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lllustration: Markov chain

Simple Markov chain X, X1, ..., X, taking values in finite sets
E; ={1,...,ns}. Starting distribution as row vector qq:

qo[,i] = P(Xo =) probability of starting in state ¢

A transition matrix ps (rows sum to 1) for step s =1,2,...:
psli,j] =P(Xs =7 | Xs—1 =14) probability to move to j if in i
Marginal distributions g after 0, 1, 2,... steps:
do, q1:=qoP1, {42 = qopPipP2;---
Conditional probability to end in X; = [ after starting from X, = i:

hgli,] = (pss1---p¢) [4,1]



lllustration: Bayes

Observe X; = [.
(Marginal) posterior X | X; =1, s <t

b, — | xi 1) - PO = DR =11 X, =)

const
_ sl ilhali,]
qshs
with
qgopP1---Ps =: (s
hs = p5+1 . ~ptht
and

0 i#l



Conditional Markov chain

Defining
ms[jl=P(Xs =7 | Xi =1)

we get an evolution for the conditional

or
5
Mg = Ts—1Pg

where p} is again a stochastic matrix.



Structure

Bidirectional machinery
Consuming a column vector A and a row vector 7 to produce kh and

*

p
ph <> h
LN p*
where



Generative model

1 sampled(rng, x, p) = rng, sample(rng, weights(p[x,:]))

3 function generate(rng, x, ps)

1 xs = [x]

5 for p in ps

6 rng, x = sampled(rng, x, p)
7 push! (xs, x)

8 end

9 return xs

10 end

11 xs = generate(rng, x0, ps)




Backward-forward transformed code

1 function backward(p, h)

2 ph = p*h

3 m = ph, h # needed in forward
4 return m, ph

5 end

7  function forward(rng, x, p, m)

8 ph, h = m # from backward

9 pstarx = [plx,jl*h[j]1/ph[j] for j in 1:d]
10 rng, sample(rng, weights(pstarx))

11 end
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Backward-forward transformed code

10
11
12

13

15

function htransformed(rng, x,
xs = [x]
ms = []

end

for p in reverse(ps)
m, h = backward(p, h)
pushfirst! (ms, m)

end

for (p, m) in zip(ps, ms)
rng, x = forward(rng,
push! (xs, x)

end

return xs

h = pslend]l[:, y]
posterior = htransformed(rng,

ps, h)

X, p, m)

x0, ps[i:end-1], h)
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Category BorelStoch

Objects in BORELSTOCH are standard Borel measure spaces S = (E, B),
S’ = (E',B’) (spaces equipped with o-fields). S® S" = (E x E',Bo B’)
defines a tensor product.

Take I = (1,{@,{1}}) the single element measure space to be formal
unit of the tensor product ®

I®S=S95

1



Category BorelStoch

Arrows
p: S — 9

in BORELSTOCH are Markov kernels p: E x B" — [0, 1] such that

p(x,-) is a distribution parametrised by = € F,

Familiar example of a Markov kernel:

1 1 2
7, A)= [ ——e 2077
pla, 4) /A\/ﬂ v

p(z, ) roughly corresponds to the (Julia-) code x -> Normal(x, 1).

Basics

12



Parallel composition

Parallel composition of arrows p: S — T, p': S" — T’

is by the tensor product

(p@p)((z,2"),dz x dy') = p(z,dy)p’(z', dy’).

Basics
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Composition

Sequential composition of p: S =T, q: T — U

J—4]

by Chapman-Kolmogorov
pq: S —U
(00)(,42) = [ aly. d2)p(e. )
y
with identity idg: S — S, idg(z,dy) = d,(dy) (Dirac).

1



Joint laws

Model: S % T % U.
The Markov kernel

p.qg:S—-TxU
(p-q)(z,dy x dz) := p(z,dy)q(y, dz)

represents the joint distribution on T"® U given = € S
T
s
i—u

p-q = pA(idr ® q) with duplication kernel A: T — T ® T with
A(z,dy x dz) = 6,(dy)d.(dz).

Basics

15



Table of contents

Actions, densities, Bayes

Actions, densities, Bayes

16



Distributions

A Markov kernel p: S — T.
Distributions 7 on S compose with p as

(mp)(dy) Z/p(x,dy)ﬂ(da:) (Push forward)

€T

Distributions can be identified with Markov kernels ¢: I — S setting
() =4(1,).

When taking Markov kernels as maps F'(p): P(E) — P(E’) acting on sets of
distributions (P(E), ®)

(ron)pop) = (mp) @ (x'p’)

Actions, densities, Bayes 17



Effects

A Markov kernel p: S — T.

