
SIAM J. COMPUT.
Vol. 14, No. 4, November 1985

(C) 1985 Society for Industrial and Applied Mathematics

019

THE KNUTH-BENDIX COMPLETION PROCEDURE
AND THUE SYSTEMS*

DEEPAK KAPURf ,rD PALIATH NARENDRAN"
Abstract. The Knuth-Bendix completion procedure for term rewriting systems in many cases

provides a decision procedure for equational theories and has been found to have many applications
in various areas. We discuss the application of the Knuth-Bendix procedure to Thue systems. We use
the notion of a reduced Thue system and show that for every Church-Rosser Thue system, there is a
unique reduced Church-Rosser Thue system equivalent to it. Furthermore, the Knuth-Bendix com-
pletion procedure, when applied to a Thue system T, always produces the finite reduced Church-
Rosser Thue system equivalent to T whenever such a system exists. Similar results can also be
proved for almost-confluent Thue systems. Using properties of reduced Church-Rosser systems, we
develop conditions under which a class of special Thue systems have equivalent finite Church-Rosser
systems. In addition, we show that the completion procedure always terminates on finite
parenthesized Thue systems, from which the termination of the completion procedure over ground-
term-rewriting systems can be shown immediately. From the results discussed in this paper, we also
obtain the termination of the Knuth-Bendix completion procedure for commutative Thue systems
(commutative monoids) as a simple corollary.

Key Words. Thue systems, Knuth-Bendix completion procedure, Church-Rosser systems, rewrit-
ing systems, almost-confluent systems, ground terms, commutative monoids

1. Introduction. There has been considerable interest recently in rewriting
or transformation systems because of their applications to theorem proving, rea-
soning about specifications and programs, abstract data types, program transfor-
mation and synthesis, algebraic simplification, etc. [5],[7],[16],[17],[22],[24]. The
main reason for this interest is the usefulness of the Church-Rosser property,
which, in general, can be interpreted as implying that the order of applications of
transformations makes no difference. Along with the uniform termination property,
which ensures that every sequence of transformations eventually reaches a result
that cannot be further transformed (called a "normal form"), we get a decision
procedure for the equational theory induced by the transformations. Note that
now any sequence of transformations on an object that produces a normal form
will do; the Church-Rosser property ensures that all possible sequences of
transformations on the object would produce the same normal form. Transforma-
tion systems that have both uniform termination and Church-Rosser properties
are called canonical systems.

In most cases, however, the systems of transformations or rules that arise may
not be canonical. This is where the notion of a completion procedure comes into
play; we can attempt to get a canonical set of rules by adding and/or deleting
existing rules without altering the underlying theory. Knuth and Bendix [17]
introduced a completion procedure for term-rewriting systems in which objects
under consideration are (first-order) terms or expressions and transformations are

*Received by the editors October 24, 1983, and in revised form October 1, 1984. A preliminary
version of this paper appeared in the Third Conference on Foundations of Software Technology and
Theoretical Computer Science, held in Bangalore, India, in December, 1983. This paper was typeset at
General Electric Corporate Research and Development using Troffsoftware developed for the Unix
operating system.

tComputer Science Branch, General Electric Corporate Research and Development, Schenectady,
New York 12345.

1052

KNUTH-BENDIX COMPLETION PROCEDURE 1053

simply rewriting of terms using the rules corresponding to axioms of an algebraic
system. Their completion procedure looks for representative terms that have two
normal forms and then tries to "patch up" by adding a new rule involving the
two normal forms. This method has been quite successful in many practical
cases: free groups, commutative semigroups, and polynomial ideals are but a few
of them. The Knuth-Bendix completion procedure has some other applications as
well, such as establishing consistency of equational theories and proving inductive
properties using what has become known in the literature as the inductionless
induction method [23], [24].

In this paper, we discuss the application of the Knuth-Bendix completion pro-
cedure on Thue systems. Thue systems are rewriting systems specified using
equations over strings (thus there are no variables, but concatenation satisfies the
associativity property). It is our belief that understanding the behavior of the
Knuth-Bendix completion procedure on Thue systems will also provide some
insight into its behavior on term-rewriting systems. Further, Thue systems have
recently been studied in their own right by Book and others in the context of for-
mal language theory, monoid presentation, and word problems for finitely
presented monoids. The application of the Knuth-Bendix completion procedure
for suc.h systems has not been studied so far.

We give a set of transformations that when applied on a Church-Rosser Thue
system yields an equivalent reduced (or minimal) Church-Rosser system. We
show that these transformations on Church-Rosser Thue systems themselves
have the Church-Rosser property, and thus, for every Thue system that has a
finite equivalent Church-Rosser Thue system, there is a unique finite reduced
Church-Rosser Thue system equivalent to it. Using properties of reduced
Church-Rosser systems, we also develop conditions under which a class of special
Thue systems have equivalent finite Church-Rosser systems. We also show that a
version of the Knuth-Bendix completion procedure, when applied to such a Thue
system, always terminates and results in the finite reduced Church-Rosser Thue
system equivalent to the original system. We discuss how the completion pro-
cedure can be modified to generate almost-confluent Thue systems.

Using concepts and results of the paper, we are also able to prove, in a
straightforward manner, that the procedure always halts when applied to commu-
tative Thue systems (i.e., presentations of commutative monoids) [18],[20]. We
further exhibit a sufficient condition for the input Thue systems that, when
satisfied, guarantees that the procedure will ’eventually terminate. More
specifically, it is shown that if the left-hand sides of rules satisfy a certain condi-
tion regarding overlaps, then the Knuth-Bendix completion procedure terminates.
Ground-term-rewriting systems can be translated to Thue systems that satisfy this
condition, so the result applies to ground-term-rewriting systems, thus giving
another proof of termination of the Knuth-Bendix procedure for ground-term-
rewriting systems (see also [7]). We are thus also able to give a uniform treat-
ment of some the known results in rewrite rule theory.

The paper is organized as follows" The next section gives definitions and prop-
erties of Thue systems. We introduce a new property of Thue systems, called

1We have recently learned that Nivat and Benois [26] were the first to make this observation. A
similar result was also obtained by Lankford and Ballantyne for term-rewriting systems, as reported
in [18].

1054 DEEPAK KAPUR AND PALIATH NARENDRAN

lexicographic confluence, which subsumes the Church-Rosser property. The lexi-
cographic confluence property is used in later sections to study the Knuth-Bendix
completion procedure. We prove some properties of the set of irreducible strings
of a Thue system. In 3, we introduce the notion of a reduced Thue system.
We prove that if a Thue system T has an equivalent Church-Rosser system, then
there exists a unique reduced Church-Rosser system equivalent to it. We also
show that for a special Thue system that can be homomorphically mapped into a
reduced Church-Rosser system, an equivalent Church-Rosser system exists if and
only if the original system itself is Church-Rosser. In , 4, we discuss the applica-
tion of the Knuth-Bendix completion procedure to Thue systems. First we prove
that if there exists a Church-Rosser system equivalent to a Thue system T, then
the Knuth-Bendix completion procedure, when applied on T, terminates with a
reduced lexicographic confluent, and hence Church-Rosser, system equivalent to
T. We also prove the termination of the completion procedure on commutative
Thue systems (commutative monoids) as a corollary. Later, we modify the com-
pletion procedure to generate reduced almost-confluent systems. Section :5
discusses conditions under which the completion procedure terminates; this is
used to show the termination of the completion procedure on parenthesized Thue
systems and hence ground-term-rewriting systems.

2. Definitions. Let Z be a finite alphabet. E* is the monoid freely gen-
erated by E, or, in other words, the set of all finite strings over E. The empty
string, which is the identity in the monoid, is denoted by h, where h is a symbol
not in E. The length function on strings, denoted by lul, can be defined as
usual: hi=0, ua u I+ 1, where a is in Y.

