
Part V
Order Through Fluctuations

Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition. Dilip Kondepudi and Ilya Prigogine.

© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.



18
Nonlinear Thermodynamics

18.1 Far-from-Equilibrium Systems

Systems that are subject to a flow of energy and matter can be driven far from thermodynamic equilibrium, into

the ‘nonlinear’ regime. In the nonlinear regime, the thermodynamic flows J𝛼 are no longer linear functions of

thermodynamic forces F𝛼 . In the case of chemical reactions, we have seen that a system is in the linear regime

if the affinities Ak are small compared to RT, i.e. |Ak/RT| ≪ 1. The value of RT at T = 300 K is about 2.5 kJ

mol−1. Since the affinities of chemical reactions can easily reach the range 10–100 kJ mol−1, the nonlinear

regime is easily reached for chemical processes (Exercise 18.1). It is more difficult to reach the nonlinear

regime for transport processes such as heat conduction and diffusion.

In Nature, far-from-equilibrium systems are ubiquitous. The Earth as a whole is an open system subject to

the constant flow of energy from the Sun. This influx of solar energy sustains the biosphere, and is ultimately

responsible for maintaining an atmosphere out of thermodynamic equilibrium (Exercise 18.2). Every living

cell lives through the flow of matter and energy.

As we shall see in the following sections, far-from-equilibrium states can lose their stability and evolve

to one of the many states available to the system. Irreversible processes and the boundary conditions do not

uniquely specify the nonequilibrium state to which the system will evolve; driven by internal fluctuations or

other small external influences, the system leaves the unstable state and evolves to one of the many possible

new states. These new states can be highly organized and are called dissipative structures.
Dissipative structures behave in an unpredictable way. Small external influences play a significant role;

causes that determine the behavior of the system are no longer within the system. It becomes extremely

difficult, if not impossible, to approximate such systems as isolated or closed systems. As for the certainty

of Newtonian and Laplacian planetary motion and the uniqueness of equilibrium states, both begin to fade;

we see instead a probabilistic Nature that generates new organized structures, a Nature that can create living

organisms.

18.2 General Properties of Entropy Production

In the linear regime we saw that the stationary states are those in which the total entropy production

P = ∫V 𝜎 dV reaches a minimum. This criterion also assured the stability of the stationary state. In the
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406 Modern Thermodynamics

far-from-equilibrium nonlinear regime, there is no such general principle for determining the state of the

system. Far-from-equilibrium states can become unstable and evolve to new organized states and we will

identify the thermodynamic conditions under which this may happen.

We begin by noting some general properties of the total entropy production P. These are statements

regarding the time evolution of change 𝛿P due to small changes in the forces 𝛿Fk and the flows 𝛿Jk. Let P be

the entropy production in a nonequilibrium stationary state. Since P = ∫V 𝜎 dV = ∫V

∑
k Fk Jk dV , the rate of

change in P can be written as

dP
dt

= ∫V

(
d𝜎

dt

)
dV = ∫V

(∑
k

dFk

dt
Jk

)
dV + ∫V

(∑
k

Fk
dJk

dt

)
dV

≡ dFP

dt
+

dJP

dt

(18.2.1)

in which dFP/dt is the change due to the changes in Fk and dJP/dt is the change due to the changes in Jk. Two

general properties can now be stated [1–3]:

a. In the linear regime:

dFP

dt
=

dJP

dt
(18.2.2)

b. For time-independent boundary conditions, even outside the linear regime:

dFP

dt
≤ 0 (18.2.3)

(dFP/dt = 0 at the stationary state).

In contrast to the variation dG in the Gibbs free energy G, dFP is not a differential of a state function. Hence

the fact that dFP can only decrease does not tell us how the state will evolve.

The first of the above relations follows from the linear relations Jk =
∑

i LkiFi and the Onsager reciprocal

relations Lki = Lik. First we note that∑
k

dFk Jk =
∑

ki

dFk LkiFi =
∑

ki

(dFk Lik) Fi =
∑

i

dJiFi (18.2.4)

Using this result in the definitions of dFP and dJP in Equation (18.2.1), we immediately see that

dFP

dt
= ∫V

(∑
k

dFk

dt
Jk

)
dV = ∫V

(∑
k

Fk
dJk

dt

)
dV =

dJP

dt
= 1

2

dP
dt

(18.2.5)

The general property (18.2.3) when applied to Equation (18.2.5) gives us the result we have seen in the

previous chapter:

dP
dt

= 2
dFP

dt
< 0 in the linear regime (18.2.6)

This shows, once again, that a perturbation in the total entropy production P from its stationary state value

will monotonically decrease to its stationary state value, in accordance with the principle of minimum entropy

production. A simple proof of Equation (18.2.3) is given in Appendix 18.1.
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We see that we now have two inequalities, P ≥ 0 and dFP ≤ 0. The second inequality is an important

evolution criterion. Let us indicate briefly two consequences for a homogeneous system of unit volume.

