly, what such

an argument represents; I shall here reserve it for the latter use.

A direction in which we may try to explicate (2b) may then be put in one of

the following two ways:

(2b0) There is a valid argument for A from G; there is a proof of A

from G.

It may be said that condition (2b0) does not in itself involve any idea of necessity

of thought, since the mere existence of a valid argument or of a proof does not

compel us to anything. Condition (2b0) may nevertheless be said to bring in the

idea of a necessity of thought by requiring the existence of something such that

when we know of it, we are compelled to hold A true, given that we hold the

sentences of G true.

On the face of it, (2a) and (2b) (or (2b0)) may seem very different. Both

formulations have of course to be developed further in order to be something

more than mere phrases or metaphors, and before this is done, one cannot say

how the two ideas are related. If the notion of a possible world is thought of as

something determined by set of sentences G that are consistent in the sense of

there being no valid argument or proof from G ending in a contradiction, then the

two kinds of modalities may go together in the end. Here I shall leave the question

how (2a) should be further analyzed and shall concentrate on (2b0).
We have thus to account for what it is that makes something a proof or,

alternatively, to account for the validity of arguments. It should be noted at this

point that not infrequently the validity of an argument is defined in terms of

logical consequence. The idea here is to reverse the order of explanation in an

attempt to catch a modal element in logical consequence. In other words, the

validity of an argument for A from G is to be taken as a more basic notion, and is

to be analyzed so that it constitutes evidence for A when given G, i.e., something

that by necessity of thought makes us conclude A, given G.
What is it that makes an argument valid and thus compels us, by necessity of

thought, to hold the conclusion true, given the truth of the premisses? It is

difficult to think of any answer that does not bring in the meaning of the sen-

tences in question. In the end it must be because of the meaning of the expres-

sions involved that we get committed to holding one sentence true, given the

truth of some other sentences.

To get further, we should thus turn to the notion of meaning. Since we are

here interested in logical consequence, we shall focus on how one is to understand
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that an argument is valid in virtue of the meaning of the logical constants oc-

curring in the sentences of the argument.

The Meaning of the

Logical Constants

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

One idea about meaning in general going back to Frege is that the meaning of a

sentence is given by its truth condition. Its rationale is the notion that the question

of whether a sentence is true or not depends both on the meaning of the sentence

and how the world is, the meaning of the sentence being exactly that feature of the

sentence which determines how the world has to be in order for the sentence to be

true. Although far from being unanimously accepted, the idea that the meaning of

a sentence is the same as its truth condition has been influential both in philosophy

of language and in logic. Wittgenstein in the Tractatus took it up after Frege, and it

is a cornerstone in, for instance, Davidson’s philosophy of meaning.

As regards logic, the idea is expounded in Church’s [1956] classical textbook

and is nowadays often presented in teaching of elementary logic, where sentential

operators are said to get their meaning by their truth tables. More generally, the

meaning of a logical constant c is said to be determined by the uniform truth

condition of the sentences with c as the main sign, given in the form of an

equivalence such as:

:A is true if and only if A is not true.

A^B is true if and only if both A and B are true.

A_B is true if and only if at least one of A and B is true.

and so on.

For a quantified sentence (Vx2D)A(x) the truth condition may be stated:

(Vx2D)A(x) is true if and only if A(t) is true for all terms t that denote

elements in D.

(This formulation requires that names for all elements of D are available in the

language. Alternatively, if we do not want to rely on such an assumption, we speak

of assignments of values to the variables and define the notion of truth (or sat-

isfaction) under such assignments in a similar way.)

Questions about the meaning of the logical consequence thus seem to have a

straightforward answer in terms of such truth conditions. However, the substance
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of this answer depends on what we take truth to be. One must here beware of a

possible confusion, which Dummett (see, e.g., Dummett [1978], pp xx–xxi), es-

pecially, has drawn attention to. The truth conditions for compound sentences of

different logical form coincide formally with recursive clauses that occur in the

definition of truth as given by Tarski [1935/1936] or in the definition of truth

relative to a possible model (as is standard in model theory), and one may

therefore be led to think that truth is what is defined in this way. But obviously

the truth conditions cannot simultaneously do service both in a definition of truth

and in an explanation of the meaning of the sentences in question. In other words,

the equivalences of the kind exemplified above cannot be taken as clauses in a

recursive definition of truth, and at the same time can be taken as explaining the

meaning of the logical constants exhibited—this would be like solving two

unknowns, given only one equation. If we have defined a set S of sentences by

saying that it is the least set of sentences containing certain atomic formulas and

satisfying certain equivalences, such as

A^B belongs to S if and only if both A and B belong to S,

then obviously we get no information about the meaning of the logical constants

by being told again that these equivalences hold. Similarly, a person who does not

know what truth is, but is informed that it is a notion satisfying certain equiv-

alences of the kind given above, does not get to know the meaning of the logical

constants by then being told again that these equivalences hold.

We must conclude that truth conditions can serve as meaning explanations

only if we already have a grasp of truth. Accordingly, we find that Frege and those

who follow him in thinking that meaning is given by truth conditions are careful

to note that truth is taken as an already known notion. In contrast, Tarski, who

wants to define truth but is anxious that his definition be adequate, is careful to

note that he is taking the meaning of the sentences for which truth is defined as

already known. Tarski takes instances of the equivalences given above, so-called

T-sentences, which of course follow from his definition of truth, as showing

the material adequacy of his definition of truth. In order that they will serve in

this way, showing us the correctness of the truth definition, we must of course

know that the T-sentences themselves are correct, and this we can know only if

we already know the meaning of the sentences that are mentioned in the

T-sentences.5

An informative answer to the question of what the logical constants mean

thus requires that we further ask what truth is.

5 Elementary expositions of logic are often less clear on this point, and give, rather,

the impression that the truth conditions both are clauses in the definition of truth (in a

model) and serve to give the meaning of the logical constants.
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Truth

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The notion of truth comes up not only when we ask about the meaning of the

logical constants and want to use the idea that it is given by truth conditions, but

occurs prominently also at the outset of an analysis of logical consequence. It can

therefore not be passed over in an analysis of logical consequence. The question of

what a true sentence is true in virtue of, is particularly significant. There are at

least two different ways of thinking about this that are relevant here because of

how they connect with the notion of evidence.

What may be called a realist conception takes sentences to be true in virtue of

facts of the world given independently of what it is for us to know them. According

to an epistemic conception, truth is instead determined in terms of what it is for us

to acquire knowledge, and sentences are true in virtue of the potential existence of

evidence for them. If the facts of the world are what are described by true sentences,

then on this conception the world is seen as constructed in terms of potential

evidence, and in the end, in terms of what it is for us to acquire evidence. One may

therefore also call it a constructive conception of truth.

To analyze the modal ingredient of logical consequence in terms of evidence

seems a hopeful project only if truth is understood in this constructive way. From

this point of view, evidence or what it is to acquire knowledge must be taken as a

more fundamental concept than truth—truth may then be defined as the po-

tential existence of evidence. This is the path that I shall follow in the sequel.

With this understanding of truth we may go back to the idea that meaning

is determined by truth conditions. A more profound way of accounting for the

meaning of a sentence is now opened up, namely, in terms of what counts as evidence

for the sentence. Knowing what counts as evidence for the sentence, one also knows

the truth condition of the sentence. Hence, there is no conflict between the present

suggestion to account for meaning in terms of evidence and the idea that meaning is

determined by truth conditions, provided that truth is understood constructively.

A vital theory of meaning should be able to connect linguistic meaning with

how language is used and functions. The presence of evidence is the ground on

which we assert sentences. Thus, the use of sentences in assertions and the meaning

of them now become clearly linked to each other.6 It remains, however, to discuss

the notion of evidence.

For observation sentences, evidence typically takes the form of a relevant

observation. In general, we may speak of conclusive evidence for the truth of

6 Such a link between use and meaning may not be possible to establish when

meaning is accounted for in terms of realistically understood truth conditions. Doubts in

this direction concerning a theory of meaning based on a realistic conception of truth have

forcefully been raised by Dummett in several writings (see, e.g., Dummett [1976]).
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a sentence as verification. A verification may take the form of a combination of

observations and arguments. In mathematics the former fall away, and evidence

occurs in the form of valid arguments or proofs. We shall here restrict ourselves to

mathematics, and therefore to the notions of valid argument and proof.

Proofs

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We turned to the meanings of the logical constants, thinking that these meanings

are what may make an argument valid or something toward a proof. But now the

question at issue has been turned around, and it is suggested that meaning be

accounted for in terms of proofs. There seem to be two clashing intuitions at work

here, which also occur in more general discussions concerning the relation between

the meaning and the use of a term; as was noted above, what counts as a proof of

a sentence is one feature of the use of the sentence.

Sometimes it seems reasonable to equate meaning and use in line with the

slogan ‘‘meaning is use,’’ inspired by the later Wittgenstein. If someone asks why

3þ 1¼ 4, a natural answer is that this is what ‘‘4’’ means, or that this how ‘‘4’’ is

defined and used. Similarly, what can we answer someone who questions the

drawing of the conclusion A!B, given a proof of B from A, except that this is

how A!B is used, it is a part of what A!B means? But a similar answer to the

question why 2þ 2¼ 4 or why we infer A!B from :B!:A seems inadequate.

That 2þ 2¼ 4 or that we infer A!B from :B!:A is not reasonably looked

upon as a usage that can be equated with the meaning of the expressions involved,

but rather is something that is to be justified in terms of what the expressions

mean. To answer all doubts about a certain usage of language by saying that this is

how the terms are used, or that this is a part of their meaning, would be a

ludicrously conservative way of meeting demands for justification. But for some

such doubts the reference to common usage is very reasonable and may be the

only thing to resort to.

Leaving the question of how use and meaning are related to each other aside

for a while, one may ask what kind of proofs one has in mind when it is suggested

that it is in terms of them that the notion of logical consequence and the

meanings of sentences are to be accounted for. Are we to think of proofs as formal

proofs given by formal deductive systems?

A formal system such as the one for Peano Arithmetic is of course to be seen

as an attempt to codify valid reasoning within a part of intuitive mathematics. But

the notion of logical consequence cannot be analyzed in terms of formal systems.

An arithmetical sentence is not a logical consequence of other arithmetic sentences

because of the existence of a proof in Peano Arithmetic. Nor can the meaning of
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an arithmetic sentence A be accounted for in terms of what counts as a proof of A

within Peano Arithmetic. In the case of arithmetic we know by Gödel’s Incom-

pleteness Theorem that such an analysis would be outright wrong. We even know

that no formal system can be used to exhaustively describe the intuitive meaning

of the arithmetic sentences or the relation of logical consequences for arithmetic

sentences: indeed, because of the meaning of these sentences, for every consistent

system there will be true sentences that cannot be proved in the system.

However, we really do not need to refer to Gödel’s Incompleteness Theorem to

see that ordinary proof theory has nothing to offer an analysis of logical conse-

quence. A deductive system is, as already said, an attempt to codify proofs within a

given language, but when setting up such a system, one does not ordinarily try to

analyze what makes something a proof. Nor does proof theory ordinarily try to

justify a deductive system except for trying to prove its consistency.

An ironic illustration of the need for justification, and of the fact that not

every use of a language affords the involved sentences meaning, is given by Prior’s

example of a sentential connective ‘‘tonk’’ (also referred to by Shapiro in his

Chap. 21, this volume). ‘‘Tonk’’ is governed by two inference rules, one allowing

the inference of ‘‘A tonk B ’’ from a premiss consisting of either A or B, and one

allowing the inference from ‘‘A tonk B ’’ either of A or of B. We cannot find a

meaning for ‘‘tonk’’ that accords with such inference rules; as is easily seen, they

allow the deduction of any sentence we like. One cannot, therefore, say that

sentences mean whatever the rules that govern them make them mean—the rules

that govern them may very well reduce the sentences to sheer nonsense.

The notion of proof in a formal deductive system is thus not relevant for our

purpose of analyzing logical consequence. Instead, we need a notion of proof such

that a proof of a sentence can reasonably be said to constitute evidence in view of

the meaning of the sentence. Within intuitionism one has often tried to explain

the meaning of the logical constants by resorting to a notion of proof. This may

proceed by recursive clauses, not in principle unlike the ones occurring in Tarksi’s

definition of truth, as follows:

A proof of a conjunction A^B is a pair consisting of one proof of A and one of B.

A proof of A_B is a proof of either A or B together with an indication of

which of the two it is a proof of.

A proof of A!B consists of a function which is recognized to yield a

proof of B when applied to a proof of A.

A proof of Vx A(x) consists of a function which is recognized to yield a

proof of A(t) when applied to a term t denoting an element in the

domain of the quantifier.

A proof of Ax A(x) consists of a pair whose first member is a term t

denoting an element in the domain of the quantifier and whose second

member is a proof of A(t).
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A problem with this explanation is that the notion of proof used here cannot

stand for whatever establishes the truth of sentences in a normal intuitive sense.

For instance, a proof of a disjunction A(t)_B(t) may very well proceed even

intuitionistically by first proving Vx(A(x)_B(x)) and then applying universal

instantiation to infer A(t)_B(t). Given such a proof, we do not know which of

the two disjuncts holds. Hence, it is not correct to say that a proof of a disjunct

needs to consist of a proof of one of the disjuncts together with indication of

which disjunct is proved. In intuitionistic meaning explanations of the kind ex-

emplified above, proof must thus be meant in a quite restrictive way.

It was clear at the beginning of this section, when discussing the relation

between meaning and use, that the project of accounting for the meaning of a

sentence in terms of what counts as a proof of it needs a more restrictive notion of

proof than the usual one. Some particular use of a linguistic expression may very

well be seen as constitutive of its meaning, and other uses must then be accounted

for or justified in terms of this meaning. More specifically, it may be constitutive of

the meaning of sentence A that certain ways of arguing for its truth are recognized

as a proof of A. But it would be counterintuitive to identify the meaning of a

sentence with all the ways in which it can be proved. This is so for the simple reason

that we may very well understand a sentence without having any clear idea about

all the ways in which it may be proved. Furthermore, the finding of new ways to

prove a sentence does not automatically amount to a change of its meaning.

In a satisfactory approach to meaning via proofs, therefore, we cannot use

proofs in general to account for meaning, but must instead single out something

we may call direct or canonical proofs that are constitutive of meaning.7 This

possibility has now to be explored.

Canonical Proofs

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The first to suggest that certain ways of proving a sentence could be seen as

determining its meaning seems to have been Gentzen [1934]. After having pre-

sented his system of natural deduction, in which logical inferences are broken

down into two kinds of basic steps, called introductions and eliminations, one of

each kind for every logical constant, Gentzen remarks:

The introductions constitute, as it were, the ‘‘definitions’’ of the symbols con-

cerned, and the eliminations are, in the final analysis, only consequences of this.

7 The need to distinguish between proofs in general and direct or canonical proofs

has been argued for by Dummett and Prawitz in several papers (see, e.g., Dummett [1975]
and Prawitz [1974]).
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Since it is clear that the introductions are not literal definitions, a better way to

express the idea is to say that the rules for introduction inferences determine the

meanings of the logical constant concerned, while the rules for elimination

inferences are justified by these meanings.

An introduction for a logical constant is a form of inference whose conclusion

has the constant as its main sign. For each logical constant of the language of first-

order predicate logic, Gentzen gives a rule for how to form its introductions,

which may be represented by the following figures:

^ I)
A B

A ^ B
_ I)

A

A _ B

B

A _ B
9I) A(t)

9xA(x)

! I) [A]
B

A ! B

8 I)
A(y)

8xA(x)

The sentence A shown within the square brackets in the introduction rule for

implication (! I) indicates that in such an inference, it is allowed to discharge

occurrences of A standing as hypotheses.

Negation, which does not occur in the list of introductions, is here supposed

to be defined with the help of ! and the constant \ for absurdity (i.e., :A is

short for A!\), which makes negation introduction (better known as the

constructive form of reductio ad absurdum) a special case of implication intro-

duction. The introduction rule for \ is empty (i.e., it is the rule that says there is

no introduction whose conclusion is \).

The question is now in what way these introductions determine the meanings

of the logical constants. A way to answer this question is in terms of the notion of

a direct or a canonical proof, mentioned at the end of the preceding section. The

general idea is that the meaning of a sentence A is given by what counts as direct

evidence for it. Using the term ‘‘canonical proof ’’ for what in mathematics con-

stitutes direct evidence, we have to state for various sentences what forms canonical

proofs of them are supposed to have. This will now be indicated for first-order

sentences understood constructively. In the next section, I shall carry out the same

thing on a more concrete linguistic level by specifying forms of verbal arguments

that are to count as canonical.8

8 When speaking about canonical proofs and related notions on an abstract level, I

shall be following Martin-Löf [1985] in the main lines. (For the source of some differences,

see note 2. It is also to be noted that in later publications Martin-Löf ’s approach is

different in several respects, in particular when he distinguishes between proof objects and

demonstrations. Only the latter are supposed to have epistemic significance.) When

speaking about canonical arguments and related notions, I shall essentially be following

Prawitz [1973]. (See also Prawitz [2005].)
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The general form of a canonical proof of a compound sentence C with the

logical constant c as main sign can be written Oc(P), where Oc is an operation that

stands for the recognition that we have obtained direct evidence for C because of

P (e.g., in the first case below, O^ is the recognition of the fact that because of

having evidence both for A and for B, one is in possession of evidence for A^B).

We have to specify what P is in the different cases.

If C is a conjunction A^B, then P is to consist of canonical proofs of A and

of B conjoined.

If C is a disjunction A_B, thenP is to consist of either a canonical proof of A

and an indication of the fact that it is the first disjunct that one has obtained

evidence for, or a canonical proof of B and an indication of the fact that it is the

second disjunct that one has obtained evidence for.

If C is an existentially generalized sentence Ax A(x), then P is to consist of a

individual term t (in the domain of quantification) together with a canonical

proof of A(t).

When C is an implication or a universally generalized sentence, we need to

rely on the notions of hypothetical proofs and general proofs in order to specify

the forms of canonical proofs. To do this, we need first of all to say what a proof

is—we may say categorical proof to distinguish it from other kinds of proof.

The explication of these notions was of course a main goal for the whole present

approach to the modal ingredient of logical consequence. That they are needed al-

ready in the specification of the canonical proofs may seem circular, but means only

that we must proceed by recursion. The specification of the canonical proofs of

implications and universally generalized sentences requires the notions of categor-

ical, hypothetical, and general proof of sentences of less complexity, which in turn

require that we know what the canonical proofs of these less complex sentences are.

To elucidate the notion of categorical proof, we may note that one may

rightly assert a sentence A without having a canonical proof of A. But the idea that

one can single out some proofs as canonical involves the idea that a proof can in

principle be given in canonical form. The assertion of a sentence is thus con-

structively to be understood as claiming the existence of a canonical proof of it.

This existence is not to be understood in the sense that a canonical proof has

already been constructed and is at hand, but only that there is such a proof and

that it therefore could in principle be constructed. Consequently, we may rightly

assert a sentence A as long as we know that there is a categorical proof of A, which,

understood constructively, means that we have an effective method for finding

one. Such a method is thus to count as a proof. By a categorical proof of A, we

shall just mean such an effective method for finding a canonical proof of A.

The notion of a hypothetical proof, that is a proof of a sentence A from

sentences A1, A2, . . . , An, is in the same vein proposed to be analyzed as being an

n-ary effective function which, applied to categorical proofs of A1, A2, . . . , An,

yields a categorical proof of A. Finally, we propose that a general proof of an open
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sentence A(x1, x2, . . . , xn), relative to a set of individual terms T, is an effective

function which, applied to any elements t1, t2, . . . , tn of T, yields a proof of

A(t1, t2, . . . , tn).

We can now specify that a canonical proof of a sentence A!B is to be of the

form O! (P) where P is a hypothetical proof of B from A, while a canonical

proof of a sentence Vx A(x) is to be of the form O V(P) where P is a general proof

of A(x) (relative to the domain T of quantification).9 To this has to be added that

nothing is a canonical proof of \.

Canonical Arguments

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It may be instructive to see how a corresponding specification proceeds if we stay

on the more concrete level of verbal arguments; Gentzen was obviously thinking

of deductions composed of sentences or formulas. One need then lay down some

conventions for how the sentences of the arguments are to be arranged. It is

convenient to assume that they are arranged in tree form. A sentence in a tree that

stands immediately below some other sentences is claimed to follow from these

sentences, and such a part of the tree thus represents an inference. The occur-

rences of sentences at the top of the tree are either axioms, assumptions of the

argument, or hypotheses that are made temporarily (for the sake of the argument,

as one says). In the latter case the hypothesis is discharged or, as I shall say, bound

by some inference in the course of the argument. Above we have seen one kind of

inference,!I, that may bind assumptions. An occurrence of a sentence is said to

depend on the assumptions and hypotheses that stand above it in the tree and are

not bound by some inference occurring above it.

An inference may also bind a variable in the argument, in which case it must

occur free neither in any assumption or hypothesis that a premiss of the inference

depends on, nor in the conclusion of the inference. Above we have seen one

inference, namely, VI, that binds the variable indicated in the premiss.

An argument whose last sentence (the sentence at the bottom of the tree) is A

and whose assumptions (sentences at the top of the tree that are neither axioms

nor hypotheses bound in the course of the argument) are A1, A2, . . . , An is said to

be a argument for A depending on A1, A2, . . . , An. Something is an argument for A

from G if it is an argument for A depending on no other sentences than those

9 Since in the case of implications and universal sentences we cannot require that the

subproofs of a canonical proof also be canonical, we may as well leave out this require-

ment in the case of conjunction, disjunction, and existence sentences, and only require

that the subproofs be categorical.
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belonging to G. An argument is said to be closed provided it has no assumptions

and all the variables that occur free in some open sentence of the tree are bound in

the course of the argument. An argument that is not closed is said to be open.

An open argument is to be understood as a schema that becomes an argument

when we make appropriate substitutions for the variables and assumptions that

are not bound. This is to say that an open argument

D(x1, x2, . . . , xm; A1, A2, . . . , An)

containing exactly variables x1, x2, . . . , xm and assumptions A1, A2, . . . , An that are

not bound in D is valid if and only if certain results of carrying out substitutions

in D are valid, namely, all results

D(t1, t2, . . . , tm; D1, D2, . . . , Dn)

obtained from D by first substituting any terms t1, t2, . . . , tm denoting individuals

in the domain of quantification for x1, x2, . . . , xm and then any valid closed ar-

guments D1, D2, . . . , Dn for the assumptions A1*, A2*, . . . , An*, where Ai* is the

result of carrying out the first substitution of terms for variables in Ai.

The canonical arguments for the various first-order sentences may now be

specified by simply saying that something is a canonical argument for A if and

only if it is an argument for A whose last inference is an introduction and whose

immediate part(s) is (are) valid argument(s) for the premiss(es) of that intro-

duction.

It is to be noted that in case the last inference is an!I or an VI, the immediate

part of the argument is an open argument for which we have already defined what

it is to be valid. This definition depends, however, on the notion of valid argu-

ment for sentences of lower complexity than A, actually subsentences of A. There

is thus a recursion involved in these definitions of the same kind as the one noted

above in connection with the notion of canonical proof.

It remains to say when a closed argument in general, one that is not neces-

sarily canonical, is valid. In the same way that we have to require of a categorical

proof that it is either canonical or is a method for finding a canonical proof, a

closed argument should be defined as valid if it either is canonical or provides a

method for finding a canonical proof. However, it is not immediately obvious

how an argument may provide such a method. At this point we should consider

some examples.

An open argument of the form

A1 ^ A2

Ai

,
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which coincides with what Gentzen calls an ^-elimination, is valid according to the

definition given above, if the result of replacing the assumption A1^A2 (which for

simplicity we assume to be a closed sentence) with a valid closed argument D for

A1^A2 is valid. The question is now what it is that makes the result

D
A1 ^ A2

Ai

valid. According to what was just said above, the validity of the closed argument D
should provide a method for finding a canonical argument D* for A1^A2.

Recalling how the notion of canonical argument was defined, we see that by

replacing D with this canonical argument D*, we get

ð1Þ
D1 D2

A1 A2

A1 ^ A2

Ai

where the two immediate sub-arguments of P*

ð2Þ Di

Ai

are valid. Extracting the left immediate subargument of D* if i is 1 and the right

immediate subargument of D* if i is 2, we thus get a valid argument for Ai.

The extraction of (2) from (1) is known as ^-reduction and is an operation used

in the normalizion of deductions.10 It is in view of this operation that we see

that an argument consisting of a ^-elimination is valid, and this is also how

Gentzen meant that ^- elimination is justified (or is a ‘‘consequence’’ of the ^-
introduction, as he expressed it in the quote given in the beginning of the previous

section).

In an argument each inference that is not an introduction should be supplied

with such a justifying operation in view of which it can be seen that a valid

argument for the conclusion can be obtained, given valid arguments for the

premisses. We say that an argument D reduces to the argument D* relative to such

operations if D* is obtained from D by replacing subarguments with what is

10 The reductions (for the different logical constants) were introduced in Prawitz

[1965] (see also Prawitz [1971]) in his proof of the normalization theorem for first-order

predicate logic, and correspond to Gentzen’s cut-eliminations in the proof of his Hauptsatz.
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obtained by applying the operations to them in the way that has just been ex-

emplified. It is in this way, when the arguments have been supplied with justifying

operations, that they may provide methods for finding canonical arguments, as

must be required for validity in accordance with what was said above. A closed

argument supplied with justifying operations is thus to be defined as valid if it

reduces, relative to suitable operations, to a canonical argument. I shall not here

give the formal details of how this is to be defined, but shall show how it works by

considering two more examples.11

We illustrate the idea by two slightly more complicated reductions. The

validity of implication elimination, that is, an argument of the form

A A ! B

B
,

is first of all due to the fact that given a closed valid argument D1 for A and a

closed valid argument D2 for A!B, we get a closed argument for B

D1 D2

A A ! B
,

B

which because of the validity of D2 reduces to

½A�
D

D1 B

A A ! B ,

B

where D is a valid open argument for B from A. We now see that there is an

operation, so-called !-reduction, which, applied to this argument, yields

D1

½A�
D
B

11 For a more detailed exposition see Prawitz [1973] or Dummett [1991]. A more

recent exposition is Prawitz [2005].
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(i.e., the result of substituting the valid closed argument D1 for the open as-

sumption A in D). According to the definition of validity for the open argument

D, this result is valid, and we thus get a closed valid argument for B, as is required

of a justifying operation for !-elimination.

To see the validity of A-elimination

½AðyÞ�
9xAðxÞ B

,

B

where the variable y is bound by the inference (which means that it must not

occur in B nor in any hypothesis that the conclusion depends on), we have to

show that it preserves validity, which means that we must show that a closed

argument D of the form

½AðyÞ�
D1 D2ðyÞ
9xAðxÞ B

B

is valid, assuming that its immediate subarguments D1 and D2(y) are valid. By the

validity of the closed argument D1 we know that it reduces (relative to the

operations assigned to the inferences of D1) to canonical form, and hence that D
reduces to the form

D1* ½AðyÞ�
AðtÞ D2ðyÞ
9xAðxÞ B :

B

To see that this argument is valid, we make use of the operation A-reduction,
which transforms the argument into

D1*

½AðtÞ�
D2ðtÞ
B

We want to see that when A-reduction is applied to an argument whose immediate

subarguments are valid, it yields a valid argument. This now follows from the
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validity of the open argument D2(y), which just means that the result of first

substituting t for y in D2(y), and then the valid argument D1* for the assumption

A(t) is valid.

Summing Up

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To sum up our analysis of the modal ingredient in logical consequence, we recall that

a main goal was to bring out the sense in which it can be said that a sentence follows

by necessity of thought from other sentences. It was suggested that to this end we

need to bring in something about which it can be said that it commits us or compels

us to hold one sentence true, given that we hold some other sentences true. It was

proposed that proofs or arguments may be given this role. The idea is thus first that

the necessity of logical consequence is expressed by the condition that for A to be a

logical consequence of G, there must exist a proof or valid argument for A from G,
and second, that the awareness of such a proof or valid argument compels or

commits us to hold A true, given that we hold the sentences of G true.

Another main starting point was the idea that the meaning of a sentence is

given by what counts as direct evidence for it. In mathematics, evidence takes the

form of proof or valid argument, and the meaning of a mathematical sentence,

according to this idea, is thus to be given by what counts as a direct or, as we have

called it, canonical proof or argument.

In the same vein, the assertion of a sentence is understood constructively as

the claim that there is direct evidence for it, and is to be taken as true if such

evidence exists. In mathematics the truth of a sentence thus becomes equated with

the existence of a canonical proof or argument for it. (In general, the existence of

evidence for a sentence also depends, of course, on empirical matters.)

Presupposing an understanding of the general notion of evidence, which is

taken as a more basic notion than truth, the forms of the canonical proofs or

arguments for sentences within first-order languages understood constructively

have been specified. This has been done by recursive clauses making use of

Gentzen’s rules for introductions. (They have to be supplemented with specifi-

cations of the forms of canonical proofs and arguments for atomic sentences.) At

the same time (actually by a simultaneous recursion) the notions of categorical,

hypothetical, and general proof—or, alternatively, of closed and open valid argu-

ment, have been defined.

As a result of how all these concepts have been developed, we can say of certain

things that they constitute proofs of a sentence or valid arguments for a sentence

in virtue of the meaning of the sentence. A certain P is a canonical proof of a

sentence A or a certain D is a canonical argument for A just because of the way in
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which the meaning of A is given. Furthermore, some inferences—namely, the

inferences by introduction—become valid by the very meaning of the conclusion

of the inference. Because of this meaning, we are compelled to hold the conclu-

sion true when holding the premisses true. For instance, an inference by A-
introduction of Ax A(x) from A(t) is compelling, because by applying OA to a

categorical proof of A(t) or applying A-introduction to a closed argument for A(t),

we get by the very meaning of Ax A(x) a canoncial proof of Ax A(x). Therefore, if
we hold that A(t) is true, and consequently that there is a canonical proof or

argument for A(t), we are also committed to holding Ax A(x) true, since from the

canonical proof or argument for A(t) we can form a canonical one for Ax A(x),
which guarantees the truth of Ax A(x).

An inference in general is compelling when we know a hypothetical proof of

its conclusion A from its set of premisses G or, alternatively, an open valid

argument for A from G. This is because knowing such a proof is to be in pos-

session of an effective method which, applied to categorical proofs of the sen-

tences of G, yields a categorical proof of A. Similarly, knowing a valid open

argument D for A from G, we get a valid argument for A by replacing the open

assumptions in D with closed valid arguments for them. For the same general

reasons as before, we are in both cases committed to holding the conclusion true

if we hold the premisses true.

We have thus shown how knowledge of a (hypothetical) proof of A from G
or, alternatively, a valid argument for A from G—as we have developed these

notions—commits us to holding A true if we hold the sentences of G true. It

seems reasonable, therefore, to say that the way the notions of proof and valid

argument have been developed, make condition (2b’) account for the sense of ne-

cessity of thought involved in logical consequence.

One might say that any satisfactory analysis of the notions of proof and argu-

ments should have the result that by knowing a proof or valid argument, one gets

committed in the way discussed above. The question is how to achieve this result.

The notions of proof and valid argument are often defined as composed of

valid inferences. This puts the burden on the notion of valid inference. How is it

to be analyzed? If we do not simply say that an inference is valid when its

conclusion is a logical consequence of the premisses, which would bring us back

to the beginning of this investigation, we have to try to develop some concept of

gapfree inference. The ‘‘gapfree’’ inferences must then be shown to have a com-

pelling force. It is far from clear how this could be done.

To show an inference to be valid by breaking it down into simpler inferences

that are known to be valid is certainly a good strategy in itself. Although a valid

argument has not been defined here as a composition of valid inferences, it is still

true that an argument built up of valid inferences is valid. But to define validity in

that way would of course have made the whole analysis circular, as already noted

when condition (20) was first introduced. Instead, our basic notion is that of
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canonical proof or argument (linked to the meaning of the sentences). As shown

above, this amounts to making inferences by introduction valid—valid by defi-

nition, so to say. It should be noted, however, that not every valid inference can be

broken down into a sequence of introductions. In other words, there are infer-

ences other than introductions that are gapfree in the sense that they cannot

reasonably be broken down into simpler inferences. An essential ingredient in the

analysis proposed here is a way of demonstrating the validity of such inferences.

We have illustrated how this can be done by some examples where ^-,!-, and A-
eliminations were shown to be valid by applying reductions that are seen to

transform arguments into ones that are known to be valid.

Finaly, it should be noted that we have been talking only about the meaning of

the logical constants, and how proofs and arguments can have a compelling force

in virtue of this meaning. But the same compelling force can arise in virtue of the

meaning of nonlogical terms. Condition (2b) or (2b0) should therefore not be

taken as a defining condition of logical consequence—it explicates a broader no-

tion of consequence. To narrow it down to logical consequence, we have to

combine it with a way of formulating condition (1) so that it fits the framework in

which (2b0) has been explicated. This can easily be done in the manner of condition

(10) by requiring that for all substitutions S of the kind explained in that context,

there is a proof of AS from GS. When this requirement is understood construc-

tively, it amounts to demanding the existence of a uniform procedure that for each

S takes proofs of the sentences of GS into a proof of AS. When speaking about

arguments, this uniformity comes out directly by requiring that there be an ar-

gument D such that for each substitution S, DS is an argument for AS from GS. To

meet the objection that the force of this condition depends on the richness of the

language, we have either to extend the language or to introduce a way of speaking

of something being an argument under an assignment of values to the nonlogical

terms, and then vary over all such assignments, as done in condition (200).
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c h a p t e r 23

RELEVANCE IN

REASONING

neil tennant

1. Introduction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We advance here an unabashedly partisan view of how best to ‘‘relevantize’’ a

logic. The view is laid out as informally as possible, given the technical nature of

the subject matter.

