Fuzzy sets, presheaves, and topological data analysis

Rick Jardine

University of Western Ontario

November 12, 2020

Classical definition (ca. 1965): Fuzzy sets are functions

 $\phi: X \rightarrow [0, 1].$

Given $\psi: Y \rightarrow [0, 1]$, a morphism

 $f:\phi\to\psi$

of fuzzy sets consists of a function $f : X \to Y$ and a relation (homotopy) $\phi \leq \psi \cdot f$ of functions taking values in [0, 1].

i.e. $\phi(x) \leq \psi(f(x))$ for all $x \in X$.

Fuzz is the category of fuzzy sets.

 $\left[0,1\right]$ is a locale \ldots

A **locale** (also **frame**) L is a poset with infinite joins (unions) and finite meets (intersections), in which finite meets distribute over all joins. Isbell (1972).

NB: *L* has a terminal object (empty meet), an initial object (empty join), and infinite meets.

A **morphism** of locales $L_1 \rightarrow L_2$ is a poset morphism which preserves meets and joins (hence preserves initial and terminal objects).

1) Any closed interval $[a, b] \subset \mathbb{R}$ (standard ordering) is a locale. $[0, \infty]$ is a locale.

The scaling isomorphism $[0,1] \rightarrow [a,b]$, defined by

$$t\mapsto t\cdot b+(1-t)\cdot a$$

is an isomorphism of locales.

2) $op|_X = open$ subsets of a topological space X is a locale.

- 3) The opposite poset $[a, b]^{op}$ is a locale.
- 4) $[0,\infty]^{op}$ is a locale.
- 5) Power set $\mathcal{P}(X)$ on a set X.

Michael Barr [1]: A fuzzy set, over a locale L, is a function

$$\phi: X \to L.$$

 $\psi: Y \to L$ is another function: a **morphism** $f: \phi \to \psi$ of the corresponding fuzzy sets consists of a function $f: X \to Y$ such that

$$\phi(x) \leq \psi(f(x))$$

for all $x \in X$.

Fuzz(L) is the category of fuzzy sets over L.

Every locale *L* has a Grothendieck topology, for which the covering families of *a* are sets of elements $b_i \leq a$ such that $\forall_i \ b_i = a$.

There are associated categories Pre(L) and Shv(L) of presheaves and sheaves, respectively.

A (set valued) **presheaf** is a contravariant functor $L^{op} \rightarrow \mathbf{Set}$.

A **sheaf** is a presheaf $F : L^{op} \rightarrow \mathbf{Set}$ such that the diagram

$${\sf F}({\sf a}) o \prod_i \; {\sf F}(b_i)
ightarrow \prod_{i,j} \; {\sf F}(b_i \wedge b_j)$$

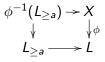
is an equalizer for all cov. families $b_i \leq a$, $a \in L$ (patching condition).

Morphisms of presheaves and/or sheaves are just natural transformations. Shv(L) is a full subcategory of Pre(L).

Suppose $\phi: X \to L$ is a fuzzy set over a locale $L, a \in L$, and write

$$L_{\geq a} = \{ x \in L \mid x \geq a \}.$$

Form the pullback



The assignment $T(\phi)(0_+) = *$, and

$$a\mapsto T(\phi)(a):=\phi^{-1}(L_{\geq a}), \ a\in L,$$

defines a sheaf $T(\phi)$ on $L_+ = L \sqcup \{0_+\}$ (new initial elt. 0_+).

In effect, if $a_i \leq b$ covers b then $L_{\geq b} = \cap_i \ L_{\geq a_i}$

Given $\phi: X \to L$, the restrictions $\phi^{-1}(L_{\geq b}) \to \phi^{-1}(L_{\geq a})$ are monomorphisms for all $a \leq b$ in L, so that $T(\phi)$ is a **sheaf of monomorphisms** on L_+ .

 $Mon(L_+)$ is the category of sheaves of monomorphisms on L_+ . We have defined a functor

 $T : \mathbf{Fuzz}(L) \to \mathbf{Mon}(L_+).$

Theorem 1 (Barr, 1986).

There is an equivalence of categories

```
T : \mathbf{Fuzz}(L) \leftrightarrows \mathbf{Mon}(L_+) : S
```

Write $i \in L \subset L_+$ for the original initial object of L.

Def: F a sheaf of monics on L_+ : F(i) is the **generic fibre** of F.