If only one concentration, say X, is involved in the evolution, dFP = v(X) (𝜕A∕𝜕X) dX ≡ dW. The variable

W, thus defined, is then a ‘kinetic potential’. However, this is rather an exceptional case. The interesting

consequence is that time-independent constraints may lead to states that are not stationary, states that oscillate

in time. We shall see examples of such systems in Chapter 19, but let us consider here a simple example of

a far-from-equilibrium chemical system where the dependence of velocities on affinities are antisymmetric,

i.e. v1 = lA2, v2 = −lA1 (Onsager’s relations are not valid for systems far from equilibrium). The derivative

dFP/dt in this case becomes

1

V

dFP

dt
= v1

dA1

dt
+ v2

dA2

dt
= lA2

dA1

dt
− lA1

dA2

dt
≤ 0 (18.2.7)

By introducing the polar coordinates A1 = r cos 𝜃 and A2 = r sin 𝜃, it is easy to see that this equation can be

written as

1

V

dFP

dt
= −lr2 d𝜃

dt
≤ 0 (18.2.8)

The system rotates irreversibly in a direction determined by the sign of l. An example of such a system

is the well-known Lotka–Volterra ‘prey–predator’ interaction given as an exercise (Exercise 18.9). We can

also apply this inequality to derive a sufficient condition for the stability of a steady state. If all fluctuations

𝛿FP > 0 then the steady state is stable. However, here it is more expedient to use the Lyapunov theory of

stability to which we turn now.

18.3 Stability of Nonequilibrium Stationary States

A very general criterion for stability of a state was formulated by Lyapunov [4]. We shall obtain the conditions

for the stability of a nonequilibrium state using Lyapunov’s theory.

18.3.1 Lyapunov’s Theory of Stability

Lyapunov’s formulation gives conditions for stability in precise mathematical terms (with clear intuitive

meaning). Let Xs be a stationary state of a physical system. In general, X may be an r-dimensional vector

with components Xk, k = 1, 2, . . . , r. We shall denote the components of Xs by Xsk. Let the time evolution of

X be described by an equation

dXk

dt
= Zk (X1, X2,… , Xr; 𝜆j) (18.3.1)

in which the 𝜆j are parameters that may or may not be independent of time. A simple example of such an

equation is given in Box 18.1. In general, if the Xk are functions not only of time t but also of positions x, then

Equation (18.3.1) will be a partial differential equation in which Zk will be a partial differential operator.
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Box 18.1 Kinetic equations and Lyapunov stability theory: an example

S A
B

T

P

Consider the open chemical system shown above with the following chemical reactions:

S + T
k1⟶A

S + A
k2⟶B

A + B
k3⟶P

For simplicity, we assume that the reverse reactions can be ignored. If the system is subject to an inflow

of S and T and an outflow of P such that the concentrations of these species are maintained constant, we

have the following kinetic equations for the concentrations of A and B:

X1 ≡ [A], X2 ≡ [B]

dX1

dt
= k1[S] [T] − k2[S]X1 − k3X1X2 ≡ Z1(Xj, [S], [T])

dX2

dt
= k2[S] X1 − k3X1X2 ≡ Z2(Xj, [S], [T])

In this system, [S] and [T] correspond to the parameters 𝜆j in Equation (18.3.1). For a given value of these

parameters, the stationary states Xs1 and Xs2 are easily found by setting dX1∕dt = dX2∕dt = 0 :

Xs1 =
k1 [T]

2 k2

, Xs2 =
k2 [S]

k3

The stability of this stationary state is determined by examining the evolution of the perturbations 𝛿X1 and

𝛿X2 from this stationary state. A possible Lyapunov function L, for example, is

L (𝛿X1, 𝛿X2) =
[
(𝛿X1)2 + (𝛿X2)2

]
> 0

If it can be shown that dL (𝛿X1, 𝛿X2)∕dt < 0, then the stationary state (Xs1, Xs2) is stable.

The stationary state Xsk is the solution to the set of coupled equations

dXk

dt
= Zk (Xs1, Xs2,… , Xsr; 𝜆j) = 0 (k = 1, 2,… , r) (18.3.2)
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The stability of the stationary state can be understood by looking at the behavior of a small perturbation 𝛿Xk.