Here, we understand ‘‘relevantizing’’ as the project of formulating a decent

system of logic that does not endorse Lewis’s First Paradox:

A, :A :B.

Such a system will be paraconsistent, in that it will allow for distinct inconsistent

theories (within a given language). But it will not be dialetheist. That is, it will not

allow for true contradictions. Dialetheism does not follow from (though, in order

to avoid trivialization, it requires) a refusal to infer whatever one pleases from a

contradiction.

We can pose our question as follows:

How best might one restrict the deducibility relation of a familiar system of

logic (such as intuitionistic or classical logic) so as to avoid the First Lewis

Paradox, but still provide all the proofs needed for mathematics and for the

hypothetico-deductive method in natural science?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



We are not taking sides in the debate between the classicist and the intuitionist.

We seek to enable the intuitionistic [resp. classical] mathematician to do intui-

tionistic [resp. classical] mathematics with just the relevant fragment of intui-

tionistic [resp. classical] logic. The relevantized restriction of each system is to be

judged by reference to the original system that has been restricted. Once we

have found the right restrictions, the resulting relevant systems ought to be as

smooth and as elegant and as powerful as possible. These are of course evaluative

notions. But we believe they can be made to apply, even in the eye of the logical

beholder.

2. Some Historical Background

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The method of relevantizing that is to be explained in this chapter derives from

work by the author beginning with [15] and [16], and further developed in [17],

[18], [19], [20], [21], [22], [23], [24], and [25]. It stands outside the so-called

Anderson–Belnap tradition (for which, see [1]).

It does not fall within the scope of this discussion to examine the details of the

Anderson–Belnap tradition. (A few more details will be provided in a later sec-

tion.) I do need, however, to explain why this chapter is devoted to an alternative

approach. I take the very title assigned to me—‘‘Relevance in Reasoning’’—to be

an invitation to discuss (what I judge, on balance, to be) a viable account of how

mathematical and scientific reasoning can be ‘‘relevantized’’ when it is logically

regimented.

I believe that Burgess—building on the earlier critical contributions of Co-

peland [6], [7]—prevailed in his critique, in the early 1980s, of Anderson–Belnap

relevance logic. This critique was laid out in his well-known Notre Dame ex-

change with Mortensen and Read. (See Burgess [3], [4] and [5]; Mortensen [11],

and Read [14].)

One must nevertheless hasten to point out that, however diverse and pro-

tean the Anderson–Belnap tradition might be (as remarked by Burgess [5],

p. 217), Burgess’s critique was directed only against this tradition. In [3], p. 104, he

wrote:

. . . I have been concerned here solely with the original Anderson–Belnap

account of ‘‘relevant’’ logic, and with their claim that their systems E, R, etc.,

are in better agreement with common-sense than is classical logic.

Again, in [4], p. 41, he wrote, ‘‘All relevantists agree in rejecting disjunctive syl-

logism . . .’’ (emphasis in original).
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While that might have been true of all relevantists known to Burgess at the time

of writing, it is so no longer. As we shall see presently, one can be a relevantist yet

preserve disjunctive syllogism as an essential derived rule of one’s logic. Although

many relevantists (such as Anderson and Belnap) object to Disjunctive Syllogism, I

do not. It strikes me, intuitively, as being in perfect order. In this I side with

Burgess.

Mathematics would be crippled without Disjunctive Syllogism. There is no

metatheorem showing that classical (or intuitionistic) mathematics survives any

Anderson–Belnap style of relevantizing proofs of mathematical theorems from

mathematical axioms, especially if one imposes the reasonable requirement that

the formal relevantized proofs bear a natural structural resemblance to their

informal counterparts in ordinary mathematical practice. Burgess’s critique of

Anderson–Belnap relevant logic in the Notre Dame exchange focused clearly on

this, its main shortcoming. In [5], pp. 222–223, Burgess observed that (then un-

published) work of R. K. Meyer

. . . demonstrates beyond doubt that standard mathematical arguments cannot be

formalized relevantistically. . . . For half of the most famous theorems of

elementary number theory (including the theorem that every integer is a sum of

four squares) it seems that no relevantistically acceptable proof is known, for all

Meyer’s work. For the other half of the most famous theorems of elementary

number theory (including the theorem that no cube is the sum of two cubes)

relevantistic proofs are available, but they cannot be regarded as formalizations of

standard proofs. They involved carrying along caveats of the form ‘‘unless 0¼ 1,’’

which one would never have heard from the lips of Fermat or Euler or Lagrange

or Gauss or Louisville, and eliminating these caveats at the end of the proof by

various manipulations. Meyer’s manipulations are undeniably clever, but the

very need for such cleverness demonstrates that relevantism conflicts with

standard mathematical practice.

It seems that a relevantist [in the Anderson–Belnap sense—NT] must be a

revisionist, at least as far as mathematics is concerned. . . .

Exactly how the work of Meyer in question (presumably [10]) ‘‘demonstrate[d]

beyond doubt that standard mathematical arguments cannot be formalized

relevantistically’’ is not altogether clear from what Burgess says. Since the time of

Burgess’s critique, however, there has been a highly significant, dispositive result

in this regard. Friedman has definitively proved (see Friedman and Meyer [9])

that there are indeed limitations to relevant arithmetic: there is a strictly positive

theorem of Peano Arithmatic that cannot be proved in the relevant Peano

Arithmetic R#. (R# is the closure of the Peano axioms under the first-order version

of the Anderson–Belnap relevance logic R.)

We shall return in a later section to a comparison between the Anderson–

Belnap approach and the one to be commended here. At this point we must

prepare the ground for the latter.
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3. What Do We Require of a Logic?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We begin by asking a question that is seldom raised explicitly, even when de-

partures from classical logic are being proposed. What, exactly, do we require of a

logic? Logic is an instrument of reasoning, and is central to our intellectual in-

vestigations. But what are the exact uses that we need to be able to make of it?

These uses will concern three main logical properties or relations:

(i) ‘‘Genuine’’ logical consequences (where a claim that is falsifiable follows

from a set of assumptions that is satisfiable)

(ii) Logical falsehoods

(iii) Logical truths.

We take our task to be that of restricting what can be proved, in either intuitionistic

or classical logic. In each case, the relevant fragment will be contained in the non-

relevant logic concerned. Moreover, because the systems of intuitionistic and clas-

sical logic have their respective notions of validity, and their own completeness

theorems, we shall be able to speak interchangeably of deducibility or logical con-

sequence; of logical truth or theoremhood; and of unsatisfiability or inconsistency.

We shall be eschewing the nonrelevant parts of the deducibility (or conse-

quence) relation in each of these logics. Fallacies of relevance will not be regarded

as genuine logical consequences, even when they appear to count as logical con-

sequences according to the standard, Boolean definition that involves preservation

of truth under all interpretations. Because we use a sentential definition of object-

linguistic logical consequence in the metalanguage—

X logically implies j if and only if every model that makes all of X true makes

j true also; i.e.,

X	j $df VM[(Vc(c2X!M 	 c)!M	j]—

it is no surprise that the First Lewis Paradox comes out as a logical consequence in

the object-language. The metalinguistic claim

Every interpretation that makes A and makes :A true makes B true also; i.e.,

VM[(M	A ^ M	:A)!M	B],

is indeed a metatheorem even in a relevantized metalanguage. The question of

genuine logical consequence should, rather, be posed as follows: Is it possible, in

the metalanguage, to deduce from the premises that A is true under interpretation

M and that :A is true under interpretation M, the conclusion that B is true under

interpretation M ? When the question is posed this way, the respective answers

from the standard metalogician and the relevant metalogician will differ. The

standard metalogician will say ‘‘yes’’; the relevant metalogician will say ‘‘no.’’
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We now devote a subsection of clarification to each of our requirements (i),

(ii), and (iii) above.

3.1. Ad (i): Genuine Consequence

Our logic should enable us to draw those conclusions that follow from whatever

satisfiable assumptions (or axioms) we might adopt. Two areas of inquiry imme-

diately come to mind. In mathematics, we should be able to derive all consequences

of our axiom systems (assuming that these have models); and in the natural sciences,

we should be able to derive all the empirical predictions that would follow from our

scientific hypotheses taken in (consistent) conjunction with statements of boundary

conditions, initial conditions, and so on. In both these cases, we are considering

(what we believe to be) satisfiable sets of assumptions, and are concerned to be able

to deduce from them all logically falsifiable conclusions that follow from them. Let

us devote the next two paragraphs to underscoring this last claim.

In the case of mathematics, we take our axioms to be consistent (hence,

satisfiable); and we seek proofs of nontrivial mathematical (i.e., nonlogical) the-

orems from them. It is in this sense that a nontrivial mathematical theorem is

‘‘logically falsifiable’’: for any such theorem p, there will be some logically possible

interpretation of the extralogical primitives (the specifically ‘‘mathematical’’ vo-

cabulary) that will make p false. Of course, such an interpretation will not be one

in which the mathematical axioms themselves are true.

In the case of natural science, we take our scientific hypotheses to be con-

sistent with the statements of such boundary conditions and initial conditions as

might be involved in an experiment to test the predictions derivable from those

combined assumptions. Call the set of such statements D. Note that D is con-

sistent. It is only when observations and measurements are made, yielding further

statements (say, G) treated as extra assumptions, that a contradiction might fol-

low: D, G‘\. Then, but only then, will the evidence G potentially falsify the

hypotheses in D. (The famous so-called Duhem–Quine problem, of course, is to

decide which statements in (D[G) to reject.) Note again that the predictions

derived from D will be logically falsifiable statements. No natural scientist would

ever wittingly produce a logical truth as a supposedly empirically ‘‘testable’’

prediction of a scientific theory!

3.2. Ad (ii): Logical Falsehoods

If in either case (mathematical or natural-scientific) the assumptions in ques-

tion are not satisfiable, then we require only that our logic be able to reveal the
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fact: that is, that it furnish a proof of their inconsistency. Our logic should be able

to tell us when a mathematical investigation would be fruitless to pursue, and

when a scientific theory has run foul of the data.

3.3. Ad (iii): Logical Truths

Thus far we have focused on assumptions. But what about conclusions? We are

interested in conclusions that follow from our assumptions (assumed to be satisfi-

able). But certain conclusions, called logical truths, have a nasty way of ‘‘following’’

(in standard systems) from any set of assumptions. So there is nothing special about

deducing them ‘‘from’’ any particular satisfiable set of assumptions (let alone any

particular unsatisfiable one!). What is special about logical truths is that one needs

no assumptions at all in order to establish them. So let us require of our logic no

more than that. Let us insist, with regard to logical truths as potential conclusions,

only that our logic should furnish proofs of them from no assumptions at all.

3.4. Some Definitions

The set X of assumptions is unsatisfiable just in case the sequent X : ; is valid. And
the sentence j is logically true just in case the sequent ; :j is valid. (We write j
for the succedent when the latter is the singleton {j}.) We shall also define the

useful notion of perfect validity: a sequent is perfectly valid just in case it is valid

and has no valid proper subsequents. That is, every sentence on the left and every

sentence on the right is needed for the validity of the sequent concerned.

3.5. Summary of Methodological Requirements

We can summarize our three methodological requirements thus far as follows:

1. If X : ; is valid, then there should be a proof of X : ;.
2. If ; :j is valid, then there should be a proof of ; :j.
3. If X : ; is invalid and ; :j is invalid, but X :j is valid, then there should be

a proof of X :j.

Note that requirements (1) and (2) take care of the two extremes, logical falsity

and logical truth, respectively. And requirement (3) takes care of what we are here

calling ‘‘genuine’’ logical consequence.

Moreover, (1) is all that is needed for the hypothetico-deductive method of

testing empirical theories. Insofar as deductive logic features in scientific reasoning,
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it does so in the context of inferring predictions, or refuting theories modulo ob-

servational evidence (once certain predictions have been inferred). For the refuta-

tions, (1) suffices (with the observational evidence reckoned to X, along with the

theory being refuted). For the derivation of predictions, (3) suffices, as noted

above (since in such a case X does not contain any observational evidence that

might refute it).

Finally, in the case of mathematical reasoning, one is interested only in two

things: (a) being able to reveal that one’s axioms are unsatisfiable, if indeed they

are (a very rare occurrence); and (b) being able to deduce all interesting conse-

quences of one’s axioms, if indeed those axioms are satisfiable. Note that (1) takes

care of (a). And in connection with (b), as already noted, no mathematician is

going to find a logical truth to be an ‘‘interesting consequence’’ of her axioms. She

will be interested only in such consequences of her axioms as are not, themselves,

logically true. Hence (3) takes care of (b). So, for the purposes to be served by a

system of logic within mathematics, (1) and (3) suffice.

4. Cumulative Deductive Progress

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

There is another aspect of the deductive enterprise, however, which is of special

importance. We need to be able to make cumulative deductive progress. In

mathematics, for example, we have the practice of proving interesting lemmas as

‘‘halfway houses’’ on the way to those deeper results that we dignify with the label

‘‘theorem.’’ (From a logical point of view, of course, these psychological classi-

fications are irrelevant.) We need, therefore, to be able to do the following:

1. Prove a lemma c, say, from axioms X

2. Then prove a theorem j, say, from the lemma c along with further axioms Y

3. Finally, conclude to j on the basis only of X[Y.
In a natural-deduction setting, where proof-trees have their assumptions at

leaf-nodes, and have their conclusions at their root-nodes, this two-step process

can be pictured as follows:

X

P
Y , (c)|fflffl{zfflffl}
S
j
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The lemma c stands as the conclusion of the proof P and as a premise of the

proof S. It is an ‘‘accumulation point’’ of the overall proof-tree. Proofs are

defined in such a way that accumulations of proof-trees are themselves proof-

trees. This is because, in the standard nonrelevant systems, proofs are allowed not

to be in normal form. Here, for example, the sentence c is likely to stand as the

conclusion (within the natural deduction P) of an introduction rule, and as the

major premise (within the natural deduction S) of the corresponding elimination

rule. So the ‘‘grafting points’’ c could in general be maximal sentence-occurrences,

and the overall proof of j from X[Y accordingly not in normal form.

In a sequent setting, where the nodes of proof-trees are labeled with the whole

sequent that has been established thus far, the same cumulative effect is achieved

by applying the rule of Cut:

P S

X : c Y ,c : j
X ,Y : j

:

In general, dividing one’s deductive work in this way into two stages—the first

stage, P, toward the lemma c, the second stage, S, away from it—enables one to

reduce quite dramatically the overall length of proof. The combined length of the

two proofs P and S is in general much less than the length of whatever proof

might codify an argument proceeding directly from X[Y to j without ‘‘going

through’’ the lemma c. Abnormality of the overall proof is the price one pays for

the reduction in length of proof that results from interpolating the lemma c
between one’s axioms X[Y and the sought theorem j.1

That is all very well, but considerations of feasibility or tractability can serve at

best to explain unjustifiable deductive procedures rather than to justify them.

Here is the explanation why the procedure of ‘‘proceeding via lemma c’’ works,
according to the pattern just given, in mathematics:

Mathematics is (presumed to be) satisfiable. So any collection of our mathe-

matical axioms is satisfiable. Moreover, j is a logical consequence of X[Y (and,

presumably, an interesting one, i.e., one that is not a logical truth in its own

right). Hence one should be able to deduce j from axioms drawn from X[Y.

1 In this connection, Harvey Friedman has achieved, in an as yet unpublished work,

some spectacular results about just how bad proof-length blowup can be upon elimination

of Cuts when formalizing everyday mathematical proofs of some very accessible mathe-

matical results. Georg Kreisel and Friedman, among others, knew in the 1960s about the
existence (i.e., the possibility-in-principle) of such blowups; but it is only in Friedman’s

more recent work that these blowups have been shown to arise within ordinary mathe-

matics, involving informal proofs of feasible length (but containing Cuts). For another

striking example, albeit one that was carefully contrived to serve this specific theoretical

purpose, see Boolos [2].
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Indeed, given that one has already deduced c from X, and deduced j from Y

and c, further deductive work would be superfluous: we already know, by virtue

of these two proofs, and on the presumption that the overall set of premises

X[Y is satisfiable, that X,Y :j is valid.

We cannot, however, conclude that X,Y :j is perfectly valid, even if both X :c and

Y,c :j are perfectly valid. Courtesy of Cut, therefore, we push back the frontiers

of deductively generated mathematical knowledge. But we are using a rather blunt

instrument in doing so. For consider: if (admittedly, a big ‘‘if ’’) our axioms X[Y
are inconsistent, might we not, in applying Cut, miss this fact altogether in

charging ahead and inferring j? Moreover, we do not need to consider possible

inconsistencies in our axioms in order to see that we might still miss out on

opportunities to be more economical with them. We might not realize, for ex-

ample, that the grain of truth in c that is needed, along with our choice Y of

axioms, to yield j, might be considerably less weighty than the bushel that is c
itself, inferred from the axioms X. In taking ourselves (courtesy of Cut) to have

inferred j ‘‘from’’ X[Y, we might be missing the fact that j follows from some

proper subset of X[Y (even if neither from X itself nor from Y itself ).

Furthermore, it is not enough for the natural-deduction theorist2 to respond

by suggesting that one should simply normalize the overall proof of j from X[Y
in order to prune away such assumptions as might not be needed for the resulting

proof in normal form. If the system within which such normalization is carried

out tolerates irrelevancies such as the First Lewis Paradox, then potential

‘‘reductions in premises’’ can still escape detection!

5. Avoiding the First

Lewis Paradox:

Banning Dilution

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If we wish to avoid the First Lewis Paradox, we have to disable its simplest proofs.

Here is one, in the sequent calculus:

A :A :L
A,:A : Dilution

A,:A : B

2 An analogous remark would of course apply to the sequent-proof theorist.
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There cannot be anything wrong with the rule of initial sequents A :A. Nor can

there be anything wrong with the rule

:L X : A

X ,:A :

for introducing a negation sign on the left of the colon.

There remains only one diagnostic possibility: the culprit here must be the

final step of Dilution (on the right).3 So, in the interests of relevance, Dilution

(on the right) must be banned.

So, too, must Dilution on the left. Otherwise, we shall be able to prove the

Lewis-type sequent A, :A ::B, which is just as objectionable, on relevantist

grounds, as the sequent A, :A :B. If the arbitrary proposition B bears no con-

nection to the premises involving A, then neither does its negation :B. With

Dilution on the left, however, we can form the following otherwise unobjec-

tionable proof:

A : A

A,B : A

A,:A ,B :

A,:A : :B

In the context of the little example involving the First Lewis Paradox, the ban on

Dilution means that the first proof above would get only as far as

A : A

A,:A :
:L:

And isn’t that just as it should be? It is, after all, a more informative result than

A, :A :B. (This is an intuition to be explicated presently.) In general, given any

sequent of the form X :B, it might be quite difficult to tell that B ‘‘follows’’ from X

by dint of X ’s inconsistency rather than by dint of any genuine deductive con-

nection between X and B. We can lose sight of this general point when looking at

the Lewis sequent A, :A :B, because its antecedent is so obviously contradictory.

But with generality we lose obviousness. And, I contend, it is better to know that

X is inconsistent than to know only that X logically implies B. The sequent X : ;
represents epistemic gain over the sequent X :B.

3 Dilution is often called weakening.
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6. Epistemic Gain in Logic

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

What, exactly, is epistemic gain? It is a matter of learning that a tighter logical

result holds than one had previously thought. Examples of epistemic gains made

on the deducibility statement A,B ‘C might be


 One finds a proof of the sequent A :C, thereby learning that B is unnec-

essary as a premise.

 One finds a proof of the sequent A,B : ;, thereby learning that one’s

premises are inconsistent.

 One finds a proof of the sequent ; :C, thereby learning that the con-

clusion one was trying to prove ‘‘from’’ the premises A and B is

a logical truth.

A proof of any of these proper subsequents of the original sequent A, B :C would

represent epistemic gain. Knowing that A‘C is better than knowing that A,B ‘C;
and likewise for knowing that A,B ‘ ; or knowing that‘C. The more one ‘‘sub-

sets down,’’ on the left and/or on the right, while still achieving the turn-

stile, the stronger the logical result one has learned. Of course, one cannot subset

down all the way, since there is no proof of the empty sequent ; : ;. So one will

always achieve a local optimum in any course of ‘‘subsetting down.’’ In an ob-

vious sense, it will be a ‘‘(locally) strongest possible result.’’ It will be a valid

sequent that has no valid proper subsequent. Remember that we are calling such

sequents perfectly valid.

An easy corollary of a theorem to be stated below, in conjunction with the

usual completeness theorems, is that every perfectly valid sequent in classical

(resp. intuitionistic) logic has a classical (resp. intuitionistic) relevant proof.

7. Avoiding the First Lewis

Paradox: Banning Cut

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We have seen that Dilution is a source of irrelevance. But what about Cut? Cut is a

structural rule in a sequent system that registers the (assumed) unrestricted

transitivity of deduction. The orthodox statement of the unrestricted transitivity of

deduction (in single-conclusion systems) has the form

If X ‘B and Y,B ‘C then X,Y ‘C.
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Correspondingly, the structural rule of Cut allows one to infer from two premise-

sequents to a conclusion-sequent as follows:

X : B Y ,B : C

X ,Y : C

If we can get rid of Cuts (as Gentzen’s Hauptsatz says we can), why should we be

worried about having the rule of Cut in our deductive system? The simple answer

is that Cut, too, can be a source of potentially undetected irrelevance. For, con-

sider the following two perfectly good proofs, of _-Introduction and of Dis-

junctive Syllogism respectively:

A : A

A : A _ B

A : A

A,:A : B : B

A _ B,:A : B

Now, if we apply Cut to the sentence A_B, we obtain the unwanted Lewis

sequent A, :A :B.

So, if we wish to avoid the First Lewis Paradox, we must either ban Dis-

junctive Syllogism or ban Cut. We wish to avoid the First Lewis Paradox.

Therefore, we must either ban Disjunctive Syllogism or ban Cut. But we cannot

ban Disjunctive Syllogism without unacceptable consequences for the codification

of mathematical practice. My own methodological conclusion, therefore, is that

Cut must be banned as a rule within the system. And I note the virtuous irony in

the fact that I am arguing for this methodological conclusion by means of (a

deontic version of ) Disjunctive Syllogism:

We must either ban Disjunctive Syllogism or ban Cut.

We should not ban Disjunctive Syllogism.

Ergo, We should ban Cut.

7.1. On How Best to ‘‘Ban’’ Cut

To say that Cut must be banned is not to say that we shall thereby forfeit tran-

sitivity of deduction altogether. Our conclusion ‘‘We should ban Cut’’ should

really be written: We should ban Cut in those situations where its use can allow

irrelevancies to creep into our reasoning. But we expect the vast preponderance of

Cuts in actual mathematical and scientific reasoning to be innocuous in this regard.

Making good on this informally expressed expectation is the main task before us.
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Recall our earlier contrast between the statement of transitivity (which in-

volved turnstile-claims) and the rule of Cut as a means of inferring one sequent

from two others. As far as the transitivity of deduction is concerned, our relevant

systems will still enjoy it—where it counts. For the following metatheorem holds

for the relevant systems:

If X ‘B and Y,B ‘C then [X, Y] ‘ [C].

(Remember that [X,Y] ranges over subsets of X[Y, and [C] over subsets of {C}.

We shall also use ‘‘X ‘\’’ as a synonym for ‘‘X ‘ ;,’’ and talk of being able to

deduce absurdity (\) from X.) Another way of stating this metatheorem would be

to say that Cut, though no longer applicable unrestrictedly (as it was in the non-

relevant systems C and I), will nevertheless be ‘‘gainfully admissible’’ in our re-

spective relevant systems CR and IR.

This statement of restricted transitivity of deduction is all that one needs for

the serious scientific purposes broached above. Those purposes, as we have al-

ready seen, are (1) to prove the inconsistency of any unsatisfiable set of as-

sumptions, (2) to prove all logical truths from no assumptions, and (3) to derive

all falsifiable consequences of any satisfiable sets of assumptions. There is nothing

for a canon of deductive reasoning to accomplish over and above these three aims.

By seeking to provide more, the classical Tarskian notion of consequence or

deducibility is guilty of a misleading overprovision, which can blind one to epi-

stemic gains that stand to be made by the logically more wary. Without a rule of

Cut, one can still be assured of transitivity of deduction wherever it matters. Why,

then, spoil that austere provision by adopting Cut as a rule? The only answer is: in

order to achieve speedup in the search for ‘‘proofs.’’ But that is a merely prag-

matic matter of tactics, of strategy, and of expenditure of time and energy. It has

nothing to do with normative issues of justification.

There is no rule of Cut, then, within our relevant systems. And Cut in its

orthodox unrestricted form is not even an admissible rule for either of the systems

IR and CR. For in each of these systems we have

P ‘P_Q and :P, P _Q ‘Q but P, :P 6‘Q.

The orthodox Deduction Theorem for logical calculi states that

(i) X ‘B only if X \ {A} ‘A!B.

(ii) X ‘A!B only if X, A ‘B.

In IR and CR, the implication (i) holds. But the converse implication (ii) fails, for

in these relevant systems we have :A ‘A!B, but not :A, A ‘B.
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Notice that the two little proofs that were put together above for a final step

of Cut are so degenerate that the inconsistency of the antecedent of the final

sequent is obvious. But it is worth stressing once again that in general this will not

be the case. One might have proved X :B (with X consistent) and Y,B :C (with Y,

B consistent), while yet the final sequent X,Y :C obtained by Cut has an incon-

sistent antecedent X,Y. The latter inconsistency, however, might go undetected;

the Cut-applier might be unaware of it. Accumulating proofs for deductive

progress by means of Cut brings with it the risk that the overall result is relevantly

unsound. It might be that the conclusion C ‘‘follows from’’ the set of premises

X[Y ‘‘only because’’ X[Y is inconsistent.

Our method of relevantizing can be thought of as a measure for logical quality

control. It is always in search of epistemic gain. It seeks to ensure that the results

we can prove ‘‘relevantly’’ are those whose conclusions do not follow from their

premises only because of the joint inconsistency of those premises. Viewed an-

other way, it seeks to ensure that the deductive progress afforded by the transi-

tivity of deduction is genuine deductive progress. Pooling of assumptions must

not get us consequences on the cheap. For such consequences are worth no more

than the assumptions that they depend upon. Better to know that the pooled

assumptions are inconsistent than to continue in ignorance of this fact, and rely

on any conclusion that has been ‘‘deduced’’ from them.

The fact that Cut is not a rule in our relevant systems does not mean that

someone possessed of relevant proofs

X Y ,c|{z}
P S
c j

would be at a loss to find a relevant proof of some subsequent of X,Y :j. In
complaining that the Rule of Cut is too crude an instrument of cumulative

deductive progress, I do not intend to leave the reasoner unable to achieve the

benefits of accumulation. In situations such as these, the sought relevant proof

can be obtained as follows. (For perspicuousness of display, we switch here to

natural-deduction mode.)

1. GraftP on top ofS as one would normally do. Call the resulting proof-treeY:

X

P
Y , ðcÞ|fflffl{zfflffl}
S
j
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2. Normalize Y:

Y7!
Z

X

j

The resulting normal proof X has conclusion j, and its set Z of

undischarged assumptions is a subset of X[Y.
3. Extract from this normal form X a relevant proof, of either \ or j,

from some subset W of Z.

That is to say, our metatheorem stated earlier—

If X‘B and Y,B‘C, then [X,Y]‘ [C]—

has a constructive proof. (W will be the subset of X[Y that makes the consequent

hold.)

To be sure, step (2) can result in exponential blowup. That is to say, the

length of the normal proof produced as output in step (2) is bounded below by an

exponential function in the length n of the nonnormal, input proof—in the sense

that, for any n, some input proof (not in normal form) of length k> n produces

an output of length> 2k.4 Step (3), however, can be completed in polynomial

time. That is to say, there is some polynomial function p(n) such that for all m, for

all input proofs (in normal form) of length<m, the relevantized proof (of course,

still in normal form) is produced in fewer than p(m) units of time. Normalizing

carries a heavy computational price, whether or not one is a relevantist. But at

least going one step further and relevantizing adds negligibly to the computational

costs involved. The potential epistemic gains come cheap at this price.

8. The Metalogical Upshot

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Our motivation can be summarized, but now in the sequent calculus setting, as

the requirement that we should be able to prove a Dilution Elimination Theorem

4 Indeed, Orevkov has demonstrated hyperexponential blowup, by exhibiting a

hyperexponential function f (k) and a sequence of sentences Ck each of which has a non-

normal proof of length linear in k, but no normal proof of length< f (k). See Orevkov [12].
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in addition to the well-known Cut Elimination Theorem. That means that we

must not rely on having Dilution in the system in order to show that the system

admits of Cut-elimination.

Gentzen’s famous Hauptsatz, or Cut-elimination theorem, is that applica-

tions of Cut can be eliminated from any proof. Gentzen happened to formulate

his logical rules in such a way that in eliminating cuts from proofs, one would

need to be able to take steps of Dilution in order to ensure that newly required

applications of the logical rules would be formally correct. Perhaps that is why

Gentzen himself never raised the question of whether one could eliminate Dilu-

tions from proofs, along with Cuts. Given his chosen way of stating the logical

rules, the answer would have appeared to be an obvious negative. Since, how-

ever, we are avoiding Dilutions as well as Cuts—because these are sources of

irrelvance—we shall need to formulate the logical rules in a subtly different way

from Gentzen.

The motivating considerations behind our approach to capturing rele-

vance determine not only the form of the rules for the logical operators but also

some very general restrictions on their applications in proofs. These restrictions

are imposed in order to avoid Dilutions. Of course, if we can get rid of all

Dilutions in a proof, what we end up proving is some subsequent of the original

sequent proved. But that is precisely what I call epistemic gain.

The relevantizing of both intuitionistic logic I and classical logic C is ac-

complished uniformly, by means of the same techniques. Thus considerations of

relevance are orthogonal to the considerations of constructivity that lead one

from classical logic C to its intuitionistic subsystem I.

We relevantize both C and I, then, by modifying the usual Tarskian as-

sumptions about what is desired of a deducibility (or consequence) relation. If

one needs a slogan to help with orientation, ours is a method of relevantizing ‘‘at

the level of the turnstile.’’ As a result, there will be some tweaking of the rules

for the logical operators (in the natural deduction or sequent setting); but these

tweakings are not such as to change their established meanings.

Before I state the rules of the system IR, it is worth mentioning two of its

proven virtues. It suffices for intuitionistic mathematics5 and for the hypothetico-

deductive method in science.6 So for all serious epistemic purposes (from an

intuitionistic point of view), IR is a system that relevantizes without loss. Exactly

analogous claims hold in the classical case. The relevant system CR suffices for

classical mathematics and for the hypothetico-deductive method in science. So for

all serious epistemic purposes (from a classical point of view), CR is a system that

relevantizes without loss.

5 Cf. [22].
6 Cf. [18].
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9. The System IR
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.1. Natural Deduction

We now set out the system of natural deduction for IR. We begin with three

explanatory remarks, and an explanation of some new notational conventions.

(i) In all applications of the elimination rules stated below, the major

premise stands proud; that is, it is not the conclusion of any rule.

(ii) No applications of the absurdity rule are permitted.

(iii) All elimination rules are in ‘‘parallelized’’ or ‘‘general’’ form,

including those for! and ^.
We also need to explain the perhaps unusual notational conventions used

below, involving boxes and diamonds appended to discharge strokes over as-

sumptions used for the sake of argument. The permissive construalwith a discharge-

rule is that one is permitted to discharge any assumption of the indicated form, if

one has used it. The permissive construal allows one to apply a ‘‘discharge-rule’’

even in cases where no assumption of the indicated form has been used. In such a

case one could speak of ‘‘vacuous discharge.’’ In our statement of the rules below,

this permissive construal applies to the rules (:I ) and (!I ). Here, permissiveness

is indicated by a diamond appended to the discharge-stroke. For all the other

discharge-rules, we adopt instead a construal according to which discharge is

obligatory. Obligatoriness is indicated by a box appended to the discharge-stroke.

Here, the affected rules may be applied only if at least one assumption of the

indicated form(s) has indeed been used to obtain the sub-conclusion concerned.

(For the parallelized version of the rule of (^E) given below, one must have used

either A or B as an assumption, but not necessarily both.)

The graphic presentations of the following rules do not explicitly reveal an

important structural fact. Construed as definitional clauses for the inductive

formation of proofs, inference rules with more than one premise allow their

immediate subproofs, in general, to have distinct sets of undischarged assump-

tions. For example, the rule of ^-Introduction, construed as a clause in the

inductive definition of the notion ‘‘P is a proof of A from the set D of undis-

charged assumptions,’’ would read as follows:

If P is a proof of A from the set D of undischarged assumptions and if S

is a proof of B from the set G of undischarged assumptions, then
P S
A ^ B

is

a proof of A^B from the set (D[G) of undischarged assumptions.

