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0 Introduction

Across the Stars

John Williams and the London Symphony
Orchestra

0.1 Universal Algebra and Monads 3

0.2 Generalized Metric Spaces 3

0.3 Universal Quantitative Algebra 3

0.1 Universal Algebra and Monads

0.2 Generalized Metric Spaces

The first definition of metric space (under the name “(E) classes”) is credited to
Fréchet’s thesis [Fré06]. We give the definition that is now standard (up to small
variations).

Definition 1 (Metric space). A metric space is a pair (X, d) comprising a set X and
a function d : X× X → [0, ∞) called the metric satisfying for all x, y, z ∈ X:

1. separation: d(x, y) = 0⇔ x = y,

2. symmetry: d(x, y) = d(y, x), and

3. triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

0.3 Universal Quantitative Algebra

https://www.youtube.com/watch?v=tlYmnu3csx4




1 Universal Algebra

Concerto Al Andalus

Marcel Khalifé

1.1 Algebras and Equations 5

1.2 Free Algebras 15

1.3 Equational Logic 24

1.4 Monads 29

For a comprehensive introduction to the concepts and themes explored in this
chapter, please refer to §0.1. Here, we only give a brief overview.

In this chapter, we cover the content on universal algebra and monads that we
will need in the rest of the thesis. This material has appeared many times in the
literature,0 but for completeness (and to be honest my own satisfaction) we take 0 [Wec12] and [Bau19] are two of my favorite refer-

ences on universal algebra, and both [Rie17, Chap-
ter 5] and [BW05, Chapter 3] are great references for
monads (the latter calls them triples).

our time with it. In Chapter 3, we will follow the outline of the current chapter
to generalize the definitions and results to sets equipped with a notion of distance.
Thus, many choices in our notations and presentation are motivated by the needs
of Chapter 3.1 1 I hope this will not make this chapter too terse, but

the payback of simply copy-pasting proofs to obtain
the generalized results is worth it.

Outline: In §1.1, we define algebras, terms, and equations over a signature of
finitary operation symbols. In §1.2, we explain how to construct the free algebras
for a given signature and class of equations. In §1.3, we give the rules for equa-
tional logic to derive equations from other equations, and we show it is sound and
complete. In §1.4, we define monads and algebraic presentations for monads. We
give examples all throughout, some small ones to build intuition and some bigger
ones that will be important later.

1.1 Algebras and Equations

We said in §0.1 that groups and rings are both examples of algebras we want to
understand. Groups and rings allow different kinds of combinations of elements,
you can do x− y in a ring but not in a group. Essentially all of this chapter will be
parametric over a signature Σ which determines what combinations are allowed.

Definition 2 (Signature). A signature is a set Σ whose elements, called operation
symbols, each come with an arity n ∈ N. We write op : n ∈ Σ for a symbol op

with arity n in Σ. With some abuse of notation, we also denote by Σ the functor
Σ : Set→ Set with the following action:2 2 The set Σ(A) can be identified with the set contain-

ing op(a1, . . . , an) for all op : n ∈ Σ and a1, . . . , an ∈
A. Then, the function Σ( f ) sends op(a1, . . . , an) to
op( f (a1), . . . , f (an)).

Σ(A) := ⨿
op:n∈Σ

An on sets and Σ( f ) := ⨿
op:n∈Σ

f n on functions.

An algebra for a signature Σ is a structure where each operation symbol in Σ is
associated to a concrete way to combine elements.

https://youtube.com/playlist?list=OLAK5uy_n93-f6dE8eLC8LuZfpAoXgY8N3cTRIeJo&si=0GyWN6z9Z09dEnv_
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Definition 3 (Σ-algebra). A Σ-algebra (or just algebra) is a set A equipped with
functions JopKA : An → A for every op : n ∈ Σ called the interpretation of the
symbol. We call A the carrier or underlying set, and when referring to an algebra,
we will switch between using a single symbol A3 or the pair (A, J−KA), where 3 We will try to match the symbol for the algebra

and the one for the underlying set only modifying
the former with mathbb.

J−KA : Σ(A) → A is the function sending op(a1, . . . , an) to JopKA(a1, . . . , an) (it
compactly describes the interpretations of all symbols).

A homomorphism from A to B is a function h : A→ B between the underlying
sets of A and B that preserves the interpretation of all operation symbols in Σ,
namely, for all op : n ∈ Σ and a1, . . . , an ∈ A,4 4 Equivalently, h makes the following square com-

mute:

Σ(A) Σ(B)

A B

Σ( f )

J−KA

f

J−KB
(0)

This amounts to an equivalent and more concise def-
inition of Alg(Σ): it is the category of algebras for
the signature functor Σ : Set→ Set [Awo10, Defini-
tion 10.8].

h(JopKA(a1, . . . , an)) = JopKB(h(a1), . . . , h(an)). (1)

The identity maps idA : A → A and the composition of two homomorphisms are
always homomorphisms, therefore we have a category whose objects are Σ-algebras
and morphisms are Σ-algebra homomorphisms. We denote it by Alg(Σ).

This category is concrete over Set with the forgetful functor U : Alg(Σ) → Set
which sends an algebra A to its carrier and a homomorphism to the underlying
function between carriers.

Remark 4. In the sequel, we will rarely distinguish between the homomorphism
h : A→ B and the underlying function h : A→ B. Although, we may write Uh for
the latter, when disambiguation is necessary.

Examples 5. 1. Let Σ = {p : 0} be the signature containing a single operation sym-
bol p with arity 0. A Σ-algebra is a set A equipped with an interpretation of p as
a function JpKA : A0 → A. Since A0 is the singleton 1, JpKA is just a choice of el-
ement in A,5 so the objects of Alg(Σ) are pointed sets (sets with a distinguished 5 For this reason, we often call 0-ary symbols con-

stants.element). Moreover, instantiating (1) for the symbol p, we find that a homomor-
phism from A to B is a function h : A→ B sending the distinguished point of A
to the distinguished point of B. We conclude that Alg(Σ) is the category Set∗ of
pointed sets and functions preserving the points.

2. Let Σ = {f : 1} be the signature containing a single unary operation symbol
f. A Σ-algebra is a set A equipped with an interpretation of f as a function
JfKA : A→ A.

For example, we have the Σ-algebra whose carrier is the set of integers Z and
where f is interpreted as “adding 1”, i.e. JfKZ(k) = k + 1. We also have the
integers modulo 2, denoted by Z2, where JfKZ2(k) = k + 1(mod 2).

The fact that a function h : A → B satisfies (1) for the symbol f is equivalent to
the following commutative square.

A B

A B

JfKA

h

JfKB

h

We conclude that Alg(Σ) is the category whose objects are endofunctions and
whose morphisms are commutative squares as above.6 There is a homomor- 6 For more categorical thinkers, we can also identify

Alg(Σ) with the functor category [BN, Set] from
the delooping of the (additive) monoid N to the
category of sets. Briefly, it is because a functor
BN → Set is completely determined by where it
sends 1 ∈N.
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phism is_odd from Z to Z2 that sends k to k(mod 2), that is, to 0 when it is even
and to 1 when it is odd.

3. Let Σ = {· : 2} be the signature containing a single binary operation symbol. A
Σ-algebra is a set A equipped with an interpretation J·KA : A × A → A. Such
a structure is often called a magma, and it is part of many more well-known
algebraic structures like groups, rings, monoids, etc. While every group has an
underlying Σ-algebra,7 not every Σ-algebra underlies a group since J·KA is not 7 In fact, every group has an underlying algebra for

the signature {· : 2, e : 0,−−1 : 1}.required to be associative for example. The next definition will allow us to talk
about certain classes of Σ-algebras with some properties like associativity.

If we want to say that · is commutative, we could write

∀a, b ∈ A, J·KA(a, b) = J·KA(b, a).

To say that · is associative, we write

∀a, b, c ∈ A, J·KA(J·KA(a, b), c) = J·KA(a, J·KA(b, c)),

and as you can see, it gets hard to read very quickly. We make our life easier by
defining the interpretation of Σ-terms which are syntactic gadgets built by iterating
the symbols in Σ.

Definition 6 (Term). Let Σ be a signature and A be a set.8 We denote with TΣ A the
8 In the sequel, unless otherwise stated, Σ will be an
arbitrary signature.set of Σ-terms built syntactically from A and the operation symbols in Σ, i.e. the

set inductively defined by

a ∈ A
a ∈ TΣ A

and
op : n ∈ Σ t1, . . . , tn ∈ TΣ A

op(t1, . . . , tn) ∈ TΣ A
. (2)

We identify elements a ∈ A with the corresponding terms a ∈ TΣ A, and we also
identify (as outlined in Footnote 2) elements of Σ(A) with terms in TΣ A containing
exactly one occurrence of an operation symbol.9 9 Note that any constant p : 0 ∈ Σ belongs to all TΣ A

by the second rule defining TΣ A.The assignment A 7→ TΣ A can be turned into a functor TΣ : Set → Set by
inductively defining, for any function f : A → B, the function TΣ f : TΣ A → TΣB
as follows:10 10 In words, TΣ f replaces a with f (a) and does noth-

ing to operation symbols nor the structure of the
term. In particular, TΣ f acts as identity on constants.a ∈ A

TΣ f (a) = f (a)
and

op : n ∈ Σ t1, . . . , tn ∈ TΣ A
TΣ f (op(t1, . . . , tn)) = op(TΣ f (t1), . . . , TΣ f (tn))

. (3)

Proposition 7. We defined a functor TΣ : Set → Set, namely, for any A
f−→ B

g−→ C,
TΣidA = idTΣ A and TΣ(g ◦ f ) = TΣg ◦ TΣ f .

Proof. We proceed by induction for both equations.11 For any a ∈ A, we have 11 Many proofs in this chapter are by induction until
some point where we will have enough results to
efficiently use commutative diagrams.

TΣidA(a) = idA(a) = a and

TΣ(g ◦ f )(a) = (g ◦ f )(a) = TΣg(TΣ f (a)).

For any t = op(t1, . . . , tn), we have

TΣidA(op(t1, . . . , tn))
(3)
= op(TΣidA(t1), . . . , TΣidA(tn))

I.H.
= op(t1, . . . , tn),

https://en.wikipedia.org/wiki/Magma_(algebra)
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and

TΣ(g ◦ f )(t) = TΣ(g ◦ f )(op(t1, . . . , tn))

= op(TΣ(g ◦ f )(t1), . . . , TΣ(g ◦ f )(tn)) by (3)

= op(TΣg(TΣ f (t1)), . . . , TΣg(TΣ f (tn))) I.H.

= TΣg(op(TΣ f (t1), . . . , TΣ f (tn))) by (3)

= TΣgTΣ f (op(t1, . . . , tn)). by (3)

Examples 8. 1. With Σ = {p : 0}, a Σ-term over A is either an element of A or the
constant p. For a function f : A → B, the function TΣ f sends a to f (a) and p to
itself. The functor TΣ is then naturally isomorphic to the maybe functor sending
A to A + 1.

2. With Σ = {f : 1}, a Σ-term over A is either an element of A or a term f(f(· · · f(a)))
for some a and a finite number of iterations of f.12 The functor TΣ is then naturally 12 For a function f : A → B, the function TΣ f re-

places a with f (a) and does not change the number
of iterations of f.

isomorphic to the functor sending A to N× A.

3. With Σ = {· : 2}, a Σ-term is either an element of A or any expression formed by
multiplying elements of A together like a · b, a · (b · c), ((a · a) · c) · (b · c) and so on
when a, b, c ∈ A.13 13 We write · infix as is very common. The paren-

theses are formal symbols to help delimit which · is
taken first. They are necessary because the interpre-
tation of · is not necessarily associative so a · (b · c)
and (a · b) · c can be interpreted differently in some
Σ-algebras.

As we said above, any element in A is a term in TΣ A, we will denote this embed-
ding with ηΣ

A : A → TΣ A, in particular, we will write ηΣ
A(a) to emphasize that we

are dealing with the term a and not the element of A. For instance, the base case of
the definition of TΣ f in (3) becomes

a ∈ A
TΣ f (ηΣ

A(a)) = ηΣ
B( f (a))

.

This is exactly what it means for the family of maps ηΣ
A : A → TΣ A to be natural

in A,14 in other words that ηΣ : idSet ⇒ TΣ is a natural transformation. We can 14 As a commutative square:

A B

TΣ A TΣ B

ηΣ
B

f

ηΣ
A

TΣ f

(4)

mention now that it will be part of some additional structure on the functor TΣ (a
monad). The other part of that structure is a natural transformation µΣ : TΣTΣ ⇒ TΣ,
that is more easily described using trees.

For an arbitrary signature Σ, we can think of TΣ A as the set of rooted trees whose
leaves are labelled with elements of A and whose nodes with n children are labelled
with n-ary operation symbols in Σ. This makes the action of a function TΣ f fairly
straightforward: it applies f to the labels of all the leaves as depicted in Figure 1.1.

This point of view is particularly helpful when describing the flattening of terms:
there is a natural way to see a Σ-term over Σ-terms over A as a Σ-term over A. This
is carried out by the map µΣ

A : TΣTΣ A → TΣ A which takes a tree T whose leaves are
labelled with trees T1, . . . , Tn to the tree T where instead of the leaf labelled Ti, there
is the root of Ti with all its children and their children and so on (we “glue” the
tree Ti at the leaf labelled Ti). Figure 1.2 shows an example for Σ = {· : 2}. More
formally, µΣ

A is defined inductively by:

µΣ
A(η

Σ
TΣ A(t)) = t and µΣ

A(op(t1, . . . , tn)) = op(µΣ
A(t1), . . . , µΣ

A(tn)). (5)
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t =

·

b ·

a c

TΣ f (t) =

·

f b ·

f a f c

Figure 1.1: Applying TΣ f to b · (a · c) yields f (b) ·
( f (a) · f (c)).

T =
·

T1 T2

T1 =

·

a b

T2 = a µΣ
A(T) =

·

· a

a b

Figure 1.2: Flattening of a term

The use of the word “natural” above is not benign, µΣ is actually a natural trans-
formation.

Proposition 9. The family of maps µΣ
A : TΣTΣ A→ TΣ A is natural in A.

Proof. We need to prove that for any function f : A→ B, TΣ f ◦ µΣ
A = µΣ

B ◦ TΣTΣ f .15 It 15 As a commutative square:

TΣTΣ A TΣTΣ B

TΣ A TΣ B

µΣ
A

TΣTΣ f

µΣ
B

TΣ f

(6)

makes sense intuitively: we should get the same result when we apply f to all the
leaves before or after flattening. Formally, we use induction.

For the base case (i.e. terms in the image of ηΣ
TΣ A), we have

µΣ
B(TΣTΣ f (ηΣ

TΣ A(t))) = µΣ
B(η

Σ
TΣB(TΣ f (t))) by (4)

= TΣ f (t) by (5)

= TΣ f (µΣ
A(η

Σ
TΣ A(t))). by (5)

For the inductive step, we have

µΣ
B(TΣTΣ f (op(t1, . . . , tn))) = µΣ

B(op(TΣTΣ f (t1), . . . , TΣTΣ f (tn))) by (3)

= op(µΣ
B(TΣTΣ f (t1)), . . . , µΣ

B(TΣTΣ f (tn))) by (5)

= op(TΣ f (µΣ
A(t1)), . . . , TΣ f (µΣ

A(tn))) I.H.

= TΣ f (op(µΣ
A(t1), . . . , µΣ

A(tn))) by (3)

= TΣ f (µΣ
A(op(t1, . . . , tn))) by (5)

By definition, we have that µΣ · ηΣTΣ is the identity transformation 1TΣ : TΣ ⇒ TΣ.16 16 We write · to denote the vertical composition
of natural transformations and juxtaposition (e.g.
Fϕ or ϕF to denote the action of functors on nat-
ural transformations), namely, the component of
µΣ · ηΣTΣ at A is µΣ

A ◦ ηΣ
TΣ A which is idTΣ A by (5).

In words, we say that seeing a term trivially as a term over terms then flattening
it yields back the original term. Another similar property is that if we see all the
variables in a term trivially as terms and flatten the resulting term over terms, the
result is the original term. Formally:

Lemma 10. For any set A, µΣ
A ◦ TΣηΣ

A = idTΣ A, hence µΣ · TΣηΣ = 1TΣ .

Proof. We proceed by induction. For the base case, we have

µΣ
A(TΣηΣ

A(η
Σ
A(a)))

(4)
= µΣ

A(η
Σ
TΣ A(η

Σ
A(a)))

(5)
= ηΣ

A(a).

For the inductive step, if t = op(t1, . . . , tn), we have

µΣ
A(TΣηΣ

A(t)) = µΣ
A(TΣηΣ

A(op(t1, . . . , tn)))
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= µΣ
A(op(TΣηΣ

A(t1), . . . , TΣηΣ
A(tn))) by (3)

= op(µΣ
A(TΣηΣ

A(t1)), . . . , µΣ
A(TΣηΣ

A(tn))) by (5)

= op(t1, . . . , tn) = t I.H.

Trees also make the depth of a term a visual concept. A term t ∈ TΣ A is said to
be of depth d ∈ N if the tree representing it has depth d.17 We give an inductive 17 i.e. the longest path from the root to a leaf has d

edges. In Figure 1.2, the depth of T and T1 is 1, the
depth of T2 is 0 and the depth of µΣ

AT is 2.
definition:

depth(a) = 0 and depth(op(t1, . . . , tn)) = 1 + max{depth(t1), . . . , depth(tn)}.

A term of depth 0 is a term in the image of ηΣ
A. A term of depth 1 is an element of

Σ(A) seen as a term (recall Footnote 2).
In any Σ-algebra A, the interpretations of operation symbols give us an element

of A for each element of Σ(A). Therefore, we get a value in A for all terms in TΣ A
of depth 0 or 1 (the value associated to ηΣ

A(a) is a). Using the inductive definition of
TΣ A, we can extend these interpretations to all terms: abusing notation, we define
the function J−KA : TΣ A→ A by18 18 For categorical thinkers, TΣ A is essentially defined

to be the initial algebra for the endofunctor Σ + A :
Set → Set sending X to Σ(X) + A. Any Σ-algebra
(A, J−KA) defines another algebra for that functor
[J−KA, idA] : Σ(A) + A → A. Then, the extension
of J−KA to terms is the unique algebra morphism
drawn below.

Σ(TΣ A) + A Σ(A) + A

TΣ A A

[J−KA ,idA ]

The vertical arrow on the left is basically (2).

a ∈ A
JaKA = a

and
op : n ∈ Σ t1, . . . , tn ∈ TΣ A

Jop(t1, . . . , tn)KA = JopKA(Jt1KA, . . . , JtnKA)
. (7)

This allows to further extend the interpretation J−KA to all terms TΣX over some
set of variables X, provided we have an assignment of variables ι : X → A, by
precomposing with TΣι. We denote this interpretation with J−Kι

A:

J−Kι
A = TΣX

TΣ ι−→ TΣ A
J−KA−−−→ A. (8)

Example 11. In the signature Σ = {f : 1} and over the variables X = {x}, we have
(amongst others) the terms t = ffx and s = fffx. If we compute the interpretation of
t and s in Z and Z2,19 we obtain 19 Recall their Σ-algebra structure given in Exam-

ple 5.

JtKι
Z = ι(x) + 2 JsKι

Z = ι(x) + 3 JtKι
Z2

= ι(x) JsKι
Z2

= ι(x) + 1(mod 2),

for any assignment ι : X → Z (resp. ι : X → Z2).

By definition, a homomorphism preserves the interpretation of operation sym-
bols. We can prove by induction that it also preserves the interpretation of arbitrary
terms. Namely, if h : A → B is a homomorphism, then the following square com-
mutes.20 20 Quick proof. If t = a ∈ A, then both paths send it

to h(a). If t = op(t1, . . . , tn), then

h(JtKA) = h(JopKA(Jt1KA, . . . , JtnKA))

= JopKB(h(Jt1KA), . . . , h(JtnKA))

= JopKB(JTΣh(t1)KB, . . . , JTΣh(tn)KB)

= Jop(TΣh(t1), . . . , TΣh(tn))KB

= JTΣh(t)KB.

TΣ A TΣB

A B

TΣh

J−KA

h

J−KB
(9)

The converse is (almost trivially) true, if (9) commutes, then we can quickly see (0)
commutes by embedding Σ(A) into TΣ A and Σ(B) into TΣB. It follows readily that
for all homomorphisms h : A→ B and all assignments ι : X → A,

h ◦ J−Kι
A = J−Kh◦ι

B . (10)
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Coming back to associativity, instead of writing J·KA(a, J·KA(b, c)), we can now
write Ja · (b · c)KA, and it looks cleaner.21 Moreover, instead of considering a differ- 21 Even cleaner since we are using the infix notation,

but I still prefer Ja · (b · c)KA over a J·KA(b J·KA c).ent term for each choice of a, b, c ∈ A, we can consider the term x · (y · z) over a set
of variables {x, y, z} and quantify over all the possible assignments {x, y, z} → A.
We obtain the following definition.

Definition 12 (Equation). An equation over a signature Σ is a triple comprising a
set X of variables called the context, and a pair of terms s, t ∈ TΣX. We write these
as X ⊢ s = t.

A Σ-algebra A satisfies an equation X ⊢ s = t if for any assignment of variables
ι : X → A, JsKι

A = JtKι
A. We use ϕ and ψ to refer to equations, and we write A ⊨ ϕ

when A satisfies ϕ. We also write A ⊨ι ϕ when the equality JsKι
A = JtKι

A holds for
a particular assignment ι : X → A and not necessarily for all assignments.

Remark 13. Our notation for equations is not standard because many authors do
not bother writing the context of an equation and suppose it contains exactly the
variables used in s and t. That is theoretically sound for universal algebra, but it
will not remain so when we generalize to universal quantitative algebras. Thus, we
make the context explicit in our equations as is done in [Wec12] or [Bau19] with the
notations ∀X.s = t and X | s = t respectively.22 We use the turnstile ⊢ to match the 22 Only finite contexts are used in [Wec12] and

[Bau19]. We say a bit more on this in Remark 50convention in the literature on quantitative algebras (e.g. [MPP16] and [FMS21]).

Example 14 (Associativity). With the signature Σ = {· : 2} and the context X =

{x, y, z}, the equation ϕ = X ⊢ x · (y · z) = (x · y) · z23 asserts that the interpretation 23 Alternatively, we may write ϕ omitting brackets:

x, y, z ⊢ x · (y · z) = (x · y) · z.of · is associative. Indeed, suppose A ⊨ ϕ, we need to show that for any a, b, c ∈ A,

J·KA(a, J·KA(b, c)) = J·KA(J·KA(a, b), c). (11)

Let s = x · (y · z) and t = (x · y) · z. Observe that the L.H.S. is the interpretation of
s under the assignment ι : X → A sending x to a, y to b and z to c, that is, we have
J·KA(a, J·KA(b, c)) = JsKι

A. Under the same assignment, the interpretation of t is the
R.H.S. Since A ⊨ι X ⊢ s = t, JsKι

A = JtKι
A, and we conclude (11) holds.

Examples 15. Here are some other simple examples of equations.

• x, y ⊢ x · y = y · x states that the binary operation · is commutative.

• x ⊢ x · x = x states that the binary operation · is idempotent.

• x ⊢ fx = ffx states that the unary operation f is idempotent.

• x ⊢ p = x states that the constant p is equal to all elements in the algebra (this
means the algebra is a singleton).

• x, y ⊢ x = y states that all elements in the algebra are equal (this means the
algebra is either empty or a singleton).

Using the fact that interpretations are preserved by homomorphisms (10), we
can describe how satisfaction is also preserved. Very naively, one would want to
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say that if h : A → B is a homomorphism and A ⊨ ϕ, then B ⊨ ϕ. That is not
true.24 It is morally because there can be many more assignments into B than there 24 For any Σ which does not contain constants, there

is an initial Σ-algebra I whose carrier is the empty
set ∅ (the interpretation of operations is completely
determined because there Σ(∅) = ∅ and there is
only one function ∅n → ∅). The unique function
∅ → B is always a homomorphism I → B because
(0) trivially commutes since Σ(∅) = ∅. While I sat-
isfies all equations (vacuously), it is clearly possible
that B does not.

are into A. Nevertheless, the naive statement is true on a per-assignment basis.

Lemma 16. Let ϕ be a equation with context X. If h : A → B is a homomorphism and
A ⊨ι ϕ for an assignment ι : X → A, then B ⊨h◦ι ϕ.

Proof. Let ϕ be the equation X ⊢ s = t, we have

A ⊨ι ϕ⇐⇒ JsKι
A = JtKι

A definition of ⊨

=⇒ h(JsKι
A) = h(JtKι

A)

=⇒ JsKh◦ι
B = JtKh◦ι

B by (10)

⇐⇒ B ⊨h◦ι ϕ. definition of ⊨

Another neat fact is that flattening interacts well with interpreting in the follow-
ing sense.

Lemma 17. For any Σ-algebra A, the following square commutes.25 25 In words, given a term in TΣTΣ A, you obtain the
same result if you interpret its flattening in A, or if
you interpret the term obtained by first interpreting
all the “inner” terms.

This also generalizes to terms in TΣTΣX. Indeed,
given an assignment, ι : X → A, we can either flat-
ten a term and interpret it under ι, or we can inter-
pret all the inner terms under ι, then interpret the
result, as shown in (13).

TΣTΣ A TΣ A

TΣ A A

µΣ
A

TΣJ−KA

J−KA

J−KA

(12)

TΣTΣX TΣTΣ A TΣ A

TΣX TΣ A A

µΣ
A

TΣJ−KA

J−KA

J−KA

µΣ
X

TΣ ι

TΣTΣ ι

J−Kι
A

TΣJ−Kι
A

(8)

(8)

(12)(6) (13)

Proof. We proceed by induction. For the base case, we have

JµΣ
A(η

Σ
A(t))KA

(5)
= JtKA

(7)
= JηΣ

A(JtKA)KA
(4)
= JTΣJ−KA(η

Σ
A(t))K.

For the inductive step, if t = op(t1, . . . , tn), then

JµΣ
A(t)KA = Jop(µΣ

A(t1), . . . , µΣ
A(tn))KA by (5)

= JopKA (JµΣ
A(t1)KA, . . . , JµΣ

A(tn)KA) by (7)

= JopKA (JTΣJ−KA(t1)KA, . . . , JTΣJ−KA(tn)KA) I.H.

= Jop(TΣJ−KA(t1), . . . , TΣJ−KA(tn))KA by (7)

= JTΣJ−KA(op(t1, . . . , tn))KA by (3)

= JTΣJ−KA(t)KA.

Remark 18. To see Lemma 17 in another way, notice that (12) looks a lot like (9), but
the map on the left is not the interpretation on an algebra. Except it is! Indeed,
we can give a trivial (or syntactic) interpretation of op : n ∈ Σ on the set TΣ A by
letting JopKTΣ A(t1, . . . , tn) = op(t1, . . . , tn). Then, we can verify by induction26 that 26 Or we can compare (5) and (7) to see they become

the same inductive definition in this instance.J−KTΣ A : TΣTΣ A→ TΣ A is equal to µΣ
A. We conclude that Lemma 17 says that for any

algebra, J−KA is a homomorphism from (TΣ A, J−KTΣ A) to A.

In light of this remark, we mention two very similar results: given a set A, µΣ
A is

a homomorphism between TΣTΣ A and TΣ A, and given a function f : A → B, TΣ f is
a homomorphism between TΣ A and TΣB.
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Lemma 19. For any function f : A→ B, the following squares commute.27 27 Proof. We have already shown both these squares
commute. Indeed, (14) is an instance of (12) where
we identify µΣ

A with the interpretation J−KTΣ A as
explained in Remark 18, and (15) is the naturality
square (6).

TΣTΣTΣ A TΣTΣ A

TΣTΣ A TΣ

µΣ
TΣ A

TΣµΣ
A

µΣ
A

µΣ
A

(14)
TΣTΣ A TΣTΣB

TΣ TΣB

µΣ
A µΣ

B

TΣ f

TΣTΣB

(15)

Another consequence of (14) is that if you have a term in T n
Σ A for any n ∈ N,

there are (n− 1)! ways to flatten it28 by successively applying an instance of T i
Σ µΣ

T j
Σ A

28 There is 1 way to flatten a term in T 2
Σ A to one in

TΣ A, and there are n− 1 ways to flatten from T n
Σ A

to T (n−1)
Σ A. By induction, we find (n− 1)! possible

combinations of flattening T n
Σ A→ TΣ A.

with different i and j (i.e. flattening at different levels inside the term), but all these
ways lead to the same end result in TΣ A. It is like when you have an expression built
out of additions with possibly lots of nested bracketing, you can compute the sums
in any order you want, and it will give the same result. That property of addition
is a consequence of associativity, hence one also says µΣ is associative.

While the categories Alg(Σ) for different signatures can be interesting to study
on their own, the examples we wanted to generalize like Grp or Ring are not of
that kind, they are special subcategories of some Alg(Σ) that are called varieties.

Definition 20 (Variety). Given a class E of equations, we say A satisfies E and write
A ⊨ E if A ⊨ ϕ for all ϕ ∈ E.29 A (Σ, E)-algebra is a Σ-algebra that satisfies E. 29 Similarly for satisfaction under a particular assign-

ment ι:
A ⊨ι E⇐⇒ ∀ϕ ∈ E, A ⊨ι ϕ.

We define Alg(Σ, E), the category of (Σ, E)-algebras, to be the full subcategory of
Alg(Σ) containing only those algebras that satisfy E. A variety is a category equal
to Alg(Σ, E) for some class of equations E.

There is an evident forgetful functor U : Alg(Σ, E)→ Set which is the composi-
tion of the inclusion functor Alg(Σ, E)→ Alg(Σ) and U : Alg(Σ)→ Set.30 30 We will denote all the forgetful functors with the

symbol U unless we need to emphasize the distinc-
tion. However, thanks to the knowldege package,
you can click on (or hover) that symbol to check ex-
actly which forgetful functor it is referring to.

It is never the case in practice that E is a proper class, it is usually a finite or
countable set, even recursively enumerable. Still, nothing breaks when E is a class,
and we will need this generality in one our main contributions (Theorem 207).

Examples 21. 1. With Σ = {p : 0}, there are morally only four different equations:31 31 Let us not formally argue about that here, but your
intuition on equality and the fact that terms in TΣX
are either x ∈ X or p should be enough to convince
you.

⊢ p = p, x ⊢ x = x, x ⊢ p = x, and x, y ⊢ x = y,

where we write nothing before the turnstile (⊢) instead of the empty set ∅.

Any algebra A satisfies the first two equations because JpKι
A = JpKι

A, where
ι : ∅ → A is the only possible assignment, and JxKι

A = ι(x) = JxKι
A for all

ι : {x} → A. If A satisfies the third, it means that A is empty or a singleton
because for any a, b ∈ A, the assignments ιa = x 7→ a and ιb = x 7→ b give us32 32 We find a = b for any a, b ∈ A and A contains at

least one element, the interpretation of the constant
p, so A is a singleton.a = ιa(x) = JxKιa

A = JpKιa
A = JpKιb

A = JxKιb
A = ιb(x) = b.

If A satisfies the fourth equation, it is also empty or a singleton because for any
a, b ∈ A, the assignment ι sending x to a and y to b gives us

a = ι(x) = JxKι
A = JyKι

A = ι(y) = b.

Therefore,33 there are only two varieties in that signature, either Alg(Σ, E) is all 33 Modulo the argument about these being all the
possible equations over Σ.of Alg(Σ), or it contains only the empty set and the singletons.
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2. With Σ = {+ : 2, e : 0}, there are many more possible equations, but the following
three are quite famous:

x, y, z ⊢ x+(y+ z) = (x+ y)+ z, x, y ⊢ x+ y = y+ x, and x ⊢ x+ e = x. (16)

We already saw in Example 14 that the first asserts associativity of the interpre-
tation of +. With a similar argument, one shows that the second asserts J+K
is commutative, and the third asserts JeK is a neutral element (on the right) for
J+K.34 Moreover, note that a homomorphism of Σ-algebras from A to B is any 34 i.e. if A satisfies x ⊢ x + e = x, then for all a ∈ A,

Ja + eKA = a.

By commutativity, we also get Je+ aKA = a.

function h : A→ B that satisfies

∀a, a′ ∈ A, h(J+KA(a, a′)) = J+KB(h(a), h(a′)) and h(JeKA) = JeKB.

Namely, a homomorphism preserves the addition and its neutral element. Thus,
letting E be the set containing the equations in (16), we find that Alg(Σ, E) is the
category CMon of commutative monoids and monoid homomorphisms.

3. We can add a unary operation symbol − to get Σ = {+ : 2, e : 0,− : 1}, and add
the equation x ⊢ x + (−x) = e to those in (16),35 and we can show that Alg(Σ, E) 35 While the signature has changed between the two

examples, the equations of (16) can be understood
over both signatures because they concern terms
constructed using the symbols common to both sig-
natures.

is the category Ab of abelian groups and group homomorphisms.

4. We could very similarly develop signatures and equations to get Grp and Ring
as varieties. Although we should note that it is possible for (Σ, E) and (Σ′, E′) to
define the same variety (or isomorphic varieties).

Among different classes of equations over the same signature that define the
same variety, there is a largest one.

Definition 22 (Algebraic theory). Given a class E of equations over Σ, the algebraic
theory generated by E, denoted by Th(E), is the class of equations (over Σ) that are
satisfied in all (Σ, E)-algebras:36 36 Note that, even if E is a set, there is no guarantee

that Th(E) is a set (in fact it never is) because the
collection of all equations is a proper class (because
the contexts can be any set).

Th(E) = {X ⊢ s = t | ∀A ∈ Alg(Σ, E), A ⊨ X ⊢ s = t} .

Formulated differently, Th(E) contains the equations that are semantically entailed
by E, namely ϕ ∈ Th(E) if and only if

∀A ∈ Alg(Σ), A ⊨ E =⇒ A ⊨ ϕ. (17)

Of course, Th(E) contains all of E,37 but also many more equations like x ⊢ x = x 37 Because a (Σ, E)-algebra satisfies E by definition.

which is satisfied by any algebra. We will see in §1.3 how to find which equations
are entailed by others.

It is easy to see that Alg(Σ, E) = Alg(Σ, E′) implies Th(E) = Th(E′), E ⊆ Th(E),
and Alg(Σ,Th(E)) = Alg(Σ, E). It follows that Th(E) is the maximal class of
equations defining the variety Alg(Σ, E).

Example 23. If E contains the equations in (16), then Th(E) will contain all the
equations that every commutative monoid satisfies. Here is a non-exhaustive list:
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• x ⊢ e+ x = x says that JeK is a neutral element on the left for J+K which is true
because, by equations in (16), JeK is neutral on the right and J+K is commutative.

• z, w ⊢ z + w = w + z also states commutativity of J+K but with different variable
names.

• x, y, z, w ⊢(x + w) + (x + z) + (x + y) = ((x + x) + x) + (y + (z + (e + w))) is
just a random equation that can be shown using the properties of commutative
monoids.38 38 We will see in §1.3 how to systematically generate

all the equations in Th(E).

1.2 Free Algebras

Morally, a free (Σ, E)-algebra is an algebra which satisfies the equations in E, those
in Th(E) (necessarily), and no more than that. We start with an example.

Example 24 (Words). Let ΣMon = {· : 2, e : 0}, X = {a, b, · · · , z} be the set of (lower-
case) letters in the Latin alphabet, and X∗ be the set of finite words using only these
letters.39 There is a natural ΣMon-algebra structure on X∗ where · is interpreted 39 We are talking about words in a mathematical

sense, so X∗ contains weird stuff like aczlp and the
empty word ε.

as concatenation, i.e. J·KX∗(u, v) = uv, and e as the empty word ε. This algebra
satisfies the equations defining a monoid given in (18).40

40 It does not satisfy x, y ⊢ x · y = y · x asserting
commutativity because ab and ba are two different
words.EMon = {x, y, z ⊢ x · (y · z) = (x · y) · z, x ⊢ x · e = x, x ⊢ e · x = x} . (18)

In fact, X∗ is the free monoid over X. This means that for any other (ΣMon, EMon)-
algebra A and any function f : X → A, there exists a unique homomorphism
f ∗ : X∗ → A such that f ∗(x) = f (x) for all x ∈ X ⊆ X∗.41 This can be summarized 41 f ∗ sends x1 · · · xn to J f (x1) · ( f (x2) · · · f (xn))KA.

in the following diagram.

X X∗ X∗

A A

f ∗
f

f ∗

in Set in Alg(ΣMon ,EMon)

U (19)

A consequence of (19) which makes the idea of freeness more concrete is that X∗

satisfies an equation X ⊢ s = t if and only if all (ΣMon, EMon)-algebras satisfy it.42 42 The forward direction uses Lemma 16 with ι be-
ing the inclusion X ↪→ X∗ and h being f ∗. The con-
verse direction is trivial since we know X∗ belongs
to Alg(ΣMon, EMon).

In other words, X∗ only satisfies the equations it needs to satisfy.
The free (ΣMon, EMon)-algebra over any set is always43 the set of finite words over

43 We have to say “up to isomorphism” here if we
want to be fully rigorous. Let us avoid this bulki-
ness here and later in most places where it can be
inferred.

that set with · and e interpreted as concatenation and the empty word respectively.
At a first look, X∗ does not seem correlated to the operation symbols in ΣMon and

the equations in EMon, so it may seem hopeless to generalize this construction of
free algebra for an arbitrary Σ and E. It is possible however to describe the algebra
X∗ starting from ΣMon and EMon.

Recall that TΣMon X is the set of all terms constructed with the symbols in ΣMon

and the elements of X.44 Since we want the interpretation of e to be a neutral 44 For instance, it contains e, e · e, a · a, a · (r · (e · u)),
and so on.element for the interpretation of ·, we could identify many terms together like e

and e · e, in fact whenever a term has an occurrence of e, we can remove it with no
effect on its interpretation in a (ΣMon, EMon)-algebra. Similarly, since we want · to
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be interpreted as an associative operation, we could identify r · (s · m) and (r · s) · m,
and more generally, we can rearrange the parentheses in a term with no effect on
its interpretation in a (ΣMon, EMon)-algebra.

Squinting a bit, you can convince yourself that a ΣMon-term over X considered
modulo occurrences of e and parentheses is the same thing as a finite word in X∗.45 45 For instance, both r · (s · m) and (r · s) · m become

the word rsm and e, e · e and e · (e · e) all become the
empty word.

Under this correspondence, we find that the interpretation of · on X∗ (which was
concatenation) can be realized syntactically by the symbol ·. For example, the con-
catenation of the words corresponding to r · r and u · p is the word corresponding
to (r · r) · (u · p). The interpretation of e in X∗ is the empty word which corresponds
to e. We conclude that the algebra X∗ could have been described entirely using the
syntax of ΣMon and equations in EMon.

We promptly generalize this to other signatures and sets of equations. Fix a
signature Σ and a class E of equations over Σ. For any set X, we can define a binary
relation ≡E on Σ-terms46 that contains the pair (s, t) whenever the interpretation of 46 We omit the set X from the notation as it would

be more bulky than illuminating.s and t coincide in any (Σ, E)-algebra. Formally, we have for any s, t ∈ TΣX,

s ≡ E t⇐⇒ X ⊢ s = t ∈ Th(E). (20)

We now show ≡ E is a congruence relation on TΣX.47 47 A congruence on a Σ-algebra A is an equivalence
relation ∼ ⊆ A× A on the carrier satisfying for all
op : n ∈ Σ and a1, . . . , an, b1, . . . , bn ∈ A:

(∀i, ai ∼ bi) =⇒ JopKA(a1, . . . , an) ∼ JopKA(b1, . . . , bn).

Lemma 25. For any set X, the relation ≡ E is reflexive, symmetric, transitive, and satisfies
for any op : n ∈ Σ and s1, . . . , sn, t1, . . . , tn ∈ TΣX,

(∀1 ≤ i ≤ n, si ≡ E ti) =⇒ op(s1, . . . , sn) ≡ E op(t1, . . . , tn). (21)

Proof. Briefly, reflexivity, symmetry, and transitivity all follow from the fact that
equality satisfies these properties, and (21) follows from the fact that operation
symbols are interpreted as deterministic functions (a unique output for each input),
so they preserve equality. We detail this below.

(Reflexivity) For any t ∈ TΣX, and any Σ-algebra A, A ⊨ X ⊢ t = t because it
holds that JtKι

A = JtKι
A for all ι : X → A.

(Symmetry) For any s, t ∈ TΣX and A ∈ Alg(Σ), if A ⊨ X ⊢ s = t, then A ⊨
X ⊢ t = s. Indeed, if JsKι

A = JtKι
A holds for all ι, then JtKι

A = JsKι
A holds too.

Symmetry follows because if all (Σ, E)-algebras satisfy X ⊢ s = t, then they also
satisfy X ⊢ t = s.

(Transitivity) For any s, t, u ∈ TΣX, if all (Σ, E)-algebras satisfy X ⊢ s = t and
X ⊢ t = u, then they also satisfy X ⊢ s = u.48 Transitivity follows. 48 Just like for symmetry, it is because for any A ∈

Alg(Σ) and ι : X → A, JsKι
A = JtKι

A with JtKι
A =

JuKι
A imply JsKι

A = JuKι
A.

(21) For any op : n ∈ Σ, s1, . . . , sn, t1, . . . , tn ∈ TΣX, and A ∈ Alg(Σ), if A satisfies
X ⊢ si = ti for all i, then for any assignment ι : X → A, we have JsiKι

A = JtiKι
A for all

i. Hence,

Jop(s1, . . . , sn)Kι
A = JopKA(Js1Kι

A, . . . , JsnKι
A) by (7)

= JopKA(Jt1Kι
A, . . . , JtnKι

A) ∀i, JsiKι
A = JtiKι

A

= Jop(s1, . . . , sn)Kι
A by (7),

which means A ⊨ X ⊢ op(s1, . . . , sn) = op(t1, . . . , tn). This was true for all Σ-
algebras, so we can use the same arguments as above to conclude (21).
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This lemma shows ≡ E is in particular an equivalence relation, so we can define
terms modulo E. Given Σ, E and X, let TΣ,EX = TΣX/≡ E denote the set of Σ-terms
modulo E. We will write [−]E : TΣX → TΣ,EX for the canonical quotient map, so [t]E
is the equivalence class of t in TΣ,EX.

This yields a functor TΣ,E : Set → Set which sends a function f : X → Y to the
unique function TΣ,E f making (22) commute, i.e. satisfying TΣ,E f ([t]E) = [TΣ f (t)]E.
By definition, [−]E is also a natural transformation from TΣ to TΣ,E.

TΣX TΣ,EX

TΣY TΣ,EY

TΣ f

[−]E

TΣ,E f

[−]E

(22)

Definition 26 (Term algebra, semantically). The term algebra for (Σ, E) on X is the
Σ-algebra whose carrier is TΣ,EX and whose interpretation of op : n ∈ Σ is49 49 This is well-defined (i.e. invariant under change

of representative) by (21).
JopKTX([t1]E, . . . , [tn]E) = [op(t1, . . . , tn)]E. (23)

We denote this algebra by TΣ,EX or simply TX.

A main motivation behind this definition is that it makes [−]E : TΣX → TΣ,EX a
homomorphism,50 namely, (24) commutes. 50 Indeed, (23) looks exactly like (1) with h = [−]E,

A = TΣX and B = TX.

TΣTΣX TΣTΣ,EX

TΣX TΣ,EX

µΣ
X

TΣ [−]E

J−KTX

[−]E

(24)

Remark 27. We can understand Definition 26 a bit more abstractly. If A is a Σ-
algebra and ∼ ⊆ A× A is a congruence, then the quotient A/∼ inherits a Σ-algebra
structure defined as in (23) ([a] denotes the equivalence class of a in A/∼):

JopKA/∼([a1], . . . , [an]) = [JopKA(a1, . . . , an)].

