BIDIRECTIONAL COMPOSITIONALITY IN INFERENCE AND STOCHASTIC OPTIMIZATION

Moritz Schauer

May, 2022

Chalmers University of Technology and University of Gothenburg. With Frank van der Meulen (TU Delft)

Illustration: Markov chain

Simple Markov chain X_0, X_1, \ldots, X_s taking values in finite sets $E_s = \{1, \ldots, n_s\}$. Starting distribution as row vector q_0 :

 $q_0[,i] = P(X_0 = i)$ probability of starting in state *i*

A transition *matrix* p_s (rows sum to 1) for step s = 1, 2, ...:

 $p_s[i,j] = \mathbf{P}(X_s = j \mid X_{s-1} = i) \quad \text{probability to move to } j \text{ if in } i$

Marginal distributions q_s after 0, 1, 2,... steps:

 $q_0, \quad q_1 := q_0 p_1, \quad q_2 := q_0 p_1 p_2, \dots$

Conditional probability to end in $X_t = l$ after starting from $X_s = i$:

$$h_s[i,] = (p_{s+1} \dots p_t)[i,l]$$

Illustration: Bayes

Observe $X_t = l$. (Marginal) posterior $X_s \mid X_t = l, s < t$ $P(X_s = i \mid X_t = l) = \frac{P(X_s = i)P(X_t = l \mid X_s = i)}{const}$ $= \frac{q_s[,i]h_s[i,]}{q_sh_s}$

with

$$q_0 p_1 \dots p_s =: q_s$$

 $h_s := p_{s+1} \dots p_t h_t$

and

$$h_t[i,] = P(X_t = i \mid X_t = l) = \begin{cases} 0 & i \neq l \\ 1 & i = l \end{cases}$$

Defining

$$\pi_s[,j] = \mathcal{P}(X_s = j \mid X_t = l)$$

we get an evolution for the conditional

$$\pi_{s}[,j] = \sum_{i} \pi_{s-1}[,i] \underbrace{\frac{h_{s}[j,]p_{s}[i,j]}{(p_{s}h_{s})[i,]}}_{=:p_{s}^{*}[i,j]}$$

or

$$\pi_s = \pi_{s-1} p_s^\star$$

where p_s^{\star} is again a stochastic matrix.

Bidirectional machinery

Consuming a column vector h and a row vector π to produce kh and πp^{\star}

 $ph \xleftarrow{p} h$ $\pi \xrightarrow{p^{\star}} \pi p^{\star}$

where

$$(\pi p^{\star})[,j] = \sum_{i} \pi[,i] \frac{h[j,]p[i,j]}{(ph)[i,]}$$

```
sampled(rng, x, p) = rng, sample(rng, weights(p[x,:]))
1
^{2}
3
    function generate(rng, x, ps)
        xs = [x]
4
        for p in ps
5
             rng, x = sampled(rng, x, p)
6
             push!(xs, x)
7
        end
8
        return xs
9
10
    end
    xs = generate(rng, x0, ps)
11
```

```
function backward(p, h)
1
       ph = p*h
2
        m = ph, h # needed in forward
3
        return m, ph
4
    end
5
6
    function forward(rng, x, p, m)
7
        ph, h = m # from backward
8
        pstarx = [p[x,j]*h[j]/ph[j] for j in 1:d]
9
        rng, sample(rng, weights(pstarx))
10
11
    end
                                         2
```

```
function htransformed(rng, x, ps, h)
 1
         xs = [x]
 2
         ms = []
3
        for p in reverse(ps)
4
             m, h = backward(p, h)
5
             pushfirst!(ms, m)
7
         end
         for (p, m) in zip(ps, ms)
8
             rng, x = forward(rng, x, p, m)
9
             push!(xs, x)
10
         end
11
         return xs
12
    end
13
    h = ps[end][:, y]
14
    posterior = htransformed(rng, x0, ps[1:end-1], h)
15
                                          3
```

