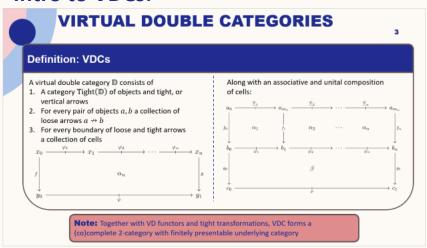
PRO-REPRESENTABLE VIRTUAL DOUBLE CATEGORIES

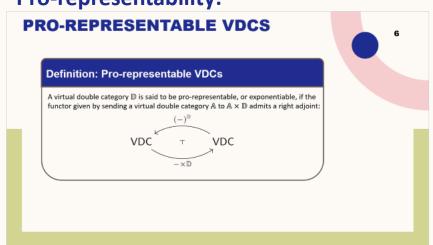
By: Ea E T (they/them)¹ (work with Kevin Carlson and Sophie Libkind)

¹Department of Mathematics University of Illinois Urbana-Champaign

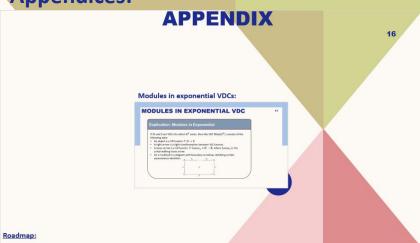
Intro to VDCs:



Pro-representability:



Appendices:



Conclusions and Future Work:

KEY TAKEAWAYS

- VDCs provide the necessary flexibility to characterize universal properties of double categorical constructions
- Exponentiable VDCs are those admitting essentially unique cell decompositions

FUTURE DIRECTIONS

- Characterize exponentiable maps between VDCs
- Determine what (co)limits and construction pro-representable VDCs are closed under
- Explore properties of enrichment using loose bimodules

2

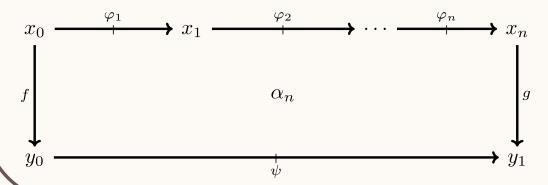


VIRTUAL DOUBLE CATEGORIES

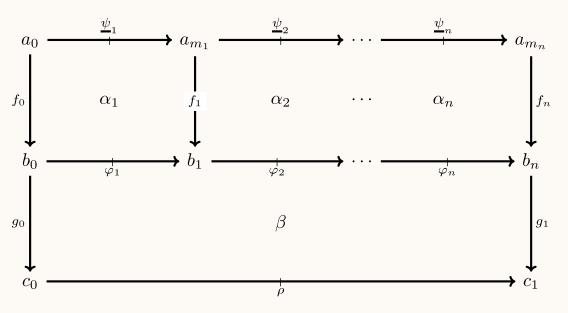
Definition: VDCs

A virtual double category $\mathbb D$ consists of

- 1. A category Tight(\mathbb{D}) of objects and tight, or vertical arrows
- 2. For every pair of objects a, b a collection of loose arrows $a \nrightarrow b$
- 3. For every boundary of loose and tight arrows a collection of cells



Along with an associative and unital composition of cells:



Note: Together with VD functors and tight transformations, VDC forms a (co)complete 2-category with finitely presentable underlying category

PSEUDO VS. VIRTUAL CONSTRUCTIONS

(Pseudo-)Double Categories:

- If $\mathcal E$ is a category with pushouts, we have a double category $\mathbb C$ ospan $(\mathcal E)$
- If $(\mathcal{V}, \otimes, I)$ is a monoidal category with finite coproducts that are preserved by \otimes , then we have a double category \mathcal{V} Mat
- If D is a double category with certain reflexive co-equalizers, we have a double category Mod(D) of monoids in D

Virtual Double Categories:

- For any category \mathcal{E} , we have a virtual double category \mathbb{C} ospan(\mathcal{E})
- For any virtual double category $\mathbb D$ we have a virtual double category $\mathbb D \mathbb M$ at
- For any virtual double category D, we have a unital virtual double category Mod(D) of modules in D

