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ABSTRACT
Generalized span categories provide a framework for formalizing mathematical models of open systems in classical mechanics. We introduce
categories LagSy and HamSy that, respectively, provide a categorical framework for the Lagrangian and Hamiltonian descriptions of open
classical mechanical systems. The morphisms of LagSy and HamSy correspond to such open systems, and the composition of morphisms
models the construction of systems from subsystems. The Legendre transformation gives rise to a functor from LagSy to HamSy that translates
from the Lagrangian to the Hamiltonian perspective.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0029885

I. INTRODUCTION
Category theory provides a formalism for unifying ideas across a wide spectrum of disciplines. The last few decades have seen the

emergence of applied category theory.1,2 One prominent program in this subject is to describe “open” systems—that is, systems that can
interact with their surroundings—as morphisms in appropriate categories, where composition describes how open systems can be combined
to form larger systems.

The idea of describing open systems as morphisms arose from extended topological quantum field theory, where the manifold describing
space can be built up by composing cobordisms, manifolds with boundary that describe smaller regions of space.3–6 It was later applied in a
more down-to-earth way to electrical circuits,7,8 Markov processes,9 and a wide variety of dynamical systems.10–12 The morphisms in these
categories are often spans or cospans with an extra structure, and there are now several formalisms for constructing such categories.13

Our goal here is to apply this idea to Lagrangian and Hamiltonian mechanics and describe the Legendre transformation as a functor
from a category with open Lagrangian systems as morphisms to a similar category of open Hamiltonian systems. Since the study of classical
systems involves solving differential equations that describe paths on general Riemannian and symplectic manifolds, it is in some ways more
complicated than the examples treated earlier. The current work investigates some previously unidentified structures that appear critical to
the study of open systems in classical mechanics.

The systems under consideration have a state space that is either the tangent bundle to a Riemannian manifold in the Lagrangian descrip-
tion or a symplectic manifold in the Hamiltonian description.14 A path in the state space models the motion of the system. The state space
of any subsystem is a quotient space of that of the entire system. For Lagrangian systems, we require that the quotient maps be surjective
Riemannian submersions. For Hamiltonian systems, we require that they be surjective Poisson maps between symplectic manifolds.

A simple example is this system with three point masses attached by springs, where all motion is along the same line:

We can build a complicated system by attaching additional point masses and springs in series:
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View a pair of point masses attached by a spring as a fundamental component, or a subsystem, of one of these more complicated systems.
These subsystems are then “open systems,” in the sense that both forces internal to the subsystem and external forces of the larger system
govern the dynamics of the subsystems.

We may build such a larger system out of two subsystems by identifying the right mass of the subsystem on the left with the left mass of
the subsystem on the right, as follows:

Here we depict the state spaces of these systems from a Hamiltonian perspective:

Each of the maps is a canonical projection and a surjective Poisson map between symplectic manifolds. At the lowest level are the state spaces
of the three distinct masses. If each mass moves along a line, then each system has T∗R, the cotangent bundle to R, as its state space. At the
middle level are two spring-mass systems, each with a state space given by T∗R2. On the top level, the total system consists of three masses
interacting in series. The state space for this total system is a fibered product of two copies of the symplectic manifold T∗R2 over the manifold
T∗R.

The fibered product is a six dimensional symplectic manifold, whereas the Cartesian product of the state spaces is an eight dimensional
symplectic manifold. While the fibered product is an embedded submanifold of the product, it will not be a symplectic submanifold when
endowed with the symplectic structure that it requires to be the state space of the given classical system. The Lagrangian setting is similar but
uses tangent bundles rather than cotangent bundles as the state spaces. The fibered product together with its canonical projections encapsulates
the physical meaning of identifying the right mass of the left spring-mass system with the left mass of the right spring-mass system. Both
Dazord in Ref. 15 and Marle in Ref. 16 had similar insights with respect to studying constrained systems, which are similar to the systems
given above in the sense that the masses that connect our systems can be thought of as a geometric constraint. In fact, Dazord explicitly uses
fibered products to construct the configuration and state spaces for certain constrained systems.

Suppose that X, Y , and Z are sets and f and g are functions that, respectively, map X and Y to the set Z. Henceforth, denote by ρX and
ρY the respective canonical projections

ρX : X × Y → X and ρY : X × Y → Y ,

and denote by πX and πY the respective restrictions of ρX and ρY to the fibered product X ×ZY , which is the subset of X × Y consisting of all
elements on which f is equal to g. The fibered product in the category Set, whose objects are sets and whose morphisms are functions, has
certain universal properties recalled in Sec. II. The connection between these universal properties and the construction of span categories for
modeling classical mechanical systems is a central theme of the current investigation.

A span in the category Set is a pair of functions with the same source. The fibered product together with the span (πX , πY) gives a
prescription for composing spans in Set. Bénabou proved in Ref. 17 that if 𝒞 is a category with pullbacks, then there is a bicategory, Span(𝒞 ),
whose objects, morphisms, and 2-morphisms are the respective objects, spans, and maps of spans in 𝒞 . To avoid unnecessary complications,
we view this bicategory as a category, a span category, by ignoring the bicategory structure and taking isomorphism classes of spans in 𝒞 ,
to be defined in Sec. II, as the morphisms. Fibered products define a composition of isomorphism classes of certain spans in Set that seems
strikingly similar to the way in which classical mechanical systems compose.

We propose that open classical systems are morphisms in an appropriate span category, where the composition of morphisms using
pullbacks describes the composition of classical systems. This formalization of classical mechanics should deepen our understanding of the

J. Math. Phys. 62, 042902 (2021); doi: 10.1063/5.0029885 62, 042902-2

Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

foundations of classical mechanics and may also offer a way to automate the modeling of classical mechanical systems. Modeling open classical
mechanical systems necessitates working with spans in categories other than Set, where the fibered product lacks the universal properties
that it has in Set.

It is natural to view a classical system as an isomorphism class of spans in the category of Riemannian manifolds with surjective
Riemannian submersions in the Lagrangian setting or as an isomorphism class of spans in the category of symplectic manifolds with sur-
jective Poisson maps in the Hamiltonian setting. However, Sec. II demonstrates that neither of these categories has pullbacks. Thus, the work
of Bénabou does not apply. For this same reason, it does not appear that the work of Fong18,19 as corrected by Courser13,20 can be straight-
forwardly modified from its cospan setting to a span setting that is useful to the present discussion. Derived geometry21,22 would let us use
homotopy pullbacks instead of pullbacks, but in some sense, this is overkill: The fibered products required for the current paper will exist and
be smooth manifolds; only the universality condition of a pullback fails.

Section II recalls previous work required for handling this problem. Suppose that 𝒞 and 𝒞 ′ are categories and F is a functor from 𝒞 to
𝒞 ′. Weisbart and Yassine defined in Ref. 23 the notion of an “F-pullback” of a cospan in 𝒞 and the “span tightness” of the functor F. They
proved that if the functor F is span tight, then Span(𝒞 ,F) is a category, a “generalized span category,” whose objects are the objects in 𝒞
and whose morphisms are isomorphism classes of spans in 𝒞 . Composition in this generalized span category is defined using F-pullbacks.
Generalized span categories determine the kinematical properties of open classical systems in the Hamiltonian setting and of “free” open
systems in the Lagrangian setting—that is, systems where all the energy is kinetic.

In Sec. III, we introduce the notion of an “augmented” span, which allows us to introduce nonzero Hamiltonians and add potentials
to Lagrangians. In Sec. IV, we construct the augmented generalized span categories HamSy and LagSy. In the Hamiltonian setting, the aug-
mentation determines the dynamical evolution of the system. In the Lagrangian setting, the augmentation determines the potential for the
classical system, hence its dynamics as well. The categories LagSy and HamSy provide frameworks for studying open classical systems from
the Lagrangian and Hamiltonian perspectives, respectively. Section V introduces a functor ℒ : LagSy → HamSy. This functor, a version of
the Legendre transformation, translates from the Lagrangian to the Hamiltonian perspective.

In future work, we hope to compare the present approach to the theory of port-Hamiltonian systems, an approach to open systems in
classical mechanics widely used in engineering.24

II. SPANS AND GENERALIZED SPAN CATEGORIES
A. Spans and span categories

Refer to Ref. 23 for further discussion of the material presented here. We review for the reader’s convenience some of the definitions and
basic results from Ref. 23 that the current discussion requires.

A span in a category 𝒞 is a pair of morphisms in 𝒞 with the same source, and a cospan in 𝒞 is a pair of morphisms in 𝒞 with the same
target. For any span S in 𝒞 , write

S = (sL, sR),

where SL, SR, and SA are objects in 𝒞 ,

sL : SA → SL and sR : SA → SR.

Utilize the same notation if S is a cospan, but where sL and sR, respectively, map SL and SR to SA. For any span or cospan S in 𝒞 , refer,
respectively, to the objects SA, SL, and SR in 𝒞 as the apex, left foot, and right foot of S.

