
An effective network reduction approach to find the dynamical repertoire of discrete
dynamic networks
Jorge G. T. Zañudo and Réka Albert 
 
Citation: Chaos: An Interdisciplinary Journal of Nonlinear Science 23, 025111 (2013); doi: 10.1063/1.4809777 
View online: http://dx.doi.org/10.1063/1.4809777 
View Table of Contents: http://scitation.aip.org/content/aip/journal/chaos/23/2?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Stability analysis and synchronization in discrete-time complex networks with delayed coupling 
Chaos 23, 043108 (2013); 10.1063/1.4825095 
 
Network-based stochastic competitive learning approach to disambiguation in collaborative networks 
Chaos 23, 013139 (2013); 10.1063/1.4794795 
 
The architecture of dynamic reservoir in the echo state network 
Chaos 22, 033127 (2012); 10.1063/1.4746765 
 
An adjustable aperiodic model class of genomic interactions using continuous time Boolean networks (Boolean
delay equations) 
Chaos 13, 1167 (2003); 10.1063/1.1608671 
 
From topology to dynamics in biochemical networks 
Chaos 11, 809 (2001); 10.1063/1.1414882 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

160.36.178.25 On: Tue, 23 Dec 2014 02:29:13

http://scitation.aip.org/content/aip/journal/chaos?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1774429656/x01/AIP-PT/CiSE_ChaosDL_121714/Awareness_LibraryF.jpg/47344656396c504a5a37344142416b75?x
http://scitation.aip.org/search?value1=Jorge+G.+T.+Za�udo&option1=author
http://scitation.aip.org/search?value1=R�ka+Albert&option1=author
http://scitation.aip.org/content/aip/journal/chaos?ver=pdfcov
http://dx.doi.org/10.1063/1.4809777
http://scitation.aip.org/content/aip/journal/chaos/23/2?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/23/4/10.1063/1.4825095?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/23/1/10.1063/1.4794795?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/22/3/10.1063/1.4746765?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/13/4/10.1063/1.1608671?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/13/4/10.1063/1.1608671?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/11/4/10.1063/1.1414882?ver=pdfcov


An effective network reduction approach to find the dynamical repertoire
of discrete dynamic networks

Jorge G. T. Za~nudo1,a) and R�eka Albert1,2,b)

1Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802-6300, USA
2Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802-5301, USA

(Received 31 December 2012; accepted 22 May 2013; published online 13 June 2013)

Discrete dynamic models are a powerful tool for the understanding and modeling of large biological

networks. Although a lot of progress has been made in developing analysis tools for these models,

there is still a need to find approaches that can directly relate the network structure to its dynamics.

Of special interest is identifying the stable patterns of activity, i.e., the attractors of the system. This

is a problem for large networks, because the state space of the system increases exponentially with

network size. In this work, we present a novel network reduction approach that is based on finding

network motifs that stabilize in a fixed state. Notably, we use a topological criterion to identify

these motifs. Specifically, we find certain types of strongly connected components in a suitably

expanded representation of the network. To test our method, we apply it to a dynamic network

model for a type of cytotoxic T cell cancer and to an ensemble of random Boolean networks of size

up to 200. Our results show that our method goes beyond reducing the network and in most cases

can actually predict the dynamical repertoire of the nodes (fixed states or oscillations) in the

attractors of the system. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4809777]

There is a great interest in understanding how the

complex cellular behaviors in living organisms emerge

from the underlying network of molecular interactions.

Discrete dynamic models, a modeling paradigm in which

the dynamical variables can only take discrete states,

have been increasingly used to model systems with a large

number of components. The feature that makes discrete

dynamic models an attractive choice is their ability to

reproduce the qualitative dynamics of the system using

only the activating or inhibiting nature of the interac-

tions; the knowledge of the rates of the biochemical proc-

esses involved is not required. Despite their simplicity,

the main impediment in using discrete dynamic models

for modeling large systems is combinatorial complexity.

In this work, we offer a solution to this problem by

introducing a novel network reduction approach. Our

reduction approach uses a topological criterion in an aug-

mented representation of the network to identify network

components that take a fixed state, which can then be

used to shrink the effective network size. A noteworthy

virtue of our method is that it can be applied to large net-

work sizes (up to size 200 and beyond). We have found

that our method goes beyond reducing the size of the net-

work and can predict the dynamical repertoire of the

nodes (fixed states or oscillations).

I. INTRODUCTION

The interactions among cellular elements such as pro-

teins, mRNA, and small molecules are orchestrated in such a

way that they support all the complicated behaviors cells are

capable of (such as homeostasis, growth, movement, cell dif-

ferentiation, and cell division).1 In order to get a full under-

standing of the relation between cellular behaviors and their

underlying network of interactions, the construction of in-

formative dynamic models based on the current biological

knowledge is very important. Several dynamical modeling

techniques exist, which provide different levels of detail in

the dynamics, while in turn requiring varying amounts of bi-

ological information.2,3 At one end of the spectrum, for

example, highly quantitative information can be obtained

from ordinary differential equation models4–7 by providing

different reaction rates (e.g., transcription/translation rates,

association/dissociation constants, and degradation coeffi-

cients) and the biophysical/biochemical properties of the

components (e.g., enzyme co-operativity). At the other end,

the qualitative dynamics of the system can be reproduced by

a discrete dynamic model,8–13 which requires only the com-

binatorial activating or inhibiting nature of the interactions,

and not the kinetic details.14

Given the surprising but demonstrated fact that the

essential dynamical properties of a variety of systems can be

reproduced without knowing the values of the specific ki-

netic parameters of the processes involved,8–13 one may

wonder if there is a model-independent way to infer the dy-

namical properties of cellular networks just by using the net-

work topology (graph structure), that is, the identity of the

components and knowledge about their interactions.

Historically, this relation between structure and dynamics

was recognized early on in the pioneering work of Jacob and

Monod,15 Thomas,16 Kauffman,17 and Glass,18 and was part

of the original motivation for the study of discrete dynamic

models. The common idea is that the presence of feedback

loops is necessary for the emergence of complex dynamical

properties such as multistability and oscillations. More
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specifically, by assigning a sign to the interactions (þ if acti-

vating and � if inhibitory) and to the feedback loops in the

network (the sign of a loop is given by the product of the

signs of its edges), the following two simple rules were pro-

posed by Thomas19 to relate the network structure to its

dynamics

1. A necessary condition for multistability (multiple stable

steady states) is the existence of a positive feedback loop.

2. A necessary condition for sustained oscillations (limit

cycles) is the existence of a negative feedback loop.