UNIVERSALITY OF VIRTUAL CONSTRUCTIONS

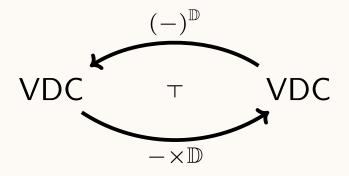
Universality of Constructions on Virtual Double Categories:

- For any category \mathcal{E} , the virtual double category \mathbb{C} ospan(\mathcal{E}) is the free virtual equipment on \mathcal{E} [DPP10]
- For any virtual double category $\mathbb D$ the virtual double category $\mathbb D$ Mat is the free coproduct completion of $\mathbb D$ [Kaw25]
- For any virtual double category \mathbb{D} , $Mod(\mathbb{D})$ is the cofree normal completion of \mathbb{D} [CS10]
- For any virtual double category \mathbb{D} , $\mathbb{DProf} = Mod(\mathbb{DMat})$ is the free collage cocompletion of \mathbb{D} [Kaw25]

PRO-REPRESENTABLE VDCS

Definition: Pro-representable VDCs

A virtual double category $\mathbb D$ is said to be pro-representable, or exponentiable, if the functor given by sending a virtual double category $\mathbb A$ to $\mathbb A \times \mathbb D$ admits a right adjoint:

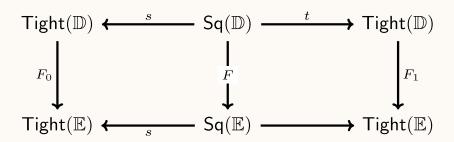


EXPONENTIALS

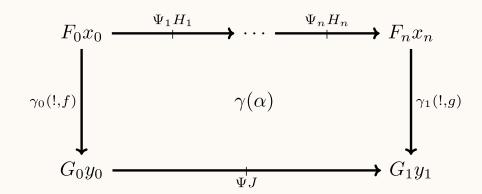
Explication: Exponential

If $\mathbb D$ and $\mathbb E$ are VDCs for which $\mathbb E^{\mathbb D}$ exists, then it must consist of the following data:

- Objects are functors Tight(D) → Tight(E)
- Tight arrows are natural transformations
- Loose arrows maps of spans



• n-Multi-cells assign to each n-multicell in $\mathbb D$ an n-multicell in $\mathbb E$ with the following boundary:

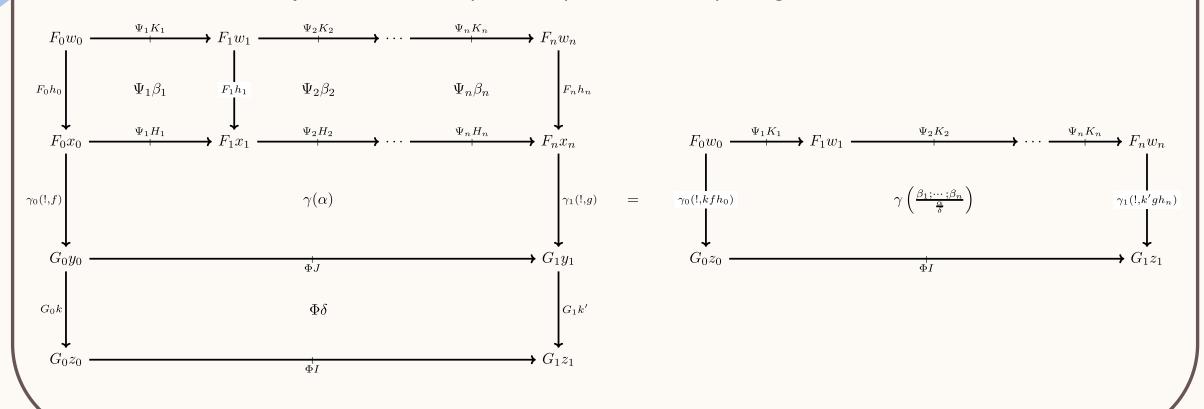


... (cont. on next slide)

EXPONENTIALS

Explication: Exponential (cont.)