Definition 2.1. A span S in 𝒞 is paired with a cospan C in 𝒞 if

CL = SL, CR = SR, and cL ○ sL = cR ○ sR.

The pairing of a span S with a cospan C has a diagrammatical interpretation, namely, that the following diagram commutes:
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Suppose that S and Q are spans in 𝒞 with SL equal to QL and SR equal to QR. A span morphism in 𝒞 from S to Q is a morphism Φ in 𝒞
from SA to QA such that

sL = qL ○Φ and sR = qR ○Φ,

meaning that the following diagram commutes:

A span isomorphism in 𝒞 from S to Q is a span morphism that is additionally an isomorphism.

Proposition 2.2. For any span isomorphism Φ, the inverse Φ−1 is also a span isomorphism. Furthermore, any composite of span morphisms
is again a span morphism.

Definition 2.3. A span S in 𝒞 is a pullback of a cospan C in 𝒞 if it is paired with C and if for any other span Q in 𝒞 that is also paired
with C, there exists a unique span morphism Φ in 𝒞 from Q to S:

Note that the diagram formed by pairing a span S with a cospan C, where S is a pullback of C, is a pullback diagram or a pullback square
as often discussed in the literature.

Definition 2.4. A category 𝒞 has pullbacks if for any cospan C in 𝒞 there is a span S in 𝒞 that is a pullback of C and S is unique up to a
span isomorphism in 𝒞 .

Denote by Top the category whose objects are topological spaces and whose morphisms are continuous functions. The categories Set
and Top are examples of categories that have pullbacks, as discussed in Ref. 23. If C is a cospan in Set, then let ρL and ρR be the canonical
projections

ρL : CL × CR → CL and ρR : CL × CR → CR.

Denote by SA the fibered product

CL ×CA CR ∶= {(x, y) ∈ CL × CR : (cL ○ ρL)(x, y) = (cR ○ ρR)(x, y)}.
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Take SL and SR to be, respectively, equal to CL and CR, and let sL and sR be the respective restrictions of ρL and ρR to the set SA. The
span (sL, sR) is a pullback of C. If C is a cospan in Top, then S is again a pullback of C in Top, where the topology on SA is the subspace
topology induced by the product topology on SL × SR.

B. The categories SympSurj and RiemSurj
Refer to Ref. 25 for further background on Poisson geometry. A Poisson bracket on a smooth manifold M is an anticommutative, bilinear

function from C∞(M) × C∞(M) to C∞(M) that satisfies Leibniz’s rule and the Jacobi identity. A Poisson manifold is the pair consisting of a
smooth manifold M and a Poisson bracket on M. Suppose that (M,{⋅, ⋅}M) and (N,{⋅, ⋅}N) are Poisson manifolds. For each f in C∞(M), the
Poisson vector field associated with f is the derivation v f given by

v f (⋅) = {⋅, f }M .

A smooth map Φ from M to N is a Poisson map if for any f and g in C∞(N),

{ f , g}N ○Φ = { f ○Φ, g ○Φ}M .

Symplectic manifolds are the primary objects of study in Hamiltonian mechanics. A symplectic manifold is a pair (M, ωM), where M is a
smooth (necessarily even dimensional) manifold and ωM is a smooth, closed, nondegenerate 2-form on M, a symplectic 2-form. Suppose
that the dimension of M is 2m. For each x in M, there is an open set U containing x such that the symplectic 2-form gives rise to Darboux
coordinates (qi, pi)m

i=1 on U, coordinates such that

ωM =
m

∑
i=1

dqi ∧ dpi.

The symplectic 2-form naturally distinguishes position and momentum coordinates on M and induces an isomorphism ΩM between the
tangent and cotangent bundles. Given tangent vectors v and w in the same fiber of TM, define by ΩM(v) the covector

ΩM(v) = ωM(⋅, v) : w ↦ ωM(w, v).

Since ωM is nondegenerate, the map ΩM is invertible. For each function f in C∞(M), denote by D f the symplectic gradient of f , which is
defined by

D f = Ω−1
M (d f ).

Every symplectic manifold has a Poisson structure that it inherits from its symplectic structure in the following way. For any symplectic
manifold (M, ωM), define a Poisson bracket {⋅, ⋅}M on pairs ( f , g) in C∞(M) × C∞(M) by

{ f , g}M = ωM(D f , Dg).

The symplectic gradient D f is the Poisson vector field v f associated with f , implying that

{ f , g}M = ωM(v f , vg).

The real valued function ΠM defined by

ΠM(d f , dg) = { f , g}M

is a global section of (T∗M ∧ T∗M)∗. The Poisson bivector of (M,{⋅, ⋅}M) is the image of the function ΠM under the canonical isomorphism
that takes (T∗M ∧ T∗M)∗ to Λ2TM. To simplify notation, denote henceforth by ΠM the Poisson bivector of (M,{⋅, ⋅}M). Refer to Ref. 26,
p. 30 for Proposition 2.5 and see Ref. 26, p. 44 for a Proof of Proposition 2.6.
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Proposition 2.5. A smooth map Φ from (M,{⋅, ⋅}M) to (N,{⋅, ⋅}N) is a Poisson map if and only if

dΦ(ΠM) = ΠN .

Proposition 2.6. Suppose that (M,{⋅, ⋅}M) is a Poisson manifold and (N, ωN) is a symplectic manifold. Every Poisson map from M to N is
a submersion.

Riemannian manifolds are the primary objects of study in Lagrangian mechanics. The metric on the tangent bundle of a Riemannian
manifold gives a kinetic energy associated with a particle moving in the base manifold, which is the configuration space for the system
(Ref. 14, p.83–84). A Riemannian submersion Φ from a Riemannian manifold (M, gM) to a Riemannian manifold (N, gN) is a smooth
submersion with the property that if v and w are vector fields tangent to the horizontal space (ker(dΦ))�, then

gM(v,w) = gN(dΦ(v), dΦ(w)).

Table I specifies the categories to be henceforth denoted by Diff, SurjSub, RiemSurj, and SympSurj.
An example in Ref. 23 shows that the category SurjSub does not have pullbacks. Since this example involves manifolds that have trivial

Riemannian and symplectic structures and mappings in the respective categories, the categories RiemSurj and SympSurj also do not have
pullbacks.

C. F-pullbacks and span tight functors
Assume henceforth that 𝒞 and 𝒞 ′ are categories and that F is a functor from 𝒞 to 𝒞 ′. For any span S in 𝒞 , denote by F(S) the span

(F(sL),F(sR)) in 𝒞 ′. For any cospan C in 𝒞 , denote by F(C) the cospan (F(cL),F(cR)) in 𝒞 ′.

Definition 2.7. The category 𝒞 has F-pullbacks in 𝒞 ′ if for any cospan C in 𝒞 , there is a span S in 𝒞 that is paired with C and the span
F(S) is a pullback of the cospan F(C) in 𝒞 ′. In this case, the span S is an F-pullback of C.

Note that if 𝒞 ′ is equal to 𝒞 and F is the identity functor, then an F-pullback is simply a pullback.

Definition 2.8. Suppose that 𝒞 has F-pullbacks in 𝒞 ′. The functor F is span tight if for any F-pullbacks S and Q of the same cospan, the
unique span isomorphism Φ from F(S) to F(Q) is F(Ψ) for some span isomorphism Ψ from S to Q.

Definition 2.9. For any two spans S and Q in 𝒞 such that SR is equal to QL and there is a span P in 𝒞 that is a pullback of the cospan
(sR, qL), denote by S ○P Q the span in 𝒞 given by

S ○P Q = (sL ○ pL, qR ○ pR).

The span S ○P Q is the composite of S and Q along P. If P is an F-pullback, then the span S ○P Q is an F-pullback composite of S and Q along P.

Identify the objects of Span(𝒞 ,F) to be the objects in 𝒞 and the isomorphism classes of spans in 𝒞 to be the morphisms in Span(𝒞 ,F).
If [S] is an isomorphism class of spans in Span(𝒞 ,F), then identify SR and SL, respectively, to be the source and target of [S]. Define the
composition of isomorphism classes of spans by

[S1] ○ [S2] = [S1 ○P S2],

where S1 ○P S2 is an F-pullback composite of S1 and S2. For any object X in 𝒞 , denote by IdX the identity morphism from X to X and by IX
the span (IdX , IdX). Define by [IX] the identity morphism in Span(𝒞 ,F) from X to X. The following theorem is the main result of Ref. 23:

TABLE I. Table of categories.

Category Name Objects Morphisms

Diff Smooth manifolds Smooth maps
SurjSub Smooth manifolds Surjective submersions
RiemSurj Riemannian manifolds Surjective Riemannian submersions
SympSurj Symplectic manifolds Surjective Poisson maps
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Theorem 2.10. If F is a span tight functor from 𝒞 to 𝒞 ′, then Span(𝒞 ,F) is a category.