All restriction maps $F(a) \rightarrow F(i)$ are monomorphisms for $a \in L$.

For each $x \in L(i)$, there is a maximum (lub) b such that x is in the image of $F(b) \rightarrow F(i)$.

For $F \in \mathbf{Mon}(L_+)$, S(F): F(i)
ightarrow L

is the function which sends x to b.

Data clouds

X finite metric space, with a listing $X \cong \{0, 1, ..., N\} = \mathbf{N}$ (finite ordinal number).

Choose R such that d(x, y) < R for all $x, y \in X$.

Setting $\phi(\sigma) = \max_{i,j} d(x_i, x_j)$ for a simplex $\sigma = \{x_0, x_1, \dots, x_k\}$ defines a fuzzy set

$$\phi: \Delta_k^X := \Delta_k^N \to [0, R]^{op}.$$

The assoc. sheaf of monomorphisms $T(\phi)$ on $[0, R]^{op}_+$ has

$$T(\phi)(s) = \phi^{-1}([0, R]^{op}_{\geq s}) = \phi^{-1}([0, s]) = V_s(X)_k,$$

set of *k*-simplices of the **Vietoris-Rips complex** $V_s(X)$.

The simplicial sheaf of monomorphisms associated to the simplicial fuzzy set $\Delta^X \to [0, R]^{op}$ is the system of Vietoris-Rips complexes $s \mapsto V_s(X), \ 0 \le s \le R$. Also $V_{0_+}(X) = *$ for the initial object $0_+ \in [0, R]^{op}_+$. A presheaf $F: L^{op}_+ \rightarrow \mathbf{Set}$ such that

1) $F(0_+) = *$, and

2) all $a \leq b$ in L induce monomorphisms $F(b) \rightarrow F(a)$

is a presheaf of monomorphisms.

 $Mon_p(L_+)$ is the category of presheaves of monomorphisms.

Associated sheaf

Lemma 2.

Suppose that L = [a, b]. The covering sieves for $s \in L$ are the families of all r such that r < s or such that $r \leq s$.

Consequence: A presheaf F on L_+ is a sheaf if and only if F(0) = * and the map

$$\eta: F(s) \to \varprojlim_{0 < r < s} F(r) =: LF(s)$$
(1)

is an isomorphism for all $a \in L$ with a not initial.

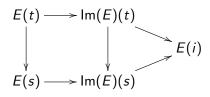
LF is the separated presheaf associated to F.

Lemma 3.

Suppose that L = [a, b], and $F \in Mon_p(L_+)$. Then F is separated, so LF is a sheaf and $\eta : F \to LF$ is the associated sheaf map. LF is a sheaf of monomorphisms (fuzzy set).

Colimits

Suppose *E* is a presheaf on L_+ . The epi-monic factorizations of the maps $E(s) \rightarrow E(i)$ for $s \in L$ define $Im(E)(s) \subset E(i)$, with



for $s \leq t$. Set Im(E)(0) = *.

If $E \in \mathbf{Mon}_{\rho}(L_+)$, then all $E(s) \to \mathrm{Im}(E)(s)$ are isomorphisms.

Im(E) is a presheaf of monomorphisms, and there is a natural bijection

$$\hom_{\mathbf{Mon}_{\rho}(L_{+})}(\mathrm{Im}(E),F)\cong\hom(E,F),$$

Corollary 4.

 $Mon_p(L_+)$ and $Mon(L_+) \simeq Fuzz(L)$ are co-complete.

Stalks

For a sheaf F on L = [a, b] and $t \in L - \{a\}$, the stalk F_t is def. by $F_t = \varinjlim_{t < s} F(s).$

Example: X finite metric space. $s \mapsto V_s(X)$ Vietoris-Rips simplicial sheaf on $[0, R]^{op}_+$ ($d(x, y) \leq R$ for all $x, y \in X$).

The stalk $V(X)_s$ for $s \in (0, R]^{op}$ is defined by

$$V(X)_s = \varinjlim_{t < s} V_t(X)$$
, for std. order in $[0, R]$.

Suppose $i: X \subset Y$ finite metric spaces, and R > d(x, y) for all pairs of points $x, y \in Y$ (and X).

i induces map of simplicial sheaves $V_s(X) \rightarrow V_s(Y)$, $s \in [0, R]$.

Fact: This map is a stalkwise weak equiv. if and only if X = Y, because $V_s(X) = X$ and $V_s(Y) = Y$ for small s.