Then, TΣ,EX is the quotient of the algebra TΣX defined in Remark 18 by the congru-
ence ≡ E. From this point of view, one can give an equivalent definition of ≡ E as
the smallest congruence on TΣX such that the quotient satisfies E.51 51 Namely, if TΣX/∼ satisfies E, then ≡ E ⊆ ∼.

It is very easy to compute in the term algebra because all operations are realized
syntactically, that is, only by manipulating symbols. Let us first look at the interpre-
tation of Σ-terms in TX, i.e. the function J−KTX : TΣTΣ,EX → TΣ,EX. It was defined
inductively to yield52 52 where t ∈ TΣX, op : n ∈ Σ, and t1, . . . , tn ∈ TΣTΣ,EX.

JηΣ
TΣ,EX([t]E)KTX = [t]E and Jop(t1, . . . , tn)KTX = JopKTX(Jt1KTX , . . . , JtnKTX). (25)

Remark 28. In particular, when E is empty, the set TΣ,∅X is TΣX quotiented by ≡ ∅,
and one can show that ≡ ∅ is equal to equality (=), i.e. Th(∅) only contains equa-
tion of the form X ⊢ t = t.53 Therefore, TΣ,∅X = TΣX. Moreover, since [−]∅ is the 53 For any other equation X ⊢ s = t where s and t

are not the same term, the Σ-algebra TΣX does not
satisfy because the assignment ηΣ

X : X → TΣX yields

JsK
ηΣ

X
TΣ X = s ̸= t = JtK

ηΣ
X
TΣ X .

identity map, we find that (23) becomes the definition of the interpretations given
in Remark 18, so TΣ,∅X is the algebra on TΣX we had defined. Also, we find the
interpretation of terms J−KTΣ,∅X is the flattening.54

54 By Remark 18 or by comparing (25) when E = ∅
and the definition of µΣ

X (5).
Example 29. Let Σ = ΣMon and E = EMon be the signature and equations defining
monoids as explained in Example 24. We saw informally that TΣ,EX is in corre-
spondence with the set X∗ of finite words over X, and we already have a monoid
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structure on X∗.55 Thus, we may wonder whether the term algebra TX describes 55 The interpretation of · and e is concatenation and
the empty word.the same monoid. Let us compute the interpretation of u · (v · w) where u = uu,

v = vv and w = www are words in X∗ ∼= TΣ,EX. First we use the inductive definition:

Ju · (v · w)KTX = J·KTX(JuKTX , Jv · wKTX) = J·KTX(JuKTX , J·KTX(JvKTX , JwKTX)).

Next, we choose a representative for u, v, w ∈ TΣ,EX and apply the base step of the
inductive definition:

Ju · (v · w)KTX = J·KTX([u · u]E, J·KTX([v · v]E, [w · (w · w)]E)).

Finally, we can apply (23) a couple of times to find

Ju · (v · w)KTX = J·KTX([u ·u]E, [(v ·v) · (w · (w ·w))]E) = [(u ·u) · ((v ·v) · (w · (w ·w)))]E,

which means that the word corresponding to Ju · (v · w)KTX is uuvvwww, i.e. the
concatenation of u, v and w.

In general (for other signatures), what happens when applying J−KTX to some
big term in TΣTΣ,EX can be decomposed in three steps.

1. Apply the inductive definition until you have an expression built out of many
JopKTX and JcKTX where op ∈ Σ and c is an equivalence class of Σ-terms.

2. Choose a representative for each such classes (i.e. c = [t]E).

3. Use (23) repeatedly until the result is just an equivalence class in TΣ,EX.

Working with terms in TΣTΣ,EX as trees whose leaves are labelled in TΣ,EX, J−KTX

replaces each leaf by the tree corresponding to a representative for the equivalence
class of the leaf’s label, and then returns the equivalence class of the resulting tree.
In this sense, J−KTX looks a lot like the flattening µΣ

X except it deals with equivalence
classes of terms. This motivates the definition of µΣ,E

X to be the unique function
making (26) commute.56 56 This guarantees µΣ,E

X satisfies the following equa-
tions that looks like the inductive definition of µΣ

X in
(5): for any t ∈ TΣX, µΣ,E

X ([[t]E]E) = [t]E and for any
op : n ∈ Σ and t1, . . . , tn ∈ TΣX,

µΣ,E
X ([op([t1]E, . . . , [tn]E)]E) = [op(t1, . . . , tn)]E.

Thanks to Remark 28, we can immediately see
that µΣ,∅

X = µΣ
X because [−]∅ is the identity and

J−KTΣ,∅ X = µΣ
X .

TΣTΣ,EX TΣ,EX

TΣ,ETΣ,EX

J−KTX

[−]E µΣ,E
X

(26)

The first thing we showed when defining µΣ
X was that it yielded a natural trans-

formation µΣ : TΣTΣ ⇒ TΣ. We can also do this for µΣ,E.

Proposition 30. The family of maps µΣ,E
X : TΣ,ETΣ,EX → TΣ,EX is natural in X.

Proof. We need to prove that for any function f : X → Y, the square below com-
mutes.

TΣ,ETΣ,EX TΣ,ETΣ,EY

TΣ,EX TΣ,EY

µΣ,E
X µΣ,E

Y

TΣ,ETΣ,E f

TΣ,E f

(27)
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We can pave the following diagram.57 57 By paving a diagram, we mean to build a large
diagram out of smaller ones, showing all the smaller
ones commute, and then concluding the bigger must
commute. We often refer parts of the diagram with
letters written inside them, and explain how each of
them commutes one at a time.

TΣTΣ,EX TΣ,ETΣ,EX TΣ,ETΣ,EY

TΣTΣ,EY

TΣ,ETΣ,EX TΣ,EX TΣ,EY

µΣ,E
Y

TΣ,ETΣ,E f

TΣ,E f

[−]E

J−KTX

µΣ,E
X

[−]E

TΣTΣ,E f
[−]E

J−KTY

(a)

(b) (c)
(d)

All of (a), (b) and (d) commute by definition. In more details, (a) is an instance of
(22) with X replaced by TΣ,EX, Y by TΣ,EY and f by TΣ,E f , and both (b) and (d) are
instances of (26). To show (c) commutes, we draw another diagram that looks like a
cube with (c) as the front face. We can show all the other faces commute, and then
use the fact that TΣ[−]E is surjective (i.e. epic) to conclude that the front face must
also commute.58 58 In more details, the left and right faces commute

by (24), the bottom and top faces commute by (22),
and the back face commutes by (6).

The function TΣ[−]E is surjective (i.e. epic) because
[−]E is (it is a canonical quotient map) and functors
on Set preserve epimorphisms (if we assume the ax-
iom of choice). Thus, it suffices to show that TΣ[−]E
pre-composed with the bottom path or the top path
of the front face gives the same result.

Now it is just a matter of going around the cube
using the commutativity of the other faces. Here is
the complete derivation (we write which face was
used as justifications for each step).

TΣ,E f ◦ J−KTX ◦ TΣ[−]E
= TΣ,E f ◦ [−]E ◦ µΣ

X left

= [−]E ◦ TΣ f ◦ µΣ
X bottom

= [−]E ◦ µΣ
Y ◦ TΣTΣ f back

= J−KTY ◦ TΣ[−]E ◦ TΣTΣ f right

= J−KTY ◦ TΣTΣ,E f ◦ TΣ[−]E top

TΣTΣX TΣTΣY

TΣTΣ,EX TΣTΣ,EY

TΣX TΣY

TΣ,EX TΣ,EY
TΣ,E f

J−KTX

TΣTΣ,E f

J−KTY

TΣ [−]E

TΣTΣ f

TΣ [−]E

[−]E

TΣ f

[−]E

µΣ
X

µΣ
Y

The first diagram we paved implies (27) commutes because [−]E is epic.

The front face of the cube is interesting on its own, it says that for any function
f : X → Y, TΣ,E f is a homomorphism from TΣ,EX to TΣ,EY. We redraw it below for
future reference.

TΣTΣ,EX TΣTΣ,EY

TΣ,EX TΣ,EY
TΣ,E f

J−KTX

TΣTΣ,E f

J−KTY (28)

Stating it like this may remind you of Lemma 17 and Remark 18. We will need a
variant of Lemma 17 for TΣ,E, but there is a slight obstacle due to types. Indeed,
given a Σ-algebra A we would like to prove a square like in (29) commutes.

TΣTΣ,E A TΣ A

TΣ,E A A

J−KTA

TΣJ−KA

J−KA

J−KA (29)

However, the arrows on top and bottom do not really exist, the interpretation
J−KA takes terms over A as input, not equivalence classes of terms. The quick fix is
to assume that A satisfies the equations in E. This means that J−KA is well-defined
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on equivalence class of terms because if [s]E = [t]E, then A ⊢ s = t ∈ Th(E), so A

satisfies that equation, and taking the assignment idA : A→ A, we obtain

JsKA = JsKidA
A = JtKidA

A = JtKA.

When A is a (Σ, E)-algebra, we abusively write J−KA for the interpretation of terms
and equivalence classes of terms as in (30).

TΣ A TΣ,E A

A
J−KAJ−KA

[−]E

(30)

Lemma 31. For any (Σ, E)-algebra A, the square (29) commutes.

Proof. Consider the following diagram that we can view as a triangular prism
whose front face is (29). Both triangles commute by (30), the square face at the
back and on the left commutes by (24), and the square face at the back and on the
right commutes by (12). With the same trick as in the proof of Proposition 30 using
the surjectivity of TΣ[−]E, we conclude that the front face commutes.59 59 Here is the complete derivation.

J−KA ◦ J−KTA ◦ TΣ[−]E
= J−KA ◦ [−]E ◦ µΣ

A left

= J−KA ◦ µΣ
A bottom

= J−KA ◦ TΣJ−KA right

= J−KA ◦ TΣJ−KA ◦ TΣ[−]E top

Then, since TΣ[−]E is epic, we conclude that J−KA ◦
J−KTA = J−KA ◦ TΣJ−KA.

TΣTΣ A

TΣTΣ,E A TΣ A

TΣ A

TΣ,E A A

J−KTA

TΣJ−KA

J−KA

J−KA
[−]E J−KA

TΣ [−]E TΣJ−KA

µΣ
A

An important consequence of Lemma 17 was (14) saying that flattening is a ho-
momorphism from TΣ,∅TΣ,∅ A to TΣ,∅ A. This is also true when E is not empty, i.e.
µΣ,E

A is a homomorphism from TTA to TA.

Lemma 32. For any set A, the following square commutes.

TΣTΣ,ETΣ,E A TΣTΣ,E A

TΣ,ETΣ,E A TΣ,E A

J−KTA

µΣ,E
A

J−KTTA

TΣµΣ,E
A

(31)

Proof. We prove it exactly like Lemma 31 with the following diagram.60 60 The top and bottom faces commute by definition
of µΣ,E

A (26), the back-left face by (24), and the back-
right face by (12).

Then, TΣ[−]E is epic, so the following derivation
suffices.

µΣ,E
A ◦ J−KTTA ◦ TΣ[−]E
= µΣ,E

A ◦ [−]E ◦ µΣ
TΣ,E A left

= J−KTA ◦ µΣ
TΣ,E A bottom

= J−KTA ◦ TΣJ−KTA right

= J−KTA ◦ TΣµΣ,E
A ◦ TΣ[−]E top

TΣTΣTΣ,E A

TΣTΣ,ETΣ,E A TΣTΣ,E A

TΣTΣ,E A

TΣ,ETΣ,E A TΣ,E A

J−KTA

µΣ,E
A

J−KTTA

TΣµΣ,E
A

[−]E J−KTA

µΣ
TΣ,E A

TΣJ−KTATΣ [−]E
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In a moment, we will show that TΣ,EX is not only a Σ-algebra, but also a (Σ, E)-
algebra. This requires us to talk about satisfaction of equations, hence about the
interpretation of terms in some TΣY under an assignment σ : Y → TΣ,EX.61 By the 61 We used ι before for assignments, but when con-

sidering assignments into (equivalence classes of)
terms, we prefer using σ because we will adopt a
different attitude with them (see Definition 36).

definition J−Kσ
TX = J−KTX ◦ TΣσ, and our informal description of J−KTX , we can

infer that JtKσ
TX is the equivalence class of the term t where all occurences of the

variable y have been substituted by a representative of σ(y).
In particular, this means that under the assignment σ : X → TΣ,EX that sends a

variable x to its equivalence class [x]E, the interpretation of a term t ∈ TΣX is [t]E.62 62 The representative chosen for σ(x) is x so the term
t is not modified.We prove this formally below.

Lemma 33. Let σ = X
ηΣ

X−→ TΣX
[−]E−−→ TΣ,EX be an assignment. Then, J−Kσ

TX = [−]E.

Proof. We proceed by induction. For the base case, we have

JηΣ
X(x)Kσ

TX = JTΣσ(ηΣ
X(x))KTX by (8)

= JTΣ[−]E(TΣηΣ
X(η

Σ
X(x)))KTX Proposition 7

= JTΣ[−]E(ηΣ
TΣX(η

Σ
X(x)))KTX by (4)

= JηΣ
TΣ,EX([η

Σ
X(x)]E)KTX by (4)

= [ηΣ
X(x)]E by (25)

For the inductive step, if t = op(t1, . . . , tn), we have

JtKσ
TX = JTΣσ(t)KTX by (8)

= JTΣσ(op(t1, . . . , tn))KTX

= Jop(TΣσ(t1), . . . , TΣσ(tn))KTX by (3)

= JopKTX (JTΣσ(t1)KTX , · · · , JTΣσ(tn)KTX) by (25)

= JopKTX ([t1]E, · · · , [tn]E) I.H.

= [op(t1, . . . , tn)]E. by (23)

We will denote that special assignment ηΣ,E
X = [−]E ◦ ηΣ

X : X → TΣ,EX.63 A quick
63 Note that ηΣ,E becomes a natural transformation
idSet → TΣ,E because it is the vertical composition
[−]E · ηΣ.

corollary of the previous lemma is that for any equation ϕ with context X, ϕ belongs
to Th(E) if and only if the algebra TΣ,EX satisfies it under the assignment ηΣ,E

X . This
comes back to Example 24 where we said that freeness of X∗ means it satisfies all
and only the equations in Th(EMon). Instead here, we do not know yet that TX is
free (we have not even proved it satisfies E yet), but we can already show it satisfies
only the necessary equations, and freeness will follow.

Lemma 34. Let s, t ∈ TΣX, X ⊢ s = t ∈ Th(E) if and only if TΣ,EX ⊨ηΣ,E
X X ⊢ s = t.64 64 Proof. By Lemma 33, we have

JsK
ηΣ,E

X
TX = [s]E and JtK

ηΣ,E
X

TX = [t]E,

then by definition of ≡ E, X ⊢ s = t ∈ Th(E) if and
only if [s]E = [t]E.

The interaction between µΣ and ηΣ is mimicked by µΣ,E and ηΣ,E.
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Lemma 35. The following diagram commutes.

TΣ,EX TΣ,ETΣ,EX TΣ,EX

TΣ,EX

ηΣ,E
TΣ,EX

µΣ,E
X

TΣ,EηΣ,E
X

idTΣ,EXidTΣ,EX

Proof. For the triangle on the left, we pave the following diagram.

Showing (32) commutes:

(a) Definition of ηΣ,E
X .

(b) Definition of J−KTX (25).

(c) Definition of µΣ,E
X (26).

TΣ,EX TΣTΣ,EX TΣ,ETΣ,EX

TΣ,EX
J−KTX

[−]E

µΣ,E
X

ηΣ
TΣ,EX

ηΣ,E
TΣ,EX

idTΣ,EX

(a)

(b)
(c) (32)

For the triangle on the right, we show that [−]E = µΣ,E
X ◦ TΣ,EηΣ,E

X ◦ [−]E by paving
(33), and we can conclude since [−]E is epic that idTΣ,EX = µΣ,E

X ◦ TΣ,EηΣ,E
X .

Showing (33) commutes:

(a) Definition of ηΣ,E
X and functoriality of TΣ,E.

(b) Naturality of [−]E (22).

(c) Naturality of [−]E again.

(d) Definition of µΣ
X (5).

(e) By (24).

(f) By (26).

TΣX TΣ,EX TΣ,ETΣX TΣ,ETΣ,EX

TΣTΣX TΣTΣ,EX

TΣX TΣ,EX

TΣ,E [−]E

µΣ,E
X

TΣ,EηΣ
X

TΣ,EηΣ,E
X

[−]E

TΣηΣ
X

[−]E

TΣ [−]E

[−]E

J−KTX
µΣ

X

[−]E

idTΣX (d)

(b)

(a)

(c)

(e)

(f)
(33)

We single out another special case of interpretation in a term algebra when E is
empty (recall from Remark 28 that TΣ,∅X is the algebra on TΣX whose interpretation
of op applies op syntactically).

Definition 36 (Substitution). Given a signature Σ, an empty set of equations, and
an assignment σ : Y → TΣX,65 we call J−Kσ

TX the substitution map, and we denote 65 We can identify TΣX with TΣ,∅X because ≡ ∅ is the
equality relation.it by σ∗ : TΣY → TΣX. We saw in Remark 28 that J−KTX = µΣ

X , thus substitution is

σ∗ = TΣY
TΣσ−−→ TΣTΣX

µΣ
X−→ TΣX. (34)

In words, σ∗ replaces the occurrences of a variable y by σ(y).66 66 You may be more familiar with the notation
t[σ(y)/y] (e.g. from substitution in the λ-calculus).
An inductive definition can also be given: for any
y ∈ Y, σ∗(ηΣ

Y(y)) = σ(y), and

σ∗(op(t1, . . . , tn)) = op(σ∗(t1), . . . , σ∗(tn)).
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That simple description makes substitution a little special, and the following
result has even deeper implications. It morally says that substitution preserves the
satisfaction of equations.67

67 We will give more intuition on Lemma 37 when
we define equational logic.Lemma 37. Let Y ⊢ s = t be an equation, σ : Y → TΣX an assignment, and A a Σ-algebra.

If A satisfies Y ⊢ s = t, then it also satisfies X ⊢ σ∗(s) = σ∗(t).

Proof. Let ι : X → A be an assignment, we need to show Jσ∗(s)Kι
A = Jσ∗(t)Kι

A.
Define the assignment ισ : Y → A that sends y ∈ Y to Jσ(y)Kι

A, we claim that
J−Kισ

A = Jσ∗(−)Kι
A. The lemma then follows because by hypothesis, JsKισ

A = JtKισ
A .

The following derivation proves our claim.

J−Kισ
A = J−KA ◦ TΣ(ισ) by (8)

= J−KA ◦ TΣ(Jσ(−)Kι
A) definition of ισ

= J−KA ◦ TΣ (J−KA ◦ TΣι ◦ σ) by (8)

= J−KA ◦ TΣJ−KA ◦ TΣTΣι ◦ TΣσ Proposition 7

= J−KA ◦ µΣ
A ◦ TΣTΣι ◦ TΣσ by (12)

= J−KA ◦ TΣι ◦ µΣ
Y ◦ TΣσ by (6)

= J−KA ◦ TΣι ◦ σ∗ by (34)

= Jσ∗(−)Kι
A. by (8)

We are finally ready to show that TΣ,E A is a (Σ, E)-algebra.68 68 All the work we have been doing finally pays off.

Proposition 38. For any set A, the term algebra TΣ,E A satisfies all the equations in E.

Proof. Let X ⊢ s = t belong to E and ι : X → TΣ,E A be an assignment. We need to
show that JsKι

TA = JtKι
TA. We factor ι into69 69 This factoring is correct because

ι = idTΣ,E A ◦ ι

= µΣ,E
A ◦ ηΣ,E

TΣ,E A ◦ ι Lemma 35

= µΣ,E
A ◦ TΣ,E ι ◦ ηΣ,E

X . naturality of ηΣ,E

ι = X
ηΣ,E

X−−→ TΣ,EX
TΣ,E ι
−−→ TΣ,ETΣ,E A

µΣ,E
A−−→ TΣ,E A.

Now, Lemma 34 says that the equation is satisfied in TX under the assignment

ηΣ,E
X , i.e. that JsKηΣ,E

X
TX = JtKηΣ,E

X
TX . We also know by Lemma 16 that homomorphisms

preserve satisfaction, so we can apply it twice using the facts that TΣ,Eι and µΣ,E
A are

homomorphisms (by (28) and (31) respectively) to conclude that

JsKι
TA = JsKµΣ,E

A ◦TΣ,E ι◦ηΣ,E
X

TA = JtKµΣ,E
A ◦TΣ,E ι◦ηΣ,E

X
TA = JtKι

TA.

We now know that TΣ,EX belongs to Alg(Σ, E). In order to tie up the parallel
with Example 24, we will show that TΣ,EX is the free (Σ, E)-algebra over X.

Definition 39 (Free object). Let C and D be categories, U : D → C be a functor
between them, and X ∈ C0. A free object on X (with respect to U) is an object Y ∈
D0 along with a morphism i ∈ HomC(X, UY) such that for any object A ∈ D0 and
morphism f ∈ HomC(X, UA), there exists a unique morphism f ∗ ∈ HomD(Y, A)

such that U f ∗ ◦ i = f . This is summarized in the following diagram.70 70 This is almost a copy of (19).
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X UY Y

UA A

i

U f ∗
f

f ∗

in C in D

U (35)

Proposition 40. Free objects are unique up to isomorphism, namely, if Y and Y′ are free
objects on X, then Y ∼= Y′.71 71 Very abstractly: a free object on X is the same

thing as an initial object in the comma category
∆(X) ↓ U, and initial objects are unique up to iso-
morphism.

Proposition 41. For any set X, the term algebra TΣ,EX is the free (Σ, E)-algebra on X.

Proof. Let A be another (Σ, E)-algebra and f : X → A a function. We claim that
f ∗ = J−KA ◦ TΣ,E f is the unique homomorphism making the following commute.

X TΣ,EX TX

A A

ηΣ,E
X

f ∗
f

f ∗

in Set in Alg(Σ,E)

U

First, f ∗ is a homomorphism because it is the composite of two homomorphisms
TΣ,E f (by (28)) and J−KA (by Lemma 31 since A satisfies E). Next, the triangle
commutes by the following derivation.

J−KA ◦ TΣ,E f ◦ ηΣ,E
X = J−KA ◦ ηΣ,E

A ◦ f naturality of ηΣ,E

= J−KA ◦ [−]E ◦ ηΣ
A ◦ f definition of ηΣ,E

= J−KA ◦ ηΣ
A ◦ f by (30)

= f definition of J−KA (7)

Finally, uniqueness follows from the inductive definition of TX and the homomor-
phism property. Briefly, if we know the action of a homomorphism on equivalence
classes of terms of depth 0, we can infer all of its action because all other classes of
terms can be obtained by applying operation symbols.72 72 Formally, let f , g : TX → A be two homomor-

phisms such that for any x ∈ X, f [x]E = g[x]E,
then, we can show that f = g. For any t ∈ TΣX,

we showed in Lemma 33 that [t]E = JtK
ηΣ,E

X
TX . Then

using (10), we have

f [t]E = JtK
f ◦ηΣ,E

X
A = JtK

g◦ηΣ,E
X

A = g[t]E,

where the second inequality follows by hypothesis
that f and g agree on equivalence classes of terms
of depth 0.

Once we have free objects, we have an adjunction, and once we have an ad-
junction, we have a monad, the most wonderful mathematical object in the world
(objectively). Unfortunately, our universal algebra spiel is not finished yet, we will
get back to monads shortly.

1.3 Equational Logic

We were happy that interpretations in the term algebra are computed syntactically,
but there is a big caveat. Everything is done modulo ≡ E which was defined in (20)
to basically contain all the equations in Th(E), that is, all the equations semantically
entailed by E. Thanks to Lemma 34, if we want to know whether X ⊢ s = t is in
Th(E), it is enough to check if the free (Σ, E)-algebra TX satisfies it, but that is a
circular argument since the carrier TΣ,EX is defined via ≡ E.
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Equational logic is a deductive system which produces an alternative definition
of the free algebra, relying only on syntax. In short, the rules of equational logic
allow to syntactically derive all of Th(E) starting from E.

In Lemma 25, we proved that ≡ E is a congruence (i.e. reflexive, symmetric,
transitive, and invariant under operations), and in Lemma 37 we showed ≡ E is also
preserved by substitutions. This can help us syntactically derive Th(E) because,
for instance, if we know X ⊢ s = t ∈ E, we can conclude X ⊢ t = s ∈ Th(E) by
symmetry. If we know x, y ⊢ x = y ∈ E, then we can conclude X ⊢ s = t ∈ Th(E),
i.e. all terms are equal modulo E, by substituting x with s and y with t. This can be
summarized with the inference rules of equational logic in Figure 1.3.

ReflX ⊢ t = t
X ⊢ s = t SymmX ⊢ t = s

X ⊢ s = t X ⊢ t = u TransX ⊢ s = u

op : n ∈ Σ ∀1 ≤ i ≤ n, X ⊢ si = ti Cong

X ⊢ op(s1, . . . , sn) = op(t1, . . . , tn)

σ : Y → TΣX Y ⊢ s = t
Sub

X ⊢ σ∗(s) = σ∗(t)

Figure 1.3: Rules of equational logic over the signa-
ture Σ, where X and Y can be any set, and s, t, u,
si and ti can be any term in TΣX (or TΣY for Sub).
As indicated in the premises of the rules Cong and
Sub, they can be instantiated for any n-ary opera-
tion symbol, and for any function σ respectively.

The first four rules are fairly simple, and they essentially say that equality is
an equivalence relation that is preserved by operations. The Sub rule looks a bit
more complicated, it is named after the function σ∗ used in the conclusion which
we called substitution. Intuitively, it reflects the fact that variables in the context Y
are universally quantified. If you know Y ⊢ s = t holds, then you can replace each
variable y ∈ Y by σ(y) (which may even be a complex term using new variables in
X), and you can prove that X ⊢ σ∗(s) = σ∗(t) holds. We did this in Lemma 37, and
the argument to extract from there is that the interpretation of σ∗(t) under some
assignment ι : X → A is equal to the interpretation of t under the assignment ισ
sending y ∈ Y to the interpretation of σ(y) under ι. Since satisfaction of Y ⊢ s = t
means satisfaction under any assignment (this is where universal quantification
comes in), we conclude that X ⊢ σ∗(s) = σ∗(t) must be satisfied.

If you have written sequences of computations to solve a mathematical problem,
you are already familiar with the essence of doing proofs in equational logic. The
rigorous details of such proofs can be formalized with the following definition.

Definition 42 (Derivation). A derivation73 of X ⊢ s = t in equational logic with
73 Many other definitions of derivations exist, and
our treatment of them will not be 100% rigorous.axioms E (a class of equations) is a finite rooted tree such that:

• all nodes are labelled by equations,

• the root is labelled by X ⊢ s = t,
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• if an internal node (not a leaf) is labelled by ϕ and its children are labelled by
ϕ1, . . . , ϕn, then there is a rule in Figure 1.3 which concludes ϕ from ϕ1, . . . , ϕn,
and

• all the leaves are either in E or instances of Refl, i.e. an equation Y ⊢ u = u for
some set Y and u ∈ TΣY.

Example 43. We write a derivation with the same notation used to specify the
inference rules in Figure 1.3. Consider the signature Σ = {+ : 2, e : 0} with E con-
taining the equations defining commutative monoids in (16). Here is a derivation
of x, y, z ⊢ x + (y + z) = z + (x + y) in equational logic with axioms E.

∈ E
x, y, z ⊢ x + (y + z) = (x + y) + z

σ =
x 7→ x + y
y 7→ z

∈ Ex, y ⊢ x + y = y + x

Sub

x, y, z ⊢(x + y) + z = z + (x + y)
Trans

x, y, z ⊢ x + (y + z) = z + (x + y)

Given any class of equations E, we denote by Th′(E) the class of equations that
can be proven from E in equational logic, i.e. ϕ ∈ Th′(E) if and only if there is a
derivation of ϕ in equational logic with axioms E.

Our goal now is to prove that Th′(E) = Th(E). We say that equational logic
is sound and complete for (Σ, E)-algebras. Less concisely, soundness means that
whenever equational logic proves an equation ϕ with axioms E, ϕ is satisfied by all
(Σ, E)-algebras, and completeness says that whenever an equation ϕ is satisfied by
all (Σ, E)-algebras, there is a derivation of ϕ in equational logic with axioms E.

Soundness is a straightforward consequence of earlier results.74 74 In the story we are telling, the rules of equational
logic were designed to be sound because we knew
some properties of ≡ E already. In general when
defining rules of a logic, we may use intuitions and
later prove soundness to confirm them, or realize
that soundness does not hold and infirm them.

Theorem 44 (Soundness). If ϕ ∈ Th′(E), then ϕ ∈ Th(E).

Proof. In the proof of Lemma 25, we proved that each of Refl, Symm, Trans, and
Cong are sound rules for a fixed arbitrary algebra. Namely, if A ∈ Alg(Σ) satisfies
the equations on top, then it satisfies the one on the bottom. Lemma 37 states the
same soundness property for Sub. This implies a weaker property: if all (Σ, E)-
algebras satisfy the equations on top, then they satisfy the one on the bottom.75 75 This is a classical theorem of first order logic:

(∀A.(PA⇒ QA))⇒ (∀A.PA⇒ ∀A.QA)Now, if ϕ ∈ Th′(E) was proven using equational logic and the axioms in E, then
since all A ∈ Alg(Σ, E) satisfy all the axioms, by repeatedly applying the weaker
property above for each rule in the derivation, we find that all A ∈ Alg(Σ, E) satisfy
ϕ, i.e. ϕ ∈ Th(E).

Completeness is the harder direction, and there are many ways to prove it.76 We 76 The original proof of Birkhoff [Bir35, Theorem 10]
relies on constructing free algebras. Several later
proofs (e.g. [Wec12, Theorem 29]) rely on a theory
of congruences.

will define an algebra exactly like TX but using the equality relation induced by
Th′(E) instead of ≡ E which was induced by Th(E). We then show that algebra is a
(Σ, E)-algebra, and by construction, it will imply Th(E) ⊆ Th′(E).

Fix a signature Σ and a class E of equations over Σ. For any set X, we can define
a binary relation ≡′E on Σ-terms77 that contains the pair (s, t) whenever X ⊢ s = t 77 Again, we omit the set X from the notation.

can be proven in equational logic. Formally, we have for any s, t ∈ TΣX (c.f. (20)),

s ≡′E t⇐⇒ X ⊢ s = t ∈ Th′(E). (36)
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We can show ≡′E is a congruence relation.

Lemma 45. For any set X, the relation ≡′E is reflexive, symmetric, transitive, and for any
op : n ∈ Σ and s1, . . . , sn, t1, . . . , tn ∈ TΣX,78 78 i.e. ≡′ Ê is a congruence on the Σ-algebra TΣX de-

fined in Remark 18.

(∀1 ≤ i ≤ n, si ≡′E ti) =⇒ op(s1, . . . , sn) ≡′E op(t1, . . . , tn). (37)

Proof. This is immediate from the presence of Refl, Symm, Trans, and Cong in
the rules of equational logic.

We write *− +E : TΣX → TΣX/≡′E for the canonical quotient map, so *t + E is the
equivalence class of t modulo the congruence ≡′E induced by equational logic.

Definition 46 (Term algebra, syntactically). The new term algebra for (Σ, E) on X
is the Σ-algebra whose carrier is TΣX/≡′E and whose interpretation of op : n ∈ Σ is
defined by79 79 This is well-defined (i.e. invariant under change

of representative) by (37).JopKT′X(*t1 + E, . . . , *tn + E) = *op(t1, . . . , tn) + E. (38)

We denote this algebra by T′Σ,EX or simply T′X.

With soundness (Theorem 44) of equational logic, completeness would mean this
alternative definition of the term algebra coincides with TX. First, we have to show
that T′X belongs to Alg(Σ, E) like we did for TX in Proposition 38, and we prove a
technical lemma before that.

Lemma 47. Let ι : Y → TΣX/≡′E be an assignment. For any function σ : Y → TΣX
satisfying *σ(y) + E = ι(y) for all y ∈ Y, we have J−Kι

T′X = *σ∗(−) + E.80 80 This result looks like a stronger version of
Lemma 33 for T′X. Morally, they are both saying
that interpretation of terms in TX or T′X is just a
syntactical matter.

Proof. We proceed by induction. For the base case, we have by definition of the
interpretation of terms (7), definition of σ, and definition of σ∗ (34),

JηΣ
Y(y)K

ι
T′X

(7)
= ι(y) = *σ(y) + E

(34)
= *σ∗(ηΣ

Y(y)) + E.

For the inductive step, we have

Jop(t1, . . . , tn)Kι
T′X = JopKT′X(Jt1Kι

T′X , . . . , JtnKι
T′X) by (7)

= JopKT′X(*σ∗(t1) + E, . . . , *σ∗(tn) + E) I.H.

= *op(σ∗(t1), . . . , σ∗(tn)) + E by (38)

= *σ∗(op(t1, . . . , tn)) + E. definition of σ∗

Proposition 48. For any set X, T′X satisfies all the equations in E.

Proof. Let Y ⊢ s = t belong to E and ι : Y → TΣX/≡′E be an assignment. By the
axiom of choice,81 there is a function σ : Y → TΣX satisfying *σ(y) + E = ι(y) for 81 Choice implies the quotient map *− +E has a right

inverse r : TΣX/≡′E → TΣX, and we can then set
σ = r ◦ ι.

all y ∈ Y. Thanks to Lemma 47, it is enough to show *σ∗(s) + E = *σ∗(t) + E.82

82 By Lemma 47, it implies

JsKι
T′X = *σ∗(s) + E = *σ∗(t) + E = JtKι

T′X ,

and since ι was an arbitrary assignment, we con-
clude that T′X ⊨ Y ⊢ s = t.

Equivalently, by definition of *− +E and Th′(E), we can just exhibit a derivation of
X ⊢ σ∗(s) = σ∗(t) in equational logic with axioms E. This is rather simple because
that equation can be proven with the Sub rule instantiated with σ : Y → TΣX and
the equation Y ⊢ s = t which is an axiom.
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Completeness of equational logic readily follows.

Theorem 49 (Completeness). If ϕ ∈ Th(E), then ϕ ∈ Th′(E).

Proof. Write ϕ = X ⊢ s = t ∈ Th(E). By Proposition 48 and definition of Th(E), we
know that T′X ⊨ ϕ. In particular, T′X satisfies ϕ under the assignment

ι = X
ηΣ

X−→ TΣX
*−+E−−−→ TΣX/≡′E,

namely, JsKι
T′X = JtKι

T′X . Moreover with σ = ηΣ
X , we can show σ satisfies the

hypothesis of Lemma 47 and σ∗ = idTΣX ,83 thus we conclude 83 We defined ι precisely to have *σ(x) + E = ι(x). To
show σ∗ = ηΣ

X
∗ is the identity, use (34) and the fact

that µΣ · TΣηΣ = 1TΣ (Lemma 10).*s + E = JsKι
T′X = JtKι

T′X = *t + E.

This implies s ≡′E t which in turn means X ⊢ s = t belongs to Th′(E).

Note that because TX and T′X were defined in the same way in terms of Th(E)
and Th′(E) respectively, and since we have proven the latter to be equal, we obtain
that TX and T′X are the same algebra.84 84 It is good to keep in mind these two equivalent

definitions of the free (Σ, E)-algebra on X. It means
you can prove s equals t in TX by exhibiting a
derivation of X ⊢ s = t in equational logic, or you
can prove s ̸= t by exhibiting an algebra that satis-
fies E but not X ⊢ s = t.

Remark 50. We have used the axiom of choice in proving completeness of equational
logic, but that is only an artifact of our presentation that deals with arbitrary con-
texts. Since terms are finite and operation symbols have finite arities, we can make
do with only finite contexts (which removes the need for choice). Formally, one can
prove by induction on the derivation that a proof of X ⊢ s = t can be transformed
into a proof of FV{s, t} ⊢ s = t which uses only equations with finite contexts.85 85 We denoted by FV{s, t} the set of free variables

used in s and t. This can be defined inductively as
follows:

FV{ηΣ
X(x)} = {x}

FV{op(t1, . . . , tn)} = FV{t1} ∪ · · · ∪ FV{tn}
FV{t1, . . . , tn} = FV{t1} ∪ · · · ∪ FV{tn}.

Note that FV{−} applied to a finite set of terms is
always finite.

You can also verify semantically that A satisfies X ⊢ s = t if and only if it satis-
fies FV{s, t} ⊢ s = t essentially because the extra variables have no effect on the
quantification of the free variables in s and t nor on the interpretation.

We mention now two related results for the sake of comparison when we intro-
duce quantitative equational logic. First, for any set X and variable y, the following
inference rules are derivable in equational logic.

X ⊢ s = t Add

X ∪ {y} ⊢ s = t
X ⊢ s = t y /∈ FV{s, t}

Del

X \ {y} ⊢ s = t

In words, Add says that you can always add a variable to the context, and Del

says you can remove a variable from the context when it is not used in the terms of
the equations. Both these rules are instances of Sub. For the first, take σ to be the
inclusion of X in X ∪ {y} (it may be the identity if y ∈ X). For the second, let σ send
y to whatever element of X \ {y} and all the other elements of X to themselves86, 86 When X is empty, the equations on the top and

bottom of Del coincide, so the rule is derivable.then since y is not in the free variables of s and t, σ∗(s) = s and σ∗(t) = t.
Second, we allowed the collection of equations E generating an algebraic theory

Th(E) to be a proper class, and that is really not common. Oftentimes, a countable
set of variables {x1, x2, . . . } is assumed, and equations are defined only when with
a context contained in that set. With this assumption, the collection of all equations,
E, and Th(E) are all sets. This has no effect on expressiveness since for any equation
X ⊢ s = t, there is an equivalent equation X′ ⊢ s′ = t′ with X′ ⊆ {x1, x2, . . . }.87 87 We already know X ⊢ s = t is equivalent to

FV{s, t} ⊢ s = t, and since the context of the latter is
finite, we have a bijection σ : FV{s, t} ∼= {x1, . . . , xn}.
Then the Sub rule instantiated with σ and σ−1

proves the desired equivalence.
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1.4 Monads

Our presentation of universal algebra used the language of category theory, e.g.
functors, natural transformations, commutative diagrams. Both these fields of
mathematics were born within a decade of each other88 with a similar goal: ab- 88 [Bir35] and [EM45] were the seminal papers for

universal algebra and category theory respectively.
Birkhoff and MacLane even wrote an undergraduate
textbook together [MB99].

stracting the way mathematicians use mathematical objects in order to apply one
general argument to many specific cases.89 One could argue (looking at today’s

89 This is very close to a goal of mathematics as a
whole: abstracting the way nature works in order to
apply one general argument to many specific cases,
c.f. Cheng calling category theory the “mathematics
of mathematics” [Che16].

practicing mathematicians) that category theory was more successful. This is why
a portion of this manuscript is spent on monads, a more categorical formulation of
the content in universal algebra which became popular in computer science after
Moggi’s work [Mog89, Mog91] using monads to abstract computational effects.

There is another categorical approach to universal algebra introduced by Law-
vere [Law63] and first popularized in the computer science community by Hyland,
Plotkin, and Power [PP01, HPP06, HP07]. We will stick to monads because most of
the literature on quantitative algebras does, and because I am not sure yet how the
generalizations we contributed port to Lawvere’s approach.90 90 In the paper introducing quantitative algebra

[MPP16], the authors already mentioned enriched
Lawvere theories [Pow99]. The work of Lucyshyn-
Wright and Parker [Luc15, LP23] is also relevant.

Definition 51 (Monad). A monad on a category C is a triple (M, η, µ) made up of
an endofunctor M : C → C and two natural transformations η : idC ⇒ M and
µ : M2 ⇒ M called the unit and multiplication respectively that make (39) and (40)
commute in [C, C].91 91 I also recommend Marsden’s series of blog posts

on monads for a relatively light and comprehen-
sive survey: https://stringdiagram.com/2022/05/
17/hello-monads/.

M M2 M

M

Mη

µ
1M

ηM

1M

(39)
M3 M2

M2 Mµ

Mµ

µM

µ (40)

We often refer to the monad (M, η, µ) simply with M.

In this chapter we will mostly talk about monads on Set, but it is good to keep
some arguments general for later. Here are some very important examples (for
computer scientists and especially for this manuscript).

Example 52 (Maybe). Suppose C has (binary) coproducts and a terminal object 1,
then (−+ 1) : C→ C is a monad. It is called the maybe monad (the name “option
monad” is also common).92 We write inlX+Y (resp. inrX+Y) for the coprojection of X 92 It is also called the lift monad in [Jac16, Example

5.1.3.2].(resp. Y) into X + Y.93 First, note that for a morphism f : X → Y,
93 These notations are common in the community of
programming language research, they stand for in-
jection left (resp. right). We may omit the superscript.

f + 1 = [inlY+1 ◦ f , inrY+1] : X + 1→ Y + 1.

The components of the unit are given by the coprojections, i.e. ηX = inlX+1 : X →
X + 1, and the components of the multiplication are

µX = [inlX+1, inrX+1, inrX+1] : X + 1 + 1→ X + 1.

Checking that (39) and (40) commute is an exercise in reasoning with coproducts. It
is much more interesting to give the intuition in Set where + is the disjoint union
and 1 is the singleton {∗}:94 94 This intuition should carry over well to many cat-

egories where the coproduct and terminal objects
have similar behaviors.• X + 1 is the set X with an additional (fresh) element ∗,

https://stringdiagram.com/2022/05/17/hello-monads/
https://stringdiagram.com/2022/05/17/hello-monads/
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• the function f + 1 acts like f on X and sends the new element ∗ ∈ X to the new
element ∗ ∈ Y,

• the unit ηX : X → X + 1 is the injection (sending x ∈ X to itself),

• the multiplication µX acts like the identity on X and sends the two new elements
of X + 1 + 1 to the single new element X + 1,

• one can check (39) and (40) commute by hand because (briefly) x ∈ X is always
sent to x ∈ X and ∗ is always sent to ∗.

More often than not, the fresh element ∗ is seen as a terminating state, so the
maybe monad models the most basic computational effect. Even when no other
observation can be made on states of a program, one can distinguish between states
by looking at their execution traces which may or may not contain ∗.95 95 This was already known to Moggi who used dif-

ferent terminology in [Mog91, Example 1.1].
Example 53 (Powerset). The covariant non-empty finite powerset functor Pne :
Set → Set sends a set X to the set of non-empty finite subsets of X which we
denote by PneX. It acts on functions just like the usual powerset functor, i.e. given
a function f : X → Y, Pne f is the direct image function, it sends S ⊆ X to
f (S) = { f (x) | x ∈ S}.96 96 It is clear that f (S) is non-empty and finite when

S is non-empty and finite.One can show Pne is a monad with the following unit and multiplication:97

97 Note that {x} is non-empty and finite, and so is
∪s∈Fs whenever F and all s ∈ F are non-empty and
finite. Thus, we can define Pne as a submonad of the
full powerset monad in, e.g., [Jac16, Example 5.1.3.1].

ηX : X → Pne(X) = x 7→ {x} and µX : Pne(Pne(X))→ Pne(X) = F 7→
⋃
s∈F

s.

Again, as early as in Moggi’s papers, the powerset monad was used to model non-
deterministic computations (see also [VW06, KS18, BSV19, GPA21]). A set S ∈ PneX
is seen as all the possible states at a point in the execution. We assume that S is finite
for convenience, and that it is non-empty because an empty set of possible states
would mean termination which can already be modelled with the maybe monad.98 98 Also, the maybe monad can be combined with any

other monad, see for example [MSV21, Corollary 5].
Example 54 (Distributions). The functor D : Set → Set sends a set X to the set of
finitely supported distributions on X:99 99 We will simply call them distributions.