Such a clause allows the formation of the proof of A^B even if D is distinct from

G. We adopt here the convention that distinct sets of assumptions will be presumed
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to be allowed, unless there is explicit mention to the contrary. And we shall see

below that constraints to the contrary are what characterize the more intractable

notion of proof in the Anderson–Belnap system R.

Some further explanatory comments are now in order.

INTRODUCTION ELIMINATION

(
A
(i)

: ..
.

?
:A (i)

:A A

?

^ A B

A ^ B

(i) ( (i)

A ,B|ffl{zffl}
..
.

A ^ B C

C
(i)

_ A

A _ B

B

A _ B

(
A
(i) (

B
(i)

..

. ..
.

A _ B ?=C ?=C
?=C (i)

where neither A nor B

remains undischarged

!

�
A
(i)

..

.

B

A ! B
(i)

(
A
(i)

..

.

?
A ! B

(i)

(
B
(i)

..

.

A ! B A C

C
(i)

where B does not remain

undischarged
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9.1.1. Preventing Dilutions from Creeping In

In the rule of _-Elimination (proof by cases), the restriction means that the first

case-assumption cannot be an undischarged assumption in the second case-proof,

and the second case-assumption cannot be an undischarged assumption in the

first case-proof. In the rule of ! -Elimination, the restriction means that the

consequent B of the major premiss A!B cannot be an undischarged assumption

in the ‘‘minor’’ proof of A.

9.1.2. Liberalized Proof by Cases

The rule of proof by cases, or (_E), looks unusual. By stating it graphically as we

have, we are providing for the possibility that one of the case assumptions might

lead to absurdity (\). We are then permitted to bring down as the main con-

clusion whatever is concluded from the other case assumption. Thus the rule as

stated is shorthand for the following possibilities regarding the sequence Con-

clusion of first case-proof, Conclusion of second case-proof, ergo Main conclusion:

C, C, ergo C (including, as a special case, \, \, ergo \)

C, \, ergo C

\, C, ergo C.

Liberalizing proof by cases in this way is entirely natural, given how we reason

informally. Suppose one is told that A_B holds, along with certain other

assumptions X, and one is required to prove that C follows from the combined

assumptions X, A_B. If one assumes A and discovers that it is inconsistent with

X, one simply stops one’s investigation of that case, and turns to the case B. If C

follows in the latter case, one concludes C as required. One does not go back to the

conclusion of absurdity in the first case, and artificially dress it up with an ap-

plication of the absurdity rule so as to make it also ‘‘yield’’ the conclusion C.

9.1.3. Vacuous vs. Nonvacuous Discharge of Assumptions

Note that in the rules for IR above we make some unusual demands on the

discharges of assumptions allowed by certain of these rules. By contrast with min-

imal logic, we retain the permissive construal only for (the first half of ) the rule of

(!I ). Neither minimal nor intuitionistic logic insists on nonvacuous discharge

when applying the rule (:I ). The intuitionist logician has a reason of sorts for this

omission: any application of (:I ) to infer :A without having used A to obtain the

preceding absurdity could simply be regarded instead as an application of the

absurdity rule. The latter rule, however, is conspicuously absent from our relevant

system IR, and for good reason: it leads to the First Lewis Paradox A, :A :B. Just as

disagreeable is the negated-conclusion version of the paradox: A, :A ::B. Thus we
have good reason to insist that :I be applied only with nonvacuous discharge.
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9.2. Sequent Calculus

We follow the convention, when stating sequent rules for intuitionistic systems,

whereby succedents are at most singletons. But we write the sequents as though

their succedents, when nonempty, are single sentences. Thus X : {C} is rendered as

X :C. Another useful notation is X : [C], which is ambiguous between X :C and

X : ;. Likewise, [X] will range over subsets of X.
The only structural rule is the rule of initial sequents

A :A.

All other rules are logical rules, for introducing a dominant occurrence of the

operator concerned on the right or on the left of the sequent.

Right Left

X ,A :

X ::A
X :A

X ,:A :

A not in X

X :A Y :B

X ,Y :A ^ B

X :C

Xn{A,B},A ^ B :C

X \ {A,B} nonempty

X :A

X :A _ B

X :B

X :A _ B

X ,A : [C] Y ,B : [C]

X ,Y ,A _ B : [C]

A not in X [ Y ,B not in X [ Y ;

conclusion-succedent empty

iff both premise-succedents are

X , [A] : [B]

X :A ! B

X :A Y ,B :C

X ,Y ,A ! B :C

A not in X B not in Y

and either A or B

occurs in the premise sequent

relevance in reasoning 715



10. The system CR
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10.1. Natural Deduction

The natural deduction system for CR is obtained by adding to IR the rule of

classical reductio ad absurdum, subject, of course, to the requirement that the

assumption for reductio really be used:

(:A(i)

..

.

?
A
(i)

We still insist, as we did with IR, that major premises of eliminations stand proud.

Thus no conclusion of classical reductio ad absurdum can be the major premise of

an elimination.

The decision problem for theoremhood in IR (equivalently, deducibility from

finite sets of premises in IR) is PSPACE-complete, just as it is for the parent

system I of intuitionistic logic. The decision problem for theoremhood in CR is

co-NP-complete, just as it is for the parent system of C classical logic.

10.2. Sequent Calculus

The sequent calculus for the classical system of relevant logic is obtained in the

usual way, by allowing succedents with more than one member.

The Sequent Rules for CR

Right Left

X ,A : Y

X : :A,Y
X : A,Y

X ,:A : Y

A not in X A not in Y

X : A,Z Y : B,W

X ,Y : Z ,W ,A ^ B

X : Y

Xn{A,B},A ^ B : Y

A not in Z ,B not in W X \ {A,B} nonempty
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X : Y ,A

X : Y ,A _ B

X : Y ,B

X : Y ,A _ B

X ,A : Z Y ,B :W

X ,Y ,A _ B : Z ,W

A not in Y B not in Y A not in X [ Y ,B not in X [ Y

X , [A] : Y , [B]

X : Y ,A ! B

X : A,W Y ,B : Z

X ,Y ,A ! B :W ,Z

A not in X ,B not in Y A not in W ,B not in Y

and either A or B occurs

in the premisesequent

Unrestricted Cut fails to be admissible for CR, as it failed for IR. But the same

compensating metatheorem holds for CR as for IR:

If X‘B, Z and Y, B ‘W, then [X,Y]‘ [Z,W]

where we now allow for more than one sentence in succedents.

11. Contrast with the Anderson–

Belnap Approach to Relevantizing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IR and CR are to be contrasted with competing systems in the Anderson–Belnap

tradition. These other systems (such as the relevant logic R) differ from standard

logic by having unusual, ‘‘intensional’’ connectives, subject to more restrictive

axioms (in a Hilbert-style proof system) and rules of inference (in a natural de-

duction or sequent setting) than the standard connectives. But on the Anderson–

Belnap approach, the deductive structure of the relevantized logical system is in

one important regard the same as in the nonrelevant case. The Anderson–Belnap

relation of deducibility admits of unrestricted Cut.

The Anderson–Belnap system R, like the systems of classical and intuitionistic

logic, was originally presented as a Hilbert-style proof-system based on many axioms

and one or two rules of inference. Since we have been using natural deduction in this

chapter, we present the systemR here in that format, in order to facilitate comparison.

INTRODUCTION ELIMINATION

(

A(i)

: ..
. :A A

?
?
:A (i)
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D D
..
. ..

. (i) ( (i)

A,B|{z}
^ A B

A ^ B
..
.

A ^ B C

C
(i)

_ A

A _ B

B

A _ B D ,
(

A|fflffl{zfflffl}
(i)

D ,
(

B|fflffl{zfflffl}
(i)

..

. ..
.

A _ B C C

C
(i)

where neither A nor B

remains undischarged

(

A
(i) (

B
(i)

! ..
. ..

.

B

A ! B
(i)

A ! B A C

C
(i)

where B does not remain undischarged

DISTRIBUTIVITY CLASSICAL REDUCTIO

AD ABSURDUM

(

:A
(i)

A ^ (B _ C)

(A ^ B) _ C
..
.

?
A
(i)

We stress again that major premises for eliminations must stand proud, which

ensures that no conclusion of classical reductio ad absurdum can be a major

premise for an elimination.

We have indicated, in ^-Introduction and _-Elimination, that these rules can

be applied only when the same set D of undischarged assumptions is employed in

^
A B

A ^ B
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the two places indicated. Hence the need for the independent postulation of

Distributivity—for the usual proof of Distributivity would involve distinct sets of

undischarged assumptions when applying the usual versions of ^-Introduction
and _-Elimination.

We are also requiring that the discharge operations indicated with boxes are

to discharge at least one occurrence, and indeed all occurrences, of the assumption

of the indicated form. For ^-Elimination, we require use either of the assumption

A or of the assumption B, and permit use of both. All such assumption-occurrences,

however, must be discharged by the application of the rule. Thus the system above

can be described as having the universal discharge requirement. It does not allow

‘‘partial discharge,’’ that is, discharge of only some, but not necessarily of all, of

the available occurrences of an assumption. In this regard our system differs from

that of Prawitz [13].

Major premises of eliminations have to stand proud, with no proof-work

above them. This ensures that every proof is in normal form.

Definition.

(i) If there is a proof of j whose undischarged assumptions form the

set D, then D)j.
(ii) If D)j2G and G)c, then D[ {G \ {j}})c
(iii) D)j only if this can be shown by means of (i) and (ii).

Our system of proof requires proofs to be in normal form. So we can speak of

‘‘normal-form deducibility’’ in this system. Intuitively, ) is just the ‘‘deductive

closure’’ of the (possibly more limited) relation of normal-form deducibility. (We

could achieve ) directly as the deducibility relation if we allowed partial dis-

charge with the rules of :-Intro and ! -Intro. This is essentially what Prawitz

does.) We can talk of ) as representing ‘‘extended deducibility’’ in our ND-

system.

Anderson and Belnap ([1], pp. 340–341) provide two slightly different sets of

axioms for R, for the generation of Hilbert proofs using only the rules

(^I) From A, B infer A^B
(! E) From A, A!B infer B.

Every line in such a proof is a theorem; whence the rules (^I) and (! E) apply

only to theorems. Clearly, (^I) is derivable in our ND-system for R, since we can

take D¼;. Likewise, we can derive (!E); whence its applications in Hilbert

proofs can be mimicked by extended deducibility in our ND-system. Finally, one

can show that every one of the Anderson–Belnap axioms ([1], pp. 340–341) has a

normal proof in our ND-system (with universal discharge!). Hence, every theorem

of R is extendedly deducible in our ND-system.

relevance in reasoning 719



Conversely, one can show that every extended deducibility in our ND-system for

R can be captured as a theorem of the Hilbert-system for R in the following sense:

(i) if j1, . . . ,jn)c, then there is a Hilbert-proof of

j1! (j2! . . . (jn!c) . . .)
(ii) if j1, . . . ,jn)\, then there is a Hilbert-proof of

j1! (j2! . . . (jnþ1!:jn) . . .).

Because of its restrictions on applications of rules, theoremhood in propositional

R is undecidable (Urquhart [26]). The fragment obtained by dropping Distrib-

utivity is decidable, but the decision problem is at least ESPACE-hard.

11.1. Discussion

The practitioner of a system such as R might acquire the impression that it will be

‘‘business as usual’’ on the deductive front. One will be able to prove lemmas from

one’s axioms, and then prove theorems from one’s lemmas (plus perhaps other

axioms), and put one’s proofs together so as to get the theorems directly from the

axioms used. The usual strategies of ‘‘breaking down’’ a logical problem into a

sequence of more manageable steps will therefore apply. One just has to find the

right lemmas—the right interpolants—and the reasoning within one’s favorite

mathematical theory will surely be relevantizable.

Alas, this is mistaken. The effects of relevantizing by ‘‘going intensional’’ on the

connectives (and quantifiers) are rather disastrous. They leave the relevantized

theory in a relatively much less complete state than the unrelevantized one. One loses

not just proofs embodying fallacies of relevance, but also, in many cases, the very

results established by such proofs—even when, from our point of view, those results

do admit of proofs free of any fallacies of relevance. In the systems that place these

intensionalist demands on relevance it will often happen that familiar proofs in

standard logic cannot be reconstructed so as to obey the relevantist strictures. Just as

the intuitionist loses certain lovely classical proofs, and with them even the theorems

that they establish,7 so too the relevantist in the Anderson–Belnap tradition loses

proofs and, with them, theorems. Yet no mathematician proving such ‘‘lost’’ theo-

rems in the original system would brook the accusation that she has committed some

fallacy of relevance that, once recognized, deprives her of her entitlement to assert the

theorem. Such a suggestion from the reforming relevantist logician would strike her

7 Example: Every polynomial of several variables and integer coefficients assumes a

least absolute value. The classical proof exploits the least-number principle. But any

constructive proof would yield an algorithm for determining that least absolute value, thus

violating the negative solution to Hilbert’s tenth problem. (There is no algorithm for

determining whether a given polynomial expression has a root.) See Friedman [8].
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as quite outrageous. Moreover, the relevantist (on the approach to relevantization

which is being recommended here) can agree. The relevantist’s aim should be so to

regiment the mathematician’s reasoning that its result is shown to be valid even by

relevantist lights. Relevantizing is a matter of regimenting reasoning without epi-

stemic loss—indeed, at times with epistemic gain.

Note that this is unlike the situation that is involved when disagreement arises

between a classical mathematician and an intuitionist over the validity of a piece of

classical mathematical reasoning. The classicist will be convinced by a particular

proof that employs strictly classical forms of reasoning (such as excluded middle),

while the intuitionist (in the absence of any intuitionistic proof of the same result)

will refuse to assert the ‘‘result’’ that the proof (according to the classicist)

establishes. Here a genuine doctrinal or epistemic difference arises over the issue of

constructivity, which cannot be resolved. It is doubtful, however, that an analogous

disagreement on the issue of relevance—between a mathematician using standard

logic (embodying fallacies of relevance) and a mathematician committed to using

only a relevant logic—will ever result in the former being prepared to make an

assertion based on proof, and the latter being unprepared to endorse the same. This

is because (or so I contend) the following explanatory conjecture is true:

All intuitively convincing mathematical reasoning can be regimented

without loss in the kind of relevance logic advocated here.

Thus what may look like a use of a fallacy of relevance in the course of a piece

of mathematical reasoning is, upon closer analysis, no such thing. Intuitively,

relevance is already ‘‘built into’’ our deductive sensibilities, in a way that a pre-

dilection for constructivity, for example, is not. If our conjecture is true, it follows

that the standard systems of logic, which embody fallacies of relevance, are guilty of

‘‘overprovision.’’ Fallacies of relevance are never of any help in mathematical

reasoning, and ought to be expunged from the systems of logic that are designed to

regiment such reasoning. It is an interesting question why (from Frege onward)

our systematizations of deductive reasoning have allowed fallacies of relevance to

count as formally correct and/or as semantically valid. I believe that it was because

a certain kind of reflective equilibrium was struck, in which an overly succinct set

of constraints was imposed on the relations of deducibility and consequence, at

just that juncture when the object-language conditional was being teased apart

from the metalinguistic turnstile. Within this reflective equilibrium, the price paid

for unrestricted transitivity and time-saving accumulation of proofs was the ad-

mission of the fallacies of relevance. Themoral of my story here is that this reflective

equilibrium can be refashioned, and relevance regained. By being a little more at-

tentive to what is really going on (and what we want to have going on) when we

link proofs together, we can find a better way to characterize the structure of the

turnstile relation uncolored by considerations of efficiency.We can fashion a system

relevance in reasoning 721



of proof that allows even more faithful regimentations of actual patterns of math-

ematical reasoning, even though mathematicians make profligate use of Cuts.

The deep reason why the Anderson–Belnap relevantist loses proofs and, with

them, theorems, is that their systems do not contain Disjunctive Syllogism:

A_B, :A :B.

This impedes their logical investigation of the various cases yielded by such dis-

junctive principles as the axiom of trichotomy:

x< y_ y< x_ x¼ y.

Such principles are indispensable in our axiomatizations of various branches of

mathematics. The mathematician needs, like Chrysippus’s dog, to be able to chase

the truth down a different fork in the road as soon as it is discovered that a chosen

fork is a dead end. Without Disjunctive Syllogism, one cannot in general do that.

By contrast with the Anderson–Belnap ‘‘intensional–connective’’ systems, the

systems IR and CR, which I advocate as the respective properly relevant versions

of intuitionistic and classical logic, preserve the whole stock of mathematical

theorems—and indeed, in each case, from the very same axioms—in the respective

kinds of ‘‘nonrelevant’’ mathematics. Nonrelevant classical mathematics is the

mathematics that can be derived from one’s axioms by means of the full resources

of nonrelevant classical logic. That means that one can use the rule that allows one

to infer any statement at all from a contradiction; one can use Disjunctive Syllo-

gism; one can use the ‘‘paradoxes of implication’’; and so on. If a classical math-

ematician produces a ‘‘nonrelevant’’ proof of, say, Fermat’s last theorem in some

interesting arithmetical theory such as exponential function arithmetic (EFA),

then my relevantizing classical mathematician will be able to prove Fermat’s last

theorem relevantly, using only axioms of EFA that had been used in the non-

relevant proof. (Mutatis mutandis with ‘‘intuitionistic’’ in place of ‘‘classical.’’)

12. The Maxim of Narrow Analysis

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Relevantizing brings benefits for automated deduction. In automated deduction,

the system is given a queried sequent X?-Y, and seeks to construct a normal or Cut-

free proof of that sequent, without human intervention. The deductive problem is

broken down into more manageable subproblems by foreshadowed applications of

logical rules; one does not seek, in automated deduction, to program the system to

find interpolants. That is something that only human reasoners do.
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We noted earlier that every perfectly valid sequent in classical (resp. intui-

tionistic) logic has a classical (resp. intuitionistic) relevant proof. This observation

prompts the following maxim:

Maxim of Narrow Analysis

When given a deductive problem X?-Y that admits of proof, always seek a

proof of a minimal subsequent of X :Y that admits of proof.8

Suppose one has a proof P of the sequent X :Y. Suppose that one then discovers a

new proof P* of some proper subsequent X* :Y*. Then one should be able to

substitute P* for the old proof P of the original sequent X :Y, without ever

forfeiting (the results of ) any proofs involving P as a subproof. Making a sub-

proof prove a tighter logical result should never result in having to forfeit larger

proofs containing that subproof. This sounds obvious, and one feels it ought to

be true.

In some systems of logic, however, one can be thwarted when trying to follow

the maxim of narrow analysis as vigorously as one would like. In these systems of

logic, if one substitutes in all one’s proofs S, the better subproof P* (of the

stronger result), for the worse subproof P (of the weaker result), then one does

not in general preserve proofhood. Nor is one in general able to recover or restore

the situation by producing new proofs in the light of that substitution.

Some relevant systems (such as R) can be unreasonably finicky about the use

one may make of assumptions for the sake of argument, especially with a rule like

the rule of conditional proof. In a new would-be subordinate proof P* of a

stronger result, some of those assumptions may be eschewed, or the subordinate

conclusion may be of the wrong form (\ instead of the ‘‘sought’’ conclusion B).

When such P* is substituted to replace the subproof P (of the weaker result)

within some larger proof S, the result S(P/P*) may fail to be a proof, because the

‘‘lost assumptions’’ or the changed form of the subordinate conclusion makes

some rule-application in the wider proof-context S illicit. And there might not be

any way, in general, of capitalizing on the epistemic gain represented by the new

subproof P*, and distributing its potential returns within the wider proof S.

13. Nonforfeiture of Epistemic Gain

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This complaint cannot be leveled, however, against IR andCR. These systems, unlike

other systems of relevance logic, are devoted to the nonforfeiture and potentially

8 The proof-finding algorithms in Autologic [20] are designed with this in mind.
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wider distribution of epistemic gains. IR, for example, satisfies the following prin-

ciple:

Principle of Nonforfeiture of Epistemic Gain

Let P be a proof of the sequent X :A, occurring as a subproof of the

proof S of the sequent Y :B. Let P* be a proof of some proper subse-

quent of X :A. Then S(P/P*)—the result of substituting P* for P in

S—can be effectively transformed into a proof of some subsequent

of Y :B. Indeed, the transformation can be effected in polynomial time.

Note that I am not saying that a strict gain via P* with respect to some sub-

proof P will always turn into a strict gain with respect to the overall proof S. In
many cases it will; but in some cases the result established by (the transform of )

S(P/P*) will be the original result Y :B.

Still, nonforfeiture of epistemic gain would be very good news. For we would

never lose any of our erstwhile deductive knowledge by forgetting P and re-

membering P* instead. And this cannot be said for many a rival system of

relevance logic.

14. Summary

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We have tried to show how to relevantize the two main logics—intuitionist and

classical—without methodological loss. In the sequent setting, we ban Dilutions and

Cuts. And we state the logical rules in a slightly more relaxed form, so that we can get

by without the structural rules of Dilution or Cut. In the natural-deduction setting,

we ban the absurdity rule and abnormalities, and keep exigent but well-motivated

checks on how we have used assumptions for discharge. We also liberalize slightly

certain logical rules, so that the loss of the absurdity rule is not crippling.

Elsewhere, I have shown how this process of relevantizing (in the intuition-

istic case) brings the system of natural deduction and the corresponding system of

sequent calculus into ‘‘deep isomorphism.’’9 The relevant systems are also ideally

suited for computational logic, since they allow one never to forfeit any epistemic

gains that one might achieve in the course of solving deductive subproblems. This

approach to relevantizing salvages those ‘‘local’’ forms of reasoning, such as

disjunctive syllogism, that seem, intuitively, so indispensable for ordinary math-

ematical reasoning. It locates the issue of relevance at the level of the turnstile, and

9 N. Tennant, ‘‘Ultimate Normal Forms for Parallelized Natural Deductions, with

Applications to Relevance and the Deep Isomorphism Between Natural Deductions and

Sequent Proofs,’’ Logic Journal of the IGPL 10, no. 3 (May 2002): 1–39.
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challenges certain orthodoxies as to what structural features of the deducibility

relation it is methodologically necessary to preserve. The upshot is that the stu-

dent of logic who is dismayed by the First Lewis Paradox can be assured that it is

irrelevant to the deductive needs served by one’s logic, whether one is an intui-

tionist or a classicist. We can make do without it, and stand only to gain by

eschewing it. Logical rules suffice for our logical reasoning. We do not even need

any ‘‘structural’’ rules—except, of course, the rule of initial sequents A :A. That,

however, is the case only in a sequent system. In natural deduction, the coun-

terpart to this is that one is allowed to write down an assumption A for the sake of

argument. It might be left standing as an undischarged assumption by the end of

the proof, or it might be discharged on the way to the conclusion. Without such

allowance, no proof would ever get started. So I don’t propose to revoke that

licence. I have banned a great deal, but with no untoward effect at all. Our canon

of deductive reasoning has been relevantized; but our powers of reasoning have

been left intact.

Perhaps we should call the resulting position ‘‘compassionate relevantism.’’
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c h a p t e r 24

NO REQUIREMENT

OF RELEVANCE

john p. burgess

1. Relevantism: Rejecting the

‘‘Paradoxes’’ of Classical Logic

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Classical geometry defines a conic section to be the intersection of a plane with

a (double) cone. This definition obliges the geometer to recognize such degen-

erate conics as the hyperbola consisting of two crossed lines (the intersection of

the cone with a vertical plane through its apex) or the circle consisting of a single

point (the intersection of the cone with a horizontal plane through its apex).

Classic logic defines entailment to hold between a premise (or set of premises)

and a conclusion if and only if their logical form guarantees that the either the

premise (or at least one element of the set of premises) is false, or the conclusion is

true. The definition obliges the logician to recognize certain degenerate entail-

ments. A premise (or set of premises) that is contradictory in the sense that its

logical form guarantees that it is false (or that at least one element of the set of is

false) entails any conclusion: ex falso quodlibet. And a conclusion that is tautolo-

gous in the sense that its logical form guarantees that it is true is entailed by any

premise (or set of premises): ex quolibet verum.

The commitment of classical logic to these principles has frequently been

attacked by indignant critics who denounce the degenerate cases of entailment as

‘‘paradoxes.’’ Among these critics there have been many with little use for any sort

of formal logic; but the concern of the present survey will be with schools of

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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anticlassical logicians who have proposed rival formal logics to the classical, avoid-

ing the so-called paradoxes.

Since the most common single complaint of such critics is that in the de-

generate cases of entailment recognized by classical logic the premise is (or the

premises are) ‘‘irrelevant’’ to the conclusion, the critics in question will be called

‘‘relevantists.’’ Note, however, that as they are used in the literature, ‘‘relevance

logic’’ and ‘‘relevant logic’’ are trademarks—both for the same school of logic,1

everything about which is highly contentious, beginning with whether ‘‘relevance’’

or ‘‘relevant’’ is the right label for it—and are not to be equated with ‘‘relevantism’’

as here defined. There have been other kinds of relevantists than ‘‘relevance’’ or

‘‘relevant’’ logicians; and there have been important contributions to ‘‘relevance’’

or ‘‘relevant’’ logic by logicians (Kit Fine, Harvey Friedman, Saul Kripke, Alasdair

Urquhart) whose endorsement of relevantist criticism of classical logic has been

qualified or nonexistent.

Now there would be no room for contention between classicism and rele-

vantism if ‘‘entailment’’ were simply being introduced as a term previously

without meaning (outside probate law), which was now simply being stipulated by

the classicist to mean ‘‘the relation that obtains between premise and conclusion

when logical form alone guarantees that either the former is false or the latter is

true.’’ There is room for disagreement only if both sides claim to be analyzing a

notion of entailment that already exists, though perhaps not under that label.

And indeed classical logic’s theory of entailment was largely developed in

order to provide an analysis of what is meant by rigorous proof or rigorous

provability in orthodox mathematics: classical logic can be viewed as an attempt

to describe explicitly the implicit norms of orthodox mathematicians, and it is

largely the practice of mathematicians that will be invoked in its defense. (Clas-

sical logicians do generally regard the applicability of classical logic as extending

beyond mathematics as well, but are at least open to the possibility that it may

require modification for extramathematical applications, since mathematics has

so many features peculiar to itself: mathematicians insist that definitions should

be fully precise, whereas ordinary language is full of vagueness; mathematicians

insist that before a term is introduced, the existence and uniqueness of the item it

is to denote must be proved, whereas in ordinary language such presuppositions

often fail; and so on.)

At this point it is necessary to note a contrast between two different kinds of

criticism of classical logic. It is agreed on all sides that in some sense logic is

concerned with norms (of valid argument). But there is a great difference—all the

difference between is and ought—between describing what the norms operative in

1 The school in question is that represented by Anderson and Belnap (1975) and

Anderson, Belnap, and Dunn (1992). These works have extensive bibliographies covering
‘‘relevantism’’ in all senses of the term.
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a given community are, and prescribing what they ought to be. In linguistics this

distinction (the distinction between descriptive and prescriptive grammar, be-

tween Chomsky and Fowler) is universally recognized. It needs to be recognized

in logic also. There is a difference between prescriptive criticism, alleging that

classical logic correctly describes unacceptable practices in the community of

orthodox mathematicians, and descriptive criticism, alleging that classical logic

endorses incorrect principles that are not operative in the practice of that

community.

The paradigm of prescriptive criticism is the intuitionist attack on classical

logic. Neither Brouwer nor any of his disciples ever suggested classical logicians

were wrong in describing what pass for proofs in the orthodox mathematical

community as often involving the inference from the double negation of a pro-

position to the proposition itself. The intutionists’ quarrel was not with the small

body of classical logicians, but with the much larger body of orthodox mathe-

maticians, whose practices, they insisted, were in need of revision. (Classical

logicians were liable to censure only if they went beyond describing orthodox

mathematicians as appealing double negation elimination to endorsing the prac-

tice of doing so.)

The prescriptive character of the intuitionist critique is evident from the

mathematical practice of intuitionist logicians themselves, in proving metatheo-

rems about intuitionistic logic. A genuine intuitionist proving a metatheorem will

take care never to appeal to double negation elimination or, more generally, to

make any argumentative move that cannot be represented in intuitionistic logic. Or

if the intuitionist logician does sometimes reason like the orthodox, it is only

because there has previously been established some metatheorem to the effect that

in the particular kind of case in question, a classical proof can always be replaced by

an intuitionistic one. And (it ought to be needless to say) ‘‘established’’ here can

only mean established by intuitionistically acceptable proofs.

By contrast with all this, relevantists have historically virtually never troubled

themselves to check through their proofs of metatheorems to make sure that no

principle they reject has been appealed to. The most natural explanation for this

insouciance is that their criticism has implicitly been meant as descriptive rather

than prescriptive, and that the fault of the classical logicians, according to them,

has been that of endorsing unacceptable principles that are not in practice used by

orthodox mathematicians. Also, the rhetoric attending the historically most im-

portant statements of the relevantist position—their pose as indignantly cham-

pioning common sense against the monstrous ‘‘paradoxes’’ propounded by

classical logicians—is a more explicit indication that the criticism has been in-

tended as descriptive.

If the descriptive criticism fails—and in particular, if it turns out that rele-

vantists themselves constantly argue in what purport to be proofs of meta-

theorems about their own formal systems by appeal to principles rejected in those
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systems—the historically earliest form of the dispute between relevantism and

classicism will have been decided in the classicist’s favor. The options remaining

to the relevantist will then be two.

On the one hand, a relevantist might adopt a compatibilist position, pre-

senting relevantist logic not as an alternative intended to supplant classical logic

but, at most, as an adjunct intended to supplement it somehow. This would be to

give up criticism of classical logic altogether.

On the other hand, a relevantist might become a presciptive critic, adopting a

revisionist position, demanding, like the intuitionist, a reform of orthodox math-

ematical practice (though not the same reform the intuitionist demands). This

would require in the first place a reform of their own mathematical practice,

appealing henceforth only to laws of relevantist logic when proving mathematical

metatheorems about their own formal systems.

2. The Relevantist’s Options

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

So much, for the moment, about the general character of the dispute between

classicists and relevantists. As for the particulars on which relevantists differ from

classicists, and among themselves, the most crucial issues can be illustrated at the

level of sentential logic, and in connection with entailments where the only logical

operators involved in premise(s) and conclusion are conjunction, disjunction,

and negation. Thus the forms of premise(s) and conclusion alike can be repre-

sented by formulas built up from atoms or atomic formulas p, q, r, . . . by means of

the symbols caret and wedge and tilde (^ and_ and ) for the three logical oper-

ations just mentioned. We call these elementary formulas.

Most relevantists (in contrast to intuitionists, who reject the law of the

excluded middle, for example) have been willing to agree, at least for the sake of

argument, with the classical position as to which elementary formulas represent

contradictions and which tautologies. The disagreement that will be examined

below is over which elementary formulas entail which.

We write ‘ for entailment. As already indicated, the primary target of criti-

cism is the following principle:

(A) If a1, . . . , am are contradictory, then a1, . . . , am‘b.

And the secondary target is this further principle:

(B) If b is tautologous, then a1, . . . , am‘ b.
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The cases most often discussed are

(A1) p^p‘q
(A2) p, p‘q

and to a lesser extent

(B1) p ‘q_q.

But while in practice it is these cases that are primarily discussed, in principle the

critics reject (A) and (B) quite generally.

Now how does the rejection of (A) and (B) square with orthodox mathe-

matical practice? That is the issue to be considered in evaluating relevantism as a

descriptive criticism of classical logic. On this issue, relevantists have been quick

to remark that generally neither mathematicians nor other people set about trying

to deduce conclusions from premises they recognize to be contradictory; nor do

people generally spend much time looking for premises from which they might

deduce a conclusion they recognize to be tautologous. This observation is clearly

correct; what is not so clear is why it should be thought to motivate a nonclassical

logic in which there is some interesting distinction between those conclusions that

are and those that are not entailed by a given contradiction, and between those

premises that do and those that don’t entail a given tautology.

More important, despite the foregoing observation, it does often happen that

a mathematician engaged in lengthy deductions may through some slip (say,

leaving out a minus sign, or writing an inequality symbol backward) arrive at a

contradiction or other absurdity without noticing the fact. And when this hap-

pens, it does often happen that the mathematician may then go on to deduce, by

what appears to be quite ordinary mathematical reasoning, whatever conclusions

the mathematician in question may have been seeking. This type of occurrence

may be called the Poincaré phenomenon, after Henri Poincaré, who observed:

The candidate often takes an immense amount of trouble to find the first false

equation; but as soon as he has obtained it, it is no more than child’s play for him to

accumulate the most surprising results, some of which may actually be true.2

There is also a dual type of occurrence, where carrying out a long deduction, by quite

ordinary mathematical reasoning (such as simple calculations involving rearranging

terms in equations, or performing similar operations on both sides), results in

obtaining what turns out at the last moment to be a tautology or other triviality. This

may be called the Quine phenomenon, after W. V. Quine, who observed:

2 ‘‘The New Logics,’’ in Poincaré (1960), p. 161.
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. . . the beginner in algebra works in danger of finding that his solution-in-pro-

gress reduces to ‘‘0¼ 0.’’3

What the Poincaré and Quine phenomena suggest is that if one rejects (A) or

(B), one is going to have to reject some quite ordinary pattern of deduction, such

as is used by mathematicians and others who go in for long trains of arguments.

