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Algebras

Definitions (Alg(Σ))
A signature Σ is a set of operation symbols, each with an arity, we write op : n ∈ Σ
for an operation of arity n ∈ N belonging to Σ.

The signature functor is:

Σ : Set → Set = X 7→ ⨿
op:n∈Σ

Xn.

A Σ-algebra is a function Σ(A) → A, i.e. an interpretation JopKA : An → A for
every op : n ∈ Σ. A homomorphism is a function h : A → B such that

Σ(A) Σ(B)

A B

Σ(h)

J−KA J−KB

h

Equivently, h preserves the operations:

h(JopKA(a1, . . . , an)) = JopKB(h(a1), . . . , h(an)).
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Terms

Definition
The set of Σ-terms over a set X is defined inductively:

x ∈ X
x ∈ TΣX

t1 ∈ TΣX · · · tn ∈ TΣX
op(t1, . . . , tn) ∈ TΣX

With the evident syntactical interpretation of operations, TΣX is the free Σ-algebra
on X.

Thus, for any assignment of variables ι : X → A, we get an interpretation of
any term in TΣX:

Σ(TΣX) Σ(A)

TΣX A

Σ(J−Kι
A)

α

J−Kι
A

It does the thing you want it to do:

∀x ∈ X, JxKι
A = ι(x)

∀t1, . . . , tn ∈ TΣX, op : n ∈ Σ, Jop(t1, . . . , tn)Kι
A = JopKA(Jt1Kι

A, . . . , JtnKι
A).
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Equations

Definition
An equation over a signature Σ is a triple comprising a set X of variables, and a
pair of terms s, t ∈ TΣX. We write X ⊢ s = t. We say an algebra (A, J−KA) satisfies
X ⊢ s = t if for all assignments ι : X → A, JsKι

A = JtKι
A.

Example
A semilattice is an algebra for ΣP = {⊕ : 2} satisfying the following equations:

x ⊢ x ⊕ x = x (idempotent)
x, y ⊢ x ⊕ y = y ⊕ x (commutative)

x, y, z ⊢ x ⊕ (y ⊕ z) = (x ⊕ y)⊕ z (associative)

Definition (Alg(Σ, E))
Given a set E of equations over Σ, Alg(Σ, E) is the full subcategory of Σ-algebras
that satisfy all of E. It is the variety generated by E.
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Free Algebras

Given (Σ, E), the free (Σ, E)-algebra over a set X is given by

TΣX/≡E,

where ≡E is the smallest congruence generated by E:

≡E = {(s, t) | X ⊢ s = t is satisfied by all A ∈ Alg(Σ, E)}.

This defines a monad TΣ,E : Set → Set.

Example
The free semilattice (i.e. idempotent, commutative, and associative ΣP -algebra) on
a set X is the non-empty finite powerset P(X) where ⊕ is interpreted as the union,
and there is a monad isomorphism TΣP ,EP

∼= P . We say (ΣP , EP ) is an algebraic
presentation of the monad P .
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Finitary Monads

The free (Σ, E)-algebra monad is always finitary, i.e. it preserves filtered colimits,
and (Σ, E)-algebras correspond to Eilenberg–Moore algebras for TΣ,E:

Alg(Σ, E) ∼= EM(TΣ,E).

Moreover, for any finitary monad M : Set → Set, you can:
▶ define the signature ΣM =

⋃
n∈N M(n),

▶ embed EM(M) as a full subcategory of Alg(ΣM) (using finitary assumption),
▶ show it is closed under homomorphic images, subalgebras, and products, and
▶ conclude, using Birkhoff’s variety theorem, that EM(M) ∼= Alg(ΣM, EM) for

some set of equations EM.1

After a bit more work, you obtain a dual equivalence between the category of
finitary monads and the category of finitary varieties.

1You can also construct EM explicitly, see [Man76, Theorem 5.40].
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Universal Quantitative Algebra

We replace Set with Met, the category of extended metric spaces2 and
nonexpansive maps.

Since Met is (co)complete, the signature functor could still
be used to define Σ-algebras. This enforces (the approach of [MPP16])

dA(JopKA(a1, . . . , an), JopKA(b1, . . . , bn)) ≤ sup
i

dA(ai, bi).

