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Algebras

Definitions (Alg(X))
A signature X is a set of operation symbols, each with an arity, we write op : n € X
for an operation of arity n € IN belonging to X.
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Algebras

Definitions (Alg(X))
A signature X is a set of operation symbols, each with an arity, we write op : n € X
for an operation of arity n € IN belonging to X. The signature functor is:

Y:Set—Set=Xw— [] X"
op:neL

A Y-algebra is a function X.(A) — A, i.e. an interpretation [op]4 : A" — A for
every op : n € X. A homomorphism is a function # : A — B such that

w(4) = 5 (B)

Sh| |1
A T B

Equivently, h preserves the operations:

h([[op]]A(al,...,an)) = [[Op]]3<]’l([11>,. . .,h(an)).

3/26



Terms
Definition
The set of X-terms over a set X is defined inductively:

xe X teTeX t, € Ts X
xeTxX op(ts,..., tn) € TeX

With the evident syntactical interpretation of operations, Tz X is the free X-algebra
on X.
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Terms
Definition
The set of X-terms over a set X is defined inductively:

xe X teTeX t, € Ts X
xeTxX op(ts,..., tn) € TeX

With the evident syntactical interpretation of operations, Tz X is the free X-algebra
on X. Thus, for any assignment of variables ; : X — A, we get an interpretation of
any term in Ty X:

_ ¢

2(TeX) " 5 4)
! I+
TsX ——— A
It does the thing you want it to do:
Vx € X, [x]4 = 1(x)
Vi, ... th € TeX,0p:n € X, Jop(ty, ..., tn)]4 = [opla([tla, - - -, [tals)-
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Equations

Definition

An equation over a signature X is a triple comprising a set X of variables, and a
pair of terms s, t € Ty X. We write X - s = t. We say an algebra (A, [—]4) satisfies
X F s = tif for all assignments ¢ : X — A, [s]} = [t]%.
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Equations

Definition

An equation over a signature X is a triple comprising a set X of variables, and a
pair of terms s, t € Ty X. We write X - s = t. We say an algebra (A, [—]4) satisfies
X F s = tif for all assignments ¢ : X — A, [s]} = [t]%.

Example

A semilattice is an algebra for Xp = {® : 2} satisfying the following equations:

xFxdx=x (idempotent)
x,yFx®oy=ydx (commutative)
x,yzEx®(ydz) = (xdy) Bz (associative)
Definition (Alg(%, E))

Given a set E of equations over X, Alg(X, E) is the full subcategory of X-algebras
that satisfy all of E. It is the variety generated by E.
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Free Algebras

Given (%, E), the free (X, E)-algebra over a set X is given by
Ts X/ =k,

where = is the smallest congruence generated by E:

=r = {(s,t) | X s = tissatisfied by all A € Alg(%,E)}.

This defines a monad Ts r : Set — Set.
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Free Algebras

Given (%, E), the free (X, E)-algebra over a set X is given by
TxX/=E,
where = is the smallest congruence generated by E:
=r = {(s,t) | X s = tissatisfied by all A € Alg(%,E)}.

This defines a monad Ts r : Set — Set.

Example

The free semilattice (i.e. idempotent, commutative, and associative Xp-algebra) on
a set X is the non-empty finite powerset P(X) where & is interpreted as the union,
and there is a monad isomorphism Ty, g, = P. We say (Lp, Ep) is an algebraic
presentation of the monad P.
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Finitary Monads

The free (X, E)-algebra monad is always finitary, i.e. it preserves filtered colimits,
and (X, E)-algebras correspond to Eilenberg—Moore algebras for Ty r:

Alg(X, E) = EM(Tx ).
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The free (X, E)-algebra monad is always finitary, i.e. it preserves filtered colimits,
and (X, E)-algebras correspond to Eilenberg—Moore algebras for Ty r:

Alg(X, E) = EM(Tx ).

Moreover, for any finitary monad M : Set — Set, you can:
> define the signature Xy = U,en M(n),
» embed EM(M) as a full subcategory of Alg(Xy) (using finitary assumption),
» show it is closed under homomorphic images, subalgebras, and products, and

» conclude, using Birkhoff’s variety theorem, that EM(M) = Alg(Xy, Ey) for
some set of equations Ej;.!

You can also construct Ej; explicitly, see [Man76, Theorem 5.40].
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The free (X, E)-algebra monad is always finitary, i.e. it preserves filtered colimits,
and (X, E)-algebras correspond to Eilenberg—Moore algebras for Ty r:

Alg(X, E) = EM(Tx ).

Moreover, for any finitary monad M : Set — Set, you can:
> define the signature Xy = U,en M(n),
» embed EM(M) as a full subcategory of Alg(Xy) (using finitary assumption),
» show it is closed under homomorphic images, subalgebras, and products, and

» conclude, using Birkhoff’s variety theorem, that EM(M) = Alg(Xy, Ey) for
some set of equations Ej;.!

After a bit more work, you obtain a dual equivalence between the category of
finitary monads and the category of finitary varieties.