Where multicells are subject to functoriality with respect to vertical pasting:



PRO-REPRESENTABLE VDCS

Theorem: Characterization of Pro-representable VDCs

Let \mathbb{D} be a VDC, and write $\mathbb{D}(\varphi_1, ..., \varphi_n; \psi) =: \mathbb{D}(\underline{\varphi}; \psi)$ for the set of cells with loose source the sequence $\varphi_1, ..., \varphi_n$ and with loose target ψ . Vertical pasting can be encoded by functions

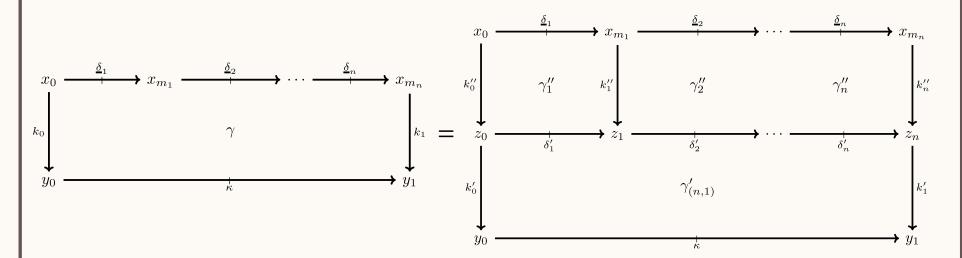
$$\int^{\varphi_i:\mathbb{D}} \mathbb{D}(\underline{\varphi}; \psi) \times (\mathbb{D}(\underline{\rho}_1; \varphi_1) \times_{\mathsf{Tight}(\mathbb{D})_1} \cdots \times_{\mathsf{Tight}(\mathbb{D})_1} \mathbb{D}(\underline{\rho}_n; \varphi_n)) \xrightarrow{\circ_{k_1, \dots, k_n}} \mathbb{D}(\underline{\rho}; \psi)$$

out of co-ends, where $\left|\underline{\rho_i}\right|=k_i$. Then $\mathbb D$ is a pro-representable VDC if and only if all such functions are isomorphisms.

PRO-REPRESENTABLE VDCS

Explication: Characterization of Pro-representable VDCs

In terms of pasting diagrams, a VDC $\mathbb D$ is pro-representable precisely when for any $N \geq 0$ and any partition $N = k_1 + \dots + k_n$, N-multicells decompose as vertical pastings:



and any two decompositions are equivalent up to associativity of pasting with cells in the center of the decomposition

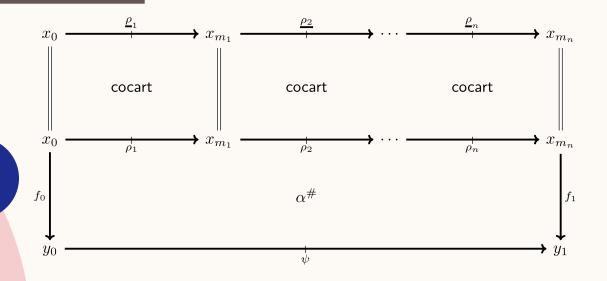
REPRESENTABLE VDCS

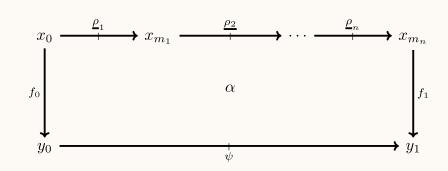
Corollary: Representable ⇒ **Pro-representable**

Representable VDCs (i.e. pseudo-double categories) are pro-representable.

Proof Idea:

Let $\mathbb D$ be a representable VDC. Then any cell admits a canonical decomposition





REPRESENTABLE VDCS

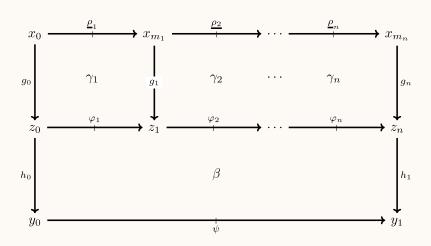
Corollary: Representable ⇒ **Pro-representable**

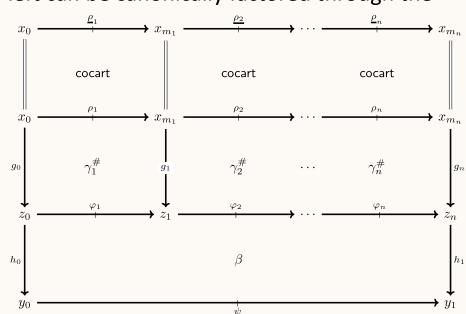
Representable VDCs (i.e. pseudo-double categories) are pro-representable.