A Thue system T is a binary relation on E *. The Thue congruence generated by
T is the reflexive transitive closure --" of the relation --* r, which is defined as
follows: for any u and v in E* such that < u, v> is in T or < v, u> is in T, and
any x,y in E*, xuy--*rxvy. Two strings, w and z, are congruentmod T if
w ,---, z. Two Thue systems T1 and T2 are equivalent if and only if they generate
the same congruence relation. A Thue system T is commutative if and only if for
each < xy, z > in ,---, It, < yx, z > is also in *---,]. A Thue system T is called spe-
cial if and only if for every < u, v> in T, either u or v is h. Henceforth, we shall
omit the subscript T whenever it is understood from the context.

Every element of a Thue system T is called an equation of T. Some equations
of T can be oriented into rules depending upon the length of the sides of each
equation. An equation u-- v is oriented into a rule u---, v if lul > v I, or v u
when v l>lu I; such a rule is called length-reducing or simply a reduction.

An equation u= v in which u and v are of the same length cannot be
oriented based on the length of u and v; it is written as u I-I v. Such an equation
is called a length-preserving rule. Later, we will discuss another way of orienting
rules for the case when a total ordering is introduced on E*. In that case, it
would also be possible to uniquely orient equations whose two sides have strings
of the same length.

Based on the above classification of the rules, a Thue system T can be parti-
tioned into two components: 1. a subset of length-preserving rules, which will be
called LP, and 2. the remaining subset of reductions, which will be called R.
Only the rules in the R subset of T will be used for reducing (rewriting) strings
unless stated otherwise.

KNUTH-BENDIX COMPLETION PROCEDURE 1055

For any x, if there are u and v, as well as a rule r in R of T such that
x-u v, then x---* u r v, read as x reduces to u r v using the rule l--’ r of R.
The reflexive transitive closure of this relation is the reduction relation generated
by R of T (also called the reduction relation generated by T) on *; this is
denoted by * whereas --’+ stands for the transitive closure of ---’.

Two strings x and y are called joinable (under --’) if and only if there exists a
z such that x * z and y * z. Strings x and y are almost-joinable if and only
if there exist u and v such that x--** u, y---’ * v, and u]-I * v.

A Thue system T is called Church-Rosser if for each u, v, such that
u,---* v, u, and v are joinable. A Thue system T is called confluent if for each
u, v, w, such that u * v, u--" * w, v, and w are joinable.

Note that the Church-Rosser property and the confluence property, though
closely related, are not the same in case of Thue systems because Thue
congruence ,-’* and the reflexive, symmetric, and transitive closure of the reduc-
tion relation ---*, in general, do not coincide, as the latter does not take into
account length-preserving rules. A Church-Rosser system is confluent but the
converse does not hold, as shown by the simple example {< ab, cd>, < ab, a >,
< cd, c > }, which is confluent but not Church-Rosser.

A Thue system T is called almost confluent if for each u, v such that
u * v, u and v are almost joinable.

For a commutative Thue system, a string x can be expressed as a k-tuple
< xl, xk> (sometimes called a Parikh vector), where ; {a l, ak} and x; is
the number of times the letter at appears in x. A rule of a commutative Thue
system can be expressed as a rule relating two such k-tuples.

2.1. Total ordering on strings and lexicographic confluence. We will intro-
duce another property called "lexicographical confluence" that is not in the litera-
ture but, we think, is useful from theoretical as well as practical points of view.

Let < be a total ordering on strings in Z; * such that the following two proper-
ties hold:

1. Ixl<lyl=x< y, and
2. x<y forany u,v, uxv<uyv.

The above properties are closely related to the properties of simplification order-
ings introduced by Dershowitz [6].

A family of total orderings satisfying the above two properties is the size and
lexicographic ordering on strings induced by a total ordering on E defined as fol-
lows:

x < y if and only if either
1. Ixl<lyl or
2. Ixl=iyl, x=ax’,y=by’,a, bEE, and

either a< b or a=b and x’<y’.

Such a total ordering < on E* can be used to orient equations whose two

sides are of the same length. So, given a Thue system T, equations in the
length-preserving component can also be oriented using <. Every rule in T is
thus used for reduction. The symbol will be used to denote this reduction
relation also, as long as it is evident from the context that the whole T is being
used for reduction. We shall use ---*’ to specify the reduction relation induced by

1056 DEEPAK KAPUR AND PALIATH NARENDRAN

T to distinguish it from the reduction relation induced by R. However, in 5
we shall drop the prime. The reflexive, symmetric, and transitive closure of the
relation ---’ and the Thue congruence --" * are the same.

A Thue system T is called lexicographi3ally confluent (with respect to < if and
only if for every u, v, and w such that u---,’*v and u---*’* w, there is a z such
that v---’* z and w--,’* z. We abbreviate a "lexicographically confluent system"
to a "lex-confluent system."

THEOREM 2.1. If T is Church-Rosser then T is lex-confluent.
Proof For every length-preserving rule u I-I v in a Church-Rosser system T,

there is a z such that u--’*z and v--** z. So, irrespective of the way the length-
preserving rules are oriented for ---*’, T is lex-confluent.

Note that if T is lex-confluent, its R component (the set of length-reducing
rules) need not be confluent, as the following example illustrates:

T={ab---’c, ab--’d, cl-ld}

T is also not Church-Rosser, as c and d do not reduce to the same string.
For any Thue system T, there need not exist an equivalent finite or infinite

Church-Rosser system, but there is always an equivalent infinite lex-confluent
system which can be obtained trivially from the congruence relation generated
by T.

Once an ordering on strings is defined, it can be extended to rules in a natural
way as follows:

/1-- rl < 12-" r2 if and only if 11 < 12 or 11 12 and r

This ordering on rules is used later in some proofs.

2.2. Irreducible sets for Thue systems. For a Thue system T, x is irreduci-
ble (rood T) if and only if x cannot be reduced further using the R component
of T; x is minimal if and only if x is one of the smallest strings in its congruence
class induced by T. Clearly, every minimal string is irreducible; but an irreducible
string need not be minimal.

Let y be an irreducible string obtained by reducing x using rules of R; y is
also called a normal form of x. Let stand for a normal form of x under R. If a
string x has a unique normal form under R, the normal form of x is also called
its canonical form. It can be shown that every string has a unique normal form in
a Church-Rosser system and thus a string is irreducible if and only if it is
minimal.

Let IRR (T) be the set of irreducible strings of T. Equivalent Thue systems
can have different IRR sets; for example, T1 {abc ---ab,abc---* c} and
T:= {abc---’c, ab---,c} are equivalent, but ab is in IRR (T1) but not in
IRR (T2).

THEOREM 2.2. If T1 C_ T2 and for every rule l---r in T2- T1, is reducible in
T1, then IRR (T1) IRR (T).

Proof That IRR (T) c_ IRR (T1) is obvious. Since every string reducible
modulo T2 is reducible modulo TI, IRR (T1) c_ IRR (T2). 2

It can be easily seen that equivalent Church-Rosser (lex-confluent, almost-
confluent) systems have the same IRR set. The following also holds.

THEOREM 2.3. Let T and T’ be two equivalent Thue systems. If T is Church-
Rosser (lex-confluent) and IRR (T) IRR (T’), then T’ is also Church-Rosser (lex-
confluent).