Effects or likelihoods i.e. positive random variables h on T’
o) (@) = [ hwp(r.dy)  (Pullback)
Y
Dual pairing / scalar product of measures and effects

wh = / h(z)r(dz) = E h

Actions, densities, Bayes
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Measures and densities

Absolute continuity ¢ < p of two measures p(A) =0 = ¢(A) = 0.

For two probability measures on S = (E, B) this is equivalent to that ¢
has a p-density g—g: E — [0,00)

q(A)=/§7’idp or g=5L.p
A

Example: f.\ with f(y) = \/% exp(—(y — 2)?/2) and \ the Lebesgue

measure defines the standard normal distribution with mean .

Actions, densities, Bayes



Bayes rule

Give I % S % T with q(z,-) < X dominated by a reference measure.

Also pair of variables (X,Y): (Q,F,P) — S ® T with joint distribution

p-q
Bayes rule: The posterior distribution p* of X given Y =y has a
p-density

dp* h d .

d]; =0 where h(z) = q((;f\’ )(y) is the likelihood

» The likelihood is the unnormalised posterior density (with respect to
the prior)

Actions, densities, Bayes
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h-transform of a Markov kernel

Given a Markov kernel p: S — T and effect h: T — [0,00) we can define
a new Markov kernel

P = [ 0oy

Here the normalization constant (ph)(x) makes p* Markov.

With m(z,y) = % we write short

p =m.p

h-transform as variational optimization
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Transport/Forcing

Given I % S % T and a probability measure ;1 < pg on T'. Then the
h-transform of p with the effect

d
L dn
d(qp)
transports ¢ into the marginal
qp* = p

[ ot nte.an) = [ 55 w)a) = u)

h-transform as variational optimization

23



h-transform synthetically

In a non-causal Markov category effects can take the form of a

(non-Markov) kernel
h:T — 1T

where I is the terminal object. Think of h(y,{1}) = h(y), h(y, @) = 0.
The h-transform of p: S — T can be defined synthetically as p* with
pA(h ®1id) = A((ph) ® p*).

This can be expressed as string diagram (bottom-to-top), with effects
denoted by triangles:

h-transform as variational optimization
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Kullback-Leibler divergence

The Kullback-Leibler divergence

log d2dg q<p
KL(q || p) = {f v
00 otherwise

For Markov kernels p,q: S — T', KL is a function of x,

KL(q || p)|= = KL(q(z, ") || p(z,-))

h-transform as variational optimization
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Donsker and Varadhan variational formula

Proposition

If p: S — T and h is an effect on T" with ph > 0, then

logph = sup {qlogh —KL(q | p)}

q: q<Lp

If ph < oo, then the supremum on the right-hand side is attained if and
only if ¢ = p* = pih.por

dp* h

dp  ph

» A posterior solves an optimisation problem!

h-transform as variational optimization
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Variational formula

Proof.
Part 1: By Jensen's inequality, if ¢ < p,

d d
log ph = log E,, h = log E, exp(log h — log CTZ)) > E,logh — E,log ﬁ.

Part 2: logh — log % =logh — (log h — log ph) = log ph is

constant. O

h-transform as variational optimization
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Bellman principle

Model: Sy 7 S 7 Ss. Fix g, so p1 = p1|., becomes a probability on
Sy and py 2 = p1 . p2 a joint probability on S; ® Ss.

Task: Given a likelihood hs(x3),

ax! E,. ., loghs — KL
q1g1<<>z§172 q1,2 108 N2 (q1.2 || p1,2)

. q q . .
Setting ¢1,2 = q1 - @2 where Sy S St = S this can be rewritten

d d
sup {qlqz log ho — q1 log dT(i — q1q2 log qu;}

91,92

d d
= sup {(Il sup{qz log ha — q2 1Og£} —q long(i}

q1 q2

» Bellman: The best first step q1 = p} is the one which maximises the
overall objective if it is followed by optimal remaining step(s) gz = p5.

h-transform as variational optimization 28



Bellman principle

Introducing the value functions V; the supremum is found by backward
recursion

VQ(JEQ) = log hQ(l‘Q)
Vi(z) = Sélp {(g2V2)(21) — KL(q2 || p2)l,, }

Vo(zo) = sup {(¢1V1)(x0) — KL(q1 || p1)l,, }

h-transform as variational optimization
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Bellman principle

Optimal step ¢o: Now taking the maximum of ¢o first
Vi(a1) = sup { (g2 log h2)(@1) = KL(az || p2)L,, } -
q2