Proof Idea: (cont.)

Any other decomposition below left can be canonically factored through the

composition cells:





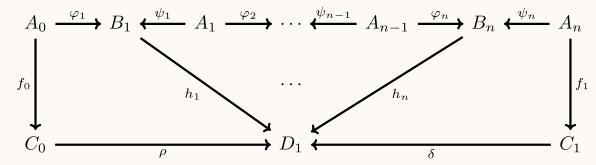
COSPANS ARE PRO-REPRESENTABLE

Proposition: Cospan VDCs are Pro-representable

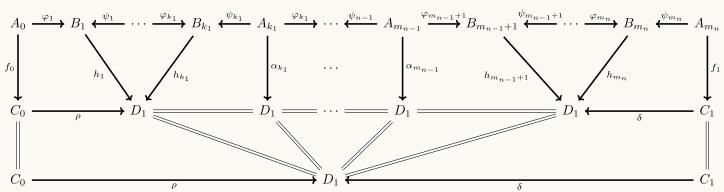
For any category $\mathcal E$ the VDC $\mathbb C$ ospan($\mathcal E$) is pro-representable, and it is representable if and only if $\mathcal E$ has finite pushouts.

Proof Idea:

An arbitrary multicell:



admits a canonical decomposition:



for any partition of n (the case where k_1 , $k_n \ge 1$ is shown for simplicity).

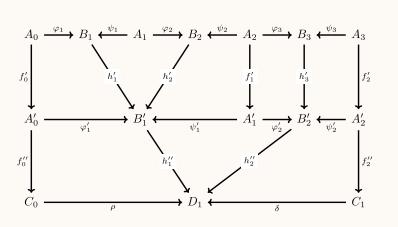
COSPANS ARE PRO-REPRESENTABLE

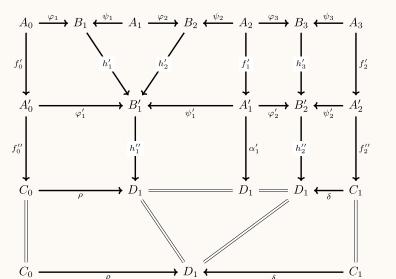
Proposition: Cospan VDCs are Pro-representable

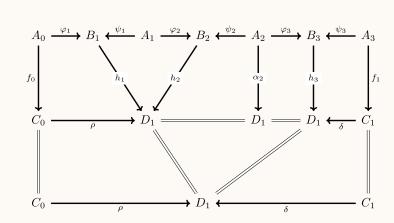
For any category \mathcal{E} the VDC \mathbb{C} ospan(\mathcal{E}) is pro-representable, and it is representable if and only if \mathcal{E} has finite pushouts.

Proof Idea:

For uniqueness consider the case where $n=3, k_1=2, k_2=1$ as an example. Then an arbitrary decomposition, below left, can be seen to be equivalent to the canonical decomposition via sliding cells:



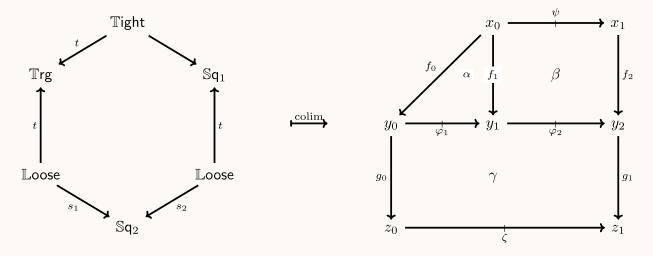




NON-PRO-REPRESENTABLE VDC

Non-example: Non-unital Walking Loose Arrow

The VDC Loose consisting of two objects 0 and 1 and a single loose arrow $0 \nrightarrow 1$ is not prorepresentable. Consider the diagram and colimit $\mathbb C$ in VDC depicted below:



Then $\mathbb{C} \times \mathbb{L}$ oose has two non-identity cells, while the VDC obtained by applying $-\times \mathbb{L}$ oose to the diagram before taking the colimit only has one.