Since these early works, extensive research has been

done in this direction and the validity of these rules has been

demonstrated both in the differential20–23 and discrete

frameworks.24–26 Recent works have even extended these

rules to include not only necessary but also sufficient condi-

tions for multistability and oscillations.27,28

Despite all this progress, there is still a need for develop-

ing new analysis tools that relate the network structure to its

dynamics, especially ones that are applicable to large scale

networks. This is a problem for many of the methods devel-

oped so far, since many of them are very computationally

demanding and can only be exactly applied to networks of

small to moderate size. The size of the networks is also a

problem even in cases where mathematical theorems are

available, because as the network increases in size, it is very

likely that the conditions needed in the theorems become

harder and harder to be fulfilled. These limitations call for

methods that are as generally applicable as possible.

The novel analysis method we present in this work has

the objective of inferring the dynamical repertoire of a net-

work based purely on network topology and the combinato-

rial nature of the interactions. Framed in the discrete

dynamic framework, our method is based on the idea that

some groups of nodes in the network can only stabilize in a

single or a small number of fixed states. By expanding the

network to explicitly include the nature of the interactions

(positive or negative) and the potentially synergistic regula-

tion of every element in the network, we can identify these

stable groups of nodes and use them to simplify the network.

The result is a complete reduction (which directly gives the

fixed points of the system) or a very simplified network in

which most nodes are expected to oscillate. In Sec. II, we

will explain our method in more detail, including the net-

work expansion and network reduction techniques involved

in it.

II. PREDICTING THE STABLE DYNAMICAL
REPERTOIRE OF A BOOLEAN MODEL OF A
BIOLOGICAL NETWORK

A. Biological networks and discrete dynamic models

A network of cellular components can be represented by

a directed graph G¼ (V, E), where V ¼ ðv1; v2;…; vNÞ are

the nodes describing the elements of the system, and E are

the edges denoting the directed interactions among the com-

ponents. To each edge, one also commonly associates a sign,

which denotes the regulatory nature of the interaction (þ if

activating, and � if inhibitory). Although the sign of the

interaction enriches the biological information included in

the network, experience shows that knowing the nature of

the interactions is not enough and the combined effect of the

interactions on each element also needs to be considered. For

this purpose, every node vi is assigned a function fi, which

depends on the ki regulators of vi (and sometimes on itself)

and that incorporates the combinatorial nature of the interac-

tions. The set of functions F ¼ ðf1; f2;…; fNÞ contains all the

dynamical information of the system, and thus, depends on

the type of dynamic model used.

For our study, we choose the simplest kind of discrete

dynamic model, namely, the Boolean framework, in which

the functions in F are taken as logical (Boolean) functions

and each node vi can take one of two possible states: ON (or

1) and OFF (or 0). The biological interpretation of each state

varies depending on the context; although in most cases, it

refers to above (ON) or below (OFF) a certain threshold

level. The state of the system at any time can then be denoted

by a vector whose ith component is the state of node vi at

that time. As a consequence of the discrete number of states,

the state space of the system is finite (2N states), and a tem-

poral sequence of states can be represented as a trajectory in

state space. Every temporal trajectory will eventually reach a

set of network states in which it settles down, known as an

attractor. An attractor can either be composed of a single net-

work state in which the system stays fixed, known as a fixed

point or a steady state, or a group of network states between

which it alternates, usually referred to as a complex attractor

or an oscillation. In a steady state, the state of all nodes

remains fixed, while in a complex attractor, all or a subset of

the nodes keep changing their states (i.e., they oscillate), and

the state of the rest of the nodes (if any) is fixed.

The possible trajectories and complex attractors of a sys-

tem depend not only on the functions in F but also on the

representation of time as a continuous or discrete variable

(the fixed points are time-implementation-invariant). The

most common choice for Boolean dynamics is taking time as

a discrete variable, in which case the nodes are updated at

discrete time steps according to the functions in F. In the

simplest case, the synchronous scheme, every node is

updated simultaneously in discrete time steps and its state

depends only on the state of the system in the previous step.

The synchronous updating scheme, although suitable in

some situations, is not apt for our purposes, as it inherently

assumes that all processes occur at a similar timescale, which

is clearly not true for intracellular networks, in which a large

variety of cellular components and processes are involved.

Furthermore, the timescales of a large number of these proc-

esses are not well known, and even when they are, they may

be subject to fluctuations due to cell-to-cell variability and

environmental perturbations. Previous work has developed

various asynchronous updating methods, wherein each node

is updated according to its own timescale, and which can be

either deterministic (the timescales are fixed during a simula-

tion)29,30 or stochastic (the timescales are randomly varied

during a simulation).29–34 In a comparative study,35 several

discrete time asynchronous updating schemes were tested in

the same biological network, with its results suggesting that

the general asynchronous method, in which at every discrete
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time step, a randomly selected node is updated, is the most

appropriate scheme for our requirements.

The general asynchronous method is advantageous not

only because it takes into consideration the multiple time-

scales involved in intracellular processes, our incomplete

knowledge of all these timescales, and the inherent stochas-

ticity of biological processes, but also because it allows a

natural biological interpretation of the attractors of the sys-

tem. The reason for this is that, by definition, the general

asynchronous method samples all possible timescales of the

system, therefore, the attractors must correspond to the pat-
terns of activity of the system which are invariant with
respect to arbitrary fluctuations in the rates of the processes
involved, which we denote the stable dynamic repertoire of
the network. The use of the Boolean framework and the gen-

eral asynchronous updating scheme then maps the problem

of finding the rate-invariant dynamic behavior of a cellular

network into finding the attractors of a Boolean network.

B. Finding the attractors of a Boolean model

As it was pointed out in Sec. II A, the state space of a

Boolean network with N nodes contains 2N states. This expo-

nential dependence on the number of nodes of the state space’s

size makes the problem of finding the attractors of a Boolean

network computationally intractable, which means a full

search of the state space can be performed, in practice, only

for small networks (N � 20). To overcome this challenge, sev-

eral types of methods have been proposed to simplify the

search space. The most prominent of these approaches, the so-

called network reduction methods,35–38 shrink the effective

network size by removing frozen nodes (nodes that reach the

same steady state regardless of initial conditions)38–40 and

dynamically irrelevant nodes (such as simple mediator nodes

or nodes with no outputs), and by simplifying the Boolean

functions (for example, due to the presence of a node with a

fixed state), thus reducing the effective state space.

