Fuzzy sets, presheaves, and topological data analysis

Rick Jardine

University of Western Ontario

November 12, 2020

Classical definition (ca. 1965): Fuzzy sets are functions

 $\phi: X \rightarrow [0, 1].$

Given $\psi: Y \rightarrow [0, 1]$, a **morphism**

 $f : \phi \to \psi$

of fuzzy sets consists of a function $f: X \rightarrow Y$ and a relation (homotopy) $\phi \leq \psi \cdot f$ of functions taking values in [0, 1].

i.e. $\phi(x) \leq \psi(f(x))$ for all $x \in X$.

Fuzz is the category of fuzzy sets.

$[0, 1]$ is a locale ...

A locale (also frame) L is a poset with infinite joins (unions) and finite meets (intersections), in which finite meets distribute over all joins. Isbell (1972).

NB: L has a terminal object (empty meet), an initial object (empty join), and infinite meets.

A **morphism** of locales $L_1 \rightarrow L_2$ is a poset morphism which preserves meets and joins (hence preserves initial and terminal objects).

1) Any closed interval $[a, b] \subset \mathbb{R}$ (standard ordering) is a locale. $[0, \infty]$ is a locale.

The scaling isomorphism $[0, 1] \rightarrow [a, b]$, defined by

$$
t\mapsto t\cdot b+(1-t)\cdot a
$$

is an isomorphism of locales.

2) $op|X =$ open subsets of a topological space X is a locale.

- 3) The opposite poset $[a, b]^{op}$ is a locale.
- 4) $[0, \infty]^{op}$ is a locale.
- 5) Power set $P(X)$ on a set X.

Michael Barr $[1]$: A fuzzy set, over a locale L, is a function

$$
\phi:X\to L.
$$

 $\psi: Y \to L$ is another function: a **morphism** $f: \phi \to \psi$ of the corresponding fuzzy sets consists of a function $f : X \to Y$ such that

$$
\phi(x)\leq\psi(f(x))
$$

for all $x \in X$.

Fuzz(L) is the category of fuzzy sets over L .

Every locale L has a Grothendieck topology, for which the covering families of a are sets of elements $b_i \le a$ such that $\vee_i b_i = a$.

There are associated categories $Pre(L)$ and $Shv(L)$ of presheaves and sheaves, respectively.

A (set valued) \boldsymbol{p} resheaf is a contravariant functor $L^{op} \to \boldsymbol{\mathsf{Set}}.$

A sheaf is a presheaf $F: L^{op} \to \mathbf{Set}$ such that the diagram

$$
\digamma(a)\to\prod_i\ \digamma(b_i)\rightrightarrows\prod_{i,j}\ \digamma(b_i\wedge b_j)
$$

is an equalizer for all cov. families $b_i \le a$, $a \in L$ (patching condition).

Morphisms of presheaves and/or sheaves are just natural transformations. $\text{Shv}(L)$ is a full subcategory of $\text{Pre}(L)$.

Suppose $\phi: X \to L$ is a fuzzy set over a locale L, $a \in L$, and write

$$
L_{\geq a} = \{x \in L \mid x \geq a\}.
$$

Form the pullback

The assignment $T(\phi)(0_+) = *$, and

$$
a\mapsto \mathcal{T}(\phi)(a):=\phi^{-1}(L_{\geq a}),\,\, a\in L,
$$

defines a sheaf $T(\phi)$ on $L_{+} = L \sqcup \{0_{+}\}\$ (new initial elt. 0_{+}).

In effect, if $a_i \leq b$ covers b then $L_{\geq b} = \bigcap_i L_{\geq a_i}$

Given $\phi: X \rightarrow L$, the restrictions $\phi^{-1}(L_{\geq b}) \rightarrow \phi^{-1}(L_{\geq a})$ are monomorphisms for all $a \leq b$ in L, so that $T(\phi)$ is a **sheaf of monomorphisms** on L_{+} .