D(X) := {φ : X → [0, 1] | ∑
x∈X

φ(x) = 1 and φ(x) ̸= 0 for finitely many x’s}.

We call φ(x) the weight of φ at x and let supp(φ) denote the support of φ, that is,
supp(φ) contains all the elements x ∈ X such that φ(x) ̸= 0.100 On morphisms, D 100 We often write φ(S) for the total weight of φ on

all of S ⊆ X.sends a function f : X → Y to the function between sets of distributions defined by

D f : DX → DY = φ 7→

y 7→ ∑
x∈X, f (x)=y

φ(x)

 .

In words, the weight of D f (φ) at y is equal to the total weight of φ on the preimage
of y under f .101 101 The distribution D f (φ) is sometimes called the

pushforward of φ.One can show that D is a monad with unit ηX = x 7→ δx, where δx is the Dirac
distribution at x (the weight of δx is 1 at x and 0 everywhere else), and multiplication

µX = Φ 7→

x 7→ ∑
φ∈supp(Φ)

Φ(φ)φ(x)

 .
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In words, the weight µX(Φ) at x is the average of φ(x) weighted by Φ(φ) for all
distributions in the support of Φ.102 102 It was Giry [Gir82] who first studied probabili-

ties through the categorical lens with a monad with
inspiration from Lawvere [Law62], D is a discrete
version of Giry’s original construction. (See [Jac16,
Example 5.1.3.4].)

Moggi only hinted at the distribution monad being a good model for computa-
tions that rely on random/probabilistic choices. For fleshed out research see, e.g.,
[VW06, SW18, BSV19].

Monads have been a popular categorical approach to universal algebra103 thanks 103 See [HP07] for a thorough survey on categorical
approaches to universal algebra.to a result of Linton [Lin66, Proposition 1] stating that any algebraic theory gives

rise to a monad. Given a signature Σ and a class E of equations, we already implic-
itly described the monad Linton constructed, it is the triple (TΣ,E, ηΣ,E, µΣ,E).

Proposition 55. The functor TΣ,E : Set→ Set defines a monad on Set with unit ηΣ,E and
multiplication µΣ,E. We call it the term monad for (Σ, E).

Proof. We have done most of the work already.104 We showed that ηΣ,E and µΣ,E 104 In fact, we have done it twice because we showed
that TΣ,E A is the free (Σ, E)-algebra on A for every
set A, and that automatically yields (through ab-
stract categorical arguments) a monad sending A to
the carrier of TΣ,E A, i.e. TΣ,E A.

are natural transformations of the right type in Footnote 63 and Proposition 30 re-
spectively, and we showed the appropriate instance of (39) commutes in Lemma 35.
It remains to prove (40) commutes which, instantiated here, means proving the
following diagram commutes for every set A.

TΣ,ETΣ,ETΣ,E A TΣ,ETΣ,E A

TΣ,ETΣ,E A TΣ,E A

µΣ,E
A

µΣ,E
A

µΣ,E
TΣ,E A

TΣ,EµΣ,E
A

It follows from the following paved diagram.105 105 We know that (a), (b) and (c) commute by (26),
(22), and (26) respectively. This means that (d) pre-
composed by the epimorphism [−]E yields the outer
square. Moreover, we know the outer square com-
mutes by (31), therefore, (d) must also commute.

TΣTΣ,ETΣ,E A TΣTΣ,E A

TΣ,ETΣ,ETΣ,E A TΣ,ETΣ,E A

TΣ,ETΣ,E A TΣ,E A

J−KTA

µΣ,E
A

J−KTTA

TΣµΣ,E
A

[−]E

µΣ,E
TΣ,E A

TΣ,EµΣ,E
A

[−]E

µΣ,E
A

(a)

(b)

(d)

(c)

Note that when E is empty, we get a monad (TΣ, ηΣ, µΣ).106 106 Here is an alternative proof that TΣ is a monad.
We showed ηΣ and µΣ are natural in (4) and (6) re-
spectively. The right triangle of (39) commutes by
definition of µΣ (5), the left triangle commutes by
Lemma 10, and the square (40) commutes by (14).

Linton also showed that from a monad M, you can build a theory whose cor-
responding term monad is isomorphic to M [Lin69, Lemma 10.1]. This however
relied on a more general notion of theory. We will not go over the details here,
rather we will introduce the necessary concepts to talk about our main examples
on Set: (−+ 1), Pne, and D. First, just like (Σ, E)-algebras are models of the theory
(Σ, E), we can define models for a monad, which we also call algebras.

Definition 56 (M–algebra). Let (M, η, µ) be a monad on C, an M-algebra is a pair
(A, α) comprising an object A ∈ C0 and a morphism α : MA → A such that (41)
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and (42) commute.

A MA

A
idA

ηA

α (41)
MMA MA

MA A

Mα

µA

α

α

(42)

We call A the carrier and we may write only α to refer to an M-algebra.

Definition 57 (Homomorphism). Let (M, η, µ) be a monad and (A, α) and (B, β)

be two M-algebras. An M-algebra homomorphism or simply M-homomorphism
from α to β is a morphism h : A→ B in C making (43) commute.

MA MB

A B

α

Mh

β

h

(43)

The composition of two M-homomorphisms is an M-homomorphism and idA is
an M-homomorphism from (A, α) to itself, thus we get a category of M-algebras
and M-homomorphisms called the Eilenberg–Moore category of M and denoted
by EM(M).107 Since EM(M) was built from objects and morphisms in C, there is 107 Named after the authors of the article introducing

that category [EM65].an obvious forgetful functor UM : EM(M) → C sending an M-algebra (A, α) to its
carrier A and an M-homomorphism to its underlying morphism.

Example 58. We will see some more concrete examples in a bit, but we can mention
now that the similarities between the squares in the definitions of a monad (40), of
an algebra (42), and of a homomorphism (43) have profound consequences. First,
for any A, the pair (MA, µA) is an M-algebra because (44) and (45) commute by the
properties of a monad.108 108 (44) is the component at A of the right triangle in

(39), and (45) is the component at A of (40).
MA MMA

MA

ηMA

µA
idMA

(44)
MMMA MMA

MMA MA

µAMµA

µA

µMA

(45)

Furthermore, for any M-algebra α : MA→ A, (42) (reflected through the diagonal)
precisely says that α is a M-homomorphism from (MA, µA) to (A, α). After a bit
more work109 we conclude that (MA, µA) is the free M-algebra (with respect to 109 Given an M-algebra (A′, α′) and a function f :

A → A′, we can show α′ ◦ M f is the unique M-
homomorphism such that α′ ◦M f ◦ ηA = f .

UM : EM(M)→ Set).

The terminology suggests that (Σ, E)-algebras and TΣ,E-algebras are the same
thing.110 Let us check this, obtaining a large family of examples at the same time. 110 Also, Example 58 starts to confirm this if we com-

pare it with Remark 18, and Lemma 19.

Proposition 59. There is an isomorphism Alg(Σ, E) ∼= EM(TΣ,E).

Proof. Given a (Σ, E)-algebra A, we already explained in (30) how to obtain a
function J−KA : TΣ,E A → A which sends [t]E to the interpretation of the term t
under the trivial assignment idA : A → A.111 Let us verify that J−KA is a TΣ,E- 111 That is well-defined because A satisfies all the

equations in Th(E).algebra. We need to show the following instances of (41) and (42) commutes.
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A TΣ,E A

A

ηΣ,E
A

J−KAidA

TΣ,ETΣ,E A TΣ,E A

TΣ,E A A

J−KA

J−KA

TΣ,EJ−KA

µΣ,E
A

The triangle commutes by definitions,112 and the square commutes by the following 112 We have JηΣ,E
A (a)KA = J[a]EKA = JaKA = a.

diagram.

TΣTΣ,E A TΣ A

TΣ,ETΣ,E A TΣ,E A

TΣ,E A A

J−KTA

TΣJ−KA

J−KA

J−KA

[−]E

J−KA

[−]E

TΣ,EJ−KA

µΣ,E
A

(b)

(a)

(c)

(d)

Since the outer rectangle commutes by Lemma 31, (a) commutes by naturality of
[−]E (22), (b) commutes by definition of µΣ,E

A (26), and (d) commutes by (30), we can
conclude that (c) commutes because [−]E is epic.

We also already explained in Footnote 20 that any homomorphism h : A → B

makes the outer rectangle below commute.

TΣ A TΣB

TΣ,E A TΣ,E A

A B
J−KA

h

J−KA

TΣ,Eh

[−]E

J−KA J−KB

[−]E

TΣh

(a)

(b) (d)

(c)

Since (a), (b), and (d) commute by naturality of [−]E, (30), and (30) respectively,
we conclude that (c) commutes again because [−]E is epic. This means h is a TΣ,E-
homomorphism.

We obtain a functor113 P : Alg(Σ, E) → EM(TΣ,E) sending A = (A, J−KA) to 113 Checking functoriality is trivial because P acts
like the identity on morphisms.(A, αA) where αA = J−KA : TΣ,E A → A (we give it a different name to make the

sequel easier to follow).
In the other direction, given an algebra α : TΣ,E A → A, we define an algebra Aα

with the interpretation of op : n ∈ Σ given by

JopKα(a1, . . . , an) = α[op(a1, . . . , an)]E, (46)

and we can prove by induction that JtKα = α[t]E for any Σ-term t over A (note
that we use the TΣ,E-algebra properties of α).114 Now, if h : (A, α) → (B, β) is a 114 For the base case, we have

JaKα
(7)
= a

(41)
= α[ηΣ

A(a)]E = α[a]E.

For the inductive step, let t = op(t1, . . . , tn) ∈ TΣ A:

JtKα = Jop(t1, . . . , tn)Kα

= JopKα(Jt1Kα, . . . , JtnKα) (7)

= JopKα(α[t1]E, . . . , α[tn]E) I.H.

= α[op(α[t1]E, . . . , α[tn]E)]E (46)

= α[TΣα(op([t1]E, . . . , [tn]E))]E (3)

= α(TΣ,Eα[op([t1]E, . . . , [tn]E)]E) (22)

= α(µΣ,E
A [op([t1]E, . . . , [tn]E)]E) (41)

= α[op(t1, . . . , tn)]E (26)

= α[t]E.

TΣ,E-homomorphism, then h is a homomorphism from Aα to Bβ because for any
op : n ∈ Σ and a1, . . . , an ∈ A, we have

h(JopKα(a1, . . . , an)) = h(α[op(a1, . . . , an)]E) by (46)
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= β(TΣ,Eh[op(a1, . . . , an)]E) by (43)

= β[TΣh(op(a1, . . . , an))]E by (22)

= β[op(h(a1), . . . , h(an))]E by (3)

= JopKβ(h(a1), . . . , h(an)). by (46)

We obtain a functor P−1 : EM(TΣ,E)→ Alg(Σ, E) sending (A, α) to Aα.
Finally, we need to check that P and P−1 are inverses to each other, i.e. that

αAα = α and AαA
= A. For the former, αAα is defined to be the interpretation J−Kα

extended to terms modulo E, which we showed in Footnote 114 acts just like α. For
the latter, we need to show that J−KαA

and J−KA coincide. Using Footnote 114 for
the first equation and the definition of αA for the second, we have

JtKαA
= αA[t]E = JtKA.

Therefore, P and P−1 are inverses, thus Alg(Σ, E) and EM(TΣ,E) are isomorphic.115 115 Observe that the functors P and P−1 commute
with the forgetful functors because they do not
change the carriers of the algebras.

Remark 60. This result (along with the construction of free (Σ, E)-algebras in Propo-
sition 41) means that U : Alg(Σ, E)→ Set is a (strictly) monadic functor. I decided
not to define or discuss monadic functors in this document in order to have less
prerequisites,116 and because I like to exhibit the explicit isomorphism between cat- 116 I became comfortable with monadicity relatively

late into my PhD, so I think avoiding them keeps
things more accessible. Speaking of accessibility, I
am still not comfortable with accessible functors, so
we will not work with them here.

egories of algebras. MacLane proves Proposition 59 using a monadicity theorem in
[Mac71, §VI.8, Theorem 1].

What about algebras for other monads? Are they algebras for some signature Σ
and equations E?

Example 61 (Maybe). In Set, a (−+ 1)-algebra is a function α : A + 1→ A making
the following diagrams commute.

A A + 1

A

α
idA

ηA A + 1 + 1 A + 1

A + 1 Aα

α+1

µA

α

Reminding ourselves that ηA is the inclusion in the left component, the triangle
commuting enforces α to act like the identity function on all of A. We can also write
α = [idA, α(∗)].117 The square commuting adds no constraint. Thus, an algebra for 117 We identify the element α(∗) ∈ A with the func-

tion α(∗) : 1→ A picking out that element.the maybe monad on Set is just a set with a distinguished point. Let h : A → B
be a function, commutativity of (47) is equivalent to h(α(∗)) = β(∗). Hence, a
(−+ 1)-homomorphism is a function that preserves the distinguished point.

A + 1 B + 1

A B

[idA ,α(∗)] [idB ,β(∗)]

h

h+1

(47)

Seeing the distinguished point of a (− + 1)-algebra as the interpretation of a
constant, we recognize that the category EM(−+ 1) is isomorphic to the category
Alg(Σ) where Σ = {p : 0} contains a single constant.118 118 Notice, again, that this isomorphism would com-

mute with the forgetful functors to Set because the
carriers are unchanged.Another option to recognize EM(−+ 1) as a category of algebras is via monad

isomorphisms.

Definition 62 (Monad morphism). Let (M, ηM, µM) and (N, ηN , µN) be two monads
on C. A monad morphism from M to N is a natural transformation ρ : M ⇒ N

https://ncatlab.org/nlab/show/accessible+functor
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making (48) and (49) commute.119 119 Recall that ρ ⋄ ρ denotes the horizontal composi-
tion of ρ with itself, i.e.

ρ ⋄ ρ = ρN ·Mρ = Nρ · ρM.
idC

M Nρ

ηM ηN (48)
MM NN

M Nρ

µM µN

ρ⋄ρ

(49)

As expected ρ is called a monad isomorphism when there is a monad morphism
ρ−1 : N ⇒ M satisfying ρ · ρ−1 = 1N and ρ−1 · ρ = 1M. In fact, it is enough
that all the components of ρ are isomorphisms in C to guarantee ρ is a monad
isomorphism.120 120 One checks that natural isomorphisms are pre-

cisely the natural transformations whose compo-
nents are all isomorphisms, and that the inverse of
a monad morphism is a monad morphism.

Example 63. For the signature Σ = {p : 0}, the term monad TΣ is isomorphic to
− + 1. Indeed, recall that a Σ-term over A is either an element of A or p, this
yields a bijection ρA : TΣ A → A + 1 that sends any element of A to itself and p to
∗ ∈ 1. To verify that ρ is a monad morphism, we check these diagrams commute.121 121 All of them commute essentially because ρA and

both multiplications act like the identity on A.

TΣ A A + 1

TΣB B + 1

ρA

f+1TΣ f

ρB

(50)
A

TΣ A A + 1ρA

ηA
ηΣ

A
(51)

TΣTΣ A A + 1 + 1

TΣ A A + 1ρA

µAµΣ
A

ρTΣ A◦(ρA+1)

(52)

We obtain a monad isomorphism between the maybe monad and the term monad
for the signature Σ = {p : 0}. We can recover the isomorphism between the cate-
gories of algebras from Example 61 with the following result.

Proposition 64. If ρ : M ⇒ N is a monad morphism, then there is a functor −ρ :
EM(N)→ EM(M). If ρ is a monad isomorphism, then −ρ is also an isomorphism.

Proof. Given an N-algebra α : NA → A, we show that α ◦ ρA : MA → A is an
M-algebra by paving the following diagrams.

Showing (53) commutes:

(a) By (48).

(b) By (41) for α : NA→ A.

(c) By (49), noting that (ρ ⋄ ρ)A = ρNA ◦MρA.

(d) Naturality of ρ.

(e) By (42) for α : NA→ A.

A MA MMA MA

NA MNA NNA NA

A MA NA A

ηM
A

idA

ρA

α

ηN
A MρA

Mα

ρA α

ρA

α

µM
A

ρNA µN
A

Nα

(a)

(b)

(c)

(d) (e)

(53)

Moreover, if h : A → B is an N-homomorphism from α to β, then it is also a
M-homomorphism from α ◦ ρA to β ◦ ρB by the paving below.122 122 The top square commutes by naturality of ρ and

the bottom square commutes because h is an N-
homomorphism (43).

MA MB

NA NB

A B

ρA

α

h

β
Nh

Mh

ρB
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We obtain a functor −ρ : EM(N)→ EM(M) taking an algebra (A, α) to (A, α ◦ ρA)

and a homomorphism h : (A, α)→ (B, β) to h : (A, α ◦ ρA)→ (B, β ◦ ρB).
Furthermore, it is easy to see that −ρ = idEM(M) when ρ = 1M is the identity

monad morphism, and that for any other monad morphism ρ′ : N ⇒ L, −(ρ′ · ρ) =
(−ρ) ◦ (−ρ′).123 Thus, when ρ is a monad isomorphism with inverse ρ−1, −ρ−1 is 123 In other words, the assignments M 7→ EM(M)

and ρ 7→ −ρ becomes a functor from the category
of monads on C and monad morphisms to the cate-
gory of categories (ignoring size issues).

the inverse of −ρ, so −ρ is an isomorphism.

With the monad isomorphism TΣ
∼= −+ 1 of Example 63, we obtain an isomor-

phism EM(− + 1) ∼= EM(TΣ), and composing it with the isomorphism of Propo-
sition 59 EM(TΣ) ∼= Alg(Σ) (instantiating E = ∅), we get back the result from
Example 61 that algebras for the maybe monad are the same thing as algebras for
the signature with a single constant.

In general, we now know that TΣ,E
∼= M implies EM(M) ∼= Alg(Σ, E), but con-

structing a monad isomorphism (and showing it is one) is not always the easiest
thing to do.124 There is a converse implication, but it requires a restriction to iso- 124 For instance, the isomorphism of categories of al-

gebras in Example 61 is definitely clearer than the
isomorphism of monads in Example 63.

morphisms of categories that commute with the forgetful functors to Set. Anyways,
that is a mild condition we foreshadowed.

Proposition 65. If P : EM(N) → EM(M) is a functor such that UM ◦ P = UN , then
there is a monad morphism ρ : M→ N. If P is an isomorphism, then so is ρ.

Proof. Quick corollary of [BW05, Chapter 3, Theorem 6.3].

This motivates the following definition which states that a monad M is presented
by (Σ, E) when it is isomorphic to the term monad TΣ,E or, thanks to Proposition 65

and Proposition 59, when M-algebras on A and (Σ, E)-algebras on A are identified.

Definition 66 (Set presentation). Let M be a monad on Set, an algebraic presenta-
tion of M is signature Σ and a class of equations E along with a monad isomorphism
ρ : TΣ,E

∼= M. We also say M is presented by (Σ, E).

We chose to state the definition with the monad isomorphism it makes some
arguments in §3.4 quicker. Showing that a monad is presented by (Σ, E) can be
done in many ways that are equivalent to building a monad isomorphism.125 125 We already gave one with Proposition 65, and you

can also read some great discussions in Remark 3.6
and §4.2 in [BSV22].

We have proven in Example 63 that Σ = {p : 0} and E = ∅ is an algebraic
presentation for the maybe monad on Set. Here is a couple of additional examples.

Example 67 (Powerset). The powerset monad Pne is presented by the theory of semi-
lattices (ΣS, ES),126 where ΣS = {⊕ : 2} and ES contains the following equations 126 Usually, when we say “theory of X”, we mean

that Xs are the algebras for that theory. For instance,
semilattices are the (ΣS, ES)-algebras. After some
unrolling, we get the more common definition of a
semilattice, that is, a set with a binary operation that
is idempotent, commutative, and associative.

stating that ⊕ is idempotent, commutative and associative respectively.

x ⊢ x = x⊕ x x, y ⊢ x⊕ y = y⊕ x x, y, z ⊢ x⊕ (y⊕ z) = (x⊕ y)⊕ z

This means there is a monad isomorphism TΣS ,ES
∼= Pne.

Another thing we obtain from this isomorphism is that for any set X, interpreting
⊕ as union on PneX (i.e. (S, T) 7→ S ∪ T) yields the free semilattice on X.127 127 It is relatively easy to show that union is idempo-

tent, commutative, and associative, freeness is more
difficult but follows from the algebraic presentation,
and the fact that (PneX, µX) is the free Pne-algebra (re-
call Example 58).
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Example 68 (Distributions). The distribution monad D is presented by the theory
of convex algebras (ΣCA, ECA) where ΣCA = {+p : 2 | p ∈ (0, 1)} and ECA contains
the following equations for all p, q ∈ (0, 1).

x ⊢ x = x +p x x, y ⊢ x +p y = y +1−p x

x, y, z ⊢(x +p y) +q z = x +pq +(y + p(1−q)
1−pq

z)

The free convex algebra on X can now be seen as DX with +p interpreted as the
usual convex combination, that is,128 128 For later, we will write p for 1− p.

Jφ +p ψKDX = pφ + (1− p)ψ = (x 7→ pφ(x) + (1− p)ψ(x)) . (54)

Remark 69. Not all monads on Set have an algebraic presentation.129 The mon- 129 For example, the full powerset monad does not,
although it still has an algebraic flavor as its algebras
are in correspondence with complete sup-lattices,
see e.g. [Bor94, Proposition 4.6.5].

ads that can be presented by a signature with finitary operation symbols are aptly
called finitary monads. They can be characterized as the monads whose underly-
ing functor preserve limits of a certain shape and size, see e.g. [Bor94, Proposition
4.6.2].

In Chapter 3, we will need to relate monads on different categories, we give some
background on that here.

Definition 70 (Monad functor). Let (M, ηM, µM) be a monad on C, and (T, ηT , µT)

be a monad on D. A monad functor from M to T is a pair (F, λ) comprising a
functor F : C → D, and a natural transformation λ : TF ⇒ FM making (55) and
(56) commute.130 130 Note the similarities with Definition 62, monad

functors generalize monad morphisms to monads
on different base categories.F

TF FM
λ

ηT F
FηM

(55)
TTF TFM FMM

TF FM
λ

µT F

Tλ λM

FµM (56)

Proposition 71. If (F, λ) : M → T is a monad functor, then there is a functor F− ◦λ :
EM(M)→ EM(T) sending an M-algebra α : MA→ A to Fα ◦ λA : TFA→ A, and an
M-homomorphism h : A→ B to Fh : FA→ FB.131 131 By definition, the functor F− ◦λ lifts F along the

forgetful functors, namely, it makes (57) commute.

EM(M) EM(T)

C D

UM UT

F

F−◦λ

(57)

Proof. We need to show that Fα ◦ λ is a T-algebra whenever α is an M-algebra. We
pave the following diagrams showing (41) and (42) commute respectively.

Showing (58) commutes:

(a) By (55).

(b) Apply F to (41).

(c) By (56).

(d) Naturality of λ.

(e) Apply F to (42).

FA TFA TTFA TFA

FMA TFMA FMMA FMA

FA TFA FMA FA

λA

Fα

λA Fα

µT
FA

TλA

TFα FMα

FµM
AλMA

ηT
FA

λA

Fα

idFA

FηM
A

(c)

(d) (e)

(a)

(b) (58)

Next, we need to show that when h : A → B is an M-homomorphism from α to
β, then Fh is a T-homomorphism from Fα ◦ λA to Fα ◦ λB. We pave the following
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diagram where (a) commutes by naturality of λ and (b) by applying F to (43).

TFA TFB

FMA FMB

FA FB

λA

Fα

λB

Fβ

Fh

TFh

FMh

(a)

(b)

There are two special cases of monad functors. When M and T are on the same
category C and F = idC, a monad functor is just a monad morphism,132 and then 132 Sometimes, authors introduce monad functors

with the name monad morphism, and take our no-
tion of monad morphism as a particular instance.
Some authors also use the name monad map for ei-
ther notion.

the proof above reduces to the proof of Proposition 64. When λA is an identity
morphism for every A, i.e. TF = FM, we say that M is a monad lifting of T along
F. That notion is central to §3.4, where we redefine it in a more specific setting.

Our goal for the next two chapters is to make all the results here more general
by considering carriers to be generalized metric spaces, i.e. sets with a notion of
distance. In Chapter 2 we define what we mean by distance, and in Chapter 3,
we define quantitative algebras, quantitative equational logic, and quantitative al-
gebraic presentations analogously to the definitions above.
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For a comprehensive introduction to the concepts and themes explored in this
chapter, please refer to §0.2. Here, we only give a brief overview.

In this chapter, we give our definition of generalized metric spaces which is dif-
ferent from the many (pairwise different) definitions already in the literature.133 133 e.g. [BvBR98, Bra00]

Once again, we take our time with this material in preparation for the next chapter,
introducing many examples and disseminating some insights along the way. While
the content of Chapter 1 can safely be skipped before reading the current chapter,
our main point here is the definition of quantitative equation (Definition 93) as an
answer to the question “How do we impose constraints on distances with the fa-
miliar syntax of equations?”, thus it makes sense to be comfortable with equational
reasoning before reading what follows.

Outline: In §2.1, we define complete lattices and relations valued in a complete
lattice, we also give an equivalent definition that justifies the syntax of quantitative
equations. In §2.2, we defined quantitative equations and the categories of gener-
alized metric spaces which are defined by collections of quantitative equations. In
§2.3, we study the properties that all categories of generalized metric spaces have.

2.1 L-Spaces

Chapter 1 is titled Universal Algebra and Chapter 3 is titled Universal Quantitative
Algebra. In order to go from the former to the latter, we will explain what we mean
by quantitative. In the original paper on quantitative algebras [MPP16], and in many
other works on quantitative program semantics,134 the quantities considered are, 134 e.g. [Kwi07, vBW01, KyKK+

21, ZK22].

more often than not, real numbers. In [MSV22, MSV23], we worked with quantities
inside [0, 1]. In this document, we will abstract away from real numbers, thinking
of quantities as things you can compare and say whether one is bigger or smaller
than another. You can do that with real numbers thanks to the usual ordering ≤,
but it has a crucial property that we exploit, it is complete in the (informal) sense
that you can always find the smallest quantity of a set of real numbers. We say it is
a complete lattice.135 135 Small caveat: we need to add ∞ to the real num-

bers or work with an upper bound (see Example 74).

Definition 72 (Complete lattice). A complete lattice is a partially ordered set (L,≤

https://www.youtube.com/watch?v=nKU7iz9RYV0
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)136 where all subsets S ⊆ L have an infimum and a supremum denoted by inf S 136 i.e. L is a set and ≤ ⊆ L× L is a binary relation
on L that is reflexive, transitive and antisymmetric.and sup S respectively. In particular, L has a bottom element ⊥ = sup ∅ and a top

element ⊤ = inf ∅ that satisfy ⊥ ≤ ε ≤ ⊤ for all ε ∈ L. We use L to refer to the
lattice and its underlying set, and we call its elements quantities.

Let us describe two central (for this thesis) examples of complete lattices.

Example 73 (Unit interval). The unit interval [0, 1] is the set of real numbers be-
tween 0 and 1. It is a poset with the usual order≤ (“less than or equal”) on numbers.
It is usually an axiom in the definition of R137 that all non-empty bounded subsets 137 Or possibly a theorem proven after constructing

R.of real numbers have an infimum and a supremum. Since all subsets of [0, 1] are
bounded (by 0 and 1), we conclude that ([0, 1],≤) is a complete lattice with ⊥ = 0
and ⊤ = 1.

Later in this section, we will see elements of [0, 1] as distances between points
of some space. It would make sense, then, to extend the interval to contain values
bigger than 1. Still because a complete lattice must have a top element there must
be a number above all others. We could either stop at some arbitrary 0 ≤ B ∈ R

and consider [0, B], or we can consider ∞ to be a number as done below.138 138 If one needs negative distances, it is also possible
to work with any interval [A, B] with A ≤ B ∈ R, or
even [−∞, ∞]. We will stick to [0, 1] and [0, ∞].Example 74 (Extended interval). Similarly to the unit interval, the extended interval

is the set [0, ∞] of positive real numbers extended with ∞, and it is a poset after
asserting ε ≤ ∞ for all ε ∈ [0, ∞]. It is also a complete lattice because non-empty
bounded subsets of [0, ∞) still have an infimum and supremum, and if a subset is
not bounded above or contains ∞, then its supremum is ∞. We find that 0 is bottom
and ∞ is top.

It is the prevailing custom to consider distances valued in the extended inter-
val.139 However, in our research, we preferred to use the unit interval, and in 139 In fact, [0, ∞] is also famous under the name Law-

vere quantale because of Lawvere’s seminal paper
[Law02]. In that work, he used the quantale struc-
ture on [0, ∞] to give a categorical definition very
close to that of a metric.

almost all cases, there is no difference. Since [0, 1] and [0, ∞] are isomorphic as
complete lattices,140 one might think that switching between [0, 1] and [0, ∞] is en-

140 Take the mapping x 7→ 1
1−x − 1 from [0, 1] to

[0, ∞] with 1
0 = ∞. It is monotone and preserves

infimums.

tirely benign. That is not true because in practice [0, 1] and [0, ∞] are not just seen as
complete lattices. For instance, we are often interested in adding quantities together
in [0, 1] or [0, ∞] or doing a convex combination.

Remark 75. The first two examples are both quantales [HST14, §II.1.10], informally,
complete lattices where quantities can be added together in a way that preserves
the order and the “smallest” quantities. It is also quite common in the literature
on quantitative programming semantics to generalize from real numbers to ele-
ments of a quantale.141 Since none of the results we establish require dealing with 141 e.g. [DGY19, GP21, GD23, FSW+

23].

addition, we will work at the level of generality complete lattices (absolutely no dif-
ficulty arises from this abstraction), even though many of the following examples
are quantales.

There are many other interesting complete lattices, although (unfortunately) they
are more rarely viewed as possible places to value distances.

Example 76 (Booleans). The Boolean lattice B is the complete lattice containing
only two elements, bottom and top. Its name comes from the interpretation of ⊥ as

https://en.wikipedia.org/wiki/Quantale
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a false value and ⊤ as a true value which makes the infimum act like an AND and
the supremum like an OR.

Example 77 (Extended natural numbers). The set N∞ of natural numbers extended
with ∞ is a sublattice of [0, ∞].142 Indeed, it is a poset with the usual order and 142 As expected, a sublattice of (L,≤) is a set S ⊆

L closed under taking infimums and supremums.
Note that the top and bottom of S need not coincide
with those of L. For instance [0, 1] is a sublattice of
[0, ∞], but ⊤ = 1 in the former and ⊤ = ∞ in the
latter.

the infimum and supremum of a subset of natural numbers is either itself a natural
number or ∞ (when the subset is empty or unbounded respectively).

Example 78 (Powerset lattice). For any set X, we denote the powerset of X by P(X).
The inclusion relation ⊆ between subsets of X makes P(X) a poset. The infimum
of a family of subsets Si ⊆ X is the intersection ∩i∈ISi, and its supremum is the
union ∪i∈ISi. Hence, P(X) is a complete lattice. The bottom element is ∅ and the
top element is X.

It is well-known that subsets of X correspond to functions X → {⊥,⊤}.143 En- 143 A subset S ⊆ X is sent to the characteristic func-
tion χS, and a function f : X → B is sent to f−1(⊤).
We say that {⊥,⊤} is the subobject classifier of Set.

dowing the two-element set with the complete lattice structure of B is what yields
the complete lattice structure on P(X). The following example generalizes this
construction.

Example 79 (Function space). Given a complete lattice (L,≤), for any set X, we
denote the set of functions from X to L by LX . The pointwise order on functions
defined by

f ≤∗ g⇐⇒ ∀x ∈ X, f (x) ≤ g(x)

is a partial order on LX . The infimums and supremums of families of functions are
also computed pointwise. Namely, given { fi : X → L}i∈I , for all x ∈ X: Taking L = B, we find that P(X) and BX are iso-

morphic as complete lattices under the usual corre-
spondence. Namely, pointwise infimums and supre-
mums become intersections and unions respectively.
For example, if χS, χT : X → B are the characteristic
functions of S, T ⊆ X, then

inf {χS, χT} (x) = ⊤ ⇔ χS(x) = χT(x) = ⊤
⇔ x ∈ S and x ∈ T

⇔ x ∈ S ∩ T.

(inf
i∈I

fi)(x) = inf
i∈I

fi(x) and (sup
i∈I

fi)(x) = sup
i∈I

fi(x).

This makes LX a complete lattice. The bottom element is the function that is constant
at ⊥ and the top element is the function that is constant at ⊤.

As a special case of function spaces, it is easy to show that when X is a set with
two elements, LX is isomorphic (as complete lattices) to the product L× L.

Example 80 (Product). Let (L,≤L) and (K,≤K) be two complete lattices. Their
product is the poset (L× K,≤L×K) on the Cartesian product of L and K with the
order defined by

(ε, δ) ≤L×K (ε′, δ′)⇐⇒ ε ≤L ε′ and δ ≤K δ′. (59)

It is a complete lattice where the infimums and supremums are computed coordi-
natewise, namely, for any S ⊆ L×K,144 144 Where πL and πK are the projections from L×K

to L and K respectively.

inf S = (inf{πL(c) | c ∈ S}, inf{πK(c) | c ∈ S}) and

sup S = (sup{πL(c) | c ∈ S}, sup{πK(c) | c ∈ S}).

The bottom (resp. top) element of L × K is the pairing of the bottom (resp. top)
elements of L and K. i.e. ⊥L×K = (⊥L,⊥K) and ⊤L×K = (⊤L,⊤K).
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The following example is also based on functions, and it appears in several works
on generalized notions of distances, e.g. [Fla97, HR13].

Example 81 (CDF). A cumulative distribution function145 (or CDF for short) is a
145 Although cumulative subdistribution function
might be preferred.function f : [0, ∞] → [0, 1] that is monotone (i.e. ε ≤ δ =⇒ f (ε) ≤ f (δ)) and

satisfies
f (δ) = sup{ f (ε) | ε < δ}. (60)

Intuitively, (60) says that f cannot abruptly change value at some x ∈ [0, ∞], but it
can do that “after” some x.146 For instance, out of the two functions below, only 146 This property is often called right-continuity.

f>1 is a CDF.

f≥1 = x 7→

0 x < 1

1 x ≥ 1
f>1 = x 7→

0 x ≤ 1

1 x > 1

We denote by CDF([0, ∞]) the subset of [0, 1][0,∞] containing all CDFs, it inherits
a poset structure (pointwise ordering), and we can show it is a complete lattice.147 147 Note however that CDF([0, ∞]) is not a sublat-

tice of [0, 1][0,∞] because the infimums are not always
taken pointwise. For instance, given 0 < n ∈N, de-
fine fn by (see them on Desmos)

fn(x) =


0 x ≤ 1− 1

n
nx 1− 1

n < x < 1
1 1 ≤ x

.

The pointwise infimum of { fn}n∈N clearly sends
everything below 1 to 0 and everything above and
including 1 to 1, so it does not satisfy f (1) =
supε<1 f (ε). We can find the infimum with the
general formula that defines infimums in terms of
supremums:

inf
n>0

fn = sup{ f ∈ CDF([0, ∞]) | ∀n > 0, f ≤∗ fn}.

We find that infn>0 fn = f>1.

Let { fi : [0, ∞] → [0, 1]}i∈I be a family of CDFs. We will show the pointwise
supremum supi∈I fi is a CDF, and that is enough since having all supremums im-
plies having all infimums [DP02, Theorem 2.31].

• If ε ≤ δ, since all fis are monotone, we have fi(ε) ≤ fi(δ) for all i ∈ I which
implies

(sup
i∈I

fi)(ε) = sup
i∈I

fi(ε) ≤ sup
i∈I

fi(δ) = (sup
i∈I

fi)(δ).

• For any δ ∈ [0, ∞], we have

(sup
i∈I

fi)(δ) = sup
i∈I

fi(δ) = sup
i∈I

sup
ε<δ

fi(ε) = sup
ε<δ

sup
i∈I

fi(ε) = sup
ε<δ

(sup
i∈I

fi)(ε).

Nothing prevents us from defining CDFs on other domains, and we will write
CDF(L) for the complete lattice of functions L→ [0, 1] that are monotone and satisfy
(60).

Definition 82 (L-space). Given a complete lattice L and a set A, an L-relation on A
is a function d : A× A → L. We call the pair (A, d) an L-space, and A its carrier or
underlying set. We will also use a single bold-face symbol A to refer to an L-space
with underlying set A and L-relation dA.148 148 We will often switch between referring to spaces

with A or (A, dA), and we will try to match the sym-
bol for the space and the one for its underlying set
only modifying the former with mathbf.

A nonexpansive map from A to B is a function f : A→ B between the underly-
ing sets of A and B that satisfies

∀x, x′ ∈ A, dB( f (x), f (x′)) ≤ dA(x, x′). (61)

The identity maps idA : A→ A and the composition of two nonexpansive maps are
always nonexpansive149, therefore we have a category whose objects are L-spaces 149 Fix three L-spaces A, B and C with two nonex-

pansive maps f : A→ B and g : B→ C, we have by
nonexpansiveness of g then f :

dC(g f (a), g f (a′)) ≤ dB( f (a), f (a′))

≤ dA(a, a′).

and morphisms are nonexpansive maps. We denote it by LSpa.
This category is concrete over Set with the forgetful functor U : LSpa → Set

which sends an L-space A to its carrier and a morphism to the underlying function
between carriers.

https://www.desmos.com/calculator/fqcudbkqge
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Remark 83. In the sequel, we will not distinguish between the morphism f : A→ B
and the underlying function f : A → B. Although, we may write U f for the latter,
when disambiguation is necessary.

Instantiating L for different complete lattices, we can get a feel for what the
categories LSpa look like. We also give concrete examples of L-spaces.

Examples 84 (Binary relations). When L = B, a function d : A× A→ B is the same
thing as a subset of A× A, which is the same thing as a binary relation on A.150 150 Hence, the choice of terminology L-relation.

Then, a B-space is a set equipped with a binary relation and we choose to have, as
a convention, d(a, a′) = ⊥ when a and a′ are related and d(a, a′) = ⊤ when they
are not.151 A nonexpansive map from A to B is a function f : A → B such that for 151 This convention might look backwards, but it

makes sense with the morphisms.any a, a′ ∈ A, f (a) and f (a′) are related when a and a′ are. When a and a′ are not
related, f (a) and f (a′) might still be related.152 The category BSpa is well-known 152 Note that this interpretation of nonexpansiveness

depends on our just chosen convention. Swapping
the meaning of d(a, a′) = ⊤ and d(a, a′) = ⊥ is the
same thing as taking the opposite order on B (i.e.
⊤ ≤ ⊥), namely, morphisms become functions f :
A → B such that for any a, a′ ∈ A, f (a) and f (a′)
are not related when neither are a and a′.

under different names, EndoRel in [Vig23], Rel in [AHS06] (although that name is
more commonly used for the category where relations are morphisms) and 2Rel in
my book. Here are a couple of fun examples of B-spaces:

1. Chess. Let P be the set of positions on a chessboard (a2, d6, f3, etc.) and dB :
P × P → B send a pair (p, q) to ⊥ if and only if q is accessible from p in one
bishop’s move. The pair (P, dB) is an object of BSpa. Let dQ be the B-relation
sending (p, q) to ⊥ if and only if q is accessible from p in one queen’s move.
The pair (P, dQ) is another object of BSpa. The identity function idP : P → P
is nonexpansive from (P, dB) to (P, dQ) because whenever a bishop can go from
p to q, a queen can too. However, it is not nonexpansive from (P, dQ) to (P, dB)

because e.g. a queen can go from a1 to a2 but a bishop cannot.153 One can check 153 In other words, the set of valid moves for a bishop
is included in the set of valid moves for a queen, but
not vice versa.

that any rotation of the chessboard is nonexpansive from (P, dB) to itself and
from (P, dQ) to itself. And since nonexpansive maps compose, any rotation is
also nonexpansive from (P, dB) to (P, dQ).

2. Siblings. Let H be the set of all humans (me, Paul Erdős, my brother Paul, etc.)
and dS : H × H → B send (h, k) to ⊥ if and only if h and k are full siblings.154 154 Full siblings share the same biological parents.

The pair (H, dS) is an object of BSpa. Let d= be the B-relation sending (h, k)
to ⊥ if and only if h and k are the same person. The pair (H, d=) is another
object of BSpa. The function f : H → H sending h to their biological mother is
nonexpansive from (H, dS) to (H, d=) because whenever h and k are full siblings,
they have the same biological mother.

Examples 85 (Distances). The main examples of L-spaces in this thesis are [0, 1]-
spaces or [0, ∞]-spaces. These are sets A equipped with a function d : A× A→ [0, 1]
or d : A× A → [0, ∞], and we can usually understand d(a, a′) as the distance be-
tween two points a, a′ ∈ A. With this interpretation, a function is nonexpansive
when applying it never increases the distances between points.155 Let us give sev- 155 This is a justification for the term nonexpansive.

In the setting of distances being real-valued, another
popular term is 1-Lipschitz.

eral examples of [0, 1]- and [0, ∞]-spaces:

1. Euclidean. Probably the most famous distance in mathematics is the Euclidean
distance on real numbers d : R×R → [0, ∞] = (x, y) 7→ |x − y|. The distance

https://en.wikipedia.org/wiki/Chessboard
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between any two points is unbounded, but it is never ∞. The pair (R, d) is
an object of [0, ∞]Spa.156 Multiplication by r ∈ R is a nonexpansive function 156 It is also very common to study subsets of R, like

Q or [0, 1], with the Euclidean distance appropri-
ately restricted. We say that (Q, d) and ([0, 1], d)
are subspaces of (R, d). In general, a subspace of
a L-space A is a subset B ⊆ A equipped with the
L-relation dA restricted to B, i.e. dB = B × B ↪→
A× A

dA−→ L.

r · − : (R, d)→ (R, d) if and only if r is between −1 and 1. Intuitively, a function
f : (R, d) → (R, d) is nonexpansive when its derivative at any point is between
−1 and 1.157

157 The derivatives might not exist, so this is just an
informal explanation.

2. Collaboration. Let H be the set of humans again. A collaboration chain between
two humans h and k is a sequence of scientific papers P1, . . . , Pn such that h is
a coauthor of P1, k is a coauthor of Pn and Pi and Pi+1 always have at least one
common coauthor. The collaboration distance d between two humans h and k is
the length of a shortest collaboration chain.158 For instance d(me, Paul Erdős) = 158 As conventions, the length of a chain is the num-

ber of papers, not humans. Also, d(h, k) = ∞ when
no such chain exists between h and k, except when
h = k, then d(h, h) = 0 (or we could say it is the
length of the empty chain from h to h).

4 as computed by csauthors.net on February 20th 2024:

me D. Petrişan M. Gehrke M. Erné P. Erdős
[PS21] [GPR16] [EGP07] [EE86]

The pair (H, d) is a [0, ∞]-space, but it could also be seen as a N∞-space (because
the length of a chain is always an integer).

3. Hamming. Let W be the set of words of the English language. If two words u and
v have the same number of letters, the Hamming distance d(u, v) between u and
v is the number of positions in u and v where the letters do not match.159 When 159 For instance d(carrot, carpet) = 2 because these

words differ only in two positions, the second and
third to last (r ̸= p and o ̸= e).

u and v are of different lengths, we let d(u, v) = ∞, and we obtain a [0, ∞]-space
(W, d). (It is also a N∞-space.)

Remark 86. As Example 85 come with many important intuitions, we will often call
an L-relation d : X × X → L a distance function and d(x, y) the distance from x to
y,160 even when L is neither [0, 1] nor [0, ∞]. 160 The asymmetry in the terminology “distance

from x to y” is justified because, in general, nothing
guarantees d(x, y) = d(y, x). Since language is pro-
cessed in a sequential order, we cannot even get rid
of this asymmetry, but I feel like “distance between
x and y” would be more appropriate if we required
d(x, y) = d(y, x).