Contents

Basics

Actions, densities, Bayes

 $h\mbox{-}transform$ as variational optimization

Bidirectionality of the h-transform

Optics

Guiding a process / concessions

Optimal transport

Continuous-time guided processes

Large deviations

Basics

Actions, densities, Bayes

h-transform as variational optimization

Bidirectionality of the h-transform

Optics

Guiding a process / concessions

Optimal transport

Continuous-time guided processes

Large deviations

Objects in BORELSTOCH are standard Borel measure spaces $S = (E, \mathcal{B})$, $S' = (E', \mathcal{B}')$ (spaces equipped with σ -fields). $S \otimes S' = (E \times E', \mathcal{B} \otimes \mathcal{B}')$ defines a tensor product.

Take $I=(1,\{\varnothing,\{1\}\})$ the single element measure space to be formal unit of the tensor product \otimes

$$I\otimes S=S$$

Arrows

$$p \colon S \twoheadrightarrow S'$$

in BORELSTOCH are Markov kernels $p: E \times \mathcal{B}' \to [0,1]$ such that

 $p(x, \cdot)$ is a distribution parametrised by $x \in E$,

Familiar example of a Markov kernel:

$$p(x, A) = \int_{A} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y-x)^{2}} dy$$

 $p(x, \cdot)$ roughly corresponds to the (Julia-) code x -> Normal(x, 1).

Parallel composition of arrows $p \colon S \twoheadrightarrow T$, $p' \colon S' \twoheadrightarrow T'$

is by the tensor product

$$(p \otimes p')((x, x'), \mathrm{d}x \times \mathrm{d}y') = p(x, \mathrm{d}y)p'(x', \mathrm{d}y').$$

Composition

Sequential composition of $p\colon S\twoheadrightarrow T$, $q\colon T\twoheadrightarrow U$

by Chapman-Kolmogorov

$$pq: S \to U$$
$$(pq)(x, dz) = \int_{y} q(y, dz) p(x, dy)$$

with identity $\operatorname{id}_S \colon S \twoheadrightarrow S$, $\operatorname{id}_S(x, \mathrm{d}y) = \delta_x(\mathrm{d}y)$ (Dirac).

Joint laws

Model: $S \xrightarrow{p} T \xrightarrow{q} U$.

The Markov kernel

$$p \cdot q \colon S \to T \otimes U$$
$$(p \cdot q)(x, dy \times dz) := p(x, dy)q(y, dz)$$

represents the joint distribution on $T\otimes U$ given $x\in S$

 $p \cdot q = p\Delta(\mathrm{id}_T \otimes q)$ with duplication kernel $\Delta \colon T \to T \otimes T$ with $\Delta(x, \mathrm{d}y \times \mathrm{d}z) = \delta_x(\mathrm{d}y)\delta_x(\mathrm{d}z).$

Basics

Actions, densities, Bayes

h-transform as variational optimization

Bidirectionality of the *h*-transform

Optics

Guiding a process / concessions

Optimal transport

Continuous-time guided processes

Large deviations

A Markov kernel $p: S \rightarrow T$.

Distributions π on S compose with p as

$$(\pi p)(\mathrm{d}y) = \int_x p(x,\mathrm{d}y)\pi(\mathrm{d}x)$$
 (Push forward)

Distributions can be identified with Markov kernels $q\colon I\twoheadrightarrow S$ setting $\pi(\cdot)=q(1,\cdot).$

When taking Markov kernels as maps $F(p): \mathcal{P}(E) \to \mathcal{P}(E')$ acting on sets of distributions $(\mathcal{P}(E), \otimes)$

$$(\pi\otimes\pi')(p\otimes p')=(\pi p)\otimes(\pi'p')$$

A Markov kernel $p: S \rightarrow T$.

