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ABSTRACT

Generalized span categories provide a framework for formalizing mathematical models of open systems in classical mechanics. We introduce
categories LagSy and HamSy that, respectively, provide a categorical framework for the Lagrangian and Hamiltonian descriptions of open
classical mechanical systems. The morphisms of LagSy and HamSy correspond to such open systems, and the composition of morphisms
models the construction of systems from subsystems. The Legendre transformation gives rise to a functor from LagSy to HamSy that translates
from the Lagrangian to the Hamiltonian perspective.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0029885

. INTRODUCTION

Category theory provides a formalism for unifying ideas across a wide spectrum of disciplines. The last few decades have seen the
emergence of applied category theory."” One prominent program in this subject is to describe “open” systems—that is, systems that can
interact with their surroundings—as morphisms in appropriate categories, where composition describes how open systems can be combined
to form larger systems.

The idea of describing open systems as morphisms arose from extended topological quantum field theory, where the manifold describing
space can be built up by composing cobordisms, manifolds with boundary that describe smaller regions of space.”° It was later applied in a
more down-to-earth way to electrical circuits,”® Markov processes,” and a wide variety of dynamical systems.'’"'> The morphisms in these
categories are often spans or cospans with an extra structure, and there are now several formalisms for constructing such categories.'*

Our goal here is to apply this idea to Lagrangian and Hamiltonian mechanics and describe the Legendre transformation as a functor
from a category with open Lagrangian systems as morphisms to a similar category of open Hamiltonian systems. Since the study of classical
systems involves solving differential equations that describe paths on general Riemannian and symplectic manifolds, it is in some ways more
complicated than the examples treated earlier. The current work investigates some previously unidentified structures that appear critical to
the study of open systems in classical mechanics.

The systems under consideration have a state space that is either the tangent bundle to a Riemannian manifold in the Lagrangian descrip-
tion or a symplectic manifold in the Hamiltonian description.'* A path in the state space models the motion of the system. The state space
of any subsystem is a quotient space of that of the entire system. For Lagrangian systems, we require that the quotient maps be surjective
Riemannian submersions. For Hamiltonian systems, we require that they be surjective Poisson maps between symplectic manifolds.

A simple example is this system with three point masses attached by springs, where all motion is along the same line:

L IR OIS

We can build a complicated system by attaching additional point masses and springs in series:
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View a pair of point masses attached by a spring as a fundamental component, or a subsystem, of one of these more complicated systems.
These subsystems are then “open systems,” in the sense that both forces internal to the subsystem and external forces of the larger system
govern the dynamics of the subsystems.

We may build such a larger system out of two subsystems by identifying the right mass of the subsystem on the left with the left mass of
the subsystem on the right, as follows:

&(51080000® &(00080080®
[ ] [ ] ([ ]
Here we depict the state spaces of these systems from a Hamiltonian perspective:

T*R? xp+p T*R?

VAN

T*R? T*R?
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Each of the maps is a canonical projection and a surjective Poisson map between symplectic manifolds. At the lowest level are the state spaces
of the three distinct masses. If each mass moves along a line, then each system has T*R, the cotangent bundle to R, as its state space. At the
middle level are two spring-mass systems, each with a state space given by T*R?. On the top level, the total system consists of three masses
interacting in series. The state space for this total system is a fibered product of two copies of the symplectic manifold T*R? over the manifold
T*R.

The fibered product is a six dimensional symplectic manifold, whereas the Cartesian product of the state spaces is an eight dimensional
symplectic manifold. While the fibered product is an embedded submanifold of the product, it will not be a symplectic submanifold when
endowed with the symplectic structure that it requires to be the state space of the given classical system. The Lagrangian setting is similar but
uses tangent bundles rather than cotangent bundles as the state spaces. The fibered product together with its canonical projections encapsulates
the physical meaning of identifying the right mass of the left spring-mass system with the left mass of the right spring-mass system. Both
Dazord in Ref. 15 and Marle in Ref. 16 had similar insights with respect to studying constrained systems, which are similar to the systems
given above in the sense that the masses that connect our systems can be thought of as a geometric constraint. In fact, Dazord explicitly uses
fibered products to construct the configuration and state spaces for certain constrained systems.

Suppose that X, Y, and Z are sets and f and g are functions that, respectively, map X and Y to the set Z. Henceforth, denote by px and
py the respective canonical projections

px:XxY—>X and py:XxY Y,

and denote by 7x and 7y the respective restrictions of px and py to the fibered product X x;Y, which is the subset of X x Y consisting of all
elements on which f is equal to g. The fibered product in the category Set, whose objects are sets and whose morphisms are functions, has
certain universal properties recalled in Sec. II. The connection between these universal properties and the construction of span categories for
modeling classical mechanical systems is a central theme of the current investigation.

A span in the category Set is a pair of functions with the same source. The fibered product together with the span (7x,7y) gives a
prescription for composing spans in Set. Bénabou proved in Ref. 17 that if € is a category with pullbacks, then there is a bicategory, Span(%),
whose objects, morphisms, and 2-morphisms are the respective objects, spans, and maps of spans in €. To avoid unnecessary complications,
we view this bicategory as a category, a span category, by ignoring the bicategory structure and taking isomorphism classes of spans in &,
to be defined in Sec. 1T, as the morphisms. Fibered products define a composition of isomorphism classes of certain spans in Set that seems
strikingly similar to the way in which classical mechanical systems compose.

We propose that open classical systems are morphisms in an appropriate span category, where the composition of morphisms using
pullbacks describes the composition of classical systems. This formalization of classical mechanics should deepen our understanding of the
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foundations of classical mechanics and may also offer a way to automate the modeling of classical mechanical systems. Modeling open classical
mechanical systems necessitates working with spans in categories other than Set, where the fibered product lacks the universal properties
that it has in Set.

It is natural to view a classical system as an isomorphism class of spans in the category of Riemannian manifolds with surjective
Riemannian submersions in the Lagrangian setting or as an isomorphism class of spans in the category of symplectic manifolds with sur-
jective Poisson maps in the Hamiltonian setting. However, Sec. II demonstrates that neither of these categories has pullbacks. Thus, the work
of Bénabou does not apply. For this same reason, it does not appear that the work of Fong'®!? as corrected by Courser'**’ can be straight-
forwardly modified from its cospan setting to a span setting that is useful to the present discussion. Derived geometry’!>* would let us use
homotopy pullbacks instead of pullbacks, but in some sense, this is overkill: The fibered products required for the current paper will exist and
be smooth manifolds; only the universality condition of a pullback fails.

Section 11 recalls previous work required for handling this problem. Suppose that € and €" are categories and F is a functor from € to
€'. Weisbart and Yassine defined in Ref. 23 the notion of an “F-pullback” of a cospan in € and the “span tightness” of the functor F. They
proved that if the functor F is span tight, then Span(%, F) is a category, a “generalized span category,” whose objects are the objects in &
and whose morphisms are isomorphism classes of spans in . Composition in this generalized span category is defined using F-pullbacks.
Generalized span categories determine the kinematical properties of open classical systems in the Hamiltonian setting and of “free” open
systems in the Lagrangian setting—that is, systems where all the energy is kinetic.

In Sec. 111, we introduce the notion of an “augmented” span, which allows us to introduce nonzero Hamiltonians and add potentials
to Lagrangians. In Sec. IV, we construct the augmented generalized span categories HamSy and LagSy. In the Hamiltonian setting, the aug-
mentation determines the dynamical evolution of the system. In the Lagrangian setting, the augmentation determines the potential for the
classical system, hence its dynamics as well. The categories LagSy and HamSy provide frameworks for studying open classical systems from
the Lagrangian and Hamiltonian perspectives, respectively. Section V introduces a functor & : LagSy — HamSy. This functor, a version of
the Legendre transformation, translates from the Lagrangian to the Hamiltonian perspective.