KNUTH-BENDIX COMPLETION PROCEDURE 1057

Proof By contradiction. Assume T’ is not Church-Rosser (lex-confluent),
then there exists an x such that it has two distinct irreducible forms, say Wl and
w2, in IRR (T’). Since w1-- w2 and T is Church-Rosser, they have a common
descendant, implying that at least one of Wl and w2 is reducible in T; so,
IRR T ; IRR T’), which is a contradiction. []

A similar theorem about almost-confluent Thue systems is proved in [14].
For a Church-Rosser system, all irreducible elements are minimal and

minimal elements are unique in their equivalence classes. These two properties
can serve as an alternative characterization of Church-Rosser systems. For an
almost-confluent system, only the first property holds.

3. Testing for the Church-Rosser property and critical pairs. Nivat and
Benois [26] were the first to give a test for the Church-Rosser property and
confluence of finite Thue systems. Book and O’Dunlaing [4] showed that this
problem is tractable and gave a polynomial time algorithm. Kapur, Krish-
namoorthy, McNaughton, and Narendran [13] improve on Book and
O’Dunlaing’s upper bound and give an O(I TI 3) algorithm for this problem.

The conditions that a Thue system T must satisfy to be Church-Rosser can be
stated as follows: We define critical pairs from rules; for T to be Church-Rosser,
the two strings in each critical pair must be joinable.

1. For a length-preserving rule I-I r in T, the critical pair is < I, r> and r
must be joinable.

2. Substring case" For rules 11--* rl, 12-- r2 in R, if 12 is a substring of l, then
for every u and v such that 1 u 12 v, both p u r2 v and q r, which form a
critical pair < p, q >, must be joinable.

3. Overlap case" For rules 1--* rl, 12--* r2, if 11 u x, 12 x v, then for every
such u,v, and x, both p= riv and q= ur2, which also form a critical pair
<p, q>, must be joinable. The rules 1 r and 12--" r2 are called overlapping
rules.

A critical pair < p, q > is called nontrivial if and only if ; , where p, q are,
respectively, normal forms of p and q; otherwise, the critical pair <p, q> is
called trivial. We assume the existence of an algorithm for computing a normal
form of a string, which we will denote by normal_form (x, R). A Thue system is
Church-Rosser if and only if all its critical pairs are trivial. A pair <p, q> is in
reduced form with respect to R if p and q cannot be reduced further by R.
Henceforth, whenever we refer to a nontrivial critical pair <p, q>, we assume
that p and q are irreducible.

The test for lex-confluence is similar to that of the Church-Rosser property;
we do not have case 1 because length-preserving rules are also oriented.

From the above definition of critical pairs, we have
LEMMA 3.1. For any critical pair < p, q> of a Thue system T, T is equivalent to

TU {<P,q>}.

4. Reduced Thue systems. A Thue system T is called reduced if for every
rule in R and LP, neither its left-hand side (lhs) nor its right-hand side (rhs) can
be rewritten using the remaining set of rules in R. Thus for every rule l r in a
reduced Thue system T, r is irreducible in T and is irreducible in T-{1 r}.
In addition, we have

PROPOSITION 4.1. For each rule l---* r in a reduced Thue system T, every proper
substring of is irreducible in T.

1058 DEEPAK KAPUR AND PALIATH NARENDRAN

4.1. Church-Rosser Thue systems remain Church-Rosser under reduc-
tion. The definition implies that a reduced Church-Rosser system T cannot
have an LP component. The following theorem states that Church-Rosser sys-
tems have an interesting property, namely that the transformation of stepwise
reduction of Church-Rosser Thue systems itself has the Church-Rosser property.

THEOREM 4.2. Given a Church-Rosser Thue system T, there is a unique reduced
Church-Rosser system equivalent to T, effectively obtainable from T.
We first prove that there is a finite reduced Church-Rosser Thue system

equivalent to any finite Church-Rosser system T’ and that this reduced system
can be effectively obtained from T’. This proof is based on the following two lem-
mas, which state that the reduction of the lhs and rhs of rules in a Church-Rosser
system does not affect the Church-Rosser property of the system. Later, we show
the uniqueness of a finite reduced Church-Rosser Thue system.

LEMMA 4.3" For a Church-Rosser Thue system T, if it has a rule w-- w whose
lhs can be reduced using the remaining set of rules in T, then the system T’= T-
{Wl w} is equivalent to T and is also Church-Rosser.

Proof Since w can be reduced, there is a rule uyvy in T’ such that w--
11 uj. rl, and Wl---* 1 vy rl. Since T is Church-Rosser, there is some irreducible z
such that w *z as well as 11 vyr z. Since I/1 vyrll< Wl, the rule Wl w
of T is not applied in the reduction of either w or l vy r in T, thus implying
that they reduce to z in T’ also. Thus, w and w are congruent mod T’, which
means that T and T’ are equivalent. The fact that T’ is Church-Rosser follows
from Theorems 2.2 and 2.3. 1

LEMMA 4.4: If there is a rule Wl---’ w in a Church-Rosser system T, such that
w can be reduced using other rules, then T’= T- w w}
{Wl normal-form (w, T- {w w}) is equivalent to T and is Church-Rosser.

Proof For any reduction sequence w--,+ z in T, since the rule w---* w can-
not be applied, w--*+z in T’ also, which establishes the equivalence of T and T’. It
follows easily from Theorem 2.3 that T’ is Church-Rosser.

Proof of Theorem 4.2. Our algorithm consists of applying the two lemmas as
often as possible. Clearly this procedure terminates in a reduced equivalent
Church-Rosser system.

But we must also prove that two equivalent reduced Church-Rosser systems
T and T are the same. To this end, let w1---’ w be a rule in T which is not in
T (this must be possible, otherwise we are done). Since T is Church-Rosser,

_...+
Wl w in T because w is an irreducible string of Tx and also T2 (IRR (T)
IRR (T) by Theorem 2.2). So, there is a rule in T that applies to w. Every
proper substring of w is irreducible (L,emma 4.1); the rule must be w w’,
where w’ is also irreducible. We have w and w being equivalent in T, which is
impossible because both are irreducible.

The above proof easily extends to lexicographically confluent systems; instead
of using the ordering on strings induced by their length in the proof of
Lemma 4.3, a total ordering < on strings as defined in 2.2 is used.

THEOREM 4.5. If there is a Church-Rosser Thue system equivalent to a reduced
lex-confluent system T, then T itself is Church-Rosser.

Proof Since T is reduced, for every rule l---*r in T, r is irreducible. In par-
ticular, if T has a rule 1’---, r’, such that I/’1 r’l, then r’ is irreducible. But if
there is a Church-Rosser system equivalent to T, then neither l’ nor r’ can be
irreducible, implying that T cannot have rules whose two sides are the same
length. Thus T is Church-Rosser.

KNUTH-BENDIX COMPLETION PROCEDURE 1059

Thus an algorithm for reducing a Church-Rosser (or lex-confluent) system T
is 1. repeatedly throw away a rule in T whose Ihs is reducible by the remaining
rules, and 2. for every rule in T whose rhs can be reduced using the remaining
rules, replace the rhs by its normal form. Later we discuss an extension of this
algorithm for almost-confluent Thue systems.

4.2. Special Church-Rosser systems. We discuss below conditions charac-
terizing special Church-Rosser systems that extend some of the results reported
in [2],[3]. These conditions are based on homomorphically mapping a special
Thue system into a special reduced Church-Rosser Thue system.

Let A be a set of generators possibly different from . Let b be a homomor-
phism from Z:* to A*; so, b(h) h’, where h’ is the identity of the monoid A*,
and b(uv) d (u) dp (v). Furthermore, we require that the length function on
A*, also denoted as II, satisfy the following property: lul>lvl if and only if
b (u) > b (v) I. The version of T under b, denoted by T, is defined as

T (4(u),4(v))1 (u,v) T}.