Although the reduction methods developed so far have

been successfully applied to several biological networks,35–37,41

they have some limitations. For example, some of them may

not be effective enough, in the sense that even after reduction,

the state space’s size is still unmanageable; in which case, one

must resort to sampling the state space.35,41 Other methods can

affect the state space in such a way that the attractor space is

changed and only some types of attractors (e.g., steady states)

are preserved.36,37

C. The role of stable motifs and oscillating
components in the attractor landscape

The method that we propose is based on the idea that

certain components of the network can only stabilize in one

or a small number of attractors. This idea is itself not new

and is closely related to Thomas’ rules linking feedback

loops with the appearance of complex dynamical behavior in

biological networks.19 For example, an approach that con-

nects the dynamics of certain network motifs to construct the

attractors of the full Boolean network was recently proposed

by Siebert.28 The novelty of our method is the efficiency of

identifying every motif that stabilizes in an asynchronous

attractor despite being coupled to the rest of the network.

The main insight of our approach is that a representation of a

Boolean network known as the expanded network can be

used to easily identify these network components and their

states. By combining the knowledge of the behavior of this

group of nodes with network reduction methods, we can find

other network components that stabilize as a consequence of

the former. By repeatedly applying this procedure, the states

of all nodes can be found, which will correspond to their

states in the attractors of the system.

We will first focus on finding the components that stabi-

lize in a fixed state. More specifically, we will look for net-

work components with certain topological characteristics

that cause themselves and other nodes to take a fixed state.

We refer to these network components as stable motifs or

stable components. It is worth noting that the nodes in the

stable motifs may or may not be part of the so-called frozen

nodes of Boolean networks,38–40 since the nodes of these sta-

ble motifs can have more than one steady state. Although it

may seem at first that this restriction to fixed-state nodes

reduces the general applicability of the method, it turns out

that this is not necessarily the case. Indeed, there are two

possibilities after using our method to find all the nodes that

take a fixed state in an attractor. The list of fixed-state nodes

could include all nodes in the network, in which case we

have identified a fixed point attractor. Or, if the list covers a

subset of the nodes, these nodes must represent the non-

oscillating nodes of a complex attractor. In this last case, the

nodes the method does not identify are expected to keep

changing their values (i.e., oscillate) in the attractor. We

refer to the network components that stabilize in an oscillat-

ing state as oscillating motifs or oscillating components. We

discuss in more detail the role of these oscillating compo-

nents and of oscillations in Sec. II G.

D. Expanded network

In order to identify the stable motifs of a Boolean net-

work, it is convenient to use a representation that incorpo-

rates explicitly the update functions fi. Previous work42 has

shown that a useful representation for this purpose is the so-

called expanded network representation.

The creation of the expanded network consists of two

basic operations, which we illustrate in Figure 1. First, in

networks that include negative regulations, we introduce a

complementary node �vi for every node vi in the network and

assign to each �vi an update function, which is the Boolean

negation of vi’s update function fi. The addition of comple-

mentary nodes has a two-fold effect; not only does it allow

us to evaluate the inhibitory effect of a node on the rest of

the network, but by assigning the negation of the original

update function to every complementary node, it also explic-

itly considers how the other nodes can promote the inactiva-

tion of a given node. Note that because of the addition of

complementary nodes, all the edges are of the same (positive)

nature, and thus, no sign needs to be specified.

As an example, let us consider node A with update func-

tion fA ¼ NOT B, as illustrated in Figure 1(a), where for sim-

plicity, we denote the state of the node with the node name.
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The addition of complementary nodes means that we add a

new node �A with update function f �A ¼ NOT fA ¼ B.

An additional complementary node is added for node B,

which makes the update function of A take the form

fA ¼ NOT B ¼ �B. The expanded network contains two posi-

tive edges, from �B to A and from B to �A, instead of the nega-

tive edge from B to A.

Second, to incorporate the combinatorial nature of the

update functions, we introduce a composite node for each set

of synergistic interactions (that is, AND relationships) in the

Boolean functions fi. For example, consider the case shown in

Figure 1(b), in which node A has the logical function

fA ¼ B AND C. Since the function contains an AND relation-

ship between node B and node C, a composite node BC is

added when expanding the network. Nodes B and C are con-

nected by directed edges to the composite node BC, and an

edge from BC to A is also added. A more complicated example

in which both operations are applied is shown in Figure 1(c).

In general, the introduction of composite nodes may not

be as obvious as shown in these examples if we have nontri-

vial combination of AND, NOT, and OR rules in the func-

tions fi. Because of this, it is convenient to represent each

update function fi with K input nodes fvi1; vi2;…; viKg in the

following disjunctive normal form:

fi ¼ ðs1 AND s2 AND � � � AND skÞ
OR ðskþ1 AND skþ2 AND � � � slÞ
OR � � � OR ðsm AND smþ1 AND � � � AND snÞ;

where the sj’s are either the states of one of the K input nodes

of fi, or one of these states’ negations. In the same way, the

negation of the update function, �f i, is also represented in a

disjunctive normal form. Once the functions are represented

in the disjunctive normal form, the introduction of composite

nodes is simple: a composite node is added for every set of

nodes involved in a conjunctive clause (AND-dependent

relationship). In the following, we will refer to nodes that are

not complementary nor composite as normal nodes.

E. Identifying stable motifs from the expanded
network

We define a stable motif in the expanded network as any

of the smallest strongly connected components (SCCs) in the

expanded network representation which satisfy these two

properties: (1) the SCC does not contain both a node and its

complementary node, and (2) if the SCC contains a compos-

ite node, all of its input nodes must also be part of the SCC.

The first condition makes sure that there is no contradiction

between the SCCs found and a state in the original Boolean

network, wherein every node can either take the value 0

(which would correspond to having the complementary node

in the SCC) or 1 (which would correspond to having the nor-

mal node in the SCC). The second condition is a conse-

quence of the synergistic nature of composite nodes, which

means that a composite node and all of its inputs form an ir-

reducible unit. By smallest SCC, we refer to any SCC that

does not contain another SCC with the two specified proper-

ties, but that, otherwise, is arbitrary in size. For example, a

node of the expanded network with a self-loop would be one

of these smallest SCCs. We restrict ourselves to the smallest

SCCs so that when there are multiple such SCCs in the sys-

tem, all possible combinations of these SCCs are considered

as steady states of the network. Note that this does not result

in the loss of information on larger possible SCCs; the

remaining parts of these SCCs will be found after the small-

est SCCs are reduced.

The composition of the stable motif directly determines

the state of a subset of nodes in the Boolean network: every

normal node of the stable motif will adopt the state 1; and

for every complementary nodes included in the stable motif,

the corresponding node of the Boolean network will adopt

the state 0.

As an example, consider the Boolean network and its

expanded network representation in Figure 2. The smallest

SCCs that satisfy both stable motif requirements are

fA;B; �Cg and f �B;Cg, both of which are shown in Figure

2(c). The corresponding states for these stable motifs are

{A¼ 1, B¼ 1, C¼ 0} and {B¼ 0, C¼ 1}, respectively.

