
The Metalanguage of Category Theory Christian Williams

Category Theory is known as a unifying language of mathematics [4]. In recent years,
Applied Category Theory has begun to explore it as a language for all kinds of science [2].
I propose that category theory is the language of thinking, as follows.

The basic concepts of category theory

type and process, relation and transformation
identity and composition, adjunction and representation

are systematized in the language of a bifibrant double category, a concept presently known
as “proarrow equipment” or “framed bicategory” [8]. Such a language can be understood
simply as a logic, i.e. a system of thoughts of a world:

A world is a category of types of things, and processes between types.

A thought of the world is a relation of types (a judgement), and
a process of thinking is a transformation of relations (an inference).

Relations and transformations form a category, and these “thoughts” form a bifibration
from the world to the world, with operations of parallel composition and identity.

In this view, category theory is the realization that thought is connection, the dimension
beyond the world in which type relates to type, and process transforms to process.

Yet a process is a special kind of connection, and so thought encompasses the world:
each process forms a dual pair of relations. By composition, thoughts are pushed forward
or pulled backward along processes; this is the “bifibrance” of a logic.

The language exists in two dual forms: syntax and imagery, a.k.a. string diagrams [6]:
dual to object, arrow, square is color, string, bead. We distinguish processes from relations
by a downward pointer, and their action on relations is drawn as bending.

bif. dbl. cat. dim. logic
object 0 type

tight morphism V process
loose morphism H relation

square 2 transformation

The simplest kind of logic is binary logic: sets and functions, relations and entailments;
i.e. the predicate logic of sets. Type theory has realized that relations have content beyond
truth values, and in a few decades we have made a multiverse of logics to explore.

So how do we make logics? This is summarized in the motto:

a category is a matrix with composition and identity.

A category is a type of objects, indexing a matrix of morphisms, with the structure of
composition and identity. In [8], Shulman presented the two ways we construct logics:
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1. A bifibered monoidal category R → A forms a logic, in which a relation R : A |B is an
object R over A× B; this is a matrix, i.e. two-variable type a :A, b : B ` R(a, b) :V.

2. Monads in a logic, self-relations with composition and identity, form a richer logic.
A monad in a logic of matrices is a category, “enriched in” or “internal to” that logic.

The two constructions define the language of co/ends [5]: a bimodule of monads is a
matrix with composition actions; these compose by coend, a coequalizer of a coproduct,
and “divide” or transform by end, an equalizer of a product.

R ◦ S = Σb R(−, b)⊗ S(b,−)
[P,Q] = Πx, y P (x, y)→ Q(x, y)

Categories are self-relations, which act on relations of categories, defining “active logic”:
coend is the bilinear existential, and end is the natural universal. [3]

Category theory is presently seen as a network of concepts, without a central ground.
While it is true that generality begets interdefinability, the “fundamentality” of concepts
must be understood by how we construct universes of categories, and this leads directly to
the language of coends and ends. In this way, category theory is generalized logic.

Universal constructions are systematically derived in the language: composition and
transformation form a tensor-hom adjunction, giving formulae for lifts and extensions,
and weighted limits and colimits are representations thereof.

[R ◦ S, T ] ≡ Πa, c (Σb R(a, b)⊗ S(b, c))→ T (a, c)
∼= ∼=

[R, S → T ] ≡ Πa, b R(a, b)→ (Πc S(b, c)→ T (a, c))

The coYoneda lemma is the fact that the hom of a category is its identity relation, and the
Yoneda lemma is the curried form of this fact.

R(a, b1) ∼= Σb0 : B R(a, b0)⊗ B(b0, b1)

Πb1 : B B(b0, b1)→ R(a, b1) ∼= R(a, b0)

Fundamental ideas are made simple and clear in the language. Presenting CT as logic
provides not only a central ground of category theory, but also a systematic and direct
exposition of the full power of the language of categories.

Moreover, string diagrams provide an intuitive and systematic presentation of these
fundamental ideas. Because imagery is dual to syntax, no exclusionary choice is needed:
the two combine to form the visual formal language of “color syntax”.

A string diagram is the general form of a concept, and writing syntax in the diagram
determines a specific instance, i.e. substitution into a dependent type. Reasoning can
smoothly transition levels of generality, from an entire logic to a specific transformation.
In color syntax, the language of categories is both intuitive and practical.

Based on these ideas, I will be developing an education program for category theory,
called Logic in Color. To cultivate in the public mind a language for all kinds of thinking
— I believe there is vast possibility. If you see it too, let’s talk. [logic.in.color@gmail.com]
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My dissertation is the metalanguage of bifibrant double categories, i.e. metalogic.
There is an analogy between categories and logics: just as a category is a matrix with

composition and identity, a logic is a matrix of categories with composition and identity.
So just as the language of categories is the co/end calculus, the language of logics is the
co/descent calculus. We define a logic to be a “matrix category” pseudomonad, and thereby
construct the three-dimensional category of logics.

Chapter 1: Spans of categories

A span of categories A ← R → B is a equivalent to a matrix of categories R(A,B) and
a matrix of profunctors ~R(a, b), with sequential composition and identity; this is known as
a displayed category, a.k.a. normal lax functor R :A× B→ Cat [9].

