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What this course is about 

Goals:

� Cover a coherent body of basic material in the foundations of 
relational  databases

� Prepare students for further study and research in relational 
database systems

Overview of Topics:

� Database query languages: expressive power and complexity

� Relational Algebra and Relational Calculus

� Conjunctive queries and homomorphisms

� Recursive queries and Datalog

� Selected additional topics:  Bag Semantics, Inconsistent Databases 

Unifying Theme:  

The interplay between databases, logic, and computational complexity
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Relational Databases:  A Very Brief History

� The history of relational databases is  
the history of a scientific and 
technological revolution.

� The scientific revolution started in 1970 
by Edgar (Ted) F. Codd at the IBM San 
Jose Research Laboratory (now the IBM 
Almaden Research Center)

� Codd introduced the relational data 
model and two database query 
languages: relational algebra and 
relational calculus.

� “A relational model for data for large 
shared data banks”, CACM, 1970.

� “Relational completeness of data 
base sublanguages”, in: Database 
Systems, ed. by R. Rustin, 1972.

Edgar F. Codd, 1923-2003
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Relational Databases:  A Very Brief History

� Researchers at the IBM San Jose Laboratory embark on the

System R project, the first implementation of a relational database 
management system (RDBMS)

� In 1974-1975, they develop SEQUEL, a query language that 
eventually became the industry standard SQL.

� System R evolved to DB2 – released first in 1983.

� M. Stonebraker and E. Wong embark on the development of the 
Ingres RDBMS at UC Berkeley in 1973.

� Ingres is commercialized in 1983; later, it became PostgreSQL, a 
free software OODBMS (object-oriented DBMS).

� L. Ellison founds a company in 1979 that eventually becomes Oracle 
Corporation; Oracle V2 is released in 1979 and Oracle V3 in 1983.

� Ted Codd receives the ACM Turing Award in 1981.
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Relational Database Industry Today

� According to Gartner, Inc., June 
2007:

“Worldwide relational database 
management systems (RDBMS) 
total software revenue totaled 
$15.2 billion in 2006, a 14.2 
percent increase from 2005 
revenue of $13.3 billion.”

� In 2007, the total RDBMS 
software revenue increased to 
$17.1 billion (figures released in 
July 2008).

100%15.2BTotal

7.8%1.2BOther

3.2%486.7MSybase

3.2%494.2MTeradata

17.4%2.654BMicrosoft

21.1%3.204BIBM 

47.1%7.168BOracle 

2006 
Market 
Share 

2006 
Revenue 

Company
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Database Research Today

� A very vibrant community comprising several thousand researchers
around the world.

� Several major annual conferences in database research:

� SIGMOD, PODS, VLDB, ICDE, EDBT, ICDT (top six).

� Numerous other conferences and workshops.

� Several major scholarly journals dedicated to database research:

� ACM TODS, VLDB Journal, IEEE TKDE, …

� Strong database research groups in academia around the world.

� Several database research groups in industrial laboratories.
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Database Management Systems

A database management system (DBMS) provides support for:

� At least one data model (a mathematical abstraction for 
representing data);

� At least one high level data language (language for defining, 
updating, manipulating, and retrieving data);

� Transaction management & concurrency control mechanisms;

� Access control (limit access of certain data to certain users);

� Resiliency (ability to recover from crashes).
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Data Models and Data Languages

� A data model is a mathematical formalism for describing and 
representing data.

� A data model is accompanied by a data language that has two 
parts: a data definition language and a data manipulation language.

� A data definition language (DDL) has a syntax for describing 
“database templates” in terms of the underlying data model.

� A data manipulation language (DML) supports the following 
operations on data:

� Insertion

� Deletion

� Update

� Retrieval and extraction of data (query the data).

� The first three operations are fairly standard. However, there is  
much variety on data retrieval and extraction (query languages).
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The Relational Data Model (E.F. Codd – 1970)

� The Relational Data Model uses the mathematical concept of a 
relation as the formalism for describing and representing data.

� Question: What is a relation?

� Answer:

� Formally, a relation is a subset of a cartesian product of sets.

� Informally, a relation is a “table” with rows and columns.
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The Relational Data Model (E.F. Codd – 1970)

� The Relational Data Model uses the mathematical concept of a relation as 
the formalism for describing and representing data.

� Question: What is a relation?

� Answer:

� Formally, a relation is a subset of a cartesian product of sets.

� Informally, a relation is a “table” with rows and columns.

…………

$11,245.75Hull10992-35671Hawthorne

$3,567.53Abiteboul10991-06284Orsay

balancecustomer-nameaccount-nobranch-name

CHECKING-ACCOUNT Table
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Basic Notions from Discrete Mathematics

� A k-tuple is  an ordered sequence of k objects (need not be distinct)

� (2,0,1) is a 3-tuple; (a,b,a,a,c) is a 5-tuple, and so on.

� If D1, D2, …, Dk are k sets, then the cartesian product

D1 × D2 … × Dk of these sets is the set of all k-tuples

(d1,d2, …,dk) such that di ∈ Di, for 1 ≤ i ≤ k.

� Fact: Let |D| denote the cardinality (= # of elements) of a set D. 
Then  |D1 × D2 × … × Dk| = |D1|× |D2| × …× |Dk|.

� Example: If D1 = {0,1} and D2 ={a,b,c,d}, then |D1|×|D2| = 8.

� Warning: Computing cartesian products is an expensive operation!
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Basic Notions from Discrete Mathematics

� A k-ary relation R is a subset of a cartesian product of k sets, i.e.,

� R ⊆ D1× D2× … × Dk.

� Examples:

� Unary     R = {0,2,4,…,100}   (R ⊆ D)

� Binary    T = {(a,b): a and b have the same birthday}

� Ternary  S = {(m,n,s): s = m+n}

� …
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Relations and Attributes

� Note: 

R ⊆ D1× D2× … × Dk can be viewed as a table with k columns

………

250100150

853

Table S

� In the relational data model, we want to have names for the  
columns; these are the attributes of the relation.
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Relation Schemas and Relational Database Schemas

� A k-ary relation schema R(A1,A2,…,AK) is a set {A1,A2,…,Ak} of 

k attributes. 

� COURSE(course-no, course-name, term, instructor, room, time)

� CITY-INFO(name, state, population)

Thus, a  k-ary relation schema is a “blueprint”, a “template” for some

k-ary relation.

� An instance of a relation schema is a relation conforming to the schema 
(arities match; also, in DBMS, data types of attributes match).

� A relational database schema is a set of relation schemas Ri(A1,A2,…,Aki
), 

for 1≤ i≤ m.

� A relational database instance of a relational schema is a set of relations Ri

each of which is an instance of the relation schema Ri, 1≤ i≤ m.
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Relational Database Schemas  - Examples

� BANKING relational database schema with relation schemas

� CHECKING-ACCOUNT(branch, acc-no, cust-id, balance)

� SAVINGS-ACCOUNT(branch, acc-no, cust-id, balance)

� CUSTOMER(cust-id, name, address, phone, email)

� ….

� UNIVERSITY relational database schema with relation schemas

� STUDENT(student-id, student-name, major, status)

� FACULTY(faculty-id, faculty-name, dpt, title, salary)

� COURSE(course-no, course-name, term, instructor)

� ENROLLS(student-id, course-no, term)

� …
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Schemas vs. Instances

Keep in mind that there is a clear distinction between

� relation schemas and instances of relation schemas

and between

� relational database schemas and relational database instances.

Relational database instance

(i.e., a database)

Relational Database Schema

Instance of a relation schema 

(i.e., a relation)

Relation Schema

Semantic Notion

(discrete mathematics notion)

Syntactic Notion
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Programming Languages Paradigms

There are two main paradigms of programming languages: 
imperative (or procedural) languages and declarative languages.

� Imperative (Procedural) Languages: programs are expressed by 
specifying how the task is to be accomplished (sequence of 
operations).

� FORTRAN, C,  …

� Declarative Languages: programs are expressed by specifying what 
has to be accomplished (as opposed to “how”).

� LISP (functional programming), PROLOG (logic programming), …
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Query Languages for the Relational Data Model

Codd introduced two different query languages for the relational data

model:

� Relational Algebra, which is a procedural language.

� It is an algebraic formalism in which queries are expressed by 
applying a sequence of operations to relations.

� Relational Calculus, which is a declarative language.

� It is a logical formalism in which queries are expressed as 
formulas of first-order logic.

Codd’s Theorem:  Relational Algebra and Relational Calculus are 

essentially equivalent in terms of expressive power. 

(but what does this really mean?)
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Desiderata for a Database Query Language

Desiderata:

� The language should be sufficiently high-level to secure physical 
data independence, i.e., the separation between the physical level
and the conceptual level of databases.

� The language should have high enough expressive power to be 
able to pose useful and interesting queries against the database.

� The language should be efficiently implementable to allow for the 
fast retrieval of information from the database.

Warning:

� There is a tension between the last two desiderata.

� Increase in expressive power comes at the expense of efficiency.
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Relational Algebra

� Relational algebra strikes a good balance between expressive power

and efficiency.

� Codd’s key contribution was to identify a small set of basic 

operations on relations and to demonstrate that useful and 

interesting queries can be expressed by combining these operations.

� Thus, relational algebra is a rich enough language, even though,

as we will see later on, it suffers from certain limitations in terms

of expressive power.

� The first RDBMS prototype implementations (System R and Ingres) 

demonstrated that the relational algebra operations can be 

implemented efficiently.
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The Five Basic Operations of Relational Algebra

� Group I: Three standard set-theoretic binary operations:

� Union

� Difference

� Cartesian Product.

� Group II. Two special unary operations on relations:

� Projection

� Selection.

� Relational Algebra consists of all expressions obtained by combining 
these five basic operations in syntactically correct ways.
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Relational Algebra: Standard Set-Theoretic Operations 

� Union
� Input: Two k-ary relations R and S, for some k.
� Output: The k-ary relation  R ∪ S, where

R ∪ S = {(a1,…,ak): (a1,…,ak) is in R or (a1,…,ak) is in S}

� Difference:
� Input: Two k-ary relations R and S, for some k.
� Output: The k-ary relation  R - S, where

R - S = {(a1,…,ak): (a1,…,ak) is in R and (a1,…,ak) is not in S}

� Note:
� In relational algebra, both arguments to the union and the difference  

must be relations of the same arity.

� In SQL, there is the additional requirement that the corresponding 
attributes must have the same data type.
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Relational Algebra: Standard Set-Theoretic Operations

� Cartesian Product

� Input: An m-ary relation R and an n-ary relation S

� Output: The (m+n)-ary relation R × S, where

R × S = {(a1,…,am,b1,…,bn): (a1,…am) is in R and (b1,…,bn) is in S}

� Note: As stated earlier,

|R× S| = |R| × |S|
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The Projection Operator

� Motivation:

It is often the case that, given a table R, one wants to:

� Rearrange the order of the columns 

� Suppress some columns

� Do both of the above.

� Fact: The Projection Operation is tailored for this task
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The Projection Operation

� Projection is a family of unary operations of the form

π<attribute list> (<relation name>)

� The intuitive description of the projection operation is as follows:

� When projection is applied to a relation R, it removes all columns 
whose attributes do not appear in the <attribute list>.

� The remaining columns may be re-arranged according to the 
order in the <attribute list>.

� Any duplicate rows are also eliminated.
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The Projection Operation - Example

875Codd334789San 
Jose

9,234Codd321456San 
Jose

2,817Hull123658Santa 
Cruz

3,450Vianu153125Aptos

balancecust-
name

acc-nobranch-
name

San JoseCodd

Santa CruzHull

AptosVianu

branch-namecust-name

SAVINGS

πcust-name,branch-name(SAVINGS)
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More on the Syntax of the Projection Operation

� In relational algebra, attributes can be referenced by position no.

� Projection Operation:

� Syntax: πi1,…,im
(R), where R is of arity k, and i_1, ….i_m are 

distinct integers from 1 up to k.

� Semantics:

πi1,…,im
(R) = {(a1,…,am): there is a tuple (b1,…,bk) in R such that

a1 = bi1
, …, am = bim

}

� Example: If R is R(A,B,C,D), then πC,A (R) = π3,1(R)
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The Selection Operation

� Motivation:

� Consider the table 

SAVINGS(branch-name, acc-no, cust-name, balance)

� We may want to extract the following information from it:

� Find all records in the Aptos branch

� Find all records with balance at least $50,000

� Find all records in the Aptos branch with balance less than 
$1,000

� Fact: The Selection Operation is tailored for this task.
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The Selection Operation

� Selection is a family of unary operations of the form 

σΘ (R), 

where R is a relation and Θ is a condition that can be applied as a 

test to each row of R.

� When a selection operation is applied to R, it returns the subset of R 
consisting of all rows that satisfy the condition Θ

� Question: What is the precise definition of a “condition”?
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The Selection Operation

� Definition: A condition in the selection operation is an expression 
built up from:

� Comparison operators =, <, >, ≠, ≤,  ≥ applied to operands 
that are constants or attribute names or component numbers.

� These are the basic (atomic) clauses of the conditions.

� The Boolean logic operators Æ, Ç, ¬ applied to basic clauses.

� Examples: 

� balance > 10,000

� branch-name = “Aptos”

� (branch-name = “Aptos”)  Æ (balance < 1,000)
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The Selection Operator

� Note:

� The use of the comparison operators <, >, ≤,  ≥ assumes that 
the underlying domain of values is totally ordered.

� If the domain is not totally ordered, then only = and ≠ are 
allowed.

� If we do not have attribute names (hence, we can only reference 
columns via their component number), then we need to have a 
special symbol, say $, in front of a component number. Thus,

� $4 > 100 is a meaningful basic clause

� $1 = “Aptos” is a meaningful basic clause, and so on.
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Relational Algebra

� Definition: A relational algebra expression is a string obtained from 
relation schemas using union, difference, cartesian product, 
projection, and selection.

� Context-free grammar for relational algebra expressions:

E :=  R, S, … | (E1 Ç E2) | (E1 – E2) | (E1× E2) | πL (E) | σΘ (E), 

where

� R, S, … are relation schemas

� L is a list of attributes

� Θ is a condition.
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Strength from Unity and Combination

� By itself, each basic relational algebra operation has limited 
expressive power, as it carries out a specific and rather simple task.

� When used in combination, however, the five relational algebra 
operations can express interesting and, quite often, rather complex 
queries.

� Derived relational algebra operations are operations on relations 
that are expressible via a relational algebra expression (built from 
the five basic operators).
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Intersection

� Intersection

� Input: Two k-ary relations R and S, for some k.

� Output: The k-ary relation  R 	 S, where

R 	 S  = {(a1,…,ak): (a1,…,ak) is in R and (a1,…,ak) is in S}

� Fact: R 	 S =  R – (R – S)  =  S – (S – R)

Thus, intersection is a derived relational algebra operation.
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Natural Join 

� Fact: The most FAQs against databases involve the

natural join operation ⋈.

� Motivating Example: Given

TEACHES(fac-name,course,term) and

ENROLLS(stud-name,course,term),

we want to obtain 

TAUGHT-BY(stud-name,course,term,fac-name)

It turns out that TAUGHT-BY = ENROLSS ⋈ TEACHES
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Natural Join 

Given TEACHES(fac-name,course,term) and

ENROLLS(stud-name, course,term):

To compute TAUGHT-BY(stud-name,course,term,fac-name)

1. ENROLLS × TEACHES

2. σ T.course = E.course Æ T.term = E.term (ENROLLS × TEACHES)

3. π stud-name,E.course,E.term,fac-name

(σ T.course = E.course Æ T.term = E.term (ENROLLS × TEACHES))

The result is ENROLLS ⋈ TEACHES.
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Natural Join

� Definition: Let A1, …, Ak be the common attributes of two relation 
schemas R and S.  Then

R ⋈ S = π<list> (σ R.A1=S.A1 Æ … Æ R.A1 = S.Ak (R×S)), 

where <list> contains all attributes of R×S, except for 

S.A1, …, S.Ak (in other words, duplicate columns are eliminated).

� Algorithm for R ⋈ S:

For every tuple in R, compare it with every tuple in S as follows:

� test if they agree on all common attributes of R and S;

� if they do, take the tuple in R × S formed by these two tuples,

� remove all values of attributes of S that also occur in R;

� put the resulting tuple in R ⋈ S.
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Quotient (Division)

� Motivating Example:

Given ENROLLS(stud-name,course) and TEACHES(fac-name,course), 

find the names of students who take every course taught by V. 

Vianu.

� Other Motivating Examples:

� Find the names of customers who have an account in every 
branch of Wachovia in San Jose.

� Find the names of Netflix customers who have rented every film 
in which Paul Newman starred.

� These and other similar queries can be answered using the 

Quotient (Division) operation.
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Quotient (Division)

� Definition: Let R be a relation of arity r and let S be a relation of 
arity s, where r > s. 

The quotient (or division) R ÷ S is the relation of arity r – s 
consisting of all tuples (a1,…,ar-s) such that for every tuple (b1,…,bs) 
in S, we have that (a1,…,ar-s, b1,…,bs) is in R.

� Example: Given 

ENROLLS(stud-name,course) and TEACHES(fac-name,course), find 
the names of students who take every course taught by V. Vianu.

� Find the courses taught by V. Vianu

πcourse (σ fac-name = “V. Vianu” (TEACHES))

� The desired answer is given by the expression:

ENROLLS  ÷ πcourse (σ fac-name = “V. Vianu” (TEACHES))
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Quotient (Division)

Fact: The quotient operation is expressible in relational algebra.

Proof: For concreteness, assume that R has arity 5 and S has arity 2.

Key Idea: Use the difference operation

� R÷S = π1,2,3(R)  – “tuples in π1,2,3(R) that do not make it to R÷S”

� Consider the relational algebra expression (π1,2,3(R)×S) – R.

Intuitively, it is the set of all tuples that fail the test for membership 
in R÷S. Hence,

� R÷S  =  π1,2,3(R)  – π1,2,3( (π1,2,3(R)×S) – R).
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The Expressive Power of Relational Algebra

� When combined together, the five basic relational algebra 
operations can express interesting and complex queries. 