Effects or likelihoods i.e. positive random variables h on T

$$(ph)(x) = \int_{y} h(y)p(x, \mathrm{d}y)$$
 (Pullback)

Dual pairing / scalar product of measures and effects

$$\pi h = \int_x h(x)\pi(\mathrm{d}x) = \mathbb{E}_{\pi}h$$

Absolute continuity $q \ll p$ of two measures $p(A) = 0 \Rightarrow q(A) = 0$. For two probability measures on $S = (E, \mathcal{B})$ this is equivalent to that q has a p-density $\frac{dq}{dp} : E \to [0, \infty)$

$$q(A) = \int_A \frac{\mathrm{d}q}{\mathrm{d}p} \mathrm{d}p \quad \text{ or } \quad q = \frac{\mathrm{d}q}{\mathrm{d}p} \, \boldsymbol{.} \, p$$

Example: $f \cdot \lambda$ with $f(y) = \frac{1}{\sqrt{2\pi}} \exp(-(y-x)^2/2)$ and λ the Lebesgue measure defines the standard normal distribution with mean x.

(

Give $I \xrightarrow{p} S \xrightarrow{q} T$ with $q(x, \cdot) \ll \lambda$ dominated by a reference measure. Also pair of variables $(X, Y) \colon (\Omega, \mathcal{F}, \mathbf{P}) \to S \otimes T$ with joint distribution $p \cdot q$

Bayes rule: The posterior distribution p^* of X given Y = y has a p-density

$$\frac{\mathrm{d}p^{\star}}{\mathrm{d}p} = \frac{h}{ph}, \quad \text{where } h(x) = \frac{\mathrm{d}q(x,\cdot)}{\mathrm{d}\lambda}(y) \text{ is the likelihood}$$

► The likelihood is the unnormalised posterior density (with respect to the prior)

Basics

Actions, densities, Bayes

$h\mbox{-}transform$ as variational optimization

Bidirectionality of the *h*-transform

Optics

Guiding a process / concessions

Optimal transport

Continuous-time guided processes

Large deviations

Given a Markov kernel $p\colon S\twoheadrightarrow T$ and effect $h\colon T\to [0,\infty)$ we can define a new Markov kernel

$$p^{\star}(x,A) = \int_{A} \frac{h(y)}{(ph)(x)} p(x,\mathrm{d}y)$$

Here the normalization constant (ph)(x) makes p^\star Markov. With $m(x,y)=\frac{h(y)}{(ph)(x)}$ we write short

$$p^{\star} = m \cdot p$$

Given $I \xrightarrow{q} S \xrightarrow{p} T$ and a probability measure $\mu \ll pq$ on T. Then the *h*-transform of p with the effect

1

$$h = \frac{\mathrm{d}\mu}{\mathrm{d}(qp)}$$

transports q into the marginal μ :

$$qp^{\star} = \mu$$

$$\int_{A} q(\mathrm{d}x) \frac{\mathrm{d}\mu}{\mathrm{d}(qp)}(y) p(x,\mathrm{d}y) = \int_{A} \frac{\mathrm{d}\mu}{\mathrm{d}(qp)}(y)(qp)(\mathrm{d}y) = \mu(A)$$

h-transform as variational optimization

In a *non-causal* Markov category effects can take the form of a (non-Markov) kernel

$$h \colon T \twoheadrightarrow I$$

where I is the terminal object. Think of $h(y, \{1\}) = h(y), h(y, \emptyset) = 0$.

The h-transform of $p\colon S \twoheadrightarrow T$ can be defined synthetically as p^\star with

$$p\Delta(h \otimes \mathrm{id}) = \Delta((ph) \otimes p^{\star}).$$

This can be expressed as string diagram (bottom-to-top), with effects denoted by triangles:

The Kullback-Leibler divergence

$$\mathrm{KL}(q \parallel p) = \begin{cases} \int \log \frac{\mathrm{d}q}{\mathrm{d}p} \mathrm{d}q & q \ll p \\ \infty & \text{otherwise} \end{cases}$$

For Markov kernels $p, q: S \Rightarrow T$, KL is a function of x,

$$\mathrm{KL}(q \parallel p)|_{x} = \mathrm{KL}(q(x, \cdot) \parallel p(x, \cdot))$$

Proposition

If $p: S \to T$ and h is an effect on T with ph > 0, then $\log ph = \sup_{q: q \ll p} \{q \log h - \mathrm{KL}(q \parallel p)\}$ If $ph < \infty$, then the supremum on the right-hand side is attained if and only if $q = p^* = \frac{h}{ph} \cdot p$ or $dp^* \qquad h$

$$\frac{\mathrm{d}p}{\mathrm{d}p} = \frac{n}{ph}$$

► A posterior solves an optimisation problem!

