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Illustration: Markov chain

Simple Markov chain X0, X1, . . . , Xs taking values in finite sets

Es = {1, . . . , ns}. Starting distribution as row vector q0:

q0[, i] = P(X0 = i) probability of starting in state i

A transition matrix ps (rows sum to 1) for step s = 1, 2, . . . :

ps[i, j] = P(Xs = j | Xs−1 = i) probability to move to j if in i

Marginal distributions qs after 0, 1, 2,... steps:

q0, q1 := q0p1, q2 := q0p1p2, ...

Conditional probability to end in Xt = l after starting from Xs = i:

hs[i, ] = (ps+1 . . . pt) [i, l]
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Illustration: Bayes

Observe Xt = l.

(Marginal) posterior Xs | Xt = l, s < t

P(Xs = i | Xt = l) =
P(Xs = i)P(Xt = l | Xs = i)

const

=
qs[, i]hs[i, ]

qshs

with

q0p1 . . . ps =: qs

hs := ps+1 . . . ptht

and

ht[i, ] = P(Xt = i | Xt = l) =

{
0 i 6= l

1 i = l
.
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Conditional Markov chain

Defining

πs[, j] = P(Xs = j | Xt = l)

we get an evolution for the conditional

πs[, j] =
∑
i

πs−1[, i]
hs[j, ]ps[i, j]

(pshs)[i, ]︸ ︷︷ ︸
=: p?s [i,j]

or

πs = πs−1p
?
s

where p?s is again a stochastic matrix.
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Structure

Bidirectional machinery

Consuming a column vector h and a row vector π to produce kh and

πp?

ph
p←− [ h

π
p?7−→ πp?

where

(πp?)[, j] =
∑
i

π[, i]
h[j, ]p[i, j]

(ph)[i, ]
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Generative model

1 sampled(rng, x, p) = rng, sample(rng, weights(p[x,:]))

2

3 function generate(rng, x, ps)

4 xs = [x]

5 for p in ps

6 rng, x = sampled(rng, x, p)

7 push!(xs, x)

8 end

9 return xs

10 end

11 xs = generate(rng, x0, ps)

1
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Backward-forward transformed code

1 function backward(p, h)

2 ph = p*h

3 m = ph, h # needed in forward

4 return m, ph

5 end

6

7 function forward(rng, x, p, m)

8 ph, h = m # from backward

9 pstarx = [p[x,j]*h[j]/ph[j] for j in 1:d]

10 rng, sample(rng, weights(pstarx))

11 end
2
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Backward-forward transformed code

1 function htransformed(rng, x, ps, h)

2 xs = [x]

3 ms = []

4 for p in reverse(ps)

5 m, h = backward(p, h)

6 pushfirst!(ms, m)

7 end

8 for (p, m) in zip(ps, ms)

9 rng, x = forward(rng, x, p, m)

10 push!(xs, x)

11 end

12 return xs

13 end

14 h = ps[end][:, y]

15 posterior = htransformed(rng, x0, ps[1:end-1], h)

3
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Category BorelStoch

Objects in BorelStoch are standard Borel measure spaces S = (E,B),

S′ = (E′,B′) (spaces equipped with σ-fields). S ⊗ S′ = (E ×E′,B ⊗B′)
defines a tensor product.

Take I = (1, {∅, {1}}) the single element measure space to be formal

unit of the tensor product ⊗

I ⊗ S = S

Basics 11



Category BorelStoch

Arrows

p : S _ S′

in BorelStoch are Markov kernels p : E × B′ → [0, 1] such that

p(x, ·) is a distribution parametrised by x ∈ E,

Familiar example of a Markov kernel:

p(x,A) =

∫
A

1√
2π

e−
1
2
(y−x)2dy

p(x, ·) roughly corresponds to the (Julia-) code x -> Normal(x, 1).
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Parallel composition

Parallel composition of arrows p : S _ T , p′ : S′ _ T ′

=

p

p′

p⊗ p′

is by the tensor product

(p⊗ p′)((x, x′),dx× dy′) = p(x, dy)p′(x′,dy′).

Basics 13



Composition

Sequential composition of p : S _ T , q : T _ U

p q

=

pq

by Chapman-Kolmogorov

pq : S _ U

(pq)(x, dz) =

∫
y

q(y,dz)p(x, dy)

with identity idS : S _ S, idS(x, dy) = δx(dy) (Dirac).

Basics 14



Joint laws

Model: S
p
_ T

q
_ U .