� In particular, relational algebra can express:

� The Intersection Operation

� The Natural Join Operation

� The Quotient Operation

� ….
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Independence of the Basic Relational Algebra Operations

� Question: Are all five basic relational algebra operations really 
needed?  Can one of them be expressed in terms of the other four?

� Theorem: Each of the five basic relational algebra operations is 
independent of the other four, that is, it cannot be expressed by a 
relational algebra expression that involves only the other four.

Proof Idea: For each relational algebra operation, we need to 
discover a property that is possessed by that operation, but is not 
possessed by any relational algebra expression that involves only 
the other four operations.
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Independence of the Basic Relational Algebra Operations

Theorem: Each of the five basic relational algebra operations is 
independent of the other four, that is, it cannot be expressed by a 
relational algebra expression that involves only the other four.

Proof Sketch:  (projection and cartesian product only)
� Property of projection: 

� It is the only operation whose output may have arity smaller than its input.
� Show, by induction, that the output of every relational algebra expression 

in the other four basic relational algebra is of arity at least as big as the 
maximum arity of its arguments.

� Property of cartesian product: 
� It is the only operation whose output has arity bigger than its input.
� Show, by induction, that the output of every relational algebra expression 

in the other four basic relational algebra is of arity at most as big as the 
maximum arity of its arguments.

Exercise: Complete this proof.



44

Relational Algebra:  Summary

� When combined with each other, the five basic relational algebra
operations can express interesting and complex queries (natural 
join, quotient, …)

� The five basic relational algebra operations are independent of each 
other: none can be expressed in terms of the other four. 

� So, in conclusion, Codd’s choice of the five basic relational algebra 
operations has been very judicious.
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Relational Completeness

� Definition (Codd – 1972): A database query language L is 
relationally complete if it is at least as expressive as relational 
algebra, i.e., every relational algebra expression E has an equivalent 
expression F in L.

� Relational completeness provides a benchmark for the expressive 
power of a database query language.

� Every commercial database query language should be at least as 
expressive as relational algebra.

� Exercise: Explain why SQL is relationally complete.
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SQL vs. Relational Algebra

Selection σWHERE

Cartesian Product ×FROM

Projection πSELECT

Relational AlgebraSQL

Semantics of SQL via interpretation to Relational Algebra

SELECT Ri1.A1, …, Rim.A.m

FROM    R1, …,RK                                   =           π Ri1.A1, …, Rim.A.m (σΨ (R1 × … × RK))

WHERE  Ψ
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Relational Calculus

� In addition to relational algebra, Codd introduced relational calculus.

� Relational calculus is a declarative database query language based 
on first-order logic.

� Relational calculus comes into two different flavors:

� Tuple relational calculus

� Domain relational calculus.

We will focus on domain relational calculus. 

There is an easy translation between these two formalisms.

� Codd’s main technical result is that relational algebra and relational
calculus have essentially the same expressive power. 
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Propositional Logic (aka Boolean Logic) Reminder

� Propositional variables: x, y, z, …

� They take values 0 (True) and 1 (False).

� Propositional connectives: Æ, Ç, ¬, →

� Propositional formulas: expressions built from propositional 
variables and propositional connectives 

� Syntax: ϕ :=  x, y, z, … | (ψ Æ χ) | (ψ Ç χ) | ¬ ψ | (ψ → χ)

� Semantics: Truth-table semantics

� Application: Propositional formulas express Boolean functions

� (x Ç y) Æ (¬ x Ç ¬ y)            XOR-Gate

� (x Æ y) Ç (x Æ z) Ç (y Æ z)     Majority Gate
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First-Order Logic - Motivation

� First-Order Logic is a formalism for expressing properties of 
mathematical structures (graphs, trees, partial orders, …).

� Example: Consider a graph G=(V,E) (nodes are in V, edges are in E)

� There is a self-loop.

� Every two nodes are connected via a path of length 2.

� Every node has exactly three distinct neighbors.

� There is a path of length 3 from node x to node y.

� Node x has at least four distinct neighbors

These and many other similar properties are expressible as 

formulas of first-order logic on graphs.

� One of Codd’s key insights was that first-order logic can also be 
used to express relational database queries.
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First-Order Logic 

� Question: What is First-Order Logic?

� Answer: Informally, 

“ First-Order Logic  =  Propositional Logic + (∃ and ∀)”, 

where

∃ and ∀ range over possible values occurring in relations.
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Relational Calculus (First-Order Logic for Databases)

� First-order variables: x, y, z, …, x1, …,xk,…

� They range over values that may occur in tables. 

� Relation symbols: R, S, T, … of specified arities (names of relations)

� Atomic (Basic) Formulas:

� R(x1,…,xk), where R is a k-ary relation symbol 

(alternatively, (x1,…,xk) ∈ R; the variables need not be distinct)

� (x op y), where op is one of =, ≠, <, >, ≤, ≥

� (x op c), where c is a constant and op is one of =, ≠, <, >, ≤, ≥.

� Relational Calculus Formulas: 

� Every atomic formula is a relational calculus formula.

� If ϕ and ψ are relational calculus formulas, then so are:

� (ϕ Æ ψ), (ϕ Ç ψ), ¬ ψ, (ϕ → ψ)  (propositional connectives)

� (∃ x ϕ)   (existential quantification)

� (∀ x ϕ)   (universal quantification).
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Relational Calculus

� Examples: Assume E is a binary relation symbol

� (∃ x)E(x,x)

� (∀ x)(∀ y)(∃ z)(E(x,z) Æ E(z,y))

� (∃ z1)(∃ z2)(E(x,z1) Æ E(z1,z2) Æ E(z2,y))

� (∃ y)(∃ z)(E(x,y) Æ E(x,z) Æ (y≠z))

� Free and bound variables:

� In the first two formulas above, no variable is free.

� In the third formula above, the free variables are x and y.

� In the fourth formula above, the only free variable is x.

� Intuitively, a variable is free in a formula if the variable must be 
assigned a value in order to tell if the formula is true or false.
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Relational Calculus as a Database Query Language

Definition: 

� A relational calculus expression is an expression of the form 

{(x1,…,xk):  ϕ(x1,…xk)},

where ϕ(x1,…,xk) is a relational calculus formula with x1,…,xk as its 
free variables.

� When applied to a relational database I, this relational calculus 
expression returns the k-ary relation that consists of all k-tuples
(a1,…,ak) that make the formula “true” on I.

Example: The relational calculus expression

{(x,y):  ∃z(E(x,z) Æ E(z,y))} 

returns the set P of all pairs of nodes (a,b) that are connected via a 

path of length 2.
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Relational Calculus as a Database Query Language

Example: FACULTY(name, dpt, salary), CHAIR(dpt, name)

Give a relational calculus expression for C-SALARY(dpt,salary) 

(find the salaries of department chairs).

{(x,y):  ∃u(FACULTY(u,x,y) Æ CHAIR(x,u))}

Here is another relational calculus expression for the same task:

{(x,y):  ∃u∃v(FACULTY(u,x,y) Æ CHAIR(x,v) Æ (u=v))}
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Relational Calculus as a Database Query Language

Example: FACULTY(name, dpt, salary)

Find the names of the highest paid faculty in CS

{x: ϕ(x)}, where ϕ(x) is the formula:

∃y,z (FACULTY(x,y,z) Æ y = “CS” Æ

(∀u,v,w(FACULTY(u,v,w) Æ v = “CS” → z ≥ w)))

Exercise:  Express this query in relational algebra and in SQL.

Abbreviation:

� ∃x1,…,xk stands for ∃x1,…,∃xk

� ∀x1,…,xk stands for ∀x1,…,∀xk
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Natural Join in Relational Calculus

Example: Let R(A,B,C) and S(B,C,D) be two ternary relation schemas.

� Recall that, in relational algebra, the natural join R ⋈ S is given by

π R.A,R.B,R.C,S.D (σ R.B = S.B Æ R.C = S.C (R × S)).

� Give a relational calculus expression for R ⋈ S

{(x1,x2,x3,x4):  R(x1,x2,x3) Æ S(x2,x3,x4)}

Note: The natural join is expressible by a quantifier-free formula of 

relational calculus.
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Quotient in Relational Calculus

� Recall that the quotient (or division) R ÷ S of two relations R and S 
is the relation of arity r – s consisting of all tuples (a1,…,ar-s) such 
that for every tuple (b1,…,bs) in S, we have that (a1,…,ar-s, b1,…,bs) 
is in R.

� Assume that R has arity 5 and S has arity 3. 

Express R ÷ S in relational calculus.

{(x1,x2):  (∀ x3)(∀ x4)(∀ x5) (S(x3,x4,x5) → R(x1,x2,x3,x4,x5))}

� Much simpler than the relational algebra expression for R ÷ S 
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Relational Algebra vs. Relational Calculus

Codd’s Theorem (informal statement):

Relational Algebra and Relational Calculus have essentially the same 

expressive power, i.e., they can express the same queries.

Note: 

� This statement is not entirely accurate. 

� In what follows, we will give a rigorous formulation of Codd’s
Theorem and sketch its proof.
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Queries

Definition: Let S be a relational database schema. 

A k-ary query on S is a function q defined on database instances over S

such that if I is a database instance over S, then q(I) is a k-ary relation 

that is invariant under isomorphisms and has values among those

occurring in the relations in I 

(i.e., if h: I → J is an isomorphism, then q(J) = h(q(I)).

Note:

� All “queries” that we have expressed in relational algebra and/or in 
relational calculus so far are queries in the above formal sense.

� In particular, a relational calculus expression of the form 

{(x1,…,xk):  ϕ(x1,…xk)} defines a k-ary query.
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From Relational Algebra to Relational Calculus

Theorem: For every relational expression E, there is an equivalent 
relational calculus expression {(x1,…,xk): ϕ(x1,…xk)}.

Proof: By induction on the construction of rel. algebra expressions.

� If E is a relation R of arity k, then we take {(x1,…,xk): E(x1,…,xk)}.

� Assume E1 and E2 are expressible by {(x1,…,xk): ϕ1(x1,…,xk)} and by
{(x1,…,xm): ϕ2(x1,…,xm)}. Then
� E1 ∪ E2 is expressible by 

{(x1,…,xk): ϕ1(x1,…,xk) Ç ϕ2(x1,…,xk)}. 

� E1 – E2 is expressible by
{(x1,…,xk): ϕ1(x1,…,xk) Æ ¬ϕ2(x1,…,xk)}. 

� E1 × E2 is expressible by
{(x1,…,xk,y1,…,ym): ϕ1 (x1,…,xk) Æ ϕ2(y1,…,ym)} 
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From Relational Algebra to Relational Calculus

Theorem: For every relational expression E, there is an equivalent 
relational calculus expression {(x1,…,xk): ϕ(x1,…xk)}.

Proof: (continued)
� Assume that E is expressible by {(x1,…,xk): ϕ(x1,…,xk)}. 

Then
� π1,3(E) is expressible by 

{(x1,x3): (∃ x2)(∃ x4) …(∃ xk) ϕ(x1,…,xk) }
� σΘ(E) is expressible by

{(x1,…,xk): Θ* Æ ϕ(x1,…,xk)}, where Θ* is the rewriting of Θ as 
a formula of relational calculus.

Corollary: Relational Calculus is relationally complete.
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From Relational Calculus to Relational Algebra

Fact: It is not true that for every relational calculus expression ϕ,

there is an equivalent relational algebra expression E.

Examples:

� {(x1,…,xk):   ¬ R(x1,…,xk)}

� {(x,y):  ∃z(CHAIR(x,z) Æ y≠z)}, where CHAIR(dpt,name)

� {x:   ∀y,z ENROLLS(x,y,z)}, where ENROLLS(s-name,course,term)
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From Relational Calculus to Relational Algebra

Note: The previous three relational calculus expression produce 

different answers when we consider different domains over which

the variables are interpreted.

Example: If the variables x1,…,xk range over a domain D, then  

{(x1,…,xk): ¬ R(x1,…,xk)} = Dk – R.

Fact:

� The relational calculus expression {(x1,…,xk): ¬ R(x1,…,xk)} 

is not “domain independent”.

� The relational calculus expression

{(x1,…,xk):  S(x1,..,xk) Æ ¬ R(x1,…,xk)} is “domain independent”.
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From Relational Calculus to Relational Algebra

� Question: How can we go from relational calculus to relational 
algebra?

� Answer: There are two possibilities:

� Restrict ourselves to “domain independent” relational calculus 
expressions.

� “Relativize” the semantics of relational calculus expressions by 
fixing a domain over which the variables range.
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Active Domain

Definition:

� The active domain adom(ϕ) of a relational calculus formula ϕ is the 
set of all constants that occur in ϕ.

� If ϕ is R(x,y), then adom(ϕ) = ∅

� If ϕ is  ∃y(R(x,y) Æ (y > 3) Æ (x < 5)), then adom(ϕ) = {3,5}.

� The active domain adom(I) of a relational database instance I is the 
set of all values that occur in the relations of I.



66

Active Domain and Relative Interpretations

Definition: Let ϕ(x1,…,xk) be a relational calculus formula and let I be a

relational database instance.

� If is D a domain such adom(ϕ) ∪ adom(I) ⊆ D, then 

 ϕD(I) is the result of evaluating ϕ(x1,…,xk) over D and I, that is,

� all variables and quantifiers are assumed to range over D; 

� the relation symbols in ϕ are interpreted by the relations in I.

� By definition, ϕadom(I) is ϕD(I), where D = adom(ϕ) ∪ adom(I).
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Active Domain and Relative Interpretation

Example: Let ϕ be ¬R(x,y) and I = {(1,2)}.

� adom(I) = {1,2}

� ϕadom (I) = {(2,1), (1,1), (2,2)}

� If D = {1,2,3}, then

ϕD(I)= {(2,1),(1,1),(2,2),(3,3),(1,3),(3,1),(2,3),(3,2)}
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Active Domain and Relative Interpretation

Example: Let ϕ be ∃yR(x,y) and I = {(1,1),(1,2),(2,1),(1,3)}.

� adom(I) = {1,2,3}

� ϕadom (I) = {1,2}

� If D = {1,2,3,4}, then

ϕD(I) = {1,2}.

� More generally, if adom(I) ⊆ D, then 

ϕD(I) = {1,2}.
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Active Domain and Relative Interpretation

Example: Let ϕ be ∀yR(x,y) and I = {(1,1),(1,2),(2,1)}.

� adom(I) = {1,2}

� ϕadom (I) = {1}

� If D = {1,2,3}, then

ϕD(I)= ∅.
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Domain Independence

Definition: A relational calculus formula ϕ is domain independent

if for every relational instance I and every domain D such that 

adom(ϕ) ∪ adom(I) ⊆ D, we have that

ϕD(I) = ϕadom(I).

Examples:

� ¬R(x1,…,xk) is not domain independent.

� ∃yR(x,y) is domain independent.

� ∀yR(x,y) is not domain independent.

� ∀y(R(x,y) → y > 5) is domain independent.
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Equivalence of Relational Algebra and Relational Calculus

Theorem: The following are equivalent for a k-ary query q:

1. There is a relational algebra expression E such that q(I) = E(I), for 

every database instance I

(in other words, q is expressible in relational algebra).

2. There is a domain independent relational calculus formula ϕ such 

that q(I) = ϕadom (I) (in other words, q is expressible in domain 
independent relational calculus).

3. There is a relational calculus formula ψ such that q(I) = ψadom (I)

(in other words, q is expressible in relational calculus under the 
active domain interpretation).
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Equivalence of Relational Algebra and Relational Calculus

Proof (Sketch):
1. ⇒ 2. Show by induction that the earlier translation of 

relational algebra to relational calculus is actually a translation of 
relational algebra to domain independent relational calculus.

2. ⇒ 3.  This implication is obvious.

3. ⇒ 1.  
� Show first that for every relational database schema S, there is a 

relational algebra expression E such that for every database instance I, 
we have that adom(I) = E(I).

� Use the above fact and induction on the construction of relational 
calculus formulas to obtain a translation of relational calculus under the 
active domain interpretation to relational algebra.
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Equivalence of Relational Algebra and Relational Calculus

� In this translation, the most interesting part is the simulation of the 
universal quantifier ∀ in relational algebra.

� It uses the logical equivalence ∀yψ ≡ ¬∃y¬ψ

� As an illustration, consider ∀yR(x,y).

� ∀yR(x,y)  ≡ ¬∃y¬R(x,y)

� adom(I) = π(R) ∪ π(R)

(π(R) ∪ π(R)) – (π((π(R) ∪ π(R))×(π(R) ∪ π(R)) - R))¬∃y¬R(x,y)

π((π(R) ∪ π(R))×(π(R) ∪ π(R)) - R)∃y¬R(x,y)

(π(R) ∪ π(R))×(π(R) ∪ π(R)) – R¬ R(x,y)

Relational Algebra Expression for ϕadomRel.Calc. formula ϕ
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Equivalence of Relational Algebra and Relational Calculus

Remarks:

� The Equivalence Theorem is effective.  Specifically, the proof of this 
theorem yields two algorithms:

� an algorithm for translating from relational algebra to domain 
independent relational calculus, and

� an algorithm from translating from domain independent relational
calculus to relational algebra.

� Each of these two algorithms runs in linear time.
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Domain Independent Relational Calculus

Note:

� A desirable feature of a logical formalism is that there is an 
(efficient) algorithm for determining whether or not an expression is 
a formula of that formalism.

� Both relational algebra and relational calculus have this property.

Question:

� Does domain independent relational calculus have this property?

� In other words, is there an algorithm such that, given a relational 
calculus formula ϕ, the algorithm tells whether or not ϕ is domain 
independent?
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Domain Independent Relational Calculus

Bad News …

Theorem (Di Paola – 1969): Determining domain independence is an

undecidable problem, i.e., there is no algorithm such that, given a 

relational calculus formula ϕ, the algorithm tells whether or not ϕ is 

domain independent.