In future work, we hope to compare the present approach to the theory of port-Hamiltonian systems, an approach to open systems in
classical mechanics widely used in engineering.”*

Il. SPANS AND GENERALIZED SPAN CATEGORIES
A. Spans and span categories

Refer to Ref. 23 for further discussion of the material presented here. We review for the reader’s convenience some of the definitions and
basic results from Ref. 23 that the current discussion requires.

A span in a category € is a pair of morphisms in € with the same source, and a cospan in € is a pair of morphisms in & with the same
target. For any span S in €, write

S = (s1,8r),

where S;, S, and S, are objects in &,
SL:SA—>SL and SR:SA—>SR.
Utilize the same notation if S is a cospan, but where s; and sg, respectively, map S; and Sg to Sa. For any span or cospan S in %, refer,
respectively, to the objects Sa, St, and Sg in € as the apex, left foot, and right foot of S.
Definition 2.1. A span Sin ¥ is paired with a cospan C in % if

Cr=S,, Cr=Sg, and cposy=crosz.

The pairing of a span S with a cospan C has a diagrammatical interpretation, namely, that the following diagram commutes:
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Suppose that S and Q are spans in € with S; equal to Q; and Sg equal to Qg. A span morphism in € from S to Q is a morphism @ in €
from Sa to Qa such that

st=qro® and sp=qro®,

meaning that the following diagram commutes:

RN
S, =01 @ Sr=Qr

N

Qa

A span isomorphism in € from S to Q is a span morphism that is additionally an isomorphism.

Proposition 2.2. For any span isomorphism O, the inverse O 'isalsoa span isomorphism. Furthermore, any composite of span morphisms
is again a span morphism.

Definition 2.3. A span S in € is a pullback of a cospan C in ¥ if it is paired with C and if for any other span Q in & that is also paired
with C, there exists a unique span morphism @ in € from Q to S:

qr
Qa
32
S
Sa ! Cr
aL SL CR
Ccr o Ca

Note that the diagram formed by pairing a span S with a cospan C, where S is a pullback of C, is a pullback diagram or a pullback square
as often discussed in the literature.

Definition 2.4. A category € has pullbacks if for any cospan C in € there is a span S in € that is a pullback of C and S is unique up to a
span isomorphism in €.

Denote by Top the category whose objects are topological spaces and whose morphisms are continuous functions. The categories Set
and Top are examples of categories that have pullbacks, as discussed in Ref. 23. If C is a cospan in Set, then let p; and pr be the canonical
projections

pr:CrxCr—Cr and pr:CrxCr— Cg.

Denote by S4 the fibered product

CLxc,Cri={(xy) € CLx Cr: (cLopL)(xy) = (cropr)(x:y)}.
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Take S and S to be, respectively, equal to C; and Cg, and let s; and sz be the respective restrictions of p; and pr to the set Sa. The
span (sz,sr) is a pullback of C. If C is a cospan in Top, then S is again a pullback of C in Top, where the topology on S4 is the subspace
topology induced by the product topology on St x Sg.

B. The categories SympSurj and RiemSurj

Refer to Ref. 25 for further background on Poisson geometry. A Poisson bracket on a smooth manifold M is an anticommutative, bilinear
function from C* (M) x C* (M) to C* (M) that satisfies Leibniz’s rule and the Jacobi identity. A Poisson manifold is the pair consisting of a
smooth manifold M and a Poisson bracket on M. Suppose that (M, {-,-}um) and (N, {-,-}n) are Poisson manifolds. For each f in C* (M), the
Poisson vector field associated with f is the derivation v s given by

vr () ={- flm
A smooth map ® from M to N is a Poisson map if for any f and g in C™(N),
{frghyo® = {fod,god},.

Symplectic manifolds are the primary objects of study in Hamiltonian mechanics. A symplectic manifold is a pair (M, wym), where M is a
smooth (necessarily even dimensional) manifold and wy is a smooth, closed, nondegenerate 2-form on M, a symplectic 2-form. Suppose
that the dimension of M is 2m. For each x in M, there is an open set U containing x such that the symplectic 2-form gives rise to Darboux
coordinates (qi, pi)i-; on U, coordinates such that

wp = i”: dqi AN dp,
i=1

The symplectic 2-form naturally distinguishes position and momentum coordinates on M and induces an isomorphism Qy; between the
tangent and cotangent bundles. Given tangent vectors v and w in the same fiber of TM, define by Qu(v) the covector

Qu(v) = wm(5v) 1w~ wm(w,v).

Since wy is nondegenerate, the map Q. is invertible. For each function f in C* (M), denote by Dy the symplectic gradient of f, which is
defined by

Dy = Qur (df).

Every symplectic manifold has a Poisson structure that it inherits from its symplectic structure in the following way. For any symplectic
manifold (M, wy), define a Poisson bracket {-, -} on pairs (f, g) in C* (M) x C= (M) by

{f-g}tm = “’M(DﬂDg)'

The symplectic gradient Dy is the Poisson vector field v associated with f, implying that

{frg}m = “’M(”f’”g)'
The real valued function ITys defined by

My (df,dg) = {f g}m

is a global section of (T*M A T*M)*. The Poisson bivector of (M, {-,-}um) is the image of the function ITy under the canonical isomorphism

that takes (T*M AT*M ),, to A’TM. To simplify notation, denote henceforth by Iy the Poisson bivector of (M, {-,-}a). Refer to Ref. 26,
p- 30 for Proposition 2.5 and see Ref. 26, p. 44 for a Proof of Proposition 2.6.
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Proposition 2.5. A smooth map © from (M, {-,-}m) to (N,{-,-}n) is a Poisson map if and only if

dd(Ily) = M.
Proposition 2.6. Suppose that (M, {-,-}a) is a Poisson manifold and (N, wn) is a symplectic manifold. Every Poisson map from M to N is
a submersion.

Riemannian manifolds are the primary objects of study in Lagrangian mechanics. The metric on the tangent bundle of a Riemannian
manifold gives a kinetic energy associated with a particle moving in the base manifold, which is the configuration space for the system
(Ref. 14, p.83-84). A Riemannian submersion ® from a Riemannian manifold (M, gy) to a Riemannian manifold (N,gn) is a smooth
submersion with the property that if v and w are vector fields tangent to the horizontal space (ker(d®))", then

gu(v,w) = g (d®(v), dP(w)).

Table I specifies the categories to be henceforth denoted by Diff, SurjSub, RiemSurj, and SympSurj.

An example in Ref. 23 shows that the category SurjSub does not have pullbacks. Since this example involves manifolds that have trivial
Riemannian and symplectic structures and mappings in the respective categories, the categories RiemSurj and SympSurj also do not have
pullbacks.

C. F-pullbacks and span tight functors

Assume henceforth that € and & are categories and that F is a functor from & to €. For any span S in €, denote by F(S) the span
(F(s1), F(sr)) in €. For any cospan C in €, denote by F(C) the cospan (F(cr), F(cr)) in €'

Definition 2.7. The category € has F-pullbacks in €' if for any cospan C in €, there is a span S in € that is paired with C and the span
F(S) is a pullback of the cospan J(C) in €'. In this case, the span S is an F-pullback of C.

Note that if €’ is equal to € and F is the identity functor, then an F-pullback is simply a pullback.

Definition 2.8. Suppose that € has F-pullbacks in €. The functor F is span tight if for any F-pullbacks S and Q of the same cospan, the
unique span isomorphism @ from F(S) to F(Q) is F(¥) for some span isomorphism ¥ from S to Q.

Definition 2.9. For any two spans S and Q in & such that Sg is equal to Q; and there is a span P in & that is a pullback of the cospan
(sr,qL), denote by S op Q the span in € given by

S op Q= (szopL,qr © pr).

The span S op Q is the composite of S and Q along P. If P is an F-pullback, then the span S op Q is an F-pullback composite of S and Q along P.