In particular, all unary operations are interpreted as contractions. Instead:

Definition
A quantitative Σ-algebra is a metric space (A, d) and a Σ-algebra on the same
carrier, i.e. interpretations JopKA : An → A for every op : n ∈ Σ.

QAlg(Σ) Alg(Σ)

Met Set

⌟

2We will see later how to generalize.
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[0, ∞]-spaces

Classical equations are not sufficient. We can now work with more information on
terms: equality and distance. What is a quantitative equation?

Definition ([0, ∞]Spa)
An [0, ∞]-space is a set A equipped with a distance function dA : A × A → [0, ∞].
Morphisms are nonexpansive maps: f : A → B such that dB(f (a), f (a′)) ≤ dA(a, a′).

Definition ([0, ∞]Str)
An [0, ∞]-structure is a set A equipped with a family of binary predicates
=ε ⊆ A × A indexed by [0, ∞] satisfying

ε ≤ ε′ =⇒ =ε ⊆ =ε′ and =inf S = (∩ε∈S=ε).

Morphisms are functions preserving the predicates: a =ε a′ =⇒ f (a) =ε f (a′).

Proposition
[0, ∞]Spa ∼= [0, ∞]Str by understanding a =ε a′ as dA(a, a′) ≤ ε.
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L-spaces

Given a complete lattice L (e.g. [0, ∞] or [0, 1] or {0, 1})

Definition (LSpa)
An L-space is a set A equipped with a distance function dA : A × A → L.
Morphisms are nonexpansive maps: f : A → B such that dB(f (a), f (a′)) ≤ dA(a, a′).

Definition (LStr)
An L-structure is a set A equipped with a family of binary predicates =ε ⊆ A × A
indexed by L satisfying

ε ≤ ε′ =⇒ =ε ⊆ =ε′ and =inf S = (∩ε∈S=ε).

Morphisms are functions preserving the predicates: a =ε a′ =⇒ f (a) =ε f (a′).

Proposition
LSpa ∼= LStr
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Bonus

LSpa is a lax comma category of continuous functors L → (P(A × A),⊆):

L P(A × A)

P(B × B)

ε 7→[dA(−,−)≤ε]

ε 7→[dB(−,−)≤ε]
P(f×f )

⊇

12 / 26



Quantitative Equations

Still, judgments of the shape X ⊢ s =ε t are not enough, e.g. contractions,
triangular inequality, etc.

The context (variables) is now also an L-space.

Definition
A quantitative equation over a signature Σ is a triple comprising an L-space X of
variables, a pair of terms s, t ∈ TΣX, and a bound ε ∈ L. We write X ⊢ s =ε t.
We say a quantitative algebra (A, d, J−K) satisfies X ⊢ s =ε t if for all nonexpansive
assignments ι : X → (A, d), d(JsKι, JtKι) ≤ ε.

Examples

▶ Almost commutativity: x =ε y ⊢ x + y =0 y + x. The context X contains x and
y and the distances are as large as possible while satisfying the premises.

▶ For contractions: {x =ε y ⊢ fx =ε fy | ε ∈ L}.
▶ For symmetry: {x =ε y ⊢ y =ε x | ε ∈ L}. For triangular inequality:

{x =ε y, y =δ z ⊢ x =ε+δ z | ε, δ ∈ L}.

We can replace Met with LSpa, but = and =0 are separate. Also, Met is a
quantitative variety QAlg(∅, E), and we call any such category GMet, e.g. Poset,
UMet, Graph, etc.
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We can replace Met with LSpa, but = and =0 are separate. Also, Met is a
quantitative variety QAlg(∅, E), and we call any such category GMet, e.g. Poset,
UMet, Graph, etc.
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Free Quantitative Algebras

Given a signature Σ and quantitative equations E, the free quantitative
(Σ, E)-algebra over a generalized metric space X is given by

T̂Σ,EX = (TΣX/≡E, dE),

where ≡E and dE are a congruence and metric generated by E with quantitative
equational logic:

≡E = {(s, t) | X ⊢ s = t is satisfied by all Â ∈ QAlg(Σ, E)}

dE([s], [t]) = inf
{

ε ∈ L | X ⊢ s =ε t is satisfied by all Â ∈ QAlg(Σ, E)
}

.

This yields a monad T̂Σ,E : GMet → GMet.