Suppose that X, Y , and Z are smooth manifolds. Suppose further that ( f , g) is a cospan in SurjSub, where f and g have respective
sources X and Y and mutual target Z. Again denote by ρX and ρY the respective projections from X × Y to X and Y , and let πX and πY be
their respective restrictions to the embedded submanifold X × ZY . Reference 23 proves Proposition 2.11. Proposition 2.11 and Theorem 2.10
together imply that Span(SurjSub, F) is a category, where F is the forgetful functor from SurjSub to Diff.

Proposition 2.11. The span (πX , πY) is an F-pullback of ( f , g), and so SurjSub has F-pullbacks. Moreover, the functor F is span tight.

Since we will need to work in the categories SympSurj and RiemSurj, we will need to prove a similar result for these categories.
Section III will provide such a result.

III. LAGRANGIAN AND HAMILTONIAN SYSTEMS
The description of a Lagrangian or Hamiltonian system, respectively, requires not only the identification of a span in RiemSurj or

SympSurj but also the additional information of a potential or a Hamiltonian, both of which are augmentations.

A. Systems as isomorphism classes of augmented spans
We now introduce the notion of an augmentation of a span and cospan, but in the restricted settings that are significant to the current

discussion. We will discuss augmentations in greater generality in an upcoming paper.

Definition 3.1. An augmented manifold is a pair (M, FM), where M is a smooth manifold and FM is a smooth real valued function
defined on M. The pair (M, FM) is an augmented Riemannian (symplectic) manifold if M is a Riemannian (symplectic) manifold. Refer to FM
as a potential (or Hamiltonian), denoting it by VM (or HM) if M is, respectively, a Riemannian (or symplectic) manifold.

For sake of concision, denote by M any of the categories listed in Table I.

Definition 3.2. An augmented (co) span in M is a pair (S, FS), where S is a (co)span in M and FS is a triple (FSA , FSL , FSR) of smooth real
valued functions defined, respectively, on SA, SL, and SR. If M is RiemSurj (or SympSurj), then the given augmented span is a Riemannian
(co) span [or Poisson (co) span]. A classical (co) span is a (co)span that is either Riemannian or Poisson. If (S, FS) is a Riemannian (Poisson)
span, then refer to FS as a potential (or Hamiltonian) and denote it by VS (or HS).

The apex of a Poisson span determines the kinematical properties of the system, and the mapping of the apex to its feet determines the
way in which the span composes with other spans and, therefore, how components of systems compose to form more complicated systems.
The apex of a Riemannian span determines a free system, and the augmentation will be a potential that determines the interactions in the
system. The fundamental object of our study should be an isomorphism class of augmented spans rather than an augmented span because the
composition using F-pullbacks is only determined up to isomorphism.

Definition 3.3. Suppose that the classical spans (S, FS) and (Q, FQ) are either both Riemannian or both Poisson and that

(SL, FSL) = (QL, FQL) and (SR, FSR) = (QR, FQR).

A span morphism Φ from SA to QA is compatible with FS and FQ if FSA is equal to FQA ○Φ and is, in this case, a morphism of classical spans. If
Φ is additionally an isomorphism, then Φ is an isomorphism of classical spans and (S, FS) and (Q, FQ) are isomorphic classical spans.

The inverse of an isometry is again an isometry. The inverse of a Poisson diffeomorphism is again a Poisson diffeomorphism (Ref. 27,
p. 10). Proposition 3.4 follows from these facts.

Proposition 3.4. Suppose that S and Q are spans that are either both in RiemSurj or both in SympSurj. The inverse of any span
isomorphism from S to Q is a span isomorphism from Q to S.

Denote by [S, FS] the set of all classical spans that are isomorphic to the classical span (S, FS). Together with the fact that the compos-
ite of classical span isomorphisms is again a classical span isomorphism, Proposition 3.4 implies that isomorphism of classical spans is an
equivalence relation; hence, the set [S, FS] is an equivalence class.

Definition 3.5. A Lagrangian (or Hamiltonian) system is an isomorphism class of Riemannian (or Poisson) spans. If [S, FS] is either a
Hamiltonian system or a Lagrangian system, then [S, FS] is a classical system. Classical systems [S, FS] and [Q, FQ] are of the same type if they
are both Hamiltonian systems or both Lagrangian systems.

B. Paths of motion
Suppose that (S, VS) is a Riemannian span and gSA is the Riemannian metric on SA. Denote by ρSA the canonical projection from TSA to

SA. Define the Lagrangian of (S, VS) on TSA to be the function LS, where
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LS(ν) =
1
2

gSA(ν, ν) − VSA(ρSA(ν)) with ν ∈ TSA.

Definition 3.6. A path in the Riemannian manifold (SA, gSA) is a path of motion of (S, VS) if it minimizes the action integral of LS under
smooth variations with fixed endpoints.

Denote by ♭SA the function from TSA to T∗SA that acts on each ν in TSA by

♭SA(ν) = gSA(ν, ⋅).

The nondegeneracy of the metric gSA implies that the map ♭SA is invertible. Denote by ♯SA the inverse of ♭SA with

♯SA : T∗SA → TSA by θ ↦ ν, where θ = gSA(ν, ⋅) and (θ, ν) ∈ T∗SA × TSA.

Denote by gradSA
(VSA) the vector field

gradSA
(VSA) = ♯SA(dVSA)

and by ∇SA the Levi-Civita connection on the Riemannian manifold (SA, gSA). A standard calculation shows that γ is a path of motion of the
Riemannian span (S, VS) if and only if it satisfies

∇SA
γ′ γ′ + gradSA

(VSA)∣ γ = 0, (EL)

the Euler–Lagrange equations. See Ref. 28 for further explanation of the details in this section.

Definition 3.7. Suppose that (S, HS) is a Poisson span. Denote by {⋅, ⋅}SA the Poisson bracket associated with the symplectic form ωSA on
the symplectic manifold SA. A path γ in SA is a path of motion of (S, HS) if it is an integral curve of the vector field v where

v = {⋅, HSA}SA
.

Proposition 3.8. Suppose that (S, FS) and (Q, FQ) are classical spans of the same type and Φ is an isomorphism of classical spans taking
(S, FS) to (Q, FQ). If γ is a path of motion of (S, FS), then Φ ○ γ is a path of motion of (Q, FQ). Furthermore, every path of motion of (Q, FQ)
is the image of a path of motion of (S, FS).

Proof. If (S, VS) and (Q, VQ) are Riemannian spans and Φ is an isomorphism from (S, VS) to (Q, VQ), then Φ is an isometry from SA
to QA and VSA is equal to VQA ○Φ. Denote by∇SA and∇QA the respective Levi-Civita connections on SA and QA. Suppose that p is an element
of SA and that X and Y are tangent vector fields on SA. The map Φ is an isometry, and so

dΦp((∇SA
X Y)(p)) = ∇QA

dΦ(X)dΦ(Y)(Φ(p)) and dΦ(gradSA
(VQA ○Φ)) = gradQA

(VQA).

If γ is a path of motion of (S, VS), then Φ ○ γ is a curve in QA and

∇QA
(Φ○γ)′(Φ ○ γ)′ + gradQA

(VQA)∣Φ○γ = ∇
QA
dΦ(γ′)(dΦ(γ′)) + gradQA

(VQA)∣Φ○γ

= dΦp(∇SA
γ′ (γ

′) + gradSA
(VSA)∣ γ)

= dΦp(0) = 0,

where the fact that γ satisfies (EL) in SA implies the penultimate equality. The path Φ ○ γ is therefore a path of motion of (Q, VQ).
If (S, HS) and (Q, HQ) are Poisson spans and Φ is an isomorphism from (S, HS) to (Q, HQ), then Φ is a Poisson diffeomorphism from

SA to QA and HSA is equal to HQA ○Φ. The curve γ is path of motion of (S, HS) if and only if it is an integral curve of the vector field {⋅, HSA}.
Suppose that α and β are smooth functions on QA. Since Φ is Poisson,

dΦ({⋅, α ○Φ}SA
)(β) = {⋅, α ○Φ}SA

(β ○Φ) = {β ○Φ, α ○Φ}SA
= {β, α}QA

,
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and so

(Φ ○ γ)′ = dΦ∣ γ({⋅, HSA}SA
)

= dΦ∣ γ({⋅, HQA ○Φ}SA
) = {⋅, HQA}QA

∣Φ○γ.

The curve Φ ○ γ is, therefore, a path of motion of (Q, HQ).
In both the Riemannian and Poisson settings, the map Φ−1 is also an isomorphism of classical spans, and so every path of motion of

(Q, FQ) is the image of a path of motion of (S, FS). ◻

C. F-pullbacks of SympSurj and RiemSurj in Diff
Proposition 3.8 implies that an isomorphism class of classical spans determines the dynamics of a classical system. Composing such

isomorphism classes requires both the existence of F-pullbacks in these categories, where F is an appropriate forgetful functor into Diff, and
the span tightness of the functor F.

Suppose X is a symplectic manifold. The Poisson bivector ΠX of X induces a map Π̃X from T∗X to TX that takes any η in T∗X to the
vector field Π̃X(η) with the property that for any ν in T∗X,

ν(Π̃X(η)) = ΠX(η, ν).