Modules in exponential VDCs:

MODULES IN EXPONENTIAL VDC

- 1

Explication: Modules in Exponential

If $\mathbb D$ and $\mathbb E$ are VDCs for which $\mathbb E^{\mathbb D}$ exists, then the VDC $\mathbb M$ od($\mathbb E^{\mathbb D}$) consists of the following data:

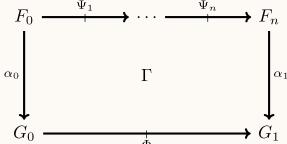
- An object is a VD functor F: D → E
- · A tight arrow is a tight transformation between VD functors
- A loose arrow is a VD functor $F\colon \mathbb{L}oose_u\times \mathbb{D}\to \mathbb{E}$, where $\mathbb{L}oose_u$ is the unital walking loose arrow
- An n-multicell is a diagram with boundary as below, satisfying certain equivariance identities $F_n = \underbrace{ \begin{array}{ccc} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \end{array}}_{F_n} \xrightarrow{\quad & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$

MODULES IN EXPONENTIAL VDC

Explication: Modules in Exponential

If $\mathbb D$ and $\mathbb E$ are VDCs for which $\mathbb E^{\mathbb D}$ exists, then the VDC $\mathrm{Mod}(\mathbb E^{\mathbb D})$ consists of the following data:

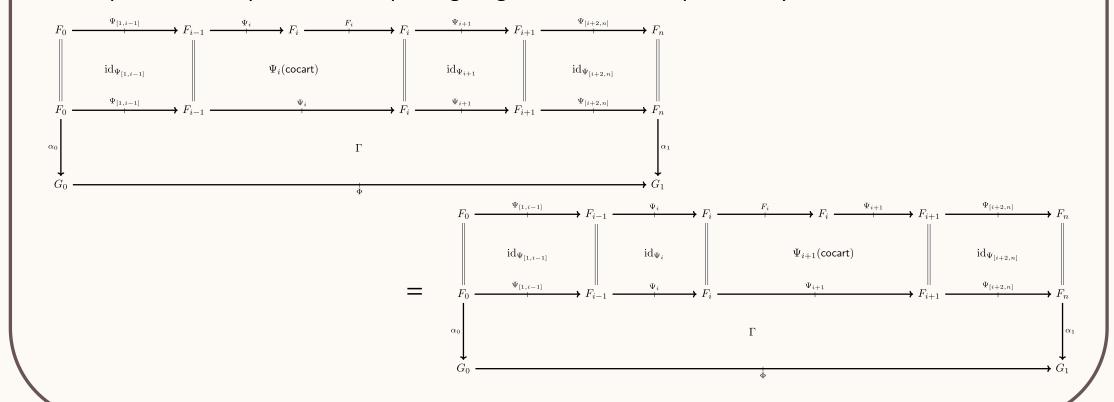
- An object is a VD functor $F: \mathbb{D} \to \mathbb{E}$
- A tight arrow is a tight transformation between VD functors
- A loose arrow is a VD functor $F: \mathbb{L}oose_u \times \mathbb{D} \to \mathbb{E}$, where $\mathbb{L}oose_u$ is the unital walking loose arrow
- An n-multicell is a diagram with boundary as below, satisfying certain equivariance identities $\Psi_n = \Psi_n$



MODULES IN EXPONENTIAL VDC

Explication: Modules in Exponential (Inner Equivariance)

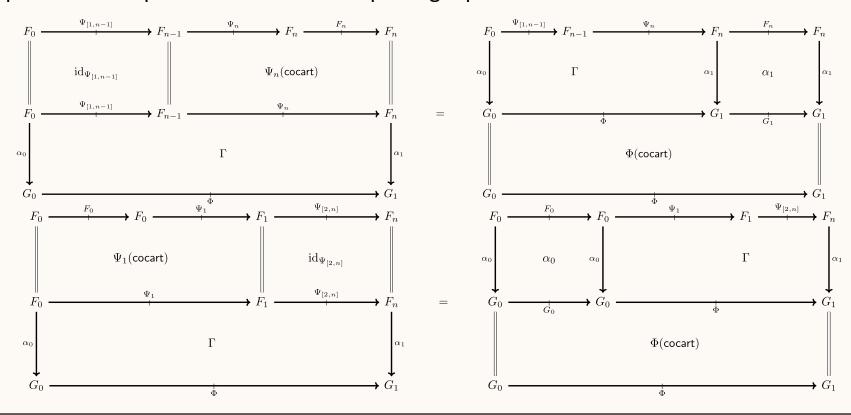
Inner equivariance requires that the pasting diagrams below are equal for any 1 < i < n:



MODULES IN EXPONENTIAL VDC

Explication: Modules in Exponential (Outer Equivariance)

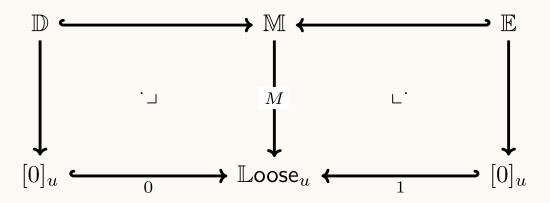
Outer equivariance requires we have the two pasting equalities below:



LOOSE BIMODULES

Definition: Loose Bimodules Between VDCs

A loose bimodule between virtual double categories $\mathbb D$ and $\mathbb E$, is a virtual double category $\mathbb M$ equipped a VD functor $M \colon \mathbb M \to \mathbb Loose_u$ into the unital loose arrow such that the fibers over 0 and 1 are $\mathbb D$ and $\mathbb E$, respectively:



VDC OF LOOSE BIMODULES

Remark: VDC of Loose Bimodules

We have a virtual double category BimodVDC with

- Objects: virtual double categories
- Tight arrows: virtual double functors
- Loose arrows: loose bimodules
- Cells: maps of cospans

Explicitly, BimodVDC is the sub-virtual double category of Cospan(VDC) whose objects, tight arrows, and cells are all the same, but whose loose arrows are the codiscrete cofibrations

$$\mathbb{D} \longleftrightarrow \mathbb{D} +_M \mathbb{E} \longleftrightarrow \mathbb{E}$$

KEY TAKEAWAYS

- VDCs provide the necessary flexibility to characterize universal properties of double categorical constructions
- Exponentiable VDCs are those admitting essentially unique cell decompositions

FUTURE DIRECTIONS

- Characterize exponentiable maps between VDCs
- Determine what (co)limits and construction pro-representable VDCs are closed under
- Explore properties of enrichment using loose bimodules

REFERENCES

- [P14] Pisani, C. (2014, February 2). Sequential multicategories. arXiv. https://doi.org/10.48550/arXiv.1402.0253
- [CS10] Cruttwell, G. S. H., & Shulman, M. A. (2010, December 8). A unified framework for generalized multicategories. arXiv. https://doi.org/10.48550/arXiv.0907.2460
- [LP24] Lambert, M., & Patterson, E. (2024). Cartesian double theories: A double-categorical framework for categorical doctrines. Advances in Mathematics, 444, 109630. https://doi.org/10.1016/j.aim.2024.109630
- [FL25] Fujii, S., & Lack, S. (2025, July 7). The familial nature of enrichment over virtual double categories. arXiv. https://doi.org/10.48550/arXiv.2507.05529
- [Kaw25] Kawase, Y. (2025, April 26). Double categories of profunctors. arXiv. https://doi.org/10.48550/arXiv.2504.11099
- [Kou25] Koudenburg, S. R. (2025, March 3). Augmented virtual double categories. arXiv. https://doi.org/10.48550/arXiv.1910.11189
- [Kou24] Koudenburg, S. R. (2024, April 2). Formal category theory in augmented virtual double categories. arXiv. https://doi.org/10.48550/arXiv.2205.04890
- [LM25] Libkind, S., & Myers, D. J. (2025, May 28). Towards a double operadic theory of systems. arXiv. https://doi.org/10.48550/arXiv.2505.18329
- [LMCB25] Libkind, S., Myers, D. J., Carlson, K., & Brown, J. (2025, in preparation). Loose bimodules and their construction. Topos Forest.
- [DPP10] Dawson, R., Paré, R., & Pronk, D. (2010). The span construction. In: Theory and Applications of Categories 24.13, p. 302-377.