And indeed, if one wishes to reject (A), the options are quite limited, as can be

seen from the following derivation, establishing (A2).

(1) p premise

(2) p premise

(3) p_ q from (1)

(4) q from (2), (3)

The principle that gives (3) from (1) is the that a disjunction is entailed by

either disjunct.

(C1) p ‘ p_ q

(C2) q ‘ p_ q

A slightly more elaborate variant of the first of these is the following:

(C3) p^ r ‘ ( p_ q)^ r.

Since those who reject any one of the principles just listed tend to reject the others

as well, all of them, as well as other minor variants, will be referred to below

collectively as (C) or disjunctive weakening.

The prinicple that gives (4) from (2) and (3) is

(D1) p_ q, p ‘ q.

This two-premise version has a one-premise variant.

(D2) (p_ q)^p ‘ q.

Both of these, and other minor variants, will be referred to collectively below as

(D) or disjunctive syllogism.

The derivation (1)–(4) is usually called the Lewis argument after C. I. Lewis, who

first brought it to the general attention of logicians in modern times, after medieval

antecedents had been largely forgotten.4 The Lewis argument seems to show that one

3 ‘‘Carnap and Logical Truth,’’ in Quine (1966), p. 105.
4 For the history of the argument, see Anderson and Belnap (1975), §16.1, pp. 163ff.
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who rejects (A) must reject either disjunctive weakening (C) or disjunctive syllogism

(D). But actually there is a third alternative—namely, to reject the transitivity of

entailment, the principle that if certain initial premises entail each of certain inter-

mediate steps as conclusions, and these in turn, taken as premises, entail a certain

ultimate conclusion, then the initial premises entail the ultimate conclusion.

The issue here is most clearly seen in connection with the following variant of

the Lewis argument.

(C4) p^p ‘ (p_ q)^p

(D2) (p_ q)^p ‘ q

(A1) p^p ‘ q.

Here the particular version (C4) of (C) used is an instance of the version (C3)

cited earlier. The (meta-)principle needed to get from (C4) and (D2) to (A) is the

simplest case of transitivity.

(E) If a‘b and b‘ g, then a‘ g.

All three options have been taken up by critics in the literature: the least

popular option has been to reject disjunctive weakening; the most popular has

been to reject disjunctive syllogism; rejection of transitivity has been somewhere

in between. The three options will be considered separately below, in order of

increasing popularity.

One sometimes also meets in the literature with what at first glance appears to

be a fourth option, namely, to claim there is a fallacy of equivocation in the Lewis

argument. The equivocation is supposed to be between two senses of disjunction,

a weaker extensional and a stronger intensional sense. It is claimed that disjunctive

weakening holds for the former but not the latter, while disjunctive syllogism

holds for the latter but not the former.

Usually extensional disjunction is written _ , and classical logic is held to give

a correct account of which formulas involving it represent contradictons and

which tautologies, while intensional disjunction is written þ, and the enunciation

of its laws is taken to be one of the tasks for a new, nonclassical logic. But so

understood, the apparent fourth option is really just a suboption under the

second option: it amounts to rejecting (D) but softening the rejection by adding a

further claim to the effect that there is an acceptable principle resembling (D),

namely, the principle that results from it on replacing_with þ.

The option of rejecting disjunctive weakening has been favored by so few

relevantists that it will be given only very brief attention.5 The only principle that

5 This option is involved in the ‘‘analytic implication’’ of Parry and the ‘‘connexive

implication’’ of McCall, for which see Anderson and Belnap (1972), §§29.6–29.8, pp. 429ff.
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has been advanced in support of such a rejection is the principle that in an

entailment, the subject matter of the conclusion must be contained in the subject

matter of the premise. Since formulas involving distinct atoms p and q will

presumably have instances in which the subject matter of what is substituted for

one letter p has nothing to do with that of what is substituted for q, the formal

representation of the ‘‘inclusion of subject matter’’ requirement is that no atom

should appear in the conclusion that does not appear in the premise, which of

course immediately leads to the rejection of (C).

This has seemed unacceptable even to the great majority of relevantists. Yet

one may wonder why anyone would wish to infer a disjunction p_ q from a

disjunct p, since the former in an obvious sense contains less information than the

latter. One reason is a desire to subsume a particular case under a generalization.

Thus in mathematics one may want to prove (Vn)(P(n)_Q(n)), and one way to

do this may be by induction, proving P(0)_Q(0) and P(1)_Q(1) and then

proving that if the theorem holds for n and nþ 1, it holds for nþ 2. And one way

to prove P(0)_Q(0) and P(1)_Q(1) may be to deduce the former from P(0) and

the latter from Q(1), by disjunctive weakening. Reasoning of this kind is in fact

common in mathematical proofs, and insofar as the question before us is whether

classical logic gives a correct description of orthodox mathematical standards of

proof, this fact allows the relevantist position rejecting disjunctive weakening to

be dismissed.

3. The Option of Rejecting

Transitivity: Perfectionism

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The great majority of relevantists do not wish to insist that the subject matter of

the conclusion must be contained in that of the premise, though they do wish to

insist that the two should overlap. This overlap is a bare minimum to require in

the way of ‘‘relevance’’ between premise and conclusion. Now this bare minimum

of relevance in fact obtains in all classical entailments where the premise is not

contradictory and the conclusion not tautologous, as a consequence of the Craig

Interpolation Theorem. That theorem says that, except in the degenerate cases just

excluded, if a‘ g, then there is a b, called an interpolant, such that a‘b and b‘g,
and every atom appearing in b appears both in a and in g.

Actually, something still stronger is true, which it will be useful for future

purposes to note now. We may distinguish, among the appearances of an atom p

in an elementary formula a, the positive from the negative. When a is just the

734 oxford handbook of philosophy of math and logic



atomic formula p itself, the one and only appearance of p is positive. The positive

appearances of p in a^ b and in a_b are just the positive appearances in a
together with the positive appearances in b; and similarly for negative appear-

ances. Finally, the positive appearances in a are the negative appearances in a
and vice versa. Thus in the premise (p_ q)^p of disjunctive syllogism, the first

appearance of p is positive and the second negative, while the only occurrence of q

is positive. The Lyndon Interpolation Theorem tells us that in the Craig Inter-

polation Theorem the interpolant bmay actually be so chosen that the only atoms

occurring positively in b are ones appearing positively both in a and in g, and
similarly for negative appearances.

Thus classical entailment does guarantee a bare minimum and more than a

bare minimum of ‘‘relevance,’’ except in the two degenerate cases. Relevantists will

not allow those exceptions, and wish to insist in all cases on premise and con-

clusion having one or more atoms in common. Atoms being also called ‘‘sen-

tential’’ (or ‘‘propositional’’) ‘‘variables’’ (or ‘‘letters’’), the requirment of atoms in

common is often referred to as the variable-sharing requirement.

The classical criterion of validity—that by virtue of logical form alone, if the

premise is (or the premises all are) true, then so is the conclusion—is often call

truth-preservation. Relevantists have sometimes written in a way that might sug-

gest to the reader that they hold a ‘‘two-factor’’ theory of entailment according to

which what is required for a genuine entailment is just the presence of both these

features, truth-preservation and variable-sharing; but in fact relevantists generally

hold no such a theory. Variable-sharing all by itself (as the sole addition to truth-

preservation) is not enough to satisfy relevantists, who generally reject, for in-

stance, the following version of (A):

(A4) (p^p)_ r ‘ q_ r.

Here the addition of the disjunct r to both sides of (A1) results in the variable-

sharing condition being fulfilled, but fundamentally we still have truth-preservation

here only because the first disjunct in the premise is contradictory. What relevant-

ists really want is not just that variable-sharing should be present alongside truth-

preservation, but that it should be variable-sharing that underlies truth-preservation,

so to speak.

One case where variable-sharing must be what underlies truth-preservation is

of course where the premise is not a contradiction and the conclusion not a

tautology. One cannot, however, accept as correct laws of logic only those classical

entailments a ‘ b where a is noncontradictory and b nontautologous. This is

because formulas and entailments involving formulas are supposed to hold in all

instances, no matter what is put in for p and q and r and so on. On the formal level,

this understanding is represented by the rule of substitution, to the effect that if
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a‘b and a0 and b0 are obtained from a and b by substituting formulas p1, . . . , pk
for atoms p1, . . . , pk, then a0 ‘ b0. Thus, from the entailment a^b‘ a, which even

relevantists accept, it follows there follows the entailment a^a‘ a, despite the
fact that the premise in this case is contradictory. Similary, b‘b_b.

One school of relevantists, however, takes examples of the kind we have just

been discussing to be the only exceptions to the rule that the premise must not be

contradictory and the conclusion must not be tautologous. To state the position

more precisely, call an entailment a‘b perfect—or ‘‘as good as an argument can

be on formal grounds’’—if it holds classically and a is not contradictory and b is

not tautologous; and call it perfectible if it is obtainable by substitution from a

perfect entailment. The school of relevantists we have in mind take the acceptable

entailments to be precisely the perfectible ones. This position involves rejection of

transitivity of entailment, since in the second version of the Lewis argument above

(C4) and (D2) are easily seen to be perfectible, while (A1) is not.

There is some question of how this perfectionist criterion should be extended

to arguments with multiple premises, and in the literature arguments with

multiple conclusions have also been considered. Classically, a sequent

a1, . . . , am‘ b1, . . . , bn

is taken to hold if logical form guarantees that either at least one of the premises ai
is false or at least one of the conclusions bi is true. Note that the multiple premises

are being taken conjointly, and the conclusions alternatively. That is, classically

the sequent holds if the simple one-premise, one-conclusion entailment

a1^ � � � ^ am‘b1_ � � � _bn

holds.

These definitions are to be understood in such a way that, as a special case, if

the set of conclusions b is empty, then

a1^ � � � ^ am‘Ø

holds if and only if the ai are contradictory taken conjointly, and in particular

a‘£

holds if a is contradictory. Similarly,

£‘b
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holds if b is tautologous, and when

£‘ b1_ � � � _ bn,

we may say that the bj are tautologous (taken alternatively).

Now one way to extend the one-premise, one-conclusion version of the

perfectionist criterion would be to take

a1, . . . , am‘ b1, . . . , bn

to be perfectible and acceptable if and only if

a1^ . . .^ am‘b1_ � � � _bn

is. But there is a different, and in some respects more natural, way to carry out the

extension. If we look again at the above definitions, we see that

a‘ b

is perfect if and only if it holds classically while

a‘£

and

£‘ b

do not. Generalizing, we may take

a1, � � � , am‘ b1, � � � , bn

to be perfect if it holds classically, but no longer does so if the left-hand side is

replaced by any proper subset of the ai or the right-hand side by any proper subset

of the bj. We may then define the sequent to be perfectible if it is obtainable by

substitution from a sequent that is perfect in the sense just indicated. This is

Tennant’s perfectionist logic, at the sentential level (see chapter 23 above).

Tennant’s logic is decidable, at the sentential level. For note, first, that if a

formula involves n sentence and connective and punctuation signs altogether,

then any formula of which it is a substitution instance involves no more than n

such signs. Note further that if a formula involves no more than m such signs

and no more than k sentence letters, the formula is a substitution instance of a
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formula involving no more than m such signs and involving no sentence letters

beyond the first k. Note further that there are only finitely many formulas having

no more than m signs and no sentence letters beyond the first k. Note finally that

this observation generalizes to sets of formulas. So for given sets of ai and bj , in
seeking to determine whether the sequent having the former as premises and the

latter as conclusions holds only finitely many pairs of other sets of sentences need

to be evaluated classically (which may be done by truth tables or otherwise).

The main advantage of working with sequents is that though transitivity fails

for perfectionist logic in the sense that

a1, . . . , am‘ b1, . . . , bn

and

b1, . . . , bn‘ g1, . . . , gk

may be perfectible while

a1, . . . , am‘ g1, . . . , gk

is not, nonetheless one can develop (meta-)rules for passing from sequents taken

as ‘‘premises’’ to a sequent taken as ‘‘conclusion,’’ and the operation of these

(meta-)rules is transitive. One has transitivity ‘‘one level up,’’ so to speak. This

makes it possible to represent perfectionist logic as a deductive system comparable

to the deductive system for classical logic when the latter is developed in ‘‘sequent

calculus’’ or Gentzen style.

Now in every branch of mathematics, axioms are assumed, various combi-

nations of them are used to obtain lemmas, various combinations of axioms and

lemmas are used to obtain theorems, various combinations of axioms and lemmas

and theorems are used to obtain corollaries, and all the lemmas and theorems and

corollaries are taken to follow from the axiom set initially assumed, as well as

from any larger axiom set subsequently assumed. These are the facts that show

that mathematicians treat entailment as transitive. And if we are concerned only

with the question of whether classical logic correctly describes orthodox mathe-

matical practice, any position rejecting transitivity would have to be rejected for

this reason alone.

Nonetheless, a revisionist version of perfectionism, according to which,

though mathematicians in practice do give ‘‘proofs’’ relying on transitivity, they in

principle ought not to do so, might be thought to have certain attractions in view

of some formal results of Tennant’s. For Tennant seems to show that though

orthodox mathematicians make moves in ‘‘proofs’’ not directly representable by

sequent-calculus derivations in his system, if one is concerned only with provability
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and not directly with proof, there is no great loss.6 It is not quite true that every

classical ‘‘proof ’’ can be replaced by a perfectionist ‘‘proof,’’ leaving the class of

conclusions provable from given premises unchanged; but something quite close

to this, and quite attractive, does hold.

Let us try to describe Tennant’s result more precisely. For a given set

A¼ a1, . . . , am

of premises and a given conclusion b, a mathematician’s proof of a theorem

whose logical form is represented by b from a set of premises whose logical form

is represented by A can fairly routinely be represented by a derivation of A‘ b in a

sequent-calculus version of classical logic with the Cut rule (a version of transi-

tivity). By the Cut Elimination Theorem of Gentzen, the uses of Cut can in

principle be eliminated. Then Tennant shows how to transform a Cut-free clas-

sical derivation of A‘ b into a derivation in his perfectionist system.

The result this two-step transformation is not always a derivation in the

perfectionist system showing that A‘ b holds perfectionistically. This could or can

fail in two situations. If A were inconsistent, A‘ b might fail perfectionistically,

and if it did, the result of the two-step transformation would be a derivation

showing that A‘. If the original hypotheses are not all needed, A‘ b may fail

perfectionistically, and if it does, the result of the two-step transformation will be

a derivation showing that A0 ‘ b for some proper subset A0 of A. Since ultimately

the mathematician is interested in proving results from consistent axioms and

from the fewest of those possible, Tennant’s result seems to say that nothing, or

next to nothing, is lost by switching from classical logic to perfectionist logic:

where a classical entailment is rejected, perfectionism supplies an improvement.

There is, however, a difficulty here. Transitivity, as noted above, is involved

whenever a lemma is deduced from axioms and a theorem then deduced from the

lemma, and claimed to follow from the axioms, and is thus ubiquitous in ordinary

mathematical proofs. When these proofs are formalized in sequent calculus,

instances of transitivity become instances of Cut. Obtaining perfectionist replace-

ments for the proofs would require first eliminating Cut. But in general, Cut can be

eliminated only at the cost of making proofs infeasibly long.7 So even though in

principle almost anything classically provable will be perfectionistically provable or

else something even better will be, in practice the proofs mathematicians actually

give not only do fail to adhere to the restrictions of perfectionism, butmust do so if

they are to be kept to a humanly comprehensible length.

6 The interpretation of Tennant’s results, and the question of whether they merely

seem to show that there is no great loss or really do so, are unsurprisingly not uncon-

troversial. My evaluation will appear below.
7 See ‘‘Don’t Eliminate Cut,’’ in Boolos (1998), pp. 365–369.
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The perfectionist might reply that in practice mathematicians could go on

working as they do now, since Tennant’s work shows that in principle everything, or

almost everything, they are doing could be justified from a perfectionist standpoint.

The trouble with this response is that it relies on a theorem—Tennant’s result

described above—for which only a classically and not a perfectionistically acceptable

‘‘proof ’’ has been given. How far can a logician who professes to hold that perfec-

tionism is the correct criterion of valid argument, but who freely accepts and offers

standard mathematical proofs, in particular for theorems about perfectionist logic

itself, be regarded as sincere or serious in objecting to classical logic? This question

will be left to the reader to ponder, as we turn to consideration of the one remaining

relevantist option, rejection of disjunctive syllogism.

4. The Option of Rejecting

Disjunctive Syllogism: Stringency

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The very simplest elementary entailments are perhaps those of the form

()p1^ . . .^ ()pm‘ ()q1_ . . ._ ()qn,

where the premise is a conjunction, and the conclusion a disjunction, of plain or

negated atomic formulas or sentence letters. These may be called proto-elementary.

Classically, a proto-elementary entailment holds in three cases:

(I) Some atom occurs with the same sign in both premise and conclusion.

(II) Some atom occurs both plain and negated in the premise.

(III) Some atom occurs both plain and negated in the conclusion.

Here (I) means that either some atom occurs positively or plain in both, or that

some atom appears negatively or negated in both. Perfectionist logic does not

recognize cases (II) and (III), and takes (I) to be a necessary and sufficient con-

dition for the entailment to hold. The major school rejecting Disjunctive Syllogism,

‘‘relevance’’ or ‘‘relevant’’ logic, adheres to the same criterion for proto-elementary

entailments, but arrives at different results about more general elementary entail-

ments, including Disjunctive Syllogism.

Since the roots of ‘‘relevance’’ or ‘‘relevant’’ logic are traced back by the logicians

of that school itself to Wilhelm Ackermann,8 we may sidestep the ‘‘relevance’’/

‘‘relevant’’ terminological problem by adopting (a suitable English translation of )

Ackermann’s label for the kind of logic in question. Ackermann, writing in German,

8 See the dedication to Anderson and Belnap (1972).
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called his system strenge Implikation. Now though this was intended as a translation

of Lewis’s label ‘‘strict implication,’’ Ackermann’s system is very different from any

of those considered by Lewis. So in translating his German back into English, wemay

use a different word than ‘‘strict,’’ namely, ‘‘stringent.’’

The first (historically earliest) formulation of the stringency criterion for

general elementary entailments was based on an alternative to truth tables as a

method for testing classical elementary entailment. The classical method has four

steps:

(i) Repeatedly apply the double negation and De Morgan laws of

classical sentential logic, which stringent logicians accept, to replace

subformulas

a by a
(a^b) by a_b
(a_b) by a^b

so as to reduce premise and conclusion to formulas built up from

plain and negated atoms by conjunction and disjunction.

(ii) Similarly apply the distributive laws of classical sentential logic, which

stringent logicians also accept, to replace subformulas

a^ (b_ g) by (a^ b)_ (a^ g)
(a_ b)^ g by (a^ g)_ (b^ g)

in the premise and subformulas

a_ (b^ g) by (a_ b) ^ (a_ g)
(a^ b)_ g by (a_ g)^ (b_ g)

in the conclusion, so as to reduce the premise to the form

a1_ a2_ . . .

and the conclusion to the form

b1^ b2^ . . .

where each ai is a conjunction of, and each bj is a disjunction of plain

and negated atomic formulas.

(iii) Apply the laws of disjunction elimination and conjunction

introduction of classical sentential logic, which stringent logicians also

accept, to reduce the question of whether the premise entails the
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conclusion to the question of whether each ai entails each bj,
a question of proto-elementary entailment.

(iv) Apply the classical criteria (I), (II), (III) to answer these questions of

proto-elementary entailment.

Stringent logic’s departure from classicism occurs only at the last step here,

where instead of (iv) one would have

(iv*) Apply the criterion (I) to answer the questions of proto-elementary

entailment.

To illustrate the process, consider Disjunctive Syllogism

(D2) (p_ q)^p ‘ q.

At step (i) there is nothing to do. At step (ii) we get

(p^p)_ (q^p)‘ q

At step (iii) we get two entailments to consider:

p^p ‘ q

q^p ‘ q.

The latter is acceptable by (I), but the former, though acceptable classically by (II),

is rejected by stringent logicians; so (D2) is rejected.

For another example, consider the dual to Disjunctive Syllogism

(D2*) (p^ q)^ p ‘q.

At step (i) we get

(p_q)^ p ‘q.

At step (ii) we get

(p^ p)_ (q^ p)‘q.

At step (iii) we get

p^ p‘q

q^ p‘q.
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And again the latter holds stringently, but the former holds only classically, not

stringently; so (D2*) is rejected.

Now it seems that Disjunctive Syllogism (D2), and for that matter its dual

(D2*), are used ubiquitously in mathematics—and not just in mathematics,

either.9 If this is so, then stringency fails as a descriptive criticism of classical logic.

However, at this point we must take note of an option alluded to earlier, that of

claiming that the apparent instances of (D2) in mathematical proofs are really

instances of something else:

(D2{) (pþ q)^p‘ q,

where þ is an intensional disjunction, stronger than mere _ .

The claim that ‘‘or’’ often means something stronger than_ has been advanced

many times on many different grounds. And certainly, whenever a mathematician

or whoever seriously wants to argue by Disjunctive Syllogism from ‘‘p or q’’ and

‘‘not p’’ to q, the reasoner will be in a position to say something stronger than just

‘‘p_ q.’’ Namely, something like, ‘‘p_ q and my present grounds for this assertion

are not just the knowledge or assumption that p or the knowledge or assumption

that q.’’ For on the one hand, if the reasoner already knows q, there is no need to

infer q by Disjunctive Syllogism or in any other way; while on the other hand, if

the reasoner is assuming p to get p_ q, presumably the same reasoner will not also

at the same time want to be assuming p, the other premise needed for an

application of Disjunctive Syllogism.

But note that the ‘‘something extra’’ over and above p_ q is purely subjective

and may consist of nothing but a state of ignorance on the part of the mathe-

matician or whomever. The reasoner may have established p_ q yesterday by

inferring it from q, and yet today recall only that p_ q has been established, and

not how. Such a reasoner can still say, ‘‘My present grounds for p_ q are not

simply knowledge that p or knowledge that q,’’ for the reasoner’s grounds are,

rather, an imperfect memory of having somehow established p_ q.

Indeed, the reasoner may even remember that it was either by inference from

p or by inference from q, without recalling which. If the reasoner is now satisfied

that ‘‘not p,’’ then the inference by Disjunctive Syllogism may be a way of recov-

ering the knowledge that has been forgotten, since then the inference must have

been from q and not from p.

In mathematics, a later mathematician may start from the case P(0)_Q(0) of

an earlier mathematician’s theorem that Vn(P(n)_Q(n)) and establish P(0),

and so establish Q(0). And the later mathematician may do so without remem-

bering (and, indeed, without ever having known) what the earlier mathematician’s

9 For a compendium of examples, due to E. M. Curley and others, see Burgess (1981).
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proof of Vn(P(n)_Q(n)) was. (Indeed, that proof may even have been an in-

duction starting by inferring P(0)_Q(0) from Q(0). In that case, the later

mathematician’s inference that Q(0) is not new to mathematics, but only to him-

or herself; but that does not make the inference invalid.)

This issue has been extensively discussed in the literature, and the ‘‘inten-

sional disjunction’’ option for defending stringency as a descriptive criticism of

classical logic has, it seems, been pretty well given up.10 The basic implausibility of

this strategy ought to have been apparent from the fact that those who use it are

committed not only to rejecting Disjunctive Syllogism (D2) but also to rejecting

the dual version (D2*); and to defend the latter rejection along the same lines as

the former, one would need to make the dual claim that there are both an

extensional ^ and an intensional � conjunction, with the latter weaker than the

former. But whatever plausibility may attach to the suggestion that there is a sense

of ‘‘or’’ stronger than _ , in which p does not entail ‘‘p or q,’’ none at all attaches

to the dual suggestion that there is a sense of ‘‘and’’ weaker than ^, in which ‘‘p

and q’’ does not entail p.

5. ‘‘By Faith Unfaithful Kept

Falsely True’’

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

There remain to be considered some historically more recent rationales for strin-

gency, based on certain equivalent formulations of the stringency criterion that are

technically more convenient to work with than the original version given in the

preceding section. Suppose the formulas of concern involve atoms p1, p2, p3, . . . . Let

us then introduce new atoms q1, q2, q3, . . . and r1, r2, r3, . . . . For elementary a
involving only p atoms, let a* (respectively *a) be the result of replacing each positive
occurrence of pi with the corresponding qi (respectively ri) and each negative

occurrence with the corresponding ri (respectively qi). The second formulation of the

stringency criterion is: To test if elementary a stringently entails elementary b, test if a*
classically entails b* (or equivalently, if *a classically entails *b; or, equivalently and
more symmetrically, if both).

The second formulation of the criterion can be obtained from the first by

looking at matters from from a classical point of view. From that point of view,

ignoring (II) and (III) when testing for proto-elementary entailment amounts to

10 For the later views of the originators of the option, see Anderson, Belnap, and

Dunn (1992), §80.4, pp. 502ff.
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forgetting that p and p are an atom and the negation of the same atom, and

treating them as if they were just one atom q and the negation r of some other

atom. More formally, performing step (iv*) in the first criterion amounts to first

performing the *-substitution of the second formulation and then performing the

step (iv) of evaluating the proto-elementary entailment resulting by the classical

criterion (because the *-substitution prevents cases (II) and (III), which distin-

guish (iv) from (iv*) from arising).

But now it is readily checked that each of the laws used at steps (i), (ii),

and (iii) is such that the result of first applying the law and then making the

*-substitution or first making the *-substitution and then applying the law is

the same. For instance, for double negation one has (a)*¼(a*). So instead

of performing (i), (ii), (iii), *, (iv), one could perform (i), (ii), *, (iii), (iv) or (i), *,

(ii), (iii), (iv) or *, (i), (ii), (iii), (iv). Since any other test for classical entailment

would yield the same result as the test consisting in performing steps (i), (ii), (iii),

(iv), the whole amounts simply to performing the *-substitution and testing by

one method or another for classical entailment, which is the second formulation of

the criterion. (This remains so whether ‘‘the *-substitution’’ means substituting q-

atoms for positive and r-atoms for negative occurrences, or the reverse. Hence the

parenthetical clause at the end of the second formulation.)

The second formulation shows that if a stringently entails b, then a perfectibly
entails b. For if a stringently entails b, then a* classically entails b*; and since a

formula like a* or b*, in which no atom occurs both positively or negatively,

cannot be unsatisfiable or tautologous, because it can always be valued true

(respectively, false) by so valuing the atoms that occur positively (respectively,

negatively) and valuing oppositely the other atoms, it follows that a* perfectly

entails b*; and since a and b are obtainable by substitution, namely of each pi for

both qi and ri, from a* and b*, it follows that a perfectibly entails b.
The second formulation shows that substitution holds for stringent entail-

ment. For suppose a stringently entails b, so that a* classically entails b*, and
consider the result of substituting a formula p for an atom p in a and b to obtain g
and d, respectively. A little thought shows that the result of performing the

*-substition to obtain g* and d* is the same as the result of substituting p* for q
and *p for r in a* and b*, and hence g* classically entails d*, and g stringently

entails d.
The second formulation also shows that transitivity of entailment or hypo-

thetical syllogism holds stringently. For if a stringently entails b, which stringently

entails g, then a* classically entails b*, which classically entails g*; thus a* clas-

sically entails g* and a stringently entails g.
At this point it is possible to make various ‘‘cosmetic’’ changes in the pre-

sentation of the second stringency criterion. A Routley–Routley valuation or

Sylvan–Plumwood valuation or double valuation is a pair (V*,*V ) of assignments
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to atoms of truth-values, 1 for true and 0 for false, extended to compound for-

mulas by the following recursion equations.

(V*(a),*V(a))¼ (1-*V(a), 1-V*(a))

(V*(a^b),*V(a^b))¼ (min(V*(a), V*(b)), min(*V(a), *V(b)))

(V*(a_b),*V(a_b))¼ (max(V*(a), V*(b)), max(*V(a), *V(b)))

Then b is a (right) double consequence of a if V*(a)�V*(b) in all double val-

uations (and a left double consequence if *V(a)� *V(b), and a symmetrical double

consequence if both). A third formulation of the stringency criterion is: To test if

elementary a stringently entails elementary b, test if b is a (right) double consequence

of a (or equivalently, a left double consequence, or equivalently a symmetrical

double consequence).

The third formulation of the criterion can be obtained from the second by

camouflaging the role of the q-atoms and r-atoms. The second formulation says

to test whether for all valuations V of the q-atoms and r-atoms, extended clas-

sically to compound formulas, it is the case that V(a*)�V(b*). Take a valuation
V of q-atoms and r-atoms and a pair (V*,*V ) of valuations of p-atoms to cor-

respond if for all pi one has V*(pi)¼V(pi*)¼V(qi) and *V(pi)¼V(*pi)¼V(ri).

Observe, first, that every V corresponds to exactly one (V*,*V ) and vice versa.

Observe, second, that one will have V*(a)¼V(a*) and *V(a)¼V(*a) not just for
atoms but for all elementary a if one extends the pair (V*,*V ) to molecules by the

above recursion equations for , ^, and _ , which are nonclassical for  because

it reverses positive and negative occurrences, and classical for ^ and_ because they

preserve positive and negative occurrences. These observations together establish

the equivalence of the second and third formulations of the criterion (with the

parenthetical clause at the end of the second corresponding to the parenthetical

clause at the end of the third).

A fourth formulation can be obtained by sensationalizing the third. A dia-

lectical valuation is an assignment V to atoms of a subset of the set {0,1} of

classical truth-values, which may be {1} or true and unfalse, or may be {0} or false

and untrue, or may be £ or untrue and unfalse, or may be {0,1} or true and false,

extended to molecules by the following recursion conditions:11

0 2 V(a) iff 1 2 V(a)
1 2 V(a) iff 0 2 V(a)
0 2 V(a^b) iff 0 2 V(a) or 0 2 V(b)
1 2 V(a^b) iff 1 2 V(a) and 1 2 V(b)

11 The particular labels for the subsets given here represent only one of several

options or ‘‘plans.’’ One could, for instance, call the four values true, false, gap, and glut.
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0 2 V(a_b) iff 0 2 V(a) and 0 2 V(b)
1 2 V(a_b) iff 1 2 V(a) or 1 2 V(b)

Then b is a (right) dialectical consequence of a if for any dialectical valuation, if 1 is
among the values of a, then 1 is among the values of b (and a left dialectical

consequence if whenever 0 is among the values of b, then 0 is among the values of

a; and a symmetrical dialectical consequence if both). A fourth formulation of the

stringency criterion is: To test if elementary a stringently entails elementary b, test if
b is a (right) dialectical consequence of a (or equivalently, a left dialectical con-

sequence, or equivalently a symmetrical dialectical consequence).

The fourth formulation can be related to the third as follows. Take a dia-

lectical valuation V and a double valuation (V*,*V ) to correspond if and only if for

all atomic a one has 1 2 V(a) if and only if V*(a)¼ 1 and 0 2=V(a) if and only if

*V(a)¼ 1, so that V* says whether something is true or untrue, and *V whether

something is unfalse or false. Then it can be observed that every dialectical

valuation corresponds to exactly one double valuation and vice versa. And,

comparing the two sets of recursion equations, it can be observed that the con-

dition on atomic a defining correspondence actually holds for all a. This suffices
to establish the equivalence of the third and fourth formulations (with the par-

enthetical clause at the end of third corresponding to the parenthetical clause at

the end of the fourth).

Further ringing of changes is possible, but with the dialectical valuations we

have come as far as we need to for present purposes. Note that with the last

formulation, the notion that there is some subject-matter overlap requirement

additional to truth-preservation has wholly dropped out, and entailment has

become just truth-preservation for the enlarged set of four rather than the classical

set of two truth-values. (By contrast, it can be shown that perfectionist logic is not

a finite-valued logic.) This is one reason why some feel it inappropriate to call

stringent logic ‘‘relevance logic’’ or ‘‘the logical of relevance.’’ On the other hand,

attractive as it may be to relevantists to call their logic ‘‘relevant logic’’ and

classical logic an ‘‘irrelevant logic,’’ this terminology is objectionable in the same

way as would be a proposal to call Brouwer’s logic ‘‘intuitive logic’’ and classical

logic ‘‘counterintuitive logic’’.

Various rationales for stringency based on the alternate formulations have

been advanced by various logicians with varying degrees of commitment, all based

on the notion that something can be both true and false. This notion is under-

stood by moderates in a figurative or imaginary sense, as ‘‘epistemic’’ truth ac-

cording to a database or information corpus or belief system or whatnot; it is

understood by radicals in a literal or real sense as ‘‘metaphysical’’ truth-in-the-

world. In a terminology introduced earlier, to rely on the moderate’s notion as a

rationale would in effect amount to adopting a compatibilist position (though in

actual fact the primary exposition of the moderate position was not accompanied
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by a retraction of the authors’ previous criticisms of classical logic); while to rely

on the radical’s notion as a rationale would in effect amount to adopting a re-

visionist position (though in actual fact, enunciations of this view have not been

followed by much work on revising ‘‘proofs’’ of metatheorems about ‘‘relevance’’

or ‘‘relevant’’ logics that rely on Disjunctive Syllogism).