Identify the objects of Span(€, F) to be the objects in € and the isomorphism classes of spans in & to be the morphisms in Span(€, F).
If [S] is an isomorphism class of spans in Span(%, F), then identify Sz and S;, respectively, to be the source and target of [S]. Define the
composition of isomorphism classes of spans by

[s']e[S]=[s" er S°],

where §' op S is an F-pullback composite of S' and S*. For any object X in &, denote by Idx the identity morphism from X to X and by Ix
the span (Idx, Idx). Define by [Ix] the identity morphism in Span(€, F) from X to X. The following theorem is the main result of Ref. 23:

TABLE . Table of categories.

Category Name Objects Morphisms
Diff Smooth manifolds Smooth maps
SurjSub Smooth manifolds Surjective submersions
RiemSurj Riemannian manifolds Surjective Riemannian submersions
SympSur j Symplectic manifolds Surjective Poisson maps
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Theorem 2.10. If Fis a span tight functor from € to €', then Span(€, F) is a category.

Suppose that X, Y, and Z are smooth manifolds. Suppose further that (f, ¢) is a cospan in SurjSub, where f and g have respective
sources X and Y and mutual target Z. Again denote by px and py the respective projections from X x Y to X and Y, and let nx and 7y be
their respective restrictions to the embedded submanifold X x ;Y. Reference 23 proves Proposition 2.11. Proposition 2.11 and Theorem 2.10
together imply that Span(Sur jSub, F) is a category, where F is the forgetful functor from SurjSub to Diff.

Proposition 2.11. The span (nx, ny) is an F-pullback of (f,g), and so SurjSub has F-pullbacks. Moreover, the functor F is span tight.

Since we will need to work in the categories SympSurj and RiemSurj, we will need to prove a similar result for these categories.
Section I1I will provide such a result.

I1l. LAGRANGIAN AND HAMILTONIAN SYSTEMS

The description of a Lagrangian or Hamiltonian system, respectively, requires not only the identification of a span in RiemSurj or
SympSur j but also the additional information of a potential or a Hamiltonian, both of which are augmentations.

A. Systems as isomorphism classes of augmented spans

We now introduce the notion of an augmentation of a span and cospan, but in the restricted settings that are significant to the current
discussion. We will discuss augmentations in greater generality in an upcoming paper.

Definition 3.1. An augmented manifold is a pair (M, Fa), where M is a smooth manifold and Fy is a smooth real valued function
defined on M. The pair (M, F) is an augmented Riemannian (symplectic) manifold if M is a Riemannian (symplectic) manifold. Refer to Fy
as a potential (or Hamiltonian), denoting it by Vi (or Hyy) if M is, respectively, a Riemannian (or symplectic) manifold.

For sake of concision, denote by 20t any of the categories listed in Table L.

Definition 3.2. An augmented (co) span in 9 is a pair (S, Fs), where S is a (co)span in 9% and Fs is a triple (Fs,, Fs, , Fs, ) of smooth real
valued functions defined, respectively, on Sa, S, and Sg. If 901 is RiemSurj (or SympSurj), then the given augmented span is a Riemannian
(co) span [or Poisson (co) span]. A classical (co) span is a (co)span that is either Riemannian or Poisson. If (S, Fs) is a Riemannian (Poisson)
span, then refer to Fs as a potential (or Hamiltonian) and denote it by Vs (or Hs).

The apex of a Poisson span determines the kinematical properties of the system, and the mapping of the apex to its feet determines the
way in which the span composes with other spans and, therefore, how components of systems compose to form more complicated systems.
The apex of a Riemannian span determines a free system, and the augmentation will be a potential that determines the interactions in the
system. The fundamental object of our study should be an isomorphism class of augmented spans rather than an augmented span because the
composition using F-pullbacks is only determined up to isomorphism.

Definition 3.3. Suppose that the classical spans (S, Fs) and (Q, F) are either both Riemannian or both Poisson and that

(S1,Fs,) = (Qu,Fq,) and  (Sk,Fs;) = (Qr, For)-

A span morphism @ from Sa to Qa is compatible with Fs and F if Fs, is equal to Fg, o ® and is, in this case, a morphism of classical spans. If
® is additionally an isomorphism, then @ is an isomorphism of classical spans and (S, Fs) and (Q, Fq) are isomorphic classical spans.

The inverse of an isometry is again an isometry. The inverse of a Poisson diffeomorphism is again a Poisson diffeomorphism (Ref. 27,
p. 10). Proposition 3.4 follows from these facts.

Proposition 3.4. Suppose that S and Q are spans that are either both in RiemSurj or both in SympSurj. The inverse of any span
isomorphism from S to Q is a span isomorphism from Q to S.

Denote by [S, Fs] the set of all classical spans that are isomorphic to the classical span (S, Fs). Together with the fact that the compos-
ite of classical span isomorphisms is again a classical span isomorphism, Proposition 3.4 implies that isomorphism of classical spans is an
equivalence relation; hence, the set [S, Fs] is an equivalence class.

Definition 3.5. A Lagrangian (or Hamiltonian) system is an isomorphism class of Riemannian (or Poisson) spans. If [S, Fs] is either a
Hamiltonian system or a Lagrangian system, then [S, Fs] is a classical system. Classical systems [S, Fs] and [Q, Fq] are of the same type if they
are both Hamiltonian systems or both Lagrangian systems.

B. Paths of motion

Suppose that (S, V) is a Riemannian span and gs, is the Riemannian metric on Sa. Denote by ps, the canonical projection from TSy to
Sa. Define the Lagrangian of (S, Vs) on TSa to be the function Ls, where
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1
Ls(v) = EgsA(v, v) = Vs, (ps,(v)) with veTS4.

Definition 3.6. A path in the Riemannian manifold (Sa,gs, ) is a path of motion of (S, V) if it minimizes the action integral of L5 under
smooth variations with fixed endpoints.

Denote by bs, the function from TSy to T*S4 that acts on each v in TS4 by

bs, (V) =884 (V> )-
The nondegeneracy of the metric g5, implies that the map bs, is invertible. Denote by {5, the inverse of bs, with
s, : T*Sa—>TSx by 0~v, where 0=gs(v,-) and (6,v)e T"Sa x TSa.

Denote by gradg (Vs, ) the vector field

gradg, (Vs,) = fs,(dVs,)

and by V* the Levi-Civita connection on the Riemannian manifold (Sa, gs, ). A standard calculation shows that y is a path of motion of the
Riemannian span (S, V) if and only if it satisfies

Sa
v,y +gradg (Vs,)|, =0, (EL)

the Euler-Lagrange equations. See Ref. 28 for further explanation of the details in this section.

Definition 3.7. Suppose that (S, Hs) is a Poisson span. Denote by {-,}s, the Poisson bracket associated with the symplectic form ws, on
the symplectic manifold Sa. A path y in Sa is a path of motion of (S, Hs) if it is an integral curve of the vector field v where

U= {"HSA }SA'

Proposition 3.8. Suppose that (S, Fs) and (Q, Fq) are classical spans of the same type and ® is an isomorphism of classical spans taking
(S, Fs) to (Q,Fq). If y is a path of motion of (S, Fs), then ® oy is a path of motion of (Q, Fq). Furthermore, every path of motion of (Q,Fq)
is the image of a path of motion of (S, Fs).

Proof. If (S, Vs) and (Q, Vq) are Riemannian spans and @ is an isomorphism from (S, V) to (Q, Vq), then @ is an isometry from Ss
to Qu and Vs, is equal to Vg, o ®. Denote by V% and V% the respective Levi-Civita connections on S4 and Q4. Suppose that p is an element
of S4 and that X and Y are tangent vector fields on S4. The map @ is an isometry, and so

A0, (T Y)(P)) = Vi d®(Y)(P(p)) and dd(gradg (Vo, o @)) = grad,, (Va,)-

If y is a path of motion of (S, V), then @ o y is a curve in Q4 and

V oy (©09)" + grady, (Vo) gey = Van(yy (40(y')) + gradg, (Vo,)l o,

= dCDP(Vi;‘ (y’) + gradSA(VsA)\ y)
=d®,(0) =0,
where the fact that y satisfies (EL) in S4 implies the penultimate equality. The path @ o y is therefore a path of motion of (Q, Vo).
If (S, Hs) and (Q, Hq) are Poisson spans and @ is an isomorphism from (S, Hs) to (Q, Hg), then @ is a Poisson diffeomorphism from

Sa to Qu and Hg, is equal to Hg, o ®@. The curve y is path of motion of (S, Hs) if and only if it is an integral curve of the vector field {-, Hs, }.
Suppose that a and f3 are smooth functions on Q4. Since @ is Poisson,

do({- a0 @}, )(B) = {»ao ) (Bo @) = {Bo®,a0 @}y = {Ba}y,,
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and so

(@oy)" = do| ({.Hs,}q,)

= ch|y({.,HQA o <1>}SA) = {.,HQA}QA|®OY.