To establish the stability of a state, first a positive function L(𝛿X) of 𝛿X, which may be called a ‘distance’, is

defined in the space spanned by Xk. If this ‘distance’ between Xsk and the perturbed state (Xsk + 𝛿Xk) steadily

decreases in time, the stationary state is stable. Thus state Xsk is stable if

L(𝛿Xk) > 0
dL(𝛿Xk)

dt
< 0 (18.3.3)

A function L that satisfies Equation (18.3.3) is called a Lyapunov function. If the variables Xk are functions

of position (as concentrations nk in a nonequilibrium system can be), L is called a Lyapunov functional –

a ‘functional’ is a mapping of a set of functions to a number, real or complex. The notion of stability is not

restricted to stationary states; it can also be extended to periodic states [4]. However, since we are interested

in the stability of nonequilibrium stationary states, we shall not deal with the stability of periodic states at

this point.

18.3.2 Second Variation of Entropy – 𝜹2S as a Lyapunov Functional

We have already seen that the second variation of entropy is a function that has a definite sign for any

thermodynamic system in local equilibrium. By considering the entropy density s(x) as a function of the

energy density u(x) and the concentrations nk(x), we can write ΔS, the change in entropy from the stationary

value, in the form

ΔS = ∫
[ (

𝜕s
𝜕u

)
nk

𝛿u +
∑

k

(
𝜕s
𝜕nk

)
u
𝛿nk

]
dV

+ 1

2 ∫
[ (

𝜕2s
𝜕u2

)
(𝛿u)2 + 2

∑
k

(
𝜕2s

𝜕u 𝜕nk

)
𝛿u 𝛿nk +

∑
ij

(
𝜕2s

𝜕ni 𝜕nj

)
𝛿ni 𝛿nj

]
dV

= 𝛿S + 1

2
𝛿2S

(18.3.4)

Since we are considering a nonequilibrium stationary state, the thermodynamic forces and the corresponding

flows of energy, Ju, and matter, Jk, do not vanish. Hence the first variation 𝛿S ≠ 0. The second variation, 𝛿2S,

has a definite sign because the integrand, which is the second variation of entropy of elemental volume that

is locally in equilibrium, is negative (Equation (12.4.10)):

1

2
𝛿2S < 0 (18.3.5)

Appendix 18.2 contains the derivation of the following general result:

d

dt
𝛿2S
2

= ∫V

∑
k

𝛿Fk 𝛿 JkdV (18.3.6)

In Chapter 14 (Equation (14.1.16)) we obtained the same equation for perturbations from the equilibrium

state. Equation (18.3.6) shows that the time derivative of 𝛿2S has the same form even under nonequilibrium

conditions. The difference is that near equilibrium
∑

k 𝛿Fk𝛿 Jk =
∑

k FkJk > 0; but it is not necessarily so

far from equilibrium. We shall refer to this quantity as excess entropy production, but, strictly speaking, it is

the increase in entropy production only near the equilibrium state; for a perturbation from a nonequilibrium

state, the increase in entropy production is equal to 𝛿P = 𝛿FP + 𝛿JP.
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Expressions (18.3.5) and (18.3.6) would define a Lyapunov functional, L = –𝛿2S/2 if the stationary state

were such that
∑

k 𝛿Fk𝛿 Jk > 0. Thus, a nonequilibrium stationary state is stable if

d

dt
𝛿2S
2

= ∫V

∑
k

𝛿Fk 𝛿 JkdV > 0 (18.3.7)

If this inequality is violated, it only means that the system may be unstable; i.e.
∑

k 𝛿Fk 𝛿 Jk < 0 is a necessary
but not a sufficient condition for instability.

18.3.3 Using the Stability Criterion

Since 𝛿2S < 0 under both equilibrium and nonequilibrium conditions, the stability of a stationary state is

assured if

d

dt
𝛿2S
2

= ∫V

∑
k

𝛿Fk 𝛿 JkdV > 0 (18.3.8)

Let us apply this condition to simple chemical systems to understand when a nonequilibrium system may

become unstable.

First, let us consider the following reaction:

A + B
kf
←←←←←←←←⇀↽←←←←←←←←
kr

C + D (18.3.9)

Assuming these reactions are elementary steps, we write the forward and reverse rates as

Rf = kf [A] [B] and Rr = kr[C] [D] (18.3.10)

We assume this system is maintained out of equilibrium by suitable flows. As we have seen in Section 9.5,

for a chemical reaction the affinity A and the velocity of reaction v are given by A = RT ln(Rf/Rr) and v = (Rf

– Rr). The time derivative of 𝛿2S, the ‘excess entropy production’ (18.3.8), can be written in terms of 𝛿F =
𝛿A/T and 𝛿J = 𝛿v. For a perturbation 𝛿[B] from the stationary state, it is easy to show that (Exercise 18.4)

1

2

d𝛿2S
dt

= ∫V

∑
𝛼

𝛿J𝛼 𝛿F𝛼dV = ∫V

∑
𝛼

𝛿A
T
𝛿v dV = Rkf ∫V

[A]s

[B]s

(𝛿[B])2dV > 0 (18.3.11)

in which the subscript s indicates the nonequilibrium stationary state values of the concentrations. Since

d𝛿2S/dt is positive, the stationary state is stable.