So far, we have only defined a stable motif in terms of

the expanded network representation. We can extend the

concept of stable motif to the original Boolean network to

mean the nodes in the Boolean network whose state is speci-

fied by a stable motif of the expanded network. These nodes

include all the normal nodes that are included in the stable

motif of the expanded network and all the normal nodes

whose complementary nodes are included in the stable motif

of the expanded network. In this way, a stable motif can

mean either a set of nodes in the expanded network that sat-

isfy the two requirements or the set of nodes in the Boolean

FIG. 1. Operations for the creation of the expanded network. (a) Node A has

the update function fA ¼ NOT B. The addition of complementary nodes

introduces a new node �A with update function f �A ¼ NOT fA ¼ B. It also

introduces a complementary node for node B, which makes the update func-

tion of A take the form fA ¼ NOT B ¼ �B. (b) Node A has the update function

fA ¼ B AND C. The addition of composite nodes introduces a new node BC
that represents the cooperative effect of B and C on A. (c) Node A has the

update function fA ¼ B AND ðNOT CÞ. The two expansion operations intro-

duce complementary nodes for A, B, and C, and a composite node for the

AND relation between B and �C.
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network whose state is specified by a stable motif in the

expanded network, depending on the context.

It is important to point out that the stable motifs depend

on the structure of the logical rules and thus on the topology

of the network being considered. This means that an arbi-

trary change in the logical rules or in the topology of the net-

work can modify the stable motifs, and we know of no

obvious way to determine how the motifs will change with-

out having to reconstruct the expanded network.

F. Network reduction

Once the stable motifs of the network have been identi-

fied, the next step is to determine the influence of these nodes

on the rest of the network. More specifically, for each stable

motif found, we want to find the nodes in the network whose

state stabilizes due to the influence of this stable component.

We adapt the method previously developed by Saadatpour

et al. to simplify the network,35,41 which has been shown to

preserve both the fixed points36,37 and the complex attractors

of the system.56 This method removes not only the frozen

nodes of network,38–40 but also the nodes that reach a steady

state under the influence of a given combination of source

node states. It consists of two main steps

1. Identify the nodes whose state is fixed during the dynam-

ics, which we will refer to as source nodes; for our case,

these will initially correspond to the nodes in the stable

motif being considered. Modify the Boolean functions of

the nodes downstream of the source nodes by setting the

state of the source node to its fixed value. If a down-

stream node’s modified function can only have one pos-

sible outcome, then this node can be used as a source

node itself.

2. Remove mediator nodes (i.e., nodes that have only one

incoming edge and one outgoing edge) and irrelevant sink

nodes (i.e., nodes that have no outgoing edges). For the

case of mediator nodes, connect the input of the mediator

node to its output. The value of the removed nodes will be

determined once the value of their input nodes is known.

For each separate stable motif found in the expanded

network, these two steps are repeated recursively until nei-

ther of them can be applied anymore.

After network reduction, we obtain a set of states for

each stable component, each of which corresponds to the

states of the nodes in the stable motif and the states of other

nodes which stabilized as a consequence of the stable motif.

For each of these sets of states, there is also a reduced net-

work that contains the nodes whose state we still do not

know. On each of these reduced networks, the whole method

will be applied again, starting with the creation of the

expanded network (Sec. II D) and ending with the network

reduction process, and iteratively until there are no more

nodes with unknown states or no new stable motifs are

found. For the case where there are no more nodes with

unknown states, a fixed point attractor of the system is

obtained directly from the state of the nodes of the stable

components.

For the cases in which there are no new stable motifs in

the final reduced networks, the state of the nodes making up

said networks is still unknown. Since our method is based on

identifying nodes that stabilize in a specific steady state, the

expectation is that these leftover nodes will oscillate in an

attractor of the system, while in that same attractor, the rest

of the nodes will take the steady state value found during the

simplification process that leads to the reduced network in

consideration. For conciseness, we will refer to the final out-

put of our method, consisting of a set of stabilized nodes

(and their states) and a (potentially empty) set of nodes with

undetermined states as a quasi-attractor. Our notion of

quasi-attractor is closely related to similar other concepts in

the literature, such as the singular steady state originally

introduced by Snoussi and Thomas28,43 and the logical

steady state used by Klamt et al.44

Quasi-attractors are closely related to the attractors of a

network, both fixed points and oscillations. For example, if

the set of oscillating nodes in a quasi-attractor is empty, then

the states of the stabilized nodes will correspond to the node

states in a fixed point attractor; thus, this quasi-attractor is in

fact a fixed point. More generally, for every attractor of the

system, there exists a quasi-attractor associated to it; this

quasi-attractor is such that every node whose state is fixed in

the quasi-attractor will also have its state fixed in the same

value in the attractor it is associated to. The proof of this is

statement is given in Appendix A.

G. Oscillations and oscillating components

Using the expanded network representation on networks

that show oscillatory behavior, we have found that it can

also be used to identify the oscillating components of a net-

work. To find the oscillating components using the expanded

network representation, we search for the largest SCCs that

FIG. 2. Identification of stable motifs from the expanded network. (a) An

example of a Boolean network. (b) The expanded network representation of

the Boolean network in (a). (c) The two stable motifs in the expanded net-

work, that is, the two smallest SCCs in the network that satisfy the require-

ments of not containing both a node and its complementary node, and

containing all the inputs of every included composite node. Each stable

motif indicates the fixed states of the corresponding subset of nodes of the

Boolean network.
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satisfy these properties: (1) the SCC must contain the com-

plementary node of every normal node and vice versa, and

(2) if the SCC contains a composite node, all its input nodes

must also be part of the SCC. The first of these conditions

makes sure that all nodes oscillate, by having both states of

every node as part of the SCC. The second condition is a

consequence of a composite node and all of its inputs form-

ing an irreducible unit. In this case, we look for the largest

SCCs because we want to find all the nodes that feed back to

each other in the oscillation.

These properties are necessary but not sufficient condi-

tions for a group of nodes to oscillate. We have found that

there is a third condition that, if also satisfied, is sufficient

(though not necessary) for a group of nodes to oscillate, which

is that (3) the oscillating component cannot contain stable

motifs composed only of normal and complementary nodes.

This extra condition is related to the possibility of the coexis-

tence of a steady state and a complex attractor in the sub-

state-space. The simplest example that shows this kind of

behavior, which we denote unstable oscillation, is shown in

Figure 3. In general, during the reduction process, we need to

find the components that could have unstable oscillations (that

is, that satisfy the necessary conditions (1) and (2), but not the

sufficient condition (3)) to make sure that we preserve all

attractors. As a consequence, we obtain a group of quasi-

attractors that may not have a corresponding attractor; we

refer to these quasi-attractors as marked quasi-attractors in the

step-by-step network reduction algorithm in Appendix B.