You can also construct Ej; explicitly, see [Man76, Theorem 5.40].
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Universal Quantitative Algebra

We replace Set with Met, the category of extended metric spaces? and
nonexpansive maps.

2We will see later how to generalize.
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Universal Quantitative Algebra

We replace Set with Met, the category of extended metric spaces? and
nonexpansive maps. Since Met is (co)complete, the signature functor could still
be used to define X-algebras. This enforces (the approach of [MPP16])

dA([[op]]A(al, ce ,an), [[Op]]A(bl, .. .,bn)) S sup dA(ai,bi).

1

In particular, all unary operations are interpreted as contractions. Instead:

Definition
A quantitative X-algebra is a metric space (4, d) and a X-algebra on the same
carrier, i.e. interpretations [op]s : A" — A foreveryop : n € L.

QAlg(X) —— Alg(Y)
]

Met ——— Set

2We will see later how to generalize.
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[0, oo]-spaces

Classical equations are not sufficient. We can now work with more information on
terms: equality and distance. What is a quantitative equation?
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[0, oo]-spaces

Classical equations are not sufficient. We can now work with more information on
terms: equality and distance. What is a quantitative equation?

Definition (|0, co|Spa)

An [0, oo]-space is a set A equipped with a distance functionds : A x A — [0, 0].
Morphisms are nonexpansive maps: f : A — B such that dg(f(a),f(a')) < da(a,a’).

Definition ([0, co|Str)
An [0, co-structure is a set A equipped with a family of binary predicates
=, C A x A indexed by [0, o] satisfying

e<e = = C=p and =iyg5= (Nees=e)-
Morphisms are functions preserving the predicates: a =, 4’ = f(a) =, f(d’).

Proposition
[0, c0]Spa =2 [0, 0o|Str by understanding a =, a’ as ds(a,a’) < e
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L-spaces

Given a complete lattice L (e.g. [0, o0] or [0,1] or {0,1})
Definition (LSpa)
An L-space is a set A equipped with a distance functiondy : A x A — L.

Morphisms are nonexpansive maps: f : A — B such that dg(f(a),f(a')) < da(a,a’).

Definition (LStr)
An L-structure is a set A equipped with a family of binary predicates =, C A x A
indexed by L satisfying

e < d = = C =y and =j5= (mseS:e)-
Morphisms are functions preserving the predicates: a =, 4’ = f(a) =, f(a’).

Proposition
LSpa = LStr
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Bonus

LSpa is a lax comma category of continuous functors L — (P(A x A), C):

e [da(—,—)<e]

L —— P(AXA)

2

e [dp(—,—)<e] P(fxf)

P(B x B)
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Quantitative Equations

Still, judgments of the shape X I~ s =, t are not enough, e.g. contractions,
triangular inequality, etc.
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Quantitative Equations

Still, judgments of the shape X I~ s =, t are not enough, e.g. contractions,
triangular inequality, etc. The context (variables) is now also an L-space.
Definition

A quantitative equation over a signature X is a triple comprising an L-space X of
variables, a pair of terms s,t € Ty X, and abound € € L. We write X - s =, t.

We say a quantitative algebra (A,d, [—]) satisfies X |- s =, t if for all nonexpansive
assignments : : X — (A,d), d([s]", [t]") < e.

Examples
» Almost commutativity: x =, y = x +y =o y + x. The context X contains x and
y and the distances are as large as possible while satisfying the premises.
» For contractions: {x =, y - fx =, fy | e € L}.
» For symmetry: {x =, y -y =, x | € € L}. For triangular inequality:
{x=cyy=szbx=csz|¢cd €L}
We can replace Met with LSpa, but = and =( are separate. Also, Met is a

quantitative variety QAlg(®, E), and we call any such category GMet, e.g. Poset,
UMet, Graph, etc.

13/26



Free Quantitative Algebras

Given a signature ¥ and quantitative equations E, the free quantitative
(X, E)-algebra over a generalized metric space X is given by

Ts,eX = (TsX/=g,dr),

where =f and dr are a congruence and metric generated by E with quantitative
equational logic:

=r = {(s,t) | X F s = t is satisfied by all A € QAlg(Z,E)}
de([s], [t]) = inf{s € L| Xk s =, tissatisfied by all A € QAlg(Z,E)} :

This yields a monad Tz,E : GMet — GMet.
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Axiomatization of Hausdorff Distance

The Hausdorff lifting takes a metric on X to a metric on PX:

(X,d) — (PX,dy) where dy(S, T) = max {maxmind(x,y),maxmind(x,y)} .
xeS yeT yeT x€$S
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Axiomatization of Hausdorff Distance

The Hausdorff lifting takes a metric on X to a metric on PX:

(X,d) — (PX,dy) where dy(S, T) = max {maxmind(x,y),maxmind(x,y)} .
xeS yeT yeT x€$S