The situation is different, however, for an autocatalytic reaction such as

2X + Y
kf
←←←←←←←←⇀↽←←←←←←←←
kr

3X (18.3.12)

which appears in a reaction scheme called the ‘Brusselator’, which we will consider in the next chapter. For

this reaction, we can consider a nonequilibrium stationary state in which the concentrations are [X]s and [Y]s

and a perturbation 𝛿X. Using the forward and reverse rates Rf = kf[X]2[Y] and Rr = kr[X]3 in the expressions

A = RT ln(Rf/Rr) and v = (Rf – Rr), we can once again calculate the excess entropy production to obtain

1

2

d𝛿2S
dt

= ∫V

𝛿A
T
𝛿v dV = −R∫V

(2kf [X]s[Y]s − 3kr[X]2
s )

(𝛿X)2

[X]s

dV (18.3.13)

The excess entropy production can now become negative, particularly if kf ≫ kr. Hence the stability is no

longer assured and the stationary state may become unstable.
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Figure 18.1 Each value of X represents a state of the system. The distance from equilibrium is represented by
the parameter Δ. When Δ = 0 the system is in a state of thermodynamic equilibrium. When Δ is small, the system
is in a near-equilibrium state, which is an extrapolation of the equilibrium state; this family of states is called
the thermodynamic branch. In some systems, such as those with autocatalysis, when Δ reaches a critical value
Δc, the states belonging to the thermodynamic branch become unstable. When this happens, the system makes
a transition to a new branch, which may correspond to organized states.

The above discussion can be summarized through a stability diagram, as shown in Figure 18.1. The value

of the parameter Δ is a measure of the distance from equilibrium. For each value of Δ the system will relax to

a stationary state, denoted by Xs. The equilibrium state corresponds to Δ = 0; Xs is a continuous extension of

the equilibrium state and is called the thermodynamic branch. As long as condition (18.3.8) is satisfied, the

thermodynamic branch is stable; if it is violated, the thermodynamic branch may become unstable. If it does

become unstable, the system makes a transition to a new branch, which is generally an organized structure.

If the kinetic equations of the systems are known, there is a well-defined mathematical method to determine

at what point the stationary state will become unstable. This is the linear stability analysis we will discuss

in the following section. Nonequilibrium instabilities give rise to a great variety of structures, which we will

discuss in the next chapter.

18.4 Linear Stability Analysis

In general, the rate equations of a homogeneous chemical system take the general form:

dXk

dt
= Zk (X1,… , Xn; 𝜆j) (18.4.1)

where the Xk correspond to concentrations, such as [X] and [Y] in Equation (18.3.12), and 𝜆j corresponds to

concentrations that are maintained at a constant nonequilibrium value. We begin by assuming that a stationary

solution X0
k of Equation (18.4.1) is known. This means

Zk(X0
1
,… , X0

n , 𝜆j) = 0 (18.4.2)

We would like to know if this stationary solution will be stable to small perturbations xi. Linear stability

analysis provides the answer in the following way. Consider a small perturbation xk:

Xk = X0
k + xk(t) (18.4.3)
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Now the Taylor expansion of Zk (Xi) gives

Zk(X0
i + xi) = Zk(X0

i ) +
∑

j

(
𝜕Zk

𝜕Xj

)
0

xj +⋯ (18.4.4)

in which the subscript 0 indicates that the derivative is evaluated at the stationary state X0
i . In linear stability

analysis, only the linear terms in xj are retained; the higher-order terms are neglected by assuming the xj

are small. Substituting Equation (18.4.4) into Equation (18.4.1), since X0
i is a stationary state, we obtain for

xk(t) the linear equation

dxk

dt
=
∑

j

Λk j (𝜆) xj (18.4.5)

in which Λk j(𝜆) = (𝜕Zk∕𝜕Xj)0 is a function of the parameter 𝜆. In matrix notation, Equation (18.4.5) can be

written as

dx
dt

= Λx (18.4.6)

in which the vector x = (x1, x2, x3,… , xn) andΛkj are the elements of the matrixΛ. The matrixΛ is sometimes

referred to as the Jacobian matrix.