Again, note that x*-’-’*y mod T implies (x).--** oh(Y) mod 76. A homomor-
phism h is said to be length-preserving if l (a)l= for all a 7_,.

THEOREM 4.6. Let T be a special Thue system and 4J be a length-preserving
homomorphism such that 7-6 is a reduced Ctmrch-Rosser system. Then T has an
equivalent Church-Rosser system (f and only if T itself is Church-Rosser.

Proof The "if" part is trivial. We prove the "only if" part by contradiction.
Assume T is not Church-Rosser. Then there must be rules x

such that one of their critical pairs is nontrivial. There are two possibilities:
1. x uv and y vw for some u, v, w h and the critical pair is < u, w>.

Clearly u w. Note that 4(u),--’*4(w)modT. And, (u) must be equal to
h(w), since 7‘6 is a reduced Church-Rosser system and hence both b(u) and
g,(w) must be irreducible mod T. Also, ul=lwl. Now if T has an equivalent
Church-Rosser system, then there must be a z shorter than both u and w such
that u * z,--- * w. This is obviously impossible since both (u) and (v) are
irreducible mod T.

2. x uyv for some u, v such that uv and the critical pair is < uv, >.
This. case is evidently an impossibility, since (x) must be irreducible mod
/- (,/,(x), x).

From the above theorem, we immediately get the following results, already
reported in [3], [4].

A Thue system T is called homogeneous if and only if for every < u, v>,
<x,y> in T, eitherlul Ixl and lvl lyl, orlul-- lyl and vl Ixl.

COROLLARY 4.7. Let T be a homogeneous special Thue system. Then T has an
equivalent Church-Rosser system ifand only f T itself is Church-Rosser.

Proof DefineA {t} andb(a) for all a in the alphabet of T. A single-
rule special Thue system with a rule t"---" h is reduced Church-Rosser.

COROLLARY 4.8. If T is a special Thue system that has only a single rule, tten T
has an equivalent Church-Rosser system if and only if T is itself Church-Rosser.

From the above theorem, we also get a generalization of Corollary 4.8 that
suggests how to test whether a class of special Thue systems has equivalent
Church-Rosser systems by mapping them to their commutative versions.

The commutative version of a Thue system T, denoted by Tc, is T with the
commutative law built into it. As mentioned earlier, this can be represented as a

1060 DEEPAK KAPUR AND PALIATH NARENDRAN

set of relations between k-tuples of integers (often referred to in the literature as
Parikh-vectors) where k is the cardinality of Y-,. For string w, let stand for its
Parikh-vector. Thus,

Tc (h, -) (u, v) T}

Examples. Let E a, b}.
1. T= {(aba, bb)}. Tc= {((2,1), (0,2))}.
2. T= {(aba,h), (baa,h)}. Tc= {((2,1), (0,0))}.

Clearly, for all x, y, x --" * y mod T implies y mod Tc.
We can define a homomorphism b from T to its commutative version Tc as

follows: A in this case is the set of k basis vectors, where a basis vector is a k-
tuple in which exactly one component is nonzero and is 1. The concatenation
operation on A* is the vector addition; the identity is the zero vector, and the
length of a vector is the sum of all components in the vector. It can be easily
verified that b is indeed a homomorphism that maps strings to vectors; further-
more, is length-preserving. Using Theorem 4.6 above, we have the following:

THEOREM 4.9. Let T be a special Thue system such that TC is a reduced
Church-Rosser system. Then T has an equivalent Church-Rosser system (l’and only i.f
T itself is Church-Rosser.

5. The Knuth-Bendix completion procedure.
5.1. How to obtain a reduced Church-Rosser Thue system.
5.1.1. Completing a Thue system to get an equivalent lex-confluent

system. For a finite Thue system T that is not lex-confluent, it is possible to
generate an equivalent lex-confluent system by adapting the Knuth-Bendix com-
pletion procedure for term-rewriting systems to Thue systems. (Note that
because we will discuss mostly lex-confluence in this section, represents the
reduction relation generated by all the rules, including the rules whose sides are
of the same length.) If the test for lex-confluence fails, all nontrivial critical pairs
generated during the lex-confluence test are added to T and the test for lex-
confluence on the modified T is repeated. This transformation is performed until
the resulting system is lex-confluent.

An inefficient version of the Knuth-Bendix completion procedure for Thue
systems is given below in which redundant rules in T are not deleted. Later, a
more efficient version will be presented in which redundant rules in T are
deleted. The function CP(T) generates all nontrivial critical pairs of T in normal
form; if CP(T) is empty, then T is lex-confluent. We do not need to generate
critical pairs of rules in T;+ that were also in T.

Knuth-Bendix Procedure (T):
i:=0;
To := Normalize(T);
CE CP(To);
while CE ; null do

Ti+ := Normalize(Ti I,.J CE);
:-- i/ 1;

CE :-- CP(Ti)
endwhile
output(T);

KNUTH-BENDIX COMPLETION PROCEDURE 1061

Normalize (T)"
unmark all rules in T.
while T has an unmarked rule r do
T"= T-{ l--r};
< l’, r’> < normal_form(l, T’), normal_form(r, T’) >
/f<l,r> # <l’,r’> and l’# r’
then

T’= T LI /’-" r’ };
mark l’ r’

endif,,
mark r

endwhile
return T;

Note that the procedure Normalize does not delete any rules. It merely adds
rules that are obtained from further reducing the two sides of rules already in T
without removing the original rule. The procedure Normalize is nondeterministic
if strategies for 1. picking an unmarked rule and 2. computing a normal form of a
string are not specified.

There is a possibility of the Knuth-Bendix completion procedure going on for-
ever. We discuss below the conditions under which the Knuth-Bendix procedure
is guaranteed to terminate.

Let Too be Tk if the above procedure terminates after k iterations; otherwise,
the union of T for all i.

LEMMA 5.2. T and Normalize(T) are equivalent.

Proof Since T is a subset of Normalize(T), it needs to be shown that the
extra rules in Normalize(T) do not introduce any extra congruence classes. Each
rule l-- r in Normalize(T) which is not in T is obtained by reducing some rule
1’-’-" r’ in T. Since normal-form (1’, T- 1’---. r’}) and
r normal-form(r’, T-{1’---’ r’}), and l’ and r’ are congruent in T, and r are
also congruent in T.

From Lemmas 3.1 and 5.2, T is equivalent to T for each i. And also, Too is
equivalent to T.

LEMMA 5.3. For any i, iflRR (Ti+ 1) IRR (Ti), then Ti is lex-confluent.
Proof By contradiction. If T,. is not lex-confluent, then there is a nontrivial

critical pair <p,q> where pq and p and q are in IRR(T). Since the rule
p---.q or q---’p is included in T,.+I, we get IRR (Ti) ; IRR (T/+I), which is a
contradiction.

It is obvious from the above lemma that the IRR set keeps decreasing in
every iteration of the Knuth-Bendix procedure (since T C T/+I,
IRR(T+) C_ IRR(Ti)). The procedure thus terminates when the IRR set
becomes stable; i.e., for some i, IRR (T)= IRR (T+I). It can be noted that the
set of reducible strings of a Thue system T form an ideal in the free semigroup
,X*. For commutative semigroups, the irreducible set of strings always becomes
stable because of the finite ascending chain (also called the Noetherian) condition
for its ideals [9]. So, we get the result that for commutative Thue systems, the
Knuth-Bendix procedure will always terminate as a corollary of the above lemma.
A similar argument is used to show the termination of Buchberger’s algorithm for
finding a Grobner basis for polynomial ideals over a field [5], as well as polyno-
mial ideals over a Euclidean ring [12] (also see references in Mayr and
Meyer [20] as well as [11] for similar observations).