Examples 87. We give more examples of L-spaces to showcase the potential of our
abstract framework.

1. Diversion.161 Let J be the set of products available to consumers inside a vending
161 This example takes inspiration from the diversion
matrices in [CMS23], where the authors consider the
automobile market in the U.S.A. instead of a vend-
ing machine.

machine (including a “no purchase” option), the second-choice diversion d(p, q)
from product p to product q is the fraction of consumers that switch from buying
p to buying q when p is removed (or out of stock) from the machine. That fraction
is always contained between 0 and 1, so we have a function d : J × J → [0, 1]
which makes (J, d) an object of [0, 1]Spa.162 162 Even though d is valued in [0, 1], calling it a dis-

tance function does not fit our intuition because
when d(p, q) is big, it means the products p and q
are probably very similar.

2. Rank. Let P be the set of web pages available on the internet. In [BP98], the
authors introduce an algorithm to measure the importance of a page p ∈ P giving
it a rank R(p) ∈ [0, 1]. This data can be organized in a function dR : P× P→ [0, 1]
which assigns R(p) to a pair (p, p) and 0 (or 1) to a pair (p, q) with p ̸= q.163 163 The values dR(p, q) when p ̸= q are considered

irrelevant, so they are filled with an arbitrary value,
e.g. 0 or 1.

This yields a [0, 1]-space (P, dR).

The rank of a page varies over time (it is computed from the links between all
web pages which change quite frequently), so if we let T be the set of instants of
time, we can define d′R(p, p) to be the function of type T → [0, 1] which sends t
to the rank R(p) computed at time t.164 This makes (P, d′R) into a [0, 1]T-space. 164 Again, dR(p, q) can be set to some unimportant

constant value.

https://www.csauthors.net/distance/ralph-sarkis/paul-erdos
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In order to create a search engine, we also need to consider the input of the user
looking for some web page.165 If U is the set of possible user inputs, we can 165 The rank of a Wikipedia page about ramen will be

lower when the user inputs “Genre Humaine” than
when they input “Ramen_Lord”.

define d′′R(p, p) to depend on U and T, so that (P, d′′R) is a [0, 1]U×T-space.

3. Collaboration (bis). In Example 85, we defined the collaboration distance d :
H × H → N∞ that measures how far two people are from collaborating on a
scientific paper. We can define a finer measure by taking into account the total
number of people involved in the collaboration. It allows us to say you are closer
to Erdös if you wrote a paper with him and no one else than if you wrote a
paper with him and two additional coauthors. The distance d′ is now valued
in N∞ ×N∞, the first coordinate of d′(h, k) is d(h, k) the length of the shortest There may be cases where d′(h, k) = (4, 7) (a long

chain with few authors) and d′(h, k′) = (2, 16) (a
short chain with many authors). Then, with the
product of complete lattices defined in Example 80,
we could not compare the two distances. This is
unfortunate in this application, so we may want to
consider a different kind of product of complete lat-
tices. The lexicographical order on N∞ ×N∞ is

(ε, δ) ≤lex (ε′, δ′)⇔ ε ≤ ε′ or (ε = ε′ and δ ≤ δ′).

In words, you use the order on the first coordinates,
and only when they are equal, you use the order on
the second coordinates.

If L and K are complete lattices, (L×K,≤lex) is a
complete lattice where the infimum is not computed
pointwise, but rather

inf S = (inf πLS, sup{ε | ∀s ∈ S, (inf πLS, ε) ≤ s}).

collaboration chain between h and k, and the second coordinate of d′(h, k) is the
smallest total number of authors in a collaboration chain of length d(h, k). For
instance, according to csauthors.net on February 20th 2024, there are only two
chains of length four between me and Erdös, both involving (the same) seven
people, hence d′(me, Paul Erdös) = (4, 7).

4. Bisimulation for CTS. A conditional transition system (CTS) [ABH+
12, Example

2.5] is a labelled transition system with a semantics different than the usual one.
Instead of following transitions when the label matches an input, some label is
chosen before the execution, and only those transitions which have the chosen
label remain possible. Formulated differently, it is a family of transition systems
on the same set of states indexed by a set of labels. If X is the set of states, and L
is the set of labels, we can define a P(L)-relation d : X× X → P(L) by166

166 More details in [ABH+
12, §Definitions C.1 and

C.2].d(x, y) = {ℓ ∈ L | x and y are not bisimilar when ℓ is chosen}.

Here is one last example further making the case for working over an abstract
complete lattice.

Example 88 (Hausdorff distance). Given an L-relation d on a set X, we define the
L-relation d↑ on non-empty finite subsets of X:

∀S, T ∈ PneX, d↑(S, T) = sup

{
sup
x∈S

inf
y∈T

d(x, y), sup
y∈T

inf
x∈S

d(x, y)

}
.

This distance is a variation of a metric defined by Hausdorff in [Hau14].167 It 167 Hausdorff considered positive real valued dis-
tances and compact subsets.measures how far apart two subsets are in three steps. First, we postulate that a

point x ∈ S and T are as far apart as x and the closest point y ∈ T. Then, the
distance from S to T is as big as the distance between the point x ∈ S furthest from
T. Finally, to obtain a symmetric distance, we take the maximum of the distance
from S to T and from T to S. As we expect from any interesting optimization
problem, there is a dual formulation given by the L-relation d↓.168 168 The notation was inspired by [BBKK18]. We write

πS(C) for {x ∈ S | ∃(x, y) ∈ C} and similarly for πT .
(We should really write PneπS(C) and PneπT(C).)

∀S, T ∈ PneX, d↓(S, T) = inf

{
sup

(x,y)∈C
d(x, y) | C ⊆ X× X, π1(C) = S, π2(C) = T

}

https://en.wikipedia.org/wiki/Ramen
https://www.youtube.com/watch?v=Y2hWi0fo97M
https://www.reddit.com/user/Ramen_Lord/
https://www.csauthors.net/distance/ralph-sarkis/paul-erdos
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To compare two sets with the second method, you first need a binary relation
C on X that covers all and only the points of S and T in the first and second
coordinate respectively. Borrowing the terminology from probability theory, we call
C a coupling of S and T, it is a subset of X × X whose marginals are S and T.
According to a coupling C, the distance between S and T is the biggest distance
between a pair in C. Amongst all couplings of S and T, we take the one achieving
the smallest distance to define d↓(S, T).

The first punchline of this example is that the two L-relations d↑ and d↓ coincide.

Lemma 89. For any S, T ∈ PneX, d↑(S, T) = d↓(S, T).169 169 Hardly adapted from [Mé11, Proposition 2.1].

Proof. (≤) For any coupling C ⊆ X × X, for each x ∈ S, there is at least one yx ∈ T
such that (x, yx) ∈ C (because π1(C) = S) so

sup
x∈S

inf
y∈T

d(x, y) ≤ sup
x∈S

d(x, yx) ≤ sup
(x,y)∈C

d(x, y).

After a symmetric argument, we find that d↑(S, T) ≤ sup(x,y)∈C d(x, y) for all cou-
plings, the first inequality follows.

(≥) For any x ∈ S, let yx ∈ T be a point in T that attains the infimum of d(x, y),170 170 It exists because T is non-empty and finite.

and note that our definition ensures d(x, yx) ≤ d↑(S, T). Symmetrically define xy

for any y ∈ T and let C = {(x, yx) | x ∈ S} ∪ {(xy, y) | y ∈ T}. It is clear that C is a
coupling of S and T, and by our choices of yx and xy, we ensured that

sup
(x,y)∈C

d(x, y) ≤ d↑(S, T),

therefore we found a coupling witnessing that d↓(S, T) ≤ d↑(S, T) as desired.

The second punchline of this example comes from instantiating it with the com-
plete lattice B. Recall that a B-relation d on X corresponds to a binary relation
Rd ⊆ X × X where x and y are related if and only if d(x, y) = ⊥. This seem-
ingly backwards convention makes it so that nonexpansive functions are those that
preserve the relation. Let us be careful about it while describing Rd↑ and Rd↓ .

Given S, T ∈ PneX and x ∈ S, notice that infy∈T d(x, y) = ⊥ if and only if d(x, y) =
⊥ for at least one y, or equivalently, if x is related by Rd to at least one y ∈ T. This

means the infimum behaves like an existential quantifier. Dually, the supremum
acts like a universal quantifier yielding171 171 Symmetrically,

sup
y∈T

inf
x∈S

d(x, y) = ⊥ ⇔ ∀y ∈ T, ∃x ∈ S, (x, y) ∈ Rd.
sup
x∈S

inf
y∈T

d(x, y) = ⊥ ⇐⇒ ∀x ∈ S, ∃y ∈ T, (x, y) ∈ Rd.

Combining with its symmetric counterpart, and noting that a binary universal
quantification is just an AND, we find that (S, T) belongs to Rd↑ if and only if

∀x ∈ S, ∃y ∈ T, (x, y) ∈ Rd and ∀y ∈ T, ∃x ∈ S, (x, y) ∈ Rd. (62)

We call Rd↑ the Egli–Milner extension of Rd as in, e.g., [WS20, GPA21].
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Given a coupling C of S and T, sup(x,y)∈C d(x, y) can only equal ⊥ when all pairs

(x, y) ∈ C are related by Rd. Then, if a coupling C ⊆ Rd exists, the infimum of d↓

will be ⊥. Therefore, S and T are related by Rd↓ if and only if

∃C ⊆ Rd, πS(C) = S and πT(C) = T. (63)

The relation Rd↓ is sometimes called the Barr lifting of Rd [Bar06].
Our proof above yields the equivalence between (62) and (63).172 172 That equivalence is folklore and has probably

been given as exercise to many students in a class
on bisimulation or coalgebras.While the categories BSpa, [0, 1]Spa and [0, ∞]Spa are interesting on their own,

they contain subcategories which are more widely studied. For instance, the cate-
gory Poset of posets and monotone maps is a full subcategory of BSpa where we
only keep B-spaces (X, d) where the binary relation corresponding to d is reflex-
ive, transitive and antisymmetric. Similarly, a [0, ∞]-space (X, d) where the distance
function satisfies the triangle inequality d(x, z) ≤ d(x, y) + d(y, z) and reflexivity
d(x, x) ≤ 0 is known as a Lawvere metric space [Law02].

The next section lays out the language we will use to state conditions as those
above on L-spaces. The syntax there is heavily inspired by the syntax of equations
in universal algebra, the binary predicate = for equality is joined by a family of
binary predicates =ε indexed by the quantities in L. That clever idea comes from
the original work of Mardare, Panangaden, and Plotkin on quantitative algebras
[MPP16], and it implicitly relies on the following equivalent definition of L-spaces.

Definition 90 (L-structure). Given a complete lattice L, an L-structure173 is a set X
173 We borrow the name “structure” from model the-
orists. Closer to home, the more general notion of
relational structure is used in [FMS21, Par22, Par23].
Our L-structures are both more and less general
than the LS-structures of [Con17].

equipped with a family of binary relations Rε ⊆ X× X indexed by ε ∈ L satisfying

• monotonicity in the sense that if ε ≤ ε′, then Rε ⊆ Rε′ , and

• continuity in the sense that for any I-indexed family of elements εi ∈ L,174 174 By monotonicity, Rδ ⊆ Rεi so the inclusion
Rδ ⊆ ∩i∈I Rεi always holds. Also, continuity implies
monotonicity because ε ≤ ε′ implies

Rε ∩ Rε′ = Rinf{ε,ε′} = Rε,

which means Rε ⊆ Rε′ . Still, we keep monotonicity
explicit for better exposition.

⋂
i∈I

Rεi = Rδ, where δ = inf
i∈I

εi.

Intuitively (x, y) ∈ Rε should be interpreted as bounding the distance from x to y
above by ε. Then, monotonicity means the points that are at a distance below ε are
also at a distance below ε′ when ε ≤ ε′. Continuity means the points that are at a
distance below a bunch of bounds εi are also at a distance below the infimum of
those bounds infi∈I εi.

The names for these conditions come from yet another equivalent definition.175 175 This time more directly equivalent.

Organizing the data of an L-structure into a function R : L→ P(X×X) sending ε to
Rε, we can recover monotonicity and continuity by seeing P(X × X) as a complete
lattice like in Example 78. Indeed, monotonicity is equivalent to R being a monotone
function between the posets (L,≤) and (P(X×X),⊆), and continuity is equivalent
to R preserving infimums. Seeing L and P(X × X) as posetal categories, we can
simply say that R is a continuous functor.176 176 Limits in a posetal category are always computed

by taking the infimum of all the points in the dia-
gram, so preserving limits and preserving infimums
is the same thing.

A morphism between two L-structures (X, {Rε}) and (Y, {Sε}) is a function f :
X → Y satisfying

∀ε ∈ L, ∀x, x′ ∈ X, (x, x′) ∈ Rε =⇒ ( f (x), f (x′)) ∈ Sε. (64)
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This should feel similar to nonexpansive maps.177 Let us call LStr the category of 177 In words, (64) reads as: if x and x′ are at a dis-
tance below ε’ then so are f (x) and f (x′).L-structures.

We give one trivial example, before proving that L-structures are just L-spaces.

Example 91. A consequence of continuity (take I = ∅) is that R⊤ is the full binary
relation X × X. Therefore, taking L = 1 to be a singleton where ⊥ = ⊤, a 1-
structure is only a set (there is no choice for R), and a morphism is only a function
(the implication in (64) is always true because Sε = Y × Y). In other words, 1Str is
isomorphic to Set. Instantiating the next result (Proposition 92) means that 1Spa is
also isomorphic to Set, this is clear because there is only one function d : X×X → 1

for any set X. This example is relatively important because it means the theory we
develop later over an arbitrary category of L-spaces specializes to the case of Set.178 178 See Example 181.

Proposition 92. For any complete lattice L, the categories LSpa and LStr are isomor-
phic.179 179 This result is a stripped down version of [MPP17,

Theorem 4.3]. A more general version also appears
in [FMS21, Example 3.5.(4)]. Another similar result
is shown in [Par22, Appendix]. The core idea here
((65) and (66)) also appears in [Con17, Theorem A].

Proof. Given an L-relation (X, d), we define the binary relations Rd
ε ⊆ X× X by

(x, x′) ∈ Rd
ε ⇐⇒ d(x, x′) ≤ ε. (65)

This family satisfies monotonicity because for any ε ≤ ε′ we have

(x, x′) ∈ Rd
ε

(65)⇐⇒ d(x, x′) ≤ ε =⇒ d(x, x′) ≤ ε′
(65)⇐⇒ (x, x′) ∈ Rd

ε′ .

It also satisfies continuity because if (x, x′) ∈ Rεi for all i ∈ I, then d(x, x′) ≤ εi

for all i ∈ I. By definition of infimum, we must have d(x, x′) ≤ infi∈I εi, hence
(x, x′) ∈ Rinfi∈I εi

. We conclude the forward inclusion (⊆) of continuity holds, the
converse (⊇) follows from monotonicity. Taking L = B, Proposition 92 gives back our inter-

pretation of BSpa as the category 2Rel from Ex-
ample 84. Indeed, a B-structure is just a set X
equipped with a binary relation R⊥ ⊆ X × X (be-
cause R⊤ is required to equal X × X), and mor-
phisms of B-structures are functions that preserve
that binary relation. This also justifies our weird
choice of d(x, y) = ⊥ meaning x and y are related.

Any nonexpansive map f : (X, d)→ (Y, ∆) in LSpa is also a morphism between
the L-structures (X, {Rd

ε }) and (Y, {R∆
ε }) because for all ε ∈ L and x, x′ ∈ X,

(x, x′) ∈ Rd
ε

(65)⇐⇒ d(x, x′) ≤ ε
(61)
=⇒ ∆( f (x), f (x′)) ≤ ε

(65)⇐⇒ ( f (x), f (x′)) ∈ R∆
ε .

It follows that the assignment (X, d) 7→ (X, {Rd
ε }) is a functor F : LSpa → LStr

acting trivially on morphisms.
Given an L-structure (X, {Rε}), we define the function dR : X× X → L by

dR(x, x′) = inf
{

ε ∈ L | (x, x′) ∈ Rε

}
.

Note that monotonicity and continuity of the family {Rε} imply180 180 The converse implication (⇐) is by definition of
infimum. For (⇒), continuity says that

RdR(x,x′) =
⋂

ε∈L,(x,x′)∈Rε

Rε,

so RdR(x,x′) contains (x, x′), then by monotonicity,
dR(x, x′) ≤ ε implies Rε also contains (x, x′).

dR(x, x′) ≤ ε⇐⇒ (x, x′) ∈ Rε. (66)

This allows us to prove that a morphism f : (X, {Rε})→ (Y, {Sε}) is nonexpansive
from (X, dR) to (Y, dS) because for all ε ∈ L and x, x′ ∈ X, we have

dR(x, x′) ≤ ε
(66)⇐⇒ (x, x′) ∈ Rε

(64)
=⇒ ( f (x), f (x′)) ∈ Sε

(66)⇐⇒ dS( f (x), f (x′)) ≤ ε,
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hence putting ε = dR(x, x′), we obtain dS( f (x), f (x′)) ≤ dR(x, x′). It follows that
the assignment (X, {Rε}) 7→ (X, dR) is a functor G : LStr → LSpa acting trivially
on morphisms.

Observe that (65) and (66) together say that RdR
ε = Rε and dRd = d, so F and G

are inverses to each other on objects. Since both functors do nothing to morphisms,
we conclude that F and G are inverses to each other, and that LSpa ∼= LStr.

This result is central in our treatment of L-spaces because it allows us to specify
an L-relation through the (binary) truth value of a family of predicates =ε. In other
words, we can reason equationally about L-spaces.

2.2 Equational Constraints

It is often the case one wants to impose conditions on the L-spaces they consider.
For instance, recall that when L is [0, 1] or [0, ∞], L-spaces are sets with a notion
of distance between points. Starting from our intuition on the distance between
points of the space we live in, people have come up with several abstract condi-
tions to enforce on distance functions. For example, we can restate (with a slight
modification181) the axioms defining metric spaces (Definition 1). 181 The separation axiom is now divided in two, (68)

and (69).First, symmetry says that the distance from x to y is the same as the distance
from y to x:

∀x, y ∈ X, d(x, y) = d(y, x). (67)

Reflexivity, also called indiscernibility of identicals, says that the distance between
x and itself is 0 (i.e. the smallest distance possible):

∀x ∈ X, d(x, x) = 0. (68)

Identity of indiscernibles, also called Leibniz’s law, says that if two points x and y
are at distance 0, then x and y must be the same:

∀x, y ∈ X, d(x, y) = 0 =⇒ x = y. (69)

Finally, the triangle inequality says that the distance from x to z is always smaller
than the sum of the distances from x to y and from y to z:

∀x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z). (70)

There are also very famous axioms on B-spaces (X, d) that arise from viewing
the binary relation corresponding to d as some kind of order on elements of X.

First, reflexivity says that any element x is related to itself.182 Translating back 182 We abstract orders that look like the “smaller or
equal” order ≤ on say real numbers rather than the
strict order <.

to the B-relation, this is equivalent to:

∀x ∈ X, d(x, x) = ⊥. (71)

Antisymmetry says that if both (x, y) and (y, x) are in the order relation, then they
must be equal:

∀x, y ∈ X, d(x, y) = ⊥ = d(y, x) =⇒ x = y. (72)
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Finally, transitivity says that if (x, y) and (y, z) belong to the order relation, then so
does (x, z):

∀x, y, z ∈ X, d(x, y) = ⊥ = d(y, z) =⇒ d(x, z) = ⊥. (73)

We can immediately notice that all the axioms (67)–(73) start with a universal
quantification of variables. A harder thing to see is that we never actually needed
to talk about equality between distances. For instance, the equation d(x, y) = d(y, x)
in the axiom of symmetry (67) can be replaced by two inequalities d(x, y) ≤ d(y, x)
and d(y, x) ≤ d(x, y), and moreover since x and y are universally quantified, only
one of these inequalities is necessary:

∀x, y ∈ X, d(x, y) ≤ d(y, x). (74)

If we rely on the equivalence between L-spaces and L-structures (Proposition 92),
we can transform (74) into a family of implications indexed by all ε ∈ L:183 183 Recall that (x, y) ∈ Rd

ε is the same thing as
d(x, y) ≤ ε. Hence, (74) and (75) are equivalent be-
cause requiring d(x, y) to be smaller than d(y, x) is
equivalent to requiring all upper bounds of d(y, x)
(in particular d(y, x) itself) to also be upper bounds
of d(x, y).

∀x, y ∈ X, (y, x) ∈ Rd
ε =⇒ (x, y) ∈ Rd

ε . (75)

Starting from the triangle inequality (70) and applying the same transformations
that got us from (67) to (75), we obtain a family of implications indexed by two
values ε, δ ∈ L:184 184 You can try proving how (70) and (76) are equiv-

alent if the process of going from the former to the
latter was not clear to you.∀x, y, z ∈ X, (x, y) ∈ Rd

ε and (y, z) ∈ Rd
δ =⇒ (x, z) ∈ Rd

ε+δ. (76)

The last conceptual step is to make the L.H.S. of the implication part of the
universal quantification. That is, instead of saying “for all x and y, if P then Q”, we
say “for all x and y such that P, Q”. We do this by introducing a syntax very similar
to the equations of universal algebra. We fix a complete lattice (L,≤), but you can
keep in mind the examples L = [0, 1] and L = [0, ∞].

Definition 93 (Quantitative equation). A quantitative equation (over L) is a tuple
comprising an L-space X called the context, two elements x, y ∈ X and optionally a
quantity ε ∈ L. We write these as X ⊢ x = y when no ε is given or X ⊢ x =ε y when
it is given.

An L-space A satisfies a quantitative equation

• X ⊢ x = y if for any nonexpansive assignment ι̂ : X→ A, ι̂(x) = ι̂(y).

• X ⊢ x =ε y if for any nonexpansive assignment ι̂ : X→ A, dA(ι̂(x), ι̂(y)) ≤ ε.185 185 Viewing it in the L-structure (A, {RdA
ε }), we want

that ι̂(x) RdA
ε ι̂(y) which looks a lot like x =ε y.

We use ϕ and ψ to refer to a quantitative equation, and we sometimes call them
simply equations. We write A ⊨ ϕ when A satisfies ϕ,186 and we also write A ⊨ι̂ ϕ

186 Of course, satisfaction generalizes straightfor-
wardly to sets of quantitative equations, i.e. if Ê is a
class of quantitative equations, A ⊨ Ê means A ⊨ ϕ
for all ϕ ∈ Ê.

when the equality ι̂(x) = ι̂(y) or the bound dA(ι̂(x), ι̂(y)) ≤ ε holds for a particular
assignment ι̂ : X→ A (and not necessarily for all assignments).

Let us illustrate this definition with an example.
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Example 94 (Symmetry). We want to translate (75) into a quantitative equation. A
first approximation would be replacing the relation Rd

ε with our new syntax =ε to
obtain something like

x, y ⊢ y =ε x =⇒ x =ε y.

We are not allowed to use implications like this, so we have implement the last step
mentioned above by putting the premise y =ε x into the context. This means we
need to quantify over variables x and y with a bound ε on the distance from y to x.

Note that when defining satisfaction of a quantitative equation, the quantification
happens at the level of assignments ι̂ : X → A. Hence, we have to find a context X
such that nonexpansive assignments X→ A correspond to choices of two elements
in A with the same bound ε on their distance.

Let the context Xε be the L-space with two elements x and y such that dXε(y, x) =
ε and all other distances are ⊤. A nonexpansive assignment ι̂ : Xε → A is just a

choice of two elements ι̂(x), ι̂(y) ∈ A satisfying dA(ι̂(y), ι̂(x)) ≤ ε.187 For all of these, 187 Indeed, since ⊤ is the top element of L, the other
values of dX being ⊤ means that they impose no
further condition on dA.

we have to impose the condition dA(ι̂(x), ι̂(y)) ≤ ε. Therefore, our quantitative
equation is

Xε ⊢ x =ε y. (77)

For a fixed ε ∈ L, an L-space A satisfies (77) if and only if it satisfies (75). Hence,188 188 Recall our argument in Footnote 183.

if A satisfies that quantitative equation for all ε ∈ L, then it satisfies (67), i.e. the
distance dA is symmetric.

In practice, defining the context like this is more cumbersome than need be, so
we will define some syntactic sugar to remedy this. Before that, we take the time to
do another example.

Example 95 (Triangle inequality). With L = [0, 1] or L = [0, ∞], let the context
Xε,δ be the L-space with three elements x, y and z such that dXε,δ(x, y) = ε and
dXε,δ(y, z) = δ, and all other distances are ⊤. 189 A nonexpansive assignment 189 Here is a depiction of Xε,δ, where the label on an

arrow is the distance from the source to the target of
that arrow:

x z

y

ε

⊤

⊤ ⊤

⊤

δ

⊤

⊤

ι̂ : Xε,δ → A is just a choice of three elements a = ι̂(x), b = ι̂(y), c = ι̂(z) ∈ A such
that dA(a, b) ≤ ε and dA(b, c) ≤ δ. Hence, if A satisfies

Xε,δ ⊢ x =ε+δ z, (78)

it means that for any such assignment, dA(a, c) ≤ ε + δ also holds. We conclude
that A satisfies (76). If A satisfies Xε,δ ⊢ x =ε+δ z for all ε, δ ∈ L, then A satisfies the
triangle inequality (70).

Remark 96. There is a small caveat above. If we are in L = [0, 1] and ε = 1 and
δ = 1, then ε + δ = 2 /∈ [0, 1], so the predicate x =ε+δ z is not allowed. There are
two easy fixes that we never explicit. You can either define a truncated addition so
that ε + δ = 1 whenever their sum is really above 1, or you can quantify over ε and
δ such that ε + δ ≤ 1. Indeed, every [0, 1]-space satisfies Xε,δ ⊢ x =1 z because 1 is
a global upper bound for the distance between points, thus there is no difference
between having that equation or not as an axiom.
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Notice that in the contexts Xε and Xε,δ, we only needed to set one or two distances
and all the others where the maximum they could be ⊤. In our syntactic sugar for
quantitative equations, we will only write the distances that are important (using
the syntax =ε), and we understand the underspecified distances to be as high as
they can be. For instance, (77) will be written190 190 We can understand this syntax as putting back

the information in the context into an implication.
For instance, you can read (79) as “if the distance
from y to x is bounded above by ε, then so is the
distance from x to y”. You can read (80) as “if the
distance from x to y is bounded above by ε and the
distance from y to z is bounded above by δ, then the
distance from x to z is bounded above by ε + δ”.

y =ε x ⊢ x =ε y, (79)

and (78) will be written
x =ε y, y =δ z ⊢ x =ε+δ z. (80)

In this syntax, we call premises everything on the left of the turnstile ⊢ and conclu-
sion what is on the right.

More generally, when we write {xi =εi yi}i∈I ⊢ x =ε y (resp. {xi =εi yi}i∈I ⊢ x =

y), it corresponds to the quantitative equation X ⊢ x =ε y (resp. X ⊢ x = y), where
the context X contains the variables in191 191 Note that the xis, yis, x and y need not be distinct.

In fact, x and y almost always appear in the xis and
yis.X = {x, y} ∪ {xi | i ∈ I} ∪ {yi | i ∈ I},

and the L-relation is defined for u, v ∈ X by192 192 In words, the distance from u to v is the smallest
value ε such that u =ε v was a premise. If no such
premise occurs, the distance from u to v is ⊤. It
is rare that u and v appear several times together
(because u =ε v and u =δ v can be replaced with
u =inf{ε,δ} v), but our definition allows it.

dX(u, v) = inf{ε | u =ε v ∈ {xi =ε yi}i∈I}.

Remark 97. The definition of quantitative equations in [MPP16] and most subse-
quent papers on quantitative algebras follows our syntactic sugar rather than our
presentation with contexts. We showed the two approaches are formally equivalent
in [MSV23, Lemma 8.4], but there is a special case we want to discuss.

In [MPP16, Definition 2.1], one axiom of their logic is (almost)

{x =εi y | i ∈ I} ⊢ x =infi∈I εi
y.

Now, if we apply our translation to obtain a quantitative equation as in Defini-
tion 93, we get X ⊢ x =ε y, where dX(x, y) = ε = infi∈I εi and all other distances
are ⊤. This quantitative equation is obviously always satisfied,193 so it makes sense 193 For any nonexpansive assignment ι̂ : X → A,

dA(ι̂(x), ι̂(y)) ≤ dX(x, y) = ε.to have it as an axiom, but it seems we are loosing a bit of information. That is,
the original axiom looks like it ensures the continuity property of Definition 90. In
fact, that axiom has several names in different papers, one of which is Cont. In the
version of quantitative equational logic we propose in this thesis (Figure 3.1), there
is an inference rule (rather than an axiom) that ensures continuity.

Here are some more translations of famous properties into quantitative equations
written with the syntactic sugar:

• reflexivity (of a metric) (68) becomes x ⊢ x =0 x,194 194 As further sugar, we also write x instead of x =⊤
x to the left of the turnstile ⊢ to say that the variable
x is in the context without imposing any constraint.
For instance, the context of x, y ⊢ x = y has two vari-
ables x and y and all distances are ⊤. Thus, if A
satisfies x, y ⊢ x = y, then A is either empty or a
singleton.

• Leibniz’s law (69) becomes x =0 y ⊢ x = y,

• reflexivity (of an order) (71) becomes x ⊢ x =⊥ x,

• antisymmetry (72) becomes x =⊥ y, y =⊥ x ⊢ x = y, and
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• transitivity (73) becomes x =⊥ y, y =⊥ z ⊢ x =⊥ z.

Remark 98. The translations of (68) and (71) look very close. In fact, noting that
0 is the bottom element of [0, 1] and [0, ∞], the quantitative equation x ⊢ x =⊥ x
can state the reflexivity of a distance in [0, 1] or [0, ∞] or the reflexivity of a binary
relation.

Similarly, in the translation of the triangle inequality (80), if we let ε and δ range
over B and interpret + as an OR, we get three vacuous quantitative equations195 and 195 When either ε or δ equals ⊤, ε + δ = ⊤, but when

the conclusion of a quantitative equation is x =⊤ z,
it must be satisfied.

the translation of (73) above. So transitivity and triangle inequality are the same
under this abstract point of view.196

196 These observations were probably folkloric since
at least the original publication of [Law02] in 1973.Let us emphasize one thing about contexts of quantitative equations: they only

give constraints that are upper bounds for distances.197 In particular, it can be very 197 Well, if you consider the opposite order on L, they
now give lower bounds. What is important is that
they only speak about one of them.

hard to operate on the quantities in L non-monotonically. For instance, we will see
(after Definition 108) that we cannot read x =ε1 y, y =ε2 z, y =ε3 y ⊢ x =ε1+ε2−ε3 z
as saying that d(x, z) ≤ d(x, y) + d(y, z)− d(y, y), and one quick explanation is that
subtraction is not a monotone operation on [0, ∞]× [0, ∞].198 Another consequence 198 Assume L = [0, ∞] and d(y, y) may be non-zero.

is that an equation ϕ will always entail ψ when the latter has a stricter context (i.e.
when the upper-bounds in the premises are smaller).199 We prove a more general 199 For example, if A satisfies x =1/2 y ⊢ x = y, then

it satisfies x =1/3 y ⊢ x = y. This says that if all dis-
tances between distinct points are above 1/2, then
they are also above 1/3.

version of this below.

Lemma 99. Let f : X → Y be a nonexpansive map. If A satisfies X ⊢ x = y (resp.
X ⊢ x =ε y), then A satisfies Y ⊢ f (x) = f (y) (resp. Y ⊢ f (x) =ε f (y)).

Proof. Any nonexpansive assignment ι̂ : Y → A yields a nonexpansive assignment
ι̂ ◦ f : X→ A. By hypothesis, we have

A ⊨ι̂◦ f X ⊢ x = y (resp. A ⊨ι̂◦ f X ⊢ x =ε y),

which means ι̂( f (x)) = ι̂( f (y)) (resp. dA(ι̂( f (x)), ι̂( f (y))) ≤ ε). Thus, we conclude

A ⊨ι̂ Y ⊢ f (x) = f (y) (resp. A ⊨ι̂ Y ⊢ f (x) =ε f (y)).

Let us continue this list of examples for a while, just in case it helps a reader
that is looking to translate an axiom into a quantitative equation. We will also give
some results later which could imply that reader’s axiom cannot be translated in
this language.

Examples 100. For any complete lattice L.

1. The strong triangle inequality states that d(x, z) ≤ max{d(x, y), d(y, z)},200 it is 200 This property is used in defining ultrametrics
[Rut96].equivalent to the satisfaction of the following family of quantitative equations

∀ε, δ ∈ L, x =ε y, y =δ z ⊢ x =sup{ε,δ} z. (81)

2. We can impose that all distances are below a global upper bound ε ∈ L (i.e.
d(x, y) ≤ ε) with the quantitative equation201 201 For instance [0, 1]-spaces are [0, ∞]-spaces that

satisfy x, y ⊢ x =1 y.

x, y ⊢ x =ε y. (82)
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3. We can almost impose a global lower bound ε ∈ L on distances. What we can
do instead is impose a strict lower bound on distances that are not self-distances
(i.e. ∀x ̸= y, d(x, y) > ε).202 To achieve this with an equation, we ensure the 202 We can also do a non-strict lower bound (i.e.

∀x ̸= y, d(x, y) ≥ ε) by considering the family of
equations x =δ y ⊢ x = y for all δ < ε.

equivalent property that whenever d(x, y) is smaller than ε, then x = y:

x =ε y ⊢ x = y. (83)

Let L = [0, 1] or L = [0, ∞].

1. Given a positive number b > 0, the b-triangle inequality states that d(x, z) ≤
b(d(x, y) + d(y, z)),203 it is equivalent to the satisfaction of 203 This property is used in defining b-metrics [KP22,

Definition 1.1].

∀ε, δ ∈ L, x =ε y, y =δ z ⊢ x =b(ε+δ) z. (84)

2. The rectangle inequality states that d(x, w) ≤ d(x, y) + d(y, z) + d(z, w),204 it is 204 This property is used in defining g.m.s. in [Bra00,
Definition 1.1].equivalent to the satisfaction of

∀ε1, ε2 ∈ L, x =ε1 y, y =ε2 z, z =ε3 w ⊢ x =ε1+ε2+ε3 w. (85)

Let L = B.

1. A binary relation R on X× X is said to be functional if there are no two distinct
y, y′ ∈ X such that (x, y) ∈ R and (x, y′) ∈ R for a single x ∈ X. This is equivalent
to satisfying

x =⊥ y, x =⊥ y′ ⊢ y = y′. (86)

2. We say R ⊆ X × X is injective if there are no two distinct x, x′ ∈ X such that
(x, y) ∈ R and (x′, y) ∈ R for a single y ∈ X.205 This is equivalent to satisfying 205 Equivalently, the opposite (or converse) of R is

functional. You may want to formulate totality or
surjectivity of a binary relation with quantitative
equations, but you will find that difficult. We show
in Example 116 that it is not possible.

x =⊥ y, x′ =⊥ y ⊢ x = x′. (87)

3. We say R ⊆ X × X is circular if whenever (x, y) and (y, z) belong to R, then so
does (z, x) (compare with transitivity (73)). This is equivalent to satisfying

x =⊥ y, y =⊥ z ⊢ z =⊥ x. (88)

We now turn to the study of subcategories of LSpa that are defined via (sets of)
quantitative equations. Given a class Ê of quantitative equations, we can define a
full subcategory of LSpa that contains only those L-spaces that satisfy Ê, this is the
category GMet(L, Ê) whose objects we call generalized metric spaces or spaces for
short. We also write GMet(Ê) or GMet when the complete lattices L or the class Ê
are fixed or irrelevant. There is an evident forgetful functor U : GMet→ Set which
is the composition of the inclusion functor GMet→ LSpa and U : LSpa→ Set.206 206 Recall that while we use the same symbol for both

forgetful functors, you can disambiguate them with
the hyperlinks.

The terminology generalized metric space appears quite a lot in the literature
with different meanings [BvBR98, Bra00], so I expect many will navigate to this
definition before reading what is above. Catering to these readers, let us redefine
what we mean by generalized metric space in a more concrete (but informal) form.
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Definition 101 (Generalized metric space). A generalized metric space or space is
a set X along with a function d : X × X → L into a complete lattice L such that
(X, d) satisfies some constraints expressed by quantitative equations.

When L = [0, ∞], examples include metrics [Fré06], ultrametrics [Rut96], pseudo-
metrics, quasimetrics [Wil31a], semimetrics [Wil31b], b-metrics [KP22], the general-
ized metric spaces of [Bra00], dislocated metrics [HS00] also called diffuse metrics
in [CKPR21], the generalized metric spaces of [BvBR98] which are the metric spaces
of [Law02], and probably much more.207 207 The literature is too vast to give an exhaustive list.

When L = B (the Boolean lattice), examples include posets...

The most notable examples of generalized metric spaces are posets and metric
spaces, they form the categories Poset and Met.

• Poset is the full subcategory of BSpa with all B-spaces satisfying reflexivity,
antisymmetry, and transitivity stated as quantitative equations:208 208 Examples of posets include any set of numbers

(e.g. N, Q, R) equipped with the usual (non-strict)
order ≤, and PneX with the inclusion order.ÊPoset = {x ⊢ x =⊥ x, x =⊥ y, y =⊥ x ⊢ x = y, x =⊥ y, y =⊥ z ⊢ x =⊥ z} .

• Met is the full subcategory of [0, 1]Spa (taking [0, ∞] works just as well) with all
metric spaces, namely, [0, 1]-spaces satisfying symmetry, reflexivity, identity of
indiscernibles and triangle inequality stated as quantitative equations:209 ÊMet 209 Examples of metric spaces include [0, 1] with the

Euclidean distance from Example 85, and the total
variation distance from Example 102.

contains all the following

∀ε ∈ [0, 1], y =ε x ⊢ x =ε y

⊢ x =0 x

x =0 y ⊢ x = y

∀ε, δ ∈ [0, 1], x =ε y, y =δ z ⊢ x =ε+δ z.

Example 102. The total variation distance is a metric defined on probability distri-
butions. For any X, we define tv : DX×DX → [0, 1] by, for any φ, ψ ∈ DX,210 210 Since φ and ψ have finite support, we can restrict

the quantification of the supremum to finite subsets
of X, or even to subsets of the union of the supports
of φ and ψ. Also, both φ(S) and ψ(S) are at most in
[0, 1], so tv(φ, ψ) also takes values in [0, 1].

tv(φ, ψ) = sup
S⊆X
|φ(S)− ψ(S)| .

Let us show tv is indeed a metric (it is more natural to show the properties equiva-
lent to the equations in ÊMet hold rather than proving tv satisfies EMet).

Proof. Symmetry is clear from the definition (∀r, s ∈ R, |r − s| = |s − r|). We can
prove reflexivity and identity of indiscernibles at once by211 211 For the second to last equivalence, take S = {x}

for the forward direction, and for the converse use

φ(S) = ∑
x∈S∩(supp(φ)∪supp(ψ))

φ(x).tv(φ, ψ) = 0⇔ sup
S⊆X
|φ(S)− ψ(S)| = 0

⇔ ∀S ⊆ X, |φ(S)− ψ(S)| = 0

⇔ ∀S ⊆ X, φ(S) = ψ(S)

⇔ ∀x ∈ X, φ(x) = ψ(x)

⇔ φ = ψ.
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For the triangle inequality, let φ, ψ, τ ∈ DX, we have212 212 Using standard properties of supremums and ab-
solute values.

tv(φ, ψ) + tv(ψ, τ) = sup
S⊆X
|φ(S)− ψ(S)|+ sup

S⊆X
|ψ(S)− τ(S)|

≥ sup
S⊆X
|φ(S)− ψ(S)|+ |ψ(S)− τ(S)|

≥ sup
S⊆X
|φ(S)− ψ(S) + ψ(S)− τ(S)|

= sup
S⊆X
|φ(S)− τ(S)|

= tv(φ, τ).

Posets are not the only kind of interesting B-relations, by imposing a different
set of equations, we can get different subcategories of B that we depict in a Hasse
diagram.

Pre Poset

BSpa Gph Set

PER Equiv

(89)

We can do the same thing for different subcategories of [0, 1]Spa.

DMet MMet

PMet

[0, 1]Spa PSMet Met UMet

SMet

PQMet QMet

(90)

2.3 The Categories GMet

In this section, we prove some basic results about the categories of generalized
metric spaces. We fix a complete lattice L and a class of quantitative equations Ê
throughout, and denote by GMet the category of L-spaces that satisfy Ê. The goal
here is mainly to become familiar with L-spaces and quantitative equations, so not
everything will be useful later. This also means we will avoid using abstract results
(that we prove later) which can (sometimes drastically) simplify some proofs.213 213 For instance, we will see that U : GMet → Set is

a right adjoint, so it has many nice properties which
we could use in this section.

We also take some time to identify some (well-known) conditions on L-spaces
that cannot be expressed via quantitative equations.214 These proofs are always in 214 Again, we cannot make an exhaustive list.

https://en.wikipedia.org/wiki/Hasse_diagram
https://en.wikipedia.org/wiki/Hasse_diagram
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the same vein, we know GMet has some property, we show the class of L-spaces
with a condition does not have that property, hence that condition is not expressible
as a class of quantitative equations.

In order to keep all the information about GMet in the same place, we will
quickly summarize at the end the things we know about these categories (including
things that will come from results in Chapter 3).

Products

The category GMet has all products. We prove this in three steps. First, we find
the terminal object, second we show LSpa has all products, and third we show the
products of L-spaces which all satisfy some quantitative equation also satisfies that
quantitative equation.

Proposition 103. The category GMet has a terminal object.

Proof. The terminal object 1 in LSpa is relatively easy to find,215 it is a singleton 215 Again, many abstract results could help guide
our search, but it is enough to have a bit of intuition
about L-spaces.

{∗} with the L-relation d1 sending (∗, ∗) to ⊥. Indeed, for any L-space X, we have a
function ! : X → ∗ that sends any x to ∗, and because d1(∗, ∗) = ⊥ ≤ dX(x, x′) for
any x, x′ ∈ X, ! is nonexpansive. We obtain a morphism ! : X → 1, and since any
other morphism X→ 1 must have the same underlying function216, ! is the unique 216 Because {∗} is terminal in Set.

morphism of this type.
Since GMet is a full subcategory of LSpa, it is enough to show 1 is in GMet to

conclude it is the terminal object in this subcategory. We can do this by showing 1
satisfies absolutely all quantitative equations, and in particular those of Ê.217 Let 217 Which defined GMet at the start of this section.

X be any L-space, x, y ∈ X and ε ∈ L. As we have seen above, there is only one
assignment ι̂ : X→ 1, and it sends x and y to ∗. This means

ι̂(x) = ∗ = ι̂(y) and d1(ι̂(x), ι̂(y)) = d1(∗, ∗) = ⊥ ≤ ε.

Therefore, 1 satisfies both X ⊢ x = y and X ⊢ x =ε y. We conclude 1 ∈ GMet.

Proposition 104. The category LSpa has all products.

Proof. Let {Ai = (Ai, di) | i ∈ I} be a family of L-spaces indexed by I. We define the
L-space A = (A, d) with carrier A = ∏i∈I Ai (the Cartesian product of the carriers)
and L-relation d : A× A→ L defined by the following supremum:218 218 For a ∈ A, let ai be the ith coordinate of a.

∀a, b ∈ A, d(a, b) = sup
i∈I

di(ai, bi). (91)

For each i ∈ I, we have the evident projection πi : A→ Ai sending a ∈ A to ai ∈ Ai,
and it is nonexpansive because, by definition, for any a, b ∈ A,

di(ai, bi) ≤ sup
i∈I

di(ai, bi) = d(a, b).