The moderate idea is the basis for a suggestion about the potential utility of

relevantism. The background is as follows. In ancient history, logic arose in a

context of public debate in which argument was used at least as much for purposes

of refutation as for purposes of demonstration: The recognition that a previously

accepted premise entails some previously not accepted conclusion was taken to be

grounds for ceasing to accept the premise at least as often as it was taken to

be grounds for beginning to accept the conclusion. (This fact doubtless facilitated

the recognition that logical validity of an argument is not simply a matter of truth

or falsehood of premise or conclusion.) The critical faculty of being able to use the

recognition of logical relationships thus in the reverse direction, like the more basic

critical faculty of being able to reject some of what one is told, is an essential feature

of natural intelligence. But it is a feature that ‘‘artificial intelligence’’ may not find it

technically feasible to imitate in the foreseeable future.

In designing a computer to answer questions by inference from a database of

things it has been told, allowance may have to be made for the fact that perhaps

the computer cannot in the present state of the art be designed to reject any of its

database (even when same item has been both said to be true and said to be false),

or to use recognition of classical logical entailment relations between an accepted

premise and an unaccepted conclusion as grounds for rejecting the premise (even

when the conclusion has no overlap of subject matter with the premises, so that by

the classical interpolation theorem, unless the conclusion is tautologous—in

which case it is deducible even without the premise—the premise must be

inconsistent). The computer, so to speak, may not be able to exhibit anything

worthy of being called artificial intelligence, but only a kind of artificial bureau-

cratic stupidity. If so, it may well be appropriate not to allow such a computer to

recognize all classical entailments, and it may even be appropriate to allow such a

computer to recognize all and only stringent entailments.12

The classical response to this suggestion has a positive aspect, the acknowl-

edgment that thus nonliterally interpreted stringent logic may well be useful in the

manner described: that is for specialists in computer science to say. It also has a

negative aspect, the insistence that the entailment relations it would be appropriate

to allow a computer with limitations of the kind described to recognize are not the

12 See Anderson, Belnap, and Dunn (1992), §81, pp. 506ff., though it is a lot easier to

see why we would not want the computer to be able to infer anything whatsoever from a

contradiction than why we would not want the computer to be able to infer a tautology

from anything whatsoever.
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only entailment relations that hold, and that the possible usefulness of stringent

logic for the kind of application in question in no way sustains any relevantist

criticism of classical logic.

The radical idea is that classical logic fails for the simplest reason, namely, that it

is not truth-preserving, because there are cases where a premise of form a^a is

true, while not every conclusion b is true.13 Tradition is scoured for examples of

truths of the form a^a: Epimenides (‘‘What I am now saying is false’’), Heraclitus

(‘‘The way up and the way down are the same’’), Zeno (‘‘The arrow is both in

motion and at rest’’), Athanasius (‘‘God is both one and three’’), Leibniz (‘‘Infini-

tesimals are both distinct from zero and less than anything greater than zero’’), Kant

(‘‘Space and time are infinite in extent and divisibility, and space and time are finite

in extent and divisibility’’), Hegel-Marx-Engels-Lenin-Stalin-Mao (‘‘There is con-

tradiction in all things’’), Meinong (‘‘The round square is as surely round as it is

square’’), Russell (‘‘The set of non-self-elements is a self-element and a non-self-

element’’), Bohr (‘‘Waves are particles, and vice versa’’), and others are canvassed.

The classical response, when there has been one—for some principles are so

fundamental that there can hardly be non-question-begging argument about them,

and many would hold that the law of noncontradiction is one of these14—has most

often been that of Wellington (‘‘If you can believe that, you can believe anything’’).

13 Proponents of this idea—by some called ‘‘dialethism’’—almost invariably claim

that while adoption of a logic in which a contradiciton does not imply everything—by

many called ‘‘paraconsistent’’—enables one to deal with these inconsistent situations,

somehow adoption of such a logic does not prevent one from using classical logic in

consistent situations, so that adopting such a logic involves a pure benefit, without the

enormous costs that would appear to be involved in giving up the ubiquitous Disjunctive

Syllogism. The incoherence of this claim has been pointed out by Anderson, Belnap, and

Dunn (1992, §80.4.2, p. 503):

One might think as follows. The point of relevantism is to take seriously

the threat of contradiction. But there is in this vicinity . . .no real such

threat. So here it is OK to use the d.s. . . .That sounds OK; but is it? After

all, we suppose that ‘‘here there is no threat of contradiction’’ is to be

construed as an added premiss. But a little thought shows that no such

added premiss should permit the relvantist to use the d.s., for a very

simple reason: as we said, avoidance of the d.s. was bound up with the

threat of contradiction, and one thing that is clear is that adding

premisses cannot possibly reduce that threat.

The context of these remarks is a discussion of what relevantists should make of the fact

(urgently brought to their attention by Saul Kripke) that the proof of a major meta-

theorem about their systems employs the forbidden disjunctive syllogism.
14 Thus Lewis, ‘‘Logic for Equivocators,’’ in (1998), p. 101, writes:

The reason we should reject this proposal is simple. No truth does have,

and no truth could have, a true negation. Nothing is, and nothing could
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be literally true and false. This we know for certain, and a priori, and

without any exception for especially perplexing subject matters. The

radical case for relevance should be dismissed just because the hypothesis

it requires us to entertain is inconsistent.

That may seem dogmatic. And it is: I am affirming the very thesis

that [Richard Sylvan né] Routley and [Graham] Priest have called into

question and—contrary to the rules of debate—I decline to defend it.

Further, I concede that it is indefensible against their challenge. They have

called so much into question that I have no foothold on undisputed

ground. So much the worse for the demand that philosophers always

must be ready to defend their theses under the rules of debate.
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c h a p t e r 25

HIGHER-ORDER

LOGIC

stewart shapiro

. . . our definition of the [standard second-order] consequences of a

system of postulates . . . can be seen to be not essentially different

from [that] required for the . . . treatment of classical mathematics. . . .

It is true that the non-effective notion of consequence, as we have

introduced it . . . presupposes a certain absolute notion of ALL

propositional functions of individuals. But this is presupposed

also in classical mathematics, especially classical analysis. . . .

—Church [1956, 326n]

Formal languages typically have variables that (purport to) range over some

objects. These are called first-order variables, and the collection of objects they

range over is called the ‘‘domain of discourse.’’ Second-order variables range over

properties, classes, relations, or functions of the items in the domain of discourse.

Third-order variables range over properties, or relations, or functions on the items

in the range of the second-order variables. And so on. A formal language is first-

order if it contains first-order variables, and no others. A language is second-order

if it contains first-order and second-order variables, and no others. And on it

goes. A language is higher-order if it is at least second-order. Second-order logic is

the logic of second-order languages, and higher-order logic is the logic of higher-

order languages. To make a bad joke, if we could agree on what logic is, we would

then be about done with our topic of higher-order logic. Stay tuned.
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It is not an exaggeration to say that first-order logic is the paradigm of

contemporary logical theory. The vast majority of the works in both philosophical

and mathematical logic concern first-order languages exclusively. Most textbooks

do not mention higher-order logic at all, and most of the rest give it scant

treatment. In contrast, just about all of the central work that launched contem-

porary logic around the turn of the twentieth century concerns higher-order

formal languages. Examples include Frege [1879], Peano [1889], and Whitehead

and Russell [1910]. First-order logic appeared as a distinctive study only when

some authors, beginning with Löwenheim [1915], separated out first-order lan-

guages as subsystems for special treatment. Early twentieth-century logicians often

referred to the deductive system of first-order logic as the ‘‘restricted functional

calculus.’’ For more on the historical emergence of first-order logic, see Moore

[1980], [1988], Shapiro [1991, ch. 7], and Eklund [1996].

The philosophical literature contains numerous claims on behalf of and

numerous claims against higher-order logic. Virtually all of the issues apply to

second-order logic (vis-à-vis first-order logic), so we will focus on that here. In

this chapter, I develop the syntax of second-order languages and present typical

deductive systems and model-theoretic semantics for them. This will help to

explain the role of higher-order logic in the philosophy of mathematics. I assume

that the reader has at least a passing familiarity with the theory and metatheory of

first-order logic.

1. Formal Languages

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let K be a set of nonlogical terminology. We will consider formal languages built

on such sets. In arithmetic, for example, the relevant set would be {0, s,þ, �}, the
symbols for zero, successor, addition, and multiplication.

To establish notation, let us begin with the first-order language L1K. First-

order variables are lower-case letters near the end of the alphabet, with or without

numerical subscripts. The connectives are negation :, conjunction &, disjunction

_ , material implication ! , and material biconditional �. The language has a

universal quantifier V and an existential quantifier A. A sentence is a formula

without free variables, and a theory is a set of formulas.

The first-order language with identity L1K¼ is obtained from L1K by adding a

binary relation symbol ¼. The identity symbol is regarded as logical and so is not

in K. If t and u are terms, then we abbreviate :t¼ u as t 6¼ u.

The language L2K is obtained from L1K (not L1K¼) by adding a stock of

(second-order) relation variables and function variables. Relation variables are

uppercase Roman letters from the end of the alphabet, with or without numerical
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subscripts. Function variables are letters like f, g, and h, with or without numerical

subscripts. To be pedantic, we should use a superscript to indicate the degree, or

number of places, of each second-order variable: X1 is a monadic predicate var-

iable; f 2 is a binary function variable, and so on. If the context determines the

degree of a variable, we usually omit the superscript.

There are four new formation rules:1

If f n is an n-place function variable and t1, . . . , tn are terms, then f nt1, . . . , tn
is a term.

If Rn is an n-place relation variable and t1, . . . , tn are terms, then Rnt1, . . . , tn
is an atomic formula.

If F is a formula and V a relation variable, then VVF and AVF are a formulas.

If F is a formula and f a function variable, then VfF and AfF are formulas.

Thus, for example, AXVx:Xx asserts the existence of a property that applies to no

objects.

The symbol for identity between (first-order) objects is introduced as an

abbreviation,

t¼ u: VX(Xt �Xu),

in which t and u are terms. This is not meant as a deep philosophical thesis

concerning the nature of Identity. If she wishes, the reader is free to add a

primitive, logical identity symbol, as in L1K¼.

Incidentally, it is not necessary to include separate variables for functions,

since a given n-place function can be represented by an nþ 1-place relation. For

example, instead of a monadic function f, we can use a binary relation variable R2,

adding the clause Vx Ay Vz(R2xz�y¼ z). We include variables for functions only

as a convenience.

I do not include a symbol for identity between second-order items like re-

lations and functions, mostly because I do not wish to engage issues concerning

the nature and individuation of these items—or at least I wish to postpone such

issues. For the time being, one can think of the higher-order items as intensional

entities like properties or propositional functions, or one can think of them as

extensional entities like classes or sets. I will use words like ‘‘property,’’ ‘‘class,’’

and ‘‘set’’ interchangeably, although we will briefly return to this issue in section 5

below, when we get to more philosophical matters.

Whitehead and Russell [1910] argued that intensional entities must be defined

or constructed in levels, so that properties defined at a given level become available

1 For readability, I do not mark distinctions like that between variables in the object

language and metavariables that range over object language variables. Context will indicate

which is meant.
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for use in definitions at later levels. Say that a relation is of level 0 if it can be

defined without referring to relations. For each natural number n, a relation is of

level nþ 1 if it is not of level n, but can be defined with reference to level n

relations only. To develop this ramified type theory, each second-order variable is

marked somehow to indicate its level. We do not pursue this here, except by way

of brief comparison (see Hazen [1983] for a readable development).2

We can expand the set K to include so-called higher-order nonlogical con-

stants, terms that stand for such items as properties (or sets) of properties, or

functions on properties. An example would be a property TWO of properties such

that TWO(P) holds just in case P applies to exactly two things. The logicist and

neologicist programs (see chapters 5 and 6 of this volume) invoke constants that

denote functions from properties to objects. Each abstraction principle includes at

least one such constant.

A third-order language L3K is constructed from L2K by adding third-order

variables for relations on relations, functions of predicates, functions of functions,

and so on. Then one could add nonlogical constants (to K ) for relations on

functions of predicates, and the like. Then one could add fourth-order variables

ranging over such things, thus producing a fourth-order language, and so on. As

noted above, no new conceptual issues arise, and we do not directly pursue such

languages here.

2. Deductive System

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I assume that the reader is familiar with deductive systems for first-order lan-

guages, and I will present an extension of one such system to our second-order

languages L2K. It is straightforward to adapt the usual axioms or rules of inference

for the quantifiers. In a natural deduction system (which allows formulas with free

variables in deductions), the introduction and elimination rules for the higher-

order quantifiers are:

VE From VXnF(Xn) infer F(T ), where T is either an n-place relation

variable free for Xn in F, or an n-place relation letter in the set K of

nonlogical terminology. The conclusion F(T ) depends on whatever

premises VXnF(Xn) depends on.

From Vf nF( f n) infer F(g), where g is either an n-place function

variable free for f n in F, or an n-place function letter in the set K of

2 Note that the above definition of identity is not unambiguous in the ramified

system, since the variable ‘‘X ’’ would have to be marked for level. The best route is to

make the identity sign primitive, as it usually is in first-order logic.
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nonlogical terminology. The conclusion F(g) depends on whatever

premises Vf nF( f n) depends on.
VI From F infer VXF, provided that X does not occur in any premise

on which F depends. The conclusion VXF depends on whatever

premises F depends on.

From F infer VfF, provided that f does not occur in any premise

on which F depends. The conclusion VfF depends on whatever

premises F depends on.

AE If one can infer a conclusion F from an assumption C, then one

can infer F from AXC, provided that X does not occur free in F or

in any premise on which F depends. The final conclusion depends

on whatever premises AXC and F depend on, except C.

If one can infer a conclusion F from an assumption C, then one

can infer F from Af C, provided that f does not occur free in F or in

any premise on which F depends. The final conclusion depends

on whatever premises AXC and F depend on, except C.

AI From F(T ) infer AXnF, where T is either an n-place relation variable

free for Xn in F, or an n-place relation letter in the set K of non-

logical terminology. The conclusion AXnF depends on whatever

premises F(T ) depends on.
From F(g) infer Af nF, where g is either an n-place function

variable free for f n in F, or an n-place function letter in the set K

of nonlogical terminology. The conclusion Af nF depends on

whatever premises F(g) depends on.

The next item is the comprehension scheme. For each formula F in L2K and

each relation variable Xn, the following is an axiom:

AXnVx1 . . . Vxn(X
nx1 . . . xn�F),

provided that Xn does not occur free in F. Taken together, the instances of the

comprehension scheme register the thesis that every formula determines a relation

or, more precisely, for every formula there is a relation with the same extension.

In a deductive system for ramified type theory, the embedded formula F should

not contain any bound variables whose level is the same as or greater than the

level of the introduced variable Xn.

The final item is a form of the axiom of choice:

VXnþ1(Vx1 . . .VxnAyX
nþ1x1 . . . xny ! Af nVx1 . . . VxnX

nþ1x1 . . . xnfx1 . . . xn).

The antecedent of the embedded conditional asserts that for each sequence x1, . . . , xn
there is at least one y such that the sequence x1, . . . , xn, y satisfies X

nþ1. The conse-

quent asserts the existence of a function that ‘‘picks out’’ one such y for each x1, . . . , xn.
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The reader who has qualms about calling the axiom of choice a principle of

logic can drop it from the system. As above, one alternative is to eliminate vari-

ables from the system altogether. If our gentle reader who demurs from the axiom

of choice wishes to maintain functions, she will probably wish to add a compre-

hension principle that relates functions to appropriate relations:

VXnþ1((Vx1 . . .VxnAyVz(X
nþ1x1 . . . xnz� y¼ z))! Af nVx1 . . . VxnX

nþ1

x1 . . . xnfx1 . . . xn).

The antecedent of the embedded conditional asserts that for each sequence x1, . . . ,

xn there is exactly one y such that the sequence x1, . . . , xn, y satisfies Xnþ1. The

consequent asserts the existence of a corresponding function. This sentence fol-

lows from the above axiom of choice.

Call this deductive system D2. Recall that in the language L2K, a formula in

the form x¼ y is an abbreviation of

VX(Xx�Xy).

As an exercise, we can check that the translations of the usual identity axioms are

theorems of D2. The introduction rule is Vx(x¼ x), which translates as VxVX(Xx�
Xx). It is immediate that this is derivable. The elimination rule is

from t¼ u and F(t), infer F(u),

where t and u are terms, provided that any variables in u are free for t in F(t). This
comes to

from VX(Xt�Xu) and F(t) infer F(u),

with the same proviso. The validity of this inference is a routine exercise in the

natural deduction system D2. Take VX(Xt�Xu) and F(t) as premises. Assume

Vx(Yx�F(x)). So Yt�F(t), and thus Yt. So Yu, and thus F(u). So, by AE above,

we infer F(u) from the instance of comprehension AXVx(Xx�F(x)). This justifies
the definition of identity.

It is straightforward, but perhaps tedious, to establish an indiscernibility

principle for relation variables. That is, for each formula F such that Q is free for

P, the following formula

Vx1 . . .Vxn(Px1 . . . xn�Qx1 . . . xn)! (F(P)!F(Q))

is derivable in D2. The proof of this proceeds by induction on the complexity of

the formula F. This partly justifies an extensional orientation toward the higher-

order terminology.
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Deductive systems for the further extensions of L2K to third- and higher-

order languages are straightforward extensions of those considered here. I shall

not present details.

3. Model Theory

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This section presents four (count ’em) model-theoretic semantics for the second-

order languages L2K. Once again, I assume familiarity with the usual model-

theoretic semantics for first-order languages L1K and L1K¼. I pause only to

establish the notation.

Each model or interpretation of the first-order L1K or L1K¼ is a structure

M¼hd,I i, in which d is a nonempty set, the domain of the model, and I is an

interpretation function that assigns appropriate items constructed from d to the

items in K, the nonlogical terminology. For example, if R is an n-place relation

symbol, then I(R) is a set of n-tuples of members of d. A variable-assignment s is a

function from the variables of L1K to d. We will have occasion to consider ‘‘in-

terpretations’’ in which the domain is not a set. For example, in the intended

interpretation of set theory, the variables range over the entire iterative hierarchy—

which of course is not a set.

For each model and assignment, there is a denotation function that assigns a

member of d to each term. The relation of satisfaction between models, assign-

ments, and formulas is then defined in the usual manner. We write M, s	F to

indicate that the model M satisfies the formula F under the assignment s. If

M, s	C for every assignment s and every formula C in a set G, then we say that

M is a model of G. A formula F is a semantic consequence of G if for every modelM

and assignment s on M, if M, s	C for every C in G, then M, s	F. This is

sometimes written G	F.
All four of our semantics for the second-order L2K build on the semantics for

its first-order counterpart L1K, in the sense that each model has, as components, a

domain d and an interpretation function I, as above. For three of the four se-

mantics, what we add is a range for the relation and function variables, and, with

that, an extension of the denotation function and the satisfaction relation to the

new terms and the new atomic formulas, respectively. The rest is straightforward.

3.1. Standard Semantics

Although the name ‘‘standard’’ here is more or less common among writers on

this topic, the emotive or normative connotations also reflect my own preferences
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(for what that is worth). Critics sometimes put the word ‘‘standard’’ in scare

quotes, or use phrases like ‘‘so-called ‘standard’ semantics.’’ In a sense to be made

clear below, it is only standard semantics that makes the logic distinctively second-

order.

A standard model of L2K is the same as a model of the first-order L1K and

L1K¼, namely, a structure hd,I i. The range of the n-place relation variables is the

entire power set of dn, and the range of the n-place function variables is the set of

all functions from dn to d. Thus a variable-assignment is a function that assigns a

member of d to each first-order variable, a subset of dn to each n-place relation

variable, and a function from dn to d to each n-place function variable.

To belabor the obvious, function variables are assigned to functions. Thus the

denotation function for the terms of L2K is a straightforward extension of the

denotation function from L1K. The new clause is

Let M¼hd,I i be a model and s an assignment on M. If f is an n-place

function variable and t1, . . . , tn are terms, the denotation of ft1 . . . tn is

the result of applying the function sf assigned to f to the denotations

of the terms t1, . . . , tn.

Similarly, relation variables are assigned to relations (or sets of n-tuples). The

clause for the satisfaction of the new atomic formulas is

Let M¼hd,I i be a model and s an assignment on M. If X is an n-place

relation variable and t1, . . . , tn are terms, then M, s	Xt1 . . . tn if and only

if the sequence consisting of the denotations of the terms t1, . . . , tn is in sX.

The quantifiers are then interpreted as in the first-order case:

M, s	VXF if M, s 0 	F, for every assignment s 0 that agrees with s at every

variable except possibly X.

M, s	 AXF if M, s 0 	F, for some assignment s 0 that agrees with s at

every variable except possibly X.

M, s	VfF if M, s 0 	F, for every assignment s 0 that agrees with s at every

variable except possibly f.

M, s	 AfF if M, s 0 	F, for some assignment s 0 that agrees with s at every

variable except possibly f.

If F is a formula of L2K, then F is standardly valid or is a standard logical

truth, if M, s	F for every model M and assignment s; C is standardly satisfiable if

M, s	C for some M,s. A set G of formulas of L2K is standardly satisfiable if there

is anM, s such thatM, s	C for everyC in G. Finally, F is a standard consequence

of G if for every model M and assignment s, if M, s	C for every C in G, then
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M, s	F. To mark my preferences, the word ‘‘valid’’ is sometimes used for

‘‘standardly valid,’’ ‘‘satisfiable’’ for ‘‘standardly satisfiable,’’ and so on.

It is worth emphasizing that a standard model for L2K is the same as a model

of its first-order counterpart L1K, namely, a domain and an interpretation of the

nonlogical terminology. That is, in standard semantics, by fixing a domain one

thereby fixes the range of both the first-order variables and the second-order

variables. There is no further ‘‘interpreting’’ to be done. This is not the case with

the next two semantics. In each case, one separately determines a range for the

first-order variables and a range for the second-order variables.

3.2. Henkin Semantics

The central feature of Henkin semantics is that in a given model, the relation

variables range over a fixed collection of relations on the domain, which may not

include all of the relations; and the function variables range over a fixed collection

of functions on the domain, which may not contain all of the functions. A Henkin

model of L2K is a structure MH¼hd,D,F,I i, in which d is a domain and I an

interpretation function for the terminology in K, as above. The new items are

sequences. For each n, D(n) is a nonempty subset of the power set of dn and F(n)

is a nonempty set of functions from dn to d. The idea is that D(n) is the range of

the n-place relation variables and F(n) is the range of the n-place function vari-

ables in MH. A variable-assignment on MH is a function that assigns a member of

d to each first-order variable, a member of D(n) to each n-place relation variable,

and a member of F(n) to each n-place function variable.

The rest of the presentation of this semantics is the same as that of standard

semantics, word for word:

Let MH¼hd,D,F,I i be a Henkin model and s an assignment on MH. If f is

an n-place function variable and t1, . . . , tn are terms, the denotation of

ft1 . . . tn is the result of applying the function sf to the denotations of

the terms t1, . . . , tn.

Let MH¼hd,D,F,I i be a Henkin model and s an assignment on MH. If X is

an n-place relation variable and t1, . . . , tn are terms, then MH, s	Xt1 . . . tn
if and only if the sequence consisting of the denotations of the terms

t1, . . . , tn is in sX.

MH, s	 VXF if MH,s 0 	F, for every assignment s 0 that agrees with s at

every variable except possibly X.

MH, s	 AXF if MH,s 0 	F, for some assignment s 0 that agrees with s at

every variable except possibly X.

MH, s	 VfF if MH,s 0 	F, for every assignment s 0 that agrees with s at

every variable except possibly f.
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MH, s	 AfF if MH,s 0 	F, for some assignment s 0 that agrees with s at

every variable except possibly f.

What distinguishes standard from Henkin semantics is the range of the quantifiers

‘‘every assignment’’ and ‘‘some assignment’’ in these last four clauses. In a Henkin

model, we consider only the functions that assign members of the various D(n)

and F(n) to the higher-order variables, while in standard semantics, we consider

every such function.

The notions of Henkin-validity, Henkin-satisfaction, and Henkin-consequence

are defined in the straightforward manner: F is Henkin-valid if MH, s	F for

every Henkin model MH and assignment s; C is Henkin-satisfiable if MH, s	C
for some Henkin model MH and assignment s; G is Henkin-satisfiable if there is a

Henkin model MH and an assignment s such that MH, s	C for each C 2 G; and
F is a Henkin-consequence of G if for every Henkin model MH and assignment s,

if MH, s	C for every C in G, then MH, s	F.
It is immediate that a standard model of L2K is equivalent to the Henkin model

in which for each n, D(n) is the entire power set of dn, and F(n) is the collection of

all functions from dn to d. Such Henkin models are sometimes called full models. In

particular, let M be a standard model and let MF be the corresponding full model.

Then for each assignment s and each formula F,M, s	F if and only ifMF, s	F. In
effect, standard semantics just is the restriction of Henkin semantics to full models.

It follows that if a formula F is Henkin-valid, then F is standardly valid; and

if F is a Henkin-consequence of a set G, then F is a standard consequence of G.
And if F is standardly satisfiable, then F is Henkin-satisfiable. It will soon become

clear that the converses of these conditionals fail.

On both of these semantical systems, the items in the range of higher-order

variables are extensional entities—either sets or functions. Recall, however, that there

is no symbol for ‘‘higher-order identity’’ in the language. As a result, one is free

to maintain an intensional understanding of the higher-order entities, and think of

them as attributes, properties, or propositional functions. For the purposes of

model-theoretic semantics, sets can serve as surrogates for the relevant intensional

items. If an advocate of intensional items believes that for every arbitrary collection

S of n-tuples on the domain, there is an attribute whose extension is S (and similarly

for functions-in-intension), then she will favor standard semantics. Otherwise, I

presume that the attraction would be to Henkin semantics (see Cocchiarella [1988]).

3.3. Multisorted, First-order Semantics

As noted, on both standard semantics and Henkin semantics the range of the

relation variables is a set of relations (or sets) and the range of function variables

is a set of functions. With first-order semantics, this assumption is dropped. In
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effect, L2K is interpreted as a multisorted first-order language. The predication

relation between the objects in the (first-order) domain and the items in the range

of the predicate variables is non-logical, as is the application function from items

in the range of the function variables and the objects in the domain.

A first-order model of L2K is a structure M1¼hd,d1,d2,hI,p,aii, in which d is a

nonempty set and I an interpretation function assigning items constructed from d

to the items in K, as usual. For each natural number n, d1(n) and d2(n) are

nonempty sets. They are the ranges of the n-place relation variables and the n-

place function variables, respectively. For each n, p(n) is a subset of dn� d1(n).

This represents the interpretation of the ‘‘predication’’ relation in M1, between an

n-place ‘‘relation’’ R in M1 and n-tuples from the domain. For example, suppose

that d1(1) has an object D which is supposed to represent the property of being a

dog (or the set of dogs). Then hc,Di would be a member of p(1) if and only if c is a

dog. In like manner, for each natural number n, a(n) is a function from dn� d2(n)

to d. Here, a(n) is the interpretation of the n-place ‘‘application’’ function in M1,

from the collection of sequences and the ‘‘functions’’ in M1 to the first domain.

The rest is fairly straightforward, if a bit tedious. A variable-assignment on M1

is a function that assigns a member of d to each first-order variable, a member of

d1(n) to each n-place relation variable, and a member of d2(n) to each n-place

function variable.

The denotation function is adapted from that of L1K. The new clause is:

Let M1 be a first-order model and s an assignment on M1. If f is an n-place

function variable and t1, . . . , tn are terms, then the denotation of ft1 . . . tn
is the result of applying a(n) to the denotations of t1, . . . , tn and sf.

In other words, the denotation of ft1 . . . tn is determined by the ‘‘application’’

function a(n), evaluated at the denotations of the items in t1, . . . , tn and the item

in d2(n) assigned to f by s.

The clause for the satisfaction of atomic formulas is similar:

Let M1 be a first-order model and s an assignment on M1. If X is an n-place

relation variable and t1, . . . , tn are terms, then M1, s	Xt1 . . . tn if the se-

quence consisting of the denotations of t1, . . . , tn and sX is a member of a(n).

The clauses for the second-order quantifiers carry over:

M1, s	 VXF if M1,s 0 	F, for every assignment s 0 that agrees with s at

every variable except possibly X.

M1, s	 AXF if M1,s 0 	F, for some assignment s 0 that agrees with s at

every variable except possibly X.

M1, s	 VfF if M1,s 0 	F, for every assignment s 0 that agrees with s at every

variable except possibly f.

higher-order logic 761



M1, s	 AfF if M1,s 0 	F, for some assignment s 0 that agrees with s at every

variable except possibly f.

As above, F is first-order-valid ifM1, s	F for every first-order modelM1 and

assignment s; C is first-order-satisfiable if M1, s	C for some first-order model

M1 and assignment s; G is first-order-satisfiable if there is a first-order model M1

and an assignment s such that M1, s	C for each C 2 G; and F is a first-order-

consequence of G if for every first-order model M1 and assignment s, if M1, s	C
for every C in G, then M1, s	F.

Notice that a given Henkin model hd,D,F,I i is equivalent to the first-order

model hd,d1,d2,hI,p,aii such that d1 is D, d2 is F, p recapitulates the ‘‘real’’ pred-

ication (or membership) relation between d and the various D(n), and a recapit-

ulates the ‘‘real’’ application function from dn and the various F(n) to d. That is,

for each n, hu,vi is in p(n) if and only if u 2 v; and a(n)(u,w)¼w(u). Thus, for

every Henkin model MH there is a first-order model M1 such that for every

assignment s on MH there is an assignment s1 on M1, such that for every formula

F of L2K, MH, s	F if and only if M1,s1	F.
The converse holds as well. LetM1¼hd,d1,d2,hI,p,aii be a first-order model of

L2K. Then there is a Henkin model MH¼hd,D,F,I i such that for every variable-

assignment s on M1 there is an assignment sH on MH, such that for every formula

F of L2K,M1, s	F if and only ifMH,sH	F (see Shapiro [1991, ch. 3] for details).

The idea is that we replace an item c of, say, d1(2) with the set of pairs of elements

of d that c ‘‘holds of,’’ according to p(2). To take a frivolous example, suppose

that in M1, d is a set of apples and d1(2) is a set of oranges. Then in the corre-

sponding MH, each orange is ‘‘replaced’’ by the set of pairs of apples that bear the

M1-interpretation of the predication relation to it.3

It follows that for each formula F of L2K, F is Henkin-valid if and only if F is

first-order-valid, and F is a Henkin-satisfiable if and only if F is first-order-

satisfiable. For each set G of formulas, G is Henkin-satisfiable if and only if G is

first-order-satisfiable; and F is a Henkin-consequence of G if and only if F is a

first-order-consequence of G. In short, Henkin semantics and first-order semantics

are pretty much the same.

3.4. Plural Quantification

All three of the above model-theoretic semantics follow the prevailing custom of

assigning each variable to a distinctive range in each model. On standard and

3 See Shapiro [1991, ch. 3] and Gilmore [1957]. Our decision not to introduce a (primi-

tive) symbol for identity-between-relations simplifies the present treatment somewhat.
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Henkin semantics, the range of a given higher-order variable is a set of sets (of n-

tuples) or a set of functions. As we just noted, even on first-order semantics, the

range of a given higher-order variable is equivalent to a set of sets or a set of

functions. This feature invites the charge that second-order logic is just a branch

of set theory. Moreover, all three semantics seem to preclude an interpretation of

a language like L2K in which the first-order variables do not range over a set. Thus

we cannot give an account of second-order set theory in which the intended first-

order variables range over every member of the iterative hierarchy. In that case,

what do the higher-order variables range over?

In response to issues like these, George Boolos ([1984], [1985]) proposed a

different way to understand at least monadic, second-order relation variables.

According to both standard and Henkin semantics, an existential quantifier AX
should be read ‘‘there is a set X ’’ or ‘‘there is a property X ’’—in which case, of

course, the locution invokes sets or properties. Against this, Boolos suggests that a

monadic, second-order quantifier be considered a counterpart of a plural quan-

tifier, ‘‘there are (objects)’’ in natural language like English.

The sentence

Some critics admire only one another.

has a (more or less) straightforward second-order rendering, taking the class of

critics to be the domain of discourse:

AX(AxXx& VxVy((Xx(x 6¼ y&Xy))).

According to standard or Henkin semantics, the formula would correspond to

‘‘there is a nonempty set (or property) C (of critics) such that for any x in C and

any y, if x admires y, then x 6¼ y and y is in C.’’ However, this reading implies the

existence of a set (or property), while the original sentence, ‘‘Some critics admire

only one another,’’ does not—or so it seems.

There is no doubt that native speakers of ordinary natural languages have no

trouble with sentences that contain plural quantifiers. Boolos argues that we logicians

can thus use this construction in the metalanguage in which we develop formal,

model-theoretic semantics. The construction interprets the monadic, second-order

quantifier.