Another type of dynamical behavior of the oscillating

components that needs to be considered is when the nodes of

the oscillating components do not visit all possible states of

their sub-state-space in an attractor, which we refer to as an

incomplete oscillation. Incomplete oscillations are important

because a node that is downstream of an oscillating compo-

nent that displays incomplete oscillations may reach a steady

state as a consequence of the nodes of the component only

visiting part of their sub-state-space. This type of behavior

has been found before in studies of synchronous networks

(for example, see Figure 1 in the work by Bilke and

Sjunnesson38).

As an example of an incomplete oscillation, consider the

network shown in Figure 4(a). In this example, the nodes A

and B oscillate and their state transition graph is shown in

Figure 4(b). From the state transition graph, one can clearly

see the complex attractor is A, B¼ {(1, 0), (0, 0),(0, 1)}.

Since once the nodes A and B settle down in the attractor, the

state A¼ 1, B¼ 1 cannot be reached, then node C (whose

update function is fC ¼ A AND B) will necessarily stabilize

in the state C¼ 0. Note that if either A and B took all possi-

ble states in the attractor, or if the update function of C was

different, C would also oscillate in the attractor.

III. RESULTS

We implement the network reduction process with a

custom Java code. The steps of the network reduction algo-

rithm are described in Appendix B. The main challenge in

implementing the reduction method computationally lies in

finding the stable motifs from the expanded network repre-

sentation. The reason for this is that stable motifs have to be

the smallest SCCs that satisfy the properties we outlined

above, which means that in order to identify all possible sta-

ble motifs, we need to find all directed cycles that do not

contain both a node and its complementary node, since each

of them could potentially be the smallest SCC we are search-

ing for. The issue with finding all possible directed cycles

is that the time complexity is O((NþE)(cþ 1)) (using

Johnson’s algorithm45), where N is the number of nodes, E is

the number of edges, and c is the number of directed cycles,

the latter of which can grow faster than 2N for the worst case

scenario of a fully connected network.

Because of the caveats discussed in Sec. II G involving

unstable and incomplete oscillations, one may be concerned

that other similar cases are not taken into account and that,

as a consequence, some attractors could be lost during the

reduction process. In Appendix A, we address this concern

by formally proving that for every attractor of the Boolean

network, there is a corresponding quasi-attractor that will be

found by our reduction method. In order to further test the

validity and generality of our network simplification method,

we apply it to a previously developed genetic network, and

also to an ensemble of random Boolean networks.17,46 For

the case of the genetic network, we choose the signaling and

FIG. 3. An example of a component that has an unstable oscillation. This

network has an attractor in which all the nodes oscillate and also has a

steady state attractor. (a) The network and its respective Boolean rules.

(b) The state transition graph of the network. The nodes of the state transi-

tion graph are the states of the system (written in the order A, B) and the

edges represent allowed state transitions when only one node is updated.

State 11 is a fixed point as there are no transitions going out of it. States 01,

00, and 10 form a complex attractor. (c) The expanded representation of the

network. Note that {A, B, AB} forms a stable motif and that the whole

expanded network forms an oscillating SCC.

FIG. 4. An example of a node configuration in which a node can stabilize

without the influence of an input signal or a stable motif. In this example, A
and B oscillate in a complex attractor, but they do not take all possible states

of their state transition graph in this attractor. Specifically, they miss the

A¼ 1, B¼ 1 state. As a consequence node C stabilizes in the state C¼ 0. (a)

The node configuration and their respective Boolean rules. (b) The state

transition graph of nodes A and B. States 01, 00, and 10 form a complex

attractor.

025111-6 J. G. T. Za~nudo and R. Albert Chaos 23, 025111 (2013)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

160.36.178.25 On: Tue, 23 Dec 2014 02:29:13



regulatory network involved in a type of white blood cell

cancer (T cell large granular lymphocyte leukemia or T-LGL

leukemia);11,41 while for the ensemble of random Boolean

networks, we choose the original Kauffman or N–K
model.17,46

A. T cell large granular lymphocyte leukemia network

Cytotoxic T cells play a central role in the immune

response. When an infection occurs, these T cells detect anti-

gens in infected cells and, in response, trigger a set of intra-

cellular signaling cascades, which lead to the production of

cytokines (small signaling molecules) that induce the self-

destruction of the infected cells. Normal cytotoxic T cells

undergo activation-induced cell death (or apoptosis) after

successfully fighting infection, however, in T-cell large gran-

ular lymphocyte (T-LGL) leukemia mature cytotoxic T cells

survive and, in time, cause an autoimmune disorder. In addi-

tion to their abnormal survival, these T cells also show a

deregulated activity (higher or lower than in normal T cells)

of many signaling pathways and genes.

A Boolean network model of T cell survival in the con-

text of T-LGL leukemia was constructed by Zhang et al.11

through an extensive literature search. The logical rules were

constructed such that the known experimental results in

healthy and leukemic cytotoxic T cells were reproduced by

the model. These rules, reproduced in Appendix C, in many

cases do not have a simple form. The resulting network con-

sists of 60 nodes and 142 regulatory edges, with the nodes

representing genes, proteins, receptors, or small molecules

(Figure 5). The network contains 6 nodes with no upstream

components, which represent external signals (Stimuli, IL15,

PDGF, Stimuli2, CD45, and TAX), and also contains 3 out-

put nodes that serve as indicators of biological functions or

cell fate (Cytoskeleton signaling, Proliferation, and Apoptosis).

Two of these input and output nodes play an especially

important biological role: Stimuli, which represent antigen

stimulation, and Apoptosis, which denotes programmed cell

death.

Zhang et al.11 used asynchronous Boolean dynamics to

show that in the sustained presence of PDGF and IL15, the

system may converge to a state that recapitulates all dysregu-

lations in T-LGL leukemia, in addition to the expected state

of self-programmed cell death (apoptosis). Later Saadatpour

et al.35 used network reduction to show that, under the pres-

ence of said signals, the two attractors found by Zhang et al.
(apoptosis and T-LGL leukemia) are the only possible ones.

Although in the case studied by Saadatpour et al., the net-

work reduction method was enough to simplify the network

to a manageable size (6 nodes), this is actually not the case if

one is interested in studying all possible combinations of the

input signals, since in many cases, the network obtained after

reduction is still quite large (30–40 nodes). This then gives

an opportunity to apply our reduction method to cases in

which previous methods fall short.