= (log paha)(x1)
= (log hl)(xl) (With hy = p2h2)

is obtained in g2 = p5 by

p3(x1,dzs) _ ho(22)
p2(ﬂ?1,d$2) h1($1)'

h-transform as variational optimization 30



Bellman principle

Optimal step ¢;: Plugging in the value log hy :=log paha = Vi (21)

gives the objective
Vo = sup {q1log(h1) — KL(q1 [| ¢2)}
q1

= log(pihi)
=logho, with ho:=pi1h1 = pip2h2

found in ¢; = p1,
pi(wo,dzy)  hy(xg)

pi(zo,dz1)  holzo)

h-transform as variational optimization
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Structure

This is very suggestive,

(p1p2)* = pips,  (p1-p2)* =Dpi-P5

Note that here pj has a “hidden” dependency on h; = paha. To make
p — p* “functorial” we have to make the dependency explicit.

m = h/ph

Bidirectionality of the h-transform

33



String diagram of composition

Model Sy 2> S1 25 S,. Given hy: Sy — Rxg.

Task: For fix g compute 7 and mo, the marginal of the maximizer 7 of
]Eﬂ-hg — KL(’IT || P1 .pg).

mo = hQ/hl

my = mi(mz . p2) ho

mq =h1/h0

7 = 0py (M1.p1) hi = paho

61;0 hO = ])1}L1

Directly or by the Bellman principle the h-transform composes optically.

Bidirectionality of the h-transform
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Key building block: optic

P(S) measures on S. M(S) functionals on S. M space of messages

o F:P(S) x M — M(S")
o B: M(S") = M x M(S)

e Compatible 7}, and B, work as pairs:

(F|B): P(S) x M(S) = P(S") x M(S")

36



Composition of optics

(Frz | Bi2) = (Fi | Bi){F2 | Ba)

37



Effects and composition

Forp: S— T, p': 8" — T’ and effects h, h' on T, T".

38



Fusion

Fusion as pullback of product effects through duplication:

(A(h @ ")) (x) = h(x)h (z)

If you ever see (Zfl + 22’1)71 =% -3 (Z1 + $o) " S,

39



Example: State-space model

Y1 Y2 Ys

Ps . 3. S
_ >8 >-8

Zo £ Z2 Zs3

“Classic” diagram for a state-space model.



String diagram for a state-space model

Transform with h of product form gives the Kalman (RTS) smoother.

41



Collider

/N

P2 p2

= ‘m ® ph H (p1 ®pﬁ)*‘

Conditioning on common effects makes (marginally) independent
transitions dependent.

w2
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Concessions

Take p: S — T'. The maximizer ¢ = pih.p of

qlogh —KL(q || p)

will be hard to find. Hence we use variational methods or Monte Carlo
methods guided by heuristics.

1. Choose
p = argmax{qlogh — KL(q || p)}
qeQ

where Q is a variational class of Markov kernels S — T'.
» Variational Bayes.

2. Use a heuristic h ~ h instead of the true cost/likelihood

~ —1
= h
o h
p=—p w=| ==
g (ph>

» Guided processes.

=
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Optimal transport

Two distributions 1o on Ey and pq on Eq and a cost function
C: EO x B — R.

| N

00 ‘
o
15

Optimal transport (Kantorovich formulation): Find a joint distribution ¢
with marginals 1o and g1 minimising the average cost

g (: / e(wo, 71)q(dzo X dxl))

gc+ eKL(q || po ® p1)  (with entropy regularization.)

46



Optimal transport

The problem can be written as KL minimization task:

inf KL(q || p) such that ¢ has marginals o and pq
q<p

with
p(dao x dzy) o< exp(—c(xg, 1) /) Ao (dag) A1 (day)

where \g > o and Ay > py reference measures

Optimal transport 47



Entropy regularised optimal transport

p a joint distribution on Ey x E; and effects hg on Ey and hy on Fj.
Proposition
Let p* be the hohy transformed probability measure

p*(dzg x da) o< ho(zg)hy(21)p(dzy x daq).

e ¢ = p* maximises
E,(log h1(Xo) + log h2(X1)) — KL(q || p)

among all g < p
e ¢ = p* minimises
KL(q || p)

among all ¢ < p with the same marginals as p*.

» Whatever | get as optimiser, if it has the right marginals, its the
optimal transport plan.

48



h-transform

Disintegrate p into the marginal pg on Sy and the conditional
P1: So —> Sl.
p=po-p1 = poA(idr @ p1)
and h-transform by ho(zo)h1(21) gives the marginals of the optimiser

given hg, hi.

(pO ‘pl)* = pa ‘p’1(7 ps poh’ - Do, p{ Plhl - P1

with
W (x0) = ho(xo)(prh1)(zo)

Optimal transport 49



Message passing diagram

|
pg - Py or mo and Ty e— 1
|

Optimal transport

mo

poh!

1 (xo) = ho(xo)pihi(xo)

50



Sinkhorn

We need to find the forcing, the h-transform achieving the right
marginals to find the the optimal transport plan. Sinkhorn algorithm uses
coordinate descent on hg and h; to find the forcing.