So construed, a monadic second-order language has no ontological com-

mitments beyond those of its first-order counterpart. Accordingly, second variables

do not have a distinctive range. In a sense, the range of monadic, second-order

variables is the same as the range of the first-order variables. It is just that the

quantification is plural.

In set theory, the ‘‘Russell sentence,’’ AX Vx(Xx� x 2= x), is a consequence of

the comprehension scheme. According to standard or Henkin semantics, it entails
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that there is a set that is not coextensive with any set in the domain. Admittedly,

this does not sound right, even though we convince ourselves that it is correct—

perhaps with talk of proper classes.4 On Boolos’s interpretation, the Russell sen-

tence reads, ‘‘There are some sets such that any set is one of them just in case it is

not a member of itself,’’ a harmless truism. We forgo details of Boolos’s [1985]

rigorous, model-theoretic semantics for second-order languages with monadic re-

lation variables (see Rayo and Yablo [2001] for an extension of the plural con-

struction to multiplace relations and beyond).

It seems that the Boolos interpretation for monadic, second-order languages

is intended to be equivalent to standard semantics, at least for interpretations in

which the domain constitutes a set (so that no questions are begged). I have some

doubts as to whether our independent or pretheoretic grasp of plural quantifiers is

sufficiently determinate for this.

Consider a statement of second-order real analysis of the form

VX AYF(X,Y).

The opening second-order quantifiers can be given both a plural and an ordinary,

standard reading. It had better be the case that if we read the quantifiers as plurals,

we will get exactly the same truth-value, in general, as we would if we understand

the quantifiers as ranging over sets of real numbers. In effect, there needs to be a

‘‘plurality’’ (so to speak) for each set of real numbers. Does the English plural

construction have that determinate a meaning? To be sure, an advocate of the

Boolos plural interpretation can stipulate that she intends the quantifier to have

such a meaning in cases like that of real analysis. Notice, however, that one needs

some set theory to do this stipulating. This consideration might sustain Michael

Resnik’s [1988] and my [1993] complaint that the sophisticated understanding of

the plural construction used in justifying second-order logic is mediated by set

theory.

4. Metatheory: Expressive

Resources

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This section provides brief sketches of some of the main metatheoretic properties

of second-order languages. For more detail, see Shapiro [1991, chs. 4, 5].

4 Shapiro [1991, ch. 2] invokes a distinction between logical sets and iterative sets for

this purpose. For a retraction (of sorts), see Shapiro [1999].
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4.1. Henkin and First-order Semantics

Since, as noted in the previous section, Henkin semantics is equivalent to first-

order semantics for the languages L2K, we need only present the relevant results

for whichever of these is most convenient. Anything said about one of them

applies directly to the other.

First, the deductive system D2 is not sound for Henkin and first-order se-

mantics. It is straightforward to verify that some Henkin models do not satisfy

the comprehension scheme and some do not satisfy the axiom of choice. Con-

sider, for example, a structure MH¼hd,D,F,I i in which the first-order domain d

has two distinct members a,b; D(2) has a single member, the relation

{ha,ai,hb,ai}. Then MH does not satisfy the following instance of the compre-

hension scheme:

AXVx Vy(Xxy� x¼ y).

In effect, this axiom asserts the existence of the identity relation, but MH does

contain such a relation. For similar reasons, the quantifier rules are not sound for

Henkin and first-order semantics.

Define a Henkin model to be faithful to D2, or simply faithful, if it satisfies

every instance of the comprehension scheme (and the axiom of choice, if

that is included in the deductive system). That is, a Henkin model is faithful if

it contains every relation definable via the comprehension scheme (and the

functions promised by the axiom of choice). All subsequent discussion is re-

stricted to faithful models. Of course, we now have soundness-by-fiat. We just

restrict ourselves to Henkin and first-order models that satisfy the axioms and

rules of D2.

As might be expected, languages like L2K under Henkin semantics and first-

order semantics are pretty much like first-order languages. In a sense, they are

first-order languages. First, the deductive system D2 is complete for Henkin se-

mantics: if G is a set of sentences and F is a sentence of L2K, then F is true in

every (faithful) Henkin model of G only if F can be deduced from G in D2. The

downward Löwenheim–Skolem theorem holds: if a set G of formulas of L2K has a

(faithful) Henkin model whose domain is infinite, then G has a (faithful) Henkin

model whose domain is countable (or the cardinality of K, whichever is larger).

Every Henkin model for L2K has an equivalent submodel whose domain is at

most countable (or the cardinality of K, whichever is larger). And the upward

Löwenheim–Skolem theorem holds: if for each natural number n, a set G has a

model whose domain has at least n members, then for each infinite cardinal k, G
has a model whose domain has at least k-many members. The proofs of these
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theorems are straightforward adaptions of the usual constructions for first-order

logic (see Shapiro [1991, 89–95]).5

As usual for sound deductive systems, compactness is a corollary of com-

pleteness: let G be a set of formulas of L2K. If every finite subset of G is satisfiable

in a (faithful) Henkin model, then G itself is satisfiable in a (faithful) Henkin

model. So, as in the first-order case, no theory with an infinite Henkin-model is

what may be called ‘‘Henkin-categorical.’’ Thus, second-order languages with

Henkin semantics are not adequate to characterize infinite structures up to iso-

morphism.

4.2. Standard Semantics

Recall that standard semantics is equivalent to the restriction of Henkin semantics

to full models, structures in which the n-place predicate variables range over the

collection of all n-tuples of elements from the domain, and the n-place functions

range over the collection of all n-place functions on the domain. Since full models

contain every relation and function, they certainly contain the functions and

relations promised by the instances of the comprehension scheme and the axiom

of choice (assuming separation and choice in the metatheory). So full models are

faithful, and the deductive system D2 is sound for standard semantics.

The crucial feature of standard semantics is the existence of categorical

axiomatizations of the natural numbers and the real numbers. Corollaries of

these features include the refutation of compactness and the Löwenheim–Skolem

theorems—and, in light of Gödel’s Incompleteness Theorem for arithmetic, the

refutation of completeness.

The language of arithmetic has A¼ {0,s,þ, �} as its set of nonlogical termi-

nology. The theory has first-order axioms stating that the successor function is

one-to-one, that zero is not the successor of anything, and the usual recursive

definitions of addition and multiplication:

VxVy(sx¼ sy! x¼ y) & Vx(sx 6¼ 0)

Vx(xþ 0¼ x) & VxVy(xþ sy¼ s(xþ y))

Vx(x � 0¼ 0) & VxVy(x � sy¼ x � yþ x).

5 As a historical note, the now-common Henkin construction was first discovered

(and reported in Henkin [1950]) in the context of higher-order logic under (what is here

called) Henkin semantics. The same construction was later adapted to the proof of

completeness for first-order languages. Gödel’s original [1930] proof was different.
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Then there is the induction axiom, a proper second-order statement:

VX[(X0& Vx(Xx ! Xsx))! VxXx].

Let AR (for ‘‘arithmetic’’) be the conjunction of these four axioms.

The intended interpretation of AR is the model N of L2A, whose domain is

the set of natural numbers and which assigns zero to 0, and assigns the successor

function, the addition function, and the multiplication function to s, þ, and �,
respectively. It is immediate that N satisfies AR. Moreover, any two models of AR

are isomorphic (see Shapiro [1991, 82–83] or the original Dedekind [1888] for

a proof ). It follows that if M is any (standard) model of AR, then the domain of

M is denumerably infinite. This entails that the upward Löwenheim–Skolem

theorem fails for second-order logic with standard semantics.

If follows from the categoricity of arithmetic that a sentence F of L2A is true

of the natural numbers (i.e., N	F) if and only if AR!F is a standard logical

truth. That is, arithmetic truth is reducible to, or definable in terms of, standard

second-order logical truth.

LetD be any effective deductive system that is sound for the language L2A (under

standard semantics). Consider the set G¼ {Fj ‘D (AR!F)} of sentences of L2A.
SinceD is effective, the set G is recursively enumerable, and as just noted, every mem-

ber of G is true of the natural numbers. Gödel’s [1931] incompleteness theorem entails

that the collection of true first-order sentences of arithmetic is not recursively enu-

merable. So let C be a true sentence of first-order arithmetic that is not in G. Then,
the sentence (AR!C) is a (standard) logical truth, but it is not derivable inD. Thus,

there is no effective, sound deductive system that is complete for standard semantics.

Second-order languages with standard semantics are inherently incomplete.

Compactness also fails. Let c be a constant symbol and consider the following

set G of sentences:

{AR, c 6¼ 0, c 6¼ s0, c 6¼ ss0, c 6¼ sss0, . . . }.

Each finite subset of G is satisfiable in the natural numbers. But the entire set G is

not satisfiable, since the denotation of c would have to be different from the de-

notata of 0, s0, and so on. But, by the induction axiom and the categoricity result,

the denotata of 0, s0, and so on exhaust the domain of each model of AR.

The general notion of finitude cannot be captured in any language which

satisfies the upward Löwenheim–Skolem theorem. If a theory in such a language

has a model of each finite cardinality, then it has an infinite model. However, the

notion can be expressed with a second-order language with no nonlogical ter-

minology (assuming standard semantics). The following purely logical sentence,

(FIN) Vf:(VxVy(fx¼ fy! x¼ y) & AxVy(fy 6¼ x)),
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asserts that there is no one-to-one function from the domain to a proper subset of

the domain. So (FIN) is satisfied by a model M if and only if the domain of M is

Dedekind-finite.

Finitude is one of a number of related notions that have adequate char-

acterizations in second-order languages with standard semantics (usually in-

volving no nonlogical terminology) but cannot be characterized in any compact

language, including second-order languages with Henkin or first-order semantics.

Examples include countability, well-orderedness, well-foundedness, minimal clo-

sure, and the ancestral. Any consistent attempt to formulate a characterization any

of these notions in a first-order or Henkin second-order theory will have unin-

tended models that miss the mark (see Shapiro [1991, ch. 5, §5.1]).

All that remains is to refute the downward Löwenheim–Skolem theorem. In

real analysis, the nonlogical terminology is B¼ {0, 1,þ, �,�}. The axioms are

those of an ordered field, all of which are first-order,6 plus a second-order state-

ment of completeness, asserting that every nonempty, bounded set (or property)

has a least upper bound:

VX{(AyXy & AxVy(Xy ! y� x))! Ax[Vy(Xy ! y� x) &

Vz(Vy(Xy ! y� z)! x� z)]}.

Let AN (for ‘‘analysis’’) be the conjunction of the axioms of real analysis. The real

number structure constitutes the intended model, and AN is categorical (see

Shapiro [1991, 84]). Since AN has an uncountable model and no countable

models, the downward Löwenheim–Skolem theorem fails for second-order lan-

guages with standard semantics.

In first-order arithmetic, the (second-order) induction principle is replaced

by a scheme. If F is a formula in the language L1A¼ of first-order arithmetic, then

(F(0)& Vx(F(x)!F(sx)))! VxF(x),

is an axiom of first-order arithmetic. The theory thus has infinitely many axioms.

Similarly, first-order real analysis is obtained by replacing the single completeness

axiom with the completeness scheme,

(AxF(x) & AxVy(F(y)! y� x))! Ax[Vy(F(y)! y� x) &

Vz(Vy(F(y)! y� z)! x� z)],

6 The axioms for an ordered field are that addition and multiplication are associative

and commutative, multiplication is distributive over addition, 0 is the additive identity, 1

is the multiplicative identity, 0 6¼ 1, every element has an additive inverse, every element

but 0 has a multiplicative inverse, � is a linear order, 0� 1, and the elements greater than

or equal to 0 are closed under addition and multiplication.
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one instance for each formula F of the language L1B¼ of real analysis that

contains neither x nor z free.

The difference between, say, second-order real analysis and its first-order

counterpart is that in the latter, one cannot directly state that every non-empty

bounded set (or property) has a least upper bound. The closest one can come is a

separate statement for each such set which is definable by a formula in the

language of first-order analysis.

The same, or almost the same, goes for arithmetic and real analysis as

formulated in a second-order language with Henkin semantics. To be sure, in

those languages, the induction principle and the completeness principle are

single sentences, with a second-order variable ranging over sets or properties.

However, the only sets or properties that are guaranteed to exist in a given

model are the definable ones—and we have those only thanks to the explicit

restriction to faithful models, interpretations that satisfy each instance of the

comprehension scheme. Without the restriction to faithful models, we are not

guaranteed the existence of any particular sets or properties. One who works in

first-order arithmetic or analysis, or one invokes Henkin semantics on the re-

spective second-order language (restricted to faithful models), cannot apply the

induction or completeness principle to a set or property until she shows that it

is definable in the relevant language. The only difference between first-order

arithmetic and second-order arithmetic with Henkin semantics is that a few

more properties are definable in the second-order language than the first-order

language.

The first-order theory and the Henkin theory have models which are not

isomorphic to the real numbers. These are sometimes called non-standard models.

Indeed, the Löwenheim–Skolem theorems indicate that for every infinite cardinal

k, there are models of first-order arithmetic and models of first-order analysis

whose domain has cardinality k. The same goes for Henkin semantics. The study

of nonstandard models has proven fruitful in illuminating the original informal

theories.

Per Lindström [1969] showed that, in a sense, first-order logic is charac-

terized by the metatheoretic properties that distinguish it from second-order

languages with standard semantics. Let L be any logic that is compact and has

the property of the downward Löwenheim–Skolem theorem: if a theory is

satisfiable, then it has a model whose domain is at most countably infinite.

Then the language L cannot make any distinction among models that cannot

be made with the corresponding first-order language (see Shapiro [1991, ch. 6,

§6.5]).

For better or worse, then, standard semantics is what makes second-order

logic distinctive. The categoricity results and the concomitant failure of the

limitative properties are the source of both the expressive strength and the main

philosophical and technical shortcoming of second-order logic.
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5. Logic Choice: What Are

We to Make of All This?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

W. V. O. Quine is a long-standing and persistent critic of second-order logic. An

early paper, Quine [1941] is critical of systems, like that of Whitehead and Russell

[1910], in which the second-order variables range over intensional entities like

properties, propositional functions, or attributes. As is well-known, Quine is

skeptical of such entities. There is no consensus on which properties exist, nor on

conditions under which two properties are identical or distinct. According to

Quine’s slogan ‘‘no entity without identity,’’ one is not entitled to speak of a kind

of item unless there is a clear and determinate criterion of identity on the items.

So a Quinean would frown upon the present decision to forgo an identity relation

on the items in the range of second-order variables, claiming that this just

postpones the problem. At some point, we have to say something about what the

variables range over, and this would include giving an identity relation.

Quine [1941] went on to suggest that variables ranging over properties be re-

placed with variables ranging over respectable extensional entities like sets. How-

ever, he later argued that by invoking sets in this way, we have crossed the

boundary out of logic and moved into mathematics proper (Quine [1986, ch. 5]).

He refers to (so-called) second-order logic as set theory in disguise. One might

think that nothing turns on this. Unlike political borders, we can set and move the

boundaries between disciplines at will. The more substantial issue concerns the

nature of logic itself. We return to the bad joke mentioned at the beginning of this

chapter.

The variables of formal languages, of any order, can range over any type of

entity, so long as there are coherent things to say about them. Readers who share

Quine’s qualms about intensional entities are free to follow his lead and interpret

higher-order variables as ranging over extensional things, like sets. To be sure,

some philosophers doubt the existence of abstract objects like sets, but Quine is

not among them (once he went beyond Goodman and Quine [1947]). Such

nominalists will not have much use for higher-order languages as interpreted by

either standard semantics or Henkin semantics, since the higher-order variables

are interpreted as ranging over sets. Some nominalists attempt to gain the benefit

of second-order languages, with standard semantics, by invoking the plural in-

terpretation indicated in section 3.4 above (see Lewis [1993]). So understood, the

higher-order variables do not have a distinctive range at all. But even this model

theory, as well as that of ordinary first-order languages, is formulated in set

theory. Models are themselves set-theoretic constructions. Thus our nominalist

must either eschew model theory altogether or come up with an acceptable al-

ternative. I will not address these issues further here, and simply declare a lack of

770 oxford handbook of philosophy of math and logic



interest in making higher-order logic safe for nominalism. I will freely invoke set

theory, at least in the model-theoretic metatheory. Whatever the items in the

range of higher-order variables are taken to be, they are represented by sets of n-

tuples in the various models in the model theory.

As shown above, second-order languages with Henkin semantics are essen-

tially the same as multisorted first-order languages. Quine may be right that there

is something misleading about this, but so long as the theorist keeps the proper

perspective, there is no serious objection to these semantics. However, with

Henkin semantics (restricted to faithful models), the only relations/sets that are

assumed to exist are those relations/sets definable in the language, and perhaps

some choice functions. The distinctive expressive resources of higher-order logic

come with standard semantics, where we assume that the second-order variables

range over every relation/set and every function on the domain. This is the real

target of contemporary criticisms of higher-order logic, including Quine’s and I.

Jané’s companion article in the present volume (chapter 26).

Quine [1986, 68] wrote that ‘‘[s]et theory’s staggering existential assumptions

are . . . hidden . . . in the tacit shift from schematic predicate letter to quantifiable

set variable.’’ This, however, is an exaggeration. An advocate of second-order logic

is not thereby committed to the entire iterative hierarchy. Suppose that we are

considering a first-order theory whose intended model has an infinite domain of

size k. In the corresponding second-order theory, construed with standard se-

mantics, each predicate variable ranges over 2k-many items. This, of course, is

larger than k, but it is hardly ‘‘staggering.’’ For example, first-order arithmetic

is already committed to a countably infinite universe. The total ‘‘ontology’’ of

second-order arithmetic, on standard semantics, is the size of the continuum.

To be sure, the metatheory for second-order logic is a rich set theory, with

axioms of infinity and power set. The presupposition of standard semantics is that

each set x has a sufficiently determinate power set, in which we interpret the range

of higher-order variables when x is the domain of discourse. Critics of second-

order logic can and do challenge this assumption. The underlying issue concerns

the extent to which this staggering metatheory compromises the status of second-

order logic itself.

I might add that a lot of substantial mathematics is bound up with second-

order logic with standard semantics. In section 4.2 above, for example, we saw that

arithmetic truth is reducible to standard logical truth, in the sense that for any

sentence F in the language of arithmetic, F is true (of the natural numbers) if and

only if AR!F is a standard logical truth, where AR is a categorical character-

ization of arithmetic. Something similar goes for any theory that has a categorical

axiomatization. Truth-in-real-analysis, truth-in-functional-analysis, and truth-in-

the-first-inaccessible-rank are each reducible to standard second-order logical truth.

Moreover, a lot of set theory can be expressed directly in a second-order

language, with no nonlogical terminology. For example, there is a sentence C that
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is a standard logical truth if and only if the continuum hypothesis holds, and there

is another sentence D that is a logical truth if and only if the generalized con-

tinuum hypothesis holds (see Shapiro [1991, ch. 5, §5.1.2]). We saw above (section

2) that there is a sentence that expresses the axiom of choice, at least within a

given domain of discourse. It is perhaps counterintuitive to hold that such

principles are ‘‘logical.’’

It would be ironic for a Quinean to dismiss higher-order logic on the grounds

that it recapitulates a fair amount of mathematics. Quine is famous for cham-

pioning the thesis that there no sharp borders between disciplines. He argues

that the sum total of our beliefs forms a seamless web, with mathematics thor-

oughly enmeshed. There is no sharp distinction—no difference in kind—between

mathematics and any respectable science, such as chemistry. As a naturalist,

Quine holds that epistemology should be a chapter of psychology. Logic, pre-

sumably, is a branch of epistemology. So why should logic, especially the logic of

mathematics, be an exception to the seamlessness of the web of belief ? Given the

Quinean themes, why should one expect logic to be free of substantial mathe-

matical resources and mathematical ontology? No other science is.

The dispute surely concerns the nature and purpose of logic. I submit,

however, that there is no single purpose for logic to serve. One traditional goal of

logical study is to present a calculus, a deductive system that represents the canons

of correct inference. The idea is that a given proposition F is a consequence of a

set G only if it is possible to justify F on the basis of G alone. This conception of

logic is behind the Fregean goal of giving proofs of various mathematical prop-

ositions that are free of gaps (see chapters 5–6 of the present volume). No intu-

ition and no empirical, or otherwise substantial, knowledge should be required in

proving theorems on the basis of premises or axioms.

A famous and influential logician once told me that second-order logic pre-

supposes that we know just about every truth of mathematics. He took this as a

reductio ad absurdum against the project. We saw above (section 4.2) that every

truth of arithmetic is a model-theoretic consequence of the second-order axi-

omatization of arithmetic. Similarly, every truth of real analysis is a model-theoretic

consequence of the axioms of the theory. The same goes for just about any

mathematical theory with an intended interpretation, short of set theory itself. It

seems that whenever mathematicians speak informally of a theory (short of set

theory) that has a single intended model, up to isomorphism, then that intended

structure has a categorical characterization in a second-order language with stan-

dard semantics.

So if the model-theoretic notion of second-order validity did meet the tradi-

tional epistemic goal of capturing gap-free chains of inference, idealized versions of

ourselves would indeed know every arithmetic truth, every truth of real analysis,

and so on. This does seem to be an unreasonable assumption. Even if it is true that

‘‘we’’ can know every truth, it is not wise to have one’s logical theory presuppose it.
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The fact is that the model-theoretic consequence relation of second- or higher-

order logic with standard semantics does not meet this traditional goal of providing

a calculus. For one thing, standard-validity is defined in terms of models, not in-

ference patterns. Of course, that much applies to any model-theoretic system, in-

cluding that of first-order languages and second-order languages with Henkin

semantics. In those cases, however, a completeness theorem links the model-

theoretic consequence relation with the deductive one, and this provides a connec-

tion with the epistemic goal of codifying correct inference patterns. In contrast, the

incompleteness of second-order logic shows that the consequence relation of second-

order logic, with standard semantics, is highly noneffective (section 4.2 above). Any

effective deductive system is either unsound (in that it sanctions an invalid argu-

ment) or fails to codify at least one valid argument.

The study of canons of inference does not exhaust the traditional scope of

logic. It is widely (but not universally) held that deductive systems must them-

selves adhere to a prior notion of logical consequence, often defined in modal

terms. Near the beginning of the Prior Analytics, Aristotle defines a ‘‘syllogism’’ to

be ‘‘a discourse in which, certain things having been supposed, something dif-

ferent from the things supposed results of necessity. . . .’’ Prior to reflection, there is

no reason to expect that the pretheoretic, modal notion of logical consequence is

effective, and that there is a complete deductive system for it.

I submit that model-theoretic consequence is an attempt to capture this pre-

theoretic, modal notion of logical consequence. The realm of models represents the

possible interpretations, or meanings, of the nonlogical terminology. To say that a

sentence F is a consequence of a set G is to say that F comes out true under every

interpretation of the nonlogical terminology on which every member of G is true.7

This is consonant with the slogan that logical consequence is a matter of ‘‘form.’’

What must be determined, of course, is what counts as a nonlogical term, and what

the realm of interpretations is. From this perspective, the issue of standard se-

mantics is whether the membership (or predication) relation and bound variables

ranging over sets (or relations) is logical. Alfred Tarski once wrote:

. . . sometimes it seems . . . convenient to include mathematical terms, like the

[membership] relation, in the class of logical ones, and sometimes I prefer to

restrict myself to terms of ‘‘elementary [i.e., first-order] logic.’’ Is any

problem involved here? (Tarski [1987, 29])

From this eclectic perspective, the question now concerns the theoretical ben-

efits of standard semantics. What is to be gained by adopting this highly nonef-

fective consequence relation? I submit that standard semantics captures important

7 See chapter 21 of this volume or Shapiro [1998] for an elaboration of this con-

ception of logical consequence.
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aspects of mathematical practice, aspects that are relevant to the study of correct

inference, since they register the intended meanings of mathematical terms.

It is widely agreed that mathematicians succeed in describing and commu-

nicating information about various notions and structures. For example, most

thinkers hold that when mathematicians refer to ‘‘the natural numbers,’’ ‘‘the real

numbers,’’ and so on, they are talking about the same objects, or at least the same

structures up to isomorphism. Along the same lines, there is not much doubt that

notions like finitude and well-foundedness are clear and unequivocal, or that the

minimal closure and ancestral relations are determinate. In short, there is almost a

consensus that the informal language of mathematics has expressive resources

sufficient for the ordinary description and communication of these basic struc-

tures and notions.

Part of the purpose of model theory is to delineate structures that are possible

interpretations of various sentences containing nonlogical parameters. This is

what it is to capture the semantics of informal mathematical languages. Using

whatever linguistic resources are at their disposal, mathematicians (supposedly)

manage to describe the natural number structure up to isomorphism, and they

describe and communicate concepts like finitude and well-foundedness. So the

expressive resources of the formal languages should match those of the mathe-

matical discourse it models. As noted, first-order languages are inadequate to this

task. As Jon Barwise [1985, 5] put it:

As logicians, we do our subject a disservice by convincing others that logic is

first-order and then convincing them that almost none of the concepts of

modern mathematics can really be captured in first-order logic.

And Hao Wang [1974, 154]:

When we are interested in set theory or classical analysis, the Löwenheim–Skolem

theorem is usually taken as a sort of defect (often thought to be inevitable) of

the first-order logic. . . . [W]hat is established [by Lindström’s theorems] is

not that first-order logic is the only possible logic but rather that it is the only

possible logic when we in a sense deny reality to the concept of uncountable. . . .

See also Montague [1965], Corcoran [1980], Isaacson [1985], and Shapiro [1991, ch. 5].

To be sure, the aforementioned near consensus is not a consensus. Some

prominent thinkers hold that there are no unambiguous notions of ‘‘finite,’’

‘‘countable,’’ ‘‘natural number,’’ and so on (e.g., Skolem [1922], Field [2001, chs.

11–12]). Such skeptical views are sometimes supported by the Löwenheim–Skolem

theorems, and for that reason are dubbed ‘‘Skolemite relativism.’’ On such views,

the model theory of first-order logic (or Henkin semantics for higher-order

languages) reflects the situation of the mathematician. Standard semantics for

second-order logic is deceptive, since it assumes that there is an unequivocal

understanding of locutions like ‘‘all properties’’ or ‘‘all subsets,’’ and it is this that

gives rise to the equally misleading categoricity results.
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Be this as it may, the majority of the mathematicians, logicians, and philos-

ophers (including Quine) who reject higher-order logic also reject this Skolemite

skepticism. Such thinkers, it seems, hold that there is a crucial gap between the

informal language in which mathematics is done and the formal semantics that

underlies this language (see Myhill [1951]). Logic must fail where informal lan-

guage succeeds.

Jodi Azzouni [1994, ch. 1, sec. 3] claims that advocates of second-order logic,

such as myself, claim that standard semantics solves the age-old problem of ref-

erence to mathematical objects (at least up to isomorphism) and that it somehow

explains how mathematicians communicate with each other. Azzouni then points

out that standard semantics cannot solve either problem (see also Wagner [1987]

and Weston [1976]). Nonstandard, unintended interpretations are ruled out of

the system by fiat—nonstandard models are simply not part of the semantics.

Azzouni concludes that ‘‘second-order logic with standard semantics is treach-

erous: Its sirenlike notation can lull philosophers into an inadequate appreciation

of how it gains its expressive power’’ (1994, p. 18).

I will leave it to the reader to determine who among the defenders of second-

order logic are in fact lulled into a trance in this way. Most, I believe, are not blind

to the connection with mathematics proper, and most advocates of higher-order

logic do not make unreasonable claims on what is involved in understanding

second-order languages. Alonzo Church, for example, was not lulled into Azzouni’s

trance, as indicated by the epigraph to this chapter:

. . . our definition of the [standard second-order] consequences of a system of

postulates . . . can be seen to be not essentially different from [that] required for

the . . . treatment of classical mathematics. . . . It is true that the non-effective no-
tion of consequence, as we have introduced it . . . presupposes a certain absolute

notion of ALL propositional functions of individuals. But this is presupposed also

in classical mathematics, especially classical analysis. . . . (Church [1956, 326n])

The key term here is ‘‘presupposed.’’ The thesis that we understand second-order

languages with standard semantics is of-a-piece with the thesis that we understand

ordinary mathematical discourse. It is no less—and no more—problematic. The

substantial claim of advocates of higher-order logic is that standard semantics has

an important role in foundational studies, but, again, this role is not that of

explaining or justifying mathematical practice or of explaining how successful

reference and communication works. Church added that ‘‘. . . logic and mathe-

matics should be characterized, not as different subjects, but as elementary and

advanced parts of the same subject.’’

I close with some epistemological features of the second-order axiomatiza-

tions of mathematical theories (assuming standard semantics) noted by Georg

Kreisel [1967]. Recall that first-order axiomatizations typically replace a single,

second-order axiom with an axiom scheme. The scheme itself has no special

status, since it does not occur in the object-language. It is only used to describe
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the theory in a finite number of words (in the metalanguage, or perhaps the meta-

metalanguage). In the theory itself, as formulated in the object-language, each

instance of the scheme is a (separate) axiom. Kreisel argued that this is an un-

natural way to codify a mathematical theory like that of arithmetic or real

analysis. Suppose, for example, that someone is asked why he believes that each

instance of the completeness scheme of first-order real analysis is true of the real

numbers. It is, of course, out of the question to give a separate justification for

each of the axioms. Nor can one claim that the scheme characterizes the real

numbers since, as we have seen, no first-order axiomatization can characterize any

infinite structure. Kreisel argued that the reason mathematicians believe the in-

stances of the axiom scheme is that each instance follows from the single second-

order completeness axiom (via the corresponding instance of comprehension).

A related issue is that each first-order scheme or, to be precise, the collection

of instances of each scheme, is tied to the ingredients of the particular first-order

language in use at the time. As noted, this is to restrict the induction and com-

pleteness principles to those properties or sets definable in the given language.

Mathematicians, however, are quick to apply the induction and completeness

principles to sets regardless of whether they are definable in the given first-order

language. Indeed, they usually do not check for definability in this or that lan-

guage. Kreisel [1967, 148]) wrote:

The choice of the first-order schema is not uniquely determined by the second-

order axiom! Thus, Peano’s own axioms mention explicitly only the constant 0

and the successor function, . . . not addition nor multiplication. The first-order

schema built up from 0 and [the successor function] is a weak, . . . decidable,
subsystem of classical first-order arithmetic . . . and quite inadequate for formu-

lating current informal arithmetic.

The same point applies to second-order languages understood with Henkin

or first-order semantics. Although such theories do have a single induction or

completeness axiom, the opening higher-order quantifiers are implicitly restricted

to those properties or sets that are present in a given model of the theory. And the

only properties or sets present in every such model are those definable in the

respective language in the model (and we have those properties or sets only with

the restriction to faithful models).

The issue concerning the interpretation of the induction and completeness

principles is manifest in the practice of embedding structures in each other.

Kreisel wrote:

. . . very often the mathematical properties of a domain D become only graspable

when one embeds D in a larger domain D 0. Examples: (1) D integers, D 0 complex

plane; use of analytic number theory. (2) D integers, D 0 p-adic numbers; use of p-

adic analysis. (3) D surface of a sphere, D 0 3-dimensional space; use of 3-dimensional

geometry. Non-standard analysis [also applies] here . . . . (Kreisel [1967, 166])
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To follow the first example (modified slightly), when one sees that there is a

structure isomorphic to the natural numbers in the complex plane, one can use

complex analysis to shed light on the natural numbers. This works by applying the

induction principle of arithmetic to sets of natural numbers definable in complex

analysis, whether or not such sets can be defined in the language of arithmetic alone.

One cannot tell in advance what resources are needed to shed light on a mathe-

matical structure—even after the structure has been adequately characterized. The

incompleteness theorem indicates that some theorems about the natural numbers

proved in a rich theory, like complex analysis, are not provable in arithmetic alone.

In the case at hand, the induction principle is applicable simply because the

set in question is a set of natural numbers (or is isomorphic to such a set). And

the result is a theorem about the natural numbers. It would be a mistake to refuse

to apply induction, simply because one has not defined the property in the lan-

guage of arithmetic alone. This would run against the very nature of the natural

numbers. As Shaughan Lavine [1994, 231 n. 24] put it:

Part of what it is to define a property of natural numbers is to be willing to

extend mathematical induction to it. To fail to do so is to violate our rules for

extending and further specifying our arithmetical usage.

Although, like Lavine, Dummett is no friend of higher-order logic, he echoes the

same idea:

It is part of the concept of natural number, as we now understand it, that in-

duction with respect to any well-defined property is a ground for asserting all

natural numbers to have that property. (Dummett [1994, 337]; emphasis added)

The second-order induction axiom understood with standard semantics—and

not the first-order induction scheme and not Henkin or first-order semantics of

second-order languages—captures this feature of arithmetic truth. The same goes

for the second-order completeness principle in analysis and just about every rich

mathematical theory.
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74–92.
Resnik, M. [1988], ‘‘Second-order logic still wild,’’ Journal of Philosophy 85, 75–87.
Shapiro, S. [1991], Foundations without foundationalism: A case for second-order logic,

New York, Oxford University Press. (Extensive development of and justification for

higher-order logic. Philosophical, mathematical, and historical treatment. Most of

the book requires some background in logic. Extensive bibliography.)