Mon(L_{+}) is the category of sheaves of monomorphisms on L_{+} . We have defined a functor

 $\mathcal{T}: \textsf{Fuzz}(L) \to \textsf{Mon}(L_+).$

Theorem 1 (Barr, 1986).

There is an equivalence of categories

```
T : \textsf{Fuzz}(L) \leftrightarrows \textsf{Mon}(L_+) : S
```
Write $i \in L \subset L_+$ for the original initial object of L.

Def: F a sheaf of monics on L_{+} : $F(i)$ is the **generic fibre** of F.

All restriction maps $F(a) \rightarrow F(i)$ are monomorphisms for $a \in L$.

For each $x \in L(i)$, there is a maximum (lub) b such that x is in the image of $F(b) \rightarrow F(i)$.

For $F \in \textsf{Mon}(L_+)$,

 $S(F)$: $F(i) \rightarrow L$

is the function which sends x to b .

Data clouds

X finite metric space, with a listing $X \cong \{0, 1, \ldots, N\} = N$ (finite ordinal number).

Choose R such that $d(x, y) < R$ for all $x, y \in X$.

Setting $\phi(\sigma) = \mathsf{max}_{i,j} \ \ d(x_i, x_j)$ for a simplex $\sigma = \{ {\mathsf x}_0, {\mathsf x}_1, \ldots, {\mathsf x}_k \}$ defines a fuzzy set

$$
\phi: \Delta_k^X := \Delta_k^N \to [0,R]^{op}.
$$

The assoc. sheaf of monomorphisms $\mathcal{T}(\phi)$ on $[0,R]^{op}_+$ has

$$
T(\phi)(s) = \phi^{-1}([0, R]_{\geq s}^{op}) = \phi^{-1}([0, s]) = V_s(X)_k,
$$

set of k-simplices of the **Vietoris-Rips complex** $V_s(X)$.

The simplicial sheaf of monomorphisms associated to the simplicial fuzzy set $\Delta^X \to [0,R]^{op}$ is the system of Vietoris-Rips complexes $s \mapsto V_s(X)$, $0 \leq s \leq R$. Also $V_{0_+}(X) = *$ for the initial object $0_+ \in [0, R]_+^{op}$.

A presheaf $F: L_+^{op} \to \mathbf{Set}$ such that

1) $F(0_+) = *$, and

2) all $a \leq b$ in L induce monomorphisms $F(b) \rightarrow F(a)$

is a presheaf of monomorphisms.

 $Mon_n(L_+)$ is the category of **presheaves of monomorphisms**.

Associated sheaf

Lemma 2.

Suppose that $L = [a, b]$. The covering sieves for $s \in L$ are the families of all r such that $r < s$ or such that $r < s$.

Consequence: A presheaf F on L_{+} is a sheaf if and only if $F(0) = *$ and the map

$$
\eta: F(s) \to \varprojlim_{0 \leq r < s} F(r) =: LF(s) \tag{1}
$$

is an isomorphism for all $a \in L$ with a not initial.

LF is the separated presheaf associated to F .

Lemma 3.

Suppose that $L = [a, b]$, and $F \in \mathsf{Mon}_p(L_+)$. Then F is separated, so LF is a sheaf and η : $F \rightarrow LF$ is the associated sheaf map. LF is a sheaf of monomorphisms (fuzzy set).

Colimits

Suppose E is a presheaf on L_{+} . The epi-monic factorizations of the maps $E(s) \to E(i)$ for $s \in L$ define $Im(E)(s) \subset E(i)$, with

for $s \leq t$. Set $\text{Im}(E)(0) = *$.

If $E \in \mathsf{Mon}_p(L_+)$, then all $E(s) \to \mathrm{Im}(E)(s)$ are isomorphisms.

 $Im(E)$ is a presheaf of monomorphisms, and there is a natural bijection

$$
\mathsf{hom}_{\mathsf{Mon}_p(L_+)}(\mathsf{Im}(E), F) \cong \mathsf{hom}(E, F),
$$

Corollary 4.

 $\mathsf{Mon}_p(L_+)$ and $\mathsf{Mon}(L_+) \simeq \mathsf{Fuzz}(L)$ are co-complete.