1062 DEEPAK KAPUR AND PALIATH NARENDRAN

The correctness of the Knuth-Bendix completion procedure follows from the
following theorem.

THEOREM 5.4. Too is lex-confluent.
Proof By contradiction. If Too is not lex-confluent, it could fail because of

any of the above two tests for lex-confluence. This is impossible because if any of
the tests fails in an iteration i, then the corresponding nontrivial critical pairs are
added in the i+l th iteration.

For every finite Thue system T, the Knuth-Bendix procedure thus gives an
equivalent lex-confluent system Too. If the Knuth-Bendix procedure terminates,
then Too is finite; otherwise, as we shall see, Too is infinite.

5.1.2. The eomlfletion lrocedure without deletion of redundant rules.
THEOREM 5.5. Given a finite Thue system T, if there exists a finite lex-confluent

Thue system equivalent to T, then the Knuth-Bendix procedure terminates with a finite
(not necessarily reduced) lex-confluent Thue system T", which is equivalent to T.

Proof. Assume that there exists a finite lex-confluent Thue system equivalent
to T. Then using the results of 3, there is a reduced finite lexoconfluent system
T’ equivalent to T. Furthermore, Too is equivalent to T’ and both are lex-
confluent, so the set of irreducible strings IRR (Too) and IRR (T’) are the same.
It needs to be shown that Too Tk for some k.

LEMMA 5.6. For every rule 1---* r of T’, there is some Ti having 1---* r.

Proof By contradiction. Assume that the statement is not true. Pick the
smallest rule l---’ r in T’ that does not appear in any T,.; so, l---*r is also not in
Too. Let j be the maximum over the iteration numbers in which the rules in T’
less than r get added; i.e., T has all rules of T’ less than 1--, r.

Since T’ and Too are equivalent as well as lex-confluent, and r are congruent
in Too, implying that and r must reduce to the same string in Too. Since r is in
IRR (T’)-- IRR (Too), must reduce to r in Too, implying that T, has a rule
l’---’ r’ that reduces I. By Proposition 4.1, no proper substring of is reducible,
implying that Too must have a rule l---’ r’, and both in Too and T’, r’---* * r. Let j’
be the iteration number when l---* r’ gets added. In T’, r’---’ * r using rules smaller
than the rule l---’r as r’< l, which are in Too. So, either in the ith iteration,
where i-- max(j,j’), or the i+1 th, r’ would be reduced to r and the rule r
would be added, leading to a contradiction.

We now complete the proof of Theorem 5.5. Since a rule once added never
gets deleted, Lemma 5.6 implies that Too contains T’. But T’ is finite, so after
finitely many iterations of the loop in the procedure, all rules of T’ get added into
Too. But T’ is lex-confluent, so after the iteration, say kth, in which the last rule
of T’ is added to Too, the test for lex-confluence would succeed, implying that the
procedure would terminate before the loop is executed the (k+l) st time.

5.1.3. The comlletion lrocedure with deletion of redundant rules. The
above version of the Knuth-Bendix procedure is clearly inefficient, because the
original rules from which the simplified rules are obtained in the normalization
process are not discarded. However, its proof of termination is easier. An optim-
ized version of the Normalize procedure follows in which redundant rules are dis-
carded.

Normalize’ (T):
unmark all rules in T.
while T has an unmarked rule 1---’ r do

KNUTH-BENDIX COMPLETION PROCEDURE 1063

T"= T-{ /-" r };
</’, r’ > < normal_form(l, T’), normal_form(r, T’) >;
/f 1’ r’
then T: T’
else

T’= T’ 10 /’--" r’ };
mark 1’-- r’

endif
endwhile
return T;

We first illustrate the completion procedure on a simple example:

T bb---* a, bab a, baa aab },

where a < b.
First iteration: ba ab and aab--* ab are added; bab aab is deleted and

bab---’ a is replaced by aa---* a, which results in the deletion of aab ab.

T bb a, aa a, ba ab }.
After this, the system T is lex-confluent.
Using the above procedure, a stronger version of Theorem 5.5 can be proved.

The termination proof requires an additional step, which is to show that once
desired rules get added, they are never deleted. We first show that
Normalize’(T) is equivalent to T and later that the IRR set of the system

obtained using Normalize’ is the same as the IRR set of the system obtained

using Normalize.
LEMMA 5.7. Normalize’(T) is equivalent to T.
Proof It is sufficient to show that in Normalize’, the deletion of a rule does

not affect the Thue system. There are two situations in which a rule gets deleted:
(a) For a rule !---’ r in T, and r reduce to the same string in T-{ !---r }. In
this case, congruence relations generated by T and T-{l r} is the same.
(b) For a rule 1---’ r in T, if ’--- r’;l---* r, where l’=
normal form(l, T- l---" r}) and r’ normal_form(r, T- r}), then r is

replaced by l’---’ r’. In T-{l---* r}, l’ is congruent to and r’ is congruent to r,
so T-{l---* r} {l’ r’} is equivalent to T.

Note that T in the optimized version of the Knuth-Bendix procedure is

always a subset of T of the unoptimized version. Furthermore, since
Normalize’(T) c_ Normalize(T), IRR (Normalize’(T))

_
IRR (Normalize(T)).

LEMMA 5.8. IRR (Normalize(T)) IRR (Normalize’(T)).
Proof If a rule !-’-* r is deleted in Normalize’, it means that is reducible by

some other rule ’--- r’. Thus, if a string is reducible by l---* r, then it is also redu-
cible by l’----’ r’.

From Lemmas 3.1 and 5.7, we get that T is equivalent to T. So, Too is
equivalent to T. Further, we have

LEMMA 5.9. Too is lex-confluent.
Proof We need to show that for any string x, u, v,x---’oo u in m steps,

m >/0, and x---’oo v in n steps, n>/0, there is w such that u---’-oo w and

v--.o w. Since Too is Noetherian, the proof has the structure of the proof of

Lemma 2.4 in [10], which states that a Noetherian relation is confluent if and
only if it is locally confluent.

1064 DEEPAK KAPUR AND PALIATH NARENDRAN

For m 0 or n 0, the above trivially holds. So, we assume that both m and
n > 0. Let X--’To U by a rule li ri and x--Too v by a rule lj--’rj such that

Ul-’oo u and Vl Too v. Let T% and Tkj be the Thue systems generated in the

Knuth-Bendix procedure having li---* ri and Ij--r, respectively, such that ki-k)l
is minimum.

Let x be the smallest string under the ordering < being used for lex-
confluence such that there is no w with u---" *Too w and v oo w and derive a con-

tradiction by induction on ki-k I.
Basis: ki-k.il 0, in the iteration after max(k;,kj), all nontrivial critical pairs

of li---’ ri and lj rj are generated, giving us the following diagram. But then both

ul < x and Vl < x, which is a contradiction.

Inductive step: Assume for all k <lki-k I, to show for ki-k I"
Without any loss of generality, assume that k > ki. The rule li ri disappears

in some iteration i’, such that ki < i’< k. So, there is z such that in Ti,, li, and r;
reduce to z; this implies that x and ul reduce to some z’ in ---’Too, since

kj-i’l <lkj-ki I, by the inductive hypothesis, there is a z" such that z’---’ oo z"
and v---,oo z". Since /21 < X, there is a w such that u -*Too w and z"---’ *too w,
which is a contradiction.

W

KNUTH-BENDIX COMPLETION PROCEDURE 1065

A similar result about the application of the Knuth-Bendix completion pro-
cedure on term-rewriting systems is proved in [11]. The above proof is simpler
because we are considering Thue systems and also, the version of our completion
procedure is not as efficient as in [11]. Using Lemma 5.9, we can prove a stronger
version of Theorem 5.5.

