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VIRTUAL DOUBLE CATEGORIES

Definition: VDCs

A virtual double category 𝔻 consists of
1. A category Tight 𝔻  of objects and tight, or 

vertical arrows
2. For every pair of objects 𝑎, 𝑏 a collection of 

loose arrows 𝑎 ↛ 𝑏
3. For every boundary of loose and tight arrows 

a collection of cells 

Along with an associative and unital composition 
of cells:
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Note: Together with VD functors and tight transformations, VDC forms a 
(co)complete 2-category with finitely presentable underlying category 



PSEUDO VS. VIRTUAL 

CONSTRUCTIONS

(Pseudo-)Double Categories:
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• If ℰ is a category with pushouts, we have a 
double category ℂospan(ℰ)

• If (𝒱,⊗, 𝐼) is a monoidal category with 
finite coproducts that are preserved by 
⊗, then we have a double category 𝒱𝕄at

 
• If 𝔻 is a double category with certain 

reflexive co-equalizers, we have a double 
category 𝕄od(𝔻) of monoids in 𝔻

Virtual Double Categories:

• For any category ℰ, we have a virtual 
double category ℂospan(ℰ)

• For any virtual double category 𝔻 we have 
a virtual double category 𝔻𝕄at

 

• For any virtual double category 𝔻, we 
have a unital virtual double category 
𝕄od(𝔻) of modules in 𝔻



UNIVERSALITY OF VIRTUAL 

CONSTRUCTIONS
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Universality of Constructions on Virtual Double Categories:

• For any category ℰ, the virtual double category ℂospan ℰ  is the free 
virtual equipment on ℰ [DPP10]

• For any virtual double category 𝔻 the virtual double category 𝔻𝕄at is 
the free coproduct completion of 𝔻 [Kaw25]

• For any virtual double category 𝔻, 𝕄od(𝔻) is the cofree normal 
completion of 𝔻 [CS10]

• For any virtual double category 𝔻, 𝔻ℙrof = 𝕄od(𝔻𝕄at) is the free 
collage cocompletion of 𝔻 [Kaw25]



PRO-REPRESENTABLE VDCS

Definition: Pro-representable VDCs

A virtual double category 𝔻 is said to be pro-representable, or exponentiable, if the 
functor given by sending a virtual double category 𝔸 to 𝔸 × 𝔻 admits a right adjoint: 
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EXPONENTIALS

Explication: Exponential

If 𝔻 and 𝔼 are VDCs for which 𝔼𝔻 exists, then it 
must consist of the following data:
• Objects are functors Tight 𝔻 →Tight(𝔼)
• Tight arrows are natural transformations
• Loose arrows maps of spans 

• n-Multi-cells assign to each n-multicell in 𝔻 an 
n-multicell in 𝔼 with the following boundary:

… (cont. on next slide) 
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EXPONENTIALS

Explication: Exponential (cont.)

Where multicells are subject to functoriality with respect to vertical pasting:
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Let 𝔻 be a VDC, and write 𝔻 𝜑1, … , 𝜑𝑛; 𝜓 =: 𝔻(𝜑; 𝜓) for the set of cells with loose 

source the sequence 𝜑1, … , 𝜑𝑛 and with loose target 𝜓. Vertical pasting can be encoded 
by functions

out of co-ends, where 𝜌𝑖 = 𝑘𝑖. Then 𝔻 is a pro-representable VDC if and only if all 

such functions are isomorphisms.
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Theorem: Characterization of Pro-representable VDCs



PRO-REPRESENTABLE VDCS 10

Explication: Characterization of Pro-representable VDCs

In terms of pasting diagrams, a VDC 𝔻 is pro-representable precisely when for any 𝑁 ≥ 0 and 
any partition 𝑁 = 𝑘1 + ⋯ + 𝑘𝑛, 𝑁-multicells decompose as vertical pastings:

=

and any two decompositions are equivalent up to associativity of pasting with cells in the 
center of the decomposition



REPRESENTABLE VDCS 11

Representable VDCs (i.e. pseudo-double categories) are pro-representable.