The Markov kernel

p • q : S _ T ⊗ U
(p • q)(x, dy × dz) := p(x, dy)q(y,dz)

represents the joint distribution on T ⊗ U given x ∈ S

S p

T

q U

p • q = p∆(idT ⊗ q) with duplication kernel ∆: T _ T ⊗ T with

∆(x, dy × dz) = δx(dy)δx(dz).

Basics 15
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Distributions

A Markov kernel p : S _ T .

Distributions π on S compose with p as

(πp)(dy) =

∫
x

p(x,dy)π(dx) (Push forward)

Distributions can be identified with Markov kernels q : I _ S setting

π(·) = q(1, ·).

When taking Markov kernels as maps F (p) : P(E)→ P(E′) acting on sets of

distributions (P(E),⊗)

(π ⊗ π′)(p⊗ p′) = (πp)⊗ (π′p′)

Actions, densities, Bayes 17



Effects

A Markov kernel p : S _ T .

Effects or likelihoods i.e. positive random variables h on T

(ph)(x) =

∫
y

h(y)p(x,dy) (Pullback)

Dual pairing / scalar product of measures and effects

πh =

∫
x

h(x)π(dx) = Eπh

Actions, densities, Bayes 18



Measures and densities

Absolute continuity q � p of two measures p(A) = 0⇒ q(A) = 0.

For two probability measures on S = (E,B) this is equivalent to that q

has a p-density dq
dp : E → [0,∞)

q(A) =

∫
A

dq
dpdp or q = dq

dp • p

Example: f • λ with f(y) = 1√
2π

exp(−(y − x)2/2) and λ the Lebesgue

measure defines the standard normal distribution with mean x.

Actions, densities, Bayes 19



Bayes rule

Give I
p
_ S

q
_ T with q(x, ·)� λ dominated by a reference measure.

Also pair of variables (X,Y ) : (Ω,F ,P)→ S ⊗ T with joint distribution

p • q

Bayes rule: The posterior distribution p? of X given Y = y has a

p-density

dp?

dp
=

h

ph
, where h(x) =

dq(x, ·)
dλ

(y) is the likelihood

I The likelihood is the unnormalised posterior density (with respect to

the prior)

Actions, densities, Bayes 20
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h-transform of a Markov kernel

Given a Markov kernel p : S _ T and effect h : T → [0,∞) we can define

a new Markov kernel

p?(x,A) =

∫
A

h(y)

(ph)(x)
p(x, dy)

Here the normalization constant (ph)(x) makes p? Markov.

With m(x, y) = h(y)
(ph)(x)

we write short

p? = m • p

h-transform as variational optimization 22



Transport/Forcing

Given I
q
_ S

p
_ T and a probability measure µ� pq on T . Then the

h-transform of p with the effect

h =
dµ

d(qp)

transports q into the marginal µ:

qp? = µ

∫
A

q(dx) dµ
d(qp)

(y)p(x,dy) =

∫
A

dµ
d(qp)

(y)(qp)(dy) = µ(A)

h-transform as variational optimization 23



h-transform synthetically

In a non-causal Markov category effects can take the form of a

(non-Markov) kernel

h : T _ I

where I is the terminal object. Think of h(y, {1}) = h(y), h(y,∅) = 0.

The h-transform of p : S _ T can be defined synthetically as p? with

p∆(h⊗ id) = ∆((ph)⊗ p?).

This can be expressed as string diagram (bottom-to-top), with effects

denoted by triangles:

h h

p= p?

p

h-transform as variational optimization 24



Kullback-Leibler divergence

The Kullback-Leibler divergence

KL(q ‖ p) =

{∫
log dq

dpdq q � p

∞ otherwise

For Markov kernels p, q : S _ T , KL is a function of x,

KL(q ‖ p)|x = KL(q(x, ·) ‖ p(x, ·))

h-transform as variational optimization 25



Donsker and Varadhan variational formula

Proposition

If p : S _ T and h is an effect on T with ph > 0, then

log ph = sup
q : q�p

{q log h−KL(q ‖ p)}

If ph <∞, then the supremum on the right-hand side is attained if and

only if q = p? = h
ph • p or

dp?

dp
=

h

ph

I A posterior solves an optimisation problem!

h-transform as variational optimization 26



Variational formula

Proof.

Part 1: By Jensen’s inequality, if q � p,

log ph = logEp h = logEq exp(log h− log
dq

dp
)) ≥ Eq log h− Eq log

dq

dp
.