Some Good News:

Theorem: Domain independent relational calculus has an effective 

syntax, i.e., there is a class F of relational calculus formulas such that:

� There is an (efficient) algorithm for testing membership in F.

� Every formula in F is domain independent.

� Every domain independent relational calculus formula is logically 
equivalent to a formula in F.
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Domain Independent Relational Calculus

For much more on domain independence:

� Read Sections 5.3 and 5.4 of “Foundations of Databases” by 
Abiteboul, Hull, and Vianu

� Read the papers

� “The recursive unsolvability of the decision problem for the class 
of definite formulas” by Robert A. Di Paola, JACM, Vol. 16, 1969, 
pages 324-327.

� “Safety and translation of relational calculus” by Allen van Gelder
and Rodney Topor, ACM Transactions on Database Systems, Vol. 
16, 1991, pages 235 – 278. 
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Queries (Revisited)

Definition: Let S be a relational database schema. 

� A k-ary query on S is a function q defined on database instances

over S such that if I is a database instance over S, then q(I) is a 

k-ary relation on adom(I) that is invariant under isomorphisms
(i.e., if h: I → J is an isomorphism, then q(J) = h(q(I)).

� A Boolean query on S is  a function q defined on database instances 
over S such that if I is a database instance over S, then q(I) = 0 or 
q(I) = 1, and q(I) is invariant under isomorphisms. 

Example: The following are Boolean queries on graphs:

� Given a graph E (binary relation), is the diameter of E at most 3?

� Given a graph E (binary relation), is E connected?
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Three Fundamental Algorithmic Problems about Queries

� The Query Evaluation Problem: Given a query q and a database 
instance I, find q(I).

� The Query Equivalence Problem: Given two queries q and q’ of the 
same arity, is it the case that q ≡ q’ ?

(i.e., is it the case that, for every database instance I, we have that 
q(I) = q’(I)?)

� The Query Containment Problem: Given two queries q and q’ of the 
same arity, is it the case that q ⊆ q’ ? 

(i.e., is it the case that, for every database instance I, we have that 
q(I) ⊆ q’(I)?)
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Three Fundamental Algorithmic Problems about Queries

� The Query Evaluation Problem is the main problem in query 
processing.

� The Query Equivalence Problem underlies query processing and 
optimization, as we often need to transform a given query to an 
equivalent one.

� The Query Containment Problem and Query Equivalence Problem
are closely related to each other:

� q ≡ q’ if and only if q ⊆ q’ and q’ ⊆ q.

� q ⊆ q’ if and only if  q ≡ q Æ q’.
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Three Fundamental Algorithmic Problems about Queries

� Our goal is to investigate the algorithmic aspects of these problems 
for queries expressible in relational algebra/relational calculus.

� The questions we want to address are:

� How can we measure the precise “difficulty” of these problems?

� Are there “good” algorithms for solving these problems?

� If not, are there special cases of these problems for which “good”
algorithms exist?
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Three Fundamental Algorithmic Problems about Queries

Our study of these problems will use concepts and methods from two 

different, yet related, areas:

� Mathematical Logic:

� Computability Theory and Undecidable Problems

� Computational Complexity Theory:

� Complexity Classes and Complete Problems

� In particular, the classes P and NP, and NP-complete problems.
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Decision Problems and Languages

� Definition (informal): A decision problem Q consists of a set of 
inputs and a question with a “yes” or “no” answer for each input.

� Definition: 

� Σ* is the set of all strings over a finite alphabet Σ.

� A language over Σ is a set L ⊆ Σ*

� Every language L gives rise to the following decision problem:

� Given x ∈ Σ*, is x ∈ L?

� Conversely, every decision problem can be thought of as arising

from a language, namely, 

the language consisting of all inputs with a “yes” answer.

Q?
input x

1 (“yes”)

0 (“no”)
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Turing Computability

� Turing machines

� Turing computable (partial) functions  f: Σ* → Σ*

� Church’s Thesis (aka Church-Turing Thesis): The following 
statements are equivalent for a (partial) function f: Σ* → Σ*:

� There is a Turing machine that computes f

� There is an algorithm that computes f.

� Main Use of Church’s Thesis: To show that there is no algorithm for 
computing a function f, it suffices to show that there is no Turing 
machine that computes f.
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Recursive and Recursively Enumerable Languages

� Definition: Let L ⊆ Σ* be a language

� L is recursive if its characteristic function χ is Turing computable, 
where 

� χL(x) = 1  if x ∈ L

� χL(x) = 0  if x ∉ L.

� L is recursively enumerable if its semi-characteristic function sL is 
Turing computable, where

� sL(x) = 1              if x ∈ L

� sL(x) = undefined  if x ∉ L.

� Theorem: The following are equivalent for a language L ⊆ Σ* :

� L is recursive.

� Both L and its complement Σ* - L are recursively enumerable.
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Decidable and Undecidable Problems

� Definition: Let Q be a decision problem.

� Q is decidable (solvable) if the language associated with Q is 
recursive.

� Q is undecidable (unsolvable) if the language associated with Q is 
not recursive.

Q? 
Input x

1 (yes)

0 (“no”)

Q is undecidable means that there is no algorithm for this problem
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Undecidable Problems

Fact: Undecidable problems exist.

Proof: Use a counting argument:

� There are countably many Turing machines.

� There are uncountably many languages L ⊆ {0,1}*.

Theorem: Many natural problems of algorithmic interest or of 

mathematical significance are undecidable.
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Undecidable Problems

Theorem: The following problems are undecidable:

� The Halting Problem (A. Turing – 1936): Given a Turing machine M 
and an input x, does M halt on x?

� The Finite Validity Problem (B. Trakhtenbrot – 1949): Given a first-
order formula ϕ on graphs, is ϕ true on every finite graph?

� Hilbert’s 10th Problem (Y. Matijacevic – 1971): Given a multivariate 
polynomial p(x1,…,xn) with integer coefficients, does p(x1,…,xn) have 
an all-integers solution?
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Undecidable Problems

� The Halting Problem (A. Turing – 1936): Given a Turing machine M 
and an input x, does M halt on x?

� Implications of Undecidability of the Halting Problem:

� The undecidability of the Halting Problem implies that there is no
algorithm such that, given a C program p and an input x, the 
algorithm determines whether the program p produces an output 
on input x or goes into an infinite loop.

� Of course, it may still be possible to show that a particular 
program terminates on a given input (or even on every input), 
but it is not possible to automate this process for every program.

� But even this may be a difficult task …
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Proving Program Termination 

� McCarthy’s Program 

Given a positive integer n:

While n > 1, do:

� If n is even, then set n: = n/2;

� If n is odd,  then set  n:= 3n+1.

� Example Run:

� n = 11 ֏ 34 ֏ 17 ֏ 52 ֏ 26 ֏ 13 ֏ 40 ֏ 20 ֏ 10 

֏ 5 ֏ 16 ֏ 8 ֏ 4 ֏ 2 ֏ 1.

� Open Problem: Does this program terminate on every input?
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Undecidable Problems

� The Finite Validity Problem (B. Trakhtenbrot – 1949): Given a first-
order formula ϕ on graphs, is ϕ true on every finite graph?

� Examples of Finitely Valid Formulas:

� ∀ x(E(x,x) → ∃ yE(x,y))

� ∀ x∀ y(E(x,x) Æ x = y → E(y,y))

� “if E is a total order, then E has a biggest element”

� Example of Non-Finitely Valid Formulas:

� ∀ x ∀ y (E(x,y) → E(y,x))

� (∀ x ∃ y E(x,y))  → (∃ y∀ x E(x,y))

� The undecidability of the Finite Validity Problem implies that there is 
no algorithm for telling formulas in the first group from formulas in 
the second group.
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Undecidable Problems

� Hilbert’s 10th Problem (Y. Matijacevic – 1971): Given a multivariate 
polynomial p(x1,…,xn) with integer coefficients, does p(x1,…,xn) have 
an all-integers root ? (i.e., does the equation p(x1,…,xn) = 0 have an 
all integer solution?)

� Diophantine Equations (Diophantus of Alexandria 3rd Century AD)

� 3x + 5y - 8z = 0

� x2 – 2xy + z3 + 9 = 0

� x2 – 100y
2

+ 1 = 0

� x2 + y2 - z2 = 0

� x3 + y3 - z3 = 0 

� The undecidability of Hilbert’s 10th Problem implies that there is no
algorithm to tell whether or not a given Diophantine equation has a 
solution consisting entirely of integers.
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Undecidable Problems

Note:

� The Halting Problem is recursively enumerable, but not recursive

(hence, its complement is not recursively enumerable).

� The Finite Validity Problem is co-recursively enumerable, but not 
recursive.

(hence, it is not even recursively enumerable).

� Hilbert’s 10th Problem is recursively enumerable, but not recursive

(hence, its complement is not recursively enumerable).
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The Reduction Method

� By now there is a vast library of undecidable problems.

� The Reduction Method is the main technique for establishing 
undecidability.

� Reduction Method: To show that a language L* is not recursive, it 
suffices to find a non-recursive language L and a total Turing 
computable function f such that for every string x, we have that

x ∈ L  ⇔ f(x) ∈ L*.

� Such a function f is called a reduction of L to L* 

� L ≼ L*  means that there is a reduction of L to L*.
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The Reduction Method

� The Halting Problem was the first fundamental decision problem 
shown to be undecidable.

� The Finite Validity Problem was shown to be undecidable by showing 
that Halting Problem ≼ Finite Validity Problem.

� Many database problems have been shown to be undecidable via 
reductions from one the following problems:

� The Halting Problem

� The Finite Validity Problem

� Hilbert’s 10th Problem.

� In particular, Di Paola proved that the Domain Independence 
Problem for relational calculus formulas is undecidable by showing 
that Finite Validity Problem ≼ Domain Independence.
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Undecidability of The Query Equivalence Problem

� The Query Equivalence Problem: Given two queries q and q’ of the 
same arity, is it the case that q ≡ q’ ?

(i.e., is q(I) = q’(I) on every database instance I?)

� Theorem: The Query Equivalence Problem for relational calculus 
queries is undecidable.

Proof: Finite Validity Problem ≼ Query Equivalence Problem

� To see, this let ψ* be a fixed finitely valid relational calculus 
sentence (say, ∀ x(E(x,x) → ∃ yE(x,y))).

� Then, for every relational calculus sentence ϕ, we have that

ϕ is finitely valid ⇔ ϕ ≡ ψ*.
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Undecidability of the Query Containment Problem

� The Query Containment Problem: Given two queries q and q’ of the 
same arity, is it the case that q ⊆ q’ ? 

(i.e., is q(I) ⊆ q’(I) on every database instance I?)

� Corollary: The Query Containment Problem for relational calculus 
queries in undecidable.

Proof:  Query Equivalence ≼ Query Containment, since

q ≡ q’ ⇔ q ⊆ q’ and q’ ⊆ q.

� Notice the chain of reductions:

Halting Problem ≼ Finite Validity  ≼ Query Equiv. ≼ Query Cont.
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The Query Evaluation Problem

� The Query Evaluation Problem: Given a query q and a database 
instance I, find q(I).

� The Query Evaluation Problem for relational calculus queries is 
decidable, but, as we will see, it has high computational complexity.

� To understand the precise algorithmic difficulty of the Query 
Evaluation Problem, we need some basic notions and results from 
computational complexity.
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Decidable Problems and Computational Complexity

� Computational Complexity is the 
quantitative study of decidable problems.

� “From these and other considerations 
grew our deep conviction that there 
must be quantitative laws that 
govern the behavior of information 
and computing. The results of this 
research effort were summarized in our 
first paper on this topic, which also 
named this new research area, "On the 
computational complexity of 
algorithms“.”

J. Hartmanis, Turing Award Lecture, 1993

Undecidable
Problems

Decidable
Problems
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Computational Complexity Classes

� Decidable problems are grouped together in computational 
complexity classes.

� Each computational complexity class consists of all problems that 
can be solved in a computational model under certain restrictions on 
the resources used to solve the problem.

� Examples of computational models:

� Turing Machine TM (deterministic Turing machine)

� Non-deterministic Turing machine NTM

� …

� Examples of resources:

� Amount of time needed to solve the problem

� Amount of space (memory) needed to solve the problem.

� …
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The Five Basic Computational Complexity Classes

� LOGSPACE (or, L): All decision problems solvable by a TM using 

extra memory bounded by a logarithmic amount in the input size.

� NLOGSPACE (or, NL): All decision problems solvable by a NTM using

extra memory bounded by a logarithmic amount in the input size.

� P (or, PTIME): All decision problems solvable by a TM in time 

bounded by some polynomial in the input size.

� NP: All decision problems solvable by a NTM in time bounded by 

some polynomial in the input size.

� PSPACE: All decision problems solvable by a TM using memory 
bounded by a polynomial in the input size.
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The Five Basic Computational Complexity Classes

Theorem: 

� The following inclusions hold:

LOGSPACE ⊆ NLOGSPACE ⊆ P ⊆ NP ⊆ PSPACE.

� Moreover, it is known that LOGSPACE ⊂ PSPACE. 

� No other proper inclusion between these classes is known at present. 
In particular, it is not known whether P = NP.

Note: 

� The question: “is P = NP?” is the central open problem in 
computational complexity. 

� It is one of the Millennium Prize Problems – see 
http://www.claymath.org/millennium/
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Complete Problems

� A key property of most complexity classes is that they possess 
complete problems. 

� Intuitively, complete problems are the “hardest” problems in the class 
in the sense that every other problem can be reduced to it.

� Definition: Let C  be a complexity class. 

A decision problem Q is C-complete if 

� Q is in C.

� If Q’ is in C , then there is a “suitable” total Turing computable 
function f such that for every string x, we have that

x ∈ Q’ ⇔ f(x) ∈ Q.

� “suitable” means that f can be computed with fewer resources 
than those used to define C.

� So, f is a reduction of a restricted nature.
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Complete Problems and Reductions

� Definition: A decision problem Q is NP-complete if 

� Q is in NP.

� If Q’ is in NP, then there is a polynomial-time computable 
function f such that for every string x, we have that

x ∈ Q’ ⇔ f(x) ∈ Q.

� Such an f is a polynomial-time reduction of Q’ to Q (Q’ ≼p Q).

Logspace-computableNL

Logspace-computableP

Polynomial-time computableNP

Polynomial-time computablePSPACE

Reductions for Complete 
Problems

Complexity Class
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Complete Problems for Computational Complexity Classes

� PSPACE-complete:

� Quantified Boolean Formulas (QBF): Given a quantified Boolean 
formula ∀ x1∃ x2 …. ∀ xkϕ, is it true?

� NP-complete:

� Satisfiability (SAT): Given a CNF formula ϕ, is it satisfiable?

� 3-Colorability: Given a graph G=(V,E), is it 3-colorable?

� Integer Linear Inequalities (ILI): Given a system of linear 
inequalities with integer coeffs., does it have an integer solution?

� P-complete:

� Horn SAT: Given a Horn CNF formula ϕ, is it satisfiable?

� Linear Inequalities (LI): Given a system of linear inequalities with 
integer coefficients, does it have a rational solution?

� NL-complete:

� Directed Graph Reachability: Given a directed graph G=(V,E) and 
two nodes s and t, is there a path from s to t?
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Polynomial-Time Reductions

� 3-Satisfiability (3SAT): Given a 3CNF formula ϕ, is it satisfiable?

(each clause has at most 3 literals)

� Theorem: 3SAT is NP-complete

Proof: Show that SAT ≼p 3SAT

� Let ϕ be a CNF formula c1 Æ c2 … Æ cm

� If a clause ci has more than three literals, then we replace it with 
a set of clauses each with three literals and certain new 
variables.

� For example, if ci is  (x1 Ç ¬ x2 Ç x3 Ç x4  Ç x5), then we replace ci

by  (x1 Ç ¬ x2 Ç y1),  (¬ y1 Ç x3 Ç y2),  (¬ y2 Ç x4 Ç x5).

� Let ϕ* be the resulting 3CNF formula. Then

ϕ is satisfiable ⇔ ϕ* is satisfiable (check this).
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Complete Problems for Computational Complexity Classes

� Proposition: Let C and C’ be one of the complexity classes 

NLOGSPACE, P, NP, PSPACE such that C ⊆ C’ and let Q be a

C’-complete problem. Then the following statements are equivalent:

� C = C’ .

� Q is in C .

In particular, the following statements are equivalent:

� P = NP.

� SAT is in P

� Your favorite NP-complete problem is in P.

� Conclusion:

� Complete problems hold the secret of whether or not a higher 
computational complexity class collapses to a lower one.

� Showing that a decision problem Q is NP-complete provides 
strong evidence that Q is not in P.
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Complexity of the Query Evaluation Problem

� The Query Evaluation Problem for Relational Calculus:

Given a relational calculus formula ϕ and a database instance I, find 
ϕadom(I).

� The Query Evaluation Problem for Relational Algebra: 

Given a relational algebra expression E and a database instance I, 
find E(I).

� Theorem: The Query Evaluation Problem for Relational Calculus is 
PSPACE-complete.

� Corollary: The Query Evaluation Problem for Relational Algebra is 
PSPACE-complete.
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Complexity of the Query Evaluation Problem

� Theorem: The Query Evaluation Problem for Relational Calculus is 
PSPACE-complete.

Proof: We need to show that

� This problem is in PSPACE (i.e., give a PSPACE-algorithm for it).

� This problem is PSPACE-hard.

We start with the second task.
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Complexity of the Query Evaluation Problem

� Theorem: The Query Evaluation Problem for Relational Calculus is 
PSPACE-hard.

� Proof: Show that

Quantified Boolean Formulas ≼p Query Evaluation for Rel. Calc.

Given QBF ∀ x1∃ x2 …. ∀ xk ψ

� Let V and P be two unary relation symbols

� Obtain ψ*  from ψ by replacing xi by P(xi),  and ¬xi by ¬P(xi)

� Let I be the database instance with V = {0,1}, P={1}.

