
0.1 A monad on a slice category arising from a monad in
the underlying category

Let C be a category with Cartesian products, and (T, µ, η) a monad on C. Recall
that T is said to be strong with respect to the Cartesian product if there is given
a natural transformation αX,Y : T (X)× Y → T (X × Y ) satisfying some laws:

T (πA) ◦ αA,1 = πTA : TA× 1 → TA (1)

TA× (B × C) T (A× (B × C))

(TA×B)× C T (A×B)× C T ((A×B)× C)

αA,B×C

∼= ∼=
αA,B×C αA×B,C

(2)

A×B

TA×B T (A×B)

ηA×B
ηA×B

αA,B

(3)

TTA×B T (TA×B) TT (A×B)

TA×B T (A×B)

αTA,B

µ×B

T (αA,B)

µ

αA,B

(4)

These equations are taken from nlab.
Strong monads were introduced by Kock. They have been used by Moggi to

develop semantics of sequenced computations.
Fix a category C with finite limits, and let (T, µ, η) be a strong monad on C.
Fix Y an object in C. In this section we will construct a monad (R,µR, ηR)

on C/Y .

Lemma 1. The following diagram commutes:

T (X)× Y T (X × Y )

TX

αX,Y

πTX T (πX) (5)

Proof. Let !Y denote the unique morphism Y → 1. Apply naturality of α to
(idX , !Y ) and use 1 with A := X.

For f : X → Y , we write E(f) for domR(f).
In what follows, for f : X → Y , gr f denotes the graph of f , the map

(idX , f) : X → X × Y .
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We first define R on objects. We define E(f) by the following pullback
square:

E(f) T (X)

TX × Y T (X × Y )

T gr f

αX,Y

(6)

and R(f) is defined to be the second component of the left map of 6, the
composition

R(f) := E(f) → TX × Y
πY−−→ Y (7)

If f : X → Y, f ′ : X → Y are two objects in C/Y , and g : X → X ′ a
morphism in C/Y , it is clear how to use the universal property of the pullback
E(f ′) to construct a map R(g) : E(f) → E(f ′), and immediate that it commutes
with the maps R(f) and R(f ′). We omit routine verification of the identity and
composition laws for R.

Lemma 2. Let t(f) : E(f) → T (X) be the top map in 6 and s(f) : E(f) →
T (X) × Y the left map in 6. Then t(f) = πTX ◦ s(f), or equivalently s(f) =
(t(f), R(f)).

Proof. By 1, πTX = T (πX) ◦ αX,Y , so

πTX ◦ s(f) = T (πX) ◦ αX,Y ◦ s(f)
= T (πX) ◦ T (gr(f)) ◦ t(f)
= T (πX ◦ gr(f)) ◦ t(f)
= t(f)

We will use the notation t(f) for the canonical map E(f) → T (X) again in
what follows.

We describe the unit ηRf : f → R(f). To construct a map X → E(f), by
the universal property of the pullback it is necessary to give maps a0 : X →
TX, a1 : X → Y, a2 : X → TX, subject to the requirement that αX,Y ◦(a0, a1) =
T (gr f) ◦ a2. We will take a0 = a2 = ηX and a1 = f .

Let us verify that the necessary coherence condition is satisfied:

T (gr f) ◦ ηX
= ηX×Y ◦ gr f
= αX,Y ◦ (ηX × idY ) ◦ gr f
= αX,Y ◦ (ηX , f)

as desired.
It is clear by the choice of a1 := f that ηRf is a morphism in the slice category

C/Y .
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Let us turn to the multiplication µR.
In the following, T (f)∗α1,Y : E(f) → T (X) denotes the leg of the pullback

cone defining E(f) over T (f) in 6.
To give a map E(R(f)) → E(f), it suffices to give maps b0 : ERf → TX

and b1 : ERf → TX × Y with αX×Y ◦ b1 = T (gr f) ◦ b0. We will take b0 to be

b0 := ERf
t(Rf)−−−→ T (Ef)

T (t(f))−−−−−→ T 2X
µ−→ TX (8)

and we will take b1 = (b0, R
2(f)).

Let us prove that the necessary coherence condition is satisfied.

T (gr f) ◦ b0
= T (gr f) ◦ µX ◦ T (t(f)) ◦ t(Rf)

= µX×Y ◦ T 2(gr f) ◦ T (t(f)) ◦ t(Rf)

= µX×Y ◦ T (αX,Y ) ◦ T ((t(f), R(f))) ◦ t(Rf)

= µX×Y ◦ T (αX,Y ) ◦ T (t(f)× 1Y ) ◦ T (gr(Rf)) ◦ t(Rf)

= µX×Y ◦ T (αX,Y ) ◦ T (t(f)× 1Y ) ◦ αEf,Y ◦ (t(Rf), R2f)

= µX×Y ◦ T (αX,Y ) ◦ αTX,Y ◦ (T (tf)× 1Y ) ◦ (t(Rf), R2f)

= αX,Y ◦ (µX × 1Y ) ◦ (T (tf)× 1Y ) ◦ (t(Rf), R2f)

= αX,Y ◦ (b0, R2f)
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