Since X is symplectic, the map Π̃X is an isomorphism (Ref. 26, p. 17). This isomorphism gives a way to pull back vector fields by surjective
Poisson maps, a fact that, along with Proposition 2.6, is critical to the Proof of Theorem 3.9. Theorem 3.9 establishes the existence of a local
splitting of the tangent space of a symplectic manifold by a local foliation given by the inverse image of a surjective Poisson map.

Theorem 3.9. Suppose that X and Z are symplectic manifolds with respective dimensions 2ℓ and 2n and that f is a surjective Poisson map
from X to Z. Given any z in Z and a choice of Darboux coordinates (qZ

i , pZ
i )n

i=1 on an open set U containing z and given any x in X with f (x)
equal to z, there exist Darboux coordinates (qX

i , pX
i )ℓi=1 on an open set V containing x such that for any i in {1, . . ., n},

qX
i = qZ

i ○ f and pX
i = pZ

i ○ f .

Proof. Suppose that x0 is in X, that U is an open set containing f (x0), and that (qZ
i , pZ

i )n
i=1 is a Darboux coordinate system on U.

Proposition 2.6 guarantees that f is a surjective submersion; hence, it is an open map, and so there is an open set V′ containing x0 with a
Darboux coordinate system (qX

i , pX
i )ℓi=1 such that f (V′) is an open subset of U. Denote by H the set of all vector fields v on f (V′) for which

there is some α in C∞( f (V′)) such that for any β in C∞( f (V′)),

v(β) = {β, α}Z .

Denote such a vector field by vα. Denote by f ∗(H) the set of all vector fields w on V′ for which there is an α in C∞( f (V′)) such that for any
h in C∞(V′),

w(h) = {h, α ○ f }X .

Denote such a vector field by wα. For any x in V′ and any z in f (V′), denote, respectively, by f ∗(H)(x) and H(z) the set of all vector fields
in f ∗(H) evaluated at x and the set of all vector fields in H evaluated at z. The bilinearity of the bracket implies that H(z) and f ∗(H)(x) are
vectors spaces. Since

v−qZ
i
= ∂

∂pZ
i

and vpZ
i
= ∂

∂qZ
i

,

for any z in f (V′), the vector space H(z) spans Tz(U).
Let F be the function

F : H→ f ∗(H) by F(vα) = wα.
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The fact that f is Poisson implies that

d f (wα)(β) = wα(β ○ f )
= {β ○ f , α ○ f }X

= {β, α}Z = vα(β),

and so

d f (F(vα)) = vα.

Similarly, for any wα in f ∗(H),
F(d f (wα)) = F(vα) = wα.

The maps F and d f ∣H are therefore inverses of each other, and so for each x in V′, the vector spaces H( f (x)) and f ∗(H)(x) are isomorphic.
Both of these vector spaces have the same dimension as Z.

For any wα and wα′ in f ∗(H), the Jacobi identity implies that

[wα,wα′]TX = wα(wα′(β)) −wα′(wα(β))
= {wα′(β), α ○ f }X − {wα(β), α′ ○ f }X

= {{β ○ f , α′ ○ f }X , α ○ f }X − {{β ○ f , α ○ f }X , α′ ○ f }X

= {β,{α′ ○ f , α ○ f }X}X = w{α,α′}(β),

and so the space of vector fields f ∗(H) is closed under the bracket [⋅, ⋅]TX on TX. The Frobenius Theorem for involutive distributions implies
that for any x in V′, there is a submanifold W of V′ such that f ∗(H)(x) is the tangent space TxW. Since

f ∗(H)(x) ∩ ker(d f ∣x) = {0},

the rank-nullity theorem implies that

TxV′ = f ∗(H)(x)⊕ ker(d f ∣x).

Define the function g from W to Z to be the restriction of f to the submanifold W. The form g∗(ωZ) is a closed 2-form on W as it is
the pullback of the closed 2-form ωZ restricted to f (V′). Suppose that there is a v in TW such that for all w in TW, g∗(ωZ)(v,w) is equal to
zero. In this case,

0 = g∗(ωZ)(v,w) = ωZ(dg(v), dg(w)),

and so

ωZ(dg(v), ⋅) = 0

since dg∣x is surjective at each point x of W. Nondegeneracy of ωZ implies that dg(v) is equal to zero, and the injectivity of dg further implies
that v is equal to zero. The form g∗(ωZ) is, therefore, a symplectic form on W.

For any (η, ζ) in C∞(V′) × C∞(V′),

f ∗(ωZ)∣x(wη,wζ) = ωZ(d f (wη), d f (wζ))∣ f (x)
= ωZ(vη, vζ)∣ f (x)
= {η, ζ}Z ∣ f (x)
= {η ○ f , ζ ○ f }X ∣x = ωX(wη,wζ)∣x, (1)

where the assumption that f is Poisson implies the penultimate equality. The pullback f ∗(ωZ) is therefore the restriction of ωX to TW × TW.
The manifold W is an embedded symplectic submanifold of V′, and so Ref. 29, p.124, Exercise 3.38, implies that there is an open set V of V′

that contains x0 and a Darboux coordinate system (qX
i , pX

i )ℓi=1 on V such that for any x in V and i strictly larger than n,

qX
i (x) = pX

i (x) = 0.
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Define

ωA =
n

∑
i=1

dqX
i ∧ dpX

i and ωB =
ℓ

∑
i=n+1

dqX
i ∧ dpX

i

so that in the open set V , ωX is equal to the sum of ωA and ωB. The form ωB is the restriction of ωX to (TW × TW) ∩ (TV × TV), and so (1)
implies that ωB is equal to f ∗(ωX). Furthermore, for any θ in C∞(U),

( f ∗(dqZ
i ))(wθ)∣x = dqZ

i (d f (wθ))∣x
= dqZ

i (vθ)∣ f (x)
= vθ(qZ

i )∣ f (x)
= {qZ

i , θ}Z ∣ f (x)
= {qZ

i ○ f , θ ○ f }X ∣x = d(qZ
i ○ f )wθ∣x.

Every element of TW is of the form wθ for some θ in C∞(U), implying that

f ∗(dqZ
i ) = d(qZ

i ○ f ) and f ∗(dpZ
i ) = d(pZ

i ○ f ). (2)

Use (2) together with the coordinate representation of ωZ to obtain the equality

f ∗(ωZ) =
n

∑
i=1

d(qZ
i ○ f ) ∧ d(pZ

i ○ f ),

which implies that in the open set V ,

ωX =
n

∑
i=1

d(qZ
i ○ f ) ∧ d(pZ

i ○ f ) +
ℓ

∑
i=n+1

dqX
i ∧ dpX

i .

The coordinate system ϕ on V given by

ϕ = (qZ
1 ○ f , pZ

1 ○ f , . . . , qZ
n ○ f , pZ

n ○ f , qX
n+1, pX

n+1, . . . , qX
ℓ , pX

ℓ )

is, therefore, a Darboux coordinate system on V . ◻

Denote by πZ the map

πZ = f ○ πX = g ○ πY ,

where πX and πY are the projections from X ×ZY to Z. More generally, for any span Q that is paired with a cospan ( f , g), define by qM the
map

qM = f ○ qL = g ○ qR.

Theorem 3.10. Suppose that ( f , g) is a cospan in SympSurj with

f : X → Z and g : Y → Z,

with 2ℓ, 2m, 2n being the respective dimensions of X, Y, and Z, and suppose that ωX , ωY , and ωZ are the respective symplectic forms on X, Y,
and Z. Suppose that Q is a span in SympSurj that is paired with ( f , g), and suppose that QA has dimension 2(ℓ +m − n). The 2-form ωQA ,
given by

ωQA = q∗L(ωX) + q∗R(ωY) − q∗M(ωZ),
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is the symplectic form on QA. Moreover, the 2-form ω, given by

ω = π∗X(ωX) + π∗Y(ωY) − π∗Z(ωZ),

is the unique symplectic form on X ×ZY with the property that (πX , πY) is paired with ( f , g).

Proof. Suppose that a is in QA. Since Z is a symplectic manifold, there is on some open set UZ containing qM(a) a Darboux coordinate
system ΨZ with

ΨZ = (qZ
k , pZ

k )k∈{1,...,n}
: UZ → R2n.

Since qM(a) is equal to f (qL(a)), Theorem 3.9 implies that there is an open set UX containing qL(a) and a Darboux coordinate system ΨX

on UX with

ΨX = (qX
i , pX

i , qZ
k ○ f , pZ

k ○ f )
i∈{1,...,ℓ−n}

k∈{1,...,n}

: UX → R2ℓ.

Similarly, there is an open set UY containing qR(a) and a Darboux coordinate system ΨY on UY with

ΨY = (qY
j , pY

j , qZ
k ○ g, pZ

k ○ g)
j∈{1,...,m−n}

k∈{1,...,n}

: UY → R2m.

For each k in {1, . . . , n}, the equality of f ○ qL and g ○ qR implies that

qZ
k ○ f ○ qL = qZ

k ○ g ○ qR = qZ
k ○ qM and pZ

k ○ f ○ qL = pZ
k ○ g ○ qR = pZ

k ○ qM .