� Then the following statements are equivalent:

� ∀ x1∃ x2 …. ∀ xk ψ is true

� ∀ x1 (V(x1) → ∃ x2 (V(x2)Æ(… ∀ xk(V(xk) → ψ*))…) is true on I.
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Complexity of the Query Evaluation Problem

� Theorem: The Query Evaluation Problem for Relational Calculus is in PSPACE.

Proof (Hint): Let ϕ be a relational calculus formula ∀x1∃x2 … ∀xmψ and let I be 
a database instance.

� Exponential Time Algorithm: We can find ϕadom(I), by exhaustively cycling 
over all possible interpretations of the xi’s.

This runs in time O(nm), where n = |I| (size of I).

� A more careful analysis shows that this algorithm can be implemented in 
O(m�logn)-space.

� Use m blocks of memory, each holding one of the n elements of 
adom(I) written in binary (so O(logn) space is used in each block).

� Maintain also m counters in binary to keep track of the number of 
elements examined.

am in adom(I) 
written in binary

…a2 in adom(I) 
written in binary

a1 in adom(I) 
written in binary

∀ xm…∃ x2∀ x1
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Complexity of the Query Evaluation Problem

� Corollary: The Query Evaluation Problem for Relational Algebra is 
PSPACE-complete.

Proof: The translation of relational calculus to relational algebra 
yields a polynomial-time reduction of the Query Evaluation Problem 
for Relational Calculus to the Query Evaluation Problem for 
Relational Algebra.
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Summary

� The Query Evaluation Problem for Relational Calculus is PSPACE-
complete.

� The Query Equivalence Problem for Relational Calculus in 
undecidable.

� The Query Containment Problem for Relational Calculus is 
undecidable.
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Computational Complexity Classes

Classification of Decidable Problems

(not on scale)

There are many other complexity 

classes. For a comprehensive catalog,

visit the Complexity Zoo at

qwiki.stanford.edu/wiki/Complexity_Zoo

LOGSPACE

NLOGSPACE

P

NP

PSPACE

.

.

.
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Complete Problems

� A key property of most complexity classes is that they possess 
complete problems. 

� Intuitively, complete problems are the “hardest” problems in the class 
in the sense that every other problem can be reduced to it.

� Definition: Let C  be a complexity class. 

A decision problem Q is C-complete if 

� Q is in C.

� If Q’ is in C , then there is a “suitable” total Turing computable 
function f such that for every string x, we have that

x ∈ Q’ ⇔ f(x) ∈ Q.

� “suitable” means that f can be computed with fewer resources 
than those used to define C.

� So, f is a reduction of a restricted nature.
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Complete Problems and Reductions

� Definition: A decision problem Q is NP-complete if 

� Q is in NP.

� If Q’ is in NP, then there is a polynomial-time computable 
function f such that for every string x, we have that

x ∈ Q’ ⇔ f(x) ∈ Q.

� Such an f is a polynomial-time reduction of L to L* (L ≼p L*)

Logspace-computableNL

Logspace-computableP

Polynomial-time computableNP

Polynomial-time computablePSPACE

Reductions for Complete 
Problems

Complexity Class
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The Query Evaluation Problem Revisited

� Since the Query Evaluation Problem for Relational Calculus is 
PSPACE-hard, there are no polynomial-time algorithms for this 
problem, unless PSPACE = P (which is considered highly unlikely).

� Let’s take another look at the exponential-time algorithm for this 
problem:

� Let ϕ be a relational calculus formula ∀x1∃x2 … ∀xmψ and let I be 
a database instance.

� Exponential Time Algorithm: We can find ϕadom(I), by 
exhaustively cycling over all possible interpretations of the xi’s.

This runs in time O(nm), where n = |I|).

� So, the running time is O(|I||ϕ|), where |I| is the size of I and 
|ϕ| is the size of the relational calculus formula ϕ.

� This tells that the source of exponentiality is the formula size.
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The Query Evaluation Problem Revisited

� Theorem: Let ϕ be a fixed relational calculus formula. Then the 
following problem is solvable in polynomial time: given a database 
instance I, find ϕadom(I). In fact, this problem is in LOGSPACE.

� Proof:  Let ϕ be a fixed relational calculus formula ∀x1∃x2 … ∀xmψ

� The previous algorithm has running time O(|I||ϕ|), which is a 
polynomial, since now |ϕ| is a constant.

� Moreover, the algorithm can now be implemented using 
logarithmic-space only, since we need only maintain a constant 
number of memory blocks, each of logarithmic size

am in adom(I) 
written in binary

…a2 in adom(I) 
written in binary

a1 in adom(I) 
written in binary

∀ xm…∃ x2∀ x1
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Vardi’s Taxonomy of the Query Evaluation Problem

M.Y Vardi, “The Complexity of Relational Query Languages”, 1982

� Definition: Let L be a database query language.

� The combined complexity of L is the decision problem: 

given an L-sentence  and a database instance I, is ϕ true on I? 
(does I satisfy ϕ?) (in symbols,  does I � ϕ?)

� The data complexity of L is the family of the following decision 
problems Qϕ, where ϕ is an L-sentence: 
given a database instance I,  does I � ϕ?

� The query complexity of L is the family of the following decision 
problems QI, where I is a database instance: 
given an L-sentence ϕ, does I � ϕ?
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Vardi’s Taxonomy of the Query Evaluation Problem

Note: Let L be a database query language

� The input to the combined complexity problem consists of two 
parts: an L-sentence and a database instance.

� The input to a member of the data complexity of L consists of

a database instance only (the L-sentence is fixed). 

� Hence, the data complexity of L is a special case of the 
combined complexity of L.

� The input to a member of the query complexity of L consists of 
an L-sentence only (the database instance is fixed).

� Hence, the query complexity of L is a special case of the 
combined complexity of L.
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Vardi’s Taxonomy of the Query Evaluation Problem

� Definition: Let L be a database query language and let C be a 
computational complexity class.
� The data complexity of L is in C if for each L-sentence ϕ, the 

decision problem Qϕ is in C.

� The query complexity of L is in C if for every database instance, 
the decision problem QI is in C.

� Vardi’s discovery:
For most query languages L:

� The data complexity of L is of lower complexity than both the 
combined complexity of L and the query complexity of L

� The query complexity of L can be as hard as the combined 
complexity of L.
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Taxonomy of the Query Evaluation Problem for Relational Calculus

Computational Complexity Classes

In LOGSPACEData Complexity

� Is in PSPACE

� It can be 
PSPACE-complete

Query Complexity

PSPACE-completeCombined 
Complexity

ComplexityProblem

LOGSPACE

NLOGSPACE

P

NP

PSPACE

.

.

.

The Query Evaluation Problem  
for Relational Calculus
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The Query Evaluation Problem for Relational Calculus

� Paradox:

� The Query Evaluation Problem for Relational Calculus has 

very high combined complexity 

(PSPACE-complete, so “harder” than NP-complete).

� Yet, database systems evaluate SQL queries “efficiently”.

� Resolution of the Paradox:

� In practice, we deal with the data complexity of the Query 
Evaluation Problem for Relational Calculus, because we typically
have a small fixed collection of queries to answer (while of 
course the database instances vary).

� The data complexity of the Query Evaluation Problem for 
Relational Calculus is in LOGSPACE (hence, in PTIME); so, in 
principle, it is a tractable problem.
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Sublanguages of Relational Calculus

� Question: Are there interesting sublanguages of relational calculus 
for which the Query Containment Problem and the Query Evaluation
Problem are “easier” than the full relational calculus?

� Answer:

� Yes, the language of conjunctive queries is such a sublanguage.

� Moreover, conjunctive queries are the most frequently asked 
queries against relational databases.
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Conjunctive Queries

� Definition: A conjunctive query is a query expressible by a 

relational calculus formula in prenex normal form built from atomic 

formulas R(y1,…,yn),  and  Æ and ∃ only.

{(x1,…,xk):  ∃ z1 …∃ zm χ(x1, …,xk, z1,…,zk)},

where χ(x1, …,xk, z1,…,zk) is a conjunction of atomic formulas of the 

form R(y1,…,ym).

� Equivalently, a conjunctive query is a query expressible by a 
relational algebra expression of the form

πX(σΘ(R1× …× Rn)), where

Θ is a conjunction of equality atomic formulas (equijoin).

� Equivalently, a conjunctive query is a query expressible by an SQL 
expression of the form

SELECT <list of attributes>

FROM    <list of relation names>

WHERE  <conjunction of equalities>
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Conjunctive Queries

� Definition: A conjunctive query is a query expressible by a 

relational calculus formula in prenex normal form built from atomic 

formulas R(y1,…,yn),  and  Æ and ∃ only.

{(x1,…,xk):  ∃ z1 …∃ zm χ(x1, …,xk, z1,…,zk)}

� A conjunctive query can be written as a logic-programming rule:

Q(x1,…,xk) :-- R1(u1), …, Rn(un), where

� Each variable xi occurs in the right-hand side of the rule.

� Each ui is a tuple of variables (not necessarily distinct)

� The variables occurring in the right-hand side (the body), but 
not in the left-hand side (the head) of the rule are existentially 
quantified (but the quantifiers are not displayed).

� “,” stands for conjunction.  
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Conjunctive Queries

Examples:
� Path of Length 2: (Binary query)

{(x,y): ∃ z (E(x,z) Æ E(z,y))}

� As a relational algebra expression, 
π1,4(σ$2 = $3 (E×E)) 

� As a rule:
q(x,y) :-- E(x,z), E(z,y)

� Cycle of Length 3: (Boolean query)
∃ x∃ y∃ z(E(x,y) Æ E(y,z) Æ E(z,x))

� As a rule (the head has no variables)
� Q :-- E(x,z), E(z,y), E(z,x) 
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Conjunctive Queries

� Every relational join is a conjunctive query:

P(A,B,C), R(B,C,D) two relation symbols

� P ⋈ R =  {(x,y,z,w):  P(x,y,z) Æ R(y,z,w)}

� q(x,y,z,w)  :-- P(x,y,z), R(y,z,w) 

(no variables are existentially quantified)

� SELECT P.A, P.B, P.C, R.D

FROM    P, R

WHERE P.B = R.B  AND  P.C = R.C 

� Conjunctive queries are also known as SPJ-queries

(SELECT-PROJECT-JOIN queries)
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Conjunctive Query Evaluation and Containment

� Definition: Two fundamental problems about CQs

� Conjunctive Query Evaluation (CQE):

Given a conjunctive query q and an instance I, find q(I).

� Conjunctive Query Containment (CQC):

� Given two k-ary conjunctive queries q1 and q2, 

is it true that  q1 ⊆ q2? 

(i.e., for every instance I, we have that q1(I) ⊆ q2(I))

� Given two Boolean conjunctive queries q1and q2, is it true that 
q1 � q2? (that is, for all I, if I � q1, then I � q2)?

CQC is logical implication.
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CQE vs.  CQC

� Recall that for relational calculus queries:

� The Query Evaluation Problem is PSPACE-complete

(combined complexity).

� The Query Containment Problem is undecidable.

� Theorem: Chandra & Merlin, 1977

� CQE and CQC are the “same” problem.

� Moreover, each is an NP-complete problem.

� Question: What is the common link?

� Answer: The Homomorphism Problem
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Isomorphisms Between Database Instances

� Definition: Let I and J be two database instances over the same 
relational schema S.

� An isomorphism h: I → J is a function h: adom(I) → adom(J) 
such that

� h is one-to-one and onto.

� For every relational symbol P of S and every (a1,…,am), we 
have that 

(a1,…,am) ∈ PI if and only if (h(a1), .., h(am)) ∈ PJ.

� I and J are isomorphic if an isomorphism h from I to J exists.

� Note: Intuitively, two database instances are isomorphic if one can 
be obtained from the other by renaming the elements of its active 
domain in a 1-1 way.
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A Digression to The Isomorphism Problem

� The Isomorphism Problem: Given two database instances I and J 
over the same relational schema, is I isomorphic to J?

� Fact: The exact computational complexity of the isomorphism 
problem is not known at present.

� The isomorphism problem is in NP (this is easy).

� The isomorphism problem is not known to be NP-complete

(and there is evidence that it is not NP-complete).

� The isomorphism problem is not known to be in P.

Finding a polynomial-time algorithm for the isomorphism problem 
would be a major breakthrough.

� Special cases of the isomorphism problem are known to be in P 
(for example, the isomorphism problem on planar graphs).
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Homomorphisms

� Definition: Let I and J be two database instances over the same 
relational schema S.  
A homomorphism h: I → J is a function h: adom(I) → adom(J) such 
That for every relational symbol P of S and every (a1,…,am), we
have that 

if (a1,…,am) ∈ PI , then  (h(a1), .., h(am) ∈ PJ.

� Note: The concept of homomorphism is a relaxation of the concept 
of isomorphism, since every isomorphism is also a homomorphism, 
but not vice versa.

� Example:
� A graph G = (V,E) is 3-colorable 

if and only if
there is a homomorphism h: G → K3
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Homomorphisms

� Fact: Homomorphisms compose, i.e., 

if f: I → J and g: J → K are homomorphisms, then 

g◦f: I → K is a homomorphims, where g◦f(a) = g(f(a)).

� Definition: 

� Two database instances I and I’ are homomorphically equivalent
if there is a homomorphism h: I → I’ and a homomorphism      
h’: I’ → I. 

� I ≡h I’ means that I and I’ are homomorphically equivalent.

� Note: I ≡h I’ does not imply that I and I’ are isomorphic.
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Homomorphisms

� Fact: Homomorphisms compose, i.e., 

if f: I → J and g: J → K are homomorphisms, then 

g◦f: I → K is a homomorphims, where g◦f(a) = g(f(a)).

� Definition: 

� Two database instances I and I’ are homomorphically equivalent
if there is a homomorphism h: I → I’ and a homomorphism      
h’: I’ → I. 

� I ≡h I’ means that I and I’ are homomorphically equivalent.

� Note: I ≡h I’ does not imply that I and I’ are isomorphic.

I I’
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The Homomorphism Problem

� Definition: The Homomorphism Problem
Given two database instances I and J, is there a homomorphism
h: I → J?

� Notation: I → J denotes that a homomorphism from I to J exists.

� Theorem: The Homomorphism Problem is NP-complete
Proof: Easy reduction from 3-Colorabilty
G is 3-colorable if and only if  G → K3.

� Exercise: Formulate 3SAT as a special case of the Homomorphism 
Problem.
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The Homomorphism Problem

� Note: The Homomorphism Problem is a fundamental algorithmic 
problem:

� Satisfiability can be viewed as a special case of it.

� k-Colorability can be viewed as a special case of it.

� Many AI problems, such as planning, can be viewed as a special 
case of it.

� In fact, every constraint satisfaction problem can be viewed as a 
special case of the Homomorphism Problem 

(Feder and Vardi – 1993).
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The Homomorphism Problem and Conjunctive Queries

� Theorem: Chandra & Merlin, 1977

� CQE and CQC are the “same” problem.

� Moreover, each is an NP-complete problem.

� Question: What is the common link?

� Answer:

� Both CQE and CQC are “equivalent” to the Homomorphism 
Problem.

� The link is established by bringing into the picture 

� Canonical conjunctive queries and

� Canonical database instances.
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Canonical CQs and Canonical Instances

� Definition: Canonical Conjunctive Query
Given an instance I = (R1, …,Rm), the canonical CQ of I is the 
Boolean conjunctive query QI with (a renaming of) the elements of I 
as variables and the facts of I as conjuncts, where a fact of I is an 
expression
Ri(a1,…,am) such that (a1,…,am) ∈ Ri.

� Example:
I consists of E(a,b), E(b,c), E(c,a)

� QI is given by the rule:
QI :-- E(x,z), E(z,y), E(y,x)

� Alternatively, QI is 
∃ x ∃ y ∃ z (E(x,z) Æ E(z,y) Æ E(y,x)) 
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Canonical Conjunctive Query

� Example: K3, the complete graph with 3 nodes

K3 is a database instance with one binary relation E, where

E  = {(b,r), (r,b), (b,g), (g,b), (r,g), (g,r)}

� The canonical conjunctive query QK3 of K3 is given by the rule:

QK3 :- E(x,y),E(y,x),E(x,z),E(z,x),E(y,z),E(z,y)

� The canonical conjunctive query QK3 of K3 is also given by the 
relational calculus expression:

∃x,y,z(E(x,y) Æ E(y,x) Æ E(x,z) Æ E(z,x) Æ E(y,z) Æ E(z,y))
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Canonical Database Instance

� Definition: Canonical Instance

Given a CQ Q, the canonical instance of Q is the instance IQ with the 
variables of Q as elements and the conjuncts of Q as facts.

� Example:

Conjunctive query Q :-- E(x,y),E(y,z),E(z,w)

� Canonical instance IQ consists of the facts E(x,y), E(y,z),E(z,w).

� In other words, EIQ = {(x,y), (y,z), (z,w)}.
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Canonical Database Instance

� Example:

Conjunctive query Q(x,y) :-- E(x,z),E(z,y),P(z)

or, equivalently,

{(x,y):  ∃ z(E(x,z)Æ E(z,y)Æ P(z)}

� Canonical instance IQ consists of the facts 

E(x,z), E(z,y),P(z).

� In other words, EIQ = {(x,z), (z,y)} and PIQ={z}
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Canonical Conjunctive Queries and Canonical Instances

� Fact:
� For every database instance I, we have that I � QI.

� For every Boolean conjunctive query Q, we have that IQ � Q.

� Fact: Let I be a database instance, let QI be its canonical 

conjunctive query and let IQI
be the canonical instance of QI.

Then I is isomorphic to IQI
.
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Canonical Conjunctive Queries and Canonical Instances

Magic Lemma: Assume that Q is a Boolean conjunctive query and J is a 

database instance. Then the following statements are equivalent.
� J � Q.  

� There is a homomorphism h: IQ → J.

Proof: Let Q be ∃ x1 …∃ xm ϕ(x1,…,xm).

1. ⇒ 2. Assume that J � Q.  Hence, there are elements

a1, …, am in adom(J) such that J � ϕ(a1,…,am). The function h with 

h(xi) = ai, for i=1,…,m, is a homomorphism from IQ to J.