Shapiro, S. [1993], ‘‘Modality and ontology,’’ Mind 102, 455–481.

higher-order logic 779



Shapiro, S. (editor) [1996], The limits of logic: higher-order logic and the L€oowenheim–

Skolem theorem, Aldershot, UK, Dartmouth Publishing Company. (Reprints of

previously published articles.)

Shapiro, S. [1998], ‘‘Logical consequence: Models and modality,’’ in The philosophy of

mathematics today, edited by M. Schirn, Oxford, Oxford University Press, 131–156.
Shapiro, S. [1999], ‘‘Do not claim too much: Second-order logic and first-order logic,’’

Philosophia Mathematica, 3rd ser., 7, 42–64. (Reply to some of the critics of Shapiro

[1991].)
Shapiro, S. [2001], ‘‘Systems between first-order logic and second-order logics,’’ in

Handbook of philosophical logic, vol. 1, 2nd ed., edited by D.M. Gabbay and

F. Geunthner, Dordrecht, Kluwer Academic Publishers, 131–187.
Skolem, T. [1922], ‘‘Einige Bemerkungen zur axiomatischen Begründung der

Mengenlehre,’’ in Matematikerkongressen i Helsingfors den 4–7 Juli 1922, Helsinki,

Akademiska Bokhandeln, 217–232; translated as ‘‘Some remarks on axiomatized

set theory’’ in van Heijenoort [1967], 291–301.
Tarski, A. [1987], ‘‘A philosophical letter of Alfred Tarski,’’ edited by Morton White,

Journal of Philosophy 84, 28–32.
Tharp, L. [1975], ‘‘Which logic is the right logic?,’’ Synth�eese 31, 1–31; reprinted in Shapiro

[1996], 47–67.
Van Heijenoort, J. (editor) [1967], From Frege to G€oodel, Cambridge, MA, Harvard

University Press. (Collection of many original papers in logic, translated into

English. Includes works by Frege, Peano, Dedekind, Cantor, Hilbert, Russell,
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c h a p t e r 26

HIGHER-ORDER LOGIC

RECONSIDERED

ignacio jané

In this chapter we discuss canonical (i.e., full, or standard) second-order conse-

quence and argue against it being a case of logical consequence. Our discussion is

divided into three parts.

The first part comprises the first three sections. After stating the problem in

section 1, we devote sections 2 and 3 to examining the role that the consequence

relation is expected to play in axiomatic theories. This leads us to put forward two

requirements on logical consequence, which we call ‘‘formality’’ and ‘‘noninter-

ference.’’ It is this last requirement that canonical second-order consequence

violates, as we set out to substantiate.

This we do in the second part, which consists of sections 4 to 6. In section 4

we argue that canonical second-order logic is inadequate for axiomatizing set

theory, on the grounds that it codes a significant amount of set-theoretical content.

Objections to our criticism are considered, in particular that we conflate seman-

tical with deductive consequence, that even first-order logic is set-theoretically

laden, and that we overlook the distinction between logical and iterative sets. The

last two objections are met in sections 5 and 6, respectively.

The third part, which runs from section 7 to the end, deals with the issue of

whether canonical second-order consequence is a determinate relation. In section

7 we emphasize the claim that it rests on the assumption that many undecided set-

theoretical questions have a definite answer. From this we argue that unless we

view canonical second-order consequence as an applied branch of set theory, its

justified use requires embracing some strong form of philosophical realism. In
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section 8 we maintain that, in a relevant way, the use of canonical second-order

consequence requires a stronger ontological commitment than set theory, and we

sketch a non-Platonist account of the power set operation which, we submit, is

suitable for set theory but not for the autonomous use of second-order conse-

quence. As we point out in section 9, this account casts doubt on the import of

the categoricity results for second-order languages. After a discussion of Boolos’s

plural interpretation of second-order quantification in section 10, the chapter

ends with the suggestion that the existence of a complete calculus is an essential

requirement of any fully determined, self-sufficient consequence relation, and

thus of logical consequence—whatever it may reasonably be.

1. The Question

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We deal with first- and second-order formal languages, mainly from the point of

view of their use in the formalization of actual mathematical theories. Each

language is supposed to be endowed with a definite consequence relation which

we take to be an integral part of the language. This means that in order to identify

a language, it is not enough to list its symbols and give the rules for generating its

terms and formulas. It must be determined as well which sentences follow from

which sentences and from which sets of sentences; in other words, it must be

determined what particular relation the consequence relation is. In the case of

first-order languages we have two equivalent ways to describe the consequence

relation: by means of a deductive calculus and through Tarski’s definition. For

second-order languages canonically understood, the first option is not open.

We give a sketchy account of second-order languages, intended only to fix the

setting and any terminological peculiarity. For a brief and clear exposition, refer

to Enderton [11, ch. IV]; and for a thorough presentation to Shapiro [27, part II].

Second-order languages are extensions of first-order ones. Syntactically, the

extension consists in the addition of n-ary predicate variables for each positive integer

n. No new terms are added, but the set of formulas is expanded: for each n-ary

variable X and n terms t1, . . . , tn, the expression Xt1 . . . tn is a new atomic formula.

From the atomic formulas, the rest are generated by the same rules as in first-order

languages, taking into account that the new predicate variables are also quantifiable.

An interpretation for a second-order language has two components: (1) a

structure A for the similarity type of the language, which is the same as its first-

order restriction, and (2) for each positive integer n, a nonempty set Dn of n-ary

relations on the universe of the structure, over which the n-ary predicate variables

range (a 1-ary relation is a subset of the universe). This being enough to define

satisfaction and truth, we shall speak freely of a second-order sentence being true
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in a given interpretation. We call an interpretation whose first component is the

structure A an interpretation over A. A model of a set of sentences is an inter-

pretation in which all the sentences in the set are true.

Some conditions can be imposed on the interpretations over a structureA with

universe A, thereby decreeing which of them are admissible. In the full or canonical

interpretation over A, each Dn contains all n-ary relations on A; in particular D1 is

the power set of A. In a Henkin interpretation one requires that the Dn be closed

under impredicative comprehension, that is, that all the comprehension axioms be

true in the interpretation.1 One may also demand that some further conditions

be met, provided that they are statable by second-order formulas or schemas. The

canonical interpretation is also a Henkin interpretation, but if A is infinite, there are

other Henkin interpretations over A.2 When dealing with the canonical interpre-

tation there is no need to mention the Dn, because they are determined by A.

Accordingly, we simply say that a sentence is true, or false, in the structure A.

Consequence for second-order languages is defined in the Tarskian way. A

sentence j is a second-order consequence of a set of sentences S if and only if j is

true in all admissible models of S. What consequence relation this defines de-

pends on which interpretations are admissible. Accordingly, we speak of the

canonical second-order consequence relation, and of the various Henkin consequence

relations (they vary according to which formulas the admissible interpretations

are required to satisfy in addition to the comprehension axioms).

Many central mathematical structures and concepts can be characterized

in second-order languages with the canonical semantics.3 We can characterize,

each with finitely many formulas, the closure of a set under a finite number of

given operations—thus the structure of the natural numbers with the successor

operation—the concept of well-ordering, the field of the real numbers, and so on.

In contrast to this strong expressive power, canonical second-order logic (the logic

of second-order languages with the canonical semantics) lacks those properties that

have made work on first-order logic so fruitful. It lacks the Löwenheim–Skolem

property, it is not compact, it admits no complete proof procedure, not even for

universally valid sentences.

On the other hand, the logic of second-order languages endowed with Henkin

semantics has all these properties in common with first-order logic. For it, both

1 An n-ary comprehension axiom is the universal closure of a formula of the form

AX Vx1 . . . xn (Xx1 . . . xn$j),

where j is a formula, n � 1, and X is a n-ary predicate variable not occurring free in j.
2 There are other natural possibilities for admissibility (e.g., that each Dn consists of

all the finite, or all countable, or all first-order definable n-ary relations on A). But we

won’t deal with any of these save in examples, since our central concern is the canonical

interpretation.
3 See Shapiro [26] and [27, pp. 97–109].
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the upward and downward Löwenheim–Skolem theorems hold, it is compact, and

it has a complete proof procedure. Indeed, Henkin second-order consequence can

be reduced to first-order consequence.4

We deal with the question of whether the canonical consequence relation of

second-order languages is a case of logical consequence. We will argue that it is

not. Of course, in order to do that, we must have some idea of what counts as

logical consequence, but it is worth remarking that we don’t have to bring in a

fully precise notion of logical consequence in order to be able to answer the

question in the negative. For this, it is enough to agree on one or more features

that the consequence relation of a language should possess if it is to be considered

logical and that second-order consequence lacks.

We don’t mean to look for some alleged true nature of logic or of logical

consequence in order to find these features. Instead, we follow what we may call a

methodological approach by turning our attention to a context where it matters

what we take logical consequence to be. Such a context is axiomatization. In

discussing axiomatic theories, the notion of consequence is brought to the fore-

front, since it is needed to identify the theory we are dealing with. An axiomatic

theory is given by a list of axioms in a certain language, but usually what matters

about it are less the particular axioms than their consequences, as is obvious when

we speak of different axiomatizations of the same theory. The theory consists of

the consequences of the axioms, which means that the consequence relation at

work is no less fundamental for the identification of the theory than the axioms.5

One advantage of looking at axiomatic theories for the purpose of assessing

the role of the consequence relation is that in many of them the distance from the

4 More precisely, the Henkin second-order consequences of a set of premises in a lan-

guage of a given similarity type are just the first-order consequences of an enlarged set of

premises in a language in some expanded similarity type. Let’s restrict to monadic second-

order languages (i.e., let’s assume that all predicate variables are unary). Syntactically, a second-

order monadic language can be viewed as a two-sorted first-order language with one hidden

binary relation symbol, say E, represented by concatenation. We may make it explicit by

rewriting each atomic formula Xt as E tX. For each second-order formula j, let j* be the

corresponding explicit two-sorted formula thus obtained, and for a set S of second-order

formulas, letS* the set of all formulasj*, withj inS. It is obvious that for any structureA and

any nonempty collection D of subsets of A, j is true in hA,Di if and only if hA,D, 2i 	 j*

(in particular, j is canonically true in the structure A if and only if hA;PðAÞ,2i 	 j*). The

reduction of Henkin second-order consequence to first-order is this: if D is the set of sentences

characterizing admissibility for interpretations, then for any setS of second-order sentences,j
is a second-order consequence of S if and only if j* is a first-order consequence of S*[D*.
For details, see Shapiro [27, sec. 4.3] or Enderton [11, pp. 277–289] (or chapter 25 above).

5 To prevent any misunderstanding we want to emphasize that nowhere in this

chapter do we assume that all the consequences of the axioms can be proved from them in

some deductive calculus. Such an assumption would beg the question against canonical

second-order consequence.
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informal presentation to its formalized version is relatively short. This is so partly

because even in informal axiomatizations the concepts that the theory is to deal

with are duly specified, and this limits the freedom of formalization. This relative

closeness may allow us to view the consequence relation of the formal language

from a working perspective, thus helping us to gauge its adequacy to perhaps

differing aims and conferring some valuable insight to our decisions.

2. Axiomatic Theories

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

When building an axiomatic theory, one distinguishes between primitive and de-

fined terms or notions. Not all primitive terms receive the same treatment. Among

them, the specific ones are singled out as standing for the entities (concepts, rela-

tions, operations) the theory is intended to be about. In informal presentations only

the specific terms are usually explicitly mentioned, but formalization requires a

definite list of all primitive terms, among which we normally find the equality sign,

the propositional connectives, and the first-order quantifiers.

It is common to refer to the nonspecific terms as ‘‘logical,’’ and to the specific

ones as ‘‘nonlogical.’’ In a clear sense this is right. Since the logic of a language rests

on its consequence relation, and since the consequence relation depends on the

behavior of the nonspecific terms, these may be called ‘‘logical.’’ Nevertheless, if our

task is to ponder whether the consequence relation of some particular languages is a

case of logical consequence, it is advisable to keep to a more neutral terminology.

As a matter of fact, it is not hard to find axiomatic theories some of whose

primitive nonspecific terms we would hardly count as logical. A simple and inter-

esting example would be an axiomatization of Euclidean geometry presupposing the

ordering of the real numbers. By this we mean an axiomatization like Hilbert’s, but

with a completeness axiom stating essentially that the order of any line is isomorphic

to the order of the real numbers. In such an axiomatization, the terms standing for

the set of real numbers and for its ordering relation would be nonspecific.

An essential, although imprecise requirement on axiomatization is that everything

assumed about the specific (but not about all primitive) entities is to be explicitly stated

in the axioms.6 This implies treating the specific terms formally (i.e., as parameters, as

mere place-holders for entities of the appropriate category). And treating them thus

6 Thus Tarski: ‘‘Our knowledge of the things denoted by the [specific] terms . . . is, so
to speak, our private concern and does not exert the least influence on the construction of

our theory. In particular, in deriving theorems from the axioms, we make no use what-

soever of this knowledge, and behave as though we did not understand the content of the

concepts involved in our considerations, as if we knew nothing about them that had not

been expressly asserted in the axioms’’ (Tarski [31, pp. 121–122]).
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has the effect that the consequences of the axioms hold not only for the intended

specific entities, but for any entities for which the axioms hold. This is so fundamental

to our conception of an axiomatic theory that many such theories are built with no

specific entities intended. Any entities satisfying the axioms are as good as any other.

Notice that the specific terms being treated formally is a property of the consequence

relation of the theory, and thus of the language in which the theory is framed.

In informal axiomatizations, there always lurks the question of how well

determined the consequence relation is. Often the consequence relation (and thus

the theory itself) is left indeterminate in that, among other things, assumptions

must be made about the entities for which the nonspecific terms stand, in order

not only to draw certain consequences from the axioms but also for it to be a fact

that these are indeed consequences, and thus belong to the theory. For instance,

the axiomatization of Euclidean geometry hinted at two paragraphs above con-

tains no axioms about the order of the real numbers, but the particular properties

of this order are involved in determining what follows from the axioms, and

hence in fixing the consequence relation.

In practice, this lack of determinacy is bearable, since one is concerned only

with those theorems that have been proved, and from a given proof we can see

what has been assumed. But such indeterminacy is not satisfactory in a founda-

tional context, where we are not interested in developing the theory but rather in

the question of what the theory is (i.e., of which sentences it consists).

In order to make the theory definite, the assumptions about the primitive

nonspecific entities must be first singled out and made precise, and then incor-

porated into the theory, either through the axioms or through the consequence

relation. If the former, we provide the original theory with new specific terms and

axioms involving them, thus taking as specific some previously nonspecific terms

(in our example, we should take the symbols for the set of real numbers and for its

order as specific, and add the relevant axioms for them). The reformed theory has

a wider subject matter than the original one, since it must deal with the new

entities as well. If we choose the second way, we keep the assumptions as com-

ponents of the consequence relation, either by building an auxiliary theory about

them to be used in characterizing the consequence relation of our original axi-

omatic theory, or by some other means, as illustrated in the next section.

3. Beyond Formality

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The formal treatment of the specific terms, which amounts to the acknowledg-

ment that the theorems hold not only for the intended specific entities, but for
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any entities satisfying the axioms, is a basic requirement of an axiomatic theory.

We shall refer to it as the requirement of formality of the specific terms.

The fulfillment of this requirement, which is a requirement on the conse-

quence relation regarding the specific terms, is not enough to guarantee the

fulfillment of the more basic, even if deeply imprecise, requirement that motivates

it, namely, that everything assumed about the specific entities is to be explicitly

stated in the axioms. For in some cases, even when formality is present, the

consequence relation can code significant assumptions about the specific entities,

which thereby need not be explicitly stated. Particularly clear examples can be

readily found with the use of Lindström quantifiers, which allow for cheap

characterizations of structures or classes of structures with single sentences.7 As an

example, we add to a first-order language the two-place quantifier Q, and extend

the definition of formulas with the new clause that Qxyj is a formula whenever j
is. The satisfaction relation is extended thus: for any structure A with domain A

and any assignment s of members of A to the variables,

A	Qxy j½s� iff hA,jA[s]iffihR,< i,

where jA½s� ¼ fha; bi2A2:A	j½sx y
a b �g, and hR,< i is the real-number order. It

is obvious that the sentence

(1) Qxy x< y

is a characterization of hR,< i, that is, all its models are isomorphic to hR,< i.
Consequently, every first-order sentence true in hR,< i is a consequence of (1).

However, it is clear that (1) does not explicitly state anything about the order of

the real numbers; rather, it presupposes it all.

As a means for characterizing the order of the real numbers, Q is an unin-

teresting quantifier, but it can be very useful in some other natural contexts. Thus

we can use it (or a variant thereof) in the above-mentioned axiomatization of

Euclidean geometry to express that the order of the points of a line is isomorphic

to that of the real numbers.

We bring into consideration a second example, more akin to canonical second-

order consequence. Syntactically, the formulas are those of a monadic second-

order language, but the uppercase variables range over all countable subsets of the

universe of the structure over which the language is interpreted. Every model of

the following set S of axioms

1. Vxy (Vz (zEx$ zEy)! x= y)

2. VX (AyXy! Ay (Xy^ Vz (zEy!:Xz)))

7 See Ebbinghaus [10, sec. 4.1].
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3. VX Ay Vz (zEy$Xz)

4. Vy AXVz (zEy$Xz)

is isomorphic to the structure hHC,2i of the hereditarily countable sets with the

membership relation.8 But the fundamental notion about this structure, namely,

countability, is not spelled out in the axioms, yet it is implicitly assumed and

essentially used, being coded in the quantification. To expose it, we need only to

fix any regular cardinal k and let the uppercase variables of the language range

over subsets of cardinality less than k. If we do so, the same set of formulas

characterizes the structure hHk,2i of sets hereditarily of cardinality less than k.9

As these examples suggest, it is rather easy to build languages whose consequence

relation stores large amounts of information about any desired class of mathematical

entities or concepts. Building languages of this kind can be helpful for certain pur-

poses, namely, when one wants to use or to apply facts about these concepts or entities

in some other field without being distracted with lying down the details of what is

being assumed. But it seems clear that a language with a consequence relation laden

with characteristic assumptions about certain concepts or entities is unsuitable for

axiomatizing a theory about those very concepts or entities. For in such a situation,

the general principle that what is assumed about the specific entities should be

explicitly stated in the axioms is clearly violated. In axiomatizations of this kind, the

content of some theorems comes from the consequence relation rather than from

the axioms. Thus, knowing that the above set of axioms characterizes hHC,2i, we
conclude that the set-theoretical axioms of infinity, union, and replacement are

consequences ofS. But if we want to see why this is so, wemust be involved quite a bit

with countability—about which the axioms say nothing, but presuppose everything.

These considerations help to enhance by contrast a general desideratum of

logical consequence, namely, its universality of application. A language whose con-

sequence relation is an instance of logical consequence could be used in principle

to axiomatize theories about any entities or concepts whatsoever (provided only

that it has the right stock of specific terms). Let’s call this the requirement of

8 Here is a sketch of a proof in ZFC. Since a relation R is well-founded if and only if

every countable nonempty subset has an R-minimal element, by axioms 1 and 2 every

model of S is extensional and well-founded; hence, by the Mostowski collapsing theorem,

isomorphic to a transitive set M with the membership relation. By axiom 3, every

countable subset of M is a member of M, which implies that HC�M. That M�HC

follows from axiom 4, which says that every member of M is countable. Everything needed

to put flesh on this sketch can be found in Kunen [18, chs. III and IV].
9 But these formulas do not characterize the structure hHF,2i of the hereditarily

finite sets if the variables are taken to range over all finite subsets, the reason being that the

second axiom does not then ensure that the E-relation is well-founded. To characterize HF

we may add a fifth axiom asserting that each set is a member of some transitive set:

Vx Ay (xEy^ Vzu ((zEu ^ uEy)! zEy)).
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noninterference. It is hard to make it precise, but as the examples above show,

there are cases where it is clearly violated. Our first argument against canonical

second-order consequence being logical consequence will be that it violates this

requirement in a strikingly clear way.

4. Second-order Consequence

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A valued strength of canonical second-order languages is their ability to charac-

terize structures and classes of structures. This may be a ground for the use of

canonical second-order consequence, but not, of course, for its logical character.

First what this strength depends on must be examined. After all, Lindström

quantifiers are fully adequate for characterizing structures.

Second-order consequence is defined in terms of sets. Introducing second-

order quantification over a structure A amounts to being given, in addition to A,

the power set of its domain A (as well as that of the n-fold product An, for each

positive integer n). There is, however, a noticeable difference between using Lind-

ström quantifiers and second-order means to characterize a structure: Lindström

quantifiers are ad hoc, while second-order quantification is uniformly defined.

Nonetheless, one could suspect that this uniformity and ensuing generality are due

only to the fact that all mathematical structures considered are set-theoretical

entities, and set theory provides all that is needed for implementing canonical

second-order quantification over them. In other words, one might suspect that the

strength and versatility of canonical second-order consequence comes from its

incorporating a significant amount of set theory.

In order to assess the dependence on set theory of canonical second-order

consequence, it may prove useful to examine ZF2, the second-order version of

Zermelo–Fraenkel ZF with the canonical consequence relation. Although they are

redundant, we take as its axioms those of ZF but with separation, replacement,

and foundation in second-order form. For a more succinct equivalent version see

Shapiro [27, p. 85].

The only specific term of ZF2 is the binary predicate E for the membership

relation (we reserve ‘‘2 ’’ for the metalanguage). In order to avoid circumlocu-

tions and limit the use of formulas when discussing ZF2, we shall often refer to

values of first-order variables as ‘‘sets’’ and to values of second-order variables as

‘‘classes’’ (either ‘‘classes’’ tout court or ‘‘relational classes,’’ among which are the

‘‘functional classes’’). Thus, we may render the second-order axioms of separa-

tion, replacement, and foundation, respectively as (1) every subclass of a set is a

set; (2) the image of a set by a functional class is a set; and (3) every nonempty

class has a E-minimal member.
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A remarkable property of ZF2, first established in Zermelo [34], is its quasi

categoricity: every model of ZF2 is isomorphic to hVk,2i, for some inaccessible

cardinal k.10 Since whenever k is inaccessible, hVk,2i is a model of ZF2, it follows

that if we add to ZF2 a sentence asserting that there are no inaccessible cardinals,

the resulting theory is categorical. It also follows that every set-theoretical ques-

tion involving only sets of accessible rank is answerable in ZF2 in the sense that its

correct answer is a consequence of the axioms. In particular, all propositions of set

theory about sets of reals which are independent of ZFC are decided in ZF2,

although we don’t know in which way. The most famous of these is Cantor’s

Continuum Hypothesis (CH), first conjectured by Cantor in 1878 and the object

of much research nowadays.

ZF2 decides CH in the sense that either CH or its negation is a canonical

consequence of the axioms of ZF2. Since CH is independent of ZFC and the axioms

of ZF2 are the second-order formulations of those of ZF, one might suspect that

the answer to CH provided by ZF2 is contributed by the consequence relation

rather than by the axioms. Admittedly, the distinction between what depends on

the consequence relation and what on the axioms is not clear in general, but it

turns out that the content of both CH and :CH can be expressed in a natural way

without any appeal to the axioms, or even to the language of set theory. More

precisely, there are sentences s1 and s2 of a pure second-order language such that

(it can be shown in ZFC that) s1 is universally valid if and only if CH holds, and s2
is universally valid if and only if CH does not hold. Moreover, these sentences

express in a strikingly direct way the content of CH and of :CH, respectively. This

is worth emphasizing because the mere fact that for any set-theoretical sentence j
there is a pure second-order sentence s which is universally valid if and only if j is

a consequence of ZF2 is not by itself indicative of the set-theoretical commitment

of canonical second-order consequence. We can always find such a sentence from

the finite axiomatizability of ZF2. For if W is the conjunction of the axioms of ZF2,

j is a consequence of ZF2 if and only if the sentence W!j is universally valid,

10 It is worthwhile to pause and reflect on this short proof (carried out in first-order

ZFC) of the quasi categoricity of ZF2, which is more an exercise in set theory than it has to

do with logic. Since two of the axioms of ZF2 are extensionality and second-order

foundation, every model of the theory is isomorphic to one of the form hM,2i, whereM is

a transitive set. By second-order separation, every subset of a set in M belongs to M, and

thus, by the power set axiom, (i) the power set of every set in M is a member of M. On the

other hand, by the union axiom and second-order replacement, (ii) whenever a belongs to

M and f :a!M, the set
S
f [x] is a member of M. But one can show that any transitive set

M satisfying (i) and (ii) is of the form Hk, for k¼o or k inaccessible. By the axiom of

infinity, the former is excluded. Thus, since for k inaccessible, Hk¼Vk, M¼Vk for some

inaccessible cardinal k. For details, refer to Kunen [18, chs. III and IV].
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which it is just in case the pure sentence VU VR (WU,R!jU,R) is universally valid.11

We can thus take this last sentence as s. The formulas that we presently exhibit

concerning CH and :CH are not of this form.

Cantor’s first formulation of CH was that every set of real numbers is either

countable or bijectable with the set all real numbers. Equivalently, if a is a

countably infinite set and b is the power set of a, then every subset c of b is either

injectable in a (c � a) or bijectable with b (c b). By writing down the definitions

of the concepts involved, we can produce formulas j1,j2,j3, and j4 such that for

any structure M (endowed with the canonical interpretation),

M	j1(X)[A] iff A is a countably infinite subset of M

M	j2(X,Y )[A, B] iff B is a faithful copy of the power set of A

M	j3(Y,Z )[B, C] iff C�B,

M	j4(X, Y, Z )[A,B,C] iff C � A or CB.

Then s1 is the sentence

VX VY VZ ((j1(X)^j2(X,Y )^j3(Y,Z ))!j4(X,Y,Z )),

while s2 is

VX VY AZ ((j1(X)^j2(X,Y ))! (j3(Y,Z )^:j4 (X,Y,Z ))).

The formulas j1, j3, and j4 can be taken to be mere transcriptions of obvious

set-theoretical formulas.12 j2 is the formula saying that there is a relation R such

that

1. Vxy (Rxy! (Xx^Yy))
2. VW (Vx (Wx!Xx)! A!y (Yy^Vx (Rxy$Wx))).

This state of affairs has drastic consequences for the use of second-order

languages (with the canonical interpretation) in axiomatizing set theory. CH is an

important open problem of set theory, and in order to investigate it, we could

consider adding CH as a tentative assumption to ZF2. But this maneuver is either

11 For any formula c of the second-order language of set theory, cU,R is the formula

obtained from c by substituting the binary variable R for the membership relation E and

suitably restricting the quantifiers to the unary variable U. It is assumed that neither U nor

R occurs in c.
12 See Shapiro [27, sec. 5.1.2] for details and for other pure second-order formulations

of CH and :CH.
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useless or fatal, because if CH is a consequence of ZF2, its addition is redundant,

while if it isn’t, its addition yields a contradictory theory.

One could object that this conclusion depends on conflating two distinct roles

of the axioms, namely, as means for characterizing structures and as premises for

deriving theorems.13 That CH is semantically decided by ZF2 follows from the quasi

categoricity of ZF2, but in order to find what the consequences of ZF2 are, we must

set up some proof procedure. Indeed, if we limit ourselves to the usual deductive

calculi, then we can be sure that (provided ZF2 is consistent in the calculus) neither

CH nor :CH will be deducible from ZF2. These calculi, then, are suitable tools for

axiomatizing second-order set theory with the purpose of deriving theorems.

But this objection amounts to not taking second-order consequence seri-

ously.14 As soon as a second-order language is given the canonical interpretation,

this (presumably) determines the consequence relation, regardless of any de-

ductive calculus. It is this consequence relation that we are concerned with. And

with respect to it, either ZF2þCH or ZF2þ:CH will be contradictory (i.e., will

have a contradiction as a semantic consequence). That no contradiction be

derived in some incomplete calculus is irrelevant to this.

A look at the axioms of the basic deductive calculus for second-order con-

sequence makes it evident how, when using a second-order language, part of the

content of the explicit set-theoretical axioms as formulated in a first-order lan-

guage is transferred from the axioms of the theory to the consequence relation.

Consider the separation schema of ZF: for each first-order formula j(x) with no

free occurrences of b,

(2) Va Ab Vx (x2 b$ x2a^j(x)),

meaning that any condition on the elements of a set a determines a subset of a. In

ZF2, the schema becomes the axiom

(3) VXVa Ab Vx (x2b$ x2a^Xx),

which can be rendered fairly faithfully as: ‘‘every subclass (i.e., every true subset)

of a set a is a subset of a.’’

The axiom (3) is presumably stronger than the schema (2), but its strength

depends on the implicit assumption that any condition determines a class.15 In

order for this strength to be available in a deduction from the axiom, a calculus

for second-order consequence will include the comprehension schema:

13 See Corcoran [8] on this distinction.
14 Compare this argumentation with Shapiro [29, pp. 48–49, 56–57].
15 Or, at least, that for every first-order formula j(x) the class {x : j(x)} is a value of

the variable X in (3).
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(4) AX Vx(Xx$j(x)).

From (3) and (4) (and other rules that we may ignore here), we get (2).

We take the presence of such a schema in sound deductive calculi as evidence

that canonical second-order consequence carries set-theoretical content relevant

enough to be explicitly expressed in any first-order axiomatization, thus sug-

gesting that the requirement of noninterference for logical consequence is being

violated.

Comprehension axioms are not the only axioms in a deductive calculus that

make it evident that the content of canonical second-order consequence overlaps

widely with set theory. Other such axioms are forms of the set-theoretical axiom

of choice. One of them is16

(5) VX [Vx Ay Xxy! AY (Func(Y )^Vxy (Yxy!Xxy)^ Vx Ay Yxy)].

Being among the axioms of a sound calculus, (5) is supposed to unfold

second-order consequence. Now, from (5) and the rest of the calculus we can

derive in ZF2 the usual axiom of choice in set theory, which, in one of its many

equivalent forms, says that for every relation r there is a function f with the same

domain such that for every x2dom (r), hx, f (x)i2 r.

Thus, if the usual calculus with (5) is sound for second-order consequence,

then the axiom of choice (AC) is a consequence of the axioms of ZF2, so that

ZF2þ:AC is contradictory. Accordingly, canonical second-order consequence is

unsuitable not just for investigating but even for axiomatizing set theory without

choice.

One could dismiss this complaint by replying that the second-order logic

which is adequate for dealing with choiceless set theory is a logic without choice.

But this reply amounts again to not taking canonical second-order consequence

seriously. If canonical second-order consequence is a determinate relation, then

either ZF2 has AC as a consequence or it doesn’t. If it does (thus, if (5) is sound),

then a second-order consequence without choice is some other consequence

relation.

The insistence on the determinacy of second-order consequence is crucial. If

second-order canonical consequence is not a determinate relation, then theories

formulated in a language with canonical consequence are not determined by their

axioms, and the alleged categoricity results for second-order axiomatizations

become questionable.

16 Here X and Y are binary predicate variables and Func(Y ) is the usual formula

expressing that Y is a functional class.
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5. On the Existence

of Structures

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

One might object that our complaint that canonical second-order consequence is

too involved with set-theoretical matters is overstretched, adducing that, albeit to

a lesser degree, it applies to first-order consequence as well. The objection to our

complaint could be put thus. If, regardless of the language considered, we define

the consequence relation according to Tarski (that is, if we declare that a sentence

j is a consequence of a set of sentences S just in case j is true in all models of S),
then what sentences turn out to be consequences of a given set will depend on

what structures there are, and this is a set-theoretical matter. This dependence can

easily be exemplified in the case of first-order consequence. For example, we can

find a first-order sentence which is universally valid if and only if there are no sets

of five or more members; more interestingly, we can produce a first-order sen-

tence which is universally valid if and only if there are no infinite structures.17

Thus, since the question of whether there exist infinite sets is certainly mathe-

matical, first-order consequence includes or codes some definite mathematical

content. Moreover, paraphrasing what has been said about canonical second-

order consequence, if there are no infinite sets, then any first-order theory which

has no finite models will be not only false but also contradictory.

We must be careful here. Whether or not we accept that there are infinite sets,

we do accept that there are infinitely many sets or, at any rate, infinitely many

objects, even if there is no set containing them all. If we are willing to discuss

ordinary formal languages, we certainly accept a potentially infinite class of for-

mulas, deductions of arbitrary length, and so on. Thus we reason about infinitely

many things, and so our logic (that is, the logic we use when we reason informally

about these mathematical objects) applies to them. Accordingly, whether or not we

are willing to accept infinite sets, our logic does not condone the inference from

‘‘Vxy ( fx¼ fy! x¼ y)’’ to ‘‘Vy Ax fx= y,’’ or from ‘‘R is a transitive and irreflexive

relation’’ to ‘‘there is a maximal element with respect to R,’’ which are suitable for

reasoning only about finite structures. According to the informal logic we reason by,

these inferences are not valid, obvious counterexamples to them being provided by

the successor operation on the natural numbers and the order relation among them,

respectively. We reason about natural numbers, whether or not they make a set.

If we turn to set theory in order to build a theory of consequence for first-

order languages agreeing with our logical practice in ordinary mathematical

reasoning, our set theory must admit infinite sets, to serve as counterparts of the

infinite multiplicities of numbers, formulas, and so on about which we reason.

