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Fuzzy sets

Classical definition (ca. 1965): Fuzzy sets are functions

φ : X → [0, 1].

Given ψ : Y → [0, 1], a morphism

f : φ→ ψ

of fuzzy sets consists of a function f : X → Y and a relation
(homotopy) φ ≤ ψ · f of functions taking values in [0, 1].

i.e. φ(x) ≤ ψ(f (x)) for all x ∈ X .

Fuzz is the category of fuzzy sets.
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Locales

[0, 1] is a locale ...

A locale (also frame) L is a poset with infinite joins (unions) and
finite meets (intersections), in which finite meets distribute over all
joins. Isbell (1972).

NB: L has a terminal object (empty meet), an initial object (empty
join), and infinite meets.

A morphism of locales L1 → L2 is a poset morphism which
preserves meets and joins (hence preserves initial and terminal
objects).

Rick Jardine Fuzzy sets, presheaves, and topological data analysis



Examples

1) Any closed interval [a, b] ⊂ R (standard ordering) is a locale.
[0,∞] is a locale.

The scaling isomorphism [0, 1]→ [a, b], defined by

t 7→ t · b + (1− t) · a

is an isomorphism of locales.

2) op|X = open subsets of a topological space X is a locale.

3) The opposite poset [a, b]op is a locale.

4) [0,∞]op is a locale.

5) Power set P(X ) on a set X .
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Barr’s definition (1986)

Michael Barr [1]: A fuzzy set, over a locale L, is a function

φ : X → L.

ψ : Y → L is another function: a morphism f : φ→ ψ of the
corresponding fuzzy sets consists of a function f : X → Y such
that

φ(x) ≤ ψ(f (x))

for all x ∈ X .

Fuzz(L) is the category of fuzzy sets over L.
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Sheaves

Every locale L has a Grothendieck topology, for which the covering
families of a are sets of elements bi ≤ a such that ∨i bi = a.

There are associated categories Pre(L) and Shv(L) of presheaves
and sheaves, respectively.

A (set valued) presheaf is a contravariant functor Lop → Set.

A sheaf is a presheaf F : Lop → Set such that the diagram

F (a)→
∏
i

F (bi ) ⇒
∏
i ,j

F (bi ∧ bj)

is an equalizer for all cov. families bi ≤ a, a ∈ L (patching
condition).

Morphisms of presheaves and/or sheaves are just natural
transformations. Shv(L) is a full subcategory of Pre(L).
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Fuzzy sets beget sheaves

Suppose φ : X → L is a fuzzy set over a locale L, a ∈ L, and write

L≥a = {x ∈ L | x ≥ a}.

Form the pullback

φ−1(L≥a) //

��

X
φ��

L≥a // L

The assignment T (φ)(0+) = ∗, and

a 7→ T (φ)(a) := φ−1(L≥a), a ∈ L,

defines a sheaf T (φ) on L+ = L t {0+} (new initial elt. 0+).

In effect, if ai ≤ b covers b then L≥b = ∩i L≥ai
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Sheaves of monomorphisms

Given φ : X → L, the restrictions φ−1(L≥b)→ φ−1(L≥a) are
monomorphisms for all a ≤ b in L, so that T (φ) is a sheaf of
monomorphisms on L+.

Mon(L+) is the category of sheaves of monomorphisms on L+.

We have defined a functor

T : Fuzz(L)→Mon(L+).

Theorem 1 (Barr, 1986).

There is an equivalence of categories

T : Fuzz(L) � Mon(L+) : S

Rick Jardine Fuzzy sets, presheaves, and topological data analysis



Sheaves beget fuzzy sets

Write i ∈ L ⊂ L+ for the original initial object of L.

Def: F a sheaf of monics on L+: F (i) is the generic fibre of F .

All restriction maps F (a)→ F (i) are monomorphisms for a ∈ L.

For each x ∈ L(i), there is a maximum (lub) b such that x is in
the image of F (b)→ F (i).

For F ∈Mon(L+),
S(F ) : F (i)→ L

is the function which sends x to b.
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Data clouds

X finite metric space, with a listing X ∼= {0, 1, . . . ,N} = N (finite
ordinal number).

Choose R such that d(x , y) < R for all x , y ∈ X .

Setting φ(σ) = maxi ,j d(xi , xj) for a simplex σ = {x0, x1, . . . , xk}
defines a fuzzy set

φ : ∆X
k := ∆N

k → [0,R]op.

The assoc. sheaf of monomorphisms T (φ) on [0,R]op+ has

T (φ)(s) = φ−1([0,R]op≥s) = φ−1([0, s]) = Vs(X )k ,

set of k-simplices of the Vietoris-Rips complex Vs(X ).