Iterate until convergence:

d
ho = I LU forcing  p{ = po
p1hi
(Poplhl -p )
dMl .
h ——————— forcing pipi =
' d((ho - po)p1) oL =1

Optimal transport
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Continuous-time guided processes

Assume a continuous-time E-valued Markov process X = (X, u € [s,t])
starting in x,.

The process is characterised by the space-time generator 2: If for
fi[s,t] Xx E— R thereis g: [s,t] x E — R such that

M = f( X)) — f(s,X,) - / g(u, X,)du

S
is a local martingale, let f € D(2() (domain) and 2f = g.

Implies a Markov transition kernel

Pest(Ts, ) = ]P(Xt c . | X, = xs)

Continuous-time guided processes
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Change of measure

Define the change of measure

dP° = D"[s, t|dP

Dhs, ] = ZES?) exp (— / ' Q;Lh(u,Xu)du>

with

and h € D() is a positive function such that D"[s, ] is a martingale.

» Solution to a Hamilton-Jacobi-Bellman equation

Continuous-time guided processes



Dynamics of the changed process

By Palmowski-Rolski (2002) the space-time generator of X under P° is

A°f = - [A(fh) — fAR] (1)

S| =

Theorem

For a continuous-time process along an edge with

w(X) = exp </t Qfllh(u,Xu)du>

we have

h can be a heuristic here or an actual h-transform with 2Ah = 0.

Continuous-time guided processes
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Example: Conditional Brownian motion

W is a Brownian motion on [0, 1] under the measure p and Y = X +,
e~ N(0,0).

.1
Af = f+ §f” Space time generator of W

The conditional likelihood of observing Y =y is

1 1 2 2
h(l,21) = e—zy—z1)/0
(L) 2mo?

and h solves Ah = 0 with that boundary condition.
Then the conditional measure is

p* = argmax{qgh — KL(q || p)}
and the generator of the conditional process is

1 : 1

A f = 7 [RU(fh) — fAR] = f + Vioghf + ifﬂ

The conditional process has drift V. log h(t, z).
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Large deviations: Sanov’s theorem

Donsker-Varadhan variational characterisation

sup {qlogh —logph} =KL(q || p)
log heCy

has maximiser in h = dg/dp if ¢ < p.

. C iid. .
Empirical distribution of random sequence X; '~ p,i € N

N
pn:E;(SXi

Sanov's theorem: The empirical distribution satisfies the large deviation
principle with good rate function KL(- || p),

P(pn € B) = exp (n inf KL(q || P))
qeB

Large deviations
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Large deviations at the final time: h-transform

Let p be the Wiener measure on time span [0, 1]. Take a independent
sequence of canonical Brownian motions w(?) ~ p and fix the marginal
measure 1 and let

B={q:qow; "' =}

Taking h = dp1 /d(q o wi "), h is the forcing h-transform such that the
maximizer ¢ = p* of
qlogh —KL(q | p)

has marginal ¢: ¢ owl_1 = p1 thus

p* = argmaxKL(q || p)
qeB
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Large deviations at the final time: h-transform

By h-transform with h(s,-) solving 2h = 0 and h(1,w;) = h(w;)
dw; = Vlog h(t, ws)dt + dwy,wy =0

where w} = w; — Vlog h(t,w;)dt is a p* Brownian motion.

Under the rare event B each w(® looks like a Brownian motion with drift
Vlog h.

Large deviations
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Guiding for large deviations

Give me an approximation  with 2h ~ 0 and h(1,wy) = h(wy).

Then by Palmowski-Rolski with guiding process
dw? = Vlog h(t,w?)dt + db,
for some independent Brownian motion (b;);c[0,1] we have

“(4) = E1 4(w®) weight(w®)
P B E weight(w®)

Lo
weight(w®) = exp (/ %(t, wf)dt)
0

with

Thus sampling w® characterises large deviations in tractable way.

Large deviations
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Prelude: Markov process and discrete generator

Model: p;: S;_1 — S; fori=1,...,¢

For fix 2y € Sy this defines Markov process X = (X;,i =0,...,t) with

Xo==x0an law (0zy -P1-P2 -« Pr—1-Dt)-

For time-dependent functionals f(s,-) on S, define the operator
(Qlf)(S,.’L‘S) = (ps-i-lf(s + 17 ))(.’L‘S) - f(S,JJS)

Then

t—1

M, = f(t7Xf) - f(07X0) - Z(Qlf)(S,Xs)

s=0

is a martingale. » Martingales characterise Markov processes

In particular, for h(t,-) given and h(s, ) = pst1h(s+1,-)
My = h(t, Xt) — h(0, Xo)

is a martingale.
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