Local homotopy theory is not useful (2019).

ep-metric spaces (following Spivak (2009))

An extended pseudo-metric space (**ep-metric space**) (X, D) is a set X and a function $D: X \times X \to [0, \infty]$ such that

- 1) D(x, x) = 0,2) D(x, y) = D(y, x),
- 3) $D(x,z) \le D(x,y) + D(y,z)$.
- Can have distinct x, y such that D(x, y) = 0 ("pseudo").
- Can have u, v such that $D(u, v) = \infty$ ("extended").

Every metric space (Y, d) is an ep-metric space via composition

$$Y \times Y \xrightarrow{d} [0,\infty) \subset [0,\infty].$$

A morphism $f : (X, d_X) \to (Y, d_Y)$ of ep-metric spaces is a function $f : X \to Y$ such that

 $d_Y(f(x), f(y)) \le d_X(x, y)$ (compresses distance, "non-expanding").

ep - Met is the category of ep-metric spaces and their morphisms.

Quotient construction

(X, d) an ep-metric space and $p: X \to Y$ a surjective function. For $x, y \in Y$ set

$$D(x,y) = \inf_{P} \sum_{i=0}^{k} d(x_i, y_i),$$

"Polygonal path" P: pairs $(x_i, y_i), 0 \le i \le k$, in X with $x = p(x_0), y = p(x_k), p(y_i) = p(x_{i+1})$.

For $x, y \in X$, P : x, y is polygonal path from p(x) to p(y), so $D(p(x), p(y)) \le d(x, y)$.

Polygonal paths concatenate, so $D(x, z) \le D(x, y) + D(y, z)$. D(x, x) = 0 and D(x, y) = D(y, x).

Quotient map p:(X,d)
ightarrow (Y,D) satisfies universal property.

Example: Say $x \sim y$ if d(x, y) = 0. Collapse X by equiv relation.

ep – Met is cocomplete

1) Suppose (X_i, d_i) , $i \in I$ is a set of ep-metric spaces. There is an ep-metric D on $\bigsqcup_i X_i$, with

$$D(x,y) = egin{cases} d_i(x,y) & ext{if } x,y \in X_i, \ \infty & ext{if } x,y ext{ are in different summands}. \end{cases}$$

 $\bigsqcup_i (X_i, d_i)$ is a **coproduct** in ep - Met. 2) Suppose given morphisms $f, g : (X, d_X) \to (Y, d_Y)$ in ep - Met. Form the set theoretic coequalizer

$$X \xrightarrow[g]{f} Y \xrightarrow{p} Z,$$

Then p is a surjective function, and we give Z the quotient ep-metric D.

$$(X, d_X) \xrightarrow{f}_{g} (Y, d_Y) \xrightarrow{p} (Z, D)$$

is a **coequalizer** in ep - Met.

 (X, d_X) a finite ep-metric space, $d_X : X \times X \to [0, \infty]$.

If X totally ordered (has a listing), then $V_s(X)$ has *n*-simplices $x_0 \le x_1 \le \cdots \le x_n$ with $d_X(x_i, x_j) \le s$ for all i, j.

 $V(X) : s \mapsto V_s(X), s \in [0, \infty]$ is Vietoris-Rips system for X.

A different way: $P_s(X)$ is the poset of all subsets $\sigma \subset X$ such that $d_X(x, y) \leq s$ for all $x, y \in \sigma$.

 $P_s(X)$ is the poset of non-degenerate simplices of $V_s(X)$.

 $BP_s(X)$ is the **barycentric subdivision** of $V_s(X)$. There is a natural weak equivalence $\gamma : BP_s(X) \to V_s(X)$ and a corresponding weak equivalence of systems $BP(X) \to V(X)$.

- 1) Poset construction $BP_s(X)$ does not use an ordering on X.
- 2) V(X) and BP(X) are simplicial fuzzy sets over $[0, \infty]^{op}$.

Stability

Theorem 5 (Rips stability: Blumberg-Lesnick, Memoli).

Suppose $X \subset Y$ finite metric spaces, such that $d_H(X, Y) < r$. There is a homotopy commutative diagram (homotopy interleaving)

 $P_{s}(X) \xrightarrow{\sigma} P_{s+2r}(X)$ $i \downarrow \xrightarrow{\theta} \qquad \qquad \forall i$ $P_{s}(Y) \xrightarrow{\sigma} P_{s+2r}(Y)$

Corollary 6 (Stability for persistence invariants).