2. ⇒ 1. Assume that there is a homomorphism h: IQ → J.

Then the values h(xi) = ai, for i = 1,…, m, give values for the 

interpretation of the existential quantifiers ∃ xi of Q in adom(J) 
so that J � ϕ(a1,…,am). 
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Homomorphisms, CQE, and CQC

The Homomorphism Theorem: Chandra & Merlin – 1977

For Boolean CQs Q and Q’, the following are equivalent:

� Q ⊆ Q’

� There is a homomorphism h: IQ’ → IQ

� IQ � Q’.

In dual form:

The Homomorphism Theorem: Chandra & Merlin – 1977

For instances I and I’, the following are equivalent:

� There is a homomorphism h: I → I’
� I’ � QI

� QI’ ⊆ QI
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Homomorphisms, CQE, and CQC

The Homomorphism Theorem: Chandra & Merlin – 1977

For Boolean CQs Q and Q’, the following are equivalent:

1. Q ⊆ Q’

2. There is a homomorphism h: IQ’ → IQ

3. IQ � Q’.

Proof:

1. ⇒ 2. Assume Q ⊆ Q’. Since IQ � Q, we have that IQ � Q’. 

Hence, by the Magic Lemma, there is a homomorphism from IQ’ to IQ.

2. ⇒ 3. It follows from the other direction of the Magic Lemma.

3. ⇒ 1. Assume that IQ � Q’. So, by the Magic Lemma, there is a 

homomorphism h: IQ’ → IQ.  We have to show that if J � Q, then J � Q’. Well, if 

J � Q, then (by the Magic Lemma), there is a homomorphism h’: IQ → J. The 

composition h’◦ h: IQ’ → J is a homomorphism, hence 

(once again by the Magic Lemma!), we have that J � Q’.
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Illustrating the Homomorphism Theorem

� Example:

� Q:    ∃x1∃x2∃x3∃x4 (E(x1,x2)Æ E(x2,x3) Æ E(x3,x4))

� Q’ :  ∃x1∃x2∃x3 (E(x1,x2)Æ E(x2,x3))

Then:

� Q ⊆ Q’

Homomorphism h: IQ’→ IQ with 

h(x1) = x1, h(x2) = x2, h(x3) = x3.

� Q’ ⊈ Q (why?).
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Illustrating the Homomorphism Theorem

� Example:

� Q :  ∃x1∃x2 (E(x1,x2) Æ E(x2,x1))

� Q’:  ∃x1∃x2∃x3∃x4 (E(x1,x2) Æ E(x2,x1) Æ E(x2,x3) Æ E(x3,x2) Æ

E(x3,x4) Æ E(x4,x3) Æ E(x4,x1) Æ E(x1,x4))

Then:

� Q ⊆ Q’

Homomorphism h: IQ’→ IQ with 

h(x1) = x1, h(x2) = x2, h(x3) = x1, h(x4) = x2.

� Q’ ⊆ Q

Homomorphism h’: IQ → IQ’ with h’(x1) = x1,  h(x2) = x2.

� Hence, Q ≡Q’.
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Illustrating the Homomorphism Theorem

Example: 3-Colorability

For a graph G=(V,E), the following are equivalent:

� G is 3-colorable

� There is a homomorphism h: G → K3

� K3 � QG 

� QK3 ⊆ QG.
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The Homomorphism Theorem for non-Boolean Conjunctive 
Queries

� So far, we have focused on Boolean conjunctive queries.

� However, the Homomorphism Theorem easily extends to 
conjunctive queries of arbitrary arities by considering 
homomorphisms that are the identity on the variables in the head of 
the conjunctive queries (written as rules).

� Moreover, the Homomorphism Theorem also extends to conjunctive 
queries with constants in some of the conjuncts.

Find all cities one can reach by flying from San Jose with two stops

{x: ∃x1∃x2 (FLIGHT(SanJose, x1)Æ FLIGHT(x1,x2) Æ FLIGHT(x2,x))}.
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The Homomorphism Theorem for non-Boolean Conjunctive 
Queries

The Homomorphism Theorem: Chandra & Merlin – 1977

Consider two k-ary conjunctive queries 

Q(x1,…,xk) :-- R1(u1), …, Rn(un) and Q’(x1,…,xk) :-- T1(v1), …, Tm(vm), 

Then the following are equivalent:

� Q ⊆ Q’

� There is a homomorphism h: IQ’ → IQ such that 

h(x1) = x1, h(x2) = x2, …, h(xk) = xk.

� IQ, x1,…, xk � Q’.
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The Homomorphism Theorem for non-Boolean Conjunctive 
Queries

� Example:  Consider the binary conjunctive queries

Q(x,y):-- E(y,x),E(x,u)

and

Q’(x,y) :-- E(y,x), E(z,x),E(w,x),E(x,u)

Then Q ⊆ Q’ because there is a homomorphism

h: IQ’ → IQ with h(x) =x and h(y) = y, 

namely,

h(x) = x, h(y) = y, h(z) =y, h(w) = y, h(u) = u.
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Combined complexity of CQC and CQE

Corollary: The following problems are NP-complete:
� Given two (Boolean) conjunctive queries Q and Q’ is Q ⊆ Q’ ?
� Given a Boolean conjunctive query Q and an instance I, 

does I � Q ?

Proof:
(a)  Membership in NP follows from the Homomorphism Theorem:

Q ⊆ Q’ if and only if  there is a homomorphism h: IQ’ → IQ

(b) NP-hardness follows from 3-Colorability:
G is 3-colorable if and only if QK3 ⊆ QG.
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Conjunctive Query Equivalence

� The Conjunctive Query Equivalence Problem: Given two conjunctive 
queries Q and Q’, is Q ≡ Q’?

� Corollary: For conjunctive queries Q and Q’, we have that

Q ≡ Q’ if and only if IQ ≡h IQ’.

� Corollary: The Conjunctive Query Equivalence Problem is

NP-complete.

� Proof:  

� The following problem is NP-complete:

Given a graph H containing a K3, is H 3-colorable?

� Let H be a graph containing a K3. Then

H is 3-colorable if and only if QH ≡ QK3.
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Combined Complexity vs. Data Complexity

Recall Vardi’s Taxonomy of Query Evaluation: 

� Combined Complexity: Both the query and the instance are part of 
the input.

� Data Complexity: Fix the query; the input consists of the instance 
only.

Complexity of Conjunctive Query Evaluation:

� The combined complexity of conjunctive query evaluation is

NP-complete.

� The data complexity of conjunctive query evaluation is in P 

(in fact, it is in LOGSPACE).
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The Complexity of Database Query Languages

NP-completeUndecidableQuery Containment 
Problem

NP-completeUndecidableQuery Equivalence 
Problem

In LOGSPACE

(hence, in P)

In LOGSPACE

(hence, in P)

Query Evaluation Problem:

Data Complexity

NP-completePSPACE-completeQuery Evaluation Problem: 
Combined Complexity  

Conjunctive QueriesRelational Calculus
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Conjunctive Query Minimization

� Definition: Let Q be a conjunctive query.  A minimal equivalent 
conjunctive query to Q is a conjunctive query Q’ such that

� Q is equivalent to Q’;

� Q’ has as few conjuncts as any conjunct. query equivalent to Q.

� Example: Let Q be the conjunctive query

Q(x,y) :-- E(y,x), E(z,x),E(w,x),E(x,u)

Then the conjunctive query

Q’(x,y):-- E(y,x),E(x,u)

is a minimal equivalent conjunctive query to Q.  (Why?)
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Conjunctive Query Minimization and Conjunctive Query 
Evaluation

� A natural approach to conjunctive query evaluation is to first 
process a given conjunctive query Q, transform it to a minimal 
equivalent conjunctive query Q’, and then evaluate Q’ instead of Q.

� At first sight, this seems to be a promising approach.

� There is good news and bad news.  First, the good news:

� Theorem: Let Q be a conjunctive query.

� There is a minimal equivalent conjunctive query Q’ obtained from 
Q by removing zero or more conjuncts.

� All minimal equivalent conjunctive queries to Q are isomorphic, 
i.e., their canonical instances are all isomorphic to each other. 

Proof: Use the Homomorphism Theorem (exercise).
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Conjunctive Query Minimization and Conjunctive Query 
Evaluation

Next, the bad news:

Theorem: 

� The following problem is NP-hard: Given two conjunctive queries Q 
and Q’, is Q’ a minimal equivalent query to Q?

� Consequently, unless P = NP, there is no polynomial-time algorithm 
such that, given a conjunctive query Q, the algorithm outputs a 
conjunctive query Q’ that is a minimal equivalent query to Q.

Proof: Reduction from 3-Colorability (exercise).

Note:

� This is not surprising since, as we saw, conjunctive query evaluation 
is NP-complete.

� There is an exponential-time algorithm such that, given a 
conjunctive query Q, the algorithm outputs a conjunctive query Q’
that is a minimal equivalent query to Q.
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Tractable Cases of Conjunctive Query Evaluation

� Since conjunctive query evaluation is NP-complete, there has been 
an extensive investigation of special cases of conjunctive query
evaluation for which the problem is in P.

� The key idea is to impose structural restrictions on the conjunctive 
queries considered:

� Acyclic joins – M. Yannakakis (1981)

� Various extensions of acyclicity have been studied over the years,

including queries of bounded tree-width and queries of bounded 
hypertree width.

� Extensive interaction with constraint satisfaction, logic, and graph 
theory.

� This belongs more to an advanced topics course or an independent
study course.



161

Beyond Conjunctive Queries

� What can we say about query languages of intermediate expressive
power between conjunctive queries and the full relational calculus?

� Conjunctive queries form the sublanguage of relational algebra 
obtained by using only cartesian product, projection, and selection 
with equality conditions.

� The next step would be to consider relational algebra expressions 
that also involve union.
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Beyond Conjunctive Queries

� Definition:  

� A union of conjunctive queries is a query expressible by an expression of 
the form q1 ∪ q2 ∪ … ∪ qm, where each qi is a conjunctive query.

� A monotone query is a query expressible by a relational algebra 
expression which uses only union, cartesian product, projection, and 
selection with equality condition.

� Fact:

� Every union of conjunctive queries is a monotone query.

� Every monotone query is equivalent to a union of conjunctive queries, 
but the union may have exponentially many disjuncts.

(normal form for monotone queries).

� Monotone queries are precisely the queries expressible by relational 
calculus expressions using Æ, Ç, and ∃ only.
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Unions of Conjunctive Queries and Monotone Queries

� Union of Conjunctive Queries

E ∪ π1,4 (σ$2=$3 (E× E)) or, as a relational calculus expression,

E(x1,x2) Ç ∃ z(E(x1,z)Æ E(z,x2))

� Monotone Query

Consider the relation schemas R1(A,B), R2(A,B), R3(B,C), R4(B,C).

The monotone query 

(R1 ∪ R2) ⋈ (R3 ∪ R4) 

is equivalent to the following union of conjunctive queries:

(R1 ⋈ R3) ∪ (R1 ⋈ R4) ∪ (R2 ⋈ R3) ∪ (R2 ⋈ R4).
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The Containment Problem for Unions of Conjunctive 
Queries

Theorem: Sagiv and Yannakakis – 1981

Let q1 ∪ q2 ∪ … ∪ qm and q’1 ∪ q’2 ∪ … ∪ q’n be two unions of 

conjunctive queries. Then the following are equivalent:

1. q1 ∪ q2 ∪ … ∪ qm ⊆ q’1 ∪ q’2 ∪ … ∪ q’n.

2. For every i ≤ m, there is j ≤ n such that qi ⊆ q’j.

Proof: Use the Homomorphism Theorem

1. ⇒ 2. Since Iqi � qi, we have that Iqi � q1 ∪ q2 ∪ … ∪ qm , hence 

Iqi � q’1 ∪ q’2 ∪ … ∪ q’n , hence there is some j ≤ n such that Iqi � q’j, 

hence (by the Homomorphism Theorem) qi ⊆ q’j.

2. ⇒ 1. This direction is obvious.
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The Containment Problem for Unions of Conjunctive 
Queries

� Corollary: The Query Containment Problem for 

Unions of Conjunctive Queries is NP-complete.

� Proof:

� Membership in NP follows from the Sagiv-Yannakakis Theorem.

� We guess m pairs (q’ki
, hki

) and verify that for every i ≤ m,

the function hki
is a homomorphism from Iq’ki to Iqi.

� NP-hardness follows from the fact that Conjunctive Query 
Containment is a special case of this problem.

� Fact: The Query Evaluation Problem for Unions of Conjunctive 
Queries is NP-complete (combined complexity).

Proof: Exercise.
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The Complexity of Database Query Languages

NP-completeNP-completeUndecidableQuery 
Containment

NP-completeNP-completeUndecidableQuery Equivalence

In LOGSPACE

(hence, in P)

In LOGSPACE

(hence, in P)

In LOGSPACE

(hence, in P)

Query Evaluation:

Data Complexity

NP-completeNP-completePSPACE-completeQuery Evaluation: 
Combined 
Complexity

Unions of 
Conjunctive 
Queries

Conjunctive 
Queries

Relational 
Calculus
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Monotone Queries

� Even though monotone queries have the same expressive power as 
unions of conjunctive queries, the containment problem for monotone 
queries has higher complexity than the containment problem for 
unions of conjunctive queries  (syntax/complexity tradeoff)

� Theorem: Sagiv and Yannakakis – 1982

The containment problem for monotone queries is Π2
p-complete.

� Note: 

� Π2
p is a complexity class that contains NP and is contained in 

PSPACE.

� The prototypical Π2
p-complete problem is ∀∃-SAT, i.e., the 

restriction of QBF to formulas of the form 

∀ x1…∀ xm∃ y1 …∃ yn ϕ.
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The Complexity of Database Query Language
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Conjunctive Queries with Inequalities

� Definition: Conjunctive queries with inequalities form the 

sublanguage of relational algebra obtained by using only cartesian
product, projection, and selection with equality and inequality 

(≠, <, ≤) conditions.

� Example: Q(x,y):-- E(x,z), E(z,w),E(w,y), z ≠ w, z < y.

� Theorem: (Klug – 1988, van der Meyden – 1992)

� The query containment problem for conjunctive queries with 
inequalities is Π2

p-complete.

� The query evaluation problem for conjunctive queries with 
inequalities in NP-complete.
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The Complexity of Database Query Languages
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Conjunctive Queries with Inequalities

� Note: The Homomorphism Theorem fails for conjunctive queries 
with inequalities.

� Example: Consider the queries

� q(x,y)   :- E(x,y), F(u,v)

� p(x,y)   :- E(x,y), F(u,v), u ≠ v.

Then

� q(x,y)  ⊈ p(x,y)   (why?)

� Yet, Ip is the same as Iq; 

in particular, there is a homomorphism h: Ip → Iq.

� Note also that p(x,y) ⊆ q(x,y) (why?)
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Complexity of Query Containment

� So, the complexity of query containment for conjunctive queries and 
their variants is well understood.

Caveat: 

� All preceding results assume set semantics, i.e., queries take sets 
as inputs and return sets as output (duplicates are eliminated).

� DBMS, however, use bag semantics (multiset semantics), since 
they return bags (multisets)

(recall that duplicates are not eliminated in SQL, unless explicitly 
specified).
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A Real Conjunctive Query

� Consider the following SQL query:

Table Employee has attributes salary, dept, …

SELECT salary
FROM   Employee
WHERE  dept = ‘CS’

� Recall that SQL keeps duplicates, because:

� User may care about duplicates

{100, 100, 200} different than {100, 200} for AVERAGE

� In general, bags can be more “efficient” than sets.



174

Query Evaluation under Bag Semantics

Duplicates are not 
eliminated

Projection and 
Selection

m1× m2Product 

R1 × R2

min(m1, m2)Intersection 

R1 	 R2

m1 + m2Union 

R1 ∪ R2

MultiplicityOperation
� R1 A   B

1   2
1   2 
2   3

� R2 B  C
2  4
2  5

� (R1 ⋈ R2) A   B  C    

1   2  4
1   2  4
1   2  5
1   2  5
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Bag (Multiset) Semantics

S. Chaudhuri & M.Y. Vardi – 1993

Optimization of Real Conjunctive Queries

� Called for a re-examination of conjunctive-query optimization under 
bag semantics.

� In particular, they initiated the study of the 

containment problem for conjunctive queries under bag semantics.
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Bag Semantics vs. Set Semantics

� QBAG(I) : Result of evaluating Q on (bag) database instance I.

� For bags R1, R2:

R1 ⊆BAG R2 if m(a,R1) ≤ m(a,R2), for every tuple a.

� Q1 ⊆BAG Q2 if for every (bag) database I, we have that 

Q1
BAG(I) ⊆BAG Q2

BAG(I).

Fact: 

� Q1 ⊆BAG Q2 implies Q1 ⊆ Q2 (this is obvious from the definitions).

� The converse does not always hold.
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Bag Semantics vs. Set Semantics

Fact: Q1 ⊆ Q2 need not imply that Q1 ⊆BAG Q2 .

Example:

� Q1(x) :- P(x), T(x)

� Q2(x) :- P(x)

� Q1 ⊆ Q2 (this is obvious from the definitions)

� Q1 ⊈BAG Q2

� Consider the (bag) instance I = {P(a), T(a), T(a)}.

Then: 

� Q1(I) = {a,a}

� Q2(I) = {a}, so Q1(I) ⊈ Q2(I). 
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Conjunctive Query Evaluation under Bag Semantics

� Boolean query 

Q :- E(x,y), E(y,z), E(z,x)

� Set Semantics

Q(G) = “true” if and only if the graph G contains a triangle.

� Bag Semantics

QBAG(G) =  # of triangles in the graph G.
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Conjunctive Query Evaluation under Bag Semantics

Consider:

� K3: the complete graph with 3 nodes

� G=(V,E) an arbitrary graph and the canonical conjunctive query 
QG of G.

Then

� Set Semantics

QG(K3) = “true” if and only if G is 3-colorable.

� Bag Semantics

QG-BAG(K3) =  # 3-colorings of the graph G.