The simplicial sheaf of monomorphisms associated to the simplicial
fuzzy set ∆X → [0,R]op is the system of Vietoris-Rips complexes
s 7→ Vs(X ), 0 ≤ s ≤ R.

Also V0+(X ) = ∗ for the initial object 0+ ∈ [0,R]op+ .
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Presheaves of monomorphisms

A presheaf F : Lop
+ → Set such that

1) F (0+) = ∗, and

2) all a ≤ b in L induce monomorphisms F (b)→ F (a)

is a presheaf of monomorphisms.

Monp(L+) is the category of presheaves of monomorphisms.
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Associated sheaf

Lemma 2.

Suppose that L = [a, b]. The covering sieves for s ∈ L are the
families of all r such that r < s or such that r ≤ s.

Consequence: A presheaf F on L+ is a sheaf if and only if
F (0) = ∗ and the map

η : F (s)→ lim←−
0<r<s

F (r) =: LF (s) (1)

is an isomorphism for all a ∈ L with a not initial.

LF is the separated presheaf associated to F .

Lemma 3.

Suppose that L = [a, b], and F ∈Monp(L+). Then F is separated,
so LF is a sheaf and η : F → LF is the associated sheaf map. LF
is a sheaf of monomorphisms (fuzzy set).
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Colimits

Suppose E is a presheaf on L+. The epi-monic factorizations of
the maps E (s)→ E (i) for s ∈ L define Im(E )(s) ⊂ E (i), with

E (t) //

��

Im(E )(t)

��

((
E (i)

E (s) // Im(E )(s)

66

for s ≤ t. Set Im(E )(0) = ∗.
If E ∈Monp(L+), then all E (s)→ Im(E )(s) are isomorphisms.

Im(E ) is a presheaf of monomorphisms, and there is a natural
bijection

homMonp(L+)(Im(E ),F ) ∼= hom(E ,F ),

Corollary 4.

Monp(L+) and Mon(L+) ' Fuzz(L) are co-complete.
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Stalks

For a sheaf F on L = [a, b] and t ∈ L− {a}, the stalk Ft is def. by

Ft = lim−→
t<s

F (s).

Example: X finite metric space. s 7→ Vs(X ) Vietoris-Rips
simplicial sheaf on [0,R]op+ (d(x , y) ≤ R for all x , y ∈ X ).

The stalk V (X )s for s ∈ (0,R]op is defined by

V (X )s = lim−→
t<s

Vt(X ), for std. order in [0,R].

Suppose i : X ⊂ Y finite metric spaces, and R > d(x , y) for all
pairs of points x , y ∈ Y (and X ).

i induces map of simplicial sheaves Vs(X )→ Vs(Y ), s ∈ [0,R].

Fact: This map is a stalkwise weak equiv. if and only if X = Y ,
because Vs(X ) = X and Vs(Y ) = Y for small s.

Local homotopy theory is not useful (2019).
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ep-metric spaces (following Spivak (2009))

An extended pseudo-metric space (ep-metric space) (X ,D) is a
set X and a function D : X × X → [0,∞] such that

1) D(x , x) = 0,

2) D(x , y) = D(y , x),

3) D(x , z) ≤ D(x , y) + D(y , z).

• Can have distinct x , y such that D(x , y) = 0 (“pseudo”).
• Can have u, v such that D(u, v) =∞ (“extended”).

Every metric space (Y , d) is an ep-metric space via composition

Y × Y
d−→ [0,∞) ⊂ [0,∞].

A morphism f : (X , dX )→ (Y , dY ) of ep-metric spaces is a
function f : X → Y such that

dY (f (x), f (y)) ≤ dX (x , y) (compresses distance, “non-expanding”).

ep −Met is the category of ep-metric spaces and their morphisms.
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Quotient construction

(X , d) an ep-metric space and p : X → Y a surjective function.

For x , y ∈ Y set

D(x , y) = inf
P

k∑
i=0

d(xi , yi ),

“Polygonal path” P : pairs (xi , yi ), 0 ≤ i ≤ k , in X with
x = p(x0), y = p(xk), p(yi ) = p(xi+1).

For x , y ∈ X , P : x , y is polygonal path from p(x) to p(y), so
D(p(x), p(y)) ≤ d(x , y).

Polygonal paths concatenate, so D(x , z) ≤ D(x , y) + D(y , z).

D(x , x) = 0 and D(x , y) = D(y , x).

Quotient map p : (X , d)→ (Y ,D) satisfies universal property.