We will show that A with these projections is the product ∏i∈I Ai.
Let X be some L-space and fi : X→ Ai be a family of nonexpansive maps. By the

universal property of the product in Set, there is a unique function ⟨ fi⟩ : X → A
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satisfying πi ◦ ⟨ fi⟩ = fi for all i ∈ I. It remains to show ⟨ fi⟩ is nonexpansive from X
to A. For any x, x′ ∈ X, we have219 219 The equation holds because the ith coordinate of

⟨ fi⟩(x) is fi(x) by definition of ⟨ fi⟩, and the inequal-
ity holds because for all i ∈ I, di( fi(x), fi(x′)) ≤
dX(x, x′) by nonexpansiveness of fi .

d(⟨ fi⟩(x), ⟨ fi⟩(x′)) = sup
i∈I

di( fi(x), fi(x′)) ≤ dX(x, x′).

Note that a particular case of this construction for I being empty is the terminal
object 1 from Proposition 103. Indeed, the empty Cartesian product is the singleton,
and the empty supremum is the bottom element ⊥.

In order to show that satisfaction of a quantitative equation is preserved by the
product of L-spaces, we first prove a simple lemma.220 220 It may remind you of Lemma 16 which states

the same result for homomorphism and non-
quantitative equations.Lemma 105. Let ϕ be a quantitative equation with context X. If f : A → B is a nonex-

pansive map and A ⊨ι̂ ϕ for a nonexpansive assignment ι̂ : X→ A, then B ⊨ f ◦ι̂ ϕ.

Proof. There are two very similar cases. If ϕ is of the form X ⊢ x = y, we have221 221 The equivalences hold by definition of ⊨.

A ⊨ι̂ ϕ⇐⇒ ι̂(x) = ι̂(y) =⇒ f ι̂(x) = f ι̂(y)⇐⇒ B ⊨ f ◦ι̂ ϕ.

If ϕ is of the form X ⊢ x =ε y, we have222 222 The equivalences hold by definition of ⊨, and the
implication holds by nonexpansiveness of f .

A ⊨ι̂ ϕ⇐⇒ dA(ι̂(x), ι̂(y)) ≤ ε =⇒ dB( f ι̂(x), f ι̂(y)) ≤ ε⇐⇒ B ⊨ f ◦ι̂ ϕ.

Proposition 106. If all L-spaces Ai satisfy a quantitative equation ϕ, then ∏i∈I Ai ⊨ ϕ.

Proof. Let A = ∏i∈I Ai and X be the context of ϕ. It is enough to show that for any
assignment ι̂ : X→ A, the following equivalence holds:223 223 When I is empty, the L.H.S. of (92) is vacuously

true, and the R.H.S. is true since A is the terminal
L-space which we showed satisfies all quantitative
equations in Proposition 103.

(
∀i ∈ I, Ai ⊨

πi◦ι̂ ϕ
)
⇐⇒ A ⊨ι̂ ϕ. (92)

The proposition follows because if Ai ⊨ ϕ for all i ∈ I, then the L.H.S. holds for
any ι̂, hence the R.H.S. does too, and we conclude A ⊨ ϕ. Let us prove (92).

(⇒) Consider the case ϕ = X ⊢ x = y. The satisfaction Ai ⊨
πi◦ι̂ ϕ means πi ι̂(x) =

πi ι̂(y). If it is true for all i ∈ I, then we must have ι̂(x) = ι̂(y) by universality of
the product, thus we get A ⊨ι̂ ϕ. In case ϕ = X ⊢ x =ε y, the satisfaction Ai ⊨

πi◦ι̂ ϕ

means dAi (πi ι̂(x), πi ι̂(y)) ≤ ε. If it is true for all i ∈ I, we get A ⊨ ϕ because

dA(ι̂(x), ι̂(y)) = sup
i∈I

dAi (πi ι̂(x), πi ι̂(y)) ≤ ε.

(⇐) Apply Lemma 105 for all πi.

Corollary 107. The category GMet has all products, and they are computed like in
LSpa.224 224 We showed that products in LSpa of objects in

GMet also belong to GMet, it follows that this is
also their products in GMet because the latter is a
full subcategory of LSpa.

Unfortunately, this means that the notion of metric space originally defined in
[Fré06], and incidentally what the majority of mathematicians calls a metric space,
is not an instance of generalized metric space as we defined them. Since they
only allow finite distances, some infinite products do not exist.225 In general, if 225 For instance let An be the metric space with two

points {a, b} at distance n > 0 ∈N from each other.
Then A = ∏n>0∈N An exists in [0, ∞]Spa as we have
just proven, but

dA(a∗, b∗) = sup
n>0∈N

dAn (a, b) = sup
n>0∈N

n = ∞,

which means A is not a metric space in the sense of
Definition 1.

one wants to bound the distance above by some B ∈ L, this can be done with the
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equation x, y ⊢ x =B y, but the value B is still allowed as a distance. For instance
[0, 1]Spa is the full subcategory of [0, ∞]Spa defined by the equation x, y ⊢ x =1 y.

Arguably, this is only a superficially negative result since it is already common
in parts of the literature [BvBR98, HST14] to allow infinite distances because the re-
sulting category of metric spaces has better properties (like having infinite products
and coproducts). However, there are some other conditions that one would like to
impose on [0, ∞]-spaces which are not even preserved under finite products. We
give two examples arising under the terminology partial metric.

Definition 108. A [0, ∞]-space (A, d) is called a partial metric space if it satisfies
the following conditions [Mat94, Definition 3.1]:226 226 There is some ambiguity in what + and − means

when dealing with ∞ (the original paper supposes
distances are finite), but it is irrelevant for us.

∀a, b ∈ A, a = b⇐⇒ d(a, a) = d(a, b) = d(b, b) (93)

∀a, b ∈ A, d(a, a) ≤ d(a, b) (94)

∀a, b ∈ A, d(a, b) = d(b, a) (95)

∀a, b, c ∈ A, d(a, c) ≤ d(a, b) + d(b, c)− d(b, b) (96)

These conditions look similar to what we were able to translate into equations
before, but the first and last are problematic.227 227 We can translate (94) into x =ε y ⊢ x =ε x, and

(95) is just symmetry which we can translate into
y =ε x ⊢ x =ε y.

For (93), note that the forward implication is trivial, but for the converse, we
would need to compare three distances at once inside the context, which seems
impossible because the context only individually bounds distances by above. For
(96), the problem comes from the minus operation on distances which will not
interact well with upper bounds. Indeed, if we naively tried something like

x =ε1 y, y =ε2 z, y =ε3 y ⊢ x =ε1+ε2−ε3 z,

we could always take ε3 huge (even ∞) and make the distance between x and z as
close to 0 as we would like (provided we can take ε1 and ε2 finite).

These are just informal arguments, but thanks to Corollary 107, we can prove for-
mally that these conditions are not expressible as (classes of) quantitative equations.
Let A and B be the [0, ∞]-spaces pictured below (the distances are symmetric).228 228 The numbers on the lines indicate the distance

between the ends of the line, e.g. dA(a1, a1) = 0,
dA(a1, a3) = 1, and dB(b2, b3) = 10.

A =

a1

a2

a3

10

0

1

10

10

0

B = b1 b2 b3
10

0

15

10

5 0

We can verify (by exhaustive checks) that A and B are partial metric spaces. If
we take their product inside [0, ∞]Spa, we find the following [0, ∞]-space (some
distances are omitted) which does not satisfy (93) nor (96).229 229 For (93), the three points in the middle row

{a2b1, a2b2, a2b3} are all at distance 10 from each
other and from themselves while not being equal.
For (96), we have (on the diagonal)

dA(a1b1, a3b3) = 15, and

dA(a1b1, a2b2) + dA(a2b2, a3b3)− dA(a2b2, a2b2) = 10,

but 15 > 10.
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A× B =

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

10

0

10

15

10

10

5

10

0

10

10

10

10
10

10

10

10
10

10

0

10

5

10

0

We infer that there is no class Ê of quantitative equations such that GMet([0, ∞], Ê)
is the full subcategory of [0, ∞]Spa containing all the partial metric spaces.230 230 It is still possible that the category of partial met-

rics and nonexpansive maps is identified with some
GMet(L, Ê) for some cleverly picked L and Ê. That
would mean (infinite) products of partial metrics ex-
ist but they are not computed with supremums.

This result is a bit more damaging to our concept of generalized metric space
(especially since partial metric spaces were motivated by some considerations in
programming semantics [Mat94]), but we had to expect this would happen with
how much time mathematicians had to use and abuse the name metric.

Here is another negative example.

Example 109 (ACC). A binary relation R ⊆ X × X is said to have the ascending
chain condition (ACC) if there is no infinite chain x0 R x1 R x2 R · · · . For example,
(N, |op) has the ACC, where n |op m if and only if n is divisible by m and n ̸= m.231 231 More famously, a ring is called Noetherian

[MB99, §XI.1, p. 379] if its set of ideals ordered with
strict inclusion has the ACC.

Whenever R is reflexive (i.e. its corresponding B-relation satisfies (71)), R does not
have the ACC because x R x R x · · · is an infinite chain.

Similarly to Footnote 225, we can show that the infinite product of B-spaces does
not preserve the ACC. Let A = {0, 1} with dA(0, 1) = ⊥ and dA(0, 0) = dA(1, 1) =
dA(1, 0) = ⊤, i.e. the B-space corresponding to {0 < 1}. It has the ACC because
there is only one chain 0 < 1, while the infinite product ∏n∈N A does not:

(0, 0, 0, 0, . . . ) < (1, 0, 0, 0, . . . ) < (1, 1, 0, 0, . . . ) < (1, 1, 1, 0, . . . ) < ...

Coproducts

The case of coproducts in GMet is more delicate. While LSpa has coproducts, they
do not always satisfy the equations satisfied by each of their components.

Proposition 110. The category GMet has an initial object.

Proof. The initial object ∅ in LSpa is the empty set with the only possible L-relation
∅× ∅ → L (the empty function). The empty function f : ∅ → X is always nonex-
pansive from ∅ to X because (61) is vacuously satisfied.

Just as for the terminal object, since GMet is a full subcategory of LSpa, it suffices
to show ∅ is in GMet to conclude it is initial in this subcategory. We do this by
showing ∅ satisfies absolutely all quantitative equations, and in particular those of
Ê. This is easily done because when X is not empty,232 there are no assignments 232 The context of a quantitative equation cannot be

empty because the variables, say x and y, must be-
long to the context.

X→ ∅, so ∅ vacuously satisfies X ⊢ x = y and X ⊢ x =ε y.

Proposition 111. The category LSpa has all coproducts.
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Proof. We just showed the empty coproduct (i.e. the initial object) exists. Let {Ai =

(Ai, di) | i ∈ I} be a family of L-spaces indexed by a non-empty set I. We define the
L-space A = (A, d) with carrier A = ⨿i∈I Ai (the disjoint union of the carriers) and
L-relation d : A× A→ L defined by:233 233 In words, A is the L-space with a copy of each Ai

where the L-relation sends two points in different
copies to ⊤ (intuitively, the copies are completely
unrelated inside A).∀a, b ∈ A, d(a, b) =

di(a, b) ∃i ∈ I, a, b ∈ Ai

⊤ otherwise
.

For each i ∈ I, we have the evident coprojection κi : Ai → A sending a ∈ Ai

to its copy in A, and it is nonexpansive because, by definition, for any a, b ∈ Ai,
d(a, b) = di(a, b).234 We show A with these coprojections is the coproduct ⨿i∈I Ai. 234 Hence κi is even an isometric embedding.

Let X be some L-space and fi : Ai → X be a family of nonexpansive maps. By the
universal property of the coproduct in Set, there is a unique function [ fi] : A → X
satisfying [ fi] ◦ κi = fi for all i ∈ I. It remains to show [ fi] is nonexpansive from A
to X. For any a, b ∈ A, suppose a belongs to Ai and b to Aj for some i, j ∈ I, then
we have235 235 The first equation holds by definition of [ fi ] (it ap-

plies fi to elements in the copy of Ai). The inequality
holds by nonexpansiveness of fi which is equal to f j
when i = j. The second equation is the definition of
d.

dX([ fi](a), [ fi](b)) = dX( fi(a), f j(b)) ≤

di(a, b) i = j

⊤ otherwise
= d(a, b).

Because the distance between elements in different copies does not depend on the
original spaces, it is easy to construct a quantitative equation that is not preserved
by coproducts. For instance, even if all Ai satisfy x, y ⊢ x =ε y for some fixed
ε ̸= ⊤ ∈ L,236 the coproduct ⨿i∈I Ai in LSpa does not satisfy it because some 236 i.e. there is an upper bound smaller than ⊤ on all

distances in all Ai .distances are ⊤ > ε.
Still, GMet has coproducts as we will show in Corollary 177, but they are not

that easy to define.237 237 Although in many cases like Met and Poset, they
are computed like in LSpa.

Isometries

Since the forgetful functor U : LSpa → Set preserves isomorphisms, we know
that the underlying function of an isomorphism in LSpa is a bijection between the
carriers. What is more, we show in Proposition 113 it must preserve distances on
the nose, i.e. it is an isometry.

Definition 112 (Isometry). A nonexpansive map f : X → Y is called an isometry
if238 238 The inequality in (61) is replaced by an equation.

∀x, x′ ∈ X, dY( f (x), f (x′)) = dX(x, x′). (97)

If furthermore f is injective, we call it an isometric embedding.239 If f : X → Y is
239 This name is relatively rare because when deal-
ing with metric spaces, the separation axiom implies
that an isometry is automatically injective. This is
also true for partial orders, where the name order
embedding is common [DP02, Definition 1.34.(ii)].

an isometric embedding, we can identify X with the subspace of Y containing all
the elements in the image of f . Conversely, the inclusion of a subspace of Y in Y is
always an isometric embedding.

Proposition 113. In GMet, isomorphisms are precisely the bijective isometries.
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Proof. We show a morphism f : X → Y has an inverse f−1 : Y → X if and only if it
is a bijective isometry.

(⇒) Since the underlying functions of f and f−1 are inverses, they must be
bijections. Moreover, using (61) twice, we find that for any x, x′ ∈ X,240 240 This is a general argument showing that any non-

expansive function with a right inverse is an isome-
try, it is also an isometric embedding because a right
inverse in Set implies injectivity.

dX(x, x′) = dX( f−1 f (x), f−1 f (x′)) ≤ dY( f (x), f (x′)) ≤ dX(x, x′),

thus dX(x, x′) = dY( f (x), f (x′)), so f is an isometry.
(⇐) Since f is bijective, it has an inverse f−1 : Y → X in Set, but we have to

show f−1 is nonexpansive from Y to X. For any y, y′ ∈ Y, by surjectivity of f , there
are x, x′ ∈ X such that y = f (x) and y′ = f (x′), then we have

dX( f−1(y), f−1(y′)) = dX( f−1 f (x), f−1 f (x′)) = dX(x, x′)
(97)
= dY( f (x), f (x′)) = dY(y, y′).

Hence f−1 is nonexpansive, it is even an isometry.

In particular, this means, as is expected, that isomorphisms preserve the satis-
faction of quantitative equations. We can show a stronger statement: any isometric
embedding reflects the satisfaction of quantitative equations.241 241 This is stronger because we have just shown the

inverse of an isomorphisms is an isometric embed-
ding.Proposition 114. Let f : Y → Z be an isometric embedding between L-spaces and ϕ a

quantitative equation, then
Z ⊨ ϕ =⇒ Y ⊨ ϕ. (98)

Proof. Let X be the context of ϕ. Any nonexpansive assignment ι̂ : X → Y yields
an assignment f ◦ ι̂ : X → Z. By hypothesis, we know that Z satisfies ϕ for this
particular assignment, namely,

Z ⊨ f ◦ι̂ ϕ. (99)

We can use this and the fact that f is an isometric embedding to show Y ⊨ι̂ ϕ. There
are two very similar cases.

If ϕ = X ⊢ x = y, then we have ι̂(x) = ι̂(y) because we know f ι̂(x) = f ι̂(x) by
(99) and f is injective.

If ϕ = X ⊢ x =ε y, then we have dY(ι̂(x), ι̂(y)) = dZ( f ι̂(x), f ι̂(y)) ≤ ε, where the
equation holds because f is an isometry and the inequality holds by (99).

Corollary 115. Let f : Y → Z be an isometric embedding between L-spaces. If Z belongs
to GMet, then so does Y. In particular, all the subspaces of a generalized metric space are
also generalized metric spaces.242 242 Both parts are immediate. The first follows from

applying (98) to all ϕ in Ê, the class of quantitative
equations defining GMet. The second follows from
the inclusion of a subspace being an isometric em-
bedding.

Examples 116. Corollary 115 can be useful to identify some properties of L-spaces
that cannot be modelled with quantitative equations. Here are a few of examples.

1. A binary relation R ⊆ X × X is called total if for every x ∈ X, there exists y ∈ X
such that (x, y) ∈ R. Let TotRel be the full subcategory of BSpa containing only
total relations. Is TotRel equal to some GMet(B, Ê) for some Ê? The existential
quantification in the definition of total seems hard to simulate with a quantitative
equation, but this is not a guarantee that maybe several equations cannot interact
in such a counter-intuitive way.
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In order to prove that no class Ê defines total relations (i.e. X ⊨ Ê if and only if
the relation corresponding to dX is total), we can exhibit an example of a B-space
that is total with a subspace that is not total. It follows that TotRel is not closed
under taking subspaces, so it is not a category of generalized metric spaces by
Corollary 115.243 243 Actually, we have only proven that TotRel cannot

be defined as a subcategory of BSpa with quantita-
tive equations. There may still be some convoluted
way that TotRel ∼= GMet(L, Ê).

Let N be the B-space with carrier N and B-relation dN(n, m) = ⊥ ⇔ m = n + 1
(the corresponding relation is the graph of the successor function). This space
satisfies totality, but the subspace obtained by removing 1 is not total because
dN(0, n) = ⊥ only when n = 1.

This same example works to show that surjectivity244 cannot be defined via 244 This condition is symmetric to totality: R ⊆ X ×
X is surjective if for every y ∈ X, there exists x ∈ X
such that (x, y) ∈ R.

quantitative equations.

2. A very famous condition to impose on metric spaces is completeness (we do not
need to define it here). Just as famous is the fact that R with the Euclidean metric
from Example 85 is complete but the subspace Q is not. Thus, completeness
cannot be defined via quantitative equations.245 245 Still with the caveat that the full subcategory of

complete metric spaces might still be isomorphic to
some GMet(L, Ê).With this characterization of isomorphisms, we can also show the forgetful func-

tor U : GMet → Set is an isofibration which concretely means that if you have a
bijection f : X → Y and a generalized metric dY on Y, then you can construct a
generalized metric dX on X such that f : X → Y is an isomorphism. Indeed, if you
let dX(x, x′) = dY( f (x), f (x′)), then f is automatically a bijective isometry.246 246 Clearly, it is the unique distance on X that works,

and we know that X belongs to GMet thanks to
Corollary 115.Definition 117 (Isofibration). A functor P : C→ D is called an isofibration247 if for
247 This term seems to have been coined by Lack and
Paoli in [Lac07, §3.1] or [LP08, §6].

any isomorphism f : X → PY in D, there is an isomorphism g : X′ → Y such that
Pg = f , in particular PX′ = X.

Proposition 118. The forgetful functor U : GMet→ Set is an isofibration.

We wonder now how to complete the conceptual diagram below.

isomorphism in GMet←→ bijective isometries

??? in GMet←→ isometric embeddings

Since isometric embeddings correspond to subspaces, one might think that they
are the monomorphisms in GMet. Unfortunately, they are way more restrained.248 248 They are the split monomorphisms, essentially by

Footnote 240.Any nonexpansive map that is injective is a monomorphism. To prove this, we rely
on the existence of a space F1 that informally can pick elements.

Proposition 119. There is a generalized metric space F1 on the set {∗} such that for any
other space X, any function f : {∗} → X is a nonexpansive map F1→ X.249 249 In category theory speak, F1 is a representing ob-

ject of the forgetful functor U : GMet→ Set.
Proof. In LSpa, F1 is easy to find, its L-relation is defined by dF1(∗, ∗) = ⊤. Indeed,
any function f : {∗} → X is nonexpansive because ⊤ is the maximum value dX can
assign, so

dX( f (∗), f (∗)) ≤ ⊤ = dF1(∗, ∗).

Unfortunately, this L-space does not satisfy some quantitative equations (e.g. reflex-
ivity x ⊢ x =⊥ x), so we cannot guarantee it belongs to GMet.
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Recall that 1 is a generalized metric space on the same set {∗}, but with d1(∗, ∗) =
⊥. However, in many cases, 1 is not the right candidate either because if every func-

tion f : {∗} → X is nonexpansive from 1 to X, it means dX(x, x) = ⊥ for all x ∈ X,
which is not always the case.250 250 It is equivalent to satisfying reflexivity.

We have two L-spaces at the extremes of a range of L-spaces {({∗}, dε)}ε∈L, where
the L-relation dε sends (∗, ∗) to ε. At one extreme, we are guaranteed to be in GMet,
but we are too restricted, and at the other extreme we might not belong to GMet.
Getting inspiration from the intermediate value theorem, we can attempt to find a
middle ground, namely, a value ε ∈ L such that setting dF1(∗, ∗) = ε yields a space
that lives in GMet but is not too restricted.

One natural thing to do is to take the biggest value (and hence the least restricted
space that is in GMet). Formally, let

dF1(∗, ∗) = sup
{

ε ∈ L | ({∗}, dε) ⊨ Ê
}

.

It remains to check that any function f : {∗} → X is nonexpansive from F1 to
X ∈ GMet. Consider the image of f seen as a subspace of X. By Corollary 115,
it belongs to GMet and hence satisfies Ê. Moreover, it is clearly isomorphic to the
L-space ({∗}, dε) with ε = dX( f (∗), f (∗)), which means that L-space satisfies Ê as
well (by Corollary 115 again). We conclude that dX( f (∗), f (∗)) ≤ dF1(∗, ∗).

As a bonus, one could check that for any ε ∈ L that is smaller than dF1(∗, ∗),
({∗}, dε) also belongs to GMet.251 251 Use Lemma 105.

Proposition 120. In GMet, monomorphisms are precisely the injective nonexpansive
maps.

Proof. We show a morphism f : X→ Y is monic if and only if it is injective.
(⇒) Let x, x′ ∈ X be such that f (x) = f (x′), and identify these elements with

functions x, x′ : {∗} → X sending ∗ to x and x′ respectively. By Proposition 119,
we get two nonexpansive maps x, x′ : F1 → X. Post-composing by f , we find that
f ◦ x = f ◦ x′ because they both send ∗ to f (x) = f (x′). By monicity of f , we find
that x = x′ (as morphisms and hence as elements of X). We conclude f is injective.

(⇐) Suppose that f ◦ g = f ◦ h for some nonexpansive maps g, h : Z → X.
Applying the forgetful functor U : GMet → Set, we find that f ◦ g = f ◦ h also as
functions. Since U f is monic (i.e. injective), Ug and Uh must be equal, and since U
is faithful, we obtain g = h.

It remains to give a categorical characterization of isometric embeddings. This
will rely on a well-known252 abstract notion that we define here for completeness. 252 While it is well-known, especially to those famil-

iar with fibered category theory, it does not usually
fit in a basic category theory course.Definition 121 (Cartesian morphism). Let F : C → D be a functor, and f : A → B

be a morphism in D. We say f is a cartesian morphism (with respect to F) if for
every morphism g : X → B and factorization Fg = F f ◦ u, there exists a unique
morphism û : X → A with Fû = u satisfying x = f ◦ û. This can be summarized

https://en.wikipedia.org/wiki/Intermediate_value_theorem
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(without the quantifiers) in the diagram below.

X FX

A B FA FB

u

F f

Fg
û

f

g F

Example 122 (in GMet). Let us unroll this in the important case for us, when
F is the forgetful functor U : GMet → Set. A nonexpansive map f : A → B is a
cartesian morphism if for any nonexpansive map g : X→ B, all functions u : X → A
satisfying g = f ◦ u are nonexpansive maps u : X→ A.253 253 We do not bother to write û as it is automati-

cally unique with underlying function u because U
is faithful.

We can turn this around into an equivalent definition. The morphism f : A→ B
is cartesian if for all functions u : X → A, f ◦ u being nonexpansive from X to
B implies u is nonexpansive from X to A.254 In [AHS06, Definition 8.6], f is also 254 If f ◦ u is nonexpansive from X to B, then it is

equal to g for some g : X→ B which yields u : X→
A being nonexpansive.

called an initial morphism.

Proposition 123. A morphism f : A→ B in GMet is an isometric embedding if and only
if it is monic and cartesian.

Proof. By Proposition 120, being an isometric embedding is equivalent to being a
monomorphism (i.e. being injective) and being an isometry. Therefore, it is enough
to show that when f is injective, isometry⇐⇒ cartesian.

(⇒) Suppose f is an isometry, and let u : X → A be a function such that f ◦ u
is nonexpansive from X → B, we need to show u is nonexpansive from X → A.255 255 We use the second definition of cartesian in Ex-

ample 122.This is true because

∀x, x′ ∈ X, dA(u(x), u(x′)) = dB( f u(x), f u(x′)) ≤ dX(x, x′),

where the equation follows from f being an isometry, and the inequality from
nonexpansiveness of f ◦ u.

(⇐) Suppose f is cartesian. For any a, a′ ∈ A, we know that dB( f (a), f (a′)) ≤
dA(a, a′), but we still need to show the converse inequality. Let X be the subspace
of B containing only the image of a and a′ (its carrier is { f (a), f (a′)}), and u : X →
A be the function sending f (a) to a and f (a′) to a′.256 Notice that f ◦ u is the 256 We use the injectivity of f here.

inclusion of X in B which is nonexpansive. Because f is cartesian, u must then be
nonexpansive from X to A which implies

dA(a, a′) = dA(u( f (a)), u( f (a′))) ≤ dX( f (a), f (a′)) = dB( f (a), f (a′)).

We conclude that f is an isometry.

Corollary 124. If the composition A
f−→ B

g−→ C is an isometric embedding, then f is an
isometric embedding.257 257 With the characterization of Proposition 123, this

abstractly follows from [AHS06, Proposition 8.9].
We give the concrete proof anyways.Proof. It is a standard result that if g ◦ f is monic then so is f . Even more standard

for injectivity. Now, if g ◦ f is an isometry, we have for any a, a′ ∈ X,258 258 The equation holds by hypothesis that g ◦ f is an
isometry and the two inequalities hold by nonex-
pansiveness of g and f .dA(a, a′) = dC(g f (a), g f (a′)) ≤ dB( f (a), f (a′)) ≤ dA(a, a′),

and we conclude that dA(a, a′) = dB( f (a), f (a′)), hence f is an isometry.



66 ralph sarkis

The question of concretely characterizing epimorphisms is harder to settle. We
can do it for LSpa, but not for an arbitrary GMet.

Proposition 125. In LSpa, a morphism f : X→ A is epic if and only if it is surjective.

Proof. (⇒) Given any a ∈ A, we define the L-space Aa to be A with an additional
copy of a with all the same distances. Namely, the carrier is A + {∗a}, for any
a′ ∈ A, dAa(∗a, a′) = dA(a, a′) and dAa(a′, ∗a) = dA(a′, a), and all the other distances
are as in A.259 259 This construction is already impossible to do in

an arbitrary GMet. For instance, if A satisfies x =0
y ⊢ x = y, then Aa does not because dAa (a, ∗a) = 0.

If f : X → A is not surjective, then pick a ∈ A that is not in the image of f , and
define two functions ga, g∗ : A → A + {∗a} that act as identity on all A except a
where ga(a) = a and g∗(a) = ∗a. By construction, both ga and g∗ are nonexpansive
from A to Aa and ga ◦ f = g∗ ◦ f . Since ga ̸= g∗, f cannot be epic, and we have
proven the contrapositive of the forward implication.

(⇐) Suppose that g, g′ : A → B are morphisms in LSpa such that g ◦ f = g′ ◦ f .
Apply the forgetful functor to get Ug ◦U f = Ug′ ◦U f , and since U is epic in Set,
we know Ug = Ug′. Since U is faithful, we conclude that g = g′.260 260 This direction works in an arbitrary GMet, that

is, surjections are epic in any GMet.

The standard example to show that Proposition 125 does not generalize to an
arbitrary GMet is the inclusion of Q into R with the Euclidean metric inside Met.
It is not surjective, but it is epic because any nonexpansive function from R is
determined by its image on the rationals.261 261 For any r ∈ R, you can always find qn ∈ Q such

that d(qn, r) ≤ 1
n , hence dA( f (qn), f (r)) ≤ 1

n for any
nonexpansive f : (R, d) → A. We infer that f (r) is
determined by the value of f (qn) for all n.

Proposition 126. Let f : A → B be a split epimorphism between L-spaces and ϕ a
quantitative equation, then

A ⊨ ϕ =⇒ B ⊨ ϕ. (100)

Proof. Let g : B→ A be the right inverse of f (i.e. f ◦ g = idB) and X be the context
of ϕ.262 Any nonexpansive assignment ι̂ : X→ B yields an assignment g ◦ ι̂ : X→ A. 262 Note that we already argued in Footnote 240 that

the right inverse implies g is an isometric embed-
ding. Then we could conclude by Corollary 115. The
proof given here is essentially the same.

By hypothesis, we know that A satisfies ϕ for this particular assignment, namely,

A ⊨g◦ι̂ ϕ. (101)

Now, we can apply Lemma 105 with f : A → B to obtain B ⊨ f ◦g◦ι̂ ϕ, and since
f ◦ g = idB, we conclude B ⊨ι̂ ϕ.

Remark 127. It is not true in general that the image f (A) of a nonexpansive func-
tion f : A → B (seen as a subspace of B) satisfies the same equations as A. For
instance,263 let A contain two points {a, b} all at distance 1 ∈ [0, ∞] from each 263 Here is a graphical depiction:

a a

b b

1

1

0.5

1

1 1

1

other (even from themselves). The [0, ∞]-relation is symmetric so it satisfies for all
ε ∈ [0, 1]. y =ε x ⊢ x =ε y. If we define B with the same points and distances except
dB(a, b) = 0.5, then the identity function is nonexpansive from A to B, but its image
is B in which the distance is not symmetric.

Proposition 126 is basically a dual of Proposition 114 because isometric embed-
dings are split monomorphisms, so we do not get additional examples of properties
that cannot be expressed with quantitative equations.264 264 In theory, duality may help in some settings, but

I find isometric embeddings are easier to grasp.
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Discrete Spaces

The forgetful functor U : GMet → Set has a left adjoint. Its concrete description is
too involved, so we will prove this later in Corollary 175, but for the special case of
LSpa, we can prove it now.

Proposition 128. The forgetful functor U : LSpa→ Set has a left adjoint.

Proof. For any set X, we define the discrete space X⊤ to be the set X equipped with
the L-relation d⊤ : X× X → L sending any pair to ⊤.

For any L-space A and function f : X → A, the function f is nonexpansive
from X⊤ to A, thus X⊤ is the free object on X (with respect to U). By categorical
arguments, we obtain the left adjoint sending X to X⊤.
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For a comprehensive introduction to the concepts and themes explored in this
chapter, please refer to §0.3. Here, we only give a brief overview.

It is time to combine what we learned about universal algebra in Chapter 1

and about generalized metric spaces in Chapter 2 to develop universal quantitative
algebra. This is the culminating point of several years of work with Matteo Mio
and Valeria Vignudelli, during which we analyzed many choices and uncovered
many subtleties in the existing accounts. The presentation we settled on highlights
the fact that we are simply combining algebraic reasoning with the quantitative
equations of Chapter 2. We give some examples (reusing those of the previous
chapters) throughout this chapter.

Outline: In §3.1, we define quantitative algebras and quantitative equations over
a signature, and we explain how to construct the free quantitative algebras. In §3.2,
we give the rules for quantitative equational logic to derive quantitative equations
from other quantitative equations, and we show it is sound and complete. In §3.3,
we define presentations for monads on generalized metric spaces, and we give
some examples.265 In §3.4, we show that any monad lifting of a Set monad with an 265 Notice the parallel with the outline of Chapter 1.

algebraic presentation to GMet can also be presented.
In the sequel and unless otherwise stated, Σ is an arbitrary signature and GMet

is an arbitrary category of generalized metric spaces defined by a class ÊGMet of
quantitative equations.266 266 Those defined in Definition 93.

3.1 Quantitative Algebras

Definition 129 (Quantitative algebra). A quantitative Σ-algebra (or just quantita-
tive algebra)267 is a set A equipped with a Σ-algebra structure (A, J−KA) ∈ Alg(Σ) 267 We sometimes write simply algebra, with the

knowldege link going to this definition.and a generalized metric space structure (A, dA) ∈ GMet. We will switch be-
tween using the single symbol Â or the triple (A, J−KA, dA) when referring to a
quantitative algebra, we will also write A for the underlying Σ-algebra, A for the
underlying space, and A for the underlying set.

A homomorphism from Â to B̂ is a function h : A → B between the underly-
ing sets of Â and B̂ that is both a homomorphism h : A → B and a nonexpansive
function h : A→ B. We sometimes emphasize and call h a nonexpansive homomor-

https://www.youtube.com/watch?v=uv9HisWwa_w


70 ralph sarkis

phism.268 The identity maps idA : A → A and the composition of two homomor- 268 We will not distinguish between a nonexpansive
homomorphism h : Â → B̂ and its underlying ho-
momorphism or nonexpansive function or function.
We may write Uh with U being the appropriate for-
getful functor when necessary.

phisms are always homomorphisms, therefore we have a category whose objects
are quantitative algebras and morphisms are nonexpansive homomorphisms. We
denote it by QAlg(Σ).

This category is concrete over Set, Alg(Σ), GMet with forgetful functors:

• U : QAlg(Σ) → Set sends a quantitative algebra Â to its underlying set A and
a nonexpansive homomorphism to the underlying function between carriers.

• U : QAlg(Σ)→ Alg(Σ) sends Â to its underlying algebra A and a nonexpansive
homomorphism to the underlying homomorphism.

• U : QAlg(Σ) → GMet sends Â to its underlying space A and a nonexpansive
homomorphism to the underlying nonexpansive function.

One can quickly check that the following diagram commutes, and that it yields an
alternative definition of QAlg(Σ) as a pullback of categories.269 We have not found 269 We can also mention there is another forgetful

functor U : QAlg(Σ) → LSpa obtained by com-
posing U : QAlg(Σ) → GMet with the inclusion
GMet→ LSpa.

a technical use for this fact yet, but it starts making the case for universal quantita-
tive algebra as a straightforward combination of universal algebra and generalized
metric spaces.

QAlg(Σ) GMet

Alg(Σ) Set

U

U

U

U

⌟

U

Example 130. Since a quantitative algebra is just an algebra and a generalized metric
space on the same set, we can find simple examples by combining pieces we have
already seen.

1. In Example 5, we saw that an algebra for the signature Σ = {p : 0} is just a pair
(X, x) comprising a set X with a distinguished point x ∈ X. In Example 85,
we discussed the N∞-space (H, d) where H is the set of humans and d is the
collaboration distance. We can therefore consider the quantitative Σ-algebras
(H, Paul Erdös, d), which is the set of all humans with Paulo Erdös as a distin-
guished point and the collaboration distance.270 270 Note that GMet is instantiated as N∞Spa, i.e.

L = N∞ and ÊGMet = ∅.
2. In Example 5, we saw the {f : 1}-algebra Z where f is interpreted as adding 1.

On top of that, we consider the B-relation corresponding to the partial order ≤
on Z: d≤ : Z×Z → B that sends (n, m) to ⊥ if and only if n ≤ m. We get a
quantitative algebra (Z,−+ 1, d≤).271 271 This time, GMet is instantiated as Poset with

L = B and ÊGMet = ÊPoset as defined after Defi-
nition 101.3. In Example 85, we saw that R equipped with the Euclidean distance d is a metric

space, i.e. an object of GMet = Met. The addition of real numbers is the most
natural interpretation of Σ = {+ : 2}, thus we get a quantitative algebra (R,+, d).

Remark 131. Already here, we covered three examples that are not possible with
the original (and predominant in the literature) definition of quantitative algebras
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[MPP16, Definition 3.1]. The first two are not possible because the base category is
not Met. The third is not possible even if it deals with metric spaces.

Indeed, as already noted in [Adá22, Remark 3.1.(2)], the addition of real num-
bers is not a nonexpansive function (R, d)× (R, d) → (R, d), where × denotes the
categorical product because,272 recalling Corollary 107, we have 272 In [MPP16], the interpretation of an n-ary opera-

tion symbol is required to be a nonexpansive map
from the n-wise product of the carrier to the carrier.(d× d)((1, 1), (2, 2)) = sup{d(1, 2), d(1, 2)} = 1 < 2 = d(2, 4) = d(1 + 1, 2 + 2).

Here are a two more compelling examples from the original paper [MPP16].

Example 132 (Hausdorff). In Example 88, we defined the Hausdorff distance d↑ on
PneX that depends on an L-relation d : X × X → L. In Example 67, we described a
ΣS-algebra structure on PneX (interpreting ⊕ as union). Combining these, we get a
quantitative ΣS-algebra (PneX,∪, d↑) for any L-space (X, d).

If we know that (X, d) satisfies some quantitative equations in ÊGMet, we can
sometimes prove that (PneX, d↑) does too. For instance, picking L = [0, 1] or L =

[0, ∞], GMet = Met, and ÊGMet = ÊMet, one can show that if (X, d) belongs to
Met, then so does (PneX, d↑), and we still get a quantitative ΣS-algebra (PneX,∪, d↑),
now over Met.273 273 This is the quantitative algebra denoted by Π[M]

in [MPP16, Theorem 9.2].
Example 133 (Kantorovich). Given a L-relation d : X × X → [0, 1], we define the
Kantorovich distance dK on DX as follows:274 for all φ, ψ ∈ DX, 274 This lifting of a distance on X to a distance on DX

is well-known in optimal transport theory [Vil09].
You can find a well-written concise description of
dK in [BBKK18, §2.1] in the case L = [0, ∞] where
it is denoted d↓D . They also give a dual description
as we did for the Hausdorff distance in Example 88,
but the strong duality result (d↓D = d↑D) does not
hold in general.

dK(φ, ψ) = inf

 ∑
(x,x′)

τ(x, x′)d(x, x′) | τ ∈ D(X× X),Dπ1(τ) = φ,Dπ2(τ) = ψ

 .

The distributions τ above range over couplings of φ and ψ, i.e. distributions over
X × X whose marginals are φ and ψ. Thus, what dK does, in words, is computing
the average distance according to all couplings, and then taking the smallest one.

In Example 68, we gave a ΣCA-algebra structure on DX (interpreting +p as con-
vex combination). Combining the algebra and the [0, 1]-space, we get a quantitative
ΣCA-algebra (DX, J−KDX , dK). Once again, we can prove that if (X, d) is a metric
space, then so is (DX, dK), and we obtain a quantitative algebra (DX, J−KDX , dK)

over Met.275 275 This is the quantitative algebra denoted by Π[M]
in [MPP16, Theorem 10.4].

Unlike the first examples, the interpretations in (PneX,∪, d↑) and (DX, J−KDX , dK)

are nonexpansive with respect to the product distance. Concretely,

∀S, S′, T, T′ ∈ PneX, d↑(S ∪ S′, T ∪ T′) ≤ max
{

d↑(S, T), d↑(S′, T′)
}

(102)

∀φ, φ′, ψ, ψ′ ∈ DX, dK(pφ + pφ′, pψ + pψ′) ≤ max
{

dK(φ, ψ), dK(φ′, ψ′)
}

.
(103)

The initial motivation to remove this requirement and arrive at Definition 129
276

276 Which imposes no further relation between the
Σ-algebra and the L-space other than being on the
same set.

came from a variant of the Kantorovich distance called the Łukaszyk–Karmowski
(ŁK for short) distance [Łuk04, Eq. (21)] which sends φ, ψ ∈ DX to

dŁK(φ, ψ) = ∑
(x,x′)

φ(x)ψ(x′)d(x, x′). (104)
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In words, instead of looking at many different couplings to find the best one, we
only look at the independent coupling τ(x, x′) = φ(x)ψ(x′).277 277 The ŁK distance is easier to compute than the

Kantorovich distance because there is no optimiza-
tion to do. It is the reason why it was considered in
[CKPR21] for an application to reinforcement learn-
ing.

We showed in [MSV22, Lemma 5.3] that convex combination was not nonexpan-
sive with respect to the product of the ŁK distance, namely, there exists a [0, 1]-space
(X, d) and distributions φ, φ′, ψ, ψ′ ∈ DX such that

dŁK(pφ + pφ′, pψ + pψ′) > sup
{

dŁK(φ, ψ), dŁK(φ′, ψ′)
}

.

Therefore, (DX, J−KDX , dŁK) is always a quantitative algebra in the sense of Defini-
tion 129, but not always in the sense of [MPP16, Definition 3.1].278 278 In fact, even if d is a metric , dŁK is not a metric (it

does not satisfy x ⊢ x =0 x), so that is another reason
why [MPP16] does not apply.

Quantitative Equations

Now, in order to get back the expressiveness of the original framework, we need
a way to impose this property of nonexpansiveness with respect to the product
distance, and we also need a way to impose other properties like the fact that ⊕
should be interpreted as a commutative operation. We achieve both things at once
with the following definition.

Definition 134 (Quantitative Equation). A quantitative equation (over Σ and L) is
a tuple comprising an L-space X called the context,279 two terms s, t ∈ TΣX and 279 Note that even with algebras in GMet, the con-

text is in LSpa.optionally a quantity ε ∈ L. We write these as X ⊢ s = t when no ε is given or
X ⊢ s =ε t when it is given.

An quantitative algebra Â satisfies a quantitative equation280
280 Formally, we would need to write J−KU ι̂

A instead
of J−Kι̂

A because U ι̂ : X → A is the assignment we
use to interpret the terms.• X ⊢ s = t if for any nonexpansive assignment ι̂ : X→ A, JsKι̂

A = JtKι̂
A.

• X ⊢ s =ε t if for any nonexpansive assignment ι̂ : X→ A, dA(JsKι̂
A, JtKι̂

A) ≤ ε.

We use ϕ and ψ to refer to a quantitative equation, and we sometimes call them
simply equations with the knowldege link going here. We write Â ⊨ ϕ when Â

satisfies ϕ,281 and we also write Â ⊨ι̂ ϕ when the equality JsKι̂
A = JtKι̂

A or the bound 281 As usual, satisfaction generalizes to classes of
quantitative equations, i.e. if Ê is a classes of quan-
titative equations, Â ⊨ Ê means Â ⊨ ϕ for all ϕ ∈ Ê.

dA(JsKι̂
A, JtKι̂

A) ≤ ε holds for a particular assignment ι̂ : X → A (and not necessarily
for all assignments).

Our overloading of the terminology quantitative equation (recall Definition 93) is
practically harmless because a quantitative equation from Chapter 2 X ⊢ x = y (or
X ⊢ x =ε y) can be seen as the new kind of quantitative equation by viewing x and
y as terms via the embedding ηΣ

X . Formally, since JηΣ
X(x)Kι̂

A = ι̂(x) for any x ∈ X
and ι̂ : X→ A,282 282 Later on, we will seldom distinguish between x

and ηΣ
X(x) and write the former for simplicity.

A ⊨ X ⊢ x = y ⇐⇒ Â ⊨ X ⊢ ηΣ
X(x) = ηΣ

X(y)
A ⊨ X ⊢ x =ε y ⇐⇒ Â ⊨ X ⊢ ηΣ

X(x) =ε ηΣ
X(y).