Corollary: Representable ⟹ Pro-representable

Proof Idea: Let 𝔻 be a representable VDC. Then any cell admits a canonical decomposition 



REPRESENTABLE VDCS 12

Representable VDCs (i.e. pseudo-double categories) are pro-representable.

Corollary: Representable ⟹ Pro-representable

Proof Idea: (cont.) Any other decomposition below left can be canonically factored through the 
composition cells:



COSPANS ARE PRO-REPRESENTABLE
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Proposition: Cospan VDCs are Pro-representable

For any category ℰ the VDC ℂospan(ℰ) is pro-representable, and it is 
representable if and only if ℰ has finite pushouts. 

Proof Idea: An arbitrary multicell:

admits a canonical decomposition:

for any partition of 𝑛 (the case where 𝑘1, 𝑘𝑛 ≥ 1 is shown for simplicity).



COSPANS ARE PRO-REPRESENTABLE
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Proposition: Cospan VDCs are Pro-representable

For any category ℰ the VDC ℂospan(ℰ) is pro-representable, and it is 
representable if and only if ℰ has finite pushouts. 

Proof Idea:
For uniqueness consider the case where 𝑛 = 3, 𝑘1 = 2, 𝑘2 = 1 as an example. Then an arbitrary 
decomposition, below left, can be seen to be equivalent to the canonical decomposition via 
sliding cells: 



NON-PRO-REPRESENTABLE VDC

Non-example: Non-unital Walking Loose Arrow

The VDC 𝕃oose consisting of two objects 0 and 1 and a single loose arrow 0 ↛ 1 is not pro-
representable. Consider the diagram and colimit ℂ in VDC depicted below: 

Then ℂ × 𝕃oose has two non-identity cells, while the VDC obtained by applying −× 𝕃oose to 
the diagram before taking the colimit only has one.
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APPENDIX

Modules in exponential VDCs:
Slide 17

Roadmap:
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Explication: Modules in Exponential

If 𝔻 and 𝔼 are VDCs for which 𝔼𝔻 exists, then the VDC 𝕄od(𝔼𝔻) consists of the 
following data:
• An object is a VD functor 𝐹: 𝔻 → 𝔼
• A tight arrow is a tight transformation between VD functors
• A loose arrow is a VD functor  𝐹: 𝕃ooseu × 𝔻 → 𝔼, where 𝕃ooseu is the 

unital walking loose arrow
• An n-multicell is a diagram with boundary as below, satisfying certain 

equivariance identities

MODULES IN EXPONENTIAL VDC
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Explication: Modules in Exponential (Inner Equivariance)

Inner equivariance requires that the pasting diagrams below are equal for any 1 < 𝑖 < 𝑛:

MODULES IN EXPONENTIAL VDC

=
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Explication: Modules in Exponential (Outer Equivariance)

Outer equivariance requires we have the two pasting equalities below:

MODULES IN EXPONENTIAL VDC



LOOSE BIMODULES

Definition: Loose Bimodules Between VDCs

A loose bimodule between virtual double categories 𝔻 and 𝔼, is a virtual double 
category 𝕄 equipped a VD functor 𝑀: 𝕄 → 𝕃oose𝑢 into the unital loose arrow 
such that the fibers over 0 and 1 are 𝔻 and 𝔼, respectively:
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VDC OF LOOSE BIMODULES

Remark: VDC of Loose Bimodules

We have a virtual double category 𝔹imodVDC with
• Objects: virtual double categories
• Tight arrows: virtual double functors
• Loose arrows: loose bimodules
• Cells: maps of cospans

Explicitly, 𝔹imodVDC is the sub-virtual double category of ℂospan(VDC) whose 
objects, tight arrows, and cells are all the same, but whose loose arrows are the 
codiscrete cofibrations
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KEY TAKEAWAYS 

• VDCs provide the necessary flexibility to 

characterize universal properties of double 

categorical constructions

• Exponentiable VDCs are those admitting 

essentially unique cell decompositions

FUTURE DIRECTIONS
• Characterize exponentiable maps between 

VDCs

• Determine what (co)limits and construction 

pro-representable VDCs are closed under

• Explore properties of enrichment using loose 

bimodules
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