Example: Say x ∼ y if d(x , y) = 0. Collapse X by equiv relation.
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ep −Met is cocomplete

1) Suppose (Xi , di ), i ∈ I is a set of ep-metric spaces. There is an
ep-metric D on

⊔
i Xi , with

D(x , y) =

{
di (x , y) if x , y ∈ Xi ,

∞ if x , y are in different summands.⊔
i (Xi , di ) is a coproduct in ep −Met.

2) Suppose given morphisms f , g : (X , dX )→ (Y , dY ) in
ep −Met. Form the set theoretic coequalizer

X
f //
g
// Y

p // Z ,

Then p is a surjective function, and we give Z the quotient
ep-metric D.

(X , dX )
f //
g
// (Y , dY )

p // (Z ,D)

is a coequalizer in ep −Met.
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Vietoris-Rips complex

(X , dX ) a finite ep-metric space, dX : X × X → [0,∞].

If X totally ordered (has a listing), then Vs(X ) has n-simplices
x0 ≤ x1 ≤ · · · ≤ xn with dX (xi , xj) ≤ s for all i , j .

V (X ) : s 7→ Vs(X ), s ∈ [0,∞] is Vietoris-Rips system for X .

A different way: Ps(X ) is the poset of all subsets σ ⊂ X such that
dX (x , y) ≤ s for all x , y ∈ σ.

Ps(X ) is the poset of non-degenerate simplices of Vs(X ).

BPs(X ) is the barycentric subdivision of Vs(X ). There is a
natural weak equivalence γ : BPs(X )→ Vs(X ) and a
corresponding weak equivalence of systems BP(X )→ V (X ).

1) Poset construction BPs(X ) does not use an ordering on X .

2) V (X ) and BP(X ) are simplicial fuzzy sets over [0,∞]op.
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Stability

Theorem 5 (Rips stability: Blumberg-Lesnick, Memoli).

Suppose X ⊂ Y finite metric spaces, such that dH(X ,Y ) < r .
There is a homotopy commutative diagram (homotopy
interleaving)

Ps(X )
σ //

i ��

Ps+2r (X )
i��

Ps(Y ) σ
//

θ
77

Ps+2r (Y )

Corollary 6 (Stability for persistence invariants).

Same assumptions as Theorem 1. There are commutative diagrams

Hk(Vs(X ))
σ //

i ��

Hk(Vs+2r (X ))
i��

Hk(Vs(Y )) σ
//

θ
55

Hk(Vs+2r (Y ))

There is a corresponding statement for π0 (clusters).
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Sketch proof

y ∈ Y : there is θ(y) ∈ X st. d(y , θ(y)) < r (from dH(X ,Y ) < r).
x ∈ X : θ(x) = x .

θ(y1)
s+2r

θ(y2)

y1

r

s y2

r

σ = {y1, . . . , yk} in Ps(Y ), then

σ ∪ θ(σ) = {y1, . . . , yk , θ(y1), . . . , θ(yk)} ∈ Ps+2r (Y )

and there are homotopies (natural transformations)

σ ⊆ σ ∪ θ(σ) ⊇ θ(σ).

between poset morphisms Ps(Y )→ Ps+2r (Y ).
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Rips stability II

Suppose X ,Y are finite metric spaces and that an inclusion
i : X ⊂ Y defines a morphism of ep-metric spaces:
dY (i(x), i(y)) ≤ dX (x , y).

compression factor : m(i) = max
x ,y∈X

dX (x , y)

dY (i(x), i(y))
.

Theorem 7.

Suppose that for all y ∈ Y there is an x ∈ X such that
dY (y , i(x)) < r . There is a homotopy commutative diagram

Ps(X )
σ //

i ��

Pm(i)(s+2r)(X )

i��
Ps(Y ) σ

//

θ
66

Pm(i)(s+2r)(Y )

Applications: Want r small, m(i) close to 1.
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Realization (Spivak)

X : [0,∞]→ sSet: a simplex of X is a morphism σ : ∆n → Xs .

A morphism of simplices is a commutative diagram

∆m θ //

τ ��

∆n

σ��
Xt Xs
oo

s ∈ [0,∞]: Un
s is metric on {0, 1, . . . , n} with d(i , j) = s.

If θ : m→ n is a poset map and s ≤ t, then θ induces an
ep-metric space map θ : Um

t → Un
s .

(σ : ∆n → Xs) 7→ Un
s defines a functor ∆/X → ep −Met. Then

Re(X ) := lim−→
∆n→Xs

Un
s

is the realization of X .
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Singular functor S

Re has a right adjoint S , called the singular functor.