Furthermore, there is an open set U containing a with the property that qL(U) and qR(U) are, respectively, subsets of UX and UY . Denote,
respectively, by q̃X

i , p̃X
i , q̃Y

j , p̃Y
j , q̃Z

k , and p̃Z
k the functions qX

i ○ qL, pX
i ○ qL, qY

j ○ qR, pY
j ○ qR, qZ

k ○ qM , and pZ
k ○ qM acting on QA. The map Ψ given

by

Ψ = (q̃X
i , p̃X

i , q̃Y
j , p̃Y

j , q̃Z
k , p̃Z

k )
i∈{1,...,ℓ−n}

j∈{1,...,m−n}

k∈{1,...,n}

: U → R2(ℓ+m−n)

is a homeomorphism from U to an open subset of R2(ℓ+m−n) and hence a coordinate system on U that is a Darboux coordinate system. The
2-form ωQA is therefore the form

ωQA =
ℓ−n

∑
i=1

dq̃X
i ∧ dp̃X

i +
m−n

∑
j=1

dq̃Y
j ∧ dp̃Y

j +
n

∑
k=1

dq̃Z
k ∧ dp̃Z

k ,

proving that if there is a span Q with the given properties, then the symplectic form on QA is determined by the cospan ( f , g). It does not,
however, prove that there is such a span.

Proposition 3.6 of Ref. 23 implies that X ×ZY is a smooth manifold of dimension 2(ℓ +m − n). Suppose v is in Ta(X ×ZY), and for any
w in Ta(X ×ZY), ω(v,w) is zero. There are coefficients ai, bi, cj, ej, sk, tk such that, using Einstein summation convention,

v = ai∂q̃X
i + bi∂p̃X

i + cj∂q̃Y
j + ej∂p̃Y

j + sk∂q̃Z
k + tk∂p̃Z

k .

For a fixed i,

−ω(v,∂q̃X
i ) = bi = 0.
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A similar calculation shows that all of the given coefficients are zero, implying that v is equal to zero and so ω is nondegenerate. The
form ω is the sum of pullbacks of smooth closed forms, and so smooth and closed itself, hence symplectic. The construction of ω ensures that
the smooth surjections πX and πY are Poisson maps on the symplectic manifold (X ×ZY , ω); hence, (πX , πY) is paired with ( f , g). ◻

Theorem 3.11. Suppose that ( f , g) is a cospan in RiemSurj with

f : X → Z and g : Y → Z

and that gX , gY , and gZ are the metric tensors on X, Y, and Z, respectively. The tensor gX ×Z Y , given by

gX ×Z Y = π∗X(gX) + π∗Y(gY) − π∗Z(gZ),

is the unique metric tensor on X ×ZY such that the span (πX , πY) is paired with ( f , g).

Proof. Since every surjective Riemannian submersion is a surjective submersion, the fibered product X ×ZY is a smooth manifold. If
gX ×Z Y is positive definite, then (X ×ZY , gX ×Z Y) is a Riemannian manifold since gX ×Z Y is a symmetric tensor as a sum of pullbacks of symmetric
tensors. It suffices to show that gX ×Z Y is nondegenerate.

Follow the Proof of Theorem 3.10 using the splitting of the tangent spaces

TX = (ker(d f ))� ⊕ (ker(d f )) and TY = (ker(dg))� ⊕ (ker(dg))

rather than the previous appeal to Theorem 3.9 to obtain an expression for gX ×Z Y in local coordinates. Together with this local coordinate
representation of gX ×Z Y , the fact that the maps πX , πY , and πZ are surjective Riemannian submersions implies that gX ×Z Y is nondegenerate.
The proof is similar to the Proof of Theorem 3.10, and so the details are left to the reader to verify. ◻

Note that the symplectic form on X ×ZY in Theorem 3.10 is not the pullback by the inclusion map of the symplectic form on X × Y to
the manifold X ×ZY . While the pullback form is symplectic, the span (πX , πY) will no longer be a span in SympSurj when X ×ZY is endowed
instead with the pullback form. The analogous statements about the potential choices for the metric tensor are true in the Riemannian setting.

Theorem 3.12. The forgetful functors from SympSurj to Diff and from RiemSurj to Diff are span tight.

Proof. Suppose that F is the forgetful functor from SympSurj to Diff. Since every morphism in SympSurj is a surjective submersion,
the functor F maps SympSurj to the subcategory SurjSub of Diff. If ( f , g) is a cospan in SympSurj and πX and πY are, as defined above, the
respective projections from X ×ZY to X and Y , then Proposition 2.11 implies that (F(πX),F(πY)) is a span in Diff that is a pullback of the
cospan (F( f ),F(g)). Therefore, SympSurj has F-pullbacks in Diff. Suppose now that Q is a span in SympSurj that is also an F-pullback of
( f , g). In this case, the span F(Q) is a span in Diff that is a pullback of (F( f ),F(g)), and so there is a span diffeomorphism Φ from F(Q)
to F(X ×ZY). Since Φ is a span morphism,

F(qL) ○Φ−1 = F(πX), F(qR) ○Φ−1 = F(πY), and F( f ) ○F(qL) ○Φ−1 = F(πZ). (3)

Denote, respectively, by ω, ωX , ωY , and ωZ the symplectic forms on X ×ZY , X, Y , and Z. The equalities of (3) imply that

ω = F(πX)∗(ωX) +F(πY)∗(ωY) −F(πZ)∗(ωZ)

= (F(qL) ○Φ−1)∗(ωX) + (F(qR) ○Φ−1)∗(ωY) − (F( f ) ○F(qL) ○Φ−1)∗(ωZ)

= (Φ−1)∗(F(qL)∗(ωX) +F(qR)∗(ωY) − (F( f ) ○F(qL))∗(ωZ))

= (Φ−1)∗(ωQA),

where ωQA is the unique 2-form on QA such that Q is paired with ( f , g). Let Ψ be the map from (QA, ωQA) to (X ×ZY , ω) that acts as Φ
on the underlying manifolds. The map Ψ is, therefore, a diffeomorphism and Ψ−1 is a symplectic map; hence, Ψ is a symplectomorphism.
Since every symplectomorphism is a Poisson diffeomorphism, Ψ is an isomorphism in the category SympSurj with F(Ψ) equal to Φ (Ref. 30,
p. 195).

A similar argument proves the theorem in the case of RiemSurj. ◻
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Corollary. If F is the forgetful functor from SympSurj to Diff (respectively, RiemSurj to Diff) , then Span(SympSurj,F) [respectively,
Span(RiemSurj,F)] is a category.

While Theorems 2.10 and 3.12 imply that Span(SympSurj,F) and Span(RiemSurj,F) are categories, where F is the appropriate forgetful
functor into Diff, to show that classical systems are morphisms of a category requires additional verifications. Section IV provides the
necessary verifications.

IV. CLASSICAL SYSTEMS AS MORPHISMS
This section constructs the categories LagSy and HamSy, whose objects are, respectively, augmented Riemannian manifolds or

augmented symplectic manifolds and whose morphisms are isomorphism classes of the classical spans appropriate to the given category.

A. The categories HamSy and LagSy

Definition 4.1. The classical system [S, FS] is composable with the classical system [Q, FQ] if:

(i) both are classical systems of the same type; and
(ii) if (S, FS) and (Q, FQ) are respective representatives of the equivalence classes [S, FS] and [Q, FQ], then (SR, FSR) is equal to (QL, FQL).

Assume below that the classical system [S, FS] is composable with [Q, FQ] and (S, FS) and (Q, FQ) are, respectively, representatives of
[S, FS] and [Q, FQ]. To simplify notation, let

SA = X, SL = V , SR = QL = Z, QA = Y , and QR =W.

Again denote by X ×ZY the fibered product and by πX , πY , and πZ the respective projections to X, Y , and Z. Define by [S, FS] ○ [Q, FQ] the
augmented span given by

[S, FS] ○ [Q, FQ] = [(sL ○ πX , qR ○ πY), FS○Q],

where

FS○Q = (FX ○ πX + FY ○ πY − FZ ○ πZ , FV , FW).

Theorem 4.2. The Hamiltonian systems are the morphisms in a category, HamSy, whose objects are augmented symplectic manifolds. The
Lagrangian systems are the morphisms in a category, LagSy, whose objects are augmented Riemannian manifolds.

Proof. To prove the theorem, it suffices to show that (i) the composition of morphisms in HamSy and in LagSy is well defined; (ii)
both HamSy and LagSy have left and right unit laws; and (iii) the composition of morphisms in HamSy and in LagSy is associative. Since
Span(RiemSurj,F) and Span(SympSurj,F) are categories, to show that HamSy and LagSy are categories, it suffices to show that the augmen-
tations are compatible with the various span isomorphisms that arise in defining the categories Span(RiemSurj,F) and Span(SympSurj,F).
Suppose that [S, FS] and [Q, FQ] are both classical systems, and denote by F the appropriate forgetful functor from either SympSurj or
RiemSurj to Diff.

