
ISBELL DUALITY

JOHN C. BAEZ

Mathematicians love dualities. The dual of a vector space V is the vector space V ∗ of linear maps
from V to the ground field. Any linear map f : V → W between vector spaces gives a linear map
going the other way between their duals, f∗ : W ∗ → V ∗, given by

f∗(`)(v) = `(f(v)), ∀v ∈ V, ` ∈W ∗.

Composition gets turned around:

(fg)∗ = g∗f∗.

Furthermore, there is always a linear map

i : V → V ∗∗

given by

i(v)(`) = `(v) ∀v ∈ V, ` ∈ V ∗,

and when V is finite-dimensional this is an isomorphism. So, for finite-dimensional vector spaces,
duality is like flipping a coin upside down: when you do it twice, you get back where we started—at
least up to isomorphism.

Dualities are useful because they let you view the same situation in two different ways. Often
dualities give an interesting description of the opposite of a familiar category C. This is the category
Cop with the same objects as C, but where a morphism f : X → Y is defined to be a morphism
f : Y → X in C, and the order of composition is reversed.

Some dualities show a category is equivalent to its own opposite. For example, duality for vector
spaces can be used to show the category of finite-dimensional vector spaces over any field is equivalent
to its opposite. We’re secretly using this whenever we take the transpose of a matrix. Similarly,
Pontryagin duality says the category of locally compact abelian groups is equivalent to its own
opposite. This underlies the Fourier transform.

More commonly, however, a category of mathematical objects is not equivalent to its opposite,
and a duality relates two different categories. The opposite of a category of spaces is typically a
category of commutative rings or algebras. For example, Gelfand–Naimark duality says the opposite
of category of commutative C∗-algebras is the category of compact Hausdorff spaces. In fact, to
make the duality between spaces and commutative rings as nice as possible, Grothendieck defined a
category of spaces called ‘affine schemes’ to be the opposite of category of commutative rings.

There are also dualities within category theory itself. The opposite of a category is itself a kind
of a dual, and taking the opposite twice gives you back a category equivalent—actually equal—to
the one you started with:

(Cop)op ' C.

But there is a subtler and very beautiful duality in category theory called ‘Isbell duality’.
First, there is a map from any category C to the category [Cop,Set], where objects are functors

from Cop to the category of sets and morphisms are natural transformations. This map takes any
object X ∈ C to the functor

hom(−, X) : Cop → Set
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which sends any object A ∈ C to the set hom(A,X) of all morphisms from A to X. This map is
called the Yoneda embedding, and is itself a functor:

y : C → [Cop,Set]
X 7→ hom(−, X).

The Yoneda embedding is fundamental in category theory. Philosophically it says that an object
can be known by the behavior of the morphisms out of it. It takes time to learn how to use it as a
practical tool, but this is nicely explained in modern textbooks [3, 5]. One insight is this: just as we
often take a set and form the vector space with that set as basis, it is often useful to treat a category
C as sitting inside the larger category [Cop,Set]. The reason is that [Cop,Set] has ‘colimits’, which
are analogous to linear combinations in a vector space. For example, we can sum F,G ∈ [Cop,Set]
as follows:

(F + G)(X) = F (X) + G(X) ∀X ∈ C

where the sum at right is the usual disjoint union of sets. In fact [Cop,Set] is the free category with
colimits on the category C.

But this whole story has a dual version! An object can also be known by the behavior of morphisms
into it. This fact is captured by the co-Yoneda embedding:

z : C → [C,Set]op

X 7→ hom(X,−).

The concept dual to colimit is ‘limit’: just as colimits generalize sums, limits generalize products.
Unsurprisingly, it turns out that [C,Set]op is the free category with limits on the category C.

In 1960, Isbell [2] noticed a wonderful link between the Yoneda and co-Yoneda embeddings, which
has subsequently been clarified by many authors, as reviewed in [1]. Any functor F : Cop → Set has
an Isbell conjugate F ∗ : C→ Set, given by

F ∗(X) = hom(F, y(X)).

Similarly, any functor G : C→ Set has an Isbell conjugate G∗ : Cop → Set given by

G∗(X) = hom(z(X), G).

These two versions of Isbell conjugate give functors going back and forth like this:

[Cop,Set] [C,Set]op

∗

∗
But these two functors are typically not inverses, not even up to natural isomorphism! Instead, they
are ‘adjoints’, meaning that hom(F ∗, G) and hom(F,G∗) are naturally isomorphic for F ∈ [Cop,Set]
and G ∈ [C,Set]op.

This sets the stage for a panoply of further developments [1]: for example, the study of functors
F : Cop → Set that are sent to themselves, at least up to isomorphism, when we take their Isbell
conjugate twice. But while applications of Isbell duality to posets [4] and metric spaces [6] have been
studied in depth, it seems this jewel of category theory still remains to be put to full use. Perhaps
one problem is simply that Isbell duality is not sufficiently well-known.
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