Proof.

Part 1: By Jensen's inequality, if $q \ll p$,

$$\log ph = \log \mathbb{E}_p h = \log \mathbb{E}_q \exp(\log h - \log \frac{\mathrm{d}q}{\mathrm{d}p}) \ge E_q \log h - \mathbb{E}_q \log \frac{\mathrm{d}q}{\mathrm{d}p}.$$

Part 2:
$$\log h - \log \frac{dp^*}{dp} = \log h - (\log h - \log ph) = \log ph$$
 is constant.

Bellman principle

Model: $S_0 \xrightarrow{p_1} S_1 \xrightarrow{p_2} S_2$. Fix x_0 , so $p_1 = p_1|_{x_0}$ becomes a probability on S_1 and $p_{1,2} = p_1 \cdot p_2$ a joint probability on $S_1 \otimes S_2$.

Task: Given a likelihood $h_2(x_2)$,

$$\max_{q_{1,2} \ll p_{1,2}} \qquad \mathbb{E}_{q_{1,2}} \log h_2 - \mathrm{KL}(q_{1,2} \parallel p_{1,2})$$

Setting $q_{1,2} = q_1 \cdot q_2$ where $S_0 \xrightarrow{q_1} S_1 \xrightarrow{q_2} S_2$ this can be rewritten

$$\sup_{q_1,q_2} \left\{ q_1 q_2 \log h_2 - q_1 \log \frac{\mathrm{d}q_1}{\mathrm{d}p_1} - q_1 q_2 \log \frac{\mathrm{d}q_2}{\mathrm{d}p_2} \right\}$$
$$= \sup_{q_1} \left\{ q_1 \sup_{q_2} \left\{ q_2 \log h_2 - q_2 \log \frac{\mathrm{d}q_2}{\mathrm{d}p_2} \right\} - q_1 \log \frac{\mathrm{d}q_1}{\mathrm{d}p_1} \right\}$$

▶ Bellman: The best first step $q_1 = p_1^*$ is the one which maximises the overall objective if it is followed by optimal remaining step(s) $q_2 = p_2^*$.

Introducing the value functions V_i the supremum is found by backward recursion

$$V_{2}(x_{2}) = \log h_{2}(x_{2})$$

$$V_{1}(x_{1}) = \sup_{q_{2}} \left\{ (q_{2}V_{2})(x_{1}) - \operatorname{KL}(q_{2} \parallel p_{2})|_{x_{1}} \right\}$$

$$V_{0}(x_{0}) = \sup_{q_{1}} \left\{ (q_{1}V_{1})(x_{0}) - \operatorname{KL}(q_{1} \parallel p_{1})|_{x_{0}} \right\}$$

Optimal step q_2 : Now taking the maximum of q_2 first

$$V_1(x_1) = \sup_{q_2} \left\{ (q_2 \log h_2)(x_1) - \operatorname{KL}(q_2 \parallel p_2) |_{x_1} \right\}$$
$$= (\log p_2 h_2)(x_1)$$
$$= (\log h_1)(x_1) \quad (\text{with } h_1 := p_2 h_2)$$

is obtained in $q_2=p_2^\star$ by

$$\frac{p_2^{\star}(x_1, \mathrm{d}x_2)}{p_2(x_1, \mathrm{d}x_2)} = \frac{h_2(x_2)}{h_1(x_1)}.$$

Optimal step q_1 : Plugging in the value $\log h_1 := \log p_2 h_2 = V_1(x_1)$ gives the objective

$$V_0 = \sup_{q_1} \{ q_1 \log(h_1) - \text{KL}(q_1 \parallel q_2) \}$$

= log(p_1h_1)
= log h_0, with $h_0 := p_1h_1 = p_1p_2h_2$

found in $q_1 = p_1^\star$,

$$\frac{p_1^{\star}(x_0, \mathrm{d}x_1)}{p_1(x_0, \mathrm{d}x_1)} = \frac{h_1(x_1)}{h_0(x_0)}.$$