We apply our reduction method to all combinations of

external signals in the presence of antigen (Stimuli¼ON).

To validate the quasi-attractors found through our method,

we compare them with the attractors obtained by randomly

sampling a large number of initial conditions and evolving

them using a general asynchronous updating scheme wherein

one node is updated at each time step. For all the cases, we

find that the attractors/quasi-attractors obtained are exactly

the same, which together with the proof in Appendix A,

shows that the reduction method can indeed be used to find

all possible attractors. A table containing all the leukemic

attractors is included in Appendix D (the Apoptosis¼ON

attractor, in which all nodes except apoptosis are inactive, is

always a possibility; thus for simplicity, we do not include it

in the table).

As an example, consider the case in which the IL15 sig-

nal is present and the rest of them are not (IL15¼ Stimuli ¼
ON, PDGF ¼ Stimuli2¼CD45¼TAX ¼ OFF). Simplifying

the network using only the effect of these input signals, we

obtain a Boolean network of 42 nodes. The expanded

network representation of this network has 144 nodes (42

normal nodes, 42 complementary nodes, and 60 composite

nodes) and 302 edges. Searching the expanded network, we

find four stable motifs from the expanded network represen-

tation, which correspond to the states: (i) {PDGFR ¼ S1P

¼ SPHK1¼ON, Ceramide¼OFF}, (ii) {PDGFR ¼ S1P

¼ SPHK1¼OFF}, (iii) {TBET ¼ ON}, and iv) {P2¼ON}.

These motifs are shown in Fig. 6. Performing network reduc-

tion using each of these four stable motifs leads to reduced

networks of widely varying sizes: 3, 39, 35, and 39 nodes,

respectively. The reduced network due to the first stable

motif consists of three disconnected nodes with self-loops

(one negative and two positive ones), and can gives rise both

to apoptosis or the T-LGL leukemia attractor. For the net-

works corresponding to the three remaining motifs, we need

to continue the reduction process and search for stable motifs

in each of these networks.

The stable motifs we find during reduction of the

remaining networks are likely to include some of the same

four stable motifs found previously (as long as that specific

motif was not used to obtain the specific network in consid-

eration), but may also contain stable motifs different from

those previously found. For example, the network due to the

second motif has two stable motifs, both of which were

found in the previous network (iii and iv). The network

obtained from the third motif has four stable motifs, one of

which is different from the motifs previously found (with

states {MEK ¼ ERK ¼ RAS ¼ PCLG1¼ IL2RBT ¼ IL2RB

¼ GRB2 ¼ ON}), and three of which are the same as previ-

ous motifs (i, ii, and iv). For the network corresponding to

the fourth motif we find three stable motifs, all of which had

already been found (i, ii, and iii). If we continue the reduc-

tion process, we find that the network due to the second

motif gives rise to the apoptosis attractor after 2–3 more net-

work reductions (depending on the stable motifs used for the

reduction), while the third and fourth motifs can produce

both the T-LGL leukemia or apoptosis attractor after 2–4

more network reductions.

B. Ensemble of random Boolean networks

Random Boolean networks were first introduced by S.

Kauffman as a model to understand the general dynamical
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properties of gene regulation and cell differentiation proc-

esses17 and have been extensively studied ever since.46 In

addition to the original Kauffman networks, several variants

of random Boolean networks that could be considered more

biologically realistic have also been introduced (for example,

models with arbitrary degree distributions,47 canalizing func-

tions,48 threshold functions,49 or multiple discrete states50).

All of these models share the distinguishing feature of the

original model, that is, the existence of three dynamical

regimes: (i) an ordered one in which similar initial conditions

typically converge after a transient time, (ii) a disordered re-

gime in which the system becomes very sensitive to small

changes in the initial conditions, and (iii) a critical regime,

poised at the boundary of the ordered and disordered

regimes, in which perturbations retain their size. Evidence

suggests that the gene regulatory networks of living organ-

isms operate near the critical regime.51,52

For simplicity, we use the original Kauffman or N– K
model to test our network reduction method in randomly

constructed networks. The N–K model consists of an ensem-

ble of Boolean networks with N nodes in which every ele-

ment has K input nodes. To construct one of the networks in

this ensemble, the K input nodes of every element are chosen

randomly from the rest of the network. Every node is then

FIG. 5. The T-LGL leukemia survival signaling network. The shape of the nodes indicates the cellular location or the type of nodes: rectangles indicate intra-

cellular components, ellipses indicate extracellular components, diamonds indicate receptors, and hexagons represent conceptual nodes (Stimuli, Stimuli2, P2,

Cytoskeleton signaling, Proliferation, and Apoptosis). Node colors are used to distinguish input nodes (white), output nodes (black), and the rest of the nodes

in the network (gray). An arrowhead or a short perpendicular bar at the end of an edge indicates activation or inhibition, respectively. This figure and its cap-

tion are adapted from Ref. 41.
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assigned one of the 2K possible Boolean functions at random.

To use what is considered the most biologically realistic case

of this model, we use different network sizes with degree

K¼ 2, which is the case at which this ensemble operates in

the critical regime.46 For this case, it has been shown that the

number of relevant nodes increases as N1=3, and that the

number of asynchronous attractors grows as a power law in

N;58 one would then expect the existence of an efficient

method to find this relatively small number of attractors with

a relatively small fraction of relevant nodes.

To test the validity of our network reduction method, we

compare the final reduced networks obtained with the asyn-

chronous attractors of the original network for an ensemble

of Kauffman networks of different sizes (N¼ 5, 10, 15, 18,

25, 50, 100, 150, and 200, with an ensemble size of X ¼ 200

for N6 18 and X ¼ 100 for N P 25). For networks up to

size N¼ 100, we were able to use the exact Johnson’s algo-

rithm to find the networks’ cycles, however, for larger net-

works, we needed to restrict the search to cycles of less than

40 nodes. To compare the system’s attractors with the result

of our reduction method (the quasi-attractors), we focus only

on the nodes whose state stabilizes; if for every quasi-

attractor, there is one attractor that exactly matches the stabi-

lized states of the quasi-attractor, we then say the results are

compatible. Note that since our reduction method does not

predict the actual state of the nodes remaining after reduction

of the stable motifs, it is not necessary for these node states

to agree. The na€ıve expectation is that these remaining nodes

oscillate in the attractors. If this is indeed the case, we then

say that the results are equivalent.