Stalks

For a sheaf F on $L=[a,b]$ and $t\in L-\{a\}$, the stalk F_t is def. by $F_t = \lim_{t < s}$ $F(s)$.

Example: X finite metric space. $s \mapsto V_s(X)$ Vietoris-Rips simplicial sheaf on $[0,R]_+^{op}$ $(d(x,y) \leq R$ for all $x, y \in X)$.

The stalk $\mathcal{V}(X)_s$ for $s\in (0,R]^{op}$ is defined by

$$
V(X)_s = \lim_{t < s} V_t(X), \text{ for std. order in } [0, R].
$$

Suppose $i : X \subset Y$ finite metric spaces, and $R > d(x, y)$ for all pairs of points $x, y \in Y$ (and X).

i induces map of simplicial sheaves $V_s(X) \to V_s(Y)$, $s \in [0, R]$.

Fact: This map is a stalkwise weak equiv. if and only if $X = Y$, because $V_s(X) = X$ and $V_s(Y) = Y$ for small s.

Local homotopy theory is **not useful** (2019).

ep-metric spaces (following Spivak (2009))

An extended pseudo-metric space (ep-metric space) (X, D) is a set X and a function $D: X \times X \rightarrow [0, \infty]$ such that

1)
$$
D(x, x) = 0
$$
,
2) $D(x, y) = D(y, x)$,

3)
$$
D(x, z) \le D(x, y) + D(y, z)
$$
.

- Can have distinct x, y such that $D(x, y) = 0$ ("pseudo").
- Can have u, v such that $D(u, v) = \infty$ ("extended").

Every metric space (Y, d) is an ep-metric space via composition

$$
Y\times Y\xrightarrow{d}[0,\infty)\subset [0,\infty].
$$

A **morphism** $f : (X, d_X) \rightarrow (Y, d_Y)$ of ep-metric spaces is a function $f : X \rightarrow Y$ such that

 $d_Y(f(x), f(y)) \leq d_X(x, y)$ (compresses distance, "non-expanding").

 ep – Met is the category of ep-metric spaces and their morphisms.

Quotient construction

 (X, d) an ep-metric space and $p: X \rightarrow Y$ a surjective function. For $x, y \in Y$ set

$$
D(x,y)=\inf_{P}\sum_{i=0}^k d(x_i,y_i),
$$

"Polygonal path" P : pairs (x_i, y_i) , $0 \le i \le k$, in X with $x = p(x_0)$, $y = p(x_k)$, $p(y_i) = p(x_{i+1})$.

For $x, y \in X$, $P : x, y$ is polygonal path from $p(x)$ to $p(y)$, so $D(p(x), p(y)) \leq d(x, y)$.

Polygonal paths concatenate, so $D(x, z) \le D(x, y) + D(y, z)$. $D(x, x) = 0$ and $D(x, y) = D(y, x)$.

Quotient map $p:(X,d)\to (Y,D)$ satisfies universal property.

Example: Say $x \sim y$ if $d(x, y) = 0$. Collapse X by equiv relation.

ep – **Met** is cocomplete

1) Suppose $(X_i, d_i),\,\,i\in I$ is a set of ep-metric spaces. There is an ep-metric D on $\bigsqcup_i\ X_i$, with

$$
D(x, y) = \begin{cases} d_i(x, y) & \text{if } x, y \in X_i, \\ \infty & \text{if } x, y \text{ are in different summands.} \end{cases}
$$

 $\bigsqcup_i \ (X_i,d_i)$ is a **coproduct** in $ep-\mathsf{Met}.$ 2) Suppose given morphisms $f, g : (X, d_X) \to (Y, d_Y)$ in ep – Met. Form the set theoretic coequalizer

$$
X \xrightarrow[\text{g}]{f} Y \xrightarrow{\text{p}} Z,
$$

Then p is a surjective function, and we give Z the quotient ep-metric D.

$$
(X,d_X)\mathop{\longrightarrow}\limits_g^f(Y,d_Y)\mathop{\longrightarrow}\limits^p(Z,D)
$$

is a coequalizer in $ep - Met$.