(105)

In particular, since we assumed the underlying space of any Â ∈ QAlg(Σ) to be
a generalized metric space, we can say that Â ⊨ ϕ for any ϕ ∈ ÊGMet.283 Another 283 We implicitly see the equations in ÊGMet as the

new kind of equations from Definition 134.consequence is that over the empty signature Σ = ∅, the quantitative equations
from Definition 93 and Definition 134 are the same.
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Furthermore, the new quantitative equations also generalize the equations of
universal algebra (Definition 12). Indeed, given an equation X ⊢ s = t, we construct
the quantitative equation X⊤ ⊢ s = t where the new context is the discrete space on
the old context. We show that

A ⊨ X ⊢ s = t⇐⇒ Â ⊨ X⊤ ⊢ s = t. (106)

By Proposition 128, any assignment ι : X → A is nonexpansive from X⊤ to A. Any
nonexpansive assignment ι̂ : X⊤ → A also yields an assignment X → A by applying
the forgetful functor U since the carrier of X⊤ is X. Therefore, the interpretations
of s and t coincide under all assignments if and only if they coincide under all
nonexpansive assignments.

Let us get to more interesting examples now.

Example 135 (Almost commutativity). Let + : 2 ∈ Σ be a binary operation sym-
bol. As shown above, to ensure + is interpreted as a commutative operation in a
quantitative algebra, we can use the quantitative equation X⊤ ⊢ x + y = y + x where
X = {x, y}. In fact, using the same syntactic sugar as we did in Chapter 2 to avoid
explicitly describing all the context, we can write x, y ⊢ x + y = y + x.284 284 Whenever we will write x1, . . . , xn ⊢ s = t, we will

mean X⊤ ⊢ s = t where X = {x1, . . . , xn}, and simi-
larly for =ε.

Since the context can be any L-space, we can now add some nuance to the com-
mutativity property. For instance, we can guarantee that + is commutative only
between elements that are close to each other with x =ε y ⊢ x + y = y + x where
ε ∈ L is fixed.285 Unrolling the syntactic sugar, the context is the L-space containing 285 This example comes from [Adá22, Example

2.8.(4)].two points x and y with dX(x, y) = ε and all other distances being ⊤. There-
fore, a nonexpansive assignment ι̂ : X → A is a choice of two elements ι̂(x) and
ι̂(y) with dA(ι̂(x), ι̂(y)) ≤ ε and no other constraint. We conclude that Â satisfies
x =ε y ⊢ x + y = y + x if and only if J+KA(a, b) = J+KA(b, a) whenever dA(a, b) ≤ ε.

Another possible variant on commutativity is x =⊥ x, y =⊥ y ⊢ x + y = y + x.
This means + is guaranteed to be commutative only on elements which have a self-
distance of ⊥. For instance, in distributions with the ŁK distance, dŁK(φ, φ) = 0
only when the elements in the support of φ are all at distance 0 from each other.
In particular, when d is a metric, dŁK(φ, φ) = 0 if and only if φ is a Dirac distri-
bution. So that quantitative equation would ensure commutativity only on Dirac
distributions.

Example 136 (Nonexpansiveness). We can translate (102) and (103) into the follow-
ing (family of) quantitative equations.

∀ε, ε′ ∈ L, x =ε y, x′ =ε′ y′ ⊢ x⊕ x′ =max{ε,ε′} y⊕ y′ (107)

∀ε, ε′ ∈ L, x =ε y, x′ =ε′ y′ ⊢ x +p x′ =max{ε,ε′} y +p y′ (108)

The quantitative algebra from Example 132 satisfies (107), and the one from Exam-
ple 133 satisfies (108), but the variant with the ŁK distance does not satisfy (108).

In general, if we want an n-ary operation symbol op ∈ Σ to be interpreted as a
nonexpansive map An → A, we can impose the equations286 286 This is an axiom in the logic of [MPP16]. It is not

in our formulation of quantitative equational logic.

∀{εi}i∈I ⊆ L, {xi =εi yi | 1 ≤ i ≤ n} ⊢ op(x1, . . . , xn) =maxi εi op(y1, . . . , yn). (109)
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Example 137 (L-nonexpansiveness). In most papers on quantitative algebras this
property is called “nonexpansiveness of the operations”. In [MSV22], we remarked
this can be ambiguous because one could consider a different distance on n-tuples
of inputs than the product distance. We then presented quantitative algebras for
lifted signature which can deal with more general operations.

In a lifted signature, each operation symbol op : n ∈ Σ comes with an assignment
(A, d) 7→ (An, Lop(d)) (on generalized metric spaces) which specifies the distance
on n-tuples that needs to be considered. We say that the interpretation JopKA is
Lop-nonexpansive when it is a nonexpansive map JopKA : (An, L(d)) → (A, d).287 287 See [MSV22, Definitions 3.4 and 3.6].

We can also express Lop-nonexpansiveness with a family of quantitative equations
like we did in Example 136:288 288 This is the L-NE rule of [MSV22, Definition 3.11],

but it has been written more cleanly with quantita-
tive equations with contexts.∀X ∈ GMet, ∀x, y ∈ Xn, X ⊢ op(x1, . . . , xn) =Lop(dX)(x,y) op(y1, . . . , yn). (110)

If an algebra Â satisfies these equations, then in particular, for all a, b ∈ An, it
satisfies A ⊢ op(a1, . . . , an) =Lop(dA)(a,b) op(b1, . . . , bn) under the assignment idA :
A→ A. This means

dA(JopKA(a1, . . . , an), JopKA(b1, . . . , bn)) ≤ Lop(dA)(a, b),

so we conclude that JopKA : (An, Lop(dA))→ A is nonexpansive.
Now, we still have to show that Lop-nonexpansiveness is the only consequence of

(110). This requires an assumption on Lop that morally says the distance between
tuples x and y in (Xn, Lop(dX)) depends only on the distances between the coor-
dinates x1, . . . , xn and y1, . . . , yn in X.289 We refer to [MSV22] for more details, in 289 This is the case for nonexpansiveness with respect

to the product distance. In fact, the only distances
that matter there are the pairwise dX(xi , yi) for all i.
For Lop-nonexpansiveness, the other distances like
dX(x1, x1) or dX(y3, x1) may be important, but never
dX(x, z) for some fresh z.

particular Definitions 3.1 and 3.2 give the condition on Lop.290

290 Briefly, we need Lop to be a functor that preserves
isometric embeddings.

As a particular case, one can take Lop(d) to be the product distance and recover
the original nonexpansiveness of Example 136. Another interesting instance is tak-
ing Lop(d) to be the discrete distance (in case GMet = LSpa, ∀x, y ∈ Xn, Lop(x, y) =
⊤), then (110) becomes trivial as we will see in Lemma 152. Intuitively, it is because

any function from the discrete space on An to A is nonexpansive.

Example 138 (Convexity). The quantitative algebra (DX, J−KDX , dK) satisfies an-
other family of quantitative equations that is stronger than (108):291 291 Instead of taking the maximum between ε and ε′,

we take their convex combination, and since the for-
mer is always larger than the latter, (111) is stronger
than (108).

∀ε, ε′ ∈ L, x =ε y, x′ =ε′ y′ ⊢ x +p x′ =pε+pε′ y +p y′. (111)

This property of J+pKDX is called convexity in, e.g., [MV20, Definition 30].

As a sanity check for our definitions, we can verify that homomorphisms pre-
serve the satisfaction of quantitative equations.292 292 Just like we did in Lemma 16 for Set and

Lemma 105 for LSpa. In fact, the proofs are very
similar.Lemma 139. Let ϕ be an equation with context X. If h : Â→ B̂ is a homomorphism and

Â ⊨ι̂ ϕ for an assignment ι̂ : X→ A, then B̂ ⊨h◦ι̂ ϕ.

Proof. We have two very similar cases. Let ϕ be the equation X ⊢ s = t, we have

Â ⊨ι̂ ϕ⇐⇒ JsKι̂
A = JtKι̂

A definition of ⊨
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=⇒ h(JsKι̂
A) = h(JtKι̂

A)

=⇒ JsKh◦ι̂
B = JtKh◦ι̂

B by (10)

⇐⇒ B̂ ⊨h◦ι̂ ϕ. definition of ⊨

Let ϕ be the equation X ⊢ s =ε t, we have

Â ⊨ι̂ ϕ⇐⇒ dA(JsKι̂
A, JtKι̂

A) ≤ ε definition of ⊨

=⇒ dA(h(JsKι̂
A), h(JtKι̂

A)) ≤ ε

=⇒ dA(JsKh◦ι̂
B , JtKh◦ι̂

B ) ≤ ε by (10)

⇐⇒ B̂ ⊨h◦ι̂ ϕ. definition of ⊨

Definition 140 (Quantitative variety). Given a class Ê of quantitative equations, a
(Σ, Ê)-algebra is a quantitative Σ-algebra that satisfies Ê. We define QAlg(Σ, Ê),
the category of (Σ, Ê)-algebras, to be the full subcategory of QAlg(Σ) containing
only those algebras that satisfy Ê. A quantitative variety is a category equal to
QAlg(Σ, Ê) for some class of quantitative equations Ê.293 293 We will sometimes simply say variety with the

knowldege link going to this definition.There are many forgetful functors obtained by composing the forgetful functors
from QAlg(Σ) with the inclusion functor QAlg(Σ, Ê)→ QAlg(Σ):

• U : QAlg(Σ, Ê)→ Set = QAlg(Σ, Ê)→ QAlg(Σ) U−→ Set

• U : QAlg(Σ, Ê)→ Alg(Σ) = QAlg(Σ, Ê)→ QAlg(Σ) U−→ Alg(Σ)

• U : QAlg(Σ, Ê)→ GMet = QAlg(Σ, Ê)→ QAlg(Σ) U−→ GMet

• U : QAlg(Σ, Ê)→ LSpa = QAlg(Σ, Ê)→ QAlg(Σ) U−→ LSpa

Examples 141. 1. With Σ = {p : 0}, we now have a lot more varieties than we had
in Example 21. Even restricting to a discrete context, we have the following
quantitative equations where ε ranges over L:294 294 The first row comes from the classical case, and

the second row replaces equality with equality up
to ε (=ε). The only difference being that p =ε x and
x =ε p are not equivalent, so we need two distinct
equations.

⊢ p = p x ⊢ x = x x ⊢ p = x x, y ⊢ x = y

⊢ p =ε p x ⊢ x =ε x x ⊢ p =ε x x ⊢ x =ε p x, y ⊢ x =ε y

The meaning of the first row does not change from Example 21, and the meaning
of the second row can be inferred by replacing equality between terms with
distance between terms. For example, ⊢ p =ε p says that the self-distance of the
interpretation of the constant p is at most ε. Classifying the quantitative varieties
for this signature would require a lot more work than for the classical varieties.295 295 Although I think it is feasible, tedious but feasi-

ble.
2. When Σ = ∅, we mentioned that the quantitative equations are those of Chap-

ter 2, so QAlg(∅, Ê) is the subcategory of L-spaces that satisfy Ê. In particular,
the category GMet is a quantitative variety as it equals QAlg(∅, ÊGMet).

3. If Ê contains the equations in ECA and the equations in (111), then QAlg(ΣCA, Ê)
is the category of convex algebras equipped with a convex metric [MV20, Defi-
nition 30] and nonexpansive homomorphisms.
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Definition 142 (Quantitative algebraic theory). Given a class Ê of quantitative equa-
tions over Σ and L, the quantitative algebraic theory generated by Ê, denoted
by QTh(Ê), is the class of quantitative equations that are satisfied in all (Σ, Ê)-
algebras:296 296 Again QTh(Ê) is never a set (recall Definition 22).

QTh(Ê) =
{

ϕ | ∀Â ∈ QAlg(Σ, Ê), Â ⊨ ϕ
}

.

Equivalently, QTh(Ê) contains the equations that are semantically entailed by Ê,297 297 As in the non-quantitative case, QTh(Ê) contains
all of Ê but also many more equations like x ⊢ x = x
or x =ε y ⊢ x =ε y. Furthermore, QTh(Ê) contains
all the quantitative equations in ÊGMet because the
underlying spaces of algebras in QAlg(Σ, Ê) belong
to GMet.

namely ϕ ∈ QTh(Ê) if and only if

∀Â ∈ QAlg(Σ), Â ⊨ Ê =⇒ Â ⊨ ϕ. (112)

We will see in §3.2 how to find which quantitative equations are entailed by others.
We call a class of quantitative equations a quantitative algebraic theory if it is

generated by some class Ê.

We will see twice298 that the algebraic reasoning we are used to from Chap- 298 In Examples 181 and 182.

ter 1 is embedded in quantitative algebraic reasoning. In particular, Example 23

which showed some equations which belong to the algebraic theory of commuta-
tive monoids can be read unchanged to find quantitative equations that belong to
the quantitative algebraic theory of commutative monoids. These are only about
equality (=), so let use give another example.

Example 143. We mentioned in Example 138 that the equations for convexity (111)
are stronger than the equations for nonexpansiveness with respect to the product
distance (108). Formally what this means is that if Ê contains (111), then the inter-
pretation of +p in a (ΣCA, Ê)-algebra Â will be a nonexpansive map A×A → A,
hence Â will satisfy (108). Concisely, the equations of (108) belong to QTh(Ê).

Free Quantitative Algebras

We turn to the construction of free algebras, and we start with a simple example.

Example 144 (Free metric). We already have some intuitions about terms and equa-
tions from Example 24, thus we consider an empty signature in order to focus on
the new contexts and quantities. For Ê, let us take the set of equations defining a
metric space (with L = [0, 1]),299 so that QAlg(∅, Ê) = Met. 299 As a reminder, Ê contains

∀ε ∈ [0, 1], y =ε x ⊢ x =ε y

⊢ x =0 x

x =0 y ⊢ x = y

∀ε, δ ∈ [0, 1], x =ε y, y =δ z ⊢ x =ε+δ z.

Now we wonder, given an L-space X, what is the free metric space on it? Re-
hashing Definition 39, we want to find a metric space FX and a nonexpansive map
η : X → FX such that any nonexpansive map from X to a metric space A factors
through η uniquely. Of course, if X is already a metric space, then taking FX = X
and η = idX works. Otherwise, we can look at what prevents dX from being a
metric.

For instance, if X does not satisfy ⊢ x =0 x, it means there is some x ∈ X such
that dX(x, x) > 0. Inside FX, we know that the distance between η(x) and η(x)
must be 0. Note that if A is a metric space and f : X → A is nonexpansive, we
know that dA( f (x), f (x)) = 0 too, so sending η(x) to f (x) will not be a problem.

For a second example, suppose dX is not symmetric, i.e. dX(x, y) < dX(y, x) for
some fixed x, y ∈ X. We know that dFX(η(x), η(y)) = dFX(η(y), η(x)), but what
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value should it be? To ensure that η is nonexpansive, this value must be at most
dX(x, y), but why not smaller? If this lack of symmetry is the only thing preventing
dX from being a metric (i.e. defining d′ everywhere like dX except d′(x, y) = d′(y, x)
yields a metric) we cannot make dFX(x, y) smaller, because the identity function
idX would be a nonexpansive map X → (X, d′) that does not factor through η

(since d′(x, y) > dFX(η(x), η(y))). In fact, you can check that FX = (X, d′) with
η = idX be the free metric space on X because our definition of d′ fixed the only
problem with dX.

In general, for any x, y ∈ X, we want dFX(η(x), η(y)) to be as large as possible
while guaranteeing that dFX is a metric and η is nonexpansive,300 but it is not 300 You might think that we also want to guarantee

that any f : X → A factors through η. It turns out
that automatically holds when dFX is a metric, but I
do not have an explanation for this at the moment.

always that simple. The complexity comes from the possible interactions between
different equations in Ê. Say you have dX(x, z) > dX(x, y) + dX(y, z) so the triangle
inequality does not hold, hence you try to fix this by lowering dFX(ηx, ηz) down
exactly to dFX(ηx, ηy) + dFX(ηy, ηz)301. Then you need to lower dFX(z, x) down to 301 Let us not write η each time for better readability,

this is a bit informal as we will see.that same value, but after that you may need to lower dFX(x, y) so that it is not
bigger than the new value of dFX(y, z) + dFX(z, x). In the end, you may end up back
with dFX(x, z) > dFX(x, y) + dFX(y, z), so you will have to do another round of fixes.

Intuitively, FX is the space you obtain by iterating (possibly for infinitely many
steps) and looking at the limit. We give a rigorous description below in the case of
a more general signature, but we want to point out that this process does not deal
only with distances, it can also force some equalities. For example, if dX(x, y) = 0
with x ̸= y at the start, you will end up with η(x) = η(y) inside FX.

Fix a class Ê of quantitative equations over Σ and L. For any generalized metric
space X, we can define a binary relation ≡Ê and an L-relation dÊ on Σ-terms as
follows:302 for any s, t ∈ TΣX, 302 The notation for ≡ Ê and dÊ should really depend

on the space X, but we prefer to omit this for better
readability.s ≡ Ê t⇐⇒ X ⊢ s = t ∈ QTh(Ê) and dÊ(s, t) = inf{ε | X ⊢ s =ε t ∈ QTh(Ê)}.

(113)
The definition of≡ Ê is completely analogous to what we did in the non-quantitative
case (20). The definition of dÊ is new but it also looks like how we defined an L-
relation from an L-structure in Proposition 92. In fact, we can also prove a coun-
terpart to (66), giving us an equivalent definition of dÊ: for any s, t ∈ TΣX and
ε ∈ L,303 303 In words, dÊ assigns a distance below ε to s and

t if and only if their interpretations in each (Σ, Ê)-
algebras are always at a distance below ε.

dÊ(s, t) ≤ ε⇐⇒ X ⊢ s =ε t ∈ QTh(Ê). (114)

Proof of (114). (⇐) holds directly by definition of infimum. For (⇒), we need to
show that any (Σ, Ê)-algebra satisfies X ⊢ s =ε t. Let Â ∈ QAlg(Σ, Ê) and ι̂ : X→ A
be a nonexpansive assignment. We know that for every δ such that X ⊢ s =δ t ∈
QTh(Ê), dA(JsKι̂

A, JtKι̂
A) ≤ δ, thus

dA(JsKι̂
A, JtKι̂

A) ≤ inf{δ | X ⊢ s =δ t ∈ QTh(Ê)} = dÊ(s, t) ≤ ε.

We conclude that Â ⊨ι̂ X ⊢ s =ε t, and we are done since Â and ι̂ were arbitrary.

Remark 145. In Example 144, we said that the distance should be made as large as
possible while 1. ensuring the satisfaction of Ê, and 2. ensuring some embedding
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η is nonexpansive.304 Let us see informally how to recover these two ideas in the 304 On a first read, there seems to be a conflict with
defining dÊ as an infimum and saying it should be
as large as possible. Recall however that inf S is the
greatest lower bound of S, and that is precisely what
we need.

definition of dÊ.

1.

Of course this is formally proven in what follows.

When we were not dealing with distances, we only had to prove that the relation
≡ E defined between terms was a congruence (Lemma 25), and then we were able
to construct the term algebra by quotienting the set of terms and interpreting the
operation symbols syntactically. Here we have to prove a bit more, namely that dÊ is
invariant under ≡ Ê so the L-relation restricts to the quotient, and that the resulting
L-space is a generalized metric space.

Let us decompose this in several small lemmas. We also collect here some more
lemmas that look similar, many of which will be part of the proof of soundness
when we introduce quantitative equational logic.305 Let X ∈ LSpa and Â ∈ 305 We were less explicit back then, but that is what

happened with Lemma 25 and soundness of equa-
tional logic.

QAlg(Σ) be universally quantified in all these lemmas.
First, Lemmas 146–149 say that ≡ Ê is an equivalence relation and a congru-

ence.306 306 The proofs are exactly the same as for Lemma 25

because ≡ Ê does not involve distances.
Lemma 146. For any t ∈ TΣX, Â satisfies X ⊢ t = t.

Proof. Obviously, JtKι̂
A = JtKι̂

A holds for all ι̂ : X→ A.

Lemma 147. For any s, t ∈ TΣX, if Â satisfies X ⊢ s = t, then Â satisfies X ⊢ t = s.

Proof. If JsKι̂
A = JtKι̂

A holds for all ι̂, then JtKι̂
A = JsKι̂

A holds too.

Lemma 148. For any s, t, u ∈ TΣX, if Â satisfies X ⊢ s = t and X ⊢ t = u, then Â satisfies
X ⊢ s = u.

Proof. If JsKι̂
A = JtKι̂

A and JtKι̂
A = JuKι̂

A holds for all ι̂, then JsKι̂
A = JuKι̂

A holds too.

Lemma 149. For any op : n ∈ Σ, s1, . . . , sn, t1, . . . , tn ∈ TΣX, if Â satisfies X ⊢ si = ti for
all 1 ≤ i ≤ n, then Â satisfies X ⊢ op(s1, . . . , sn) = op(t1, . . . , tn).

Proof. For any assignment ι̂ : X→ A, we have JsiKι̂
A = JtiKι̂

A for all i. Hence,

Jop(s1, . . . , sn)Kι̂
A = JopKA(Js1Kι̂

A, . . . , JsnKι̂
A) by (7)

= JopKA(Jt1Kι̂
A, . . . , JtnKι̂

A) ∀i, JsiKι̂
A = JtiKι̂

A

= Jop(s1, . . . , sn)Kι̂
A. by (7)

Lemmas 150 and 151 mean that dÊ is well-defined on equivalence classes of ≡ Ê,
namely, dÊ(s, t) = dÊ(s

′, t′) whenever s ≡ Ê s′ and t ≡ Ê t′.307 307 By Lemmas 147 and 150, if t ≡ Ê t′, then

X ⊢ s =ε t⇐⇒ X ⊢ s =ε t.

By Lemmas 147 and 151, if s ≡ Ê s′, then

X ⊢ s =ε t′ ⇐⇒ X ⊢ s′ =ε t′.

Combining these with (114), we get

dÊ(s, t) ≤ ε⇐⇒ dÊ(s
′, t′) ≤ ε,

for all ε ∈ L, and we conclude dÊ(s, t) = dÊ(s
′, t′).

Lemma 150. For any s, t, t′ ∈ TΣX and ε ∈ L, if Â satisfies X ⊢ s =ε t and X ⊢ t = t′,
then Â satisfies X ⊢ s =ε t′.

Proof. For any ι̂ : X→ A, we have dA(JsKι̂
A, JtKι̂

A) ≤ ε and JtKι̂
A = Jt′Kι̂

A, thus

dA(JsKι̂
A, Jt′Kι̂

A) = dA(JsKι̂
A, JtKι̂

A) ≤ ε.
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Lemma 151. For any s, s′, t ∈ TΣX and ε ∈ L, if Â satisfies X ⊢ s =ε t and X ⊢ s = s′,
then Â satisfies X ⊢ s′ =ε t.

Proof. Symmetric argument to the previous proof.

Lemmas 152–155 will correspond to other rules in quantitative equational logic,
and they will be explained in more details in §3.2.

Lemma 152. For any s, t ∈ TΣX, Â satisfies X ⊢ s =⊤ t.

Proof. By definition of ⊤ (the supremum of all L), for any ι̂, dA(JsKι̂
A, JtKι̂

A) ≤ ⊤.

Lemma 153. For any x, x′ ∈ X, if dX(x, x′) = ε, then Â satisfies X ⊢ x =ε x′.

Proof. For any nonexpansive ι̂ : X→ A, we have308 308 The equation holds by definition of J−Kι̂
A on vari-

ables, and the inequality holds by definition of non-
expansiveness.dA(JxKι̂

A, Jx′Kι̂
A) = dA(ι̂(x), ι̂(x′)) ≤ dX(x, x′) = ε.

Lemma 154. For any s, t ∈ TΣX and ε, ε′ ∈ L, if Â satisfies X ⊢ s =ε t and ε ≤ ε′, then Â

satisfies X ⊢ s =ε′ t.309 309 In words, if the interpretations of s and t are at
distance at most ε, then they are also at distance at
most ε′ when ε ≤ ε′.Proof. For any ι̂ : X→ A, we have dA(JsKι̂

A, JtKι̂
A) ≤ ε ≤ ε′.

Lemma 155. For any s, t ∈ TΣX and {εi}i∈I ⊆ L, if Â satisfies X ⊢ s =εi t for all i ∈ I,
then Â satisfies X ⊢ s =ε t with ε = infi∈I εi.

Proof. For any ι̂ and for all i ∈ I, we have dA(JsKι̂
A, JtKι̂

A) ≤ εi by hypothesis. By
definition of infimum, this means dA(JsKι̂

A, JtKι̂
A) ≤ infi∈I εi = ε.

This shall take care of all except two rules in quantitative equational logic which
we will get to in no time. The following result is a generalization of Lemma 99, and
it morally says that TΣ f is well-defined and nonexpansive when f is nonexpansive.

Lemma 156. Let f : X → Y be a nonexpansive map. If A satisfies X ⊢ s = t (resp.
X ⊢ s =ε t), then A satisfies Y ⊢ TΣ f (s) = TΣ f (t) (resp. Y ⊢ TΣ f (s) =ε TΣ f (t)).310 310 Note that when s and t are variables, we get back

Lemma 99.
Proof. Any nonexpansive assignment ι̂ : Y → A, yields a nonexpansive assignment
ι̂ ◦ f : X→ A. Moreover, by functoriality of TΣ, we have

J−Kι̂◦ f
A

(8)
= J−KA ◦ TΣ(ι̂ ◦ f ) = J−KA ◦ TΣ ι̂ ◦ TΣ f = JTΣ f (−)Kι̂

A.

By hypothesis, we have

A ⊨ι̂◦ f X ⊢ s = t (resp. A ⊨ι̂◦ f X ⊢ s =ε t),

which means

JTΣ f (s)Kι̂
A = JsKι̂◦ f

A = JtKι̂◦ f
A = JTΣ f (t)Kι̂

A

resp. dA(JTΣ f (s)Kι̂
A, JTΣ f (t)Kι̂

A) = dA(JsKι̂◦ f
A , JtKι̂◦ f

A ) ≤ ε.

Thus, we conclude

A ⊨ι̂ Y ⊢ TΣ f (s) = TΣ f (t) (resp. A ⊨ι̂ Y ⊢ TΣ f (s) =ε TΣ f (t)).
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Let us end our list of small results with Lemmas 157–159 which are for later.

Lemma 157. For any s, t ∈ TΣX if Â satisfies X⊤ ⊢ s = t, then Â satisfies X ⊢ s = t, and
for any ε ∈ L, if Â satisfies X⊤ ⊢ s =ε t, then Â satisfies X ⊢ s =ε t.311 311 In words, if Â satisfies an equation where the

context is the discrete space on X, then Â satisfies
that same equation with the context replaced by any
other L-space on X. This is also a special case of
Lemma 156 where f : X⊤ → X is the identity map.

Proof. For any nonexpansive assignment ι̂ : X → A, you can pre-compose it with
idX : X⊤ → X (which is nonexpansive) without changing the interpretation of terms:
JsKι̂

A = JsKι̂◦idX
A . By hypothesis, we know that Â satisfies s = t (resp. s =ε t) under

the nonexpansive assignment ι̂ ◦ idX : X⊤ → A, and we conclude Â also satisfies
s = t (resp. s =ε t) under the assignment ι̂.

Lemma 158. For any s, t ∈ TΣX, if A satisfies X ⊢ s = t, then Â satisfies X ⊢ s = t.312 312 In words, if the underlying (not quantitative) al-
gebra satisfies an equation, then so does the quan-
titative algebra where the context can be endowed
with any L-relation.

Proof. Any nonexpansive assignment ι̂ : X → A is in particular an assignment
ι̂ : X → A, thus JsKι̂

A = JtKι̂
A hold by hypothesis that A satisfies X ⊢ s = t.

Lemma 159. For any s, t ∈ TΣX, if Â satisfies X⊤ ⊢ s = t, then A satisfies X ⊢ s = t.313 313 Combining Lemmas 158 and 159, we find

A ⊨ X ⊢ s = t⇐⇒ Â ⊨ X⊤ ⊢ s = t. (115)

This can be useful when comparing equational logic
and quantitative equational logic in Example 182.

Proof. This follows by definition of the discrete space X⊤. Indeed, any assignment
ι : X → A is the underlying function of a nonexpansive assignment ι̂ : X → A, and
since Â satisfies s = t under ι̂ by hypothesis, A satisfies s = t under ι.

We can now get back to the equality ≡ Ê and distance dÊ between terms, and
define the underlying space of the quantitative term algebra.

Since ≡ Ê is an equivalence relation for any X, we can consider the set TΣX/≡ Ê of
terms modulo Ê.314 We denote with [−]Ê : TΣX → TΣX/≡ Ê the canonical quotient 314 Keep in mind that for different L-relations on X,

we may get different equivalence relations on TΣX.map, and by Lemmas 150 and 151, we can define an L-relation on terms modulo
Ê by factoring dÊ through [−]Ê. We obtain the L-relation dÊ as the unique function
making the triangle below commute.315 315 We used the same symbol, because the first dÊ

was only used to define this new dÊ.

TΣX× TΣX L

TΣX/≡ Ê × TΣX/≡ Ê

[−]Ê×[−]Ê dÊ

dÊ

(116)

We write T̂Σ,ÊX for the resulting L-space (TΣX/≡ Ê, dÊ). We still have an alternative
definition analog to (114) for the new L-relation dE.316 316 In particular, the quotient map is nonexpansive:

[−]Ê : (TΣX, dÊ)→ T̂Σ,ÊX.dÊ([s]Ê, [t]Ê) ≤ ε⇐⇒ X ⊢ s =ε t ∈ QTh(Ê). (117)

This will be the carrier of the term algebra on X, so we need to prove that T̂Σ,ÊX be-
longs to GMet. We rely on the following generalization of Lemma 37. It essentially
states that satisfaction of quantitative equations is preserved by substitutions that
are nonexpansive. This result will also take care of the last two rules of quantitative
equational logic.

Lemma 160. Let Y be an L-space and σ : Y → TΣX be an assignment such that317 317 By combining (118) with (114) we find that σ
is a nonexpansive map Y → (TΣX, dÊ), and any
such nonexpansive map satisfies (118). We explic-
itly write (118) to better emulate the corresponding
rules in quantitative equational logic.

∀y, y′ ∈ Y, X ⊢ σ(y) =dY(y,y′) σ(y′) ∈ QTh(Ê), (118)

and Â a (Σ, Ê)-algebra. If Â satisfies Y ⊢ s = t (resp. Y ⊢ s =ε t), then it also satisfies
X ⊢ σ∗(s) = σ∗(t) (resp. X ⊢ σ∗(s) =ε σ∗(t)).
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Proof. Let ι̂ : X → A be a nonexpansive assignment, we need to show Jσ∗(s)Kι̂
A =

Jσ∗(t)Kι̂
A (resp. dA(Jσ∗(s)Kι̂

A, Jσ∗(t)Kι̂
A) ≤ ε). Just like in Lemma 37, we define the

assignment ι̂σ : Y → A that sends y ∈ Y to Jσ(y)Kι̂
A, and we had already proven

J−Kι̂σ
A = Jσ∗(−)Kι̂

A. Now, it is enough to show ι̂σ is nonexpansive Y→ A318 and the 318 Something we did not have to do in the non-
quantitative case.lemma will follow because by hypothesis, JsKι̂σ

A = JtKι̂σ
A (reps. dA(JsKι̂σ

A , JtKι̂σ
A) ≤ ε).

For any y, y′ ∈ Y, we have

dA(ι̂σ(y), ι̂σ(y′)) = dA(Jσ(y)Kι̂
A, Jσ(y′)Kι̂

A) ≤ dY(y, y′),

where the equation holds by definition of ι̂σ, and the inequality holds because Â

belongs to QAlg(Σ, Ê) and hence satisfies X ⊢ σ(y) =dY(y,y′) σ(y′) ∈ QTh(Ê) (in
particular under the nonexpansive assignment ι̂). Hence ι̂σ is nonexpansive.

Lemma 161. For any L-space X and any quantitative equation ϕ ∈ ÊGMet, T̂Σ,ÊX ⊨ ϕ.

Proof. We mentioned in Footnote 297 that ϕ ∈ QTh(Ê) because the carriers of
(Σ, Ê)-algebras are generalized metric spaces, so any (Σ, Ê)-algebra Â satisfies it.

Let ι̂ : Y → T̂Σ,ÊX is a nonexpansive assignment. By the axiom of choice,319 there 319 Choice implies the quotient map [−]Ê has a right
inverse r : TΣX/≡ Ê → TΣX, and we set σ = r ◦ ι̂.is a function σ : Y → TΣX satisfying [σ(y)]Ê = ι̂(y) for all y ∈ Y. This assignment

satisfies (118) because for all y, y′ ∈ Y, (117) yields

dÊ([σ(y)]Ê, [σ(y′)]Ê) ≤ dY(y, y′)
(117)⇐⇒ X ⊢ σ(y) =dY(y,y′) σ(y′) ∈ QTh(Ê),

and the L.H.S. holds because ι̂ is nonexpansive.
Therefore, if ϕ has the shape Y ⊢ y = y′ (resp. Y ⊢ y =ε y′), by Lemma 160, all

(Σ, Ê)-algebras satisfy X ⊢ σ(y) = σ(y′) (resp. X ⊢ σ(y) =ε σ(y′)). By definition of
≡ Ê (resp. by definition of dÊ (117)), we have

ι̂(y) = [σ(y)]Ê = [σ(y′)]Ê = ι̂(y′) (resp. dÊ(ι̂(y), ι̂(y′)) = dÊ([σ(y)]Ê, [σ(y′)]Ê) ≤ ε ),

which means T̂Σ,ÊX satisfies ϕ under ι̂. Since ι̂ and ϕ were arbitrary, we conclude
T̂Σ,ÊX satisfies all of ÊGMet, i.e. it is a generalized metric space.

As for Set, we obtain a functor T̂Σ,Ê : GMet → GMet320 by setting T̂Σ,Ê f equal 320 In fact, we defined a functor LSpa → GMet, but
we are interested in its restriction to GMet.to the unique function making (119) commute. Concretely, we have T̂Σ,E f ([t]Ê) =

[TΣ f (t)]Ê which is well-defined by one part of Lemma 156.

TΣX TΣX/≡ Ê

TΣY TΣY/≡ Ê

TΣ f

[−]Ê

T̂Σ,Ê f

[−]Ê

(119)

Although we do have to check that T̂Σ,Ê f is nonexpansive whenever f is, and we use
the other part of Lemma 156.

Lemma 162. If f : X→ Y is nonexpansive, then so is T̂Σ,Ê f : T̂Σ,ÊX→ T̂Σ,ÊY.
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Proof. For any s, t ∈ TΣX, we have

dÊ([s]Ê, [t]Ê) ≤ ε⇐⇒ X ⊢ s =ε t ∈ QTh(Ê) by (117)

=⇒ X ⊢ TΣ f (s) =ε TΣ f (t) ∈ QTh(Ê) Lemma 156

⇐⇒ dÊ([TΣ f (s)]Ê, [TΣ f (t)]Ê) ≤ ε by (117)

⇐⇒ dÊ(T̂Σ,Ê f [s]Ê, T̂Σ,Ê f [t]Ê) ≤ ε. by (119)

Therefore, dÊ(T̂Σ,Ê f [s]Ê, T̂Σ,Ê f [t]Ê) ≤ dÊ([s]Ê, [t]Ê).

We may now define the interpretation of operation symbols syntactically to ob-
tain the quantitative term algebra.

Definition 163 (Quantitative term algebra, semantically). The quantitative term
algebra for (Σ, Ê) on X is the quantitative Σ-algebra whose underlying space is
T̂Σ,ÊX and whose interpretation of op : n ∈ Σ is defined by321 321 This is well-defined by Lemma 149.

JopK
T̂X([t1]Ê, . . . , [tn]Ê) = [op(t1, . . . , tn)]Ê. (120)

We denote this algebra by T̂Σ,ÊX or simply T̂X.

This should feel very familiar to what we had done in Definition 26.322 In partic- 322 In fact, we can make the connection more pre-
cise, TX is constructed by quotienting TΣX by the
congruence ≡ E and (the underlying algebra of) T̂X
by quotienting TΣX by the congruence ≡ Ê (see Re-
mark 27).

ular, we still have that [−]Ê is a homomorphism from TΣX to the underlying algebra
of T̂X,323 namely, (121) commutes (recall Footnote 20).

323 Put h = [−]Ê in (1) to get (120)
TΣTΣX TΣT̂Σ,ÊX

TΣX T̂Σ,ÊX

µΣ
X

TΣ [−]Ê

J−K
T̂X

[−]Ê

(121)

While (121) is a diagram in Set, we write T̂Σ,ÊX instead of the underlying set
TΣX/≡ Ê for better readability. We will keep this habit.

Your intuition for J−K
T̂X (the interpretation of arbitrary terms) should be exactly

the same as the one for J−KTX in classical universal algebra: it takes a term in TΣT̂Σ,ÊX,
replaces the leaves with a representative term, and gives back the equivalence class
of the resulting term. We can also use it to define an analog to flattening.324 For 324 Just as we did in (26).

any space X, let µ̂Σ,Ê
X be the unique function making (122) commute.

TΣT̂Σ,ÊX T̂Σ,ÊX

T̂Σ,ÊT̂Σ,ÊX

J−K
T̂X

[−]Ê µ̂Σ,Ê
X

(122)

Let us show that µ̂Σ,Ê
X is nonexpansive and natural.

Lemma 164. For any space X, µ̂Σ,Ê
X is a nonexpansive map T̂Σ,ÊT̂Σ,ÊX→ T̂Σ,ÊX.
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Proof. Let [s]Ê, [t]Ê ∈ T̂Σ,ÊT̂Σ,ÊX be such that dÊ([s]Ê, [t]Ê) ≤ ε. By (117), this means

T̂Σ,ÊX ⊢ s =ε t ∈ QTh(Ê), (123)

namely, the distance between interpretations of s and t is bounded above by ε in all
(Σ, Ê)-algebras. We need to show dÊ(µ̂

Σ,Ê
X ([s]Ê), µ̂Σ,Ê

X ([t]Ê)) ≤ ε, or using (122),

dÊ(JsK
T̂X, JtK

T̂X) ≤ ε. (124)

We want to use (117) again to reduce that inequality to a bound on distances be-
tween interpretations, but that requires choosing representatives for JsK

T̂X, JtK
T̂X ∈

T̂Σ,ÊX.
Instead of choosing them naively, let s′, t′ ∈ TΣTΣX be such that TΣ[−]Ê(s′) = s

and TΣ[−]Ê(t′) = t. In words, s′ and t′ are the same as s and t where equivalence
classes at the leaves are replaced representative terms.325 Commutativity of (121) 325 Since s and t have finitely many leaves, we are

only doing finitely many choices of representatives.implies [µΣ
X(s
′)]Ê = JsK

T̂X and similarly for t. We can now use (117) to infer that
proving (124) is equivalent to proving

X ⊢ µΣ
X(s
′) =ε µΣ

X(t
′) ∈ QTh(Ê). (125)

This means we need to show that, for all Â ∈ QAlg(Σ, Ê) and ι̂ : X → A,
dA(JµΣ

X(s
′)Kι̂

A, JµΣ
X(t
′)Kι̂

A) ≤ ε.
We already know by (123) that for all σ̂ : T̂Σ,ÊX → A, dA(JsKσ̂

A, JtKσ̂
A) ≤ ε, so it

suffices to find, for each ι̂ : X → A, a nonexpansive assignment σ̂ι̂ : T̂Σ,ÊX → A such
that

JµΣ
X(s
′)Kι̂

A = JsKσ̂ι̂
A and JµΣ

X(t
′)Kι̂

A = JtKσ̂ι̂
A. (126)

We define σ̂ι̂ : T̂Σ,ÊX→ A to be the unique function making (127) commute.326 326 It exists because Â satisfies all the equations in
QTh(Ê) so if s ≡ Ê t then

JTΣ ι̂(s)KA
(8)
= JsKι̂

A = JtKι̂
A

(8)
= JTΣ ι̂(t)KA.TΣX TΣ A

T̂Σ,ÊX A

TΣ ι̂

J−KA[−]Ê

σ̂ι̂

(127)

First, σ̂ι̂ is a nonexpansive map T̂Σ,ÊX→ A because for any [u]Ê, [v]Ê ∈ T̂Σ,ÊX,

dA(σ̂ι̂[u]Ê, σ̂ι̂[v]Ê)
(127)
= dA(JTΣ ι̂(u)KA, JTΣ ι̂(v)KA)

(8)
= dA(JuKι̂

A, JvKι̂
A) ≤ dÊ([u]Ê, [v]Ê),

where the inequality holds by definition of dÊ and because Â satisfies all the equa-
tions in QTh(Ê).

Second, we can prove that

J−Kι̂
A ◦ µΣ

X = J−Kσ̂ι̂
A ◦ TΣ[−]Ê, (128)

which implies (126) holds (by applying both sides of (128) to s′ and t′). We pave the
following diagram. Showing (129) commutes:

(a) Apply TΣ to (127).

(b) By (13).

(c) By (8).
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TΣTΣX TΣT̂Σ,ÊX

TΣX TΣ A

TΣX A

µΣ
X

J−Kι̂
A

TΣ [−]Ê

J−Kσ̂ι̂
A

J−KA

TΣ σ̂ι̂TΣTΣ ι̂

TΣJ−KA

(a)

(b)

(c)
(129)

Lemma 165. The family of maps µ̂Σ,Ê
X : T̂Σ,ÊT̂Σ,ÊX→ T̂Σ,ÊX is natural in X.

Proof. We will (for posterity) reproduce the proof we did for Proposition 30, but it
is important to note that nothing changes except the notation which now has lots
of little hats.

We need to prove that for any function f : X→ Y, the square below commutes.

T̂Σ,ÊT̂Σ,ÊX T̂Σ,ÊT̂Σ,ÊY

T̂Σ,ÊX T̂Σ,ÊY

µ̂Σ,Ê
X µ̂Σ,Ê

Y

T̂Σ,Ê T̂Σ,Ê f

T̂Σ,Ê f

(130)

We can pave the following diagram.

TΣT̂Σ,ÊX T̂Σ,ÊT̂Σ,ÊX T̂Σ,ÊT̂Σ,ÊY

TΣT̂Σ,ÊY

T̂Σ,ÊT̂Σ,ÊX T̂Σ,ÊX T̂Σ,ÊY

µ̂Σ,Ê
Y

T̂Σ,Ê T̂Σ,Ê f

T̂Σ,Ê f

[−]Ê

J−K
T̂X

µ̂Σ,Ê
X

[−]Ê

TΣ T̂Σ,Ê f
[−]Ê

J−K
T̂Y

(a)

(b) (c)
(d)

All of (a), (b) and (d) commute by definition. In more details, (a) is an instance of
(119) with X replaced by T̂Σ,ÊX, Y by T̂Σ,ÊY and f by T̂Σ,Ê f , and both (b) and (d) are
instances of (122). To show (c) commutes, we draw another diagram that looks like
a cube and where (c) is the front face. We can show all the other faces commute,
and then use the fact that TΣ[−]Ê is surjective (i.e. epic) to conclude that the front
face must also commute.327 327 In more details, the left and right faces commute

by (121), the bottom and top faces commute by (119),
and the back face commutes by (6).

The function TΣ[−]Ê is surjective (i.e. epic) because
[−]Ê is (it is a canonical quotient map) and functors
on Set preserve epimorphisms (if we assume the ax-
iom of choice). Thus, it suffices to show that TΣ[−]Ê
pre-composed with the bottom path or the top path
of the front face gives the same result.

Now it is just a matter of going around the cube
using the commutativity of the other faces. Here is
the complete derivation (we write which face was
used as justifications for each step).