Part 2: log h− log dp?

dp = log h− (log h− log ph) = log ph is

constant.

h-transform as variational optimization 27



Bellman principle

Model: S0
p1_ S1

p2_ S2. Fix x0, so p1 = p1|x0
becomes a probability on

S1 and p1,2 = p1 • p2 a joint probability on S1 ⊗ S2.

Task: Given a likelihood h2(x2),

max!
q1,2�p1,2

Eq1,2 log h2 −KL(q1,2 ‖ p1,2)

Setting q1,2 = q1 • q2 where S0
q1_ S1

q2_ S2 this can be rewritten

sup
q1,q2

{
q1q2 log h2 − q1 log

dq1
dp1
− q1q2 log

dq2
dp2

}
= sup

q1

{
q1 sup

q2

{
q2 log h2 − q2 log

dq2
dp2

}
− q1 log

dq1
dp1

}

I Bellman: The best first step q1 = p?1 is the one which maximises the

overall objective if it is followed by optimal remaining step(s) q2 = p?2.

h-transform as variational optimization 28



Bellman principle

Introducing the value functions Vi the supremum is found by backward

recursion

V2(x2) = log h2(x2)

V1(x1) = sup
q2

{
(q2V2)(x1)− KL(q2 ‖ p2)|x1

}
V0(x0) = sup

q1

{
(q1V1)(x0)− KL(q1 ‖ p1)|x0

}

h-transform as variational optimization 29



Bellman principle

Optimal step q2: Now taking the maximum of q2 first

V1(x1) = sup
q2

{
(q2 log h2)(x1)− KL(q2 ‖ p2)|x1

}
.

= (log p2h2)(x1)

= (log h1)(x1) (with h1 := p2h2)

is obtained in q2 = p?2 by

p?2(x1,dx2)

p2(x1,dx2)
=
h2(x2)

h1(x1)
.

h-transform as variational optimization 30



Bellman principle

Optimal step q1: Plugging in the value log h1 := log p2h2 = V1(x1)

gives the objective

V0 = sup
q1

{q1 log(h1)−KL(q1 ‖ q2)}

= log(p1h1)

= log h0, with h0 := p1h1 = p1p2h2

found in q1 = p?1,
p?1(x0,dx1)

p1(x0,dx1)
=
h1(x1)

h0(x0)
.

h-transform as variational optimization 31
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Structure

This is very suggestive,

(p1p2)? = p?1p
?
2, (p1 • p2)? = p?1 • p?2

Note that here p?1 has a “hidden” dependency on h1 = p2h2. To make

p 7→ p? “functorial” we have to make the dependency explicit.

Fp Bp
π (m • p)︸ ︷︷ ︸

p?

π

h

ph

m = h/ph

Bidirectionality of the h-transform 33



String diagram of composition

Model S0
p1_ S1

p2_ S2. Given h2 : S2 → R≥0.

Task: For fix x0 compute π1 and π2, the marginal of the maximizer π of

Eπh2 −KL(π ‖ p1 • p2).

h2

h1 = p2h2π1 = δx0
(m1.p1)

π2 = π1(m2 • p2)

m1 = h1/h0

m2 = h2/h1

δx0 h0 = p1h1

Directly or by the Bellman principle the h-transform composes optically.

Bidirectionality of the h-transform 34
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Key building block: optic

P(S) measures on S. M(S) functionals on S. M space of messages

• F : P(S)×M→M(S′)

• B : M(S′)→M×M(S)

• Compatible Fp and Bp work as pairs:

〈F | B〉 : P(S)×M(S)→ P(S′)×M(S′)

Optics 36



Composition of optics

F2

F1

B2

B1

π hout

πout h

π hout

πout h

F1,2 B1,2

〈F1,2 | B1,2〉 ∼= 〈F1 | B1〉〈F2 | B2〉

Optics 37



Effects and composition

For p : S _ T , p′ : S′ _ T ′ and effects h, h′ on T, T ′.

=

p p′

h h′ h⊗h′

p⊗ p′

Optics 38



Fusion

Fusion as pullback of product effects through duplication:

h′h

(∆(h⊗ h′))(x) = h(x)h′(x)

If you ever see
(
Σ−1

1 + Σ−1
2

)−1
= Σ1 − Σ2 (Σ1 + Σ2)−1 Σ2 . . .

Optics 39



Example: State-space model

x0 x1

y1

x2

y2

x3

y3

.

“Classic” diagram for a state-space model.