Basics

Actions, densities, Bayes

h-transform as variational optimization

Bidirectionality of the h-transform

Optics

Guiding a process / concessions

Optimal transport

Continuous-time guided processes

Large deviations

Structure

This is very suggestive,

$$(p_1p_2)^{\star} = p_1^{\star}p_2^{\star}, \quad (p_1 \cdot p_2)^{\star} = p_1^{\star} \cdot p_2^{\star}$$

Note that here p_1^{\star} has a "hidden" dependency on $h_1 = p_2 h_2$. To make $p \mapsto p^{\star}$ "functorial" we have to make the dependency explicit.

Model $S_0 \xrightarrow{p_1} S_1 \xrightarrow{p_2} S_2$. Given $h_2 \colon S_2 \to \mathbb{R}_{\geq 0}$.

Task: For fix x_0 compute π_1 and π_2 , the marginal of the maximizer π of

$$\mathbb{E}_{\pi}h_2 - \mathrm{KL}(\pi \parallel p_1 \cdot p_2).$$

Directly or by the Bellman principle the *h*-transform composes optically.

Basics

Actions, densities, Bayes

h-transform as variational optimization

Bidirectionality of the h-transform

Optics

Guiding a process / concessions

Optimal transport

Continuous-time guided processes

Large deviations

 $\mathcal{P}(S)$ measures on S. $\mathcal{M}(S)$ functionals on S. $\mathbf M$ space of messages

- $\mathcal{F}: \mathcal{P}(S) \times \mathbf{M} \to \mathcal{M}(S')$
- $\mathcal{B}: \mathcal{M}(S') \to \mathbf{M} \times \mathcal{M}(S)$
- Compatible \mathcal{F}_p and \mathcal{B}_p work as pairs:

 $\langle \mathcal{F} \mid \mathcal{B} \rangle \colon \mathcal{P}(S) \times \mathcal{M}(S) \to \mathcal{P}(S') \times \mathcal{M}(S')$

Composition of optics

 $\langle \mathcal{F}_{1,2} \mid \mathcal{B}_{1,2} \rangle \cong \langle \mathcal{F}_1 \mid \mathcal{B}_1 \rangle \langle \mathcal{F}_2 \mid \mathcal{B}_2 \rangle$

For $p \colon S \twoheadrightarrow T$, $p' \colon S' \twoheadrightarrow T'$ and effects h, h' on T, T'.

Fusion as pullback of product effects through duplication:

$$(\Delta(h\otimes h'))(x) = h(x)h'(x)$$

If you ever see $(\Sigma_1^{-1} + \Sigma_2^{-1})^{-1} = \Sigma_1 - \Sigma_2 (\Sigma_1 + \Sigma_2)^{-1} \Sigma_2 \dots$

String diagram for a state-space model

Transform with h of product form gives the Kalman (RTS) smoother.

Optics

Collider

Conditioning on common effects makes (marginally) independent transitions dependent.

Basics

Actions, densities, Bayes

h-transform as variational optimization

Bidirectionality of the *h*-transform

Optics

Guiding a process / concessions

Optimal transport

Continuous-time guided processes

Large deviations

Concessions

Take
$$p: S \to T$$
. The maximizer $q = \frac{h}{ph}.p$ of $q \log h - \mathrm{KL}(q \parallel p)$

will be hard to find. Hence we use variational methods or Monte Carlo methods guided by heuristics.

1. Choose

$$\widetilde{p} = \operatorname*{argmax}_{q \in \mathcal{Q}} \{ q \log h - \mathrm{KL}(q \parallel p) \}$$

where Q is a variational class of Markov kernels $S \rightarrow T$. \blacktriangleright Variational Bayes.