To find the attractors for small networks (N � 18), we

construct the asynchronous state transition graph, a directed

graph on the unit N-cube whose nodes represent the states of

the system and whose edges are the allowed transitions

between states as a result of a single node’s update.31,32 In

the asynchronous state, transition graph attractors correspond

to sink SCCs, that is, SCCs of states whose outgoing edges

can only lead to other states of this same SCC. More specifi-

cally, fixed points correspond to single states with self-edges

and no other outgoing edges, while complex attractors corre-

spond to sink SCCs made up of more than one state.

For large networks (N � 25), we cannot construct the

whole asynchronous state transition graph because of its

enormous size, so we resort to sampling the state space to

look for attractors. In particular, we use a method based on

the one by Wang et al.57 In this method, we construct part of

the state space by starting from a large number NS of initial

conditions and following the system’s trajectory for T effec-

tive time steps, that is, we make sure that at every step, one

node changes value (unless a fixed point is reached, in which

case no nodes can change value). To find the attractors from

the resulting partial state transition graph, we use the same

criteria as in the complete state transition graph. To avoid

false positives, we check the validity of every attractor

obtained with this method by starting from one of the states

in the putative attractor, updating it Ttransient effective time

steps, then creating a partial state transition graph with Tsearch

effective time steps, and finally searching for attractors in the

resulting state transition graph. For our case, we use

NS ¼ 5000, T¼ 300, Ttransient ¼ 1500, and Tsearch ¼ 50 000.

Of the total 1300 networks that were compared, we find

that in all but five networks (all of which had N � 100), the

results of our method and of the attractor identification/sam-

pling methods were equivalent. For the remaining five net-

works, we find that the results were compatible, that is,

although the state of the nodes predicted to have stabilized

by the reduction process matched in the results of both meth-

ods, there were some nodes that did not stabilize according

to the reduction method that were found to take a fixed state

in the attractors found by sampling (i.e., using the partial

state transition graph). We reiterate that this disagreement

does not mean that our method is incorrect; our reduction

method does not actually predict the state of the nodes

remaining in the final reduced networks. It is also worth

pointing out that in most quasi-attractors, the fraction of

nodes that do not stabilize is relatively small, as shown in

Figure 7. Although these remaining nodes are expected to

oscillate in the attractor, this is actually not necessary, as dis-

cussed in Sec. II G.

We also compare the number of attractors found by each

of the three methods. For small networks, we find that

FIG. 7. Distribution function for the fraction of stabilized nodes in an attrac-

tor for N¼ 100 for an ensemble of X ¼ 1000 networks. Note the logarithmic

scale in the vertical axis.

FIG. 6. The three stable motifs of the T-LGL leukemia network found most

often during the reduction process. The actual motifs found and the states in

which each of these motifs can stabilize vary depending on the active sig-

nals. We also show the input signals (white nodes) that affect these motifs

directly or almost directly (for the motif in (c)). (a) The PDGFR-S1P-

SPHK1-Ceramide motif, which represents the ceramide/sphingomyelin

pathway and the platelet derived growth factor receptor. (b) The IFNG-P2

motif, which is related to the control of the cytokine interferon gamma in

CTLs. (c) The TBET motif, which represents the regulation of the T-box

transcription factor.
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network reduction and the exact method always find the

same number of attractors/quasi-attractors. For large net-

works, we find that the reduction method always finds either

more or the same number of attractors as the sampling

method. In Figure 8, we show the average, the 20th percen-

tile, and the 80th percentile of the difference in the number of

attractors found by the two methods for large networks. To

make sure that the quasi-attractors found by reduction are real

attractors, we check their validity by constructing a partial

state transition graph just as we did for the sampling method.

In some cases, in which the putative attractor was expected to

have a large number of oscillating nodes (�20), an attractor

could not always be found with this method. For these cases,

we analyzed the trajectory in the partial state transition graph

and identified which nodes changed states and which did not,

and compared them with the putative attractors. In all cases,

we find that the results are equivalent (or compatible for the

five networks mentioned before). This result, together with

our proof in Appendix A, shows that every attractor of the

system has a corresponding quasi-attractor of the reduction

method.

Finally, we compare the time performance of the meth-

ods. In Figure 9(a), we show the average time to completion

of the three methods on the same ensemble for different net-

work sizes. Although at very small network sizes (N � 10),

the exact method (the whole state transition graph) is on av-

erage faster than the reduction method; for larger networks,

the reduction method is faster than the others. For large net-

works, the reduction method is not only faster on average

than the sampling method, but the distribution of times

shows that, for all sizes, network reduction takes less than a

second for most of the networks (see Figure 9(b) for the

N¼ 100 case). This is true even at larger network sizes. For

example, for N¼ 100, 150, and 200, we have 88%, 76%, and

71% of the networks, respectively, take less than one second.

In contrast, for the sampling method, none of the networks

of these same sizes take less than one second. These results

suggest that our method is not only more effective than state

space sampling in the sense that it does not miss any of the

attractors in the system but it is also significantly more effi-

cient in terms of time performance.

IV. DISCUSSION

In this work, we have presented a novel reduction

method that can greatly simplify a network, allowing us to

deal with system sizes of an order of magnitude larger than

what is possible through full state space searching methods.

This reduction method, framed in the Boolean logic

FIG. 8. Difference in the number of attractors found between the reduction

and sampling methods. The squares represent the average difference in the

number of attractors between the two methods, while the lower and higher

limits of the bars represent the 20th and the 80th percentile of the distribu-

tion of attractor number difference. In all the cases, the difference is zero or

positive, that is, the reduction method never finds less attractors than the

sampling method. For all network sizes shown, an ensemble size of 100 net-

works was used.

FIG. 9. Time performance of the different methods (see also the main text). (a) The average time it takes to find the attractors of a network for each method.

Both axes are shown in a logarithmic scale. The bump shown in the N¼ 150 case for the reduction method is the consequence of a network in the ensemble

that took an unusually long time because of the large number of cycles in the network. (b) Cumulative distribution functions for the completion times in the

N¼ 100 ensemble. Note that the horizontal axis has a logarithmic scale.
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framework, uses an expanded representation of the network

that explicitly includes the nature and logic of the interac-

tions, which allows us to identify the network motifs that can

stabilize in a steady state and use them to simplify the net-

work. To test the validity of our method, we applied it to a

genetic network (the T-LGL leukemia survival network) and

an ensemble of random Boolean networks of various sizes.

We find that the results of our method always agree with the

behavior of all networks tested.

An important point to make is that our reduction

method does not actually reduce the complexity of the

attractor-finding problem. What it does is to transfer the

complexity of the problem from the state space size to how

complex the network is, specifically, to how many cycles

the network contains. The reasoning behind this transfer is

that we want to take advantage of the sparseness of biologi-

cal networks to make the problem more tractable for larger

network sizes than a brute force approach (i.e., sampling

the whole state space) would accomplish. Indeed, our

results show that our reduction method is able to outper-

form a sampling of the state space both in terms of attrac-

tors/quasi-attractors found and in terms of computational

time (see Figures 8 and 9). Added to this is the fact that in

not a single case did state space sampling find attractors not

compatible with the results of network reduction, as was

expected from our proof that the reduction method pre-

serves all attractors.