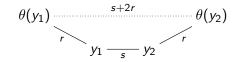
Same assumptions as Theorem 1. There are commutative diagrams

$$\begin{array}{c} H_k(V_s(X)) \xrightarrow{\sigma} H_k(V_{s+2r}(X)) \\ \downarrow & \downarrow \\ H_k(V_s(Y)) \xrightarrow{\sigma} H_k(V_{s+2r}(Y)) \end{array}$$

There is a corresponding statement for π_0 (clusters).

Sketch proof

 $y \in Y$: there is $\theta(y) \in X$ st. $d(y, \theta(y)) < r$ (from $d_H(X, Y) < r$). $x \in X$: $\theta(x) = x$.



 $\sigma = \{y_1, \dots, y_k\} \text{ in } P_s(Y), \text{ then}$ $\sigma \cup \theta(\sigma) = \{y_1, \dots, y_k, \theta(y_1), \dots, \theta(y_k)\} \in P_{s+2r}(Y)$

and there are homotopies (natural transformations)

$$\sigma \subseteq \sigma \cup \theta(\sigma) \supseteq \theta(\sigma).$$

between poset morphisms $P_s(Y) \rightarrow P_{s+2r}(Y)$.

Rips stability II

Suppose X, Y are **finite metric spaces** and that an inclusion $i : X \subset Y$ defines a morphism of ep-metric spaces: $d_Y(i(x), i(y)) \le d_X(x, y)$.

compression factor :
$$m(i) = \max_{x,y \in X} \frac{d_X(x,y)}{d_Y(i(x),i(y))}$$
.

Theorem 7.

Suppose that for all $y \in Y$ there is an $x \in X$ such that $d_Y(y, i(x)) < r$. There is a homotopy commutative diagram

Applications: Want r small, m(i) close to 1.

Realization (Spivak)

 $X : [0, \infty] \to s$ **Set**: a simplex of X is a morphism $\sigma : \Delta^n \to X_s$. A morphism of simplices is a commutative diagram

$$\begin{array}{ccc} \Delta^m \xrightarrow{\theta} \Delta^n \\ \tau & \downarrow \sigma \\ X_t \xleftarrow{} X_s \end{array}$$

 $s \in [0, \infty]$: U_s^n is metric on $\{0, 1, ..., n\}$ with d(i, j) = s. If $\theta : \mathbf{m} \to \mathbf{n}$ is a poset map and $s \le t$, then θ induces an ep-metric space map $\theta : U_t^m \to U_s^n$.

 $(\sigma:\Delta^n o X_s)\mapsto U^n_s$ defines a functor ${f \Delta}/X o ep-{f Met}.$ Then

$$\mathbf{Re}(X) := \lim_{\Delta^n \to X_s} \ U_s^n$$

is the **realization** of X.

Singular functor S

Re has a right adjoint *S*, called the **singular functor**.

(X, d) ep-metric space: $S(X)_{s,n}$ = sequences (x_0, x_1, \ldots, x_n) with $d(x_i, x_j) \le s$ for all i, j. ("bags of words") — piece of the nerve of the trivial groupoid on X.

The adjunction map for V(X) has the form

$$\eta: V(X) \to S(X),$$

with $(x_0 \le x_1 \le \cdots \le x_n) \mapsto (x_0, x_1, \dots, x_n)$ (forgets the ordering).

Theorem 8.

(X, d) a totally ordered finite ep-metric space. Then each map

$$\eta: V(X)_s o S(X)_s$$

is a weak equivalence of simplicial sets.

Proof uses simplicial approximation techniques. Show that $BNV(X)_s \rightarrow BNS(X)_s$, $\pi : sd S(X)_s \rightarrow BNS(X)_s$ are weak equivs.

UMAP algorithm (Healy-McInnes)

X = finite set.

1) Choose neighbourhood set N_x , $x \in X$. Set $U_x = \{x\} \sqcup N_x$.

2) Set $(U_x, D_x) = \bigvee_{y \in N_x} (\{x, y\}, d_y)$ in ep - Met. $d_y(x, y) > 0$ is a weight.

3) Extend to an ep-metric D_x on X by setting $D_x(y, z) = \infty$ if either y or z is outside of U_x .

4) We have inclusions $X \subset V(X, D_x)$, $x \in X$. Form iterated pushout

$$V(X, N) = \bigvee_{x \in X} V(X, D_x) \simeq \bigvee_X S(X, D_x).$$

The diagram V(X, N) is "the" **UMAP complex**.