THEOREM 5.10. Given a finite Thue system T, if there exists a finite reduced lex-
confluent Thue system T’ equivalent to T, then the Knuth-Bendix procedure using the
optimized Normalize procedure terminates with T’.

One way to prove the above theorem is to show a stronger version of
Lemma 5.6, that every rule of T’ gets added in some iteration of the Knuth-
Bendix procedure and never gets deleted afterward (Lemma 5.6 only states that
every rule of T’ gets added to some T in the ith iteration). Theorem 5.10 then
follows, because in the iteration k in which the last rule of T’ is added, Tk would
include T’ and every rule other than those in T’ would be deleted by the optim-
ized Normalize procedure.

LEMMA 5.11. Every rule in T’ gets added in some iteration and never gets
deleted afterward.

Proof By contradiction. Similar to the proof of Lemma 5.6, let lj-- rj be the
smallest rule of T’ with respect to the ordering < that either

(a) never gets added in any iteration (so it is not in Too), or
(b) gets added in iteration but later is deleted in iteration i’> L
That is, all rules less than lj---rj in T’ get added by some iteration rn and

never get deleted.
Case (a). The proof of this part is the same as the proof of Lemma 5.6, so it

is omitted.
Case (b). Once the rule lj--’rj is added into T, the only way it can get

deleted in i,th iteration, i’> i, is when Normalize’ reduces lj (because rj is irredu-
cible). And, the only way lj can be reduced is if there is a rule lj--* rj in T/,.
Furthermore, this rule is still unmarked; otherwise, its lhs would have been
reduced using the rule Ij---, rj. There are two subcases: 1. lj reduces to rj, imply-
ing rj rj in T,.,: Normalize’ would then replace the rule lj rj later by lj---, rj,
meaning that l---’rj does not get deleted in i’, which is a contradiction. 2. lj
reduces to 1, implying that r lj in T,.,: In this case also, Normalize would
first replace l---* r by l) r. Later, Normalize’ would also replace the rule /j---’ r
by l;---’ rj, again meaning that the rule under consideration does not get deleted in
i’, which is a contradiction.

Using Theorem 4.5, which relates reduced finite lex-confluent systems and
reduced finite Church-Rosser systems, and Theorem 5.10, we have:

THEOREM 5.12. Given a finite Thue system T, if there exists a finite reduced
Church-Rosser system T’ equivalent to T, then the optimized Knuth-Bendix procedure
terminates with T’.

Huet in [11] discussed a version of the Knuth-Bendix completion procedure
that is more efficient than the optimized version given above. Kapur and
Sivakumar [16] have given an improvement over Huet’s version. The proof dis-
cussed above extends to these versions of the Knuth-Bendix procedure, giving us
a result similar to Theorem 5.12.

5.2 Reduced almost-eontluent Thue systems. Nivat and Benois [26] also
gave conditions under which a Thue system is almost-confluent. For length-
reducing rules, the conditions are similar to the conditions for the Church-Rosser

1066 DEEPAK KAPUR AND PALIATH NARENDRAN

property, except that for every critical pair <p,q>, p and q must be almost-
joinable, and not necessarily joinable. In addition, interaction between length-
reducing rules and length-preserving rules are also considered.

For every rule, we define critical strings whose interaction must be considered
to check for the almost-confluence property: For a length-reducing rule l r, the
critical string is l; for a length-preserving rule b I-I s, both b and s are critical
strings. For every pair of rules such that at least one rule is length-reducing, the
following two conditions must be met: Let (1, r) and (Ij, rj.) be such a pair of
rules. Then if l and lj are critical strings, then

(a) If 1 uv, 1 vw for some u, v, w where lu I, vl, wl> 0 (i.e., the two
rules properly overlap), then for every such u, v, and w, the critical pair
(u rj, ri w) must be almost-joinable.

(b) If l-- u/ w for some u, w then for every such u, w, the critical pair
(r,., u r w) must be almost-joinable.

Thus, one has to consider all possible overlaps between
(1) left-hand sides of length-reducing rules, and
(2) left-hand side of a length-reducing rule and both sides of a length-pre-

serving rule.
It is shown in [14] that the test for the almost-confluence property is

PSPACE-complete.
Just as in the case of Church-Rosser systems, given an almost-confluent Thue

system, we can obtain a reduced almost-confluent Thue system from it by getting
rid of redundancies.

1. For every length-reducing rule I---* r in R, if r is reducible by other rules
in R, then replace the rule by l---" r’, where r’ is a normal form of r under R.

2. (a) For every length-reducing rule l---, r in R, if is reducible by other
rules in R, then delete the rule from R. (b) For every length-preserving rule
b I-I s, if either b or s is reducible by a rule in R, then delete the rule from T.

As stated in 3, the above algorithm is a slight extension of the algorithm for
obtaining a reduced Church-Rosser system; for a proof of correctness of the algo-
rithm, see [14].

5.2.1. A normal form for almost-confluent systems. Using the above
transformations, we can obtain an equivalent reduced almost-confluent system
from every almost-confluent system. Note that unlike in the case of reduced
Church-Rosser Thue systems, we do not have a unique reduced almost-confluent
Thue system because of the length-preserving component. The following theorem
tells us this property of reduced almost-confluent systems.

THEOREM 5.13. Let T1 and T be two equivalent reduced almost-confluent sys-
tems.

(a) LP(T1) and LP(T2) are equivalent; i.e., the congruence relations generated
by the length-preserving components of T1 and T2 are the same.

(b) For every rule r in R (T1), there exists a rule r’ in R (T2) such that
r I-I * r’ and vice versa.

Proof (a) Assume there exists a rule (x I-ly) in T1 such that not x I-I*y
in T.. Because T is almost-confluent, this implies that x and y are not irreduci-
ble and hence not minimal in T. Thus x and y are reducible in T also, which
contradicts the fact that T1 is reduced. This implies that LP(T1) LP(T) are
equivalent.

KNUTH-BENDIX COMPLETION PROCEDURE 1067

(b) b and s are almost-joinable in T2. Because all right-hand sides in a
reduced system are irreducible, s is irreducible both in T and T2. Since no
proper substring of b can be reducible, there must be a rule (b-- t), irreduci-
ble. Therefore s and are equivalent and irreducible, and this implies s I-I * (by
Lemma 2.2). t5

It is possible to get rid of more redundancies in the LP component of a
reduced almost-confluent Thue system to obtain an LP component that is
minimal in the following sense: For any length-preserving rule b I-I s, b and s
are not related by other length-preserving rules in LP. Thus, for any length-
preserving rule b I-I s in a reduced almost-confluent system T, if b and s are
equivalent using the remaining length-preserving rules in LP(T), then we can
delete b I-I s from LP(T).

In addition, if we assume a total ordering on strings that is an extension of the
ordering induced by the length of strings (the size and lexicographic ordering
discussed in 2 is an example of such an ordering), we can orient the length-
preserving rules also and use them as reductions for generating normal forms of
reduced almost-confluent systems. In that case, the right-hand side of every rule
in R can also be normalized with respect to the length-preserving rules. Despite
these transformations, it is still not always possible to obtain a unique reduced
almost-confluent system equivalent to a given almost-confluent system. For
example, consider the following equivalent almost-confluent systems:

T1 cbc I-I bba, cd I-I ab, db I-I bc },

T: abb I-I bba, cd I-I ab, db I-I bc }.

Both T1 and T are reduced. Even if the length-preserving rules are oriented
using the length and lexicographic ordering induced by the ordering
a < b< c < d on the alphabet, T and T remain reduced.