The curve @ o y is, therefore, a path of motion of (Q, Hp).
In both the Riemannian and Poisson settings, the map ®~" is also an isomorphism of classical spans, and so every path of motion of
(Q,Fq) is the image of a path of motion of (S, Fs). ]

C. F-pullbacks of SympSurj and RiemsSurj in Diff

Proposition 3.8 implies that an isomorphism class of classical spans determines the dynamics of a classical system. Composing such
isomorphism classes requires both the existence of F-pullbacks in these categories, where F is an appropriate forgetful functor into Diff, and
the span tightness of the functor F.

Suppose X is a symplectic manifold. The Poisson bivector ITx of X induces a map I1x from T*X to TX that takes any # in T*X to the
vector field TTx (%) with the property that for any v in T*X,

v(TIx(n)) = x(n, v).

Since X is symplectic, the map Tlx is an isomorphism (Ref. 26, p. 17). This isomorphism gives a way to pull back vector fields by surjective
Poisson maps, a fact that, along with Proposition 2.6, is critical to the Proof of Theorem 3.9. Theorem 3.9 establishes the existence of a local
splitting of the tangent space of a symplectic manifold by a local foliation given by the inverse image of a surjective Poisson map.

Theorem 3.9. Suppose that X and Z are symplectic manifolds with respective dimensions 2¢ and 2n and that f is a surjective Poisson map
from X to Z. Given any z in Z and a choice of Darboux coordinates (q¢,p?)-, on an open set U containing z and given any x in X with f(x)
equal to z, there exist Darboux coordinates (', pY)f; on an open set V containing x such that for anyiin {1,...,n},

X_ z X _
gi =qiof and pj =pjof.

Proof. Suppose that xo is in X, that U is an open set containing f(xo), and that (g7, p?), is a Darboux coordinate system on U.
Proposition 2.6 guarantees that f is a surjective submersion; hence, it is an open map, and so there is an open set V' containing xo with a
Darboux coordinate system (g7, pX )2, such that f(V’) is an open subset of U. Denote by H the set of all vector fields v on f(V") for which
there is some a in C* (f(V")) such that for any fin C*(f(V")),

v(B) = {B.a}z

Denote such a vector field by v,. Denote by f* () the set of all vector fields w on V" for which there is an a in C*°(f(V")) such that for any
hin C=(V"),

w(h) = {hao f}x.

Denote such a vector field by w,. For any x in V' and any z in f(V"), denote, respectively, by f*(#)(x) and H(z) the set of all vector fields
in f*(H) evaluated at x and the set of all vector fields in H evaluated at z. The bilinearity of the bracket implies that H(z) and f*(#)(x) are
vectors spaces. Since

= d =,
U_%Z apz an UP,Z aqz

for any z in f(V"), the vector space H(z) spans T.(U).
Let F be the function

F:H— f"(H) by F(vi)=wa.
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The fact that f is Poisson implies that

df (wa) (B) = wa(Bo f)
= {Bo frao fix
= {B.0)2 = va(p),

and so

df (F(va)) = va.

Similarly, for any wy in f*(H),
F(df (wa)) = F(va) = Wa.
The maps F and df]y are therefore inverses of each other, and so for each x in V”, the vector spaces H(f(x)) and f* (#)(x) are isomorphic.

Both of these vector spaces have the same dimension as Z.
For any wq and we in f* (), the Jacobi identity implies that

[wa)wa’]TX = W (Wer B)) - wa’(wlx(ﬁ))
= {war (B) o f}x = {wa(B), &’ o f}x
={{Bof.d ofixac fix—{{Bofaofixd of}x
={B.{d" o fiao flx}x = wiawy (B),

and so the space of vector fields f* (#) is closed under the bracket [-,-]7x on TX. The Frobenius Theorem for involutive distributions implies
that for any x in V’, there is a submanifold W of V' such that f*(#)(x) is the tangent space TxW. Since

fT(H)(x) nker(dfl,) = {0},

the rank-nullity theorem implies that
TV = f*(H)(x) ® ker(df],).

Define the function g from W to Z to be the restriction of f to the submanifold W. The form g* (wz) is a closed 2-form on W as it is
the pullback of the closed 2-form wy, restricted to f(V'). Suppose that there is a v in TW such that for all w in TW, g* (wz) (v, w) is equal to
zero. In this case,

0 =¢"(wz)(v,w) = wz(dg(v),dg(w)),

and so
wz(dg(v),-) =0

since dg|, is surjective at each point x of W. Nondegeneracy of wz implies that dg(v) is equal to zero, and the injectivity of dg further implies
that v is equal to zero. The form g* (wy) is, therefore, a symplectic form on W.
For any (#,{) in C*(V') x C=(V"),

[z, (wwe) = wz(df (wy), df (we))l )
= wZ(UmU()|f(x)
={n (}Z‘f(x)
={nef.¢o fixl, = wx(wy,w)l, M
where the assumption that f is Poisson implies the penultimate equality. The pullback f*(wy) is therefore the restriction of wx to TW x TW.

The manifold W is an embedded symplectic submanifold of V', and so Ref. 29, p.124, Exercise 3.38, implies that there is an open set V of V'
that contains xo and a Darboux coordinate system (qf(, p,X )le on V such that for any x in V and i strictly larger than n,

g () = p(x) =0.
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Define

n 14
wa=Ydgi Adp} and wp= Y dgf Adp}

i=1 i=n+1

so that in the open set V, wy is equal to the sum of w4 and wg. The form wg is the restriction of wx to (TW x TW) n (TV x TV, and so (1)
implies that wj is equal to f* (wx ). Furthermore, for any 6 in C*°(U),

(f*(dq?)) (we)lx = dgi (df (we)),
= din(U0)|f(x)
= Ua(%‘z)|f(x)
= {in’e}Z|f(x)
= {4/ o f60 f}xl, = d(gi o )wl,.

Every element of TW is of the form wyg for some 6 in C* (U), implying that

f(dgf) = d(gi o f) and f*(dp) = d(pi o f)- )

Use (2) together with the coordinate representation of wz to obtain the equality
f(wz) = 2 d(gf o f) Ad(pf o f),
i=1

which implies that in the open set V,

n ¥4
wx=Yd(giof)nd(piof)+ Y dg’ ndp}.
i=1

i=n+1

The coordinate system ¢ on V given by

z 7z z z X X X X
¢ = (ql Of)pl Of)- - qn Of)Pn Of>qn+1’pn+1>-' -WM)PZ)
is, therefore, a Darboux coordinate system on V. O
Denote by 7z the map

iz = fonx =gony,

where 7x and 7y are the projections from X x;Y to Z. More generally, for any span Q that is paired with a cospan (f, g), define by g the
map

gm = foqL=goqr.

Theorem 3.10. Suppose that (f,g) is a cospan in SympSurj with
f:X—=Z and g:Y-7Z

with 24, 2m, 2n being the respective dimensions of X, Y, and Z, and suppose that wx, wy, and wy, are the respective symplectic forms on X, Y,
and Z. Suppose that Q is a span in SympSurj that is paired with (f, g), and suppose that Qa has dimension 2(£ + m — n). The 2-form wq,,
given by

wq, = q1 (wx) + gr(wy) — qu(wz),
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is the symplectic form on Qu. Moreover, the 2-form w, given by
w = mx(wx) + my(wy) = mz (wz),
is the unique symplectic form on X x;Y with the property that (nx, wy) is paired with (f,g).