Yet also, a span of profunctors i ← f → g is equivalent to a matrix of profunctors
i(f, g) :Q(X,Y) |R(A,B) with sequential composition and identity. The new concept of
displayed profunctor i : f × g → Prof is a bimodule of displayed categories. [7]

We introduce three-dimensional string diagrams: horizontal, vertical, and transversal,
i.e. “inner to outer”. For SpanCat, the dimensions are spans of categories, profunctors, and
functors, respectively — the latter is drawn as a closed loop or “bead within a bead”.

span category span profunctor
~R(a1, b1) ◦ ~R(a2, b2)⇒ ~R(a1a2, b1b2) i(f, g) ◦ ~R(a, b)⇒ i(fa, gb)

We show the double category of span categories A ← R → B to be equivalent to that of
displayed categories R :A × B → Cat. These matrices of categories of relations R(A,B)
are the basic data of metalogic, i.e. the co/descent calculus.

Chapter 2: Matrix categories

A logic is a span of categories A← A→ A, with actions of morphisms in A (processes)
on objects in A (relations). The concepts of fibered and opfibered category are unified in
the concept of a two-sided fibration, which is a bimodule of arrow double categories [11].
Yet these latter are not logics, because they only have companions and not conjoints.

This limits the reasoning of arrow double categories, and leads to an obstruction to
composition of “fibered profunctors”. So, we determine how a category does form a logic:
the weave double category 〈A〉 is the union of the arrow double category and its opposite
−→
A +

←−
A ; this is generated by squares in

−→
A and

←−
A , plus isomorphisms of their identities.
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A matrix category or two-sided bifibration R :A ‖B is a span of categories, which forms
a bimodule from 〈A〉 to 〈B〉. Hence R has actions by both arrows and “op-arrows” of A
and B; these are drawn as follows.

matrix category matrix category
�A : 〈A〉(A0,A1)×R(A1,B)→ R(A0,B) �B :R(A,B0)× 〈B〉(B0,B1)→ R(A,B1)

This generalizes from categories to profunctors: the arrow profunctor ~f : ~X | ~A consists
of commutative squares f0 ·a = x·f1, and horizontal composition defines a monad structure.
The weave vertical profunctor 〈f〉 : 〈A〉 | 〈B〉 is the union of ~f and its opposite.

A matrix profunctor i(f, g) :Q(X,Y) |R(A,B) is a span of profunctors f ← i→ g, which
forms a bimodule from 〈f〉 to 〈g〉.

matrix profunctor matrix profunctor
�f : 〈f〉(f0, f1)× i(f1, g)⇒ i(f0, g) �g : i(f, g0)× 〈g〉(g0, g1)⇒ i(f, g1)

Morphisms of the above are matrix functors and matrix transformations; these form a
double category MatCat over Cat×Cat. Sequential composition of matrix profunctors over
that of profunctors is defined by a coequalizer, which nullifies the action of zig-zags that
reassociate equivalent pairs; given m(f, k) :R(X,A) | S(Y,B) and n(g, `) :S(Y,B) | T (Z,C),
the composite (m � n)(f ◦ g, k ◦ `) :R(X,A) | T (Z,C) consists of pairs (m,n) so that for all

f · g : 〈f ◦ g〉([(f0, g0)], [(f1, g1)])(id.X, id.Z)
k · l : 〈k ◦ `〉([(k0, l0)], [(k1, l1)])(id.A, id.C)

the pair (m,n) is equated with (f �m� k, g � n� l).
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sequential composition
(m,n) ≡ (f �m� k, g � n� k) : m � n

Moreover, MatCat is a logic, and MatCat→ Cat× Cat is a fibered double category [1]:
sequential composition of matrix profunctors preserves substitution of transformations.
Hence we call the structure MatCat→ Cat× Cat a fibered logic.

We then define parallel composition of matrix categories. While profunctors compose by
quotient, matrix categories compose by codescent object [11], which adjoins an associator
isomorphism for the action by arrows and oparrows of the middle category.

parallel composition
α : (R, b� S) ∼= (R� b, S)

Dually, a category of matrix functors is formed by a descent object [10]. So, composition
and transformation form a tensor-hom adjunction, just as in the co/end calculus.

R⊗ S = ~ΣB. R(−,B)× S(B,−)
[P ,Q] = ~ΠX,Y. P(X,Y)→ Q(X,Y)

Parallel composition does not preserve sequential composition of matrix profunctors:
because both dimensions are bimodules, both compositions involve colimits which the
other cannot represent. So MatCat is “a triple category without interchange”: we define a
metalogic to be a fibered logic M→ C×C, which forms a tricategory internal to SpanCat.
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Chapter 3: The metalogic of logics

A bifibrant double category, i.e. a logic, is a pseudomonad in MatCat.

logic composition unit

Because a logic is two-dimensional, there are two kinds of relations between logics: a
vertical profunctor consists of processes between logics, and a horizontal profunctor consists
of relations between logics. Two pairs are connected by a double profunctor, which consists
of inferences between relations, along processes.

meta relation meta process meta inference
[horiz. profunctor] [vert. profunctor] [dbl. profunctor]

For a horizontal profunctor, parallel composition is a familiar bimodule structure. Yet
because vertical profunctors are orthogonal, parallel composition is a monad structure,
and then double profunctors are bimodules thereof.