(i) Suppose that [S′, FS′] is equal to [S, FS] and that α is an isomorphism of augmented spans with

α : X = SA → S′A.

Suppose that [Q′, FQ′] is equal to [Q, FQ] and that β is an isomorphism of augmented spans with

β : Y = QA → Q′A.

Since (Z, FZ) is the right foot of (S, FS) and the left foot of (Q, FQ),

(S′R, FS′R) = (Q
′
L, FQ′L) = (Z, FZ).
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If P is an F-pullback of (s′R, q′L), then there is a span isomorphism Φ with

Φ : X ×ZY → PA.

The augmented span (S′, FS′) ○P (Q′, FQ′) is given by

(S′, FS′) ○P (Q′, FQ′) = ((s′L ○ pL, q′R ○ pR), FS′ ○P Q′),

where

FS′ ○P Q′ = (FS′A ○ pL + FQ′A ○ pR − FZ ○ s′R ○ pL, FV , FW).

Since α and β are isomorphisms of augmented spans,

FS′A ○ α = FX and FQ′A ○ β = FY .

The function Φ is a span isomorphism, and so

pL ○Φ = α ○ πX and pR ○Φ = β ○ πY ,

and hence,

FS′A ○ pL ○Φ = FS′A ○ α ○ πX = FX ○ πX .

Similar arguments show that

FQ′A ○ pR ○Φ = FY ○ πY and FZ ○ s′R ○ pL ○Φ = FZ ○ πZ ,

and so

FS○Q = (FS′ ○P Q′) ○Φ. (4)

Equality (4) implies that Φ is an augmented span isomorphism; hence, the composition of [S, FS] and [Q, FQ] is independent of
representative. The composite [S, FS] ○ [Q, FQ] is, therefore, a well-defined morphism from (QR, FQR) to (SL, FSL).

(ii) Let [S, FS] be a morphism with the source (SR, FSR) and target (SL, FSL). Let (ISR , FISR
) be a representative of the identity augmented

span with source (SR, FSR) and target (SR, FSR). The equality

[S] ○ [ISR] = [S]

follows from the fact that both Span(SympSurj,F) and Span(RiemSurj,F) are categories. Let the span P be an F-pullback of (sR, IdSR),
where

PL = PA = SA, PR = SR, pL = IdSA , and pR = sR.

The equalities

FPA = FSA ○ pL + FSR ○ sR − FSR ○ sR ○ pL

= FSA ○ IdSA + FSR ○ sR − FSR ○ sR ○ IdSA = FSA
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imply that there is an augmented span isomorphism from (S, FS) ○ (ISR , FSR) to (S, FS), and so

[S, FS] ○ [ISR , FSR] = [S, FS].

A similar argument shows that

[ISL , FSL] ○ [S, FS] = [S, FS].

Therefore, HamSy and LagSy have left and right unit laws.
(iii) Refer to the following diagram for the naming of the maps below, where all spans paired with a given cospan are augmented F-pullbacks

of the given cospan and the diagram is commutative:

Let (P3, FP3) be an F-pullback of (p1
R, p2

L), and let (P4, FP4) be an F-pullback of (qR ○ p1
R, tL).

To prove (iii), show first that there is an augmented span isomorphism from the augmented span ((S, FS)○(P1 ,FP1 )(Q, FQ))○(P4 ,FP4 )(T, FT)
to the augmented span (P, FP) that is given by the composite ((S, FS)○(P1 ,FP1 )(Q, FQ))○(P3 ,FP3 )((Q, FQ)○(P2 ,FP2 )(T, FT)). A similar argument
will show that there is an augmented span isomorphism from the augmented span (S, FS) ○ ((Q, FQ) ○ (T, FT)) to (P, FP), and the result
follows by the fact that inverses and compositions of augmented span isomorphisms are augmented span isomorphisms. Since Lemma 5.3
of Ref. 23 proves the existence of a span isomorphism between the non-augmented spans, it suffices to show that this span isomorphism is
compatible with the augmentations for the two composite spans.

The commutativity of the diagram above and the definition of the composition of augmented spans together imply that

FP4
A
= FP1

A
○ p4

L + FTA ○ p4
R − FQR ○m4

= FP1
A
○ p3

L ○Φ + FTA ○ p2
R ○ p3

R ○Φ − FQR ○m2 ○ p3
R ○Φ.

= (FP1
A
○ p3

L + FTA ○ p2
R ○ p3

R − FQR ○m2 ○ p3
R) ○Φ

= (FP1
A
○ p3

L + (FTA ○ p2
R − FQR ○m2) ○ p3

R) ○Φ

= (FP1
A
○ p3

L + (FQA ○ p2
L − FQA ○ p2

L + FTA ○ p2
R − FQR ○m2) ○ p3

R) ○Φ

= (FP1
A
○ p3

L + (FQA ○ p2
L + FTA ○ p2

R − FQR ○m2) ○ p3
R − FQA ○ p2

L ○ p3
R) ○Φ

= (FP1
A
○ p3

L + (FQA ○ p2
L + FTA ○ p2

R − FQR ○m2) ○ p3
R − FQA ○m3) ○Φ

= (FP1
A
○ p3

L + FP2 ○ p3
R − FQA ○m3) ○Φ = FP3

A
○Φ.

Therefore, the span isomorphism Φ is compatible with the augmentations FP4 and FP3 . ◻

J. Math. Phys. 62, 042902 (2021); doi: 10.1063/5.0029885 62, 042902-16

Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

B. Motivating example
Suppose that the spring-mass system with three masses given in Sec. I has masses m1, m2, and m3, respectively, as the left, middle, and

right masses of the system. Suppose further that the spring constants of the left and right springs are, respectively, k1 and k2. The spring-mass
system with three masses is a composite of two spring-mass systems with two masses each. We now discuss a category theoretic construction
of a model for the composite system with its subsystems.

Let [S, VS] be a Lagrangian system describing the left spring-mass system and [Q, VQ] be a Lagrangian systems describing the right
spring-mass system. Denote both SR and QL by Z, since SR is equal to QL, and by VZ the augmentation on Z. Take a representative (S, VS) of
the Langrangian system [S, VS] to be the Riemannian span with the manifold SA equal to R2 and the manifolds SL and Z equal to R. Let g1 be
the standard Riemannian metric on R. Let ρL and ρR be the canonical projections on R2 with

ρL(q1, q2) = q1 and ρR(q1, q2) = q2.

Denote by g2 the standard Riemannian metric on R2. Endow SL with the Riemannian metric gSL and Z with the Riemannian metric gZ , where
gSL and gZ are given by

gSL = m1g1 and gZ = m2g1.

Define by gSA the metric on R2 given for all v and w in T(q1 ,q2)R
2 by

gSA(v,w) = gSL(dρL(v), dρL(w)) + gZ(dρR(v), dρR(w)).

Denote, respectively, by sL and sR the functions from SA to SL and from SA to Z that act on underlying manifolds as the projections ρL and ρR.
The augmentation VS is the triple of maps

VS = (VSA , VSL , VZ) with VSA(q1, q2) =
k1

2
(q1 − q2)2, VSL ≡ 0, and VZ ≡ 0.

Define similarly the Riemannian span (Q, VQ), but with the Riemannian metric gQR on QR and the augmentations VQA and VQR given by

gQR = m3g1, VQA(q2, q3) =
k2

2
(q2 − q3)2, and VQR ≡ 0.

Define by gQA the metric on R2 given for all v and w in T(q2 ,q3)R
2 by

gQA(v,w) = gZ(dρL(v), dρL(w)) + gQR(dρR(v), dρR(w)).

Denote by πL and πR the respective projections from SA ×Z QA to SA and to QA and by πM the map sR ○ πL, which is also the map qL ○ πR.
Denote by gSA×Z QA the Riemannian metric on SA ×ZQA given by

gSA×Z QA = π∗L (gSA) + π∗R(gQA) − π∗M(gZ).

The augmentation VSA×Z QA is then given by

VSA×Z QA = π∗L (VSA) + π∗R(VQA) − π∗M(VZ).

Let Φ be the diffeomorphism from SA ×ZQA to R3 given by

Φ(q1, q2, q2, q3) = (q1, q2, q3)

so that dΦ is the diffeomorphism from T(SA ×ZQA) to TR3 given by

dΦ(q1, q2, q2, q3, q̇1, q̇2, q̇2, q̇3) = (q1, q2, q3, q̇1, q̇2, q̇3).
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The configuration space of the composite system is, up to an isometry, the fibered product of the configuration spaces of the open
subsystems,

Denote by PA the Riemannian manifold R3 and by pL and pR the maps

pL = sL ○ πL ○Φ−1 and pR = qR ○ πR ○Φ−1.

Denote by VPA the potential

VPA = VSA×Z QA ○Φ−1.

Define a Riemannian metric gPA on PA by

gPA = (Φ−1)∗(gSA×Z QA),

making Φ an isometry. The Lagrangian for the composite system is LPA where for every ν in TPA,

LPA(ν) =
1
2

gPA(ν, ν) − VPA(ρPA(ν)).