The general solution of Equation (18.4.6) can be written if the eigenvalues and the eigenvectors of the

matrix Λ are known. Let 𝜔k be the eigenvalues and 𝛙k the corresponding eigenvectors:

Λ𝛙k = 𝜔k𝛙k (18.4.7)

In general, for an n-dimensional matrix there are n eigenvalues and n eigenvectors. (Note that 𝛙k is a vector

and the subscript k indicates different vectors.) If the eigenvalues 𝜔k and the eigenvectors 𝛙k are known, it

is easy to see that, corresponding to each eigenvector and its eigenvalue, we have the following solution to

Equation (18.4.6):

x = e𝜔kt𝛙k (18.4.8)

This can be easily seen by substituting Equation (18.4.8) into Equation (18.4.6). Since a linear combination

of solutions of a linear equation is also a solution, the general solution to Equation (18.4.6) can be written as

x =
∑

k

cke𝜔kt𝛙k (18.4.9)

in which the coefficients ck are determined by x at t = 0. Now the question of stability depends on whether

the perturbation x will grow or decay with time. Clearly, this depends on the eigenvalues 𝜔k: if one or more

of the eigenvalues have a positive real part, the associated solutions (18.4.8) will grow exponentially. The

corresponding eigenvectors are called unstable modes. Since a random perturbation will be of the form

(18.4.9), which includes the unstable modes, the existence of a single eigenvalue with a positive real part is

sufficient to make the perturbation grow with time. If all the eigenvalues have negative real parts, any small

perturbation x in the vicinity of the stationary solution will exponentially decay or regress to zero. (This need

not be true for large perturbations x for which the approximation (18.4.5) is not valid.)

Thus, a necessary and sufficient condition for the stability of a stationary state is that all eigenvalues of
the associated Jacobian matrix, Λ, have negative real parts. An eigenvalue with a positive real part implies
instability.

The example given below illustrates the application of the linear stability theory to a chemical system. As

we have seen in the previous section, thermodynamic considerations lead us to the conclusion that instability
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can arise only when the system is far from thermodynamic equilibrium and, generally, when autocatalysis is

present.

The exponential growth of the perturbation does not continue indefinitely; the growth eventually stops due

to the nonlinear terms. Through this process, the system makes a transition from an unstable state to a stable

state. Thus, driven by instability, the system makes a transition to a new state. This new state is often an

organized state, a state with lower entropy. These organized states can be maintained indefinitely as long as

the flows are maintained.

18.4.1 An Example

We shall illustrate the use of linear stability theory with the following reaction scheme:

A
k1⟶X

B + X
k2⟶Y + D

2X + Y
k3⟶3X

X
k4⟶E

in which we assume A and B are maintained at a constant value while D and E are removed so that all four

concentrations are maintained at a constant value. Furthermore, we completely ignore the reverse reactions

because we assume their rates to be extremely small. This leads to the following set of kinetic equations that

we will study in more detail in the following chapter.

Instead of using X1 and X2, we shall use concentrations [X] and [Y] for the system variables:

d[X]

dt
= k1[A] − k2[B][X] + k3[X]2[Y] − k4[X] = Z1 (18.4.10)

d[Y]

dt
= k2[B][X] − k3[X]2[Y] = Z2 (18.4.11)

Here [A] and [B] are the parameters (concentrations that are maintained at fixed values) corresponding to 𝜆

(Equation (18.4.1)). One can easily obtain the stationary solutions to this equation (Example 18.6):

[X]s =
k1

k4

[A], [Y]s =
k4k2

k3k1

[B]

[A]
(18.4.12)

The Jacobian matrix evaluated at the stationary state is

⎡⎢⎢⎢⎣
𝜕Z1

𝜕[X]

𝜕Z1

𝜕[Y]

𝜕Z2

𝜕[X]

𝜕Z2

𝜕[Y]

⎤⎥⎥⎥⎦ =
[−k2[B] + 2k3[X]s[Y]s − k4

k2[B] − 2k3[X]s[Y]s

k3[X]2
s

−k3[X]2
s

]
= Λ

The product [X]s [Y]s in the above matrix can be simplified using Equations (18.4.12) and the resulting

matrix has the form: [
k2[B] − k4

−k2[B]

k3[X]2
s

−k3[X]2
s

]
= Λ (18.4.13)
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The stationary state (18.4.12) becomes unstable when the real parts of the eigenvalues of (18.4.13) become

positive. The eigenvalue equation or the characteristic equation of a matrix Λ, whose solutions are the

eigenvalues, is

Det[Λ−𝜆I] = 0 (18.4.14)

in which ‘Det’ stands for the determinant. For a 2 × 2 matrix such as (18.4.13) it is easy to see that the

characteristic equation is

𝜆2 − (Λ11 + Λ22)𝜆 + (Λ11Λ22 − Λ21Λ12) = 0 (18.4.15)

in which Λij are the elements of the matrixΛ. If all the matrix elementsΛij are real, as is the case for chemical

systems, the solutions of the characteristic equation must be complex conjugate pairs because coefficients in

the equation are real. For the matrix (18.4.13) we shall consider the case of a complex conjugate pair. We

shall look at these solutions as functions of the concentration [B] and investigate whether their real parts,

which are initially negative, can become positive due to an appropriate change in [B]. The point at which the

real parts reach zero will be the point of transition from stability to instability.

