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Introduction
Differential modalities were introduced in
[1] and graded differential modalities in
[2]. We present a way of forming an N-
graded differential modality from a dif-
ferential modality, under mild conditions.
The letters R, S will designate commu-
tative semirings.
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The definitions

DEF1 An additive symmetric monoidal
category is a symmetric monoidal
category such that every hom-set is
a commutative monoid and for every
morphism f we have that f ⊗−, −⊗ f ,
−; f and f ;− preserve sums of maps and
zero maps.

DEF2 An R-graded differential modality
on an additive symmetric monoidal cat-
egory L is a tuple (!,m, u,∆, ϵ, ∂) where
! = (!r : L → L)r∈R is a family of endo-
functors; m = (mr,s : !rsA → !r!sA)r,s∈R

is a family of natural transformations and
u : !1A → A is a natural transforma-
tion such that (!,m, u) is an R-graded
comonad; ∆ = (∆r,s : !r+sA → !rA ⊗
!sA)r,s∈R is a family of natural transfor-
mations and ϵ : !0A → I is a natural
transformation such that (!A,∆, ϵ) is an
R-graded cocommutative comonoid; m is
an R-graded comonoid morphism and the
following equalities are verified (for every
r, s ∈ R):

(i) Linear rule: ∂0;u = ϵ⊗ 1

(ii) Product rule: ∂r+s+1;∆r+1,s+1 =
(∆r+1,s⊗1); (1⊗∂r)+(∆r,s+1⊗1); (1⊗
γ); (∂r ⊗ 1)

(iii) Chain rule: ∂rs+r+s;mr+1,s+1 =
(∆rs+r,s ⊗ 1); (mr,s+1 ⊗ ∂s); ∂r

(iv) Symmetry rule: (1⊗ σ); (∂r ⊗ 1); ∂r+1 =

(∂r ⊗ 1); ∂r+1

DEF3 A differential modality is a
0-graded differential modality.

DEF4 Given a differential modality, we
define ∂n : !A ⊗ A⊗n → !A by ∂0 = 1!A
and ∂n+1 = ∂n ⊗ 1; ∂.

Yet another definition
DEF5 Let M = (!,m, u,∆, ϵ, ∂) an
R-graded differential modality, M ′ =
(!′,m′, u′,∆′, ϵ′, ∂′) an S-graded differen-
tial modality and ρ : S → R a semir-
ing homomorphism. A ρ-morphism of
graded differential modalities from M to
M ′ is a family of natural transformations
(ϕs : !ρ(s)A → !′sA)s∈S such that the
following diagrams commute (for every
s, t ∈ S):
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∂s ∂′
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The theorem
Given a differential modality on L, sup-
pose that we have such a coequalizer dia-
gram for every object A and every n ∈ N:

!A⊗A⊗n !A !≤nA
∂n+1

0

sn

Suppose also that we keep a coequalizer
diagram by applying − ⊗ A to this
diagram.

Then, there exists a unique
N-graded differential modality
(!≤n, ϵ

≤, u≤,∆≤
n,p,m

≤
n,p, ∂

≤
n ) on L

such that:

1) the endofunctor !≤n : L → L gives
!≤nA when applied to an object A,

2) (sn)n∈N is a (0 : N → 0)-morphism
of graded differential modalities.

An example
We can take L = Vecopk and !A = SA
the free symmetric algebra on A.

If char k = 0, S≤n(k) ≃ {f(x) ∈
k[x], degf ≤ n}.

But the story is different in positive
characteristic. For instance, if k = Z2,
then S≤0(k) ≃ {f(x2), f ∈ k[x]} and
S≤n(k) = S(k) ≃ k[x] if n ≥ 1.

Useful identities
The following identities are essential
to the proof of the theorem. They are
satisfied by every differential modality.

(The notation λ ⊢ n means that
λ = (m1(λ), ...,mn(λ)) ∈ Nn is such that
1.m1(λ) + ... + n.mn(λ) = n, we define
∆n by ∆1 = id!A and ∆n+1 := ∆;∆n⊗1,
and τλ is an interleaving permutation
associated to λ.)

(v) Constant rule:

∂; ϵ = 0

(vi) Linear bis rule:

∂2;u = 0

(vii) Higher-order product rule:

∂n;∆ =
∑

0≤k≤n

(n
k

)
∆⊗ 1;

1⊗ γ!A,A⊗k ⊗ 1;

∂k ⊗ ∂n−k

(viii) Faà di Bruno rule:

∂n;m =
∑
λ⊢n

n!
n∏

j=1
mj(λ)!(j!)

mj(λ)

[
∆1+m1(λ)+...+mn(λ) ⊗ 1A⊗n

]
; τλ;[

m⊗ (∂1)⊗m1(λ) ⊗ ...⊗ (∂n)⊗mn(λ)
]
;

∂
m1(λ)+...+mn(λ)
!A

(ix) Higher-order symmetry rule:
(for every τ ∈ Sn)

1!A ⊗ τ ; ∂n = ∂n
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