The Lagrangian L of the system with configuration space given by R3 is given with respect to coordinate system (q1, q2, q3) by

L(q1, q2, q3, q̇1, q̇2, q̇3) =
m1

2
(q̇1)2 + m2

2
(q̇2)2 + m2

2
(q̇2)2 + m3

2
(q̇3)2 − m2

2
(q̇2)2

− k1

2
(q1 − q2)2 − k2

2
(q2 − q3)2 + 0 (since VZ ≡ 0)

= m1

2
(q̇1)2 + m2

2
(q̇2)2 + m3

2
(q̇3)2 − k1

2
(q1 − q2)2 − k2

2
(q2 − q3)2.

The Riemannian span (P, VP) is a representative of the Lagrangian system [S, VS] ○ [Q, VQ]. The Lagrangian L on PA is the Lagrangian for
the given system of three masses and two springs with configuration space equal to R3. We leave the determination of the Hamiltonian system
to the reader as it is a straightforward exercise, given the previous discussion and the result of Sec. V.

In general, a description of a composite system requires a prior description of the subsystems. The subsystems need not themselves have
descriptions as composite systems, and it remains an open problem to determine the simplest subsystems that are required to construct from
them any other system as a composite. If two subsystems that share a common component form a complicated system and if we know how
to map the subsystems into two pieces, one of which is the common component, then we can view the complicated system as a composite
system in our formalism. We systematically work through a selection of examples in an upcoming paper where we more carefully develop
computational tools.

V. THE LEGENDRE FUNCTOR
This section constructs a functor ℒ from LagSy to HamSy that preserves the paths of motion.
Suppose that (M, gM) is a Riemannian manifold of dimension m. The canonical 2-form, ωT∗M , is the exterior derivative of the tautological

1-form and is a symplectic form on T∗M (Ref. 14, p. 202). Denote, respectively, by πM and ρM the canonical projections from T∗M to M and
from TM to M. Suppose a is a point of M. There is an open set U of M containing a that is the domain of coordinates (xi)i∈{1,...,m}. The set of
1-forms {dxi : i ∈ {1, . . . , m}} trivializes the sub-bundle T∗U. Define for each i the real valued functions pM

i on T∗U with the property that
for all θ in T∗M,

θ =
m

∑
i=1

pM
i (θ) dxi∣πM(θ).
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The pM
i are the momenta associated with the xi coordinates. For each i, the function pM

i is the evaluation map ev ∂
∂xi
∣
πM(θ)

that is

defined by the equality

ev ∂
∂xi
∣
πM(θ)
(θ) = θ( ∂

∂xi
∣
πM(θ)

).

For each i, define qM
i by

qM
i = xi ○ πM .

The function given by (qM
i , pM

i )i∈{1,...,m} on π−1
M (U) is a Darboux coordinate system, that is,

ωT∗M =
m

∑
i=1

dqM
i ∧ dpM

i .

Define for each i the real valued function q̂M
i on TM with the property that if v is in ρ−1

M (U), then

v =
m

∑
i=1

q̂M
i (v)

∂

∂xi
∣
ρM(v)

.

Note that q̂M
i is the function defined for each v in TU by

q̂M
i (v) = dxi∣ρM(v)(v).

Denote ambiguously by qM
i the function

qM
i = xi ○ ρM

on TU. The coordinate system (qM
i , q̂M

i ) is a coordinate system on ρ−1
M (πM(U)).

The Riemannian metric gM on TM induces a Riemannian metric on the cotangent bundle T∗M, to be denoted g∗M and for each a in U
defined on the pair (θ1, θ2) in T∗a M × T∗a M by

g∗M(θ1, θ2) = gM(♯M(θ1), ♯M(θ2)) =
m

∑
i,j=1

gij
M(a)p

M
i (θ1)pM

j (θ2),

where gij
M denotes the (i, j) entry of the inverse of the matrix given by gM in the (qM

i , q̂M
i ) coordinates. For all v in TM and θ in T∗M, denote,

respectively, by gM(⋅) and g∗M(⋅) the quadratic forms

gM(v) = gM(v, v) and g∗M(θ) = g∗M(θ, θ). (5)

Define 𝒦 as a map from Riemannian manifolds to symplectic manifolds by

𝒦 (M, gM) = (T∗M, ωT∗M).

For any surjective Riemannian submersion f from M to N, define 𝒦 ( f ) by

𝒦 ( f ) = ♭N ○ d f ○ ♯M .

To simplify the notation, denote by F the function 𝒦 ( f ). We depict the various maps here:
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Suppose that M and N are Riemannian manifolds of respective dimensions m and n, and suppose further that f is a surjective Riemannian
submersion from M to N. For any point p in M, there is a coordinate system (x1, . . . , xm) of M on an open set containing p and a coordinate
system (y1, . . . , yn) of N on an open set containing f (p) such that for all i in {1, . . . , n} and k in {n + 1, . . . , m},

xi = yi ○ f and
∂

∂xk
∈ ker(d f ).

Let j be an index varying in the set {1, . . . , n}. For each i and each j, denote, respectively, by qM
i and qN

j the functions xi ○ πM and yj ○ πN and
denote by pM

i and pN
j the momenta associated with the coordinate functions xi and yj. Use the above notation for the following lemma, as well

as for the rest of the section:

Lemma 5.1. For all pM
j , pN

j , and F defined as above,
pM

j = pN
j ○ F.

Proof. For all j in {1, . . . , n},

d f ( ∂

∂xj
∣
a
) = d f ( ∂

∂(yj ○ f ) ∣a
) = ∂

∂yj
∣

f (a)
.

For all θ in T∗U, there is an element X of TU with θ equal to gM(X, ⋅). In this case, the form F(θ) is equal to gN(d f (X), ⋅), and so

pM
j (θ) = ev

∂
∂xj
∣

πM(θ)

(θ) = gM
⎛
⎝

X,
∂

∂xj
∣
πM(θ)

⎞
⎠

.

The function f is a surjective Riemannian submersion, implying that

gM
⎛
⎝

X,
∂

∂(yj ○ f ) ∣πM(θ)

⎞
⎠
= gN
⎛
⎝

d f (X), d f
⎛
⎝

∂

∂(yj ○ f ) ∣πM(θ)

⎞
⎠
⎞
⎠

,

and so

pM
j (θ) = gN

⎛
⎝

d f (X), ∂

∂yj
∣

f (πM(θ))

⎞
⎠

= gN
⎛
⎝

d f (X), ∂

∂yj
∣
πN(F(θ))

⎞
⎠

= F(θ)
⎛
⎝

∂

∂yj
∣
πN(F(θ))

⎞
⎠

= ev
∂
∂yj
∣

πN (F(θ))

(F(θ)) = (pN
j ○ F)(θ),

which proves the desired equality. ◻
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Proposition 5.2. For any surjective Riemannian submersion f from a Riemannian manifold M to a Riemannian manifold N, the function
𝒦 ( f ) is a surjective Poisson map.

Proof. Suppose M and N have respective dimensions m and n. The map 𝒦 maps Riemannian manifolds to symplectic manifolds, in
particular,

𝒦 (M) = T∗M and 𝒦 (N) = T∗N.

Once again denote by F the map 𝒦 ( f ). Suppose that ΠT∗M and ΠT∗N , respectively, denote the Poisson bivectors for T∗M and T∗N. For any
α and β in C∞(T∗N) and any a in T∗M,

dFa(ΠT∗M)(dα, dβ) = ΠT∗M(d(α ○ F), d(β ○ F))∣ a

=
m

∑
i=1
(∂(α ○ F)

∂qM
i

∂(β ○ F)
∂pM

i
− ∂(β ○ F)

∂qM
i

∂(α ○ F)
∂pM

i
)∣

a

=
n

∑
i=1
(∂(α ○ F)

∂qM
i

∂(β ○ F)
∂pM

i
− ∂(β ○ F)

∂qM
i

∂(α ○ F)
∂pM

i
)∣

a

=
n

∑
i=1
( ∂(α ○ F)
∂(qN

i ○ F)
∂(β ○ F)
∂(pN

i ○ F) −
∂(β ○ F)
∂(qN

i ○ F)
∂(α ○ F)
∂(pN

i ○ F))∣a
(6)

=
n

∑
i=1
( ∂α
∂qN

i

∂β
∂pN

i
− ∂β
∂qN

i

∂α
∂pN

i
)∣

F(a)
= ΠT∗N(dα, dβ)∣ F(a),

where Lemma 5.1 implies the equality in (6). Therefore, dF(ΠT∗M) is equal to ΠT∗N , which implies that F is a Poisson map. The map f is a
surjective submersion; therefore, d f is surjective. The nondegeneracy of g implies that F is also surjective, and so 𝒦 maps the morphisms in
RiemSurj to morphisms in SympSurj. ◻

Lemma 5.3. For any spans S and Q in RiemSurj and any span isomorphism Φ from S to Q, the function 𝒦 (Φ) is a span isomorphism
from 𝒦 (S) to 𝒦 (Q).