 (X, d_X) a finite ep-metric space, $d_X : X \times X \rightarrow [0, \infty]$.

If X totally ordered (has a listing), then $V_s(X)$ has *n*-simplices $x_0 \leq x_1 \leq \cdots \leq x_n$ with $d_X(x_i,x_j) \leq s$ for all i, j.

 $V(X)$: $s \mapsto V_s(X)$, $s \in [0, \infty]$ is Vietoris-Rips system for X.

A different way: $P_s(X)$ is the poset of all subsets $\sigma \subset X$ such that $d_X(x, y) \leq s$ for all $x, y \in \sigma$.

 $P_s(X)$ is the poset of non-degenerate simplices of $V_s(X)$.

 $BP_s(X)$ is the **barycentric subdivision** of $V_s(X)$. There is a natural weak equivalence $\gamma : BP_s(X) \to V_s(X)$ and a corresponding weak equivalence of systems $BP(X) \to V(X)$.

- 1) Poset construction $BP_s(X)$ does not use an ordering on X.
- 2) $V(X)$ and $BP(X)$ are simplicial fuzzy sets over $[0,\infty]^{op}$.

Stability

Theorem 5 (Rips stability: Blumberg-Lesnick, Memoli).

Suppose $X \subset Y$ finite metric spaces, such that $d_H(X, Y) < r$. There is a homotopy commutative diagram (homotopy interleaving)

$$
P_s(X) \stackrel{\sigma}{\Rightarrow} P_{s+2r}(X)
$$

$$
i \downarrow \stackrel{\theta}{\Rightarrow} \qquad \downarrow i
$$

$$
P_s(Y) \stackrel{\sigma}{\Rightarrow} P_{s+2r}(Y)
$$

Corollary 6 (Stability for persistence invariants).

Same assumptions as Theorem 1. There are commutative diagrams

$$
H_k(V_s(X)) \stackrel{\sigma}{\Rightarrow} H_k(V_{s+2r}(X))
$$

$$
\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow
$$

$$
H_k(V_s(Y)) \stackrel{\sigma}{\Rightarrow} H_k(V_{s+2r}(Y))
$$

There is a corresponding statement for π_0 (clusters).

Sketch proof

 $y \in Y$: there is $\theta(y) \in X$ st. $d(y, \theta(y)) < r$ (from $d_H(X, Y) < r$). $x \in X$: $\theta(x) = x$.

$$
\sigma = \{y_1, \dots, y_k\} \text{ in } P_s(Y), \text{ then}
$$

$$
\sigma \cup \theta(\sigma) = \{y_1, \dots, y_k, \theta(y_1), \dots, \theta(y_k)\} \in P_{s+2r}(Y)
$$

and there are homotopies (natural transformations)

$$
\sigma \ \subseteq \ \sigma \cup \theta(\sigma) \ \supseteq \ \theta(\sigma).
$$

between poset morphisms $P_s(Y) \to P_{s+2r}(Y)$.

Rips stability II

Suppose X, Y are **finite metric spaces** and that an inclusion $i: X \subset Y$ defines a morphism of ep-metric spaces: $d_Y(i(x), i(y)) \leq d_X(x, y)$.

compression factor :
$$
m(i) = \max_{x,y \in X} \frac{d_X(x,y)}{d_Y(i(x),i(y))}
$$
.

Theorem 7.

Suppose that for all $y \in Y$ there is an $x \in X$ such that $d_Y(y, i(x)) < r$. There is a homotopy commutative diagram

$$
P_s(X) \stackrel{\sigma}{\Rightarrow} P_{m(i)(s+2r)}(X)
$$

$$
i \downarrow \qquad \qquad \theta \qquad \qquad \downarrow i
$$

$$
P_s(Y) \stackrel{\sigma}{\Rightarrow} P_{m(i)(s+2r)}(Y)
$$

Applications: Want r small, $m(i)$ close to 1.