2. Use a heuristic $\widetilde{h}\approx h$ instead of the true cost/likelihood

$$p^{\circ} = \frac{\tilde{h}}{p\tilde{h}} \cdot p, \quad w = \left(\frac{\tilde{h}}{p\tilde{h}}\right)^{-1}$$

► Guided processes.

Basics

Actions, densities, Bayes

h-transform as variational optimization

Bidirectionality of the *h*-transform

Optics

Guiding a process / concessions

Optimal transport

Continuous-time guided processes

Large deviations

Optimal transport

Two distributions μ_0 on E_0 and μ_1 on E_1 and a cost function $c \colon E_0 \times E_1 \to \mathbb{R}$.

Optimal transport (Kantorovich formulation): Find a joint distribution q with marginals μ_0 and μ_1 minimising the average cost

$$qc\left(=\int c(x_0,x_1)q(\mathrm{d}x_0\times\mathrm{d}x_1)\right)$$

 $qc + \epsilon \operatorname{KL}(q \parallel \mu_0 \otimes \mu_1)$ (with entropy regularization.)

The problem can be written as KL minimization task:

 $\inf_{q \ll p} \ \mathrm{KL}(q \parallel p) \quad \text{such that } q \text{ has marginals } \mu_0 \text{ and } \mu_1$

with

$$p(\mathrm{d}x_0 \times \mathrm{d}x_1) \propto \exp(-c(x_0, x_1)/\epsilon)\lambda_0(\mathrm{d}x_0)\lambda_1(\mathrm{d}x_1)$$

where $\lambda_0 \gg \mu_0$ and $\lambda_1 \gg \mu_1$ reference measures

Entropy regularised optimal transport

p a joint distribution on $E_0 \times E_1$ and effects h_0 on E_0 and h_1 on E_1 .

Proposition

Let p^{\star} be the h_0h_1 transformed probability measure

 $p^{\star}(\mathrm{d}x_0 \times \mathrm{d}x_1) \propto h_0(x_0)h_1(x_1)p(\mathrm{d}x_0 \times \mathrm{d}x_1).$

• $q = p^{\star}$ maximises

 $\mathbb{E}_q(\log h_1(X_0) + \log h_2(X_1)) - \mathrm{KL}(q \parallel p)$

among all $q \ll p$

• $q = p^*$ minimises

 $\mathrm{KL}(q \parallel p)$

among all $q \ll p$ with the same marginals as p^* .

► Whatever I get as optimiser, if it has the right marginals, its the optimal transport plan.

Optimal transport

Disintegrate p into the marginal p_0 on S_0 and the conditional $p_1: S_0 \twoheadrightarrow S_1$.

$$p = p_0 \cdot p_1 = p_0 \Delta(\mathrm{id}_T \otimes p_1)$$

and h-transform by $h_0(x_0)h_1(x_1)$ gives the marginals of the optimiser given h_0 , h_1 .

$$(p_0 \cdot p_1)^* = p_0^* \cdot p_1^*, \quad p_0^* = \frac{h'}{p_0 h'} \cdot p_0, \quad p_1^* = \frac{h_1}{p_1 h_1} \cdot p_1$$

with

$$h'(x_0) = h_0(x_0)(p_1h_1)(x_0)$$

Message passing diagram

We need to find the *forcing*, the *h*-transform achieving the right marginals to find the the optimal transport plan. Sinkhorn algorithm uses coordinate descent on h_0 and h_1 to find the forcing.

Iterate until convergence:

$$h_0 = \frac{\mathrm{d}\mu_0}{\mathrm{d}\left(\frac{p_1h_1}{p_0p_1h_1} \cdot p_0\right)} \quad \text{forcing} \quad p_0^\star = \mu_0$$
$$h_1 = \frac{\mathrm{d}\mu_1}{\mathrm{d}\left((h_0 \cdot p_0)p_1\right)} \quad \text{forcing} \quad p_0^\star p_1^\star = \mu_1$$

Basics

Actions, densities, Bayes

h-transform as variational optimization

Bidirectionality of the *h*-transform

Optics

Guiding a process / concessions

Optimal transport

Continuous-time guided processes

Large deviations

Assume a continuous-time *E*-valued Markov process $X \equiv (X_u, u \in [s, t])$ starting in x_s .