Corollary: The conjunctive query evaluation problem under bag 

semantics is #P-complete.
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Query Containment under Bag Semantics

� Chaudhuri & Vardi - 1993 stated that:

Under bag semantics, the containment problem for conjunctive
queries is Π2

p-hard.

� Open Problem:

� What is the exact complexity, under bag semantics, of the 
containment problem for conjunctive queries?

� Is this problem decidable?  Even this is not known to date!
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Unions of Conjunctive Queries

Theorem: Ioannidis & Ramakrishnan – 1995

Under bag semantics, the containment problem for

unions of conjunctive queries is undecidable. 

Hint of Proof:

Reduction from

Hilbert’s 10th Problem.
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Hilbert’s 10th Problem

� Hilbert’s 10th Problem – 1900  

(10th in his list of 23 problems)

Find an algorithm for the following problem:

Given a polynomial equation p(x1,...,xn) = 0 with integer coefficients, 
does it have an all-integer solution?

� Matijasevic – 1971

� Hilbert’s 10th Problem is undecidable, hence no such algorithm 
exists. 

� Undecidable, even for degree d = 4 and n = 58.
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Hilbert’s 10th Problem

� Fact: The following variant of Hilbert’s 10th Problem is undecidable:

� Given two polynomials p1(x1,…xn) and p2(x1,…xn) with positive 
integer coefficients and no constant terms, is it true that p1 ≤ p2? 
i.e., is it true that p1(a1,…,an) ≤ p2(a1,…an), for all positive 
integers a1,…,an?

� So, there is no algorithm for deciding questions like:

� Is  3x1
4x2x3 + 2x2x3 ≤ x1

6 + 5x2x3
?
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Unions of Conjunctive Queries

Theorem: Ioannidis & Ramakrishnan – 1995

Under bag semantics, the containment problem for unions of

conjunctive queries is undecidable,  even if all relations are unary.

Hint of Proof:  

� Reduction from the previous variant of Hilbert’s 10th Problem:

� Use joins of unary relations to encode monomials (products of 
variables).

� Use unions to encode sums of monomials. 
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Unions of Conjunctive Queries

Theorem: Ioannidis & Ramakrishnan – 1995

Under bag semantics, the containment problem for unions of

conjunctive queries is undecidable,  even if all relations are unary.

Example: Consider the polynomial 3x1
4x2x3 + 2x2x3

� The monomial x1
4x2x3 is encoded by the conjunctive query

P1(w),P1(w),P
1
(w), P

1
(w), P2(w),P3(w).

� The monomial x2x3 is encoded by the conjunctive query P2(w),P3(w).

� The polynomial 3x1
4x2x3 + 2x2x3 is encoded by the union having:

� three copies of P1(w),P1(w),P1(w), P
1
(w), P2(w),P3(w)   and 

� two copies of P2(w),P3(w).



186

Computational Complexity of Query Containment

UndecidableUndecidable

Trakhtenbrot - 1949

Relational calculus 
queries

Π2
p-complete

Van der Meyden – 1992

Conj. queries with 

≠≠≠≠ , ≤, ≥

Undecidable

Ioannidis-Ramakrishnan -
1995

NP-complete

Sagiv-Yannakakis – 1981

Unions of conj. queries 

OpenNP-complete

Chandra Merlin – 1977

Conjunctive queries

Complexity –

Bag Semantics

Complexity –

Set Semantics

Class of Queries
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Bag Semantics and Conjunctive Queries with g

Theorem: Jayram, K… , Vee – 2006

Under bag semantics, the containment problem for

conjunctive queries with g is undecidable.

In fact, this problem is undecidable even if

� the queries use only a single relation of arity 2;

� the number of inequalities in the queries is at most some fixed 
constant. 
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Bag Semantics and Conjunctive Queries with g

Proof Idea: 

Reduction from another variant of Hilbert’s10th  Problem:

Given homogeneous polynomials 

P1(x1,…,x59) and P2(x1,…,x59)

both with integer coefficients and both of degree 5,

is P1(x1,…,x59)  ≤ (x1)
5 P2(x1,…,x59), 

for all integers x1,…,x59?

The reduction is much more involved than the earlier reduction for

unions of conjunctive queries.
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Proof Idea (continued)

� Given polynomials P1 and P2

� Both with integer coefficients

� Both homogeneous, degree 5

� Both with at most n=59 variables

� We want to find Q1 and Q2 such that

� Q1 and Q2 are conjunctive queries with inequalities g

� P1(x1,…, x59)  ≤ (x1)5 P2(x1,…, x59) 

for all integers x1, …, x59

if and only if

Q1(D) ⊆
BAG

Q2(D) for all (bag) databases D.
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Proof Outline: 

Proof is carried out in three steps.

Step 1: Only consider DBs of a special form.

Show how to use conjunctive queries to encode

polynomials (without using inequalities!)

Step  2: “Force” DB to have special form using inequalities.

� If D is not of special form, then
Q1(D) ⊆BAG Q2(D) necessarily.

Step 3: Show that we only need a single relation of arity 2.
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Step 1: DBs of a Special Form - Example

� Encode a homogeneous, 2-variable, degree 2 polynomial in which all 
coefficients are 1.

P(x1,x2) = x1
2 + x1x2 + x2

2

� DBs of special form:

� Ternary relation TERM consisting of 

� (X1,X1,T1), (X1,X2,T2), (X2,X2,T3)
all special DBs have precisely this table for TERM

� Binary relation VALUE 

� Table for VALUE varies to encode different values for the 
variables x1, x2.

� Query Q :- TERM(u1,u2,t), VALUE(u1,v1), VALUE(u2,v2)
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Step 1: DBs of a Special Form - Example

� P(x1,x2) = x1
2 + x1x2 + x2

2

x1 = 3, x2 = 2,  P(3,2) = 32 + 3·2 + 22 = 19.

� Query Q :- TERM(u1,u2,t), VALUE(u1,v1), VALUE(u2,v2)

� DB D of special form:

� TERM:    (X1,X1,T1), (X1,X2,T2), (X2,X2,T3)

� VALUE:   (X1,1),  (X1,2),  (X1,3)

(X2,1),  (X2,2)

Claim: P(3,2) = 19 = QBAG(D)



193

Step 1: DBs of a Special Form - Example

� P(3,2) = 32 + 3·2 + 22 = 19.

� Query Q :- TERM(u1,u2,t), VALUE(u1,v1), VALUE(u2,v2)

� D has   TERM:    (X1,X1,T1), (X1,X2,T2), (X2,X2,T3)

VALUE:    (X1,1),  (X1,2),  (X1,3), (X2,1),  (X2,2) 

� QBAG(D) = 19, because:

� t → T1, u1→ X1, u2→ X1. Hence:

v1 → 1,2, or 3 and v2→ 1 or 2, so we get 32 witnesses.

� t → T2, u1→ X1, u2→ X2.  Hence:

v1 → 1,2, or 3 and v2→ 1 or 2, so we get 3·2 witnesses.

� t → T3, u1→ X2, u2→ X2. Hence:

v1 → 1 or 2,  and v2→ 1 or 2, so we get 22 witnesses.
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Step 1: Complete Argument and Wrap-up

� Previous technique only works if all coefficients are 1

� For the complete argument:

� add a fixed table for every term to the DB;

� encode coefficients in the query;

� only table for VALUE can vary.

� Summary: 

� If the database has a special form, then we 
can encode separately homogeneous polynomials 

P1 and P2 by conjunctive queries Q1 and Q2.

� By varying table for VALUE, we vary the variable values.

� No ≠-constraints are used in this encoding; hence, conjunctive query 
containment is undecidable, if restricted to databases of the special 
form.
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Step 2: Arbitrary Databases

Idea:

Use inequalities g in the encoding queries

to achieve the following:

� If a database D is of special form, then we are back to the previous 
case.

� If a database D is not of special form, then
Q1(D) ⊆BAG Q2(D) necessarily.
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Step 2: Arbitrary Databases - Hint

1. Ensure that certain “facts” in special-form DBs appear 

(else neither query is satisfied).

� This is done by adding a part of the canonical query of special-form DBs as 
subgoals to each encoding query.

2. Modify special-form DBs by adding  gadget tuples to TERM and 

to VALUE.

� TERM:    (X1,X1,T1), (X1,X2,T2), (X2,X2,T3), (T0,T0,T0)

� VALUE:   (X1,1),  (X1,2),  (X1,3), (X2,1),  (X2,2) , (T0,T0)

3. Add extra subgoals to Q2, so that if D is not of special form, then

Q2 “benefits” more than Q1 and, as a result,  Q1(D) ⊆BAG Q2(D).



197

Step 2: Arbitrary Databases - Example

� P1(x1,x2) = x1
2 + x1x2 + x2

2

� Poly1(u1,u2,t) :- TERM(u1,u2,t), VALUE(u1,v1), VALUE(u2,v2)
the query encoding P1 on special-form DBs.
� TERM:    (X1,X1,T1), (X1,X2,T2), (X2,X2,T3), (T0,T0,T0)
� VALUE:   (X1,1),  (X1,2),  (X1,3), (X2,1),  (X2,2), (T0, T0)

� Q1 :- Poly1(u1,u2,t)
� Q2 :- Poly2(u1, u2, t), Poly1(w1, w2, w), w gggg T1, w gggg T2, w gggg T3

Fact: 

� If DB is of special form, then Q2 gets no advantage, because 
w → T0, w1 → T0, w2 → T0 is the only possible assignment.

� If DB not of special form, say it has an extra fact (X2,X1,T’), then both Q1 and
Q2 can use it equally.
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Step 2:  Arbitrary Databases – Wrap-up

� Additional tricks are needed for the full construction.

� Full construction uses seven different control gadgets. 

� Additional complications when we encode coefficients.

� Inequalities gggg are used in both queries.

� Number of inequalities gggg depends on size of special-form DBs, not counting 
the facts in VALUE table.

� Hence, depends on degree of polynomials, # of variables.

� It is a huge constant (about 5910). 
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Complexity of Query Containment

UndecidableUndecidable

Gödel - 1931

First-order (SQL) queries

Undecidable

JKV - 2006

Π2
p-complete

vdM - 1992

Conj. queries with 

≠≠≠≠ , ≤, ≥

Undecidable

IR - 1995

NP-complete

SY - 1980

Unions of conj. queries 

OpenNP-complete

CM – 1977

Conjunctive queries

Complexity –

Bag Semantics

Complexity –

Set Semantics

Class of Queries
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Directions for Future Work

� Major Open Problem:

Conjunctive query containment problem (no inequalities), under bag 
semantics.

� Is it decidable?

� If so, what is the exact complexity?

� Identify classes of queries for which, under bag semantics, the containment 
problem is tractable.

� Pinpoint  the exact complexity of bag-equivalence.
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The Query Equivalence Problem

� Query Equivalence: given Q1, Q2, is Q1 ≡ Q2?

� Under bag semantics,

� For conjunctive queries, it has the same complexity as 
GRAPH ISOMORPHISM

Chaudhuri & Vardi - 1993

� For conjunctive queries with inequalities g,

� Lower Bound: It is GRAPH ISOMORPHISM-hard.

� Upper Bound: It is in PSPACE

Nutt, Sagin, Shurin (Cohen) – 1998

Big gap between the lower and the upper bound.
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Limitations of Relational Algebra & Relational Calculus

Outline:

� Relational Algebra and Relational Calculus have substantial 
expressive power. In particular, they can express

� Natural Join

� Quotient

� Unions of conjunctive queries

� …

� However, they cannot express recursive queries.

� Datalog is a declarative database query language that augments the 
language of conjunctive queries with a recursion mechanism.
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Parents, Grandparents, and Greatgrandparents

� Let PARENT be a binary relational schema such that if

(a,b) ∈ PARENT in some database instance, then a is a parent of b.

� Using PARENT, we can define GRANDPARENT and 
GREATGRANPARENT by the conjunctive queries:

GRANDPARENT(x,y)  :- PARENT(x,z), PARENT(z,y)

and

GREATGRANDPARENT(x,y) :- PARENT(x,z), PARENT(z,w), 

PARENT(w,y)

� Similarly, we can define GREATGREATGRANPARENT by a 
conjunctive query, and so on up to any fixed level of ancenstry.
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Parents and Ancestors

� Question: Is there a relational algebra (relational calculus) 
expression that defines ANCESTOR from PARENT?

� Note: This type of question occurs in other related concepts:

� Given a binary relation MANAGES(manager, employee), is there a 
relational algebra (relational calculus) expression that defines
HIGHER-MANAGER

� Given a binary relation DIRECT(from,to) about flights, is there a 
relational algebra (relational calculus) expression that defines
CAN-FLY(from,to)?

� More abstractly, given a binary relation E, is there a relational 
algebra (relational calculus) expression that defines the 
Transitive Closure TC of E?
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Edges and Paths

Definition: Let E be a binary relation 

� For every n ≥ 1, let PATHn be the binary query:

“given a and b, is there a path of length n from a to b along edges 
from E?”

� PATH is the binary query:

“given a and b, is there a path from a to b along edges from E?”

Fact:

� For every n≥ 1, the query PATHn is expressible by a conjunctive 
query.  (Why?)

� Hence, PATH is expressible by an infinite union of conjunctive 
queries:

PATH  ≡ PATH1 ∪ PATH2 ∪ … ∪ PATHn ∪ …
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Edges, Paths, and Transitive Closure

Facts: Let E be a binary relation

� PATH is the Transitive Closure of E, i.e., 

the smallest binary relation T such that

� E ⊆ T

� T is transitive (if (a,b) ∈ T and (b,c) ∈ T, then (a,c) ∈ T).

� There are several well-known efficient algorithms for computing the 
Transitive Closure of a given binary relation E

� Floyd–Warshall Algorithm (taught in CMPS 101).

� Recall that the following problem is NLOGSPACE-complete:

Given E, a and b, is there a path from a to b? (i.e., is (a,b) ∈ TC?)
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Transitive Closure and Relational Calculus

� Question: Is there a relational algebra (relational calculus) 
expression that defines ANCESTOR from PARENT?  In other words, 
is there a relational algebra (relational calculus) expression that 
defines the Transitive Closure of a given binary relation E?

� Theorem: A. Aho and J. Ullman – 1979

There is no relational algebra (or relational calculus) expression that 
defines the Transitive Closure of a given binary relation E.
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Transitive Closure and Relational Calculus

Theorem: A. Aho and J. Ullman – 1979
There is no relational algebra (or relational calculus) expression
that defines the Transitive Closure of a given binary relation E.

Note:  
� The proof of this result requires methods from mathematical logic.

� Ehrenfeucht-Fraïssé Games is a powerful method for proving limitations in 
the expressive power of relational calculus.

� Two-person perfect-information combinatorial games in which two 
players take turns and pick elements in two different database 
instances.

� One player tries to maintain a partial isomorphism between the moves 
played; the other player tries to violate this.
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Transitive Closure and Relational Calculus

Theorem: A. Aho and J. Ullman – 1979

There is no relational algebra (or relational calculus) expression

that defines the Transitive Closure of a given binary relation E.

Intuition behind this result:

� Relational Calculus queries can only express “local” properties

E F
t

s

t

s
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Limitations of Relational Calculus and Relational Calculus

� There is no relational algebra (relational calculus) expression 
involving PARENT that defines ANCESTOR.

� ANCESTOR is definable by an infinite union of conjunctive queries, 
but is not definable by any finite union of conjunctive queries.

� Aho and Ullman’s Theorem reveals a limitation in the expressive 
power of relational algebra and relational calculus, namely

� They cannot express recursive queries.



211

Overcoming the Limitations of Relational Calculus

� Question: What is to be done to overcome the limitations of the 
expressive power of relational calculus?

� Answer 1: Embedded Relational Calculus (Embedded SQL):

� Allow SQL commands inside a conventional programming 
language, such as C, Java, etc.

� This is an inferior solution, as it destroys the high-level character 
of SQL.

� Answer 2: 

� Augment relational calculus with a high-level declarative 
mechanism for recursion.

� Conceptually, this a superior solution as it maintains the high-
level declarative character of relational calculus.
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Datalog

� Datalog = “Conjunctive Queries +  Recursion”

� Datalog was introduced by Chandra and Harel in 1982 and has been 
studied by the research community in depth since that time: 

� Hundreds of research papers in major database conferences;

� Numerous doctoral dissertations.

� Recent applications outside databases:

� Specification of network properties

� Access control languages

� SQL:1999 and subsequent versions of the SQL standard provide 
support for a sublanguage of Datalog, called linear Datalog.
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Datalog Syntax

� Definition:  A Datalog program π is a finite set of rules each 
expressing a conjunctive query 

T(x1,…,xk) :-- R1(u1), …, Rn(un), 

where each variable xi occurs in the body of the rule.

� Some relational symbols occurring in the heads of the rules may 

also occur in the bodies of the rules

(unlike the rules for conjunctive queries).  

� These relational symbols are the recursive relational symbols; 
they are also known as intensional database predicates (IDBs).

� The remaining relational symbols in the rules are known as the 
extensional database predicates (EDBs).
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Datalog

� Example: Datalog program for Transitive Closure

T(x,y) :- E(x,y)

T(x,y) :- E(x,z), T(z,y)

� E is the EDB predicate

� T is the IDB predicate

� The intuition is that the Datalog program gives a recursive 
specification of the IDB predicate T in terms of the EDB E.

� Example: Another Datalog program for Transitive Closure

T(x,y) :- E(x,y)

T(x,y) :- T(x,z), T(z,y)

(“divide and conquer” algorithm for Transitive Closure)
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Datalog

� Example: Paths of Even and Odd Length

Consider the Datalog program:

ODD(x,y)  :- E(x,y)

ODD(x,y)  :- E(x,z), EVEN(z,y)

EVEN(x,y) :- E(x,z), ODD(z,y).

� E is the EDB predicate

� EVEN and ODD are the IDB predicates.

� So, a Datalog program may have several different IDB predicates 
(and it may have several different EDB predicates as well).