Proof. Suppose that a is in Q4. Since Z is a symplectic manifold, there is on some open set U containing g (a) a Darboux coordinate
system W with

v (qf’p5>ks{l,...,n} $Uz > R

Since qum(a) is equal to f(qr(a)), Theorem 3.9 implies that there is an open set Uy containing g (@) and a Darboux coordinate system ¥~
on Ux with

V- (g x> R
(q p Qkofpkof)ie{l,,,.,e—n} x

ke{1,...,n}
Similarly, there is an open set Uy containing qr(a) and a Darboux coordinate system ¥ on Uy with

Y Y | Y Z VA m
v = (qj »Pj >4k © & Pk Og)je{l - : Uy > R*™.

ke{L,...n)
Foreach kin {1,...,n}, the equality of f o g; and g o gr implies that
giofoqu=diogodqr=qioqu and p{ofoq=piogoqr=pioqu
Furthermore, there is an open set U containing a with the property that q; (U) and gr(U) are, respectively, subsets of Ux and Uy. Denote,

respectively, by qf(, [)f(, qu, [)J»Y, Qf, and [)f the functions q,X oqr, p,x °qr, qjy o qR,ij o gr, qf o gm,and pf o gum acting on Qa. The map ¥ given
by

X =X .Y Y ~Z ~Z 2(L+m—n
\I":(q,' > Pi > gj ’pj’qk’pk)ie{l i :U—>]R(+ )
je{1,...,m—n}
ke{1,...,n}

is a homeomorphism from U to an open subset of R*“*"~") and hence a coordinate system on U that is a Darboux coordinate system. The
2-form wq, is therefore the form

L—n m—n n
wq, = Zl dg’ A dpf + Zl dgj ndp; + I(quf A dpt,
i= j= =1

proving that if there is a span Q with the given properties, then the symplectic form on Q4 is determined by the cospan (f, g). It does not,
however, prove that there is such a span.

Proposition 3.6 of Ref. 23 implies that X x;Y is a smooth manifold of dimension 2(£ + m — n). Suppose v is in To(X x2Y), and for any
win Ta(X x2Y), w(v,w) is zero. There are coefficients a.b,d,e, sk, t* such that, using Einstein summation convention,

v=ddg +b'op; +Jog +op] +soq; + fopt.

For a fixed i,

~w(v,037) =b = 0.
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A similar calculation shows that all of the given coefficients are zero, implying that v is equal to zero and so w is nondegenerate. The
form w is the sum of pullbacks of smooth closed forms, and so smooth and closed itself, hence symplectic. The construction of w ensures that
the smooth surjections x and 7y are Poisson maps on the symplectic manifold (X x;Y, w); hence, (7x, 7y ) is paired with (f, g). ]

Theorem 3.11. Suppose that (f,g) is a cospan in RiemSurj with
f:X->Z and g:Y->Z
and that gx, gy, and gz are the metric tensors on X, Y, and Z, respectively. The tensor gx x,v, given by

8xx,v = mx(gx) + my(gv) — mz(gz2),

is the unique metric tensor on X xzY such that the span (nx, ny) is paired with (f,g).

Proof. Since every surjective Riemannian submersion is a surjective submersion, the fibered product X x,Y is a smooth manifold. If
£x x,v is positive definite, then (X xzY, gx x,v) is a Riemannian manifold since gx x, v is a symmetric tensor as a sum of pullbacks of symmetric
tensors. It suffices to show that gx x,y is nondegenerate.

Follow the Proof of Theorem 3.10 using the splitting of the tangent spaces

TX = (ker(df))* @ (ker(df)) and TY = (ker(dg))* @ (ker(dg))

rather than the previous appeal to Theorem 3.9 to obtain an expression for gx x,y in local coordinates. Together with this local coordinate
representation of gx x, v, the fact that the maps 7x, 7y, and 7z are surjective Riemannian submersions implies that gx x,y is nondegenerate.
The proof is similar to the Proof of Theorem 3.10, and so the details are left to the reader to verify. O

Note that the symplectic form on X x;Y in Theorem 3.10 is not the pullback by the inclusion map of the symplectic form on X x Y to
the manifold X x;Y. While the pullback form is symplectic, the span (7x, 7y ) will no longer be a span in SympSur j when X x,Y is endowed
instead with the pullback form. The analogous statements about the potential choices for the metric tensor are true in the Riemannian setting.

Theorem 3.12. The forgetful functors from SympSurj to Diff and from RiemSurj to Diff are span tight.

Proof. Suppose that F is the forgetful functor from SympSurj to Diff. Since every morphism in SympSurj is a surjective submersion,
the functor F maps SympSur j to the subcategory SurjSub of Diff. If (f,g) is a cospan in SympSurj and 7rx and 7y are, as defined above, the
respective projections from X x;Y to X and Y, then Proposition 2.11 implies that (F(7x), F(7ry)) is a span in Diff that is a pullback of the
cospan (F(f), F(g))- Therefore, SympSur j has F-pullbacks in Diff. Suppose now that Q is a span in SympSur j that is also an F-pullback of
(f,g)- In this case, the span F(Q) is a span in Diff that is a pullback of (F(f), F(g)), and so there is a span diffeomorphism ® from F(Q)
to F(X x2Y). Since @ is a span morphism,

Flqr) o® ' = F(nx), Flqr)o® ' = F(ny), and F(f)o F(q)o® " = F(nz). 3)
Denote, respectively, by w, wx, wy, and wy the symplectic forms on X x;Y, X, Y, and Z. The equalities of (3) imply that

w = Frx) " (wx) + Fmy)* (wy) - F(nz) " (wy)
= (Fqr) 0 @) (wx) + (F(gr) 0 @) (wy) = (F(f) 0 Flqr) 0 @) (wy)
= (07) (F(qn)" (wx) + F(qr)" (wv) = (F(f) 0 F(q1))" (wz))
= (07) (wa,),

where wq, is the unique 2-form on Q4 such that Q is paired with (f,g). Let ¥ be the map from (Qa,wq,) to (X xzY,w) that acts as @
on the underlying manifolds. The map ¥ is, therefore, a diffeomorphism and ¥~ is a symplectic map; hence, ¥ is a symplectomorphism.
Since every symplectomorphism is a Poisson diffeomorphism, ¥ is an isomorphism in the category SympSur j with F(¥) equal to ® (Ref. 30,
p- 195).

A similar argument proves the theorem in the case of RiemSurj. O
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Corollary. If F is the forgetful functor from SympSurj to Diff (respectively, RiemSurj to Diff), then Span(SympSurj, F) [respectively,
Span(RiemSurj, F)] is a category.

While Theorems 2.10 and 3.12 imply that Span(SympSurj, ) and Span(RiemSurj, F) are categories, where F is the appropriate forgetful
functor into Diff, to show that classical systems are morphisms of a category requires additional verifications. Section IV provides the
necessary verifications.

IV. CLASSICAL SYSTEMS AS MORPHISMS

This section constructs the categories LagSy and HamSy, whose objects are, respectively, augmented Riemannian manifolds or
augmented symplectic manifolds and whose morphisms are isomorphism classes of the classical spans appropriate to the given category.

A. The categories HamSy and LagSy

Definition 4.1. The classical system [S, Fs] is composable with the classical system [Q, Fq] if:

(i) both are classical systems of the same type; and
(i) if (S, Fs) and (Q, Fo) are respective representatives of the equivalence classes [S, Fs] and [Q, Fq], then (Sg, Fs, ) is equal to (Qy, Fg, )-

Assume below that the classical system [, Fs] is composable with [Q, Fg] and (S, Fs) and (Q, Fq) are, respectively, representatives of
[S,Fs] and [Q, Fo]. To simplify notation, let

Sa=X,8.=V,8%=Q=2,Qs=Y, and Qr = W.