(X , d) ep-metric space: S(X )s,n = sequences (x0, x1, . . . , xn) with
d(xi , xj) ≤ s for all i , j . (“bags of words”) — piece of the nerve of
the trivial groupoid on X .

The adjunction map for V (X ) has the form

η : V (X )→ S(X ),

with (x0 ≤ x1 ≤ · · · ≤ xn) 7→ (x0, x1, . . . , xn) (forgets the ordering).

Theorem 8.

(X , d) a totally ordered finite ep-metric space. Then each map

η : V (X )s → S(X )s

is a weak equivalence of simplicial sets.

Proof uses simplicial approximation techniques. Show that
BNV (X )s → BNS(X )s , π : sd S(X )s → BNS(X )s are weak equivs.
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UMAP algorithm (Healy-McInnes)

X = finite set.

1) Choose neighbourhood set Nx , x ∈ X . Set Ux = {x} t Nx .

2) Set (Ux ,Dx) = ∨y∈Nx ({x , y}, dy ) in ep −Met. dy (x , y) > 0 is
a weight.

3) Extend to an ep-metric Dx on X by setting Dx(y , z) =∞ if
either y or z is outside of Ux .

4) We have inclusions X ⊂ V (X ,Dx), x ∈ X . Form iterated
pushout

V (X ,N) = ∨x∈X V (X ,Dx) ' ∨X S(X ,Dx).

The diagram V (X ,N) is “the” UMAP complex.

5) Apply TDA machinery (e.g. π0) to V (X ,N).

e.g. Nx = k nearest neighbours if X is totally ordered, has metric.
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Comparisons

(X , d) is a finite totally ordered ep-metric space, with
neighbourhoods N = {Nx , x ∈ X}. If dx(x , y) = d(x , y) for
y ∈ Nx , x ∈ X , there is a canonical map

φ : V (X ,N) = ∨x∈X V (X ,Dx)→ V (X )

(x , y) in X is a neighbourhood pair if y ∈ Nx or x ∈ Ny .

Lemma 9.

φ∗ : π0V (X ,N)s → π0V (X )s

is a bijection if all 1-simplices of V (X )s are nbhd pairs.

Example: Nx = k-nearest neighbours, rx = maxy∈Nx d(x , y),
s < rx for all x .
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Comparisons II

Fact: V (X ,N)∞ is a big wedge of circles (connected).

V (X , dX ) = ∆X = ∆M for M + 1 = |X |, so V (X ,N)∞ = ∨M ∆M

(M + 1 summands).

Define M→ ∆M = Xi , 0 ≤ i ≤ k , Y = ∨N Xi (iterated pushout).

Each Xi is contractible, so Y /X0 ' Y , and

Y /X0 = (X1/M) ∨ · · · ∨ (Xk/M) = (∆M/M) ∨ · · · ∨ (∆M/M)

and each

∆M/M ' ΣM ' Σ(S0 ∨ · · · ∨ S0) (M summands, M pointed by 0)

' S1 ∨ · · · ∨ S1.

Consequence: V (X ,N)∞ ' ∨M
2

i=1 S1 (M = |X | − 1).
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Global components

Given x , y in a finite ep-metric space (X , d), say that x , y are in
the same global component if d(x , y) <∞.

Comparisons: i : X ⊂ Y inclusion of finite sets.

Given neighbourhood sets Nx , x ∈ X , N ′y , y ∈ Y .

Suppose that Nx ⊂ N ′i(x), dx(x , y) ≥ di(x)(i(x), i(y)) for all
y ∈ Nx .

(X ,D) := ∨x∈X (X ,Dx), also (Y ,D ′), in ep −Met.

Have induced map i : (X ,D)→ (Y ,D ′).

If E is a global component of (X ,D) then i(E ) ⊂ F for some
global component F of (Y ,D ′).

Induced map i : (E ,D)→ (F ,D ′) has a compression factor m(i).
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Stability for UMAP

Theorem 10.

Suppose for all y ∈ F there is an x ∈ E such that D ′(y , i(x)) < r .
Then there is a homotopy interleaving

Ps(E )
σ //

i ��

Pm(i)·(s+2r)(E )

i��
Ps(F ) σ

//

θ 66

Pm(i)·(s+2r)(F )

Theorem 10 follows from Theorem 7.

Lemma 11 (Excision for π0).

V (X ,N)→ V (X ,D) induces a bijection

π0V (X ,N)s
∼=−→ π0V (X ,D)s , s ≥ 0.

Theorem 10 + Lemma 11: stability for clusters in the global
components of V (X ,N).
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