0.1 A monad on a slice category arising from a monad in the underlying category

Let \mathcal{C} be a category with Cartesian products, and (T, μ, η) a monad on \mathcal{C} . Recall that T is said to be strong with respect to the Cartesian product if there is given a natural transformation $\alpha_{X,Y}: T(X) \times Y \to T(X \times Y)$ satisfying some laws:

$$T(\pi_A) \circ \alpha_{A,1} = \pi_{TA} : TA \times 1 \to TA \tag{1}$$

These equations are taken from nlab.

Strong monads were introduced by Kock. They have been used by Moggi to develop semantics of sequenced computations.

Fix a category \mathcal{C} with finite limits, and let (T, μ, η) be a strong monad on \mathcal{C} . Fix Y an object in \mathcal{C} . In this section we will construct a monad (R, μ^R, η^R) on \mathcal{C}/Y .

Lemma 1. The following diagram commutes:

$$T(X) \times Y \xrightarrow{\alpha_{X,Y}} T(X \times Y)$$

$$\xrightarrow{\pi_{TX}} \qquad \qquad \downarrow^{T(\pi_X)}$$

$$TX$$

$$(5)$$

Proof. Let $!_Y$ denote the unique morphism $Y \to 1$. Apply naturality of α to $(\mathrm{id}_X, !_Y)$ and use 1 with A := X.

For $f: X \to Y$, we write E(f) for dom R(f).

In what follows, for $f : X \to Y$, gr f denotes the graph of f, the map $(id_X, f) : X \to X \times Y$.

We first define R on objects. We define E(f) by the following pullback square:

$$E(f) \longrightarrow T(X)$$

$$\downarrow \qquad \qquad \downarrow^{T \operatorname{gr} f} \qquad (6)$$

$$TX \times Y \xrightarrow{\alpha_{X,Y}} T(X \times Y)$$

and R(f) is defined to be the second component of the left map of 6, the composition

$$R(f) := E(f) \to TX \times Y \xrightarrow{\pi_Y} Y \tag{7}$$

If $f: X \to Y, f': X \to Y$ are two objects in \mathcal{C}/Y , and $g: X \to X'$ a morphism in \mathcal{C}/Y , it is clear how to use the universal property of the pullback E(f') to construct a map $R(g): E(f) \to E(f')$, and immediate that it commutes with the maps R(f) and R(f'). We omit routine verification of the identity and composition laws for R.

Lemma 2. Let $t(f) : E(f) \to T(X)$ be the top map in 6 and $s(f) : E(f) \to T(X) \times Y$ the left map in 6. Then $t(f) = \pi_{TX} \circ s(f)$, or equivalently s(f) = (t(f), R(f)).

Proof. By 1, $\pi_{TX} = T(\pi_X) \circ \alpha_{X,Y}$, so

$$\pi_{TX} \circ s(f) = T(\pi_X) \circ \alpha_{X,Y} \circ s(f)$$

= $T(\pi_X) \circ T(\operatorname{gr}(f)) \circ t(f)$
= $T(\pi_X \circ \operatorname{gr}(f)) \circ t(f)$
= $t(f)$

We will use the notation t(f) for the canonical map $E(f) \to T(X)$ again in what follows.

We describe the unit $\eta_f^R : f \to R(f)$. To construct a map $X \to E(f)$, by the universal property of the pullback it is necessary to give maps $a_0 : X \to TX, a_1 : X \to Y, a_2 : X \to TX$, subject to the requirement that $\alpha_{X,Y} \circ (a_0, a_1) = T(\operatorname{gr} f) \circ a_2$. We will take $a_0 = a_2 = \eta_X$ and $a_1 = f$.

Let us verify that the necessary coherence condition is satisfied:

$$T(\operatorname{gr} f) \circ \eta_X$$

= $\eta_{X \times Y} \circ \operatorname{gr} f$
= $\alpha_{X,Y} \circ (\eta_X \times \operatorname{id}_Y) \circ \operatorname{gr} f$
= $\alpha_{X,Y} \circ (\eta_X, f)$

as desired.

It is clear by the choice of $a_1 := f$ that η_f^R is a morphism in the slice category \mathcal{C}/Y .

Let us turn to the multiplication μ^R .

In the following, $T(f)^* \alpha_{1,Y} : E(f) \to T(X)$ denotes the leg of the pullback cone defining E(f) over T(f) in 6.

To give a map $E(R(f)) \to E(f)$, it suffices to give maps $b_0 : ERf \to TX$ and $b_1 : ERf \to TX \times Y$ with $\alpha_{X \times Y} \circ b_1 = T(\operatorname{gr} f) \circ b_0$. We will take b_0 to be

$$b_0 := ERf \xrightarrow{t(Rf)} T(Ef) \xrightarrow{T(t(f))} T^2X \xrightarrow{\mu} TX$$
(8)

and we will take $b_1 = (b_0, R^2(f))$.

Let us prove that the necessary coherence condition is satisfied.

$$\begin{split} T(\operatorname{gr} f) \circ b_0 \\ &= T(\operatorname{gr} f) \circ \mu_X \circ T(t(f)) \circ t(Rf) \\ &= \mu_{X \times Y} \circ T^2(\operatorname{gr} f) \circ T(t(f)) \circ t(Rf) \\ &= \mu_{X \times Y} \circ T(\alpha_{X,Y}) \circ T((t(f), R(f))) \circ t(Rf) \\ &= \mu_{X \times Y} \circ T(\alpha_{X,Y}) \circ T(t(f) \times 1_Y) \circ T(\operatorname{gr}(Rf)) \circ t(Rf) \\ &= \mu_{X \times Y} \circ T(\alpha_{X,Y}) \circ T(t(f) \times 1_Y) \circ \alpha_{Ef,Y} \circ (t(Rf), R^2f) \\ &= \mu_{X \times Y} \circ T(\alpha_{X,Y}) \circ \alpha_{TX,Y} \circ (T(tf) \times 1_Y) \circ (t(Rf), R^2f) \\ &= \alpha_{X,Y} \circ (\mu_X \times 1_Y) \circ (T(tf) \times 1_Y) \circ (t(Rf), R^2f) \\ &= \alpha_{X,Y} \circ (b_0, R^2f) \end{split}$$