Again denote by X xY the fibered product and by 7x, 7y, and 7, the respective projections to X, Y, and Z. Define by [S, Fs] o [Q, Fq] the
augmented span given by

[S,Fs] o [Q, Fo] = [(s 0 7x,qr © 7y ), Fsoq],

where

Fsoq = (Fx o mx + Fy oty = Fz o 7z, Fv, Fw).

Theorem 4.2. The Hamiltonian systems are the morphisms in a category, HamSy, whose objects are augmented symplectic manifolds. The
Lagrangian systems are the morphisms in a category, LagSy, whose objects are augmented Riemannian manifolds.

Proof. To prove the theorem, it suffices to show that (i) the composition of morphisms in HamSy and in LagSy is well defined; (ii)
both HamSy and LagSy have left and right unit laws; and (iii) the composition of morphisms in HamSy and in LagSy is associative. Since
Span(RiemSurj, F) and Span(SympSur j, F) are categories, to show that HamSy and LagSy are categories, it suffices to show that the augmen-
tations are compatible with the various span isomorphisms that arise in defining the categories Span(RiemSur j, F) and Span(SympSur j, F).

Suppose that [, Fs] and [Q, Fq] are both classical systems, and denote by F the appropriate forgetful functor from either SympSurj or
RiemSurj to Diff.

(i) Suppose that [S', Fs/] is equal to [, Fs] and that « is an isomorphism of augmented spans with
a:X =84~ S
Suppose that [Q', FQr] is equal to [Q, Fq] and that f8 is an isomorphism of augmented spans with
B:Y=Qu—> Qi
Since (Z, F7) is the right foot of (S, Fs) and the left foot of (Q, Fp),

(SkoFy) = (QFoy) = (Z.F2).
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If P is an F-pullback of (s, g7 ), then there is a span isomorphism ® with
O : X xzY — Py.
The augmented span (S', Fs«) op (Q',FQ«) is given by
(8',Fs) op (Q,Fg) = ((s1. 0 proqr 0 Pr): Fsr 0p ')

where

Fsiop @ = (Fsg opL+Fg opr—Fzo Sk OPL,FV,FW).
Since & and f are isomorphisms of augmented spans,

Fg oa=Fx and Fg of=Fy.
The function @ is a span isomorphism, and so
pro®=aonx and pro®=Pony,

and hence,

sta OpLO(D:FSAO(XOTIX:FXOﬂx.

Similar arguments show that

FQ; opro®=Fyomny and onsfzopLOQD:onnz,

and so
FSOQ = (st op Q’) [} CD (4)

Equality (4) implies that @ is an augmented span isomorphism; hence, the composition of [S, Fs] and [Q, Fq] is independent of
representative. The composite [S, Fs] o [Q, Fq] is, therefore, a well-defined morphism from (Qg, Fo, ) to (St, Fs, ).

(ii) Let [S, Fs] be a morphism with the source (Sg, Fs,) and target (Si,Fs, ). Let (IsR,FISR) be a representative of the identity augmented
span with source (Sg, Fs, ) and target (Sg, Fs, ). The equality

[S] e [Is.] = [$]

follows from the fact that both Span(SympSurj, ) and Span(RiemSurj, F) are categories. Let the span P be an F-pullback of (sg, Ids, ),
where

P =Pa =S4, Pr=Sr, pr =1ds,, and pr = sr.
The equalities

Fp, = Fs, opr + Fs, osr = Fs; osropr
:FSA OIdSA +FSR05R_FSR05ROIdSA :FSA
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imply that there is an augmented span isomorphism from (S, Fs) o (s, Fs, ) to (S, Fs), and so

[S, Fs] o [Is;, Fs, ] = [S, Fs].
A similar argument shows that
[Is,, Fs, ] o [S, Fs] = [S, Fs].

Therefore, HamSy and LagSy have left and right unit laws.

(iii) Refer to the following diagram for the naming of the maps below, where all spans paired with a given cospan are augmented F-pullbacks
of the given cospan and the diagram is commutative:

4
DL
o o
/ Pr ‘ Pr P
| 5 m* \
Y m , ‘
1 2 )
P Py :

/ 2 !

ANV
FAVAUAN

Sr=Qr Qr="1T1

Let (P?, Fps ) be an F-pullback of (pp, p7 ), and let (P*, Fps ) be an F-pullback of (gr o pr.tr.).

To prove (iii), show first that there is an augmented span isomorphism from the augmented span ((S, Fs)op r,)(Q FQ))o(paz)qu y(T, Fr)

to the augmented span (P, Fp) that is given by the composite ((S, Fs)o(p: £ (Q FQ))O(pS)FPJ y((Q FqQ)o(p ) (T, Fr)). A similar argument
will show that there is an augmented span isomorphism from the augmented span (S, Fs) o ((Q,Fq) o (T,Fr)) to (P,Fp), and the result
follows by the fact that inverses and compositions of augmented span isomorphisms are augmented span isomorphisms. Since Lemma 5.3
of Ref. 23 proves the existence of a span isomorphism between the non-augmented spans, it suffices to show that this span isomorphism is
compatible with the augmentations for the two composite spans.

The commutativity of the diagram above and the definition of the composition of augmented spans together imply that
Fpi = Fp o pj + Fr, o pr — Fo, om"
= Fp 0 0 ® + Fr, 0 propgo® — Fo, om’ o py o ®.
= (FP:‘ opi+FTA opéopi—FQRomzop;)o(D
= (Ep, o pi + (Fr, o pk — Fo,om”) o pi) o
Fpy o pi + (Fa, o pi — Fo, o pi + Fr, o pi — F,om’) o pi) o

= (P, opi + (Fo, opi +Fr, opi - Fo, omz) ° pr—Fa, o pi opi) o @

:(FPL opL+szopR—FQAom )o(D:FPiotb.

Therefore, the span isomorphism @ is compatible with the augmentations Fps and Fps. O
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B. Motivating example

Suppose that the spring-mass system with three masses given in Sec. I has masses m1, m,, and ms3, respectively, as the left, middle, and
right masses of the system. Suppose further that the spring constants of the left and right springs are, respectively, ki and k;. The spring-mass
system with three masses is a composite of two spring-mass systems with two masses each. We now discuss a category theoretic construction
of a model for the composite system with its subsystems.

Let [S, Vs] be a Lagrangian system describing the left spring-mass system and [Q, Vo] be a Lagrangian systems describing the right
spring-mass system. Denote both Sg and Qy, by Z, since Sg is equal to Q;, and by V the augmentation on Z. Take a representative (S, V) of
the Langrangian system [S, Vs] to be the Riemannian span with the manifold Sx equal to R* and the manifolds S;, and Z equal to R. Let g; be
the standard Riemannian metric on R. Let p;, and pr be the canonical projections on R* with

pr(qi,g2) =q1 and  pr(q1,q2) = q2.

Denote by g the standard Riemannian metric on R2. Endow S, with the Riemannian metric gs, and Z with the Riemannian metric gz, where
gs, and gz are given by

g, =mg and gz = mag.
Define by gs, the metric on R? given for all v and w in T(y, ,,)R” by
8si (v, w) = gs, (dpr(v), dpr(w)) + gz(dpr(v), dpr(w)).

Denote, respectively, by s; and sg the functions from Sx to Sy and from Sy to Z that act on underlying manifolds as the projections p; and pg.
The augmentation Vs is the triple of maps

. k
Vs=(Vs,, Vs, Vz)  with Vs, (q1,92) = jl(fh - ) Vs, =0, and Vz = 0.

Define similarly the Riemannian span (Q, Vo), but with the Riemannian metric go, on Qg and the augmentations Vg, and Vq, given by

k
8ax = magt, Va,(92,93) = 32(42 -q3)%, and Vg, = 0.
Define by gq, the metric on R? given for all v and w in T(qz)qs)Rz by

80, (v,w) = gz(dpr(v), dpr(w)) + go. (dpr(v), dpr(w)).