� This program gives a recursive specification of the IDB predicates 
EVEN and ODD in terms of the EDB predicate E.

� This is a Datalog program expressing mutual recursion.
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Conjunctive Queries vs. Datalog

� As we have seen, conjunctive queries can be written as rules:

T(x1,…,xk) :-- R1(u1), …, Rn(un).

� In such a rule, the relation symbol in the head does not occur
in the body of the rule.

� Datalog programs are finite sets of rules.

� In a Datalog program, however, a relation symbols occurring in 
the heads of a rule:

� may also occur in the body of the same rule

T(x,y) :- E(x,z), T(z,y)

� or, it may occur in the body of another rule in the program

ODD(x,y)  :- E(x,z), EVEN(z,y)

EVEN(x,y) :- E(x,z), ODD(z,y).
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Datalog Semantics

� Question: What is the precise semantics of a Datalog program?

� Answer: Datalog programs can be given two different types of 
semantics.

� Declarative Semantics (denotational semantics)

� Smallest solutions of recursive specifications.

� Least fixed-points  of monotone operators.

� Procedural Semantics (operational semantics)

� An iterative process for computing the “meaning” of Datalog
programs.

� Main Result: The declarative semantics coincides with the 
procedural semantics.
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Declarative Semantics of Datalog Programs

Motivation: 

� Recall the recursive definition of the factorial function f(n) = n!

f(0) = 1

f(n+1) = (n+1)�f(n)

� These two equations give a recursive specification of the factorial 
function f(n) = n!

� The factorial function is the only function on the integers that
satisfies this specification.

� Similarly, recall the recursive definition of g(x,y) = xy

g(x,0)= 1

g(x,y+1)= x�g(x,y) 

� The exponential function g(x,y) = xy is the only function on the 
integers that satisfies this specification.
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Declarative Semantics of Datalog Programs

� Each Datalog program can be viewed as a recursive specification of 
its IDB predicates.

� This specification is expressed using relational algebra operators

� The body of each rule uses π, σ, and cartesian product ×

� All rules having the same predicate in the head are combined 
using union.

� The recursive specification is given by equations involving

unions of conjunctive queries.

� Example: T(x,y) :- E(x,y)

T(x,y):- T(x,z), T(z,y)

� Recursive equation:

T  =  E ∪ π1,4(σ$2=$3 (T×T))
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Declarative Semantics of Datalog Programs

Example: Consider the Datalog program:

ODD(x,y)  :- E(x,y)

ODD(x,y)  :- E(x,z), EVEN(z,y)

EVEN(x,y) :- E(x,z), ODD(z,y).

� System of recursive equations:

ODD = E ∪ π1,4(σ$2=$3 (E×EVEN))

EVEN = π1,4(σ$2=$3 (E×ODD)).
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Declarative Semantics of Datalog Programs

� Unlike the recursive equations for the factorial and the exponential 

function, recursive equations arising from Datalog programs

need not have a unique solution.

� Example: Consider the recursive equation:

T  =  E ∪ π1,4(σ$2=$3 (T×T))

Let E = { (1,2), (2,3) }.

Then both T1 and T2 satisfy this recursive equation, where

� T1 = { (1,2), (2,3), (1,3) } 

� T2 = { (1,2),(2,1),(2,3),(3,2),(1,3),(3,2),(1,1),(2,2),(3,3) }.

Furthermore, this recursive equation has many other solutions.
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Declarative Semantics of Datalog Programs

� Theorem: Every recursive equation arising from a Datalog program 
has a smallest solution (smallest w.r.t. the ⊆ partial order).

� Example: Datalog program

T(x,y) :- E(x,y)

T(x,y):- T(x,z), T(z,y)

� Recursive equation:

T  =  E ∪ π1,4(σ$2=$3 (T×T))

� The smallest solution of this recursive equation is the Transitive 
Closure of E.

� Note: This is a special case of the Knaster-Tarski Theorem for 
smallest solutions of recursive equations arising from monotone 
operators (it is important that Datalog uses monotone relational 
algebra operators only).
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Declarative Semantics of Datalog Programs

� Theorem: Every recursive equation arising from a Datalog program 
has a smallest solution (smallest w.r.t. the ⊆ partial order).

� Definition: The (declarative) semantics of a Datalog program is the 
smallest solution of the system of recursive equations arising from 
the Datalog program.

� Note: 

� If the Datalog program has more than one IDBs, then we get a 
system of recursive equations, instead of single one.

� Question:

� What does “smallest solution of a system” mean in this case?
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Declarative Semantics of Datalog Programs

Example: Consider again the Datalog program:

ODD(x,y)  :- E(x,y)

ODD(x,y)  :- E(x,z), EVEN(z,y)

EVEN(x,y) :- E(x,z), ODD(z,y).

� System of recursive equations:

ODD = E ∪ π1,4(σ$2=$3 (E×EVEN))

EVEN = π1,4(σ$2=$3 (E×ODD)).

� The smallest solution of this system is a pair of relations (P,Q) 
such that

1. (P,Q) satisfies this system (e.g., Q = π1,4(σ$2=$3(E×Q))).

2. If a pair (P’,Q’) satisfies this system, then P ⊆ P’ and Q⊆ Q’.
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Declarative Semantics of Datalog Programs

� Question: 

� How difficult is it to compute the declarative semantics of 
Datalog programs?

� In other words, what is the computational complexity of  the 
query evaluation problem for Datalog queries?

� Note: On the face of their definition, the declarative semantics of 
Datalog programs do not give rise to an algorithm for computing 
this semantics.
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Procedural Semantics of Datalog Programs

Definition: Let π be a Datalog program.  The procedural semantics of π

are obtained by the following bottom-up evaluation of the recursive 

predicates (IDBs) of π:

1. Set all IDBs of π to ∅.

2. Apply all rules of π in parallel; update the IDBs by evaluating the 
bodies of the rules.

3. Repeat until no IDB predicate changes.

4. Return the values of the IDB predicates obtained at the end of 
Step 3.
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Procedural Semantics of Datalog Programs

Example: Datalog program for Transitive Closure

T(x,y) :- E(x,y)

T(x,y):- E(x,z),T(z,y)

� Bottom-up evaluation:

T0 = ∅

Tn+1 = {(a,b): E(a,b) Ç ∃ z(E(a,z) Æ Tn(z,b))}

Fact: The following statements are true:

� Tn ={ (a,b): there is a path of length at most n from a to b }

� Transitive Closure of E =  ∪ n ≥ 1T
n.

Proof: By induction on n. 
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Procedural Semantics of Datalog Programs

Example: Another Datalog program for Transitive Closure

T(x,y) :- E(x,y)

T(x,y):- T(x,z),T(z,y)

� Bottom-up evaluation:

T0 = ∅

Tn+1 = {(a,b): E(a,b) Ç ∃ z(Tn(a,z) Æ Tn(z,b))}

Fact: The following statements are true:

� Tn ={ (a,b): there is a path of length at most 2n from a to b }

� Transitive Closure of E =  ∪ n ≥ 1T
n.

Proof: By induction on n. 
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Procedural Semantics of Datalog Programs

Example: Consider the Datalog program 
ODD(x,y)   :- E(x,y)
ODD(x,y)   :- E(x,z), EVEN(z,y)
EVEN(x,y)  :- E(x,z), ODD(z,y)

� Bottom-up evaluation:
ODD0 =  ∅
EVEN0  =  ∅
ODDn+1 = {(a,b): E(a,b) Ç ∃ z(E(a,z) Æ EVENn(z,b))}
EVENn+1 = {(a,b):  ∃ z(E(a,z) Æ ODDn(z,b))}

Fact: The following statements are true:
� ∪ n ≥ 1 ODDn = { (a,b): there is a path of odd length from a to b }
� ∪ n ≥ 1  EVENn = { (a,b): there is a path of even length from a to b }.

Proof: By induction on n. 
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Declarative vs. Procedural Datalog Semantics

Theorem: Let π be a Datalog program. Then the following are true:

� The bottom-up evaluation of the procedural semantics of π
terminates within a number of steps bounded by a polynomial in 
the size of the database instance (= size of the EDB predicates).

� The declarative semantics of π coincides with the procedural 
semantics of π.

Proof: For simplicity, assume that π has a single IDB T of arity k.

� By induction on n, show that Tn ⊆ Tn+1, for every n.

(this uses the monotonicity of unions of conjunctive queries).

� Hence, T0 ⊆ T1 ⊆ … ⊆ Tn ⊆ Tn+1 ⊆ …

� Since each Tn ⊆ adom(I)k, there is an m ≤ |adom(I)|k such that 
Tm = Tm+1.
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Declarative vs. Procedural Datalog Semantics

Theorem: Let π be a Datalog program. Then the following are true:

� The bottom-up evaluation of the procedural semantics of π
terminates within a number of steps bounded by a polynomial in 
the size of the database instance (= size of the EDB predicates).

� The declarative semantics of π coincides with the procedural 
semantics of π.

Proof: For simplicity, assume that π has a single IDB T of arity k.

� Since Tm = Tm+1, we have that the procedural semantics 
produces a solution to the recursive equation arising from π.

� By induction on n, show that if T* is another solution of this 
recursive equation, then Tn ⊆ T*, for all n 

(use the monotonicity of unions of conjunctive queries again).

� In particular, Tm ⊆ T*, hence Tm is the smallest solution of this 
recursive equation.
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The Query Evaluation Problem for Datalog

Theorem: Let π be a Datalog program. There is a polynomial-time 

algorithm such that, given a database instance I, it evaluates π on I 

(i.e., it computes the semantics of π on I).

Proof: The bottom-up evaluation of the procedural semantics of π runs

in polynomial time because:

� The number of iterations is bounded by a polynomial in the size 
of I.

� Each step of the iteration can be carried out in polynomial time

(why?).

Corollary: The data complexity of Datalog is in P.
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The Query Evaluation Problem for Datalog

Corollary: The data complexity of Datalog is in P.

Theorem: The combined complexity of Datalog is EXPTIME-complete.

Note:

� P ⊆ NP ⊆ PSPACE ⊆ EXPTIME.

� Moreover, it is known that P is properly contained in EXPTIME.

� Thus, Datalog has higher combined complexity than relational 
calculus (since the combined complexity of relational calculus is 
PSPACE-complete).
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Some Interesting Datalog Programs

Example: Non 2-Colorability can be expressed by a Datalog program.

Fact: A graph E is 2-colorable if and only if it does not contain a cycle 

of odd length.

Datalog program for Non 2-Colorability:

ODD(x,y)    :-- E(x,y)

ODD(x,y)    :-- E(x,z), EVEN(z,y)               

EVEN(x,y)   :-- E(x,z), ODD(z,y).

Q              :-- ODD(x,x)   

Sanity check: Can you find a Datalog program for Non 3-Colorability?
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Some Interesting Datalog Programs

Example: Path Systems Problem

T(x) :-- A(x)

T(x) :-- R(x,y,z), T(y), T(z)

Theorem: S. Cook – 1974 

Evaluating this Datalog program is a P-complete problem

(via logspace-reductions).

Note:

� Path Systems was the first problem shown to be P-complete.

� In particular, it is highly unlikely that Path Systems is in NLOGSPACE 
or in LOGSPACE.

� In this sense, Datalog has higher data complexity than relational 
calculus.
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Procedural Semantics of Datalog Programs

� On the face of it, the bottom-up evaluation of Datalog programs is 
an infinite process, since it gives rise to an infinite sequence of 
“stages” T0, T1, …,Tn, …

� Question: Does this infinite sequence converge?

� It will turn out that, for every Datalog program π and for every 
database instance I, the bottom-up evaluation of π on I terminates 
within a number of steps that is bounded by some polynomial in the 
size of I, i.e., there is some m such that 

Tm = Tm+1. 

Moreover, the smallest such m is bounded by some polynomial in 
the size of I.
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Declarative vs. Procedural Datalog Semantics

Theorem: Let π be a Datalog program. Then the following are true:

� On every database instance I, the bottom-up evaluation of the 
procedural semantics of π terminates within a number of steps 
bounded by a polynomial in the size of I.

� The declarative semantics of π coincides with the procedural 
semantics of π.

Proof: For simplicity, assume that π has a single IDB T of arity k.

� By induction on n, show that Tn ⊆ Tn+1, for every n.

(this uses the monotonicity of unions of conjunctive queries).

� Hence, T0 ⊆ T1 ⊆ … ⊆ Tn ⊆ Tn+1 ⊆ …

� Since each Tn ⊆ adom(I)k, there is an m ≤ |adom(I)|k such that 
Tm = Tm+1.
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Declarative vs. Procedural Datalog Semantics

Theorem: Let π be a Datalog program. Then the following are true:

� The bottom-up evaluation of the procedural semantics of π
terminates within a number of steps bounded by a polynomial in 
the size of the database instance (= size of the EDB predicates).

� The declarative semantics of π coincides with the procedural 
semantics of π.

Proof: For simplicity, assume that π has a single IDB T of arity k.

� Since Tm = Tm+1, we have that the procedural semantics 
produces a solution to the recursive equation arising from π.

� By induction on n, show that if T* is another solution of this 
recursive equation, then Tn ⊆ T*, for all n 

(use the monotonicity of unions of conjunctive queries again).

� In particular, Tm ⊆ T*, hence Tm is the smallest solution of this 
recursive equation.
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The Query Evaluation Problem for Datalog

Theorem: Let π be a Datalog program. There is a polynomial-time 

algorithm such that, given a database instance I, it evaluates π on I 

(i.e., it computes the semantics of π on I).

Proof: The bottom-up evaluation of the procedural semantics of π runs

in polynomial time because:

� The number of iterations is bounded by a polynomial in the size 
of I.

� Each step of the iteration can be carried out in polynomial time

(why?).

Corollary: The data complexity of Datalog is in P.
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The Query Evaluation Problem for Datalog

Corollary: The data complexity of Datalog is in P.

Theorem: The combined complexity of Datalog is EXPTIME-complete.

Note:

� P ⊆ NP ⊆ PSPACE ⊆ EXPTIME.

� Moreover, it is known that P is properly contained in EXPTIME.

� Thus, Datalog has higher combined complexity than relational 
calculus (since the combined complexity of relational calculus is 
PSPACE-complete).



241

Some Interesting Datalog Programs

Example: Non 2-Colorability can be expressed by a Datalog program.

Fact: A graph E is 2-colorable if and only if it does not contain a cycle 

of odd length.

Datalog program for Non 2-Colorability:

ODD(x,y)    :-- E(x,y)

ODD(x,y)    :-- E(x,z), EVEN(z,y)               

EVEN(x,y)   :-- E(x,z), ODD(z,y).

Q              :-- ODD(x,x)   

Sanity check: Can you find a Datalog program for Non 3-Colorability?
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Some Interesting Datalog Programs

Example: Path Systems Problem

T(x) :- A(x)

T(x) :- R(x,y,z), T(y), T(z)

Theorem: S. Cook – 1974 

Evaluating this Datalog program is a P-complete problem

(via logspace-reductions).

Note:

� Path Systems was the first problem shown to be P-complete.

� In particular, it is highly unlikely that Path Systems is in NLOGSPACE 
or in LOGSPACE.

� In this sense, Datalog has higher data complexity than relational 
calculus.
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Linear Datalog

� Definition: A Datalog program is linear if the body of each rule 
contains at most one atomic formula involving an IDB predicate.

� Example: Linear Datalog Program for  Transitive Closure

T(x,y) :- E(x,y)

T(x,y) :- E(x,z), T(z,y)

� Example: Non-linear Datalog program for Transitive Closure

T(x,y) :- E(x,y)

T(x,y) :- T(x,z), T(z,y)
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Linear Datalog

Example: Give a linear Datalog program that computes the binary 
query COUSIN from the binary relation schema PARENT

SIBLING(x,y)  :- PARENT(z,x), PARENT(z,y)
COUSIN(x,y)   :- PARENT(z,x), PARENT(w,y), SIBLING(z,w)
COUSIN(x,y)   :- PARENT(z,x), PARENT(w,y), COUSIN(z,w). 

Fact: COUSIN(Barack Obama, Dick Chenney) 
Actually,  COUSIN8(Barack Obama, Dick Chenney)

http://www.msnbc.msn.com/id/21340764/

Fact: COUSIN(Sarah Palin, Princess Diana). 
Actually, COUSIN10(Sarah Palin, Princess Diana)

http://www.dailymail.co.uk/news/worldnews/article-1073249/Sarah-Palin-
Princess-Diana-cousins-genealogists-reveal.html
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Linear Datalog

� Definition: A Datalog program π is linearizable if there is a linear 
Datalog program π* that is equivalent to π.

� Example: The following Datalog program is linearizable:

T(x,y) :- E(x,y)

T(x,y) :- T(x,z), T(z,y)

� Example: The following Datalog program is not linearizable:

T(x) :- A(x)

T(x) :- R(x,y,z), T(y), T(z)

(the proof of this fact is non-trivial).
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Datalog and SQL

� SQL:99 and subsequent versions of the SQL standard provide 
support for linear Datalog programs (but not for non-linear ones)

� Syntax:  

WITH RECURSIVE T AS 

<Datalog program for T> 

<query involving T>

� Semantics:

� Compute T as the semantics of <Datalog program for T>

� The result of the previous step is a temporary relation that is 
then used, together with other EDBS,  as if it were a stored 
relation (an EDB) in <query involving T>.
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Datalog and SQL

Example: Give an SQL query for ANCESTOR (using PARENT as EDB)

WITH RECURSIVE ANCESTOR(anc,desc)

(SELECT parent, child

FROM    PARENT

UNION

SELECT PARENT.parent, ANCESTOR.desc

FROM   PARENT, ANCESTOR

WHERE PARENT.child = ANCESTOR.anc)

SELECT * FROM ANCESTOR
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Datalog and SQL

Example: Give an SQL query that computes all descendants of Noah

WITH RECURSIVE ANCESTOR(anc,desc)

(SELECT parent, child

FROM    PARENT

UNION

SELECT ANCESTOR.anc, PARENT.child

FROM   PARENT, ANCESTOR

WHERE PARENT.child = ANCESTOR.anc)

SELECT desc FROM ANCESTOR

WHERE anc = ‘Noah’
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Datalog and SQL

� Linear Datalog programs with mutiple IDBs are supported in SQL:99

� Syntax:

WITH RECURSIVE R, S, T, … AS 

<Datalog program for R, S, T, …> 

<query involving R, S, T, … >

� Semantics:

� Compute R, S, T, … as the semantics of 

<Datalog program for R, S, T, …>

� The result of the previous step are temporary relation that are 
then used, together with other EDBS,  as if they were stored 
relation (EDBs) in <query involving R, S, T, …>.