Optics 40



String diagram for a state-space model

p1 p2 p3

p′1 p′2 p′3

x0 x1

y1

x2

y2

x3

y3

.

p1 y2

p′3

p3

p′2

y1

p2

p′1

y3

Transform with h of product form gives the Kalman (RTS) smoother.

Optics 41



Collider

⊗p1 p′1

p2
=

h

(p1 ⊗ p′1)?

h

p?2p2

p1 ⊗ p′1

Conditioning on common effects makes (marginally) independent

transitions dependent.

Optics 42
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Concessions

Take p : S _ T . The maximizer q = h
ph .p of

q log h−KL(q ‖ p)

will be hard to find. Hence we use variational methods or Monte Carlo

methods guided by heuristics.

1. Choose

p̃ = argmax
q∈Q

{q log h−KL(q ‖ p)}

where Q is a variational class of Markov kernels S _ T .

I Variational Bayes.

2. Use a heuristic h̃ ≈ h instead of the true cost/likelihood

p◦ = h̃

ph̃
• p, w =

(
h̃

ph̃

)−1
I Guided processes.

Guiding a process / concessions 44
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Optimal transport

Two distributions µ0 on E0 and µ1 on E1 and a cost function

c : E0 × E1 → R.

Optimal transport (Kantorovich formulation): Find a joint distribution q

with marginals µ0 and µ1 minimising the average cost

qc

(
=

∫
c(x0, x1)q(dx0 × dx1)

)

qc+ εKL(q ‖ µ0 ⊗ µ1) (with entropy regularization.)

Optimal transport 46



Optimal transport

The problem can be written as KL minimization task:

inf
q�p

KL(q ‖ p) such that q has marginals µ0 and µ1

with

p(dx0 × dx1) ∝ exp(−c(x0, x1)/ε)λ0(dx0)λ1(dx1)

where λ0 � µ0 and λ1 � µ1 reference measures

Optimal transport 47



Entropy regularised optimal transport

p a joint distribution on E0 × E1 and effects h0 on E0 and h1 on E1.

Proposition

Let p? be the h0h1 transformed probability measure

p?(dx0 × dx1) ∝ h0(x0)h1(x1)p(dx0 × dx1).

• q = p? maximises

Eq(log h1(X0) + log h2(X1))−KL(q ‖ p)

among all q � p

• q = p? minimises

KL(q ‖ p)

among all q � p with the same marginals as p?.

I Whatever I get as optimiser, if it has the right marginals, its the

optimal transport plan.
Optimal transport 48



h-transform

Disintegrate p into the marginal p0 on S0 and the conditional

p1 : S0 _ S1.

p = p0 • p1 = p0∆(idT ⊗ p1)

and h-transform by h0(x0)h1(x1) gives the marginals of the optimiser

given h0, h1.

(p0 • p1)? = p?0 • p?1, p?0 = h′

p0h′ • p0, p?1 = h1

p1h1
• p1

with

h′(x0) = h0(x0)(p1h1)(x0)

Optimal transport 49



Message passing diagram

p1h1 h0

h′(x0) = h0(x0)p1h1(x0)
π0

π0π0

m0

m1

δI

p0

∆

p1id

p0h
′

p0

∆

p1 id hp?0 • p?1 or π0 and π1

Optimal transport 50



Sinkhorn

We need to find the forcing, the h-transform achieving the right

marginals to find the the optimal transport plan. Sinkhorn algorithm uses

coordinate descent on h0 and h1 to find the forcing.

Iterate until convergence:

h0 =
dµ0

d
(

p1h1

p0p1h1
• p0

) forcing p?0 = µ0

h1 =
dµ1

d ((h0 • p0)p1)
forcing p?0p

?
1 = µ1

Optimal transport 51
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Continuous-time guided processes

Assume a continuous-time E-valued Markov process X ≡ (Xu, u ∈ [s, t])

starting in xs.

The process is characterised by the space-time generator A: If for

f : [s, t]× E → R there is g : [s, t]× E → R such that

M· = f(·, X·)− f(s,Xs)−
∫ ·
s

g(u,Xu)du

is a local martingale, let f ∈ D(A) (domain) and Af = g.

Implies a Markov transition kernel

ps )t(xs, ·) = P(Xt ∈ · | Xs = xs)

Continuous-time guided processes 53



Change of measure

Define the change of measure

dP◦ = Dh[s, t]dP

with

Dh[s, ·] =
h(·, X·)
h(s, xs)

exp

(
−
∫ ·
s

Ah

h
(u,Xu)du

)
and h ∈ D(A) is a positive function such that Dh[s, ·] is a martingale.