As shown in , 4, for Church-Rosser systems, the transformations for obtain-
ing a reduced Church-Rosser system have the Church-Rosser property; however,
for almost-confluent systems, the transformations for obtaining a reduced almost-
confluent system only have the almost-confluence property in the following sense:
Given two equivalent almost-confluent systems, the above transformations for
obtaining an equivalent reduced almost-confluent system may result in two dis-
tinct equivalent reduced almost-confluent systems. The following example illus-
trates this:

T3 cde---, ab, cde ba, ab I-I ba }.

The system T is almost-confluent but is not reduced. Two different reduced
almost-confluent systems can be obtained from T3 by applying the above transfor-
mations depending upon which of two rules, cde---’ ab or cde---’ ba, is considered
first.

5.2.2. A completion lrocedure for almost-confluence. Given a Thue system
T which is not almost-confluent, it is possible to generate from T a reduced
almost-confluent system equivalent to T, if such a system exists, by a completion
procedure which is in the spirit of the Knuth-Bendix completion procedure dis-
cussed earlier. In the test for almost-confluence, if for any pair of rules the con-
ditions are not met, i.e., the normal forms of two strings generated from the
superposition are not equivalent by the length-preserving rules, then we modify

1068 DEEPAK KAPUR AND PALIATH NARENDRAN

the system by adding a rule that ensures that the critical pair under consideration
is almost-joinable; in this way, we keep adding new rules to both R and LP com-
ponents of T whenever the need arises until the almost-confluence test is met.

Knuth-Bendix Procedure (T)"
i’= 0;
To Normalize(T);
CE CP(T0);
while CE null do
Ti+ Normalize(Ti CE);
i:= i+ 1;
CE CP(Ti)

endwhile
output(T);

Normalize(T)"
unmark all rules in T.
while T has an unmarked a rule l--,r do
T"= T- <l,r> };
< 1’, r’ > < normal_form(l, T’), normal_form(r, T’) >;
/falmost_joinable (l’, r’, T’)
then T T’
else

T’=T’U {<l’,r’> };
mark < l’, r’>

endif
endwhile
return T;

In the above procedures, the procedure CP generates all nontrivial critical
pairs (which do not reduce to normal forms equivalent by LP(T)). The pro-
cedure normal_form generates a normal form of x using the length-reducing
rules in T, whereas almost_joinable checks whether two strings are equivalent
using the length-preserving and length-reducing rules of T. If strings in a non-
trivial critical pair after normalization are of the same length, then the
corresponding rule is added to the length-preserving component of T and is sub-
sequently used to check for the almost-joinability condition. This completion
procedure to generate almost-confluent systems is thus different from other uses
of the Knuth-Bendix completion procedure discussed in the literature, because in
this case the simplification theory generated by the length-preserving rules is also
being extended; some of the new rules being generated are used as reduction
while others are used as simplifications.

The procedure discussed above is not necessarily efficient, because critical
pairs among various rules are being checked for again and again; an efficient
implementation can be designed based on a version of the procedure given in
[111,[161.

The results discussed in 5.1 can be extended to almost-confluent Thue sys-
tems. Using the techniques and proofs developed there, we can show that for a
given Thue system T, if" there exists a finite almost-confluent Thue system T’,
then the Knuth-Bendix completion procedure terminates with a reduced almost-
confluent Thue system T" equivalent to T.

KNUTH-BENDIX COMPLETION PROCEDURE 1069

Examples.

1. T {a I-I b, bab---" b}.

After the first iteration of the completion procedure, three rules are added:
baa b, aab b, and bbb--’ b. In the next iteration, three rules are added:
aaa----’ b, bba b, abb b. Subsequently, the rule aba---’ b is added, which
makes the final system almost-confluent. The result is

{a I-I b, aaa b, aab b, aba b, baa---’ b,
abb---* b, bab b, bba---" b, bbb---" b}.

2. T baa I-I aab, bab--’ a, bb---* a}

First iteration: aa a, ab I-I ba added and baa I-I aab deleted.
Second iteration: aba ab added.
After this, the system

aa a, bb--, a, bab---" a, aba ab, ab I-I ba

is almost-confluent.

6. Termination of the Knuth-Bendix procedure on parenthesized Thue
systems. Unfortunately it is undecidable whether there exists a finite Church-
Rosser Thue system equivalent to a finite Thue system T [27]. Although the
results in the previous section ensure that for Thue systems for which this ques-
tion is decided in the affirmative, the Knuth-Bendix procedure is guaranteed to
terminate, there is no way to say a priori by examining a given Thue system,
whether the Knuth-Bendix procedure will terminate. Below, we discuss a pro-
perty of Thue systems that can be checked and for which the Knuth-Bendix pro-
cedure terminates.

We define

DS (T) x i--’ * x for some li---’ ri in T}.
(The letters DS represent "derived strings.")

Two not necessarily distinct strings x and y are called nonoverlapping if and
only if there do not exist nonempty strings u, v, and w such that x u v and
y v w. This definition can be extended to a set of strings by requiring that
every pair of identical.and nonidentical strings from the set are nonoverlapping.

THEOREM. 6.1. For a Thue system T, if DS(T) is nonoverlapping, then the
Knuth-Bendix procedure will terminate, generating a reduced lex-confluent system T’
equivalent to T.

Proof Because of nonoverlapping of the left-hand sides of rules in T, all
critical pairs generated in the first iteration must be due to the lhs of some rule
being a substring of the lhs of another. These are less than the largest lhs of rules
in T in the total ordering < on strings being used. Furthermore, all critical pairs
generated can be obtained by reducing lhs’s of rules. The condition that all strings
in DS(T) are nonoverlapping implies strings in all critical pairs generated in any
iteration are < the greatest lhs in rules in T, which are finitely many. So, the
extra rules that can be generated by the Knuth-Bendix completion procedure are
only finitely many, implying that the Knuth-Bendix procedure will necessarily ter-
minate.

1070 DEEPAK KAPUR AND PALIATH NARENDRAN

A Thue system T is called parenthesized if and only if every string in 7" is
properly parenthesized with respect to "(" and ")." Some examples of
parenthesized strings are (a), (a b (c b) (b c)c), etc. This definition can be
generalized so that two arbitrary strings can be used instead of "(" and ")."

For a parenthesized Thue system T, it is obvious that DS(7") is nonoverlap-
ping, so we have

COROLLARY 6.2. For a parenthesized Thue system, tlte Knuth-Bendix completion
procedure always terminates.

Note that a term-rewriting system in which rules involve only ground terms is
parenthesized, so it has the property that all its lhs’s are nonoverlapping. So for
ground-term-rewriting systems, the Knuth-Bendix procedure always terminates
once we have an ordering on ground terms that satisfies the replacement and sub-
term properties (the analog for ground terms of the two properties of an ordering
on strings discussed in 2.1). As in parenthesized systems, critical pairs gen-
erated in the completion procedure are never going to be greater in size than the
largest (with respect to the ordering on ground terms) lhs in a ground-term-
rewriting system, and there are only finitely many such terms since the ordering
is well founded. According to Dershowitz [7], Lankford was the first to observe
that the completion procedure always terminates on ground-term-rewriting sys-
tems.

The condition stated above is a particular case of the following general condi-
tion: If the set of terms that can possibly serve as superpositions for generating
critical pairs is finite, then the Knuth-Bendix completion procedure will always
terminate, assuming that it does not abort because the two terms in a nontrivial
critical pair cannot be made into a rule.

7. Conclusions. We have introduced the notion of a reduced Thue system.
For reduced Thue systems, we have shown a number of properties. It was
proved that if there exists a Church-Rosser system equivalent to a Thue system,
then there is a unique reduced Church-Rosser Thue system equivalent to it.
Using properties of reduced Church-Rosser systems, we have developed condi-
tions under which a class of special Thue systems have equivalent finite Church-
Rosser systems.