For Equation (18.4.15), since the coefficient of the linear term is the negative of the sum of the roots

(Exercise 18.7), if 𝜆± are the two roots, we have

𝜆+ + 𝜆− = (Λ11 + Λ22) = k2[B] − k4 − k3[X]2
s (18.4.16)

If the real parts of this complex conjugate pair, 𝜆±, are negative then k2[B] − k4 − k3[X]2
s < 0; if they are

positive then k2[B] − k4 − k3[X]2
s > 0.1 Thus the condition that requires positive real parts for the onset of

instability leads to

[B] >
k4

k2

+
k3

k2

[X]2
s

or

[B] >
k4

k2

+
k3

k2

k2
1

k2
4

[A]2 (18.4.17)

where we have used Equation (18.4.12) for [X]s. Thus, for a fixed value of [A], as the value of [B] increases,

when condition (18.4.17) is satisfied, the stationary state (18.4.12) becomes unstable. In the next chapter we

will see that this instability leads to oscillations.

Linear stability analysis does not provide a means of determining how the system will evolve when a state

becomes unstable. To understand the system’s behavior fully, the full nonlinear equation has to be considered.

Often we encounter nonlinear equations for which solutions cannot be obtained analytically. However, with

the availability of powerful desktop computers and software, numerical solutions can be obtained without

much difficulty. To obtain numerical solutions to nonlinear equations considered in the following chapter,

Mathematica codes are provided at the end of Chapter 19.

1If 𝜆± are real roots, 𝜆+ + 𝜆– > 0 implies that at least one of the roots is positive.
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Appendix 18.1 A General Property of dFP/dt

In this appendix we show that, regardless of the distance from equilibrium,

dFP

dt
≤ 0 (A18.1.1)

The validity of (A18.1.1) depends on the validity of the local equilibrium. In Chapter 12 we have seen that

the second-order variation of entropy 𝛿2S is negative because quantities such as the molar heat capacity

CV, isothermal compressibility 𝜅T and −
∑

i,j (𝜕Ai∕𝜕𝜉j)𝛿𝜉i𝛿𝜉j are positive. This condition remains valid for

an elemental volume 𝛿V, which is in local equilibrium. We can see the relation between the derivative

dFP/dt and quantities such as −
∑

i,j (𝜕Ai∕𝜕𝜉j)𝛿𝜉i𝛿𝜉j, which have a definite sign, as follows.

A18.1.1 Chemical Reactions

Consider a closed homogeneous nonequilibrium system undergoing a chemical reaction at uniform constant

temperature. The affinities Ak are functions of the extents of reaction 𝜉j and

𝜕Ak

𝜕t
=
∑

j

(
𝜕Ak

𝜕𝜉j

)(
𝜕𝜉j

𝜕t

)
=
∑

j

(
𝜕Ak

𝜕𝜉j

)
vj (A18.1.2)

Therefore:

dFP

dt
= 1

T

∑
k,j

(
𝜕Ak

𝜕𝜉j

)
vjvk ≤ 0 (A18.1.3)

which follows from the general relation −
∑

i,j (𝜕Ai∕𝜕𝜉j)𝛿𝜉i𝛿𝜉j ≥ 0 valid for a system in local equilibrium

(12.4.5). This proof can be extended to open systems following along the lines of the proof for isothermal

diffusion given below.

A18.1.2 Isothermal Diffusion

In this case we begin with

dFP

dt
= −∫

∑
k

Jk ∙
𝜕

𝜕t
∇
(𝜇k

T

)
dV = −∫

1

T

∑
k

Jk ∙ ∇
(
𝜕𝜇k

𝜕t

)
dV (A18.1.4)

Using the identity ∇ ∙ (fJ) = f∇ ∙ J + J ∙ ∇f , the right-hand side can be written as

− ∫
1

T
Jk ∙ ∇

(
𝜕𝜇k

𝜕t

)
dV = −∫

1

T
∇ ∙
[
Jk

(
𝜕𝜇k

𝜕t

)]
dV + ∫

1

T

(
𝜕𝜇k

𝜕t

)
∇∙ JkdV (A18.1.5)