17 Take, for instance, a sentence with a binary predicate R expressing that if R is a

linear order, then there is a maximal element with respect to R.
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Otherwise, the logical theory we obtain will be manifestly inadequate. We should

note that, strictly speaking, our set theory need not have an axiom of infinity, for

the infinite counterparts of infinite multiplicities could be dealt with as proper

classes. What must be asked of our set theory is that it be strong enough to allow

one to define the syntactic and semantic notions of first-order languages and,

perhaps, to prove the completeness theorem for first-order logic. This does not

require much in the way of existence of sets or classes, since the model of a

consistent set of sentences S obtained from the standard, Henkin’s proof is

arithmetical in S. Strictly speaking, only this is indispensable, namely, that the

mathematical reconstruction of first-order consequence that we carry out in our

set theory be in accordance with the informal version (at least as far as can be

discerned). If our set theory is unsuitable for this purpose (perhaps because it is

too weak), then we are not interested in its version of first-order consequence.

In short, if our mathematical reconstruction of first-order consequence is

such that it declares a sentence s to be a consequence of a set of sentences S if and

only if s is true in all finite models of S, then we declare it simply wrong. The

crucial thing here is that we have a fairly good idea of what the relation of

consequence is for first-order languages; we know at least that the usual rules of

inference are correct, and this is enough (as the completeness theorem tells us) to

accept the set-theoretical reconstruction as adequate.

But this, we contend, is not the situation as regards canonical second-order

consequence, of which we have only the set-theoretical definition. Now, this

contention might be objected to out of hand by appealing to our understanding of

second-order reasoning previous to set theory, to the use of second-order infer-

ences before the advent of set theory—but such an objection would miss the

point. All that our non-set-theoretical practice of second-order languages requires

is already embodied in Henkin consequence,18 against which we have now

nothing to say. It is precisely the requirement that the uppercase (unary) variables

range exactly over all subsets of the universe of the structure that distinguishes

canonical consequence from Henkin’s, and what endows it with its impressive

strength. Indeed, if the consequence relation of ZF2 were Henkin’s, then neither

CH nor its negation would be a theorem; more to the point, if s1 and s2 are the
sentences construed above as expressing the continuum hypothesis and its nega-

tion, respectively, then neither s1 nor s2 is universally valid as regards Henkin

consequence. This fact highlights an important difference between first-order and

canonical second-order consequence. In the case of first-order logic, our infer-

ential practice directed us toward a set theory allowing for infinite sets; here it

does not direct to a set theory either with CH or with :CH. The set-theoretical,

canonical version of second-order consequence goes significantly further than our

logical practice, and cannot be justified by it.

18 This is argued at length by Väänänen in [32].
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6. Logical Versus Iterative Sets

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

One can object that our criticism of canonical second-order consequence as

coding strong set-theoretical content is misguided, on the grounds that it over-

looks a significant distinction, that between the logical and the iterative notions of

set. Only the former, it is claimed, is needed to account for canonical second-

order consequence, while the latter is the object of set theory proper. A set in the

logical sense is said to be a subset of some domain, while an iterative set is an

object in the cumulative hierarchy of sets.19 Now, put this way, there seems to be

no difference to account for, since we can view the cumulative hierarchy as an

ordinal indexed sequence of increasing domains in such a way that the (logical)

subsets of each domain are the members of the next. Since an iterative set is

simply a subset (and a member) of any of these domains, it follows that all

iterative sets are logical sets—or at least objects standing for them.

In order to find a sound distinction, we are asked to look more closely into

what is needed for second-order quantification. It appears that we don’t need to

account for the whole power set operation, which assigns to each set its power set;

when defining truth in a structure for second-order formulas, we need to focus

only ‘‘on the subsets of a fixed universe or domain. That is, the context of the

theory determines, or presupposes, a range of the first-order variables. A set is a

subset of this universe (only). . . .Thus, in arithmetic, a logical set is a collection of

numbers; in geometry, a logical set is a collection of points (or regions); and so

on. There are no logical sets simpliciter, only logical sets within a given context’’.20

Accordingly, for the canonical use of a second-order language, only the power set

of the domain of objects that the language is about is needed, but by no means the

whole power set operation.

Now, this limited scope may suffice when using a language for merely

descriptive purposes, but it is not enough to support the logical functions which

make second-order languages with the canonical interpretation strong; in par-

ticular it cannot account for their capacity of structure characterization and for

second-order consequence. Consider a second-order characterization of the order

hR,< i of the real numbers by the sentence s expressing that < is a conditionally

complete linear order without end points with a countable dense subset. In order

to see that s is categorical, it is not enough to evaluate s in hR,< i. smust also be

evaluated in all relational structures, or at least in all dense linear orders without

end points, in order to exclude those that are not conditionally complete or

separable. The reason why some such order hA, �i is not a model of s is to be

19 See Shapiro [26, p. 721] and [27, pp. 18–22, 184–185].
20 Shapiro [27, p. 18]. Later, Shapiro partly rejected his strong distinction between

logical and iterative sets. See [29, pp. 60–61].
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found in the contents of PðAÞ. Thus, the power set of A needs to be taken into

account to guarantee the categoricity of s. The point of this remark is not that all

the structures (of the relevant similarity type) have to be considered in order to

exclude them as models of s, but rather that, in addition to the structures, the

whole power set of each of their domains must be surveyed as well.

The same happens when we turn to canonical consequence. In order for it to

be determinate whether a sentence j is a canonical consequence of a sentence c, it
is not enough to be determinate what structures there are, but also what is the

content of the power set of each domain. Since the power set of the domain of a

structure is not given along with the structure, but is secured from it by the

semantics itself, we must conclude that the full power set operation is needed for

the proper account of canonical second-order consequence.

There is, however, a notion of set which is different from the one discussed so far

and which can rather naturally be regarded as logical. It is the notion of a conceptual

set (or class) given as the collection of all objects falling under some definite concept.

This is to be opposed to the notion of a combinatorial set, an arbitrary collection of

objects of a domain, regardless of there being any concept under which all and only

its members fall. The combinatorial notion of set is the one that set theory is about,

and thus the one needed for canonical second-order consequence. The conceptual

notion can be attributed to Frege, who dismissed the idea behind combinatorial

sets21 and its relevance to logic.22 Only if second-order consequence rested on a

notion of set like the conceptual one could it be argued, with Frege, that second-

order consequence is a case of logical consequence. But the ensuing consequence

relation would not be the canonical one, but rather a variant of Henkin’s.23

7. On the Determinacy of Canonical

Second-order Consequence

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

When we say that canonical second-order consequence carries strong set-

theoretical content, we are assuming that this is a determinate relation, at least for

each fixed similarity type. It has to be a determinate relation if a list of axioms is

21 ‘‘I do, in fact, maintain that the concept is logically prior to its extension; and I

regard as futile the attempt to take the extension of a concept as a class, and make it rest,

not on the concept, but on single things’’ (Frege [13, p. 228]).
22 ‘‘Only because classes are determined by the properties that individuals in them

are to have . . . it becomes possible to express thoughts in general by stating relations

between classes; only so do we get logic’’ (Frege [13, p. 226]).
23 See Jané [19] for a more detailed account of the distinction.
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to determine a single theory as the totality of its consequences. Thus, when we

argued that there is a pure second-order sentence which is universally valid if and

only if the continuum hypothesis is true, we implicitly assumed that it is a fact

whether such a sentence is valid (and that it is also a fact whether CH is true).

We have argued that the strong set-theoretical content coded by canonical

second-order consequence makes it unsuitable for axiomatizing set theory. We

want to emphasize that our complaints had nothing to do with the lack of a

complete proof procedure (we have not been concerned at all with proofs). We

complained about the specific set-theoretical content that the consequence rela-

tion contributes to the theory beyond the axioms. This becomes especially evident

when we think of the many pure second-order sentences whose canonical validity

is equivalent to some distinctly set-theoretical claim—which quite often, as in the

CH case, can be seen to be expressed in a natural way by the sentence in question.

The equivalence of the validity of particular pure second-order sentences with

set-theoretical assertions suggests a skeptical view of the determinacy of canonical

second-order consequence. Namely, it suggests that whenever we speak of canonical

second-order consequence, we are alluding only to a highly underdetermined re-

lation, and that difficult set-theoretical decisions have to be made in order to turn it

into a determinate one. And many of such decisions are open issues in set theory.

It also suggests that in order to admit that second-order consequence is a

determinate relation, one has to acknowledge that a significant number of set-

theoretical questions have a definite answer; that among the possibly conflicting

ways we have of extending current set theory, exactly one is right. In other words,

claiming that canonical second-order consequence is determinate requires taking

a strong realist view of set theory. This counts against second-order consequence

as being usable as logical consequence, since the use of logic as such should not

depend on adopting a disputed philosophical position.24

It may be thought that we are going too far in involving philosophical realism

in this issue; that mere methodological, or working, realism is enough; that we

don’t have to bring into consideration a notion of truth stronger than that im-

plicit in mathematical practice, whatever that is.25 When set theorists speak of

measurable cardinals, we don’t have to attribute to them any reference to a

Platonic world in which these cardinals, if they exist, dwell. Why, then, assume

such a thing with regard to second-order consequence?

We claim that we have to assume something like this if we want to use

canonical second-order consequence as the self-sufficient consequence relation of

axiomatic theories. For if the axioms must determine the theory completely, then

24 Otherwise, philosophically nonrealist classical mathematicians would not be jus-

tified in using some part of logic.
25 See Shapiro [28, pp. 38–44], for a description of the various degrees of working

realism and its opposition to philosophical realism.
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everything required to settle which particular sentences follow from the axioms,

and which particular sentences don’t follow from them, is to be embodied in the

consequence relation. This should be the case if canonical second-order conse-

quence were an instance of logical consequence.26

As a matter of fact, the standard use of canonical second-order consequence is

not as logical consequence. In ordinary mathematical practice, one deals with

second-order logic as applied set theory. Second-order languages with the canonical

interpretation are, rather, set-theoretical tools which are handled in a set-theoretical

context. The set-theoretical setting may be implicit, but it makes itself felt as soon as

difficulties arise and we turn to a set theory book for help. In such a setting, no

question about the determinacy of second-order consequence arises, since no

question arises about the determinacy of the power set of any set we happen to be

dealing with; all questions are internal to set theory, and all internal questions are

treated as if they had a definite answer. This is just an aspect of classical reasoning,

as can be easily shown: whatever proposition p is, p_:p is a tautology and, as such,
it is taken as true. Now according to the common use of the term ‘‘true,’’ a

disjunction is true just in case at least one of the disjuncts is, and a negation is true

just in case the negated proposition is false. From this it follows, taking any con-

jecture (as the continuum hypothesis) as p, that either it is true or it is false.

Nevertheless, this piece of reasoning works only inside the set-theoretical set-

ting (but logic, as such, should be usable outside the setting, namely, to systematize

the setting itself). If any argument is needed, even one applying to set theory, it is

that all we said in the previous paragraph is sensible when we take the setting to be

some informal counterpart of first-order ZFC with a truth predicate, and it stays

sensible even if we believe that all there is to sets is what this theory can prove.

We want to add a remark about the ontological commitment of canonical

second-order logic. In order to refute Quine’s assertion that second-order logic

has ‘‘staggering existential assumptions,’’27 Boolos points to the fact that the

sentence AX Ax Ay(Xx^Xy^ x 6¼ y) is not universally valid to conclude that

‘‘despite its affinities with set theory and its vast commitments, second-order logic

is not committed to the existence of even a two-membered set’’ (Boolos [4, p.

40]). But this, we submit, is wrong. Boolos’ line of reasoning would apply only if

second-order logic were taken to be a set of theses, for only then would it be

appropriate to judge its ontology by looking at its validities. But it is out of place if

we view logic as dealing with the consequence relation of a language and if, as in

26 Here Frege’s maxim’s is apt: ‘‘About what is foreign to it, logic knows only what

occurs in the premises; about what is proper to it, it knows all’’ (Frege [14, p. 338]). One

could cite as well Tarski’s dictum that ‘‘logic itself does not presuppose any preceding

discipline’’ (Tarski [31, p. 119]).
27 ‘‘Set theory’s staggering existential assumptions are cunningly hidden now in the

tacit shift from schematic predicate letter to quantifiable variable’’ (Quine [24, p. 68]).
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our case, consequence is defined in terms of structures. To assess the ontological

commitment in this case, we have to look at what structures are required to exist

in order that the consequence relation be a determinate relation. And this we find

not by looking at the logical validities, but rather at the sentences that are not

universally valid. That a sentence s is not universally valid means that there is a

structure failing to satisfy it. Hence, a logic that does not declare s universally

valid is committed to the existence of some such structure.

8. Subsets

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is a notorious circumstance that we don’t know how to explain what an ar-

bitrary subset of an infinite set is, let alone to describe the exact content of its

power set. This wouldn’t be much of a drawback if we had a procedure for

generating all subsets of an infinite set from its members, but there is none. If all

we know about a particular set is that it is infinite, then, even if allowed to use a

name for each one of its members, we won’t be able to specify a single infinite

subset with infinite complement. So, how do we know that there is any? Unless we

assume some form of the axiom of choice, it is consistent with our assumptions

about sets as codified in ZF that there are infinite sets all of whose subsets are

either finite or cofinite.28 Even when, as in the case of the set of the natural

numbers, we know how to specify infinitely many infinite subsets of the given set,

we also know that every enumerating rule will leave out some of them.

Both set theory and second-order logic have to give some account of power

sets, but not with the same urgency. Sets (and their power sets) are the subject

matter of set theory, which thus can be loosely described as a theory pursued to

gain knowledge of sets. Lacking a clear explanation of the power set operation is

not a defect in set theory, since getting such an explanation is, rather, one of the

aims it has to reach—not a starting point. Second-order logic, for its part, makes

use of the power set operation, and an essential use at that, since on it rests the

determinacy of the consequence relation. As we remarked above, any divergence

in accounting for the content of power sets is bound to disturb canonical second-

order consequence; in other words, different accounts of their content will give

rise to different consequence relations. Accordingly, the autonomous use of

second-order consequence (as opposed to its internal use in set theory, that is, to

what we have described as its use in a set-theoretical setting) requires an expla-

nation of (1) what is a set of objects of a domain and, most important, of (2) what

is the exact content of the power set of a set—in terms of the content of the set.

28 See Jech [20, exercise 21.6].
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Let us fix some infinite set. For definiteness and simplicity we take the set N of

the natural numbers. Whatever a set of natural numbers may be, we may regard it

as the collection of its elements. This may be insufficient to account for full set

theory, where sets are treated as objects, but it seems to be sufficiently adequate

for our present purposes. We don’t want to assume, at least not for the time

being, that collections are objects; they may be mere pluralities or classes as many

in Russell’s sense (Russell [25, pp. 68, 76]).

There is a rather clear general notion of a collection of natural numbers,

namely, that of a plurality specifiable with certain definite means. This general

notion encompasses a variety of particular notions, obtained by fixing the means

allowed for specification—for example, that of a collection first-order definable in

the structure hN,þ, �i. Each particular choice of means yields a definite notion of

subset with a definite extent, but none of them can deliver a power set rich enough

to serve as the range of the unary variables of canonical second-order languages.

No restriction of means is congenial with the intended absolute character of

canonical second-order consequence.

However, placing no restrictions on the means allowed for specification, that

is, taking a set to be (or to correspond to) a collection specifiable with any means

whatever, will not do, because such a notion of a collection would lack definite

extent: since it is not determinate what a possible means of specification is, it

would hardly be determinate what collections there are.

The customary way of overcoming all limitations is to get rid of specifications

altogether and to introduce the idea of an arbitrary, or combinatorial, set, that is,

of a collection obtained ‘‘as the result of infinitely many independent acts de-

ciding for each number whether it should be included or excluded’’ (Bernays [3, p.

260]). Of course, this is only a metaphor, since no agent is assumed to carry out

the infinitely many steps of such a selection, not even in principle.

This proposal is apparently less effective than the previous one. By allowing

arbitrary means of specification, our notion of collection was open-ended (there is

no such thing as the totality of all arbitrarily specifiable sets of natural numbers),

but at least we knew what an individual such set is. With combinatorial sets we

have nothing but a metaphor which becomes even obscurer when we leave the

domain of the natural numbers and consider in the abstract any (unstructured)

infinite set. As Hermann Weyl put it:

The notion that an infinite set is a ‘‘gathering’’ brought together by infinitely

many individual arbitrary acts of selection . . . is nonsensical. . . . I contrast the
[predicative] concept of set . . .with the completely vague concept of function

which has become canonical in analysis since Dirichlet and, together with it, the

prevailing concept of set. (Weyl [33], 23)

There is no doubt, however, that the combinatorial notion of set has been

fruitful as a motivation for axioms in set theory. With its help we can justify
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impredicative separation and the axiom of choice. But it doesn’t explain what a

subset of a given infinite set is or what subsets an infinite set has. Moreover, the

combinatorial notion of set is sensible only in a Platonist setting.29 From a Platonist

perspective, there is no need to be precise on what combinatorial sets are in order to

succeed in referring to them. Indeed, if the combinatorial sets all exist, then, even if

our hints about their nature fail to characterize them with any accuracy, they can

nonetheless be good enough to single them out by separating them from other

entities. But as an account of ‘‘combinatorial set,’’ the Platonist way is helpless.30

We want to sketch a non-Platonist account of the power set operation which,

albeit insufficient for second-order logic, is good enough for set theory. In order to

overcome our inability to find a suitable notion of subset with a definite extent, we

invert the priority relation between subsets and power set. Thus, we don’t intro-

duce the power set PðaÞ of a set a as the totality of all subsets of a; rather we define
a subset of a to be a member ofPðaÞ—the latter being envisioned as somemaximal

closed totality of subsets of a. The idea is that all we need to assume about the power

set of a is that it is a definite, closed totality (as opposed to an open-ended,

increasable multiplicity) and that it is maximal. Surely these are not meant to be

mathematical conditions, but neither is the requirement of being a combinatorial

set. Nevertheless, they should be of help in motivating our choice of mathematical

axioms. Maximality is understood as implying that no matter what collection of

elements of a we would ever specify, PðaÞ will contain a set corresponding to it. In

particular, all subsets of a which we know how to specify in any given context

should be in PðaÞ, just like those which are specifiable in terms of other members

of PðaÞ, which is thus envisaged as closed under various operations, some of them

inspired by the metaphor of combinatorial sets. Of course, we don’t want to add

any axiom asserting or implying that any totality closed under such and such

operations is the power set of a, but we may eventually add new axioms saying or

implying that PðaÞ is closed under some new operations. By so doing, we won’t

enter into conflict with previous results, but we will possibly reject some previous

interpretations as deficient.31 This need not be understood as discovering new facts

about sets, but rather as further determining our notion of set (and of subset). As

to this further determination, it can be attributed to a deeper analysis of our

original concept of set, but also to a refining of this concept. Nothing mathematical

29 According to Gödel, a combinatorial subset ‘‘is conceived as something which

exists in itself no matter whether we can define it in a finite number of words’’ (Gödel [16,
p. 259, n. 14]; emphasis added).

30 Gödel again: The notion of a combinatorial subset ‘‘cannot be defined satisfac-

torily (at least in the present state of knowledge), but can only be paraphrased by other

expressions involving again the concept of set’’ (Gödel [16, p. 259, n. 14]).
31 Thus we won’t add V¼ L as an axiom, but we may consider adding the axiom of

measurable cardinals, which implies that the power set of o is closed under sharps. See

Kanamori [21, p. 110] and Maddy [23, p. 76 and passim].
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depends on which stand we take. The important thing is that set theory does not

have to be grounded on a fixed, absolute power set operation.

The set-theoretical cumulative hierarchy need not be seen as a single, well-

determined universe of sets. This hierarchy, which can be thought of as generated by

the iterated application of the power set operation along the ordinals, depends on

these two parameters: the extent of power sets and the length of the ordinal se-

quence. According to set theory, they are both maximal, each in its own way: all

ordinals are considered, and the power set of a set a contains all subsets of a. The

mathematical import of these two alls is articulated in the theory, whose axioms are

motivated, at least partly, by insights or ideas which are hard to make precise. The

key idea behind the maximality of the ordinal sequence is that it is absolutely

infinite in Cantor’s sense. Of course, this notion of absolute infinity is not embodied

in the theory, and even when engaged in philosophical reflection, we do not want to

insist, let alone presuppose, that absolutely all ordinals (if that makes actual sense)

are taken into account. Nevertheless, the idea that the ordinal sequence is absolutely

maximal in its way is not idle, since it helps to motivate the choice of certain axioms

of infinity. Something analogous is the case with respect to the intended maximality

of power sets. Not, of course, that the way power sets are maximal is analogous to

the way the ordinal sequence is. What is analogous is that the idea of the maximality

of power sets works mainly as a motivating guide which cannot be fully expressed as

a mathematical condition. It motivates the rejection of putative axioms that, like

Gödel’s axiom of constructibility, restrict the riches of power sets. Moreover, both

in the case of the ordinal sequence and in that of the power set operation, there is

no reason why maximality should be realized in an absolute sense.

If this outline of the power set operation is sound, canonical second-order

logic is either an internal development of set theory, and thus not properly logic,

or else it rests on a myth. But then, Henkin’s emerges as the right semantics for

the consequence relation of second-order languages. It does not require that to

each domain an absolutely maximal power set corresponds, but only approx-

imations to this intended, inaccessible ideal which are closed under whatever

conditions we can state. Thus, all expressible assumptions we need to make about

the existence of second-order entities will be fulfilled in Henkin interpretations,

and will be taken into account in the shaping of the consequence relation—which

now will be a determinate relation (as we argue in section 11).

9. A Remark on Categoricity

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Our account of the power set operation impinges on the import of categoricity in

canonical second-order languages. The meaning of a categoricity result is clear in
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a set-theoretical setting (i.e., for second-order logic as an application of set theory).

In this setting (thus under the implicit assumption of a fixed assignment of a

power set to every set), the import of categoricty is clear: a categorical set of

sentences has a unique model up to isomorphism. However, from a higher, or

external, standpoint, from which we perceive that no assignment has been fixed,

categoricity is, at most, a relative matter—relative to just one of the ineffable and

perhaps differing ways of complying with the ideal of maximality of power sets.

From such a standpoint (the one we took in the preceding section) we see that

despite categoricity, no single structure may have been absolutely characterized.32

10. The Plural Interpretation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

George Boolos ([5], [6]) has proposed a plural interpretation of second-order

quantification according to which second-order monadic variables do not range

over the power set of the domain of the structure the language is interpreted in,

but range over the domain itself, albeit plurally. Thus, the formula

VX (Ax Xx! Ax (Xx^Vy (Xy! x� y))),

which we usually read as ‘‘Every nonempty set (of whatever objects we are con-

sidering) has a least element,’’ can be read plurally as ‘‘whenever there are some

objects, one of them is the least.’’ Similarly, the comprehension axiom AXVx
(Xx$j(x)) can be read as ‘‘there are some objects which are precisely those

satisfying the condition j’’ or, more leisurely, as ‘‘there are some objects such that

each of them satisfies the condition j, and each object that satisfies the condition

j is one of them.’’ Since there are conditions that no object satisfies, this example

shows that the reading of ‘‘AX . . .’’ needs some correction in order to take into

account would-be empty pluralities. But we can ignore this point.33

A second-order sentence (with only monadic quantified second-order vari-

ables) is assumed to be true in a structure when given the plural interpretation

just in case it is true in the canonical sense. More to the point, if A is the domain

32 This applies in general, although in some special cases the situation may be better.

Thus, in order to guarantee that the second-order Dedekind–Peano axioms characterize

the structure hN, 0, Si of the natural numbers, it is enough to admit that for any set A, any

operation g on A, and any a2A, the closure of {a} under g exists (and is a value of the

unary second-order variables). If we admit that, then whatever other subsets power sets

may contain, the Dedekind–Peano axioms will single out N up to isomorphism.
33 It turns out that, as Shapiro and Weir show in [30], this point is not as innocent as

it may look.
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of the structure under consideration, it is assumed that for each B�A there are

some objects in A which are precisely the elements of B. Thus, the various plu-

ralities called up by the existential quantifier coincide with the collections cor-

responding to all subsets of A. That is to say, there are as many ways of referring

plurally to some objects in A as there are subsets of A.

This is fundamental, since the plural version of the second-order consequence

relation is meant to coincide with the canonical one. The only difference between

the two accounts lies in the ontology required to make each work: the objects of

the domain and all sets thereof in the canonical version, only the objects of the

domain in the plural one.

We can very simply characterize the power set operation with the help of

second-order quantification, whether plurally or canonically conceived. If A is a

set and D is any collection of subsets of A, then D ¼ PðAÞ if and only if the

structure hA[D,A,D,2i is a model of the sentences

1. Vxy (Exy! Px^Qy)

2. Vxy (Qx^Qy^Vz(Ezx$ Ezy)! x¼ y)

3. VX (Vx (Xx!Px)! Ay (Qy^ Vz (Ezy$Xz))),

where P, Q and E are interpreted, respectively, as A, D, and the membership

relation between objects in A and sets in D.

Let A be an infinite set and suppose that D is a rich but incomplete collection

of subsets of A. In particular, D is to contain all subsets of A we know how to

specify. It is clear that the structure hA[D,A,D,2i satisfies the first two formulas

above, but since D falls short of being the power set of A, the third one will be false

in it. Thus, it will satisfy

AX (Vx (Xx! Px)^Vy (Qy! Az (Ezy$:Xz))),

that is, in plural parlance, there are some objects in A which coincide with the

members of no set in D. Which objects these are we cannot say, for if we could,

then the set whose members they are would be in D, contrary to our assumption.

This makes it plain that understanding the ways of plural quantification needed to

account for the full strength of canonical second-order consequence is tanta-

mount to understanding the idea of a combinatorial set.34 Indeed it is harder,

since in the case of sets, one could at least appeal to their independent existence in

order to account for them, but with plural quantification there seems to be

nothing on which to base the assumption that some objects can be summoned

that do not coincide with the elements of any set in D. Of course, we can base this

34 In Shapiro’s words: ‘‘Epistemic qualms about second-order variables become ep-

istemic qualms about plural quantifiers’’ (Shapiro [28, p. 234]).

higher-order logic reconsidered 805



assumption on the existence of sets: it is the existence of a set a not in D which

guarantees that there are some objects (namely, the members of a) which coincide

with no set in D. If we do this, then, although sets are not used in evaluating

second-order formulas in a structure, they are nevertheless needed to ensure that

plural quantification works properly. This is not an important gain (if it is a gain

at all), and moreover it is not adequate for the principal use to which plural

second-order quantification is meant to be put, namely, to allow second-order

quantification on the universe of sets without commitment to the existence of

proper classes (Boolos [5, pp. 65–66]). What is required is to account for what we

could describe as all the ways of there being some objects without presupposing that

a set corresponds to each of these ways.

One side effect of this requirement is that plural second-order logic cannot be

salvaged as an application of set theory. On the other hand, the objection that we

have leveled against the legitimacy of a truly maximal totality of collections of

(say) natural numbers applies also to the plural interpretation. There nothing was

supposed about the nature of collections. They could be treated as objects, but

also as mere pluralities. The argument we gave there against canonical second-

order quantification is not that it requires strong ontological resources, but rather

that the notion of an arbitrary (combinatorial) collection (even as a mere plu-

rality) of objects of a domain A cannot be accounted for from below, that is, by

appealing only to objects in A. What makes obscure the idea of the totality of all

subsets of A is not worries (nominalistic or otherwise) about the individual nature

of sets, but the utter arbitrariness of the collections corresponding to them—that

is, of the pluralities of objects selected by no agent with no statable rule, plural-

ities that we are supposed to muster when we say that there some objects that so

and so.

The main reason alleged for the legitimacy of plural quantification is that we

understand it well enough in ordinary language.35 However, assuming that we

understand it well enough for everyday purposes is not a ground for believing

that it can support canonical second-order consequence. The ways of singular

35 Thus Boolos: ‘‘[T]here is a coherent and intelligible way of interpreting such

second-order formulas. . . .The interpretation is given by translating them into the lan-

guage we speak. . . . It cannot be seriously maintained that we don’t understand these

statements . . . or that any lack of clarity that attaches to them has anything to do with the

plural forms found in the sentences expressing them. The language in which we think and

speak provides the constructions and turns of phrase by means of which the meanings of

these formulas may be expressed in a completely intelligible way’’ (Boolos [5, p. 69]). And
Lewis: ‘‘Besides the elementary logical apparatus of truth functions, identity, and ordinary

singular quantification, our framework also shall be equipped with apparatus of plural

quantification. . . .This apparatus is not common in formal languages, but we know it well

as masters of ordinary English’’ (Lewis [22, p. 62]).
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and plural quantification are not equally smooth. Suppose we are given a definite

domain A with all its elements. To explain singular quantification on A, we

have to take into account no more than what we are given, whereas to explain

plural quantification, we have to bring into consideration all possible ways of

sorting elements of A. In view of the parallel complexities of the power set

operation, it is more than doubtful that competence in one’s mother tongue can

accomplish that.

11. Completeness and Determinacy

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We have raised two main charges against canonical second-order consequence.

We have argued that unless a strong realist position is taken, canonical second-

order consequence cannot be assumed to be a determinate relation. We have also

argued that, even assuming that it is a determinate relation, it is not a case of

logical consequence, since it cannot be used as a noninterfering consequence

relation for axiomatic set theory. By far, the first charge is the stronger.

In view of the importance that a consequence relation be determinate,

it would be desirable to have a warrant for determinacy. The existence of a sound

and complete deductive calculus is such a warrant, for if the consequences of

any recursively given list of axioms can be recursively generated, then the question

of whether a definite sentence is among them will have a definite answer—

whether or not we have an algorithm for it. To be sure, the claim of deter-

minacy of the deducibility (thus of the consequence) relation rests on the

assumption that the natural number sequence is a definite one. But this is already

presupposed in the mere description of a formal language—for instance, in the

definiteness of the notion of a formula as a finite sequence of symbols generated

according to certain given rules. Without such an assumption one cannot even

entertain a rigorous notion of an axiomatic theory. Thus, we don’t have to argue

for it now.

Besides guaranteeing its determinacy, the existence of a suitably chosen de-

ductive calculus can be of help in deciding whether a given consequence relation

should be taken as logical.36 More profitably, by examining the explicit list of the

axioms and rules of a given complete calculus, we can assess the assumptions

behind the consequence relation, thus allowing us to gauge to what extent it can

be used as the noninterfering consequence relation of some particular axiomatic

theory. As an example, the presence of the comprehension axioms in a complete

36 Section 3 of Cutler [9] can be read as an argument for this point.
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calculus for Henkin’s second-order consequence shows that this consequence

relation is not suitable for axiomatizing set theory, although it can be fruitfully

used in other theories, among them number theory.

As this example suggests, the explicitness of the axioms and rules of a com-

plete deductive calculus may allow us to isolate part of the interfering content of a

given consequence relation and to transfer it to the axioms of the theory being

axiomatized. In set theory, this would correspond to passing from the second-

order Henkin version of ZF to first-order Morse–Kelly.37

By doing this we can perhaps convince ourselves that the ensuing conse-

quence relation is free of any content concerning the specific entities of the theory

we are axiomatizing, and thus the noninterference requirement is met—but only

as regards this particular theory. For it is clear that if the trimmed conse-

quence relation is not altogether trivial (that is, if a set of sentences implies some

sentence not in the set), then it must code some content. Every nontrivial con-

sequence relation has to embody some implicit assumptions about the primitive

nonspecific entities of the theory under consideration. These are the assumptions

on which rests the validity of some particular inferences and the invalidity of some

others.38

The question, then, is how to render these unstated assumptions innocuous.

One obvious danger which has to be avoided is that of disagreement among

practitioners. If the assumptions remain unstated, how do we know that they are

definite and that we are dealing with one fixed consequence relation?39 It is at this

point that the existence of a deductive calculus settles the matter, since whatever

those assumptions are, the determinacy of the consequence relation is guaranteed.

In a deductive calculus the hidden assumptions about the workings of the

primitive nonspecific terms are not stated, but their effect in fixing the conse-

quence relation can be fully ascertained. It is a safe stopping point in the process

of trimming a consequence relation. What we get may still not be a case of logical

consequence, but it will be closer to it.

If these considerations are right, then admitting a deductive calculus is an

essential feature of any self-sufficient consequence relation (in particular, of any

sort of logical consequence)—not because a calculus is an instrument for proving

theorems, but because the existence of a complete calculus is the surest guarantee

that any given list of axioms determines a definite theory. Canonical second-order

consequence is very far from this.

37 Also called ‘‘Quine–Morse.’’ See Fraenkel, Bar-Hillel, and Levy [12, pp. 138–141]).
38 Thus, ordinary first-order consequence has implicit assumptions about the be-

havior of the connectives and the quantifiers.
39 This is not a merely hypothetical possibility, since it is realized in second-order

canonical consequence.
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Poincaré, Henri

and coordinations, 59
and geometry, 58
and predicativity, 591–92, 593, 601, 619
on symbol creation, 295n.96
versus logicists, 99, 596–99
vicious circle principle, 156, 491, 597
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