H-prof. composition V-prof. composition D-prof. composition
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So logics have two kinds of “relations”, and one kind of “function”: a double functor
[[A]] :A0 → A1 maps squares of A0 to squares of A1, preserving relation composition and
unit up to coherent isomorphism.

This generalizes to transformations of vertical, horizontal, and double profunctors; all
four are defined by mapping squares in a way that coheres with parallel composition.

left comp. coherence double transformation right comp. coherence

Logics form a metalogic: morphisms are functors, profunctors, and matrix categories;
squares are vertical transformations, horizontal transformations, and double profunctors;
and cubes are double transformations.

Below, the outline: we first construct the metalogic of matrix categories, and then apply
the “pseudomonad construction” to form the metalogic of bifibrant double categories; and
we give a metalogical interpretation of this structure.

MatCat H.PsMnd(−) bf.DblCat Logic

0 category (H)-pseudomonad bifibrant double category logic
V profunctor (H)-vertical monad vertical profunctor meta process
H matrix category (H)-pseudobimodule horizontal profunctor meta relation
VH matrix profunctor (H)-vertical bimodule double profunctor meta inference

T functor ps. mnd. morphism double functor flow type
TV transformation v. mnd. morphism vertical transformation flow process
TH matrix functor ps. bim. morphism horizontal transformation flow relation
TVH matrix transformation v. bim. morphism double transformation flow inference

The language is vast and powerful. There are just three basic limitations of metalogic.

1. No interchange. Parallel (horizontal) composition is neither lax nor colax with respect
to sequential (vertical) composition of double profunctors.

2. No metaprocess collage. In general there is no collage of a vertical profunctor, because
its elements do not act on the relations of the bifibrant double categories.

3. No base closure. The base logic — bifibrant double categories and functors, vertical
profunctors and transformations — is not closed, and neither is the total logic.

Yet bf.DblCat is horizontally closed: lifts and extensions are derived in the same way
as in the co/end calculus, and this gives formulae for weighted double co/limits. This
provides a unified method of construction in category theory.
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As a double profunctor consists of inferences between logics, a double transformation
is a “flow” of meta-reasoning, a way to transform one system of reasoning into another.

In this sense, the language of bf.DblCat is the language of metalogic.

(Yes, this framework extends to virtual equipments, and moreover their polycategorical
generalization. The key is the notion of matrix profunctor; one can specify any kind of
“shape” of 2-cell, equipped with multi- or poly- composition. As of now, I do not know of
an aspect of category theory which is beyond the scope of this metalanguage.

The pseudomonad construction generalizes either to lax or colax double functors; but
this replaces the iso-inserter of the descent formula with an inserter, which complicates the
co/descent calculus. It is likely best to use pseudo double functors, and encode co/laxity.)

Conclusion

When the notion of elementary topos was defined, humanity took a great leap forward
by generalizing logic; this began an extensive program of unifying mathematics. Yet a
topos forms a locally thin logic, as its relations are valued in propositions.

The notions of stacks and descent, by which Grothendieck et. al. have revolutionized
algebraic geometry and beyond, are immanent within the co/descent calculus of logics.

There is an immense program here. I am just one person, who hardly knows much
mathematics beyond category theory. My productivity alone is inadequate to this endeavor,
and the sooner the collaboration the better. So, this is an invitation to everyone who sees
the potential of this language.

I plan to organize a seminar. Although the current draft of my dissertation is rough, it
is enough to communicate the definitions and theorems. If you’re interested, let me know.
Let’s develop and explore the three-dimensional language of metalogic.



The Metalanguage of Category Theory Christian Williams

References

[1] Geoffrey Cruttwell, Michael Lambert, Dorette Pronk, and Martin Szyld. Double fi-
brations, 2022.

[2] Brendan Fong and David I Spivak. Seven sketches in compositionality: An invitation
to applied category theory, 2018.

[3] F. William Lawvere. Metric spaces, generalized logic, and closed categories. Theory
and Applications of Categories, 1:1–37, 2002.

[4] F. William Lawvere. Taking categories seriously. Theory and Applications of Categories,
8:1–24, 2005.

[5] Fosco Loregian. (Co)end Calculus. Cambridge University Press, 2021.

[6] David Jaz Myers. String diagrams for double categories and equipments, 2018.

[7] Robert Paré. Composition of modules for lax functors. Theory and Applications of
Categories, 27:393–444, 2013.

[8] Michael Shulman. Framed bicategories and monoidal fibrations. Theory and Appli-
cations of Categories, 20:650–738, 2008.

[9] Ross Street. Powerful functors, 2001.

[10] Ross Street. Categorical and combinatorial aspects of descent theory. Applied Cate-
gorical Structures, 12(5/6):537–576, 2004.

[11] Tamara von Glehn. Polynomials, fibrations, and distributive laws. Theory and Appli-
cations of Categories, 33:1111–1144, 2018.