T̂Σ,Ê f ◦ J−K
T̂X ◦ TΣ[−]Ê

= T̂Σ,Ê f ◦ [−]Ê ◦ µΣ
X left

= [−]Ê ◦ TΣ f ◦ µΣ
X bottom

= [−]Ê ◦ µΣ
Y ◦ TΣTΣ f back

= J−K
T̂Y ◦ TΣ[−]Ê ◦ TΣTΣ f right

= J−K
T̂Y ◦ TΣT̂Σ,Ê f ◦ TΣ[−]Ê top
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TΣTΣX TΣTΣY

TΣT̂Σ,ÊX TΣT̂Σ,ÊY

TΣX TΣY

T̂Σ,ÊX T̂Σ,ÊY
T̂Σ,Ê f

J−K
T̂X

TΣ T̂Σ,Ê f

J−K
T̂Y

TΣ [−]Ê

TΣTΣ f

TΣ [−]Ê

[−]Ê

TΣ f

[−]Ê

µΣ
X

µΣ
Y

The first diagram we paved implies (27) commutes because [−]Ê is surjective.

From the front face of the cube above, we find that for any f : X → Y, T̂Σ,Ê f
is a homomorphism between the underlying algebras of T̂X and T̂Y. We already
showed T̂Σ,Ê f is nonexpansive in Lemma 162, thus it is a homomorphism between
the quantitative algebras T̂X and T̂Y.

We now prove generalizations of results from Chapter 1
328 in order to show that 328 Contrary to what we did for Lemma 165, we will

not reproduce the arguments that can be reused, you
can trust me that it would go as smoothly for the
other reults.

T̂X is not just a quantitative Σ-algebra but a (Σ, Ê)-algebra.
We can prove, analogously to Lemma 31, that for any Â ∈ QAlg(Σ, Ê), J−KA is

a homomorphism between T̂A and Â.

Lemma 166. For any (Σ, Ê)-algebra Â, the square (131) commutes, and J−KA is a nonex-
pansive map T̂Σ,ÊA→ A.329 329 We use the same convention as in (30) and write

J−KA for both maps TΣ A → A and T̂Σ,ÊA → A.
Recall the latter is well-defined because whenever
[s]Ê = [t]Ê, Â must satisfy A ⊢ s = t, and in partic-
ular under the assignment idA : A → A, this yields
JsKA = JtKA.

TΣT̂Σ,ÊA TΣ A

T̂Σ,ÊA A

J−K
T̂A

TΣJ−KA

J−KA

J−KA
(131)

Proof. For the commutative square, we can reuse the proof of Lemma 31. For non-
expansiveness, if dÊ([s]Ê, [t]Ê) ≤ ε, then by (117) A ⊢ s =ε t belongs to QTh(Ê)
which means Â must satisfy that equation, and in particular under the assignment
idA : A→ A, this yields dA(JsKA, JtKA) ≤ ε.

We can prove, analogously to Lemma 32, that for any X, µ̂Σ,Ê
X is a homomorphism

from T̂T̂X to T̂X.

Lemma 167. For any generalized metric space X, the following square commutes, and µ̂Σ,Ê
X

is a nonexpansive map T̂Σ,ÊT̂Σ,ÊX→ T̂Σ,ÊX.

TΣT̂Σ,ÊT̂Σ,ÊX TΣT̂Σ,ÊX

T̂Σ,ÊT̂Σ,ÊX T̂Σ,ÊX

J−K
T̂X

µ̂Σ,Ê
X

J−K
T̂T̂X

TΣ µ̂Σ,Ê
X

(132)
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Proof. For the commutative square, we can reuse the proof of Lemma 32. For non-
expansiveness, we have already shown this in Lemma 164.

Of course, paired with the flattening we also have a map η̂Σ,Ê
X which sends ele-

ments x ∈ X to the equivalence lass containing x seen as a trivial term, namely,

η̂Σ,Ê
X = X

ηΣ
X−→ TΣX

[−]Ê−−→ T̂Σ,ÊX. (133)

We need to show η̂Σ,Ê
X is nonexpansive and natural in X.

Lemma 168. For any space X, η̂Σ,Ê
X is a nonexpansive map X→ T̂Σ,ÊX.

Proof. This is a direct consequence of Lemma 153. For any x, x′ ∈ X and ε ∈ L,

dX(x, x′) ≤ ε =⇒ X ⊢ x =ε x′ ∈ QTh(Ê) by Lemma 153

⇐⇒ dÊ([x]Ê, [x′]Ê) ≤ ε. by (117)

Therefore, dÊ([x]Ê, [x′]Ê) ≤ dX(x, x′).

Lemma 169. For any nonexpansive map f : X→ Y, the following square commutes.330 330 Naturality of ηΣ,E was easier in Set because it is
the vertical composition of two natural transforma-
tions, ηΣ and [−]E, which do not have counterparts
in GMet.X T̂Σ,ÊX

Y T̂Σ,ÊY

f

η̂Σ,Ê
X

T̂Σ,Ê f

η̂Σ,Ê
Y

(134)

Proof. We pave the following diagram (in Set, but that is enough since U : GMet→
Set is faithful).

Showing (135) commutes:

(a) Definition of η̂Σ,Ê (133).

(b) Naturality of ηΣ (4).

(c) Definition of T̂Σ,Ê f (119).

(d) Definition of η̂Σ,Ê (133).

X T̂Σ,ÊX

TΣX

TΣY

Y T̂Σ,ÊY

f

η̂Σ,Ê
X

T̂Σ,Ê f

η̂Σ,Ê
Y

ηΣ
X

ηΣ
Y

[−]Ê

TΣ f

[−]Ê

(a)

(b) (c)

(d)

(135)

We also have the following technical lemma and its corollary analogous to Lemma 33

and Lemma 34.

Lemma 170. For any generalized metric space X, J−Kη̂Σ,Ê
X

T̂X
= [−]Ê.331 331 We can reuse the proof for Lemma 33.

We get that for any quantitative equation ϕ with context X, ϕ belongs to QTh(Ê)
if and only if the algebra T̂Σ,ÊX satisfies it under the assignment η̂Σ,Ê

X .
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Lemma 171. Let ϕ be an equation with context X, ϕ ∈ QTh(Ê) if and only if T̂X ⊨η̂Σ,Ê
X ϕ.

Proof. We have two cases to show.

• X ⊢ s = t ∈ QTh(Ê) if and only if T̂X ⊨η̂Σ,Ê
X X ⊢ s = t, and

• X ⊢ s =ε t ∈ QTh(Ê) if and only if T̂X ⊨η̂Σ,Ê
X X ⊢ s =ε t.

By Lemma 170,

JsKη̂Σ,Ê
X

T̂X
= [s]Ê and JtKη̂Σ,Ê

X
T̂X

= [t]Ê, (136)

then by using definitions, we have (as desired)

X ⊢ s = t ∈ QTh(Ê)
(113)⇐⇒ [s]Ê = [t]Ê

(136)⇐⇒ JsKη̂Σ,Ê
X

T̂X
= JtKη̂Σ,Ê

X
T̂X

X ⊢ s =ε t ∈ QTh(Ê)
(117)⇐⇒ dÊ([s]Ê, [t]Ê) ≤ ε

(136)⇐⇒ dÊ(JsKη̂Σ,Ê
X

T̂X
, JtKη̂Σ,Ê

X
T̂X

) ≤ ε.

The next result, analogous to Lemma 35, tells us that η̂Σ,Ê and µ̂Σ,Ê interact to-
gether like the unit and multiplication of a monad.

Lemma 172. The following diagram commutes.332 332 We can reuse the proof of Lemma 35, although
when using naturality of [−]Ê in Set, we replace it
by (119) which is not formally a naturality property
(because TΣ is not a functor on GMet).

T̂Σ,ÊX T̂Σ,ÊT̂Σ,ÊX T̂Σ,ÊX

T̂Σ,ÊX

η̂Σ,Ê
T̂Σ,ÊX

µ̂Σ,ÊX

T̂Σ,Ê η̂Σ,Ê
X

idT̂Σ,ÊXidT̂Σ,ÊX

Finally, we can show that T̂Σ,ÊX is (Σ, Ê)-algebra (analogous to Proposition 38).

Proposition 173. For any space A, the term algebra T̂Σ,ÊA satisfies all the equations in Ê.

Proof. Let ϕ ∈ Ê be an equation with context X and ι̂ : X→ T̂Σ,ÊA be a nonexpansive
assignment. We factor ι̂ into333 333 This factoring is correct because

ι̂ = idT̂Σ,ÊA ◦ ι̂

= µ̂Σ,Ê
A ◦ η̂Σ,Ê

T̂Σ,ÊA
◦ ι̂ Lemma 172

= µ̂Σ,Ê
A ◦ T̂Σ,Ê ι̂ ◦ η̂Σ,Ê

X . naturality of η̂Σ,Ê

ι̂ = X
η̂Σ,Ê

X−−→ T̂Σ,ÊX
T̂Σ,Ê ι̂
−−→ T̂Σ,ÊT̂Σ,ÊA

µ̂Σ,Ê
A−−→ T̂Σ,ÊA.

Now, Lemma 171 says that ϕ is satisfied in T̂X under the assignment η̂Σ,Ê
X . We also

know by Lemma 139 that homomorphisms preserve satisfaction, so we can apply it
twice using the facts that T̂Σ,Ê ι̂ and µ̂Σ,Ê

A are homomorphisms (the former was shown
after Lemma 165 and the latter in Lemma 167) to conclude that T̂A satisfies ϕ under
µ̂Σ,Ê

A ◦ T̂Σ,Ê ι̂ ◦ η̂Σ,Ê
X = ι̂.

We end this section just like we ended §1.1 by showing that T̂X is the free (Σ, Ê)-
algebra.334 334 In both [MSV22] and [MSV23], we constructed

the free algebra using quantitative equational logic.

Theorem 174. For any space X, the term algebra T̂X is the free (Σ, Ê)-algebra on X.
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Proof. Note that the morphism witnessing freeness of T̂X is η̂Σ,Ê
X : X → T̂Σ,ÊX. As

expected, the proof goes exactly like for Proposition 41 except, we have to show
that when f : X → A is nonexpansive, so is f ∗ : T̂Σ,ÊX → A. This follows by the
following derivation.335 335 We implicitly use nonexpansiveness of f in the

second step, where f is used as a nonexpansive as-
signment.dÊ([s]Ê, [t]Ê) ≤ ε⇐⇒ X ⊢ s =ε t ∈ QTh(Ê) by (117)

=⇒ dA(JsK f
A, JtK f

A) ≤ ε Â ∈ QAlg(Σ, Ê)

⇐⇒ dA(JTΣ f (s)KA, JTΣ f (t)AK) by (8)

⇐⇒ dA(J[TΣ f (s)]ÊKA, J[TΣ f (t)]ÊKA) Footnote 329

⇐⇒ dA(JT̂Σ,Ê f [s]ÊKA, JT̂Σ,Ê f [t]ÊKA) by (119)

⇐⇒ dA( f ∗[s]Ê, f ∗[t]Ê) definition of f ∗

Since we have a free (Σ, Ê)-algebra T̂X for every generalized metric space X, we
get a left adjoint to U : QAlg(Σ, Ê) → GMet. This automatically yields a monad
structure on T̂Σ,Ê that we will study after developing quantitative equational logic.
Before that, we make use of a special case of the adjunction above.

Corollary 175. The forgetful functor U : GMet→ Set has a left adjoint.

Proof. The following adjoints compose to yield a left adjoint to U : GMet→ Set.336 336 The adjunction between LSpa and Set was de-
scribed in Proposition 128. The adjunction between
GMet and LSpa is the one we just obtained via
Theorem 174 that we instantiate with GMet =
QAlg(∅, ÊGMet) (recall Example 141).

GMet LSpa Set
U

U

⊣ ⊣

Example 176 (Discrete metric). To make this more concrete, one can wonder what
is the free metric space on a set X (with L = [0, 1]). According to the diagram
above, we first need to construct the discrete space X⊤ on X, then construct the free
metric space on X⊤. We know how to do the first step (Proposition 128), and the
second step is also fairly easy to do.337 The only thing that prevents X⊤ from being 337 Even though we said in Example 144 that the free

metric space on an arbitrary X is harder to describe.a metric is reflexivity, i.e. d⊤(x, x) = 1 ̸= 0. If we define dX just like d⊤ except with
dX(x, x) = 0, then it is a metric,338 and (X, dX) is the free metric space over X. 338 Identity of indiscernibles and symmetry hold be-

cause dX(x, y) = dX(y, x) = 1 when x ̸= y. The
triangle inequality holds because

dX(x, z) = 1 ≤ 1 + 1 = dX(x, y) + dX(y, z).

With the help of quantitative algebraic theories and free algebras, we can now
define coproducts inside GMet.

Corollary 177. The category GMet has coproducts.

Proof. We will only do the case of binary coproducts for exposition’s sake, but the
proof can be adapted to arbitrary families. For any generalized metric space A, the
quantitative algebraic theory of A is generated by the signature ΣA = {a : 0 | a ∈ A}
and the quantitative equations339 339 Note that a and a′ are seen as constants, not vari-

ables, so the context of these equations is the empty
L-space.ÊA =

{
⊢ a =dA(a,a′) a′ | a, a′ ∈ A

}
.

A (ΣA, ÊA)-algebra B̂ is a generalized metric space B equipped with an interpreta-
tion JaKB for every a ∈ A such that dB(JaKB, Ja′KB) ≤ dA(a, a′) for every a, a′ ∈ A.
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Equivalently, all the interpretations can be seen as a single nonexpansive map
J−KB : A→ B. Therefore, QAlg(ΣA, ÊA) is the coslice category A/GMet.

Given another space A′, if we combine the theories of A and A′ with no ad-
ditional equations, we get the category QAlg(ΣA + ΣA′ , ÊA + ÊA′) of spaces B
equipped with two nonexpansive maps J−KB : A → B and J−K′B : A′ → B. This
category has an initial object, the free algebra on the initial generalized metric space
from Proposition 110. Moreover, this category can be equivalently described as the
comma category [A, A′] ↓ idGMet where [A, A′] : 1 + 1 → GMet is the constant
functor sending the two objects in the domain to A and A′ respectively.340 The 340 The category 1 + 1 has two objects, their identity

morphisms and that is it.initial object of this category (we just showed it exists) is the coproduct A + A′ (by
definition of coproducts and comma categories).

3.2 Quantitative Equational Logic

It is now time to introduce quantitative equational logic (QEL), which you can think
of as both a generalization and an extension of equational logic. It is a generalization
because it is parametrized by a complete lattice L, and when instantiating L = 1, we
get back equational logic as explained in Example 181. It is an extension because
all the rules of equational logic are valid in QEL when replacing the contexts with
discrete spaces as explained in Example 182. Figure 3.1 displays the inference rules
of quantitative equational logic. The notion of derivation is straightforwardly
adapted from Definition 42, the crucial difference is that proof trees can now be
infinite.341 341 This is necessary due to the rules Sub, SubQ, and

Cont.Given any class of quantitative equations Ê, we denote by QTh′(Ê) the class of
equations that can be proven from Ê in quantitative equational logic, in other words,
ϕ ∈ QTh′(Ê) if and only if there is a derivation of ϕ in QEL with axioms Ê.

Our goal now is to prove that QTh′(Ê) = QTh(Ê). We say that QEL is sound
and complete for (Σ, Ê)-algebras. Less concisely, soundness means that whenever
QEL proves an equation ϕ with axioms Ê, ϕ is satisfied by all (Σ, Ê)-algebras, and
completeness says that whenever an equation ϕ is satisfied by all (Σ, Ê)-algebras,
there is a derivation of ϕ in QEL with axioms Ê.

Just like for equational logic, all the rules in Figure 3.1 are sound for any fixed
quantitative algebra meaning that if Â satisfies the equations on top of a rule,
it must satisfy the conclusion of that rule. Let us explain the rules as we prove
soundness.

The first four rules say that equality is an equivalence relation that is preserved
by the operations, we showed they were sound in Lemmas 146–149. More formally,
we can define (for any X) a binary relation ≡′̂E on Σ-terms342 that contains the pair 342 Again, we omit the L-space X from the notation.

(s, t) whenever X ⊢ s = t can be proven in QEL (c.f. (113)): for any s, t ∈ TΣX,

s ≡′Ê t⇐⇒ X ⊢ s = t ∈ QTh′(Ê). (137)

Then, Refl, Symm, Trans, and Cong make ≡′Ê a congruence relation.

Lemma 178. For any L-space X, the relation ≡′Ê is reflexive, symmetric, transitive, and
for any op : n ∈ Σ and s1, . . . , sn, t1, . . . , tn ∈ TΣX,343 343 i.e. ≡′Ê is a congruence on the Σ-algebra TΣX de-

fined in Remark 18.
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ReflX ⊢ t = t
X ⊢ s = t SymmX ⊢ t = s

X ⊢ s = t X ⊢ t = u TransX ⊢ s = u

op : n ∈ Σ ∀1 ≤ i ≤ n, X ⊢ si = ti Cong

X ⊢ op(s1, . . . , sn) = op(t1, . . . , tn)

σ : Y → TΣX Y ⊢ s = t ∀y, y′ ∈ Y, X ⊢ σ(y) =dY(y,y′) σ(y′)
Sub

X ⊢ σ∗(s) = σ∗(t)

TopX ⊢ s =⊤ t
dX(x, x′) = ε

Vars

X ⊢ x =ε x′
X ⊢ s =ε t ε ≤ ε′

MaxX ⊢ s =ε′ t

∀i, X ⊢ s =εi t ε = infi εi
ContX ⊢ s =ε t

ϕ ∈ ÊGMet
GMet

ϕ

X ⊢ s = t X ⊢ s =ε u
CompLX ⊢ t =ε u

X ⊢ s = t X ⊢ u =ε s
CompRX ⊢ u =ε t

σ : Y → TΣX Y ⊢ s =ε t ∀y, y′ ∈ Y, X ⊢ σ(y) =dY(y,y′) σ(y′)
SubQ

X ⊢ σ∗(s) =ε σ∗(t)

Figure 3.1: Rules of quantitative equational logic
over the signature Σ and the complete lattice L,
where X and Y can be any L-space, s, t, u, si and
ti can be any term in TΣX, and ε, ε′ and εi range
over L. As indicated in the premises of the rules
Cong, Sub and SubQ, they can be instantiated for
any n-ary operation symbol and for any function σ
respectively.

∀1 ≤ i ≤ n, si ≡′Ê ti =⇒ op(s1, . . . , sn) ≡′Ê op(t1, . . . , tn). (138)

We denote with *− +Ê the canonical quotient map TΣX → TΣX/≡′Ê.
Skipping Sub for now, the Top rule says that ⊤ is an upper bound for all dis-

tances since it is the maximum element of L. We showed it is sound in Lemma 152.
The Vars rule is, in a sense, the quantitative version of Refl. It reflects the fact

that assignments of variables are nonexpansive with respect to the distance in the
context. Indeed, ι̂ : X→ A is nonexpansive precisely when, for all x, x′ ∈ X,

dA(ι̂(x), ι̂(x′)) = dA(JxKι̂
A, Jx′Kι̂

A) ≤ dX(x, x′).

How is this related to Refl? Letting t = x ∈ X, Refl says that for any assignment
ι̂ : X → A, ι̂(x) = ι̂(x). This seems trivial, but it hides a deeper fact that the
assignment must be deterministic (a functional relation), as it cannot assign two
different values to the same input.344 So just like Refl imposes the constraint of 344 A similar thing happens for Cong which says

that the interpretations of operation are determin-
istic (both in equational logic and QEL). In [MPP16],
the logic has a rule NExp which morally says that
the interpretations of operations are nonexpansive
too, i.e. NExp is to Cong what Vars is to Refl. We
said more on our choice to omit NExp in §0.3.

determinism on assignments, Vars imposes nonexpansiveness. We showed Vars

is sound in Lemma 153.
The rules Max and Cont should remind you of the definition of L-structure

(Definition 90). Very briefly, they ensure that equipping the set of terms over X
with the relations RX

ε ⊆ TΣX× TΣX defined by

s RX
ε t⇐⇒ X ⊢ s =ε t ∈ QTh′(Ê), (139)

yields an L-structure.345 We showed they are sound in Lemmas 154 and 155. Note 345 Monotonicity and continuity hold by Max and
Cont respectively. This is where the name Cont

comes from, and this is why I prefer it over the other
names in the literature.
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that Top is an instance of Cont with the empty index set (recall that ⊤ = inf ∅).
The soundness of GMet is a consequence of (105) and the definition of quan-

titative algebra which requires the underlying space to satisfy all the equations in
ÊGMet.

CompL and CompR guarantee that the L-structure we just defined factors through
the quotient TΣX/≡′Ê.346 We showed they are sound in Lemmas 150 and 151. In 346 i.e. the following relation is well-defined:

*s + Ê RX
ε *t + Ê ⇐⇒ X ⊢ s =ε t ∈ QTh′(Ê), (140)the presence of a symmetry axiom, only one of them would be sufficient.

Finally, we get to the substitutions Sub and SubQ, they are the same except for
replacing = with =ε. Recall that the substitution rule in equational logic is

σ : Y → TΣX Y ⊢ s = t
X ⊢ σ∗(s) = σ∗(t)

,

which morally means that variables in the context Y are universally quantified.
In Sub and SubQ, there is an additional condition on σ which arises because the
variables in Y are not universally quantified, an assignment Y → A is considered in
the definition of satisfaction only if it is nonexpansive from Y to A.347 347 Put differently, the variables are universally quan-

tified subject to certain constraints on their distances
relative to the context Y.

We proved Sub and SubQ are sound in Lemma 160, and we can compare with
the proof of soundness of Sub in equational logic (Lemma 37) to find the same
key argument: the interpretation of σ∗(t) under some assignment ι̂ is equal to the
interpretation of t under the assignment ι̂σ sending y to the interpretation of σ(y)
under ι̂. Since satisfaction for quantitative algebras only deals with nonexpansive
assignments, we needed to check that ι̂σ is nonexpansive whenever ι̂ is, and this
was true thanks to the conditions on σ. Let us give an illustrative example of why
the extra conditions are necessary.

Example 179. We work over L = [0, 1], GMet = Met, Σ = ∅, and Ê = ∅. Let
Y = {y0, y1} with dY(y0, y1) = dY(y1, y0) = 1

2 and X = {x0, x1} with dX(x0, x1) =

dX(x1, x0) = 1.348 We consider the algebra Â whose underlying space is A = X 348 We can see both Y and X as subspaces of [0, 1]
with the Euclidean metric, where e.g. y0 is embed-
ded as 0 and y1 as 1

2 , and x0 is embedded as 0 and
x1 as 1.

(since Σ is empty that is the only data required to define an algebra). It satisfies
the equation Y ⊢ y0 = y1 because any nonexpansive assignment of Y into A must
identify y0 and y1 (there are no distinct points with distance less than 1

2 ).
Take the substitution σ : Y → TΣX defined by y0 7→ x0 and y1 7→ x1, we can

check Â does not satisfy X ⊢ σ∗(y0) = σ∗(y1).349 This means that σ cannot satisfy 349 That equation is X ⊢ x0 = x1 and with the assign-
ment idX : X→ X = A, we have

Jx0K
idX
A = x0 ̸= x1 = Jx1K

idX
A .

the extra conditions in Sub. Indeed, Â does not satisfy X ⊢ σ(y0) = 1
2

σ(y1) (take
the assignment idX again).

By proving each rule is sound, we have shown that QEL is sound.

Theorem 180 (Soundness). If ϕ ∈ QTh′(Ê), then ϕ ∈ QTh(Ê).

Let us explain how to recover equational logic from quantitative equational logic
in two different ways.

Example 181 (Recovering equational logic I). In Example 91, we saw that 1Spa is the
category Set. Here we show that QEL over the complete lattice 1 with ÊGMet = ∅
is the same thing as equational logic. First, what is a quantitative equation ϕ over
1? Since the context is a 1-space, it is just a set,350 and furthermore, since 1 contains 350 In other words, X and X are the same thing.
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a single element (which we call ⊤ here, but it is equal to ⊥) ϕ is either

X ⊢ s = t or X ⊢ s =⊤ t.

Now, the second equation always belongs to QTh′(Ê) for any Ê by Top. Therefore,
the rules whose conclusions have an equation with a quantity (all but the first
five) can be replaced by Top. The remaining rules are exactly those of equational
logic except the substitution rule which has some additional constraints. The latter
require proving only equations with quantities which we can always do with Top.

Thus, we can infer that for any Ê, the equations without quantities in QTh′(Ê)
are exactly the equations in Th′(E), where E contains the quantitative equations
without quantities of Ê seen as equations.351 351 i.e. E = {X ⊢ s = t | X ⊢ s = t ∈ Ê}

Example 182 (Recovering equational logic II). There is a less trivial way to see that
equational reasoning faithfully embeds into quantitative equational reasoning.

We are back to the general case of L being an arbitrary complete lattice and ÊGMet

being possibly non-empty. Let E be a class of non-quantitative equations, and let Ê
contain every equation in E seen as a quantitative equation with its context being
the discrete space, i.e.

Ê = {X⊤ ⊢ s = t | X ⊢ s = t ∈ E}. (141)

Claim. If X ⊢ s = t ∈ Th′(E), then X⊤ ⊢ s = t ∈ QTh′(Ê).352 352 Depending on the equations inside ÊGMet, it
is possible that QTh′(Ê) contains more equations
without quantities than Th′(E). Nevertheless, we
show that everything you can prove in equational
logic can also be proven in QEL.

Proof 1. You can show by induction that a derivation of X ⊢ s = t in equational
logic with axioms E can be transformed into a derivation of X⊤ ⊢ s = t in QEL with
axioms Ê. The base cases are handled by the definition of Ê and the rule Refl in
QEL instantiated with the discrete spaces which perfectly emulates the rule Refl

in equational logic.
For the inductive step, the rules Symm, Trans, and Cong in equational logic all

have perfect counterparts in QEL. The substitution rule needs a bit more work. If
the last rule in the derivation in equational logic is

σ : Y → TΣX Y ⊢ s = t
Sub

X ⊢ σ∗(s) = σ∗(t)
,

then by induction hypothesis, there is a derivation of Y⊤ ⊢ s = t in QEL. We obtain
the following derivation noting that for all y, y′ ∈ Y, d⊤(y, y′) = ⊤.

σ : Y → TΣX
I.H.

Y⊤ ⊢ s = t
Top∀y, y′ ∈ Y, X⊤ ⊢ σ(y) =d⊤(y,y′) σ(y′)
Sub

X⊤ ⊢ σ∗(s) = σ∗(t)

Proof 2. The proof above reasoning on derivations is useful to get familiar with
QEL, but there is a faster semantic proof that relies on completeness. By soundness
and completeness,353 it is enough to prove that if X ⊢ s = t ∈ Th(E), then X⊤ ⊢ s = 353 Of both equational logic (?? 44?? 49) and QEL

(?? 180?? 187).t ∈ QTh(Ê). This follows from the equivalence (115) (which was easy to prove):

Â ⊨ Ê
(115)⇐⇒ A ⊨ E

(17)
=⇒ A ⊨ X ⊢ s = t

(115)⇐⇒ Â ⊨ X⊤ ⊢ s = t.
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This second proof also points to a stronger version of the claim that we state as a
lemma for future use.

Lemma 183. Let E be a class of non-quantitative equations and Ê be defined as in (141). If
X ⊢ s = t ∈ Th′(E), then X ⊢ s = t ∈ QTh′(Ê).354 354 Follow the second proof above but instead of

the second use of (115), use Lemma 158. (This
requires assuming QTh(Ê) = QTh′(Ê) which we
prove soon.)

Let us get back to our goal of showing QEL is complete. We follow the proof
sketch of completeness for equational logic.355 We define a quantitative algebra

355 Our proof of completeness for the logic in
[MSV22] seems more complex (in my opinion), but
it morally follows the same sketch. It is obfuscated
however by the fact that [MSV22] did not deal with
contexts, instead we were using what we now call
syntactic sugar to describe quantitative equations.

exactly like T̂X but using the equality relation and L-relation induced by QTh′(Ê)
instead of QTh(Ê), and then we show it satisfies Ê which, by construction, will
imply QTh(Ê) ⊆ QTh′(Ê).

Definition 184 (Quantitative term algebra, syntactically). The new quantitative term
algebra for (Σ, Ê) on X is the quantitative Σ-algebra whose underlying space is
TΣX/≡′Ê equipped with the L-relation corresponding to the L-structure defined in
(140),356 and whose interpretation of op : n ∈ Σ is defined by357 356 Explicitly, it is the L-relation ′d′Ê that satisfies

d′Ê(*s + Ê, *t + Ê) ≤ ε⇐⇒ X ⊢ s =ε t ∈ QTh′(Ê).
(142)

357 This is well-defined (i.e. invariant under change
of representative) by (138).

JopK
T̂′X(*t1 + Ê, . . . , *tn + Ê) = *op(t1, . . . , tn) + Ê. (143)

We denote this algebra by T̂′Σ,ÊX or simply T̂′X.

We will prove this alternative definition of the term algebra coincides with T̂X.
First, we have to show that T̂′X belongs to QAlg(Σ, Ê) like we did for T̂X in Propo-
sition 173, and we state a technical lemma before that.

Lemma 185. Let ι : Y → TΣX/≡′E be any assignment. For any function σ : Y → TΣX
satisfying *σ(y) + Ê = ι(y) for all y ∈ Y, we have J−Kι

T̂′X
= *σ∗(−) + Ê.358 358 The proof goes as in the classical case

(Lemma 47). We do not even need to ask ι to be
nonexpansive, but we will use the result with a non-
expansive assignment.Proposition 186. For any space X, T̂′X satisfies all the equations in Ê.

Proof. Let Y ⊢ s = t (resp. Y ⊢ s =ε t) belong to Ê and ι̂ : Y → (TΣX/≡′Ê, d′
Ê
) be a

nonexpansive assignment. By the axiom of choice,359 there is a function σ : Y → 359 Choice implies the quotient map *− +Ê has a right
inverse r : TΣX/≡′Ê → TΣX, and we set σ = r ◦ ι̂.TΣX satisfying *σ(y) + Ê = ι̂(y) for all y ∈ Y. Thanks to Lemma 185, it is enough to

show *σ∗(s) + Ê = *σ∗(t) + Ê (resp. d′
Ê
(*σ∗(s) + Ê, *σ∗(t) + Ê) ≤ ε).360 360 By Lemma 185, it implies

JsKι̂
T̂′X = *σ∗(s) + Ê = *σ∗(t) + Ê = JtKι

T̂′X ,

resp. d′Ê(JsKι̂
T̂′X, JtKι̂

T̂′X) = d′Ê(*σ∗(s) + Ê, *σ∗(t) + Ê) ≤ ε

and since ι̂ was arbitrary, we conclude that T̂′X sat-
isfies Y ⊢ s = t (resp. Y ⊢ s =ε t).

Equivalently, by definition of *− +Ê and QTh′(Ê), we can just exhibit a derivation
of X ⊢ σ∗(s) = σ∗(t) (resp. X ⊢ σ∗(s) =ε σ∗(t)) in QEL with axioms Ê. That equation
can be proven with the Sub (resp. SubQ) rule instantiated with σ : Y → TΣX and
the equation Y ⊢ s = t (resp. Y ⊢ s =ε) which is an axiom, but we need derivations
showing σ satisfies the side conditions of the substitution rules. This follows from
nonexpansiveness of ι̂ because for any y, y′ ∈ Y, we know that

dÊ(*σ(y) + Ê, *σ(y) + Ê) = dÊ(ι̂(y), ι̂(y′)) ≤ dY(y, y′),

which means by (142) that X ⊢ σ(y) =dY(y,y′) σ(y) belongs to QTh′(Ê).

Completeness of quantitative equational logic readily follows.

Theorem 187 (Completeness). If ϕ ∈ QTh(Ê), then ϕ ∈ QTh′(Ê).
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Proof. Let ϕ ∈ QTh(Ê) and X be its context. By Proposition 186 and definition of
QTh(Ê), we know that T̂′X ⊨ ϕ. In particular, T̂′X satisfies ϕ under the assignment

ι̂ = X
ηΣ

X−→ TΣX
*−+Ê−−−→ TΣX/≡′Ê,

which is nonexpansive by Vars.361 361 Explicitly, Vars means X ⊢ x =dX(x,x′) x′ belongs
to QTh′(Ê), hence, (142) implies

d′Ê(*x + Ê, *x′ + Ê) ≤ dX(x, x′).

Moreover with σ = ηΣ
X , we can show σ satisfies the hypothesis of Lemma 185

and σ∗ = idTΣX ,362 thus we conclude

362 We defined ι̂ precisely to have *ηΣ
X(x) + Ê = ι̂(x).

To show σ∗ = ηΣ
X
∗ is the identity, use (34) and the

fact that µΣ · ηΣTΣ = 1TΣ (it holds by definition (5)).

• if ϕ = X ⊢ s = t: *s + Ê = JsKι̂
T̂′X

= JtKι̂
T̂′X

= *t + Ê, and

• if ϕ = X ⊢ s =ε t: d′
Ê
(*s + Ê, *t + Ê) = d′

Ê
(JsKι̂

T̂′X
, JtKι̂

T̂′X
) ≤ ε.

By definition of ≡′Ê (137) and d′
Ê

(142), this implies X ⊢ s = t (resp. X ⊢ s =ε t)
belongs to QTh′(Ê).

Note that because T̂X and T̂′X were defined in the same way in terms of QTh(Ê)
and QTh′(Ê) respectively, and since we have proven the latter to be equal, we obtain
that T̂X and T̂′X are the same quantitative algebra. In the sequel, we will work with
T̂X mostly but we may use the facts that s ≡ Ê t (resp. dÊ(s, t) ≤ ε) if and only if
there is a derivation of X ⊢ s = t (resp. X ⊢ s =ε t) in QEL.363 363 i.e. when proving that an equation holds in some

theory QTh(Ê), we can either use the rules of QEL
or the several lemmas from §3.1 which are morally
the semantic counterparts to the inference rules.

Remark 188. Mirroring Remark 50, we would like to say that the axiom of choice
was not necessary in the proofs above. Unfortunately, this situation is more delicate,
and I do not know for sure that we can avoid using choice (although I expect we
can).

At first, you might think that since terms are still finite, we can still restrict the
context to the free variables which is finite. Unfortunately, even if x ∈ FV{s, t}
and y /∈ FV{s, t}, it is possible that the distance between x and y in the context
is necessary to state the right property. Here is an example that we carry with
GMet = [0, 1]Spa, Σ = ∅, and Ê defining discrete metrics:364 364 When dA(a, b) is not 1, it must be that a = b by

the first set of equations, by the second set, it must
be that dA(a, b) = 0. Under such constraints A must
be the discrete metric on A that we described in Ex-
ample 176, so QAlg(∅, Ê) is the category of discrete
metrics.

Ê = {x =ε y ⊢ x = y | 1 ̸= ε ∈ L} ∪ {x = y ⊢ x =0 y}.

Let X = {x, z} and Y = {x, y, z} with the following distances (X is a subspace of Y):

x y z
1
2

0

1
2

0 0

The equation Y ⊢ x = z belongs to QTh(Ê). Indeed, if A ⊨ Ê, then dA(a, b) ≤ 1
2

implies a = b, so any nonexpansive assignment ι̂ : Y → A must identify x and y,
and y and z, hence ι̂(x) = ι̂(z). However, the equation X ⊢ x = z is not in QTh(Ê)
because you can have dA(ι̂(x), ι̂(z)) ≤ 1 without ι̂(x) = ι̂(z).

This shows that some variables in the context which are not used in the terms
of the equation (in this instance y) might still be important. One may still wonder
whether it is possible to restrict the contexts to be finite or countable.365 I do not 365 i.e. for any equation ϕ, is there an equation ψ

with finite (or countable) context such that

Â ⊨ ϕ⇐⇒ Â ⊨ ψ.
know if that is true, but I expect that countable contexts are enough and that finite
contexts are not.
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In summary, while there can be an analog to the derivable Add rule in equational
logic, the obvious counterpart to the Del rule is not even sound.

Let us highlight one last feature of quantitative equational logic: the rule GMet

defining what kind of generalized metric spaces are considered is independent of
all the other rules.366 As a consequence, and we give more details in [MSV23, §8], 366 Although it was less explicit because only Met

was considered, this was already a feature of the
logic in [MPP16].

you can choose to work over LSpa all the time and add the equations in ÊGMet as
axioms in Ê anytime you wish to restrict to algebras whose carriers are generalized
metric spaces. Written a bit ambiguously,367 367 What we really mean is that on the left, QAlg

and QTh are the operators we described with the
parameter GMet built in, and on the right, they are
the same operators instantiated with LSpa instead.

QAlg(Σ, Ê) = QAlg(Σ, Ê ∪ ÊGMet) and QTh(Ê) = QTh(Ê ∪ ÊGMet). (144)

3.3 Quantitative Algebraic Presentations

In order to obtain a more categorical understanding of quantitative algebras, a first
step is to show that the functor T̂Σ,Ê : GMet→ GMet we constructed is a monad.

Proposition 189. The functor T̂Σ,Ê : GMet → GMet defines a monad on GMet with
unit η̂Σ,Ê and multiplication µ̂Σ,Ê. We call it the term monad for (Σ, Ê).

Proof. A first proof uses a standard result of category theory. Since we showed that
T̂Σ,ÊA is the free (Σ, Ê)-algebra on A for every space A (Theorem 174), we obtain a
monad sending A to the underlying space of T̂Σ,ÊA, i.e. T̂Σ,ÊA.368 368 The unit is automatically η̂Σ,Ê, but some computa-

tions are needed to show the multiplication is µ̂Σ,Ê.One could also follow the proof we gave for Set and explicitly show that η̂Σ,Ê and
µ̂Σ,Ê obey the laws for the unit and multiplication (most of the work having been
done earlier in this chapter).

What is arguably more important is that quantitative (Σ, Ê)-algebras on a space
A correspond to T̂Σ,Ê-algebras on A.369 We construct an isomorphism between 369 i.e. U : QAlg(Σ, Ê)→ GMet is monadic.

QAlg(Σ, Ê) and EM(T̂Σ,Ê) using the isomorphism P : Alg(Σ) ∼= EM(TΣ) : P−1 that
we defined in Proposition 59,370 the forgetful functor U : QAlg(Σ, Ê) → Alg(Σ) 370 Take the statement of Proposition 59 with E = ∅.

that sends Â to the underlying algebra A, and the functor EM(T̂Σ,Ê)→ EM(TΣ) we
define below.

Lemma 190. For any T̂Σ,Ê-algebra (A, α), the map Uα ◦ [−]Ê : TΣ A → A is a TΣ-algebra.
Furthermore, this defines a functor U[−]Ê : EM(T̂Σ,Ê)→ EM(TΣ).

Proof. Apply Proposition 71 after checking that (U, [−]Ê) is monad functor from
T̂Σ,Ê to TΣ.371 371 The appropriate diagrams (55) and (56) commute

by (133) and a combination of (121) and (122).
Theorem 191. There is an isomorphism QAlg(Σ, Ê) ∼= EM(T̂Σ,Ê).372 372 We follow [MSV22] which does not rely on

monadicity theorems (recall Remark 60). For a
proof that does, see [MSV23, Theorems 6.3 and 8.10]
where monadicity for L-spaces is proved first, then
monadicity for generalized metric spaces is proven
using (144).

Proof. In the diagram below, we already have the functors drawn with solid arrows,
and we want to construct P̂ and P̂−1 drawn with dashed arrows before proving they
are inverses to each other.

QAlg(Σ, Ê) EM(T̂Σ,Ê) QAlg(Σ, Ê) EM(T̂Σ,Ê)

Alg(Σ) EM(TΣ) GMet

U U[−]Ê
P

P−1

P̂

P̂−1

P̂

U
U
T̂Σ,Ê

P̂−1
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A (meaningful) sidequest for us is to make the diagrams above commute, namely,
the underlying TΣ-algebra of P̂Â should be PA and the underlying space of P̂Â

should be the underlying space of Â, and similarly for P̂−1. It turns out this com-
pletely determines our functors, up to some quick checks. We will move between
spaces and their underlying sets without indicating it by U : GMet→ Set.

Given Â ∈ QAlg(Σ, Ê), we look at the underlying Σ-algebra A, apply P to it to
get αA : TΣ A → A which sends a term t to its interpretation JtKA, and we need to
check that it factors through [−]Ê and a nonexpansive map α̂Â as in (145).

TΣ A A

T̂Σ,ÊA
[−]Ê α̂

Â

αA

(145)

First, αA is well-defined on terms modulo Ê because if s ≡ Ê t, then Â satisfies
A ⊢ s = t ∈ QTh(Ê), and this in turn means (taking the assignment idA : A→ A):

αA(s) = JsKA = JsKidA
A = JtKidA

A = JtKA = αA(t).

Next, the factor we obtain α̂Â : TΣ A/≡ Ê → A is nonexpansive from T̂Σ,ÊA to A.
Indeed, if dÊ([s]Ê, [t]Ê) ≤ ε, then Â satisfies A ⊢ s =ε t ∈ QTh(Ê), and this means:

dA(α̂Â[s]Ê, α̂Â[t]Ê) = dA(αA(s), αA(t)) = dA(JsKA, JtKA) = dA(JsKidA
A , JtKidA

A ) ≤ ε.

Finally, if h : Â → B̂ is a homomorphism, then by definition it is nonexpansive
A → B and it commutes with J−KA and J−KB. The latter means it commutes with
αA and αB, which in turn means it commutes with α̂Â and α̂B̂ because [−]Ê is epic
(see (146)). We obtain our functor P̂ : QAlg(Σ, Ê)→ EM(T̂Σ,Ê).

TΣ A TΣ B

A B

T̂Σ,ÊA T̂Σ,ÊB

[−]Ê
α̂

Â

αA

TΣh

[−]Ê α̂
B̂

αB

T̂Σ,Êh

h
(146)

The top face of the prism in (146) commutes because
h is a homomorphism, the back face commutes by
(119), and the side faces commute by (145). Thus,
the bottom face commutes because [−]Ê is epic.

Given a T̂Σ,Ê-algebra α̂ : T̂Σ,ÊA→ A, we look at the TΣ-algebra

U[−]Ê α̂ = Uα̂ ◦ [−]Ê : TΣ A→ A

obtained via Lemma 190, then we apply P−1 to get the Σ-algebra (A, J−K
U[−]Ê α̂

).

Since A = (A, dA) is a generalized metric space (because α̂ belongs to EM(T̂Σ,Ê)),
we obtain a quantitative algebra Âα̂ = (A, J−K

U[−]Ê α̂
, dA), and we need to check it

satisfies the equations in Ê.
Recall from the proof of Proposition 59 that interpreting terms in Âα̂ is the same

thing as applying U[−]Ê α̂ = Uα̂ ◦ [−]Ê. Therefore, given any L-space X, nonexpan-
sive assignment ι̂ : X→ A, and t ∈ TΣX, we have

JtKι̂

U[−]Ê

(8)
= JTΣ ι̂(t)K

U[−]Ê
= α̂[TΣ ι̂(t)]Ê.

Now, if X ⊢ s = t ∈ Ê, we also have A ⊢ TΣ ι̂(s) = TΣ ι̂(t) ∈ QTh(Ê) by Lemma 156,
which means

JsKι̂

U[−]Ê
= α̂[TΣ ι̂(s)]Ê = α̂[TΣ ι̂(t)]Ê = JtKι̂

U[−]Ê
.

Similarly for X ⊢ s =ε t ∈ Ê, Lemma 156 means A ⊢ TΣ ι̂(s) =ε TΣ ι̂(t) ∈ QTh(Ê), so373 373 The first inequality holds by nonexpansiveness of
α̂ and the second by definition of dÊ (117).

dA(JsKι̂

U[−]Ê
, JtKι̂

U[−]Ê
) = dA(α̂[TΣ ι̂(s)]Ê, α̂[TΣ ι̂(t)]Ê) ≤ dÊ([TΣ ι̂(s)]Ê, [TΣ ι̂(t)]Ê) ≤ ε.