Denote by 711 and 7 the respective projections from Sa xz Q4 to Sa and to Qa and by my the map s o 717, which is also the map gr o 7z.
Denote by gs,x,0, the Riemannian metric on S4 xzQa given by

8SaxzQa = ”I)f (gSA) + 771: (gQA) - ”&(gz)

The augmentation Vs, x,q, is then given by

Vsixzu = 1 (Vs,) + R (Va,) = mn(Vz).

Let @ be the diffeomorphism from S4 x;Qa to R? given by

D(q1,92,92,93) = (91,92, 93)

so that d® is the diffeomorphism from T(S4 xzQa) to TR? given by

d®(q1, 92,92, 93, 41> 92, 42> 43) = (91592, 93> 91> 42> 43 ) -
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The configuration space of the composite system is, up to an isometry, the fibered product of the configuration spaces of the open
subsystems,

N
NN

Denote by P, the Riemannian manifold R* and by p; and pg the maps
pL :sLorrLo(If1 and pR:qRonRo(Ifl.

Denote by Vp, the potential
VPA = VSAXZQA . (D71'

Define a Riemannian metric gp, on P4 by
—1\*
8Py = (@) (gSA x2Q4 )

making ® an isometry. The Lagrangian for the composite system is Lp, where for every v in TPy,

1
L, (v) = 5gea(%:v) = Veu (pra ().
The Lagrangian £ of the system with configuration space given by R? is given with respect to coordinate system (g1, q2,43) by
(142 @50 5) = 5 @)+ T2 (@) + @) + (@) - T (@)
k k
*f(q1*q2)2*§(q2*q3)2+0 (since Vz =0)
_m1.2m2.2m3.2k1 2 ke 2
=5 @)+ (@) + () - (@ - @2)” -~ (g2 - as)”

The Riemannian span (P, Vp) is a representative of the Lagrangian system [S, Vs] o [Q, V]. The Lagrangian £ on P, is the Lagrangian for
the given system of three masses and two springs with configuration space equal to R*. We leave the determination of the Hamiltonian system
to the reader as it is a straightforward exercise, given the previous discussion and the result of Sec. V.

In general, a description of a composite system requires a prior description of the subsystems. The subsystems need not themselves have
descriptions as composite systems, and it remains an open problem to determine the simplest subsystems that are required to construct from
them any other system as a composite. If two subsystems that share a common component form a complicated system and if we know how
to map the subsystems into two pieces, one of which is the common component, then we can view the complicated system as a composite
system in our formalism. We systematically work through a selection of examples in an upcoming paper where we more carefully develop
computational tools.

V. THE LEGENDRE FUNCTOR

This section constructs a functor & from LagSy to HamSy that preserves the paths of motion.

Suppose that (M, gi) is a Riemannian manifold of dimension m. The canonical 2-form, wr= s, is the exterior derivative of the tautological
1-form and is a symplectic form on T* M (Ref. 14, p. 202). Denote, respectively, by 7y and pa the canonical projections from T*M to M and
from TM to M. Suppose a is a point of M. There is an open set U of M containing a that is the domain of coordinates (x,-)ie(l)___)m}. The set of

1-forms {dx; : i € {1,...,m}} trivializes the sub-bundle T* U. Define for each i the real valued functions p} on T* U with the property that
forall @in T* M,

3

0= p"(0)dx|_ .
i=1
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The pM are the momenta associated with the x; coordinates. For each i, the function p is the evaluation map ev , that is
9% lnyg (0)
defined by the equality
0
ev , (0) = 9( — )
25 b0 il 0)

For each i, define g by
M
qi = XioTM.

The function given by (qfw, M ) on my{ (U) is a Darboux coordinate system, that is,

ie{l,...,m}

wT*M = Z dqfw AN dpfw

i=1
Define for each i the real valued function 4 on TM with the property that if v is in p3; (U), then

9
Oxilpy(v)

v = Z qiw(v
i=1
Note that g is the function defined for each v in TU by
qfw(”) = dxi|pM(v)(”)~
Denote ambiguously by g** the function
M
qdi =Xiopm

on TU. The coordinate system (qfw L ) is a coordinate system on py; (7 (U)).

The Riemannian metric g» on TM induces a Riemannian metric on the cotangent bundle T* M, to be denoted gj; and for each a in U
defined on the pair (61,6,) in T, M x T, M by

g(01,02) = guu (1 (0,110 (8:)) = 3 gl (@)p(61)p(62),

ij=1

where g/ denotes the (i, j) entry of the inverse of the matrix given by g in the (¢, 4}") coordinates. For all v in TM and 6 in T* M, denote,
respectively, by gu(+) and gy (+) the quadratic forms

gu(v) = gu(v,v) and  gii(0) = gis(6.0), 5)
Define % as a map from Riemannian manifolds to symplectic manifolds by
H (M, gu) = (T*M, wrp).
For any surjective Riemannian submersion f from M to N, define % (f) by
F(f) =bnodfofu

To simplify the notation, denote by F the function # (f). We depict the various maps here:
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M N
pM PN
df
M T M TN TN
far | Do v | by
T M T*N

F=2(f)

Suppose that M and N are Riemannian manifolds of respective dimensions m and #, and suppose further that f is a surjective Riemannian
submersion from M to N. For any point p in M, there is a coordinate system (x1,...,xn, ) of M on an open set containing p and a coordinate

system (y1,...,¥n) of N on an open set containing f(p) such that foralliin {1,...,n}and kin{n+1,...,m},

xi=yiof and Bixk € ker(df).

Let j be an index varying in the set {1,...,n}. For each i and each j, denote, respectively, by g/ and q]N the functions x; o 7y and y; o my and
denote by p and p]N the momenta associated with the coordinate functions x; and y;. Use the above notation for the following lemma, as well

as for the rest of the section:

Lemma 5.1. For all pM, p]N, and F defined as above,

p'=pj oF.
Proof. Foralljin{l,...,n},
0 0 0
&) slotl)- 2.
Ox; a 8(}/]' of) M Ay f(a)
Forall 0in T* U, there is an element X of TU with 6 equal to ga (X, -). In this case, the form F(6) is equal to gn (df (X), "), and so
M 0
p] (9) = evi (9) —gM(X, a )
%5 |npg (0 T (6)

The function f is a surjective Riemannian submersion, implying that

1o}
W&Mwﬁ

0
W@)‘”(”“*”(awoﬁ

f(n,w(f))))
9
= gN(df(X)> Em )
Vi lny (£ (0))
_ F(@)( o

9; nN(F<e>))
(F(8)) = (p} o F)(0),

N (F(6))

7714/1(9)))’

and so

9
Oy

5" () =gN(df(X))

:evi

B

which proves the desired equality.
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Proposition 5.2. For any surjective Riemannian submersion f from a Riemannian manifold M to a Riemannian manifold N, the function
F (f) is a surjective Poisson map.

Proof. Suppose M and N have respective dimensions m and n. The map % maps Riemannian manifolds to symplectic manifolds, in
particular,

H(M)=T'M and H(N)=T"N.

Once again denote by F the map F# (f). Suppose that ITr« and 7+, respectively, denote the Poisson bivectors for T*M and T*N. For any
aand fin C*(T*N) and anyain T*M,

dFa(TIp ) (da, dB) = Ty (d(a o F), d(B o F)))|,
_ i (3(0601’) 9(BoF) O(BoF) a(0¢<>F))

i1 oqM opM ogM opM a
72”: d(aoF) d(BoF) O(BoF)d(acF)
&\ ogt opY oq"  op |,

(6)

:Z":(O(ocoF) O(BoF)  9(BoF) d(acoF) )‘
S \0(qY oF) 0(pY oF)  O(q o F) O(p} o F) ]|,

"(aa o op aa)

oq opY  Oq; opY

= Hren(das dB)| p(ay»

i=1 F(a)

where Lemma 5.1 implies the equality in (6). Therefore, dF(IIy+y) is equal to IT7+y, which implies that F is a Poisson map. The map f is a
surjective submersion; therefore, df is surjective. The nondegeneracy of g implies that F is also surjective, and so % maps the morphisms in
RiemSurj to morphisms in SympSurj. O

Lemma 5.3. For any spans S and Q in RiemSurj and any span isomorphism @ from S to Q, the function # (®) is a span isomorphism
from K (S) to F (Q).