Realization (Spivak)

 $X:[0,\infty] \to s\textbf{Set}$: a simplex of X is a morphism $\sigma: \Delta^n \to X_{\mathsf{s}}$. A morphism of simplices is a commutative diagram

$$
\Delta^m \stackrel{\theta}{\Rightarrow} \Delta^n
$$

$$
\tau \downarrow \qquad \qquad \downarrow \sigma
$$

$$
X_t \leftarrow X_s
$$

 $s \in [0, \infty]$: U_s^n is metric on $\{0, 1, \ldots, n\}$ with $d(i, j) = s$. If θ : **m** \rightarrow **n** is a poset map and $s \leq t$, then θ induces an ep-metric space map $\theta: U_t^m \to U_s^n$.

 $(\sigma:\Delta^n\to X_{\mathsf{s}})\mapsto \mathsf{U}^n_{\mathsf{s}}$ defines a functor $\boldsymbol{\Delta}/X\to e p-\mathsf{Met}.$ Then

$$
\mathbf{Re}(X) := \lim_{\Delta^n \to X_s} U_s^n
$$

is the **realization** of X .

Singular functor S

Re has a right adjoint S , called the singular functor.

 (X, d) ep-metric space: $S(X)_{s,n}$ = sequences (x_0, x_1, \ldots, x_n) with $d(x_i, x_j) \leq s$ for all i, j . ("bags of words") — piece of the nerve of the trivial groupoid on X .

The adjunction map for $V(X)$ has the form

$$
\eta: V(X) \to S(X),
$$

with $(x_0 \le x_1 \le \cdots \le x_n) \mapsto (x_0, x_1, \ldots, x_n)$ (forgets the ordering).

Theorem 8.

 (X, d) a totally ordered finite ep-metric space. Then each map

$$
\eta:V(X)_s\to S(X)_s
$$

is a weak equivalence of simplicial sets.

Proof uses simplicial approximation techniques. Show that $\mathcal{BNV}(X)_{\mathsf{s}}\to \mathcal{B}\mathcal{N}\mathsf{S}(X)_{\mathsf{s}},\, \pi: \mathsf{sd}\:\mathsf{S}(X)_{\mathsf{s}}\to \mathcal{B}\mathcal{N}\mathsf{S}(X)_{\mathsf{s}}$ are weak equivs.

UMAP algorithm (Healy-McInnes)

 $X =$ finite set.

1) Choose neighbourhood set N_x , $x \in X$. Set $U_x = \{x\} \sqcup N_x$.

2) Set $(U_x, D_x) = \vee_{y \in N_x} (\{x, y\}, d_y)$ in ep — Met. $d_y(x, y) > 0$ is a weight.

3) Extend to an ep-metric D_x on X by setting $D_x(y, z) = \infty$ if either y or z is outside of U_{γ} .

4) We have inclusions $X \subset V(X, D_x)$, $x \in X$. Form iterated pushout

$$
V(X, N) = \vee_{x \in X} V(X, D_x) \simeq \vee_X S(X, D_x).
$$

The diagram $V(X, N)$ is "the" **UMAP complex**.

5) Apply TDA machinery (e.g. π_0) to $V(X, N)$.

e.g. $N_x = k$ nearest neighbours if X is totally ordered, has metric.

Comparisons

 (X, d) is a finite totally ordered ep-metric space, with neighbourhoods $N = \{N_x, x \in X\}$. If $d_x(x, y) = d(x, y)$ for $y \in N_{x}$, $x \in X$, there is a canonical map

$$
\phi: V(X, N) = \vee_{x \in X} V(X, D_x) \to V(X)
$$

 (x, y) in X is a **neighbourhood pair** if $y \in N_x$ or $x \in N_y$.

Lemma 9.

$$
\phi_*:\pi_0V(X,N)_s\to\pi_0V(X)_s
$$

is a bijection if all 1-simplices of $V(X)_{s}$ are nbhd pairs.

Example: $N_x = k$ -nearest neighbours, $r_x = \max_{y \in N_x} d(x, y)$, $s < r_x$ for all x.