Proof. Suppose that Φ is a span isomorphism from S and Q. In this case, 𝒦 (Φ) is Poisson. Since 𝒦 (Φ) is a diffeomorphism and
Poisson, it is an isomorphism in the category SympSurj. Recall that the isomorphisms in SympSurj are Poisson diffeomorphisms, which are
symplectomorphisms since the objects in SympSurj are symplectic manifolds (Ref. 30, p. 195). Since Φ is a span morphism,

sL = qL ○Φ and sR = qR ○Φ,

implying that

𝒦 (sL) =𝒦 (qL ○Φ)
= ♭QL ○ d(qL ○Φ) ○ ♯SA

= ♭QL ○ dqL ○ dΦ ○ ♯SA

= ♭QL ○ dqL ○ (♯QA ○ ♭QA) ○ dΦ ○ ♯SA

= (♭QL ○ dqL ○ ♯QA) ○ (♭QA ○ dΦ ○ ♯SA) =𝒦 (qL) ○𝒦 (Φ).

A similar argument shows that

𝒦 (sR) =𝒦 (qR) ○𝒦 (Φ),

proving that 𝒦 (Φ) is a span morphism. Therefore, for any spans S and Q in RiemSurj that are span isomorphic, the spans 𝒦 (S) and 𝒦 (Q)
are also span isomorphic. ◻

Lemma 5.4. Suppose that (S, VS) and (Q, VQ) are Riemannian spans and that Φ is an isomorphism of spans from S to Q. If Φ is
additionally an isomorphism of classical spans, then so is 𝒦 (Φ).

Proof. In light of Lemma 5.4, it suffices to show that 𝒦 (Φ) is compatible with the augmentations. For any span isomorphism Φ from S
to Q that is compatible with VS and VQ,

VSA = VQA ○Φ.
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The isomorphism Φ is Riemannian, hence an isometry. Therefore,

g∗SA = g∗QA ○𝒦 (Φ),

and so

HSA =
1
2

g∗SA + VSA ○ πSA

= 1
2

g∗QA ○𝒦 (Φ) + VQA ○ πQA ○𝒦 (Φ) = HQA ○𝒦 (Φ).

◻
Suppose that (S, VS) is a Riemannian span, and let ⋆ denote either of the letters A, L, or R. Define 𝒦 (S⋆, VS⋆) by

𝒦 (S⋆, VS⋆) = (𝒦 (S⋆), HS⋆),

where for all η in S⋆,

HS⋆(η) =
1
2

g∗S⋆(η) + (VS⋆ ○ πS⋆)(η).

Each object of LagSy is an augmented Riemannian manifold, and so 𝒦 maps the objects of LagSy to the objects of HamSy and the morphisms
of RiemSurj to the morphisms of SympSurj. In this way, 𝒦 maps Riemannian spans to Poisson spans. Define ℒ to be 𝒦 on the objects of
LagSy, and for each morphism [S, VS] in LagSy, define ℒ ([S, VS]) by

ℒ ([S, VS]) = [𝒦 (S, VS)].

Theorem 5.5. The map ℒ is a functor from LagSy to HamSy. Suppose that πSA is the canonical projection from T∗SA to SA. Suppose that
the Lagrangian system [S, VS] has a path of motion γ on the manifold SA that is specified by the representative (S, VS) of [S, VS], and suppose
that γ intersects a point x of SA at time zero. In this case, the path 𝒦 ○ γ is a path determined by ℒ ([S, VS]), valued in the symplectic manifold
𝒦 (SA), and πSA ○𝒦 ○ γ also intersects x at time zero.

Proof. The map ℒ maps Riemannian manifolds to symplectic manifolds and potentials to Hamiltonians and, therefore, maps the objects
of LagSy to the objects of HamSy. Proposition 5.2 implies that ℒ maps surjective Riemannian submersions to surjective Poisson maps, and
so if S is a span in RiemSurj, then 𝒦 (S) is a span in SympSurj. Lemma 5.4 implies that if (S, FS) and (Q, FQ) are isomorphic as Riemannian
spans, then 𝒦 (S, FS) and 𝒦 (Q, FQ) are isomorphic as Poisson spans, and so ℒ is well defined on Lagrangian systems, mapping them to
Hamiltonian systems.

Suppose that M is a Riemannian manifold. Denote by LM the Lagrangian on TM, where for each ν in TM,

LM(ν) =
1
2

gM(ν, ν) − VM(ρM(ν)).

Denote by HM the Hamiltonian associated with VM and by {⋅, ⋅}T∗M the Poisson bracket as given above in the construction of ℒ . It is a
standard result in classical mechanics that a path γ on M is a solution to (EL) if and only if it is an integral curve of {⋅, HM}M (Ref. 28, p.25,
Theorem 3.13). This proves the last two statements of the theorem. To prove that ℒ is a functor, it suffices to show further that (i) ℒ preserves
the composition and (ii) ℒ maps identity morphisms to identity morphisms.

To show (i), suppose that [S, FS] and [Q, FQ] are Riemannian spans and that [S, FS] is composable with [Q, FQ]. Suppose that P is
an F-pullback of (sR, qL), where PA is the fibered product SA×SR QA and pR and pL are the respective restrictions of the projections on
SA ×QA to SA and QA. The map 𝒦 maps SA ×SR QA to its cotangent bundle T∗(SA ×SR QA), which is isomorphic in SympSurj to the
manifold (T∗SA)×(T∗SR) (T

∗QA). The symplectic form on T∗(SA ×SR QA) is given by the canonical 2-form, and the symplectic form ω on
(T∗SA)×(T∗SR) (T

∗QA) is given by

ω =𝒦 (pL)∗(ωT∗SA) +𝒦 (pR)∗(ωT∗QA) −𝒦 (pL)∗(𝒦 (sR)∗(ωT∗SR)).

The symplectomorphism Φ from T∗(SA ×SR QA) to (T∗SA)×(T∗SR) (T
∗QA) is consistent with the augmentations. Lemma 5.4 implies that
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ℒ ([S, FS] ○ [Q, FQ]) =ℒ ([(S, FS) ○P (Q, FQ)])
= [𝒦 ((S, FS) ○P (Q, FQ))]
= [𝒦 (S, FS) ○𝒦 (P)𝒦 (Q, FQ)]
= [𝒦 (S, FS)] ○ [𝒦 (Q, FQ)] =ℒ ([S, FS]) ○ℒ ([Q, FQ]),

where the penultimate equality holds because 𝒦 (P) is an F-pullback.
To show (ii), suppose that (X, VX) is an augmented Riemannian manifold and that IdX is the identity map from X to X. Denote by IX the

span (IdX , IdX). The span 𝒦 (IX) is the pair (𝒦 (IdX),𝒦 (IdX)), where 𝒦 (IdX) is the identity map IdT∗X from T∗X to T∗X. Furthermore,
𝒦 maps the augmentation VX to the augmentation HT∗X , where

HT∗X =
1
2

g∗X + VX ○ πX .

Suppose that S is a Poisson span with (SL, HSL) equal to (T∗X, HT∗X). Let Q be the F-pullback of the cospan (𝒦 (IdX), sL) with the property
that QA is the symplectic manifold T∗X ×T∗XSA. The maps qL and qR are the respective restrictions to the manifold T∗X ×T∗XSA of the
canonical projections of the manifold T∗X × SA to T∗X and SA and are symplectomorphisms. Since Q is an F-pullback, the augmentation
HQA on QA is given by

HQA = (
1
2

g∗X + VX ○ πX) ○ qL + (
1
2

g∗SA + VSA ○ πSA) ○ qR

− (1
2

g∗X + VX ○ πX) ○ qL ○ IdT∗X

= (1
2

g∗X + VX ○ πX) ○ qL + (
1
2

g∗SA + VSA ○ πSA) ○ qR − (
1
2

g∗X + VX ○ πX) ○ qL

= (1
2

g∗SA + VSA ○ πSA) ○ qR = HSA ○ qR,

and hence,

HQA = HSA ○ qR.

The map qR is, therefore, compatible with the augmentations. Since Q is paired with (𝒦 (IdX), sL),

sL ○ qR = IdX ○ qL = qL,

and so qR is a span isomorphism mapping the composite (𝒦 (IdX) ○ qL, sR ○ qR) to the span S that is compatible with the augmentations. This
compatibility implies that

ℒ ([IX , VIX ]) ○ [S, HS] = [𝒦 (IX , VIX) ○ (S, HS)] = [S, HS].

Similar arguments show that for any Poisson span (S′, HS′) such that (S′R, HS′R) is equal to (T∗X, HT∗X),

[S′, HS′] ○ℒ ([IX , VIX ]) = [S
′, HS′],

and so ℒ ([IX , VIX ]) is the identity map with source and target (T∗X, HT∗X). ◻

We call the functor L from LagSy to HamSy the Legendre functor. It is a generalization of the Legendre transformation, which translates
from the Lagrangian to the Hamiltonian description of an open system in classical mechanics.
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