By using the fact that finite Church-Rosser (lex-confluent) Thue systems
themselves have a canonical form, we have shown that if there exists a finite
Church-Rosser (lex-confluent) system equivalent to a finite Thue system, then
the Knuth-Bendix procedure is guaranteed to terminate with a reduced Church-
Rosser (lex-confluent) system equivalent to the original system. The proof
depends upon another crucial property, which is that all nontrivial critical pairs
generated by the Knuth-Bendix completion procedure can be oriented to give
rules; this property is easy to ensure for strings. We have also extended the com-
pletion procedure to generate reduced almost-confluent systems. This completion
procedure is different from the completion procedures discussed in the literature,
as in this case new rules are being added into the set of length-reducing rules, as
well as into the set of length-preserving rules.

In addition, we have discussed two methods for showing the termination of
the completion procedure. The first method uses the structure of the set of nor-
mal forms of a reduction system. For a class of reduction systems for which
there cannot exist an infinite ascending chain of sets of reducible strings (by an

KNUTH-BENDIX COMPLETION PROCEDURE 1071

ascending chain, we mean that for every i, S; properly contains Si+), the com-
pletion procedure would terminate because the sets of normal forms keep
decreasing in every iteration of the completion procedure. The termination of
the completion procedure on commutative Thue systems is shown using this
method.

The second method is based on the property that can be informally stated as
follows: For systems for which strings appearing in the critical pairs that can be
generated by the Knuth-Bendix completion procedure constitute a finite set, the
Knuth-Bendix procedure is guaranteed to terminate. The termination of the
Knuth-Bendix procedure for ground rewriting systems turns out to be a corollary
of this result.

To extend these results to term-rewriting systems, 1. a suitable canonical form
for term-rewriting systems needs to be developed (the results in [21] are an
attempt in that direction) and 2. orderings on terms have to be devised such that
nontrivial critical pairs generated during the Knuth-Bendix completion procedure
can always be oriented so that the Knuth-Bendix procedure does not have to be
aborted because a critical pair cannot be converted to a rule. It will also be useful
to extend the methods discussed above for showing termination of the comple-
tion procedure on term-rewriting systems. This would result in a nice characteri-
zation of a class of decidable theories.

Acknowledgments. We thank Ron Book, M.S. Krishnamoorthy, Bob
McNaughton, Dave Musser and the referees for comments and suggestions which
have improved the presentation of the paper.

REFERENCES

[1] R. BOOK, Cot[tuent and other (vpes of Thue systems. J. Assoc. Comput. Mach., 29 (Jan. 1982), pp.
171-182.

[2] ------, A note on special Thue systems with a single de.lining relation, Mathematical Systems
Theory, 16 (1983), pp. 57-60.

[3] ------, ttomogeneous Thue systems and tile Church-Rosser properO,, Discrete Mathematics, 48
(1984), pp. 137-145.

[4] R. Book Aql C. O’Duq,XIG, Testing.lbr the Church-Rosser proper(v, Theoretical Computer Sci-
ence, 16 (1981), pp. 223-229.

[5] B. BUCHEGE, AYD R. Loos, Algebraic simpli.lication, Computing Suppl, 4, Springer Verlag
(1982), pp. 11-43.

[6] N. DESHOWlTZ, Ordering.lbr term rewriting systems, Theoretical Computer Science, 17 (1982), pp.
279-301.

[7] Applications o.f the Knuth-Bendix Completion Procedure, Laboratory Operation, Aerospace
Corporation, Aerospace Report No. ATR-83(8478)-2, 15 May 1983.

[8] ------, Existence and Construction of Rewrite Systems, Laboratory Operation, Aerospace Corpora-
tion, Aerospace Report No. ATR-82(8478)-3, December 1982.

[9] S. EILEBERG AND M.P. SCttUTZENBERGER, Rational sets in commutative monoids, Journal of Alge-
bra, 13 (1969), pp. 173-191.

[10] G. HUET, Con.)quent reductions: abstract properties and applications to term rewriting systems, J. Assoc.
Comput. Mach., 27 (1980), pp. 797-821.

[11] A Complete Proof o.[" Correctness of the Knuth-Bendix Completion Algorithm, Journal of
Computer and System Sciences, 23 (1981), pp. 11-21.

[12] A. KArDr{-ROD ArqD D. KAPUt, Computing the Grobner basis o.[a polynomial ideal over integers,

Third MACSYMA Users Conference, Schenectady, NY (July 1984), pp. 436-451.

1072 DEEPAK KAPUR AND PALIATH NARENDRAN

[13] D. KAPUR, M.S. KRISHNAMOORTHY, R. MCNAUGHTON, AND P. NARENDRAN, An O(T3) algorithm for
testing the Church-Rosser property of Thue systems, to appear in Theoretical Computer Sci-
ence.

[14] D. KAPUR AND P. NARENDRAN, Almost-Confluence and Relaed Properties of Thue Systems, Report
No. 83CRD258, General Electric Corporate Research and Development, Schenectady,
NY, November, 1983.

[15] ------, A finite Thue system with a decidable word problem and without equivalent finite canonical
Thue system, Theoretical Computer Science, 35 (1985), pp. 337-344.

[16] D. KaPUR aND G. SIVaKUMaR, Experiments and archiwcture of RRL, a Rewrite Rule Laboratoo,, in
Proceedings of an NSF Workshop on the Rewrite Rule Laboratory (6-9 Sept. 1983),
General Electric Report 84GEN008, Schenectady, NY, April 1984, pp. 33-66.

[17] D.E. KNUTH aND P.B. BENDIX, Simple word problems in universal algebras, in Computational Prob-
lems in Abstract Algebras (ed. J. Leech), Pergamon Press, 1970, pp. 263-297.

[18] D.S. LaNKFORD AND G. BUTLER, Experiments with Computer Implementations of Procedures which

Often Derive Decision Algorithms for the Word Problem in Abstract Algebra, Technical
Report, MTP-7, Louisiana Tech. University, August 1980.

[19] P. LESCaNNE, Computer Experiments with the REVE Term Rewriting System Generator, Proc. 10th
ACM Symposium on Principles of Programming Languages (1983), pp. 99-68.

[20] E. Ma,,’R aND A.R. MEYER, The Complexity of the Word Problems for Commutative Semigroups and
Polynomial Ideals, MIT-LCS-TM-199, Lab. for Computer Science, MIT, Cambridge, June
1981.

[21] Y. METIVIER, About the rewriting systems produced by the Knuth-Bendix completion algorithm, Infor-
mation Processing Letters, 16 (1983), pp. 31-34.

[22] D.R. MUSSER, Abstract data type specification in the AFFIRM system, IEEE Trans. Software Engg.,
Vol. 6 (1980), pp. 24-31.

[23] ------, On proving inductive properties of abstract data types, Proc. 7th ACM Symposium on Princi-
ples of Programming Languages (1980), pp. 154-162.

[24] D.R. MUSSER AND D. KAPUR, Rewrite rule theory and abstract data type analysis, in Computer Alge-
bra: EUROCAM ’82 (ed. J. Calmet), Lecture Notes in Computer Science, Springer
Verlag, Vol. 144, (1982) pp. 77-90.

[25] P. NARENDRAN, Church-Rosser and related Thue systems, Ph.D. Dissertation, Dept. of Mathemati-
cal Sciences, Rensselaer Polytechnic Institute, Troy, NY (1984).

[26] M. NIVAT (with M. Benois), Congruences parfaites et quasi- parfaites, Seminaire Dubreil, 25
Annee (1971-1972) 7-01-09.

[27] C. O’DUNLAING Undecidable questions related to Church-Rosser Thue systems, Theoretical Com-
puter Science, 23 (1983), pp. 339-345.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