5) Apply TDA machinery (e.g. π_0) to V(X, N).

e.g. $N_x = k$ nearest neighbours if X is totally ordered, has metric.

Comparisons

(X, d) is a finite totally ordered ep-metric space, with neighbourhoods $N = \{N_x, x \in X\}$. If $d_x(x, y) = d(x, y)$ for $y \in N_x$, $x \in X$, there is a canonical map

$$\phi: V(X, N) = \vee_{x \in X} V(X, D_x) \to V(X)$$

(x, y) in X is a **neighbourhood pair** if $y \in N_x$ or $x \in N_y$.

Lemma 9.

$$\phi_*: \pi_0 V(X, N)_s \to \pi_0 V(X)_s$$

is a bijection if all 1-simplices of $V(X)_s$ are nbhd pairs.

Example: $N_x = k$ -nearest neighbours, $r_x = \max_{y \in N_x} d(x, y)$, $s < r_x$ for all x.

Comparisons II

Fact: $V(X, N)_{\infty}$ is a big wedge of circles (connected).

 $V(X, d_X) = \Delta^X = \Delta^M$ for M + 1 = |X|, so $V(X, N)_{\infty} = \vee_M \Delta^M$ (M + 1 summands).

Define $\mathbf{M} \to \Delta^M = X_i$, $0 \le i \le k$, $Y = \bigvee_N X_i$ (iterated pushout). Each X_i is contractible, so $Y/X_0 \simeq Y$, and

$$Y/X_0 = (X_1/\mathsf{M}) \lor \cdots \lor (X_k/\mathsf{M}) = (\Delta^M/\mathsf{M}) \lor \cdots \lor (\Delta^M/\mathsf{M})$$

and each

$$\Delta^M / \mathbf{M} \simeq \Sigma \mathbf{M} \simeq \Sigma (S^0 \vee \cdots \vee S^0)$$
 (*M* summands, **M** pointed by 0)
 $\simeq S^1 \vee \cdots \vee S^1$.

Consequence: $V(X, N)_{\infty} \simeq \bigvee_{i=1}^{M^2} S^1 \ (M = |X| - 1).$

Given x, y in a finite ep-metric space (X, d), say that x, y are in the same **global component** if $d(x, y) < \infty$.

Comparisons: $i : X \subset Y$ inclusion of finite sets.

Given neighbourhood sets $N_x, x \in X$, $N'_y, y \in Y$.

Suppose that $N_x \subset N'_{i(x)}$, $d_x(x, y) \ge d_{i(x)}(i(x), i(y))$ for all $y \in N_x$.

$$(X,D) := \bigvee_{x \in X} (X, D_x)$$
, also (Y, D') , in ep – **Met**.

Have induced map $i: (X, D) \rightarrow (Y, D')$.

If E is a global component of (X, D) then $i(E) \subset F$ for some global component F of (Y, D').

Induced map $i : (E, D) \rightarrow (F, D')$ has a compression factor m(i).

Stability for UMAP

Theorem 10.

Suppose for all $y \in F$ there is an $x \in E$ such that D'(y, i(x)) < r. Then there is a homotopy interleaving

Theorem 10 follows from Theorem 7.

Lemma 11 (Excision for π_0).

 $V(X, N) \rightarrow V(X, D)$ induces a bijection

$$\pi_0 V(X, N)_s \xrightarrow{\cong} \pi_0 V(X, D)_s, \ s \ge 0.$$

Theorem 10 + Lemma 11: stability for clusters in the global components of V(X, N).

Rick Jardine

Fuzzy sets, presheaves, and topological data analysis

Michael Barr.

Fuzzy set theory and topos theory. Canad. Math. Bull., 29(4):501–508, 1986.

- Andrew J. Blumberg and Michael Lesnick. Universality of the homotopy interleaving distance. CoRR, abs/1705.01690, 2017.
- J.F. Jardine.

Fuzzy sets and presheaves. Compositionality, 1:3, December 2019.

J.F. Jardine.

Metric spaces and homotopy types.

Preprint, http://uwo.ca/math/faculty/jardine/, 2020.

Leland McInnes and John Healy.

UMAP: uniform manifold approximation and projection for dimension reduction.

CoRR, abs/1802.03426, 2018.

D.I. Spivak.

Metric realization of fuzzy simplicial sets. Preprint, 2009.