I Solution to a Hamilton-Jacobi-Bellman equation

Continuous-time guided processes 54



Dynamics of the changed process

By Palmowski-Rolski (2002) the space-time generator of X under P◦ is

A◦f =
1

h
[A(fh)− fAh] (1)

Theorem

For a continuous-time process along an edge with

w(X) = exp

(∫ t

s

Ah

h
(u,Xu)du

)
we have

E[f(X)h(t,Xt)]

ps )th(t, ·)
= E◦f(X)w(X)

h can be a heuristic here or an actual h-transform with Ah = 0.

Continuous-time guided processes 55



Example: Conditional Brownian motion

W is a Brownian motion on [0, 1] under the measure p and Y = X1 + ε,

ε ∼ N(0, σ).

Af = ḟ +
1

2
f ′′ Space time generator of W

The conditional likelihood of observing Y = y is

h(1, x1) =
1√

2πσ2
e−

1
2 (y−x1)

2/σ2

and h solves Ah = 0 with that boundary condition.

Then the conditional measure is

p? = argmax{qh−KL(q ‖ p)}

and the generator of the conditional process is

A?f =
1

h
[A(fh)− fAh] = ḟ +∇ log hf ′ +

1

2
f ′′

The conditional process has drift ∇x log h(t, x).
Continuous-time guided processes 56
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Large deviations: Sanov’s theorem

Donsker-Varadhan variational characterisation

sup
log h∈Cb

{q log h− log ph} = KL(q ‖ p)

has maximiser in h = dq/dp if q � p.

Empirical distribution of random sequence Xi
i.i.d.∼ p, i ∈ N

p̂n =
1

n

n∑
i=1

δXi

Sanov’s theorem: The empirical distribution satisfies the large deviation

principle with good rate function KL(· ‖ p),

P(p̂n ∈ B) � exp

(
−n inf

q∈B
KL(q ‖ p)

)

Large deviations 58



Large deviations at the final time: h-transform

Let p be the Wiener measure on time span [0, 1]. Take a independent

sequence of canonical Brownian motions w(i) ∼ p and fix the marginal

measure µ1 and let

B = {q : q ◦ w−11 = µ1}

Taking h = dµ1/d(q ◦ w−11 ), h is the forcing h-transform such that the

maximizer q = p? of

q log h−KL(q ‖ p)

has marginal q : q ◦ w−11 = µ1 thus

p? = argmax
q∈B

KL(q ‖ p)

Large deviations 59



Large deviations at the final time: h-transform

By h-transform with h(s, ·) solving Ah = 0 and h(1, w1) = h(w1)

dwt = ∇ log h(t, wt)dt+ dw?t , w0 = 0

where w?t = wt −∇ log h(t, wt)dt is a p? Brownian motion.

Under the rare event B each w(i) looks like a Brownian motion with drift

∇ log h.

Large deviations 60



Guiding for large deviations

Give me an approximation h̃ with Ah̃ ≈ 0 and h̃(1, w1) = h(w1).

Then by Palmowski-Rolski with guiding process

dw◦t = ∇ log h̃(t, w◦t )dt+ dbt

for some independent Brownian motion (bt)t∈[0,1] we have

p?(A) =
E1A(w◦) weight(w◦)

Eweight(w◦)

with

weight(w◦) = exp

(∫ 1

0

Ah̃

h̃
(t, w◦t )dt

)
Thus sampling w◦ characterises large deviations in tractable way.

Large deviations 61
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Prelude: Markov process and discrete generator

Model: pi : Si−1 _ Si for i = 1, . . . , t

For fix x0 ∈ S0 this defines Markov process X ≡ (Xi, i = 0, . . . , t) with

X0 = x0 an law (δx0 • p1 • p2 • · · · • pt−1 • pt).

For time-dependent functionals f(s, ·) on Ss, define the operator

(Af)(s, xs) := (ps+1f(s+ 1, ·))(xs)− f(s, xs)

Then

Mt = f(t,Xt)− f(0, X0)−
t−1∑
s=0

(Af)(s,Xs)

is a martingale. I Martingales characterise Markov processes

In particular, for h(t, ·) given and h(s, ·) = ps+1h(s+ 1, ·)

Mt = h(t,Xt)− h(0, X0)

is a martingale.
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