The quantitative Lp-algebra over (PX,dy) (& is union again) is the free algebra
over (X,d) in the following theory:

xFx®dx=x (idempotent)
xyFx®y=yodx (commutative)
xyzFxe(ydz)=(xdy) Bz (associative)
X = x’,y = y’ Fxdy =max{e¢'} x' @ y/ (Hausdorff)

Therefore, the monad Py = (X,d) — (PX,dn) is presented by that theory.
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Axiomatization of Not Hausdorff Distance

After removing that last quantitative equation, the free algebras are given by

0 S=T
(X,d) — (PX,E) where E(S, T)=1d(x,y) S={x}andT = {y}.
1 otherwise
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Axiomatization of Not Hausdorff Distance

After removing that last quantitative equation, the free algebras are given by

0 S=T
(X,d) — (PX,E) where E(S, T)=1d(x,y) S={x}andT = {y}.
1 otherwise

For the Hausdorff distance, @ is a nonexpansive operation PyX x PyX — PuX.
Not the case for the “not Hausdorff” distance. The former defines an enriched
monad, the latter does not.
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Lifting Presentations

Let (M, 1, 1) be amonad on Set, and (X, E) be an algebraic presentation for it via
o TZ,E = M.

Definitions
A monad lifting of M to Met is a monad M : Met — Met whose functor, unit and
multiplication coincide with those of M after applying U : Met — Set.

18/26



Lifting Presentations

Let (M, 1, 1) be amonad on Set, and (X, E) be an algebraic presentation for it via
o TZ,E = M.

Definitions

A monad lifting of M to Met is a monad M : Met — Met whose functor, unit and
multiplication coincide with those of M after applying U : Met — Set.

A quantitative extension of E is a collection of quantitative equations E on the
same signature X satisfying for all X € Metand s, t € Tz X,

X b s = t satisfied in Alg(X, E) <= X I s = ¢ satisfied in QAlg(%,E).

18/26



Lifting Presentations

Let (M, 1, 1) be amonad on Set, and (X, E) be an algebraic presentation for it via
o TZ,E = M.

Definitions

A monad lifting of M to Met is a monad M : Met — Met whose functor, unit and
multiplication coincide with those of M after applying U : Met — Set.

A quantitative extension of E is a collection of quantitative equations E on the
same signature X satisfying for all X € Metand s, t € Tz X,

X b s = t satisfied in Alg(X, E) <= X I s = ¢ satisfied in QAlg(%,E).

Theorem

There is a “correspondence” between monad liftings of M and quantitative extensions of E.
More categorically, there is a dual equivalence between the category of monad liftings of M
and the category of quantitative varieties whose forgetful functor factors through Alg(%),
with appropriate restrictions of morphisms.
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Extension to Lifting (Easy)

» The equivalence
Xts=teTIh(E) <= Xt+s=tecQIn(E)

really says that =p==¢, so the functors Ty ¢ and TZ 7 agree on sets.
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Extension to Lifting (Easy)

» The equivalence
Xts=teTIh(E) <= Xt+s=tecQIn(E)

really says that =p==¢, so the functors Ty ¢ and TZ 7 agree on sets.

» It follows from the syntactic definitions that the units and multiplications also
coincide, hence Ty 7 is a monad lifting of Tx .

» Via the isomorphism p : Ty g = M, we can construct the monad lifting by

M(X,d) = (MX,d), where d(m,m') = dz (0~ m, p"'n).
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Lifting to Extension

» Put some equations in E:

Forall XFs=t€E add X, Fs=ttoL.
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Lifting to Extension

» Put some equations in E:

Forall XFs=t€E add X, Fs=ttoL.

» Put some quantitative equations in E:

Forall (X,d) € Metand s, t € Ty X, add (X,d) s =l tto E.

slelt])

> Show that nothing else is entailed by exhibiting M(X) as the free Y-algebra
satisfying E generated by X.
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Outline

Future Work
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Functorial Semantics

There many results close to a monad-quantitative theory correspondence, but
nothing perfect yet.
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Functorial Semantics

There many results close to a monad-quantitative theory correspondence, but
nothing perfect yet. The monad-theory correspondence in Set was first proven
using Lawvere theories. There are enriched accounts of Lawvere theories, but they
are not enough because

» the arity of operations are discrete, yet quantitative equations would be
enforced with non-discrete arities.
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Functorial Semantics

There many results close to a monad-quantitative theory correspondence, but
nothing perfect yet. The monad-theory correspondence in Set was first proven
using Lawvere theories. There are enriched accounts of Lawvere theories, but they
are not enough because

» the arity of operations are discrete, yet quantitative equations would be
enforced with non-discrete arities.

> even if we allowed non-discrete operations (see [FMS21]), we do not use the
product/exponential in Met.
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Other Stuff

» Can the monad lifting-theory extension correspondence be made fibered in
some sense?

» How to compose two liftings of monads when their underlying Set monads
compose via composite theories?

v

What about infinitary theories?

» Further simplify the entry point to quantitative algebraic reasoning (find lots
of examples).

23/26



Merci !
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