250

Datalog(≠)

� Definition: Datalog(≠)

� Datalog(≠) is the extension of Datalog in which the body of a 
rule may contain also ≠.

� Declarative and Procedural Semantics of Datalog(≠) are similar 
to those of Datalog.

� Example: w-AVOIDING PATH

Given a graph E and three nodes x,y, and w, is there a path from x 
to y that does not contain w?

T(x,y,w) :- E(x,y), x ≠ w, y ≠ w

T(x,y,w) :- E(x,z), T(z,y,w), x ≠ w.



251

Datalog with Negation

� Question: What if we allow negation in the bodies of Datalog rules?

� Examples:

� T(x) :- ¬ T(x)    

(the recursive specification has no solutions!)

� S(x) :- E(x,y), ¬ S(y)

� Note: Several different semantics for Datalog programs with 
negation have been proposed over the years (see Ch. 15 of AHV):

� Stratified datalog programs

� Well-founded semantics

� Inflationary semantics 

� Stable model semantics 

� …



252

Query Equivalence and Containment for Datalog

� Note: Recall that the following are known about the Query 
Evaluation Problem for Datalog queries:

� The data complexity of Datalog is in P.

� The combined complexity of Datalog is EXPTIME-complete.

� Questions:

� What about the Query Equivalence Problem for Datalog:

Given two Datalog programs π and π’, is π equivalent to π’?

(do they return the same answer on every database instance?)

� What about the Query Containment Problem for Datalog:

Given two Datalog programs π and π’, is π ⊆ π’?

(is π(I) ⊆ π’(I), on every database instance I?)
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Query Equivalence and Containment for Datalog

Theorem: O. Shmueli – 1987

� The query equivalence problem for Datalog queries is undecidable. 
In fact, it is undecidable even for Datalog queries with a single IDB.

� Consequently, the query containment problem for Datalog queries is 
undecidable.

Hint of Proof:

� Reduction from Context-Free Grammar Equivalence:

Given two context-free grammars G and G’, is L(G) = L(G’)?

For more on this topic, read Chapter 12 of AHV.
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The Complexity of Database Query Language

UndecidableNP-completeNP-completeUndecidableQuery 
Containment

UndecidableNP-completeNP-completeUndecidableQuery 
Equivalence

P-completeIn LOGSPACE 
(hence, in P)

In LOGSPACE 
(hence, in P)

In LOGSPACE 
(hence, in P)

Query Eval.:

Data 
Complexity

EXPTIME-
complete

NP-completeNP-completePSPACE-
complete

Query Eval.: 
Combined 
Complexity

Datalog

Queries

Unions of 
Conjunctive 
Queries

Conjunctive 
Queries

Relational 
Calculus



Composing Schema Mappings:
An Overview

� This topic complements the topics on data integration and data 
exchange presented in the course by Maurizio Lenzerini.

� It is joint work with Ronald Fagin, Lucian Popa, and Wang-
Chiew Tan.
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Theoretical Aspects of Data Interoperability

The research community has studied two different, but 

closely related, facets of data interoperability:

� Data Integration (aka Data Federation)

� Formalized and studied for the past 10-15 years

� Data Exchange  (aka Data Translation)

� Formalized and studied for the past 5-6 years
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Data Integration

Query heterogeneous data in different sources via a virtual 

global schema

I1

Global

Schema
I2

I3 Sources

query

S1

S2

S3

T

Q
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Data Exchange

Transform data structured under a source schema into data 
structured under a different target schema.

S T

Σ

I
J

Source Schema Target Schema
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Schema Mappings

� Schema mappings:

High-level, declarative assertions that specify  the relationship 
between two database schemas.

� Schema mappings constitute the essential building blocks in 
formalizing and studying data interoperability tasks, including data 
integration and data exchange.

� Schema mappings make it possible to separate the design of the 
relationship between schemas from its implementation. 

� Are easier to generate and manage (semi)-automatically;

� Can be compiled into SQL/XSLT scripts automatically.
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Schema Mappings

Source  S Target  T

� Schema Mapping M = (S, T, Σ)

� Source schema  S, Target schema T

� High-level, declarative assertions Σ that specify the 
relationship between S and T. 

� Question: What is a “good” schema-mapping specification 
language?

Σ
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Schema-Mapping Specification Languages

� Obvious Idea:

Use a logic-based language to specify schema mappings.  

In particular, use first-order logic. 

� Warning:

Unrestricted use of first-order logic as a schema-mapping specification 
language gives rise to undecidability of basic algorithmic problems about 
schema mappings.
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Schema Mapping Specification Languages

Let us consider some simple tasks that every schema-mapping specification 

language should support:

� Copy (Nicknaming):

� Copy each source table to a target table and rename it.

� Projection:

� Form a target table by projecting on one or more columns of a source table.

� Column Augmentation:

� Form a target table by adding one or more columns to a source table.

� Decomposition:

� Decompose a source table into two or more target tables.

� Join:

� Form a target table by joining two or more source tables.

� Combinations of the above (e.g., “join + column augmentation + …”)
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Schema Mapping Specification Languages

� Copy (Nicknaming):

� ∀x1, …,xn(P(x1,…,xn) → R(x1,…,xn))

� Projection:

� ∀x,y,z(P(x,y,z) → R(x,y))

� Column Augmentation:

� ∀x,y (P(x,y) → ∃ z R(x,y,z))

� Decomposition:

� ∀x,y,z (P(x,y,z) → R(x,y)Æ T(y,z))

� Join:

� ∀x,y,z(E(x,z)ÆF(z,y) → R(x,y,z))

� Combinations of the above (e.g., “join + column augmentation + …”)

� ∀x,y,z(E(x,z)Æ F(z,y) → ∃ w (R(x,y) Æ T(x,y,z,w)))
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Schema Mapping Specification Languages

� Question: What do all these tasks (copy, projection, column 
augmentation, decomposition, join) have in common?

� Answer:

� They can be specified using

tuple-generating dependencies (tgds).

� In fact, they can be specified using a special class of 

tuple-generating dependencies known as 

source-to-target tuple generating dependencies (s-t tgds).
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Database Integrity Constraints

� Dependency Theory: extensive study of integrity constraints in relational 
databases in the 1970s and 1980s

(Codd, Fagin, Beeri, Vardi …)

� Tuple-generating dependencies (tgds) emerged as an important class of 
constraints with a balance between high expressive power and good 
algorithmic properties. Tgds are expressions of the form

∀ x (ϕ(x) → ∃ y ψ(x, y )), where

ϕ(x), ψ(x, y ) are conjunctions of atomic formulas.

Special Cases: 

� Inclusion Dependencies

� Multivalued Dependencies



266

Schema Mapping Specification Language

The relationship between source and target is given by

source-to-target tuple generating dependencies (s-t tgds)

∀x (ϕ(x) → ∃y ψ(x, y)), where

� ϕ(x)     is a conjunction of atoms over the source; 

� ψ(x, y) is a conjunction of atoms over the target. 

� s-t tgds assert that: some conjunctive query over the source is contained in 
some other conjunctive query over the target.

Example: (dropping the universal quantifiers in the front)

(Student (s) ∧ Enrolls(s,c)) → ∃t ∃g (Teaches(t,c) ∧ Grade(s,c,g))
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Schema Mapping Specification Language

Fact: s-t tgds generalize the main specifications used in data integration:

� They generalize LAV (local-as-view) specifications:

P(x)  → ∃y ψ(x, y), where P is a source schema.

� E(x,y) → ∃ z (H(x,z)Æ H(z,y))  (LAV constraint)

Note: Copy, projection, and decomposition are LAV s-t tgds.

� They generalize GAV (global-as-view) specifications:

ϕ(x)  → R(x),  where R is a target relation

(they are equivalent to full tgds:   ϕ(x)  → ψ(x), 

where ϕ(x) and ψ(x) are  conjunctions of atoms).

� E(x,y) Æ E(y,z) → F(x,z)        (GAV (full) constraint)

Note: Copy, projection, and join are GAV s-t tgds.
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Schema Mappings & Data Exchange

Source  S Target  T

� Data Exchange via the schema mapping M = (S, T, Σ)

Given a source instance I, construct a target instance J, so that 
(I, J) satisfy the specifications Σ of M.

Such a J is called a solution for I.

� Difficulty:

� Usually, there are multiple solutions

� Which one is the “best” to materialize?

I
J

Σ
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Data Exchange & Universal solutions

Fagin, K …, Miller, Popa:

Identified and studied the concept of a universal solution for 

schema mappings specified by s-t tgds

� A universal solutions is a most general solution.

� A universal solution “represents” the entire space of solutions.

� A “canonical” universal solution can be generated efficiently using 
the chase procedure.

� A universal solution can be used to compute the certain answers 
of conjunctive queries over the target schema.
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Managing Schema Mappings

� Schema mappings can be quite complex.

� Methods and tools are needed to automate or semi-automate 
schema-mapping management.

� Metadata Management Framework – Bernstein 2003

based on generic schema-mapping operators:

� Match operator

� Merge operator

� …

� Composition operator

� Inverse operator
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Composing Schema Mappings

� Given M12 = (S1, S2, Σ12) and M23 = (S2, S3, Σ23), derive a 

schema mapping M13 = (S1, S3, Σ13) that is “equivalent” to the 

sequential application of M12 and M23.

� M13 is a composition of M12 and M23

M13 = M12 ◦ M23

Schema  S1 Schema  S2 Schema  S3

M12 M23

M13
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Composing Schema Mappings

� Given ΜΜΜΜ12 = (S1, S2, Σ12) and ΜΜΜΜ23 = (S2, S3, Σ23), derive a 

schema mapping ΜΜΜΜ13 = (S1, S3, Σ13) that is “equivalent” to the 

sequence ΜΜΜΜ12 and ΜΜΜΜ23.

Schema  S1 Schema  S2 Schema  S3

ΜΜΜΜ12 ΜΜΜΜ23

ΜΜΜΜ13

What does it mean for ΜΜΜΜ13 to be “equivalent” to the 
composition of ΜΜΜΜ12 and ΜΜΜΜ23?
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Earlier Work

� Metadata Model Management (Bernstein in CIDR 2003)

� Composition is one of the fundamental operators

� However, no precise semantics is given

� Composing Mappings among Data Sources

(Madhavan & Halevy in VLDB 2003)

� First to propose a semantics for composition

� However, their definition is in terms of maintaining the same 
certain answers relative to a class of queries. 

� Their notion of composition depends on the class of queries; it 
may not be unique up to logical equivalence. 
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Semantics of Composition

� Every schema mapping M = (S, T, Σ) defines a binary relationship Inst(M) between 

instances:

Inst(M) = { (I,J) |  (I,J) ~ Σ }.

In fact, from a semantic point of view, a schema mapping M can be

identified with the set Inst(M). 

� Definition: (FKPT)

A schema mapping M13 is a composition of M12 and M23 if 

Inst(M13) = Inst(M12) ° Inst(M23),  that is,

(I1,I3)  ~ Σ13

if and only if 

there exists I2 such that  (I1,I2)  ~ Σ12 and  (I2,I3)  ~ Σ23.
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The Composition of  Schema Mappings

Fact: If  both ΜΜΜΜ = (S1, S3, Σ) and ΜΜΜΜ’ = (S1, S3, Σ’) are     

compositions of ΜΜΜΜ12 and ΜΜΜΜ23, then Σ are Σ’ are logically equivalent. 

For this reason:

� We say that  ΜΜΜΜ (or ΜΜΜΜ’) is the composition of ΜΜΜΜ12 and ΜΜΜΜ23.

� We write ΜΜΜΜ12 ° ΜΜΜΜ23 to denote it
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Issues in Composition of Schema Mappings

� The semantics of composition was the first main issue.

� The second main issue is the language of the composition.

� Is the language of s-t tgds closed under composition?  

If ΜΜΜΜ12 and ΜΜΜΜ23 are specified by finite sets of s-t tgds, is  

ΜΜΜΜ12 ° ΜΜΜΜ23 also specified by a finite set of s-t tgds? 

� If not, what is the “right” language for composing schema 
mappings?
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Inexpressibility of Composition

Theorem:  

� The language of s-t tgds is not closed under composition.

� In fact, there are schema mappings ΜΜΜΜ12 and ΜΜΜΜ23 specified by s-t
tgds such that their composition ΜΜΜΜ12 ◦ ΜΜΜΜ23 is not expressible in 
least fixed-point logic LFP;  hence, it is expressible neither in first-
order logic nor in Datalog.



278

Lower Bounds for Composition

� ΜΜΜΜ12 :
∀x∀y (E(x,y) → ∃u∃v (C(x,u) ∧ C(y,v)))
∀x∀y (E(x,y) → F(x,y))

� ΜΜΜΜ23  :
∀x∀y∀u∀v (C(x,u) ∧ C(y,v) ∧ F(x,y) → D(u,v))

� Given graph G=(V, E):
� Let I1 = E
� Let I3 = { (r,g), (g,r), (b,r), (r,b), (g,b), (b,g) } 

Fact:

G is 3-colorable iff <I1, I3> ∈ Inst(ΜΜΜΜ12) ° Inst(ΜΜΜΜ23)

� Theorem (Dawar – 1998):
3-Colorability is not expressible in LFP
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Complexity of Composition

Definition: The model checking problem for a schema mapping

M = (S, T, Σ) asks: given a source instanced I and a target 

instance J, does <I,J> � Σ ? 

Fact: If a schema mapping M is specified by s-t tgds, then the

model checking problem for M is in LOGSPACE.

Fact: There are schema mappings ΜΜΜΜ12 and ΜΜΜΜ23 specified by s-t

tgds such that the model checking problem for their composition

ΜΜΜΜ12 ◦ ΜΜΜΜ23 is NP-complete.
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Employee Example

� Σ12 :

� Emp(e) → ∃m Rep(e,m) 

� Σ23 :

� Rep(e,m) → Mgr(e,m) 

� Rep(e,e) → SelfMgr(e) 

� Theorem: This composition is not definable by any set 

(finite or infinite) of s-t tgds.

� Fact:  This composition is definable in a well-behaved fragment of 
second-order logic, called SO tgds, that extends s-t tgds with 
Skolem functions.

Emp
e

Rep
e 
m

Mgr
e
m

SelfMgr
e
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Employee Example - revisited

Σ12 :

� ∀e ( Emp(e) → ∃m Rep(e,m) )

Σ23 :

� ∀e∀m( Rep(e,m) → Mgr(e,m) )

� ∀e ( Rep(e,e) → SelfMgr(e) )

Fact: The composition is definable by the SO-tgd

Σ13 :

� ∃f (∀e( Emp(e) → Mgr(e,f(e) ) ∧
∀e( Emp(e) ∧ (e=f(e)) → SelfMgr(e) ) )
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Second-Order Tgds

Definition: Let S be a source schema and T a target schema.

A second-order tuple-generating dependency (SO tgd) is a formula 
of the form:

∃f1 … ∃fm( (∀x1(φ1 → ψ1)) ∧ … ∧ (∀xn(φn → ψn)) ), where

� Each fi is a function symbol.

� Each φi is a conjunction of atoms from S and equalities of terms.

� Each ψi is a conjunction of atoms from T.

Example:   ∃f (∀e( Emp(e) → Mgr(e,f(e) ) ∧

∀e( Emp(e) ∧ (e=f(e)) → SelfMgr(e) ) )
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Composing SO-Tgds and Data Exchange

Theorem (FKPT):

� The composition of two SO-tgds is definable by a SO-tgd.

� There is an algorithm for composing SO-tgds.

� The chase procedure can be extended to SO-tgds; 

it produces universal solutions in polynomial time.

� Every SO tgd is the composition of finitely many finite sets of s-t
tgds. Hence, SO tgds are the “right” language for the composition 
of s-t tgds
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When is the composition FO-definable?

Fact: 

� It is an undecidable problem to tell whether the composition of two 
schema mappings specified by s-t tgds is first-order definable.

� However, there are certain sufficient conditions that guarantee that 
the composition is first-order definable.

� If ΜΜΜΜ12 is specified by GAV (full) s-t tgds and ΜΜΜΜ23 is specified by s-
t tgds, then their composition is definable by s-t tgds. 

� Arocena, Fuxman, Miller: If both ΜΜΜΜ12 and  ΜΜΜΜ23 are specified by 
LAV s-t tgds with distinct variables, then their composition is 
specified by LAV s-t tgds.
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Synopsis of Schema Mapping Composition

� s-t tgds are not closed under composition.

� SO-tgds form a well-behaved fragment of second-order logic.

� SO-tgds are closed under composition; they are

the “right” language for composing s-t tgds.

� SO-tgds are “chasable”:

Polynomial-time data exchange with universal solutions.

� SO-tgds and the composition algorithm have been incorporated in 
Clio’s Mapping Specification Language (MSL). 
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Related Work and Open Problems

Related Work:

� Composing richer schema mappings

Nash, Bernstein, Melnik – 2007

� Composing Schema Mappings in Open & Closed Worlds

Libkin and Sirangelo – 2008

� XML Schema Mappings

Amano, Libkin, Murlak – 2009

Open Problems:

� Composition of schema mappings specified by s-t tgds and target 
constraints (target tgds and target egds).

� Composition of schema mappings specified by richer source-to-target 
dependencies.
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“The notion of composition of maps leads to the 
most natural account of fundamental notions of 
mathematics, from multiplication, addition, and 
exponentiation, through the basic notions of logic." 

"Conceptual Mathematics" 
by 

Lawevere and Schanuel