Finally, if h : (A, α̂) → (B, β̂) is T̂Σ,Ê-homomorphism, then by definition, it is non-
expansive A → B, and by Lemma 190 it commutes with U[−]Ê α̂ and U[−]Ê β̂ which
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means it is a homomorphism of the underlying algebras of Âα̂ and B̂
β̂
. We con-

clude it is also a homomorphism between the quantitative algebras Âα̂ and B̂
β̂
.374 374 Recall that homomorphisms between quantitative

algebras are just nonexpansive homomorphisms.
We obtain our functor P̂−1 : EM(T̂Σ,Ê)→ QAlg(Σ, Ê).

The diagrams at the start of the proof commute by construction, and P and P−1

are inverses by Proposition 59. That is enough to conclude that P̂ and P̂−1 are
also inverses. Indeed, by commutativity of the triangle, P̂ and P̂−1 preserve the
underlying spaces, and if we fix a space A, the forgetful functors U and U[−]Ê are
injective.375 Then, still with a fixed space A, by commutativity of the square, we 375 For U, it is clear because it only forgets the L-

relation. For U[−]Ê , it is also not too hard to see, and
it is because U : GMet→ Set is faithful and [−]Ê is
epic.

have

UP̂−1P̂Â = P−1U[−]Ê P̂Â = P−1PUÂ = UÂ, and

U[−]Ê P̂P̂−1α̂ = PUP̂−1α̂ = PP−1U[−]Ê α̂ = U[−]Ê α̂,

with which we can conclude by injectivity of U and U[−]Ê .

This motivates the following definition.

Definition 192 (GMet presentation). Let M be a monad on GMet, a quantitative
algebraic presentation of M is signature Σ and a class of quantitative equations
Ê along with a monad isomorphism ρ : T̂Σ,Ê

∼= M. We also say M is presented
by (Σ, Ê). By Proposition 65 and Theorem 191, this is equivalent to having an
isomorphism EM(T̂Σ,Ê) ∼= QAlg(Σ, Ê) that commutes with the forgetful functors.

Example 193 (Hausdorff). We saw in Example 67 that the monad Pne on Set is
presented by the theory of semilattices. In this example,376 we define the theory of 376 We adapted it from [MPP16, §9.1].

quantitative semilattices and show it presents a monad which sends (X, d) to PneX
equipped with the Hausdorff distance d↑.

A quantitative semilattice is a semilattice (i.e. a (ΣS, ES)-algebra) equipped with
an L-relation such that the interpretation of the semilattice operation is nonexpan-
sive with respect to the product distance. Equivalently, it is a quantitative ΣS-
algebra that satisfies ÊS which contains:377 377 The first three equations are those of ES seen with

the discrete context as in Example 182. The last row
is (107) which enforces the nonexpansiveness prop-
erty of J⊕K.

x ⊢ x = x⊕ x

x, y ⊢ x⊕ y = y⊕ x

x, y, z ⊢ x⊕ (y⊕ z) = (x⊕ y)⊕ z

∀ε, ε′ ∈ L, x =ε y, x′ =ε′ y′ ⊢ x⊕ x′ =max{ε,ε′} y⊕ y′

We can give an alternative description of the free quantitative semilattice.

Lemma 194. The free quantitative semilattice on (X, d) is P̂(X,d) = (PneX,∪, d↑).378 378 This corresponds to [MPP16, Theorem 9.3].

Proof. We know from Example 67 that (PneX,∪) is the free semilattice and hence
satisfies ES, thus by Lemma 158, P̂(X,d) satisfies the first three equations above.
We already mentioned that P̂(X,d) satisfies (107) because it satisfies (102).379 Thus, 379 We did not give a proof for (102).

P̂(X,d) is a quantitative semilattice.
Let Â be a quantitative semilattice and f : (X, d) → A be a nonexpansive map.

By Lemma 159, A is a semilattice, hence the universal property of the free semilat-
tice gives a unique homomorphism of (ΣS, ES)-algebras f ∗ : (PneX,∪) → A such
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that f ∗({x}) = f (x) for all x ∈ X. It remains to show that f ∗ is a nonexpansive
map (PneX, d↑)→ A.380 380 Actually, you also have to prove that η : (X, d)→

(PneX, d↑) sending x to {x} is nonexpansive. This is
easy to check.

Let S, T ∈ PneX, C ∈ Pne(X × X) be a coupling for S and T, and suppose C is
ordered with C = {c1, . . . , cn}. In particular, we have S = π1(c1) ∪ · · · ∪ π1(cn) and
T = π2(c1)∪ · · · ∪ π2(cn). Since f ∗ is a homomorphism of semilattices, this implies

f ∗(S) = f (π1(c1))J⊕KA · · · J⊕KA f (π1(cn)), and

f ∗(T) = f (π2(c1))J⊕KA · · · J⊕KA f (π2(cn)).

Now, we can use the fact that Â satisfies the equations in (107) n times in the first
step of the following derivation.

dA( f ∗(S), f ∗(T)) ≤ max
1≤i≤n

dA( f (π1(ci)), f (π2(ci))) by (107)

≤ max
1≤i≤n

d(π1(ci), π2(ci)) f nonexpansive

≤ d↓(S, T) definition of d↓

= d↑(S, T) Lemma 89

We conclude that f ∗ is a homomorphism between the quantitative algebras P̂(X,d)
and Â. The uniqueness follows from it being unique as a homomorphism of semi-
lattices and the faithfulness of U : QAlg(ΣS, ÊS)→ Alg(ΣS).

Since T̂(X, d) is also the free quantitative semilattice on (X, d) by Theorem 174

and free objects are unique by Proposition 40, there is an isomorphism of quanti-
tative algebras ρ(X,d) : T̂(X, d) ∼= P̂(X,d). After some abstract categorical arguments
we do not reproduce, one finds that ρ is a monad isomorphism T̂ΣS ,ÊS

∼= P↑ne , where
P↑ne : GMet → GMet sends (X, d) to (PneX, d↑) and its unit and multiplication act
just like those of Pne.381 381 This monad is famous independently of quanti-

tative algebras, variations of it were studied in, e.g.,
[ACT10, §4], [Tho12, §4], [BBKK18, Example 8.3],
and [DFM23, §6].

The second example of presentation is from [MPP16, §10.1].

Example 195 (Kantorovich). We saw in Example 68 that the monad D on Set is
presented by the theory of convex algebras. Let L = [0, ∞] and GMet = Met.
The theory of quantitative convex algebras is generated by ÊCA which contains the
equations of ECA seen as quantitative equations (as explained in Example 182) and
the quantitative equations for convexity (111).382 382 As a reminder, ÊCA contains

x ⊢ x = x +p x

x, y ⊢ x +p y = y +1−p x

x, y, z ⊢(x +p y) +q z = x +pq +(y + p(1−q)
1−pq

z)

x =ε y,x′ =ε′ y′ ⊢ x +p x′ =pε+pε′ y +p y′

Let (DX, J−KDX) be the free convex algebra, where +p is interpreted as con-
vex combination of distributions (54). Thanks to Lemma 158, we know that for
any metric d on X, we can equip DX with the Kantorovich distance dK and ob-
tain a quantitative algebra (DX, J−KDX , dK) that satisfies the equations of convex
algebras (seen with a discrete context). Moreover, with Example 138 we can infer
that (DX, J−KDX , dK) is a quantitative convex algebra (i.e. it also satisfies (111)). In
[MPP16, Theorem 10.5], the authors show that, along with the map ηDX : (X, d) →
(DX, dK) sending x to the Dirac distribution on x, it is the free quantitative convex
algebra on (X, d).
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We can conclude that (ΣCA, ÊCA) presents a monad DK : Met → Met which
sends (X, d) to (DX, dK) and whose unit and multiplication act just like those of
the Set monad D.383 383 This monad is famous independently of quanti-

tative algebras, variations of it were studied in, e.g.,
[vB05, §5], [MMM12], [BBKK18, Example 8.4], and
[FP19].

Here is one last example.

Example 196 (Maybe). We saw in Example 63 that the maybe monad on Set is
presented by the theory of Σ = {p : 0} with no equations. Let us generalize this
to the maybe monad on GMet.384 We saw in Corollary 177 that QAlg(Σ, Ê1) ∼= 384 It exists because GMet has a terminal object

(Proposition 103) and coproducts (Corollary 177).1/GMet, where Ê1 contains the single equation ⊢ p =ε p with ε being the self-
distance of the unique element in 1, are the same thing as objects in the coslice.
This isomorphism commutes with the forgetful functors to GMet,385 and we get 385 The functor U : 1/GMet→ GMet sends the pair

(X, f : 1→ X) to X.that the monad T̂Σ,Ê1
obtained via the existence of free algebras is isomorphic to the

monad −+ 1 which is obtained via the existence of free objects in 1/GMet.386 386 You need to check that X + 1 is indeed the free
object on X in this coslice.

3.4 Lifting Presentations

Most examples of GMet presentations in the literature [MPP16, MV20, MSV21,
MSV22] (including Examples 193, 195 and 196) are built on top of a Set presenta-
tion. In summary, there is a monad M on Set with a known algebraic presentation
(Σ, E) (e.g. Pne and semilattices or D and convex algebras) and a lifting of every
space (X, d) to a space (MX, d̂). Then, a quantitative algebraic theory (Σ, Ê) over
the same signature is generated by counterparts to the equations in E as well as new
quantitative equations to model the liftings. Finally, it is shown how the theory ax-
iomatizes the lifting, namely, the GMet monad induced by the theory is isomorphic
to a monad whose action on objects is the assignment (X, d) 7→ (MX, d̂).

In this section, we prove Theorem 207 which makes this process more automatic
and gives necessary and sufficient conditions for when it can actually be done.
Throughout, we fix a monad (M, η, µ) on Set and an algebraic theory (Σ, E) pre-
senting M via an isomorphism ρ : TΣ,E

∼= M. We first give multiple definitions to
make precise what we mean by lifting.

Definition 197 (Liftings). We have three different notions of lifting that we intro-
duce from weakest to strongest.

• A mere lifting of M to GMet is an assignment (X, dX) 7→ (MX, d̂X) defining a
generalized metric on MX for every generalized metric on X.387 387 The name lifting more commonly refers to what

we call functor lifting or monad lifting which re-
quire more conditions than a mere lifting, hence the
name mere lifting.

• A functor lifting of M to GMet is a functor M̂ : GMet→ GMet that makes the
square below commute.

GMet GMet

Set Set

U

M

U

M̂

(147)

Note in particular that for every space X, the carrier of M̂X is MX, so we obtain
a mere lifting X 7→ M̂X. Furthermore, given a nonexpansive map f : X → Y, the
underlying function of M̂ f is M f , i.e. M f : M̂X→ M̂Y is nonexpansive.
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In fact, if we have a mere lifting (X, dX) 7→ (MX, d̂X) such that for every non-
expansive map f : X → Y, M f : (MX, d̂X) → (MY, d̂Y) is nonexpansive, we
automatically get a functor lifting M̂ whose action on objects is given by the
mere lifting.388 We conclude that functor liftings are just mere liftings with that 388 The action on morphisms is prescribed by (147),

namely, the underlying function of M̂ f is M f which
is nonexpansive by hypothesis, and since U is faith-
ful, that determines M̂ f .

additional condition.

• A monad lifting of M to GMet is a monad (M̂, η̂, µ̂) on GMet such that M̂ is
a functor lifting of M and furthermore Uη̂ = ηU and Uµ̂ = µU. These two
equations mean that the underlying functions of the unit and multiplication η̂X

and µ̂X are ηX and µX for any space X.389 In particular, the maps 389 In summary, the description of a monad M and
its monad lifting M̂ are exactly the same after forget-
ting about distances. In particular, the action of M̂
on morphisms does not depend on the distances at
the source or the target, and similarly, the unit and
multiplication maps do not depend on the distance
of the space.

ηX : X→ M̂X and µX : M̂M̂X→ M̂X

are nonexpansive for every X. In fact, since U is faithful, that completely deter-
mines η̂X and µ̂X, and we conclude as before that a monad lifting is just a mere
lifting with three additional conditions:

1. M f : (MX, d̂X)→ (MY, d̂Y) is nonexpansive if f : X→ Y is nonexpansive,

2. ηX : (X, dX)→ (MX, d̂X) is nonexpansive for every X, and

3. µX : (MMX, ̂̂dX)→ (MX, d̂X) is nonexpansive for every X.

In practice, when defining a monad lifting, we will define a mere lifting and
check Items 1–3. Let us give an example.

Example 198. Given an L-space (X, d), we define an L-relation d̂ on PneX as follows:
for any non-empty finite S, S′ ⊆ X,

d̂(S, S′) =


⊥ S = S′

d(x, y) S = {x} and S′ = {y}
⊤ otherwise

. (148)

Instantiating GMet with the category of L-spaces that satisfy reflexivity (x ⊢ x =⊥
x), (148) defines a mere lifting of Pne to GMet given by (X, d) 7→ (PneX, d̂).390 View- 390 We need reflexivity to ensure the first and second

cases do not clash. You can also check that whenever
d is a metric space, d̂ is as well, so we get a mere
lifting of Pne to Met.

ing Pne as modelling nondeterminism, this lifting could model a system where non-
deterministic processes cannot be meaningfully compared (they are put at maxi-
mum distance) unless the sets of possible outcomes are the same (distance is min-
imal) or both processes are deterministic (distance is inherited from the distance
between the only possible outcomes).

We show this is a monad lifting of (Pne, η, µ),391 with Lemmas 199–201. 391 The unit and multiplication of Pne were defined in
Example 53.

Lemma 199. If f : (X, d) → (Y, ∆) is nonexpansive, then so is the direct image function
Pne f : (PneX, d̂)→ (PneY, ∆̂).392 392 We write f (S) instead of Pne f (S) for better read-

ability.
Proof. Let S, S′ ∈ PneX. If S = S′, then f (S) = f (S′), so

∆̂( f (S), f (S′)) = ⊥ ≤ ⊥ = d̂(S, S′).

If S = {x} and S′ = {y}, then f (S) = { f (x)} and f (S′) = { f (y)}, so393 393 The inequality holds because f is nonexpansive.
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∆̂( f (S), f (S′)) = ∆( f (x), f (y)) ≤ d(x, y) = d̂(S, S′).

Otherwise, d̂(S, S′) = ⊤ and ∆̂( f (S), f (S′)) is always less or equal to ⊤.

Lemma 200. For any (X, d), the map ηX : (X, d)→ (PneX, d̂) is nonexpansive.

Proof. Recall that ηX(x) = {x}. For any x, y ∈ X, d̂({x}, {y}) = d(x, y), so ηX is
even an isometry.

Lemma 201. For any (X, d), the map µX : (PnePneX, ̂̂d)→ (PneX, d̂) is nonexpansive.

Proof. Recall that µX(F) = ∪F and let F, F′ ∈ PnePneX. The case F = F′ is dealt with
like in Lemma 199, it implies ∪F = ∪F′, hence the distances on both sides are ⊥. If
F = {S} and F′ = {S′}, ∪F = S and ∪F′ = S′, then

d̂(µX(F), µX(F′)) = d̂(S, S′) = ̂̂d({S}, {S′}).
Otherwise, ̂̂d(F, F′) = ⊤, so the inequality holds because d̂(µX(F), µX(F′)) is always
less or equal to ⊤.

Many monads of interest on different GMet categories are monad liftings of Set
monads which have an algebraic presentation. We already mentioned the Haus-
dorff and Kantorovich monad liftings in Examples 193 and 195, but there is also
a combination of the two: the Hausdorff–Kantorovich monad lifting of the convex
sets of distributions monad [MV20] to Met. In [MSV21], we further combined these
with the maybe monad on Met. Another example is the formal ball monad on
quasi-metric spaces [GL19] which is a monad lifting of a writer monad on Set. All
of these happen to have a quantitative algebraic presentation,394 and we will show 394 Goubault-Larrecq does not talk about quantita-

tive algebras in [GL19], but the quantitative writer
monad of [BMPP21, §4.3.2] has a presentation which
can easily be adapted to present the monad of
[GL19].

that this is not a coincidence.
Given a monad lifting M̂, we know that it acts on sets just like M does, and that

can be described algebraically through the presentation ρ : TΣ,E
∼= M. This can help

to understand how M̂ acts on distances. For any space X, we see the distance d̂X on
MX as a distance d̂ on terms modulo E via the bijection ρX :395 395 Recall Proposition 118.

d̂([s]E, [t]E) = d̂X(ρX [s]E, ρX [t]E).

Can we find some quantitative equations Ê that axiomatize d̂, i.e. such that dÊ and
d̂ are isomorphic (uniformly for all X)?

First of all, for the distances to be isomorphic, they need to be on the same set,
namely, we need to have TΣX/≡ E ∼= TΣX/≡ Ê, or equivalently, s ≡ E t ⇐⇒ s ≡ Ê t.
At once, this removes some options for which equations to add in Ê. For instance,
we cannot add X ⊢ s = t if X ⊢ s = t does not already belong to Th(E). Conversely,
if X ⊢ s = t ∈ Th(E), we need to ensure X ⊢ s = t belongs to QTh(Ê). We can do
this by adding X⊤ ⊢ s = t to Ê thanks to Example 182.

After that, we will have to add quantitative equations with quantities to axiom-
atize d̂, but we have to be careful not to break the equivalence we just obtained
between ≡ E and ≡ Ê. For instance, if GMet = Met, f : 1 ∈ Σ and E = ∅, then we
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cannot have x = 1
2

y ⊢ fx =0 fy ∈ Ê, because using the equation x =0 y ⊢ x = y that

defines Met, we could conclude that x = 1
2

y ⊢ fx = fy belongs to QTh(Ê), which

means fx ≡ Ê fy whenever dX(x, y) ≤ 1
2 while fx ̸≡ E fy.

The relation between Ê and E seems to mimic our intuition about mere liftings.
We say that Ê extends E.

Definition 202 (Extension). Given a class E of equations over Σ and a class Ê of
quantitative equations over Σ, we say that Ê is an extension of E if for all X ∈ GMet
and s, t ∈ TΣX,

X ⊢ s = t ∈ Th(E)⇐⇒ X ⊢ s = t ∈ QTh(Ê). (149)

Remark 203. Let us make two delicate points on the quantification of X in (149).
First, it happens before the equivalence. This means that equalities396 that hold 396 This is not a formal term: by equalities that hold,

we mean which Σ-terms are in the same equivalence
class.

in TΣ,EX coincide with the equalities that hold in T̂Σ,ÊX for each X individually. In
particular, if X and X′ are spaces on the same set X, then the equalities that hold in
T̂Σ,ÊX and T̂Σ,ÊX′ coincide. This intuitively corresponds to the fact that the action of
T̂Σ,Ê does not depend on distances.

If instead of (149) we had the following equivalence with the quantification in-
side,

X ⊢ s = t ∈ Th(E)⇐⇒ ∀X ∈ GMet, X ⊢ s = t ∈ QTh(Ê),

then the equalities in TΣ,EX would be those that hold in all T̂Σ,ÊX (for all spaces
X with carrier X). In particular, T̂Σ,ÊX and T̂Σ,ÊX′ could have different equivalence
classes. That is not desirable when defining a mere lifting.

Second, even though the context of a quantitative equation can be any L-space,
X is only quantified over generalized metric spaces here. This implies that the
equivalence classes of T̂Σ,ÊX and T̂Σ,ÊX′ may be different if dX and d′X are two different
L-relations on X. This does not contradict our intuition about liftings because we
only care about the action of T̂Σ,Ê on L-spaces that belong to GMet.

For instance, let Σ = {f : 1}, E = ∅, Ê = ∅, and GMet be defined by the equation
x =⊥ y ⊢ x = x. If X = {x, y} and dX(x, y) = ⊥, then X ⊢ fx = fy belongs to QTh(Ê)
while fx ̸≡ E fy.397 Still, it makes sense that Ê extend E since both have no equations. 397 Here is the derivation (the application of GMet

implicitly uses the fact that x =⊥ y ⊢ x = x is syn-
tactic sugar for X ⊢ x =⊥ y):

GMet

X ⊢ x = y
Cong

X ⊢ fx = fy

It turns out that extensions are stronger than mere liftings because we can show
the monad we constructed via terms modulo Ê is a monad lifting of TΣ,E.

Proposition 204. If Ê is an extension of E, then T̂Σ,Ê is a monad lifting of TΣ,E.

Proof. We need to check the following three equations where U : GMet → Set is
the forgetful functor:

UT̂Σ,Ê = TΣ,EU Uη̂Σ,Ê = ηΣ,EU Uµ̂Σ,Ê = µΣ,EU.

First, we have to show that for any space X, UT̂Σ,ÊX = TΣ,EUX. By definitions, the
L.H.S. is TΣX/≡ Ê and the R.H.S. is TΣX/≡ E, so it boils down to showing that for
all s, t ∈ TΣX, s ≡ Ê t ⇐⇒ s ≡ E t. This readily follows from the definitions of ≡ Ê
and ≡ E, and from (149):398 398 Note again the importance of being able to do this

for each X individually.
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s ≡ Ê t
(113)⇐⇒ X ⊢ s = t ∈ QTh(Ê)

(149)⇐⇒ X ⊢ s = t ∈ Th(E)
(20)⇐⇒ s ≡ E t.

Next, we have to show that UT̂Σ,Ê f = TΣ,E f for any f : X → Y. This is done rather
quickly by comparing their definitions, they make the same squares (22) and (119)
commute now that we know ≡ Ê and ≡ E coincide.

This takes care of the first equation, and the other two are done very similarly,
we compare the definitions of η̂Σ,Ê and ηΣ,E (resp. µ̂Σ,Ê and µΣ,E) and conclude they
are the same when ≡ Ê and ≡ E coincide.399 399 We defined η̂Σ,Ê in (133), ηΣ,E in Footnote 63, µ̂Σ,Ê

in (122), and µΣ,E in (31).

So if we are able to construct an extension Ê of E, we can obtain a monad lifting
of M by passing through the isomorphism ρ : TΣ,E

∼= M.

Corollary 205. If M is presented by (Σ, E), and Ê is an extension of E, then Ê presents a
monad lifting of M.

Proof. We first construct a monad lifting of (M, η, µ). For any space X, we have
an isomorphism ρ−1

X : MX → TΣ,EX, and a generalized metric dÊ on TΣ,E (since the
underlying set of T̂Σ,Ê is TΣ,E by Proposition 204). We can define a generalized metric
d̂X on MX as we have done for Proposition 118 to guarantee that ρ−1

X : (MX, d̂X)→
T̂Σ,ÊX is an isomorphism:400 400 In words, the distance between m and m′ in MX is

computed by viewing them as (equivalence classes
of) terms in TΣX, then using the distance between
them given by dÊ.d̂X(m, m′) = dÊ(ρ

−1
X (m), ρ−1

X (m′)). (150)

This yields a mere lifting (X, dX) 7→ (MX, d̂X).
In order to show this is a monad lifting, we use the following diagrams (quanti-

fied for all X ∈ GMet and nonexpansive f : X→ Y) which commute because ρ is a
monad isomorphism with inverse ρ−1.401 401 The first holds by naturality, the second by (48),

and the third by (49). Moreover, all the functions in
these diagrams are nonexpansive (with the sources
and targets as drawn) by previous results:

• We just showed the components of ρ are isome-
tries.

• We showed TΣ,E f is the underlying function of
T̂Σ,E f because T̂Σ,E is a monad lifting of TΣ,E

(Proposition 204), so TΣE f is nonexpansive when
f is nonexpansive.

• By the previous two points, TΣ,Eρ−1
X is nonexpan-

sive.

• Again since T̂Σ,Ê is a monad lifting of TΣ,E, ηΣ,E
X

and µΣ,E
X are nonexpansive.

(MX, d̂X) T̂Σ,ÊX

(MY, d̂Y) T̂Σ,ÊY

M f

ρ−1
X

TΣ,E f

ρY

X T̂Σ,ÊX

(MX, d̂X)

ηΣ,E
X

ρXηX

(MMX, ̂̂dX) T̂Σ,Ê(X, d̂X) T̂Σ,ÊT̂Σ,ÊX

(MX, d̂X) T̂Σ,ÊX

µX

ρ−1
MX TΣ,Eρ−1

X

µΣ,E
X

ρX

These show (detailed in the footnote) that M f , ηX and µX are compositions of
nonexpansive maps, and hence are nonexpansive. We obtain a monad lifting M̂ of
M to GMet which sends (X, dX) to (MX, d̂X).

It remains to show that M̂ is presented by (Σ, Ê). By construction, we have the
isomorphism ρ̂X : T̂Σ,ÊX → M̂X whose underlying function is ρX for every X. The
fact that ρ̂ is a monad morphism follows from the facts that ρ is a monad morphism,
and that U : GMet→ Set is faithful so it reflects commutativity of diagrams.402 402 Let us detail the argument for naturality, the oth-

ers would follow the same pattern. We need to
show that ρ̂Y ◦ M̂ f = M̂ f ◦ ρ̂X. Applying U, we
get ρY ◦ M f = M f ◦ ρX which is true because ρ is
natural, hence U(ρ̂Y ◦ M̂ f ) = U(M̂ f ◦ ρ̂X). Since U
is faithful, and the desired equation holds.
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Now, we would like to have a converse result. Namely, if (X, dX) 7→ (MX, d̂X) is
given by a monad lifting M̂ of M to GMet, our goal is to construct an extension Ê
of E such that the monad lifting corresponding to Ê (given in Corollary 205) is M̂.
There is no obvious reason this is even possible, maybe M̂ is a monad lifting that
has no quantitative algebraic presentation.403 Our next theorem shows that such an 403 Or maybe M̂ has a presentation that is not an ex-

tension of E, but our informal discussion leading
to the definition of extensions indicates that is less
probable.

Ê always exists. In fact, it is constructed very naively.
As discussed in Example 182, when Ê contains all the quantitative equations in

Ê1 = {X⊤ ⊢ s = t | X ⊢ s = t ∈ E} , (151)

then we have at least one direction of (149), namely, that X ⊢ s = t ∈ Th(E) implies
X ⊢ s = t ∈ QTh(Ê) for all X and s, t ∈ TΣX.404 Next, we include in Ê all the possible 404 We use Lemma 183.

equations X ⊢ s =ε t where ε is the distance between s and t when viewed inside
M̂X (via ρX),405 namely, Ê2 ⊆ Ê where 405 We are essentially doing the opposite of (150).

Ê2 =
{

X ⊢ s =ε t | X ∈ GMet, s, t ∈ TΣX, ε = d̂X(ρX [s]E, ρX [t]E)
}

. (152)

This is a very large bunch of equations (it is not even a set), but it leaves no stone
unturned, meaning that the distance computed by Ê will always be smaller than
the distance in M̂X. Indeed, for any m, m′ ∈ MX, letting s, t ∈ TΣX be such that
ρX [s]E = m and ρX [t]E = m′ (by surjectivity of ρX), we have406 406 The implication follows because by definition, Ê

will contain X ⊢ s =dX(m,m′) t, hence by the Max

rule, we will have X ⊢ s =ε t ∈ QTh(Ê). The first
equivalence is (117), and the second holds because
ρ−1

X is the inverse of ρX .

d̂X(m, m′) ≤ ε =⇒ X ⊢ s =ε t ∈ QTh(Ê)

⇐⇒ dÊ([s]E, [t]E) ≤ ε

⇐⇒ dÊ(ρ
−1
X (m), ρ−1

X (m′)) ≤ ε.

In order to conclude that Ê = Ê1 ∪ Ê2 presents M̂, we need to show that Ê is an
extension of E, i.e. the other direction of (149), and that the monad lifting defined
in Corollary 205 coincides with M̂, i.e. the converse implication of the previous
derivation holds. We will prove these by constructing a (family of) special algebras
in QAlg(Σ, Ê).407 407 In turns out (after the rest of the proof) we are

constructing the free algebra over A, but we feel it is
not necessary to make that explicit.

For any generalized metric space A, we denote by MA the quantitative Σ-algebra
(MA, J−KµA , d̂A), where

• (MA, d̂A) is the space obtained by applying M̂ to A, and

• (MA, J−KµA) is the Σ-algebra obtained by applying the isomorphism Alg(Σ, E) ∼=
EM(M) (from the presentation) to the M-algebra (MA, µA) (from Example 58).

We can show that MA belongs to QAlg(Σ, Ê1 ∪ Ê2).

Lemma 206. For all ϕ ∈ Ê1 ∪ Ê2, MA ⊨ ϕ.

Proof. If ϕ = X⊤ ⊢ s = t ∈ Ê1, then by construction (MA, J−KµA) satisfies X ⊢ s =

t ∈ E. So MA satisfies ϕ by Lemma 158.
Suppose now that ϕ = X ⊢ s =ε t ∈ Ê2 with ε = d̂X(ρX [s]E, ρX [t]E). A bit of

unrolling408 shows that for an assignment ι : X → MA, the interpretation J−Kι
µA

is 408 Look at the definition of P−1 in Proposition 59, in
particular what we proved in Footnote 114, and the
definition of −ρ in (53).
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the composite

TΣX
TΣ ι−→ TΣ MA

[−]E−−→ TΣ,E MA
ρMA−−→ MMA

µA−→ MA.

For later use, we apply the naturality of [−]E (22) and ρ to rewrite the composite as

J−Kι
µA

= TΣX
[−]E−−→ TΣ,EX

ρX−→ MX Mι−→ MMA
µA−→ MA. (153)

We conclude that MA ⊨ ϕ with the following derivation which holds for all nonex-
pansive ι̂ : X→ M̂A.409 409 Our hypothesis that M̂ is a monad lifting yields

nonexpansiveness of µA and Mι̂.

d̂A(JsKι̂
µA

, JtKι̂
µA

) = d̂A (µA(Mι̂(ρX [s]E)), µA(Mι̂(ρX [t]E))) by (153)

≤ ̂̂dA (Mι̂(ρX [s]E), Mι̂(ρX [t]E)) µA is nonexpansive

≤ d̂X (ρX [s]E, ρX [t]E) Mι̂ is nonexpansive

= ε

Theorem 207. Let M̂ be a monad lifting of M to GMet, and Ê = Ê1 ∪ Ê2. Then, Ê is an
extension of E and it presents M̂.

Proof. We already showed the forward implication of (149) when we defined Ê1

(151). For the converse, suppose that X ⊢ s = t ∈ QTh(Ê), we saw in Lemma 206 that
MX satisfies X ⊢ s = t. Taking the assignment ηX : X→ M̂X which is nonexpansive
because M̂ is a monad lifting, we have JsKηX

µX = JtKηX
µX . Using (153) and the monad

law µX ◦MηX = idMX (left triangle in (39)), we find

ρX [s]E = µX(MηX(ρX [s]E)) = JsKηX
µX = JtKηX

µX = µX(MηX(ρX [t]E)) = ρX [t]E.

Finally, since ρX is a bijection, we have [s]E = [t]E, i.e. X ⊢ s = t ∈ Th(E).
We already showed that d̂X(m, m′) ≥ dÊ(ρ

−1
X (m), ρ−1

X (m′)) when defining Ê2. For
the converse, let m = ρX [s]E and m′ = ρX [t]E for some s, t ∈ TΣX and suppose
that dÊ([s]E, [t]E) ≤ ε, or equivalently by (117), that X ⊢ s =ε t ∈ QTh(Ê). As
above, Lemma 206 says that MX satisfies that equation. Taking the assignment
ηX : X→ M̂X which is nonexpansive because M̂ is a monad lifting, we have410 410 The second inequality holds again by (153) and

(39).

d̂X(m, m′) = d̂X (ρX [s]E, ρX [t]E) = d̂X

(
JsKηX

µX , JtKηX
µX

)
≤ ε.

Comparing with (150), we conclude that M̂ is exactly the monad lifting from Corol-
lary 205. In particular, Ê presents M̂ via ρ̂ whose component at X is ρX .

Remark 208. A deeper result hides behind the last line. It follows from our construc-
tions that if you start from an extension Ê, build a monad lifting M̂ from Ê with
Corollary 205, then build an extension Ê′ from M̂ with Theorem 207, you obtain
two equivalent classes of equations, i.e. QTh(Ê) = QTh(Ê′). Similarly, if you start
with a monad lifting M̂, then build an extension Ê, then build a monad lifting M̂′,
then M̂ = M̂′.411 411 We have equality on the nose because monad lift-

ings are defined with equality on the nose. One can
probably relax these to be isomorphisms.

This does not yield a bijection but almost. If you restrict extensions of E to those
that are quantitative algebraic theories,412 then you get a bijection with monad

412 i.e. they are saturated, you cannot add more quan-
titative equations without changing the algebras
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liftings of M.
I believe it is a simple exercise in categorical logic to make this remark into an

(dual) equivalence of categories. A more challenging task would be to allow M and
E to vary.

When constructing the extension Ê = Ê1 ∪ Ê2, Ê1 can be fairly small since it
has the size of E, but Ê2 as defined is always huge (not even a set). In theory,
some results in the literature could allow us to restrict the size of contexts to be of a
moderate size only with mild size conditions on L and ÊGMet.413 In practice, we can 413 I will not write the proofs because I am not con-

fident enough with the literature on accessible and
presentable categories, but I believe [FMS21, Propo-
sitions 3.8 and 3.9] make it possible to adapt the ar-
guments of Remark 50 replacing ℵ0 with a different
cardinal (we implicitly used ℵ0 because λ < ℵ0 ⇔
λ finite).

sometimes find some simple set of quantitative equations which will be equivalent
to Ê2 (when Ê1 is present), and we give a couple of examples below. They require
some clever arguments that depend on the application, but there may be room for
optimization in the definition of Ê2.

Example 209 (Trivial Lifting of Pne). Recall the monad lifting of Pne to GMet =

QAlg(∅, {x ⊢ x =⊥ X}) from Example 198. Let us denote it by P̂ , and its action on
objects by (X, d) 7→ (PneX, d̂X).414 We also denote with ρ the monad isomorphism 414 The distance d̂X was defined in (148).

witnessing that Pne is presented by the theory of semilattices (ΣS, ES) (recall Exam-
ple 67). By Theorem 207, there is a quantitative algebraic presentation for P̂ given
by415 415 We are a bit concise in the quantifications for Ê2.

Ê1 = {X⊤ ⊢ s = t | X ⊢ s = t ∈ ES} and Ê2 =
{

X ⊢ s =ε t | ε = d̂X
(
ρX [s]ES , ρX [t]ES

)}
.

We claim that the equations in Ê1 are enough, namely, QTh(Ê1 ∪ Ê2) = QTh(Ê1).
First, since Ê1 ⊆ Ê1 ∪ Ê2, we infer that QTh(Ê1) ⊆ QTh(Ê1 ∪ Ê2).416 416 There are two ways to understand this. Seman-

tically, the equations that are satisfied by all alge-
bras in QAlg(Σ, Ê1) are also satisfied by all algebras
in QAlg(Σ, Ê1 ∪ Ê2) because the second category is
contained in the first. Syntactically, if you have more
axioms, you can prove more things.

Second, recall from Lemma 183 that with the equations in Ê1, we can already
prove all the equations in the theory of semilattices. This means that for any X ⊢ s =ε

t ∈ Ê2 with ε = d̂X
(
ρX [s]ES , ρX [t]ES

)
, we have the three following cases.

• If [s]ES = [t]ES and ε = ⊥, i.e. s and t represent the same subset of X, then the
equation X ⊢ s = t is in Th(ES) which implies X ⊢ s = t is in QTh(Ê1). It follows
by the following derivation that X ⊢ s =0 t ∈ QTh(Ê1) as desired.417 417 Recall that the context of x ⊢ x =⊥ x, after un-

rolling the syntactic sugar, is the L-space with x at
distance ⊤ from itself, so we only need to prove σ(x)
is also at distance ⊤ from itself (we do it with Top).X ⊢ s = t

σ = x 7→ s GMetx ⊢ x =⊥ x TopX ⊢ s =⊤ s
SubQ

X ⊢ s =⊥ s
CompRX ⊢ s =⊥ t

• If [s]ES = [x]ES and [t]ES = [y]ES for some x, y ∈ X and ε = dX(x, y), then
the equations X ⊢ s = x and X ⊢ y = t are in Th(ES) which implies X ⊢ s = x
and X ⊢ y = t are in QTh(Ê1). Furthermore, Lemma 153 implies X ⊢ x =ε y ∈
QTh(Ê1), and finally by Lemmas 150 and 151, X ⊢ s =ε t also belongs to QTh(Ê1)

as desired.

• Otherwise, ε = ⊤, so X ⊢ s =ε t belongs to QTh(Ê1) by Lemma 152.

We have shown that Ê2 ⊆ QTh(Ê1), and it follows that QTh(Ê1 ∪ Ê2) ⊆ QTh(Ê1).418 418 Again, there are two different ways to understand
this. Semantically, if all algebras in QAlg(Σ, Ê1) sat-
isfy Ê2, then QAlg(Σ, Ê1) and QAlg(Σ, Ê1 ∪ Ê2) are
the same categories. Syntactically, in any derivation
with axioms Ê1 ∪ Ê2, you can replace each axiom in
Ê2 by a derivation using only axioms in Ê1.

In conclusion, we found that P̂ is presented by the equations in Ê1 which we
rewrite below:

x ⊢ x = x⊕ x x, y ⊢ x⊕ y = y⊕ x x, y, z ⊢ x⊕ (y⊕ z) = (x⊕ y)⊕ z.
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Compared to the presentation of P↑ne , we simply removed (107).

In a sense, P̂ can be seen as a trivial monad lifting of Pne because we simply
viewed the equations presenting Pne as quantitative equations as we did in (141),
and we added nothing else. After this example, you may want to conjecture that
whenever Ê is constructed from E like that, then Ê presents a monad lifting of the
TΣ,E, or equivalently thanks to Corollary 205 and Theorem 207, Ê is an extension
of E. That is not true. We showed in [MSV21, Theorem 44] that Ê can sometimes
prove more equations than E.

We end this chapter with a final example, the one that motivated a lot of ideas in
this manuscript.

Example 210 (ŁK). The ŁK distance on probability distributions defined in (104)
defines a mere lifting (X, d) 7→ (DX, dŁK) of D to GMet = [0, 1]Spa.419 We show 419 Of course, you can take [0, ∞]Spa as well. You can

also show that this mere lifting preserves the satis-
faction of all the equations defining metric spaces
except reflexivity (x ⊢ x =0 x). Indeed, we have
dŁK(φ, φ) = 0 if and only if d(x, y) = 0 for all
x, y ∈ supp(φ) (if d is reflexive, this forces φ = δx).
For instance, you can take GMet to be the category
of diffuse metric spaces as we did in [MSV22, §5.3].

this is a monad lifting of (D, η, µ) (as defined in Example 54) with Lemmas 211–213.

Lemma 211. If f : (X, d) → (Y, ∆) is nonexpansive, then so is D f : (DX, dŁK) →
(DY, ∆ŁK).

Proof. Let φ, ψ ∈ DX, we have

dŁK(D f (φ),D f (ψ))

= ∑
(y,y′)
D f (φ)(y)D f (ψ)(y′)∆(y, y′)

= ∑
(y,y′)

 ∑
x∈ f−1(y)

φ(x)

 ∑
x′∈ f−1(y′)

ψ(x′)

 ∆(y, y′) definition of D f

= ∑
(y,y′)

∑
x∈ f−1(y)

∑
x′∈ f−1(y′)

φ(x)ψ(x′)∆(y, y′)

= ∑
(x,x′)

φ(x)ψ(x′)∆( f (x), f (x′))

≤ ∑
(x,x′)

φ(x)ψ(x′)d( f (x), f (x′)) f is nonexpansive

= dŁK(φ, ψ). definition of dŁK

Lemma 212. For any (X, d), the map ηX : (X, d)→ (DX, dŁK) is nonexpansive.

Proof. For any a, a′ ∈ X, we have420 420 Notice that ηX is even an isometric embedding.

dŁK(δa, δa′)
(104)
= ∑

(x,x′)
δa(x)δa′(x′)d(x, x′) = δa(a)δa′(a′)d(a, a′) = d(a, a′).

Lemma 213. For any (X, d), the map µX : (DDX, dŁKŁK)→ (DX, dŁK) is nonexpansive.

Proof.

Let us denote this monad lifting by DŁK. In [MSV22, §5.3], we gave a relatively
simple quantitative algebraic presentation for DŁK, but Theorem 207 will help us
find a simpler one. Since, by Example 68, the theory of convex algebras generated
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by (ΣCA, ECA) presents D (via a monad isomorphism that we write ρ), the theorem
gives us a theory presenting DŁK generated by Ê1 ∪ Ê2 where

Ê1 = {X⊤ ⊢ s = t | X ⊢ s = t ∈ ECA} and

Ê2 =
{
(X, d)⊢ s =ε t | ε = dŁK

(
ρX [s]ECA , ρX [t]ECA

)}
.

In order to simplify Ê2, we rely on two property that dŁK has (one symmetric to the
other) : for any φ, φ′, ψ ∈ DX and p ∈ [0, 1],

dŁK(pφ + pφ′, ψ) = pdŁK(φ, ψ) + pdŁK(φ′, ψ) and (154)

dŁK(φ, pφ + pφ′) = pdŁK(ψ, φ) + pdŁK(ψ, φ′). (155)

Intuitively, this means that we can compute the distance between s and t by decom-
posing the terms into their variables, computing simple distances, then combining
them to get back to s and t.421 Formally, we only need to keep the quantitative 421 This is very similar to what happens for the Kan-

torovich distance and (111).equations in Ê2 that belong to422

422 If you have symmetry (x =ε y ⊢ y =ε x) as an
axiom in GMet already, you can keep only one of
these sets.Ê′2 ={x =ε1 y, x =ε2 z ⊢ x =pε1+pε2 y +p z | ε1, ε2 ∈ [0, 1], p ∈ (0, 1)}

∪ {y =ε1 x, z =ε2 x ⊢ y +p z =pε1+pε2 x | ε1, ε2 ∈ [0, 1], p ∈ (0, 1)}.

We will prove that for any Â ∈ QAlg(ΣCA), Â ⊨ Ê1 ∪ Ê′2 implies Â ⊨ Ê1 ∪ Ê2.423 423 It follows that QTh(Ê1 ∪ Ê′2) = QTh(Ê1 ∪ Ê2) be-
cause we already have the ⊇ inclusion as explained
in Footnote 418.

Suppose Â ⊨ Ê1 ∪ Ê′2, we proceed by induction on the structure of s and t to show
that Â satisfies (X, d)⊢ s =ε t, where ε = dŁK

(
ρX [s]ECA , ρX [t]ECA

)
.

If s and t are variables, then ρX [s]ECA = δx and ρX [t]ECA = δy for some x, y ∈ X,
thus ε = d(x, y) and (X, d)⊢ x =d(x,y) y is satisfied by Â (by 153).

Otherwise, without loss of generality,424 we write t = t1 +p t2, and let εi = 424 If s is a term of depth > 0 but t is a variable, you
decompose s instead, and then you have to use a
symmetric argument.

dŁK
(
ρX [s]ECA , ρX [ti]

)
. By the induction hypothesis, Â ⊨ (X, d)⊢ s =εi ti for i = 1, 2.

Then, we define a substitution map σ : {x, y, z} → TΣX with x 7→ s, y 7→ t1 and
z 7→ t2, and since Â satisfies x =ε1 y, x =ε2 z ⊢ x =pε1+pε2 y +p z ∈ Ê′2, we can apply
Lemma 160 to conclude Â satisfies (X, d)⊢ s =ε′ t with

ε′ = pdŁK
(
ρX [s]ECA , ρX [t1]

)
+ pdŁK

(
ρX [s]ECA , ρX [t2]

)
= dŁK

(
ρX [s]ECA , pρX [t1] + pρX [t2]

)
by (154)

= dŁK
(
ρX [s]ECA , ρX [t1 +p t2]

)
= dŁK

(
ρX [s]ECA , ρX [t]ECA

)
= ε.

We conclude that Ê1 ∪ Ê′2 presents DŁK.
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[Adá22] Jiří Adámek. Varieties of quantitative algebras and their monads. In Proceedings of the 37th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS ’22, New York, NY, USA, 2022. Association for Computing Machinery.
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