Proof. Suppose that @ is a span isomorphism from S and Q. In this case, # (®) is Poisson. Since F# (®) is a diffeomorphism and
Poisson, it is an isomorphism in the category SympSur j. Recall that the isomorphisms in SympSur j are Poisson diffeomorphisms, which are
symplectomorphisms since the objects in SympSurj are symplectic manifolds (Ref. 30, p. 195). Since ® is a span morphism,

st=qro® and sp=qro®,
implying that

H(s1) = H(quo D)
=bq, 0d(qLo®@) o s,
=bq, odgqr o dD o {5,
=bq, odqr o (§o, ©bg,) ° d@ o fs,
= (bo, ©dqr o fo,) © (bg, 0 d@ o fs, ) = F (L) o F (P).

A similar argument shows that
F (sr) = H (qr) o F (®),

proving that % (®) is a span morphism. Therefore, for any spans S and Q in RiemSurj that are span isomorphic, the spans % (S) and # (Q)
are also span isomorphic. g

Lemma 5.4. Suppose that (S,Vs) and (Q,Vq) are Riemannian spans and that @ is an isomorphism of spans from S to Q. If @ is
additionally an isomorphism of classical spans, then so is F (D).

Proof. Inlight of Lemma 5.4, it suffices to show that % (®) is compatible with the augmentations. For any span isomorphism ® from S
to Q that is compatible with Vs and Vo,

Vs, = Vg, 0 ®.
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The isomorphism @ is Riemannian, hence an isometry. Therefore,

g;A = géA ° ‘%/(q))’

and so

1
HSA = Eg;-,‘ + VSA O TTS,

1,
EgQA ° '%((D) + VQA 0 TQ, © ‘%(CD) = HQA ° '-%((D)

Suppose that (S, V) is a Riemannian span, and let  denote either of the letters A, L, or R. Define # (S., Vs, ) by
F(8«,Vs,) = (H(S«),Hs, ),
where for all 77 in S,

Hs. (1) = 36.01) + (Vs. 0 75.) (1)

Each object of LagSy is an augmented Riemannian manifold, and so % maps the objects of LagSy to the objects of HamSy and the morphisms
of RiemSurj to the morphisms of SympSurj. In this way, % maps Riemannian spans to Poisson spans. Define & to be % on the objects of
LagSy, and for each morphism [S, V] in LagSy, define & ([S, Vs]) by

Z (8, Vs]) = [H (S, Vs)].

Theorem 5.5. The map £ is a functor from LagSy to HamSy. Suppose that s, is the canonical projection from T*Sa to Sa. Suppose that
the Lagrangian system [S, Vs] has a path of motion y on the manifold Sa that is specified by the representative (S, Vs) of [S, Vs], and suppose
that y intersects a point x of Sa at time zero. In this case, the path F o y is a path determined by & ([S, Vs|), valued in the symplectic manifold
F (Sa), and 75, o K oy also intersects x at time zero.

Proof. The map & maps Riemannian manifolds to symplectic manifolds and potentials to Hamiltonians and, therefore, maps the objects
of LagSy to the objects of HamSy. Proposition 5.2 implies that & maps surjective Riemannian submersions to surjective Poisson maps, and
so if S is a span in RiemSurj, then J# (§) is a span in SympSur j. Lemma 5.4 implies that if (S, Fs) and (Q, Fq) are isomorphic as Riemannian
spans, then % (S, Fs) and # (Q, Fo) are isomorphic as Poisson spans, and so & is well defined on Lagrangian systems, mapping them to
Hamiltonian systems.

Suppose that M is a Riemannian manifold. Denote by £y the Lagrangian on TM, where for each v in TM,

Lu(v) = ggM(v,v) ~Vilpu(¥))-

Denote by Hy the Hamiltonian associated with Vi and by {-,-}7+) the Poisson bracket as given above in the construction of Z. It is a
standard result in classical mechanics that a path y on M is a solution to (EL) if and only if it is an integral curve of {-, Hy } s (Ref. 28, p.25,
Theorem 3.13). This proves the last two statements of the theorem. To prove that Z is a functor, it suffices to show further that (i) & preserves
the composition and (ii) & maps identity morphisms to identity morphisms.

To show (i), suppose that [S,Fs] and [Q, Fg] are Riemannian spans and that [S, Fs] is composable with [Q, Fq]. Suppose that P is
an F-pullback of (sg,qr), where P4 is the fibered product Saxs,Qa and pr and p; are the respective restrictions of the projections on
Sa x Qa to S and Qa. The map K maps Sa xs, Qa to its cotangent bundle T*(Sa xs; Qa), which is isomorphic in SympSurj to the
manifold (T*Sa) x(r+s,) (T*Qa). The symplectic form on T™(S4 xs, Qa) is given by the canonical 2-form, and the symplectic form w on

(T*Sa) x(1+sy) (T*Qa) is given by
W= ()" (wres,) + T (pr) (wr-,) ~ 7 (1) (H (s8)" (wr-s,).

The symplectomorphism @ from T (Sa xs; Qa) to (T*Sa) x(r+s,) (T*Qa) is consistent with the augmentations. Lemma 5.4 implies that
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Z([S,Fs] o [Q Fql]) = Z([(SFs) or (QFq)])
= [H ((S,Fs) op (QFq))]
= [H (S, Fs) oy (py F (Q Fq)]
= [H (8, Fs)] o [H (Q Fo)] = Z([SFs]) o Z([Q Fql),

where the penultimate equality holds because # (P) is an F-pullback.

To show (ii), suppose that (X, Vx) is an augmented Riemannian manifold and that Idx is the identity map from X to X. Denote by Ix the
span (Idx,Idx). The span # (Ix) is the pair (# (Idx), # (Idx)), where # (Idx) is the identity map Idr+x from T*X to T*X. Furthermore,
F maps the augmentation Vx to the augmentation Hr+x, where

1
Hr«x = Eg; + Vx o mx.

Suppose that S is a Poisson span with (S, Hs, ) equal to (T*X, Hr+x ). Let Q be the F-pullback of the cospan (# (Idx),s;) with the property
that Q4 is the symplectic manifold T*X x7+xSa. The maps g and gr are the respective restrictions to the manifold T*X x7+xSa of the
canonical projections of the manifold T*X x S to T*X and Sa and are symplectomorphisms. Since Q is an F-pullback, the augmentation
Hgq, on Q4 is given by

1 . 1
Hq, = (ng +Vxo HX) oqr+ (Egs‘* +Vs, 0 ﬂsA) o qr
1
- (Eg)’? +Vxo ﬂx) oqroldrx
1 . 1 4 1 .
= EgX+VX07TX oqr+ Egs/‘ + Vs, oms, Joqr — EgX"'VXOTfX oqL
[
= (EgsA + Vs, 0 ﬂsA) oqr = Hs, o qr,
and hence,
HQA = HSA O 4qRr-
The map g is, therefore, compatible with the augmentations. Since Q is paired with (% (1dx),s.),
spoqr=1Idxoqr = qi,

and so gg is a span isomorphism mapping the composite (% (Idx) o gz, sr © qr) to the span § that is compatible with the augmentations. This
compatibility implies that

2 ([1x. Viy]) o [S.Hs] = [ (1x, Viy ) o (S.Hs) ] = [S.Hsl.
Similar arguments show that for any Poisson span (S', Hg') such that (Sg, Hg, ) is equal to (T"X, Hr+x),
[8. Hs] o £ ([1x, Vi,]) = [S', Hy ],

and so & ([Ix, V1, ]) is the identity map with source and target (T*X, Hr+x). O

We call the functor £ from LagSy to HamSy the Legendre functor. It is a generalization of the Legendre transformation, which translates
from the Lagrangian to the Hamiltonian description of an open system in classical mechanics.
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