The process is characterised by the space-time generator \mathfrak{A} : If for $f: [s,t] \times E \to \mathbb{R}$ there is $g: [s,t] \times E \to \mathbb{R}$ such that

$$M_{\cdot} = f(\cdot, X_{\cdot}) - f(s, X_s) - \int_s^{\cdot} g(u, X_u) \mathrm{d}u$$

is a local martingale, let $f \in \mathcal{D}(\mathfrak{A})$ (domain) and $\mathfrak{A}f = g$. Implies a Markov transition kernel

$$p_{s \to t}(x_s, \cdot) = \mathbb{P}(X_t \in \cdot \mid X_s = x_s)$$

Define the change of measure

$$\mathrm{d}\mathbb{P}^{\circ} = D^{h}[s,t]\mathrm{d}\mathbb{P}$$

with

$$D^{h}[s,\cdot] = \frac{h(\cdot, X_{\cdot})}{h(s, x_{s})} \exp\left(-\int_{s}^{\cdot} \frac{\mathfrak{A}h}{h}(u, X_{u}) \mathrm{d}u\right)$$

and $h \in \mathcal{D}(\mathfrak{A})$ is a positive function such that $D^h[s, \cdot]$ is a martingale.

▶ Solution to a Hamilton-Jacobi-Bellman equation

By Palmowski-Rolski (2002) the space-time generator of X under \mathbb{P}° is

$$\mathfrak{A}^{\circ}f = \frac{1}{h}\left[\mathfrak{A}(fh) - f\mathfrak{A}h\right] \tag{1}$$

Theorem

For a continuous-time process along an edge with

$$w(X) = \exp\left(\int_{s}^{t} \frac{\mathfrak{A}h}{h}(u, X_{u}) \mathrm{d}u\right)$$

we have

$$\frac{\mathbb{E}[f(X)h(t,X_t)]}{p_{s \to t}h(t,\cdot)} = \mathbb{E}^{\circ}f(X)w(X)$$

h can be a heuristic here or an actual h-transform with $\mathfrak{A}h = 0$.

Continuous-time guided processes

Example: Conditional Brownian motion

W is a Brownian motion on [0,1] under the measure p and $Y=X_1+\epsilon,$ $\epsilon\sim N(0,\sigma).$

$$\mathfrak{A}f=\dot{f}+rac{1}{2}f^{\prime\prime}$$
 Space time generator of W

The conditional likelihood of observing Y = y is

$$h(1, x_1) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(y-x_1)^2/\sigma^2}$$

and h solves Ah = 0 with that boundary condition.

Then the conditional measure is

$$p^{\star} = \operatorname{argmax}\{qh - \operatorname{KL}(q \parallel p)\}$$

and the generator of the conditional process is

$$\mathfrak{A}^{\star}f = \frac{1}{h}\left[\mathfrak{A}(fh) - f\mathfrak{A}h\right] = \dot{f} + \nabla \log hf' + \frac{1}{2}f''$$

The conditional process has drift $\nabla_x \log h(t, x)$.

Continuous-time guided processes

Basics

Actions, densities, Bayes

h-transform as variational optimization

Bidirectionality of the h-transform

Optics

Guiding a process / concessions

Optimal transport

Continuous-time guided processes

Large deviations

Donsker-Varadhan variational characterisation

$$\sup_{\log h \in C_b} \{q \log h - \log ph\} = \mathrm{KL}(q \parallel p)$$

has maximiser in h = dq/dp if $q \ll p$.