Comparisons II

Fact: $V(X, N)_{\infty}$ is a big wedge of circles (connected).

 $V(X, d_X) = \Delta^X = \Delta^M$ for $M + 1 = |X|$, so $V(X, N)_{\infty} = \vee_M \Delta^M$ $(M + 1$ summands).

Define $\mathsf{M} \to \Delta^{\mathcal{M}} = \mathcal{X}_i$, $0 \leq i \leq k$, $\mathcal{Y} = \vee_{\mathcal{N}} \mathcal{X}_i$ (iterated pushout). Each X_i is contractible, so $Y/X_0 \simeq Y$, and

$$
Y/X_0 = (X_1/M) \vee \cdots \vee (X_k/M) = (\Delta^M/M) \vee \cdots \vee (\Delta^M/M)
$$

and each

$$
\Delta^M/\mathbf{M} \simeq \Sigma \mathbf{M} \simeq \Sigma (S^0 \vee \cdots \vee S^0) \ (M \text{ summands, } \mathbf{M} \text{ pointed by } 0)
$$

$$
\simeq S^1 \vee \cdots \vee S^1.
$$

Consequence: $V(X, N)_{\infty} \simeq \vee_{i=1}^{M^2} S^1$ $(M = |X|-1)$.

Given x, y in a finite ep-metric space (X, d) , say that x, y are in the same **global component** if $d(x, y) < \infty$.

Comparisons: $i : X \subset Y$ inclusion of finite sets.

Given neighbourhood sets $N_x, x \in X$, $N'_y, y \in Y$.

Suppose that $\mathcal{N}_{\mathsf{x}} \subset \mathcal{N}'_{i(\mathsf{x})},\ d_{\mathsf{x}}(\mathsf{x},\mathsf{y}) \geq d_{i(\mathsf{x})}(i(\mathsf{x}),i(\mathsf{y}))$ for all $v \in N_{r}$.

$$
(X, D) := \vee_{x \in X} (X, D_x)
$$
, also (Y, D') , in ep – Met.

Have induced map $i:(X,D) \rightarrow (Y,D')$.

If E is a global component of (X, D) then $i(E) \subset F$ for some global component F of (Y, D') .

Induced map $i : (E, D) \rightarrow (F, D')$ has a compression factor $m(i)$.

Stability for UMAP

Theorem 10.

Suppose for all $y \in F$ there is an $x \in E$ such that $D'(y, i(x)) < r$. Then there is a homotopy interleaving

$$
P_s(E) \stackrel{\sigma}{\underset{i}{\rightarrow}} P_{m(i) \cdot (s+2r)}(E)
$$

$$
P_s(F) \stackrel{\sigma}{\underset{\sigma}{\rightarrow}} P_{m(i) \cdot (s+2r)}(F)
$$

Theorem [10](#page-27-0) follows from Theorem [7.](#page-20-0)

Lemma 11 (Excision for π_0).

 $V(X, N) \rightarrow V(X, D)$ induces a bijection

$$
\pi_0V(X,N)_s \xrightarrow{\cong} \pi_0V(X,D)_s, \ s \geq 0.
$$

Theorem $10 +$ Lemma [11:](#page-27-1) stability for clusters in the global components of $V(X, N)$.

Michael Barr.

Fuzzy set theory and topos theory. Canad. Math. Bull., 29(4):501–508, 1986.

- S. Andrew J. Blumberg and Michael Lesnick. Universality of the homotopy interleaving distance. CoRR, abs/1705.01690, 2017.
	-

J.F. Jardine.

Fuzzy sets and presheaves. Compositionality, 1:3, December 2019.

D.F. Jardine.

Metric spaces and homotopy types.

Preprint, <http://uwo.ca/math/faculty/jardine/>, 2020.

暈

Leland McInnes and John Healy.

UMAP: uniform manifold approximation and projection for dimension reduction.

CoRR, abs/1802.03426, 2018.

D.I. Spivak.

Metric realization of fuzzy simplicial sets. Preprint, 2009.