Using Gauss’s theorem, the first term on the right-hand side can be converted into a surface integral. Since

we assume that the value of 𝜇k is time independent at the boundary, i.e. the boundary conditions are time

independent, this surface integral vanishes. Using the relations

𝜕𝜇k

𝜕t
=
∑

j

𝜕𝜇k

𝜕nj

𝜕nj

𝜕t
and

𝜕nk

𝜕t
= −∇ ∙ Jk (A18.1.6)

the second term can be written as

∫
1

T

(
𝜕𝜇k

𝜕t

)
∇ ∙ JkdV = −1

T ∫
∑

j

𝜕𝜇k

𝜕nj

(
𝜕nj

𝜕t

)(
𝜕nk

𝜕t

)
dV (A18.1.7)
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Combining Equations (A18.1.7), (A18.1.5) and (A18.1.4), we arrive at

dFP

dt
= −1

T ∫
∑
jk

𝜕𝜇k

𝜕nj

(
𝜕nj

𝜕t

)(
𝜕nk

𝜕t

)
dV ≤ 0

The right-hand side of this expression is negative because

−
∑
jk

𝜕𝜇k

𝜕nj

(
𝜕nj

𝜕t

)(
𝜕nk

𝜕t

)
≤ 0

is valid for systems in local equilibrium (Equation (12.4.9)). The general validity of Equation (18.2.3) is

proved in the literature [1].

Appendix 18.2 General Expression for the Time Derivative of 𝜹2S

The relation

d

dt
𝛿2S
2

= ∫V

∑
k

𝛿Fk 𝛿JkdV (A18.2.1)

can be obtained as follows. We begin by taking the time derivative of 𝛿2S/2 as defined in Equation (18.3.4).

For notational simplicity, we shall denote the time derivatives of a quantity x byẋ ≡ 𝜕x∕𝜕t. The time derivative

of 𝛿2S can be written as

𝛿2Ṡ = ∫
[(

𝜕2s
𝜕u2

)
2𝛿u(𝛿u̇) + 2

∑
k

(
𝜕2s

𝜕u𝜕nk

)
(u̇ 𝛿nk + 𝛿u 𝛿ṅk)

+ 2
∑

k

(
𝜕2s

𝜕ni𝜕nk

)
𝛿ṅi𝛿nk

]
dV

(A18.2.2)

in which the factor 2 appears in the last term because we used the relation

𝜕2s
𝜕ni𝜕nk

= 𝜕2s
𝜕nk𝜕ni

Next, noting that (𝜕s∕𝜕u)nk
= 1∕T and (𝜕s∕𝜕nk)u = −𝜇k∕T , we can write Equation (A18.2.2) as

𝛿2Ṡ = ∫ 2

[(
𝜕

𝜕u
1

T

)
𝛿u(𝛿u̇) +

∑
k

(
𝜕

𝜕nk

1

T

)
𝛿u̇ 𝛿nk

]
dV

+∫ 2

[∑
k

𝜕

𝜕u

(−𝜇k

T

)
𝛿u 𝛿ṅk +

∑
ik

𝜕

𝜕ni

(−𝜇k

T

)
𝛿ni 𝛿ṅk

]
dV

(A18.2.3)

We now observe that, since u and nk are independent variables, we can write

𝛿

(
1

T

)
=
∑

k

(
𝜕

𝜕nk

1

T

)
𝛿nk +

(
𝜕

𝜕u
1

T

)
𝛿u (A18.2.4)

𝛿

(𝜇i

T

)
=
∑

k

(
𝜕

𝜕nk

𝜇i

T

)
𝛿nk +

(
𝜕

𝜕u

𝜇i

T

)
𝛿u (A18.2.5)
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Equations (A18.2.4) and (A18.2.5) enable us to reduce (A18.2.3) to the simple form

𝛿2Ṡ = 2∫
[
𝛿

(
1

T

)
𝛿u̇ +

∑
k

𝛿

(−𝜇k

T

)
𝛿ṅk

]
dV (A18.2.6)

This relation can be written in terms of the changes in thermodynamic forces 𝛿∇(1∕T) and 𝛿∇(−𝜇k∕T) and the

corresponding flows 𝛿Ju and 𝛿Jk, using the balance equations for energy density u and the concentrations nk:

𝜕u
𝜕t

= u̇ = −∇ ∙ Ju (A18.2.7)

𝜕nk

𝜕t
= ṅk = −∇ ∙ Jk +

∑
i

vkivi (A18.2.8)

in which 𝜈ki is the stoichiometric coefficient of reactant k in reaction i and vi is the velocity of reaction i.
If we denote the stationary state densities and flows by us, nks, Jus, Jks and vis, we have u̇s = −∇ ∙ Jus = 0

and ṅs = −∇ ∙ Jks +
∑

i 𝜈kivis = 0. Consequently, for a perturbation u = us + 𝛿u, Ju = Jus + 𝛿Ju, etc., from

the stationary state, we have

𝛿u̇ = −∇ ∙ 𝛿Ju (A18.2.9)

𝛿ṅk = −∇ ∙ 𝛿Jk +
∑

i

𝜈ki 𝛿vi (A18.2.10)

We substitute these expressions for 𝛿u̇ and 𝛿u̇ into (A18.2.6) and use the identity