Empirical distribution of random sequence $X_i \stackrel{\text{i.i.d.}}{\sim} p, i \in \mathbb{N}$

$$\hat{p}_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$$

Sanov's theorem: The empirical distribution satisfies the large deviation principle with good rate function $KL(\cdot \parallel p)$,

$$\mathbf{P}(\hat{p}_n \in B) \asymp \exp\left(-n \inf_{q \in B} \mathrm{KL}(q \parallel p)\right)$$

Let p be the Wiener measure on time span [0,1]. Take a independent sequence of canonical Brownian motions $w^{(i)}\sim p$ and fix the marginal measure μ_1 and let

$$B = \{q \colon q \circ w_1^{-1} = \mu_1\}$$

Taking $h={\rm d}\mu_1/{\rm d}(q\circ w_1^{-1}),\ h$ is the forcing h-transform such that the maximizer $q=p^\star$ of

 $q \log h - \mathrm{KL}(q \parallel p)$

has marginal $q: q \circ w_1^{-1} = \mu_1$ thus

$$p^{\star} = \operatorname*{argmax}_{q \in B} \operatorname{KL}(q \parallel p)$$

By *h*-transform with $h(s, \cdot)$ solving $\mathfrak{A}h = 0$ and $h(1, w_1) = h(w_1)$

$$\mathrm{d}w_t = \nabla \log h(t, w_t) \mathrm{d}t + \mathrm{d}w_t^\star, w_0 = 0$$

where $w_t^{\star} = w_t - \nabla \log h(t, w_t) dt$ is a p^{\star} Brownian motion.

Under the rare event B each $w^{(i)}$ looks like a Brownian motion with drift $\nabla \log h.$

Give me an approximation \tilde{h} with $\mathfrak{A}\tilde{h}\approx 0$ and $\tilde{h}(1,w_1)=h(w_1)$. Then by Palmowski-Rolski with guiding process

$$\mathrm{d}w_t^\circ = \nabla \log \widetilde{h}(t, w_t^\circ) \mathrm{d}t + \mathrm{d}b_t$$

for some independent Brownian motion $(b_t)_{t\in[0,1]}$ we have

$$p^{\star}(A) = \frac{\mathbb{E}\mathbf{1}_{A}(w^{\circ})\operatorname{weight}(w^{\circ})}{\mathbb{E}\operatorname{weight}(w^{\circ})}$$

with

$$\mathsf{weight}(w^\circ) = \exp\left(\int_0^1 \frac{\mathfrak{A}\widetilde{h}}{\widetilde{h}}(t, w^\circ_t) \mathrm{d}t\right)$$

Thus sampling w° characterises large deviations in tractable way.

Frank van der Meulen, M.S.: Automatic Backward Filtering Forward Guiding for Markov processes and graphical models. https://doi.org/10.48550/arXiv.2010.03509, 2020.

Marcin Mider, M.S., Frank van der Meulen: Continuous-discrete smoothing of diffusions. *Electronic Journal of Statistics 15 (2)*, https://doi.org/10.1214/21-EJS1894, 2021.

Marc Corstanje, Frank van der Meulen, M.S.: Conditioning continuous-time Markov processes by guiding. https://doi.org/10.48550/ARXIV.2111.11377, 2022.

Frank van der Meulen: Introduction to Automatic Backward Filtering Forward Guiding. https://doi.org/10.48550/ARXIV.2203.04155, 2022.

Prelude: Markov process and discrete generator

Model:
$$p_i: S_{i-1} \rightarrow S_i$$
 for $i = 1, \ldots, t$

For fix $x_0 \in S_0$ this defines Markov process $X \equiv (X_i, i = 0, ..., t)$ with $X_0 = x_0$ an law $(\delta_{x_0} \cdot p_1 \cdot p_2 \cdot \cdots \cdot p_{t-1} \cdot p_t)$.

For time-dependent functionals $f(s,\cdot)$ on S_s , define the operator

$$(\mathfrak{A}f)(s,x_s) := (p_{s+1}f(s+1,\cdot))(x_s) - f(s,x_s)$$

Then

$$M_t = f(t, X_t) - f(0, X_0) - \sum_{s=0}^{t-1} (\mathfrak{A}f)(s, X_s)$$

is a martingale. \blacktriangleright Martingales characterise Markov processes In particular, for $h(t,\cdot)$ given and $h(s,\cdot)=p_{s+1}h(s+1,\cdot)$

$$M_t = h(t, X_t) - h(0, X_0)$$

is a martingale.