Lie Algebras from Commutative Differential Algebras

Jean-Baptiste Vienney

Abstract

We present a construction of a Lie algebra from any commutative differential algebra, generalizing the Witt algebra in positive characteristic. To the best of our knowledge, this result has not been previously documented in the literature.

1 Introduction

The Witt algebra $W(1;\underline{1})$ over a field of characteristic p > 0 is defined as $k[X]/\langle X^p \rangle$ with bracket

$$[f + \langle X^p \rangle, g + \langle X^p \rangle] = f \frac{d}{dX}(g) - g \frac{d}{dX}(f) + \langle X^p \rangle.$$

where $f, g \in k[X]$ and $\frac{d}{dX}$ denotes differentiation. This paper generalizes the Witt algebra by constructing Lie algebras from commutative differential algebras over any field, regardless of characteristic.

2 Main Result

Proposition 2.1. Let (R, D) be a commutative differential algebra over a field k, where $D : R \to R$ is a k-linear derivation. Define a bracket [x, y] = xD(y) - yD(x) for $x, y \in R$. Then (R, [-, -]) is a Lie algebra over k.

Proof. Bilinearity, antisymmetry and the Jacobi identity can be verified by direct computation.

3 Examples

Example 3.1. Let k be a field. The usual derivative $\frac{d}{dX}$ on k[X] defines a Lie algebra with bracket

$$[f,g] = f \frac{d}{dX}(g) - g \frac{d}{dX}(f).$$

Example 3.2. If k is a field of characteristic p > 0, then $\frac{d}{dX}$ on $k[X]/\langle X^p \rangle$ induces a Lie algebra with bracket

$$[f + \langle X^p \rangle, g + \langle X^p \rangle] = f \frac{d}{dX}(g) - g \frac{d}{dX}(f) + \langle X^p \rangle.$$

recovering the Witt algebra.

Note that the well-definedness of $\frac{d}{dX}$ on $k[X]/\langle X^p \rangle$ is a consequence of char k = p.

References

 H. Strade, Simple Lie Algebras over Fields of Positive Characteristic. I. Structure Theory, de Gruyter, 2004.