∇ ∙ (fJ) = f∇ ∙ J + J ∙ ∇f (A18.2.11)

in which f is a scalar function and J is a vector field, and we use Gauss’s theorem

∫V
(∇ ∙ J)dV = ∫Σ J ∙ da (A18.2.12)

in which Σ is the surface enclosing the volume V and da is the element of surface area. All this allows

Equation (A18.2.6) to be written as follows:

1

2
𝛿2Ṡ = −∫Σ 𝛿

(
1

T

)
𝛿Ju ∙ da + ∫V

𝛿∇
(

1

T

)
𝛿JudV

+∫Σ
∑

k

𝛿

(𝜇k

T

)
𝛿Jk ∙ da − ∫V

∑
k

𝛿∇
(𝜇k

T

)
𝛿JkdV

+∫V

[∑
i

𝛿

(
Ai

T

)
𝛿vi

]
dV

(A18.2.13)

In obtaining this equation, we have used the relation
∑

k vki 𝛿(𝜇k∕T) = −𝛿(Ai∕T). The flows at the surface are

fixed by the boundary conditions and are not subject to fluctuations, so the surface terms vanish. This leads

us to the required result:

1

2
𝛿2Ṡ = ∫V

𝛿∇
(

1

T

)
𝛿JudV − ∫V

∑
k

𝛿∇
(𝜇k

T

)
𝛿JkdV + ∫V

[∑
i

𝛿

(
Ai

T

)
𝛿vi

]
dV

= ∫V

∑
𝛼

𝛿F𝛼 𝛿J𝛼dV

(A18.2.14)
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Exercises

18.1 Calculate the affinities of the following reaction systems for a range of concentrations (or partial

pressures) of the reactants and the products and compare them with RT at T = 298 K. Determine the

ranges in which the system is thermodynamically in the linear regime using appropriate data from

tables.

(a) Racemization reaction L ⇌ D (L and D are enantiomers).

(b) Reaction N2O4(g) ⇌ 2NO2(g) (with partial pressures PN2O4
and PNO2

).

18.2 (a) What factors would you identify to conclude that the Earth’s atmosphere is not in thermodynamic

equilibrium?

(b) Through an appropriate literature search, determine whether the atmospheres of Mars and Venus

are in chemical equilibrium.

18.3 For the chemical reaction A ⇌ B, verify the general property dFP ≤ 0.

18.4 (a) Obtain inequality (18.3.11) for a perturbation 𝛿[B] from the stationary states of reaction (18.3.9).

(b) Obtain the ‘excess entropy production’ (18.3.13) for a perturbation 𝛿[X] from the stationary states

of reaction (18.3.12).

18.5 Obtain the excess entropy production and analyze the stability of the stationary states for the following

reaction schemes:

(a) W ⇌ X ⇌ Z, in which the concentrations of W and Z are maintained fixed at a nonequilibrium

value.

(b) W + X ⇌ 2X, X ⇌ Z, in which the concentrations of W and Z are maintained fixed at a

nonequilibrium value.

18.6 Show that the stationary states of Equations (18.4.10) and (18.4.11) are Equations (18.4.12).

18.7 For a polynomial equation of the type 𝜔n + A1𝜔
n–1 + A2𝜔

n–2 + ∙ ∙ ∙ + An = 0 show that coefficient

A1 = – (𝜆1+ 𝜆2 + 𝜆3 + ∙ ∙ ∙ + 𝜆n) and coefficient An = (–1)n (𝜆1 𝜆2 𝜆3 ∙ ∙ ∙ 𝜆n), where 𝜆k are roots.

18.8 For the following equations, obtain the stationary states and analyze their stability as a function of the

parameter 𝜆 assuming A, B and C are positive:

(a)
dx
dt

= −Ax3 + C𝜆x

(b)
dx
dt

= −Ax3 + Bx2 + C𝜆x

(c)
dx
dt

= 𝜆x − 2xy,
dy

dt
= −y + xy

(d)
dx
dt

= −5x + 6y + x2 − 3xy + 2y2,
dy

dt
= −𝜆x − 14y + 2x2 − 5xy + 4y2
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18.9 Consider the reaction scheme:

A + X ⇌ 2X

Y + X ⇌ 2Y

Y ⇌ E

Far from equilibrium, we only keep the forward reactions and we assume A and E are fixed. Using

the linear stability theory, show that the perturbations around the nonequilibrium steady state lead

to oscillations in [X] and [Y], as was discussed in Section 18.2. This model was used by Lotka and

Volterra to describe the ‘struggle of life’ (see V. Volterra, Theorie Mathématique de la Lutte pour la
Vie, 1931, Gauthier Villars: Paris). Here X is the prey (lamb) and Y is the predator (wolf). This model

of the prey–predator interaction shows that the populations X and Y will exhibit oscillations.