14 / 26



Axiomatization of Hausdorff Distance

The Hausdorff lifting takes a metric on X to a metric on PX:

(X, d) 7→ (PX, dH) where dH(S, T) = max
{

max
x∈S

min
y∈T

d(x, y), max
y∈T

min
x∈S

d(x, y)
}

.

The quantitative ΣP -algebra over (PX, dH) (⊕ is union again) is the free algebra
over (X, d) in the following theory:

x ⊢ x ⊕ x = x (idempotent)
x, y ⊢ x ⊕ y = y ⊕ x (commutative)

x, y, z ⊢ x ⊕ (y ⊕ z) = (x ⊕ y)⊕ z (associative)
x =ε x′, y =ε′ y′ ⊢ x ⊕ y =max{ε,ε′} x′ ⊕ y′ (Hausdorff)

Therefore, the monad PH = (X, d) 7→ (PX, dH) is presented by that theory.
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Axiomatization of Not Hausdorff Distance

After removing that last quantitative equation, the free algebras are given by

(X, d) 7→ (PX, d̂) where d̂(S, T) =


0 S = T
d(x, y) S = {x} and T = {y}
1 otherwise

.

For the Hausdorff distance, ⊕ is a nonexpansive operation PHX ×PHX → PHX.
Not the case for the ”not Hausdorff” distance. The former defines an enriched
monad, the latter does not.
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Lifting Presentations

Let (M, η, µ) be a monad on Set, and (Σ, E) be an algebraic presentation for it via
ρ : TΣ,E ∼= M.

Definitions
A monad lifting of M to Met is a monad M̂ : Met → Met whose functor, unit and
multiplication coincide with those of M after applying U : Met → Set.

A quantitative extension of E is a collection of quantitative equations Ê on the
same signature Σ satisfying for all X ∈ Met and s, t ∈ TΣX,

X ⊢ s = t satisfied in Alg(Σ, E) ⇐⇒ X ⊢ s = t satisfied in QAlg(Σ, Ê).

Theorem
There is a “correspondence” between monad liftings of M and quantitative extensions of E.
More categorically, there is a dual equivalence between the category of monad liftings of M
and the category of quantitative varieties whose forgetful functor factors through Alg(Σ),
with appropriate restrictions of morphisms.
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Theorem
There is a “correspondence” between monad liftings of M and quantitative extensions of E.
More categorically, there is a dual equivalence between the category of monad liftings of M
and the category of quantitative varieties whose forgetful functor factors through Alg(Σ),
with appropriate restrictions of morphisms.

18 / 26



Extension to Lifting (Easy)

▶ The equivalence

X ⊢ s = t ∈ Th(E) ⇐⇒ X ⊢ s = t ∈ QTh(Ê)

really says that ≡E=≡Ê, so the functors TΣ,E and T̂Σ,Ê agree on sets.

▶ It follows from the syntactic definitions that the units and multiplications also
coincide, hence T̂Σ,Ê is a monad lifting of TΣ,E.

▶ Via the isomorphism ρ : TΣ,E ∼= M, we can construct the monad lifting by

M̂(X, d) = (MX, d̂), where d̂(m, m′) = dÊ(ρ
−1m, ρ−1m′).
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Lifting to Extension

▶ Put some equations in Ê:

For all X ⊢ s = t ∈ E, add X⊥ ⊢ s = t to Ê.

▶ Put some quantitative equations in Ê:

For all (X, d) ∈ Met and s, t ∈ TΣX, add (X, d) ⊢ s =d̂(ρ[s],ρ[t]) t to Ê.

▶ Show that nothing else is entailed by exhibiting M̂(X) as the free Σ-algebra
satisfying Ê generated by X.
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▶ Put some quantitative equations in Ê:
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Functorial Semantics

There many results close to a monad-quantitative theory correspondence, but
nothing perfect yet.

The monad-theory correspondence in Set was first proven
using Lawvere theories. There are enriched accounts of Lawvere theories, but they
are not enough because
▶ the arity of operations are discrete, yet quantitative equations would be

enforced with non-discrete arities.
▶ even if we allowed non-discrete operations (see [FMS21]), we do not use the

product/exponential in Met.
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Other Stuff

▶ Can the monad lifting-theory extension correspondence be made fibered in
some sense?

▶ How to compose two liftings of monads when their underlying Set monads
compose via composite theories?

▶ What about infinitary theories?
▶ Further simplify the entry point to quantitative algebraic reasoning (find lots

of examples).
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Merci !
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