A surprising result of applying our method to the ensem-

ble of random networks was that for most cases, it actually

predicted the asynchronous dynamic repertoire of these net-

works, that is, it found which nodes stabilize and which of

them oscillate in the attractors. This agreement is not trivial

because our reduction method does not predict the state of

the nodes remaining in the final reduced networks. What is

the reason for this success? To answer this question, we need

to remember that our reduction method is based on finding

stable motifs and using them to simplify the network.

Therefore, in the final reduced networks, all nodes that have

adopted a fixed state are either part of a stable motif, or were

stabilized by the influence of one of these motifs or by an

input signal. If these were the only ways the state of a node

can stabilize, then the remaining nodes would have to oscil-

late in the attractors. It is possible, however, (though not

very likely) that a node adopts a fixed state without the influ-

ence of a stable motif. Specifically, this can happen when a

node is downstream of an oscillating SCC that does not visit

all possible states of their sub-state-space in an attractor. We

discussed this kind of oscillatory behavior in Sec. II G and

called it an incomplete oscillation.

The simplest way to obtain this kind of incompletely os-

cillatory attractors is to have two nodes with self loops that

also form a feedback loop between themselves. For

Kauffman K¼ 2 networks, one can show that this node con-

figuration with the choice of Boolean rules that show these

incomplete oscillations appears in a network with probability

1/32 N(N – 1). If one adds to this that the downstream nodes

of these node configurations need to have very specific

update rules in order to stabilize as a consequence of these

oscillations, it is then not surprising that we found only very

few of these cases in our network ensembles. More work in

this direction is needed to generalize the reduction method to

also identify these sets of fixed-state nodes.

Based on our discussion in Sec. II G, one may wonder if

unstable oscillations are also a problem for our reduction

method, and exactly how much of a problem they are. We

have found that, for the ensemble of Kauffman critical net-

works, unstable oscillations are even more rare than incom-

plete oscillations. For example, the simplest and most

probable way to have unstable oscillations (the one shown

in the example in Figure 3) appears only with probability

1/128 N(N – 1) in a K¼ 2 Kauffman network. To make sure

that unstable oscillations are rare, we searched for the SCCs

that could display this behavior. For most networks (�90%),

we have found no such SCCs, and even when they exist,

there are only a few of them, as illustrated on Figure 10. Not

only that, but the few that have the possibility to display

unstable oscillations do not actually seem to do so (satisfy-

ing properties (1) and (2) but not property (3) of the condi-

tions stated in Sec. II G is only a sufficient condition to

display unstable oscillations), as none of them were found

by the attractor sampling methods in these networks. It is

noteworthy that these SCCs that have the possibility to dis-

play unstable oscillations are responsible for the marked

quasi-attractors referred to in the network reduction algo-

rithm in Appendix B. More work in this direction is

needed to find more stringent conditions that identify the

unstable oscillations.

Using our network reduction method on the T-LGL leu-

kemia network, we were able to find the recurring stable

motifs (Figure 6). A natural question to ask is if the stable

motifs found during network reduction have any special bio-

logical significance. Indeed, all of these motifs do play a sig-

nificant role in the biology of T-LGL leukemia: PDGFR-

S1P-SPHK1-Ceramide (ceramide/sphingomyelin pathway)

has been shown to be essential for T-LGL cell survival;53

moreover, TBET (T-box transcription factor) and IFNG-P2

are related to the control of two of the main cytokines

FIG. 10. Distribution function for the number of components that can dis-

play unstable oscillations in the N¼ 100 ensemble. Note the logarithmic

scale in the vertical axis. For approximately 90% of the networks, we find

no such components. For the rest, there are usually very few of them, with

attractor sampling methods suggesting that none of them actually display

unstable oscillations.
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produced by cytotoxic T cells (interleukin 2 and interferon

gamma, respectively), whose low production is one of the

characteristics of T-LGL leukemia.11,54,55

An interesting observation is that these three motifs are

directly regulated by five of the input signals of the T-LGL

network (or almost directly in the case of TBET, see Figure

6), which suggest their importance in cell-fate determination

for cytotoxic T cells. This appears to be especially true for

the PDGFR-S1P-SPHK1-Ceramide motif, whose compo-

nents need to always be in a specific set of states

(PDGFR¼ S1P ¼ SPHK1¼ON, Ceramide ¼ OFF) for the

T-LGL leukemia cell fate to be possible (see Figure 11).

This is consistent with and actually explains the previous

finding by Zhang et al. that an intermittent signal of PDGF

(coupled with the sustained presence of IL15) was enough

for T-LGL leukemia to be possible: this happens because the

intermittent signal is enough to stabilize the PDGFR-S1P-

SPHK1-Ceramide motif in the required state for the T-LGL

leukemia cell fate to become possible.

To summarize, our study showed that the novel network

reduction method we propose allows us to overcome the limi-

tations related to the vast state space of large networks by tak-

ing advantage of the stable components naturally present in

biological networks. This is accomplished by transferring the

complexity of the problem from the size of the state space to

the complexity of the network, namely, the number of cycles

it has. For most cases, we also found that our method goes

beyond reducing the network size and can actually predict the

asynchronous dynamical repertoire in the attractors of the sys-

tem. For the case of the T-LGL leukemia network, we found

that the stable components identified by our method play an

important role in the biology of T-LGL leukemia and appear

to be used as a cell-fate determination mechanism for cyto-

toxic T cells. Overall, our method adds a powerful technique

to the set of tools available to infer the dynamical behavior of

a network based on the topology and the nature of the interac-

tions, a technique that is flexible enough that it can be applied

to a large variety of biological networks.
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APPENDIX A: PROOF OF THE CONSERVATION OF
ATTRACTORS BY THE EXPANDED NETWORK/
NETWORK REDUCTION METHOD

In the following, we use V ¼ ðv1; v2;…; vNÞ to represent

the N nodes of the Boolean network, R ¼ ðr1; r2;…; rNÞ to

represent the states of these nodes, and F ¼ ðf1; f2;…; fNÞ to

represent the Boolean functions associated to each of these

nodes.

We assume, for convenience, that the Boolean functions

in F satisfy these three properties

1. The fi’s do not take constant values (i.e., fi 6¼ 0 and

fi 6¼ 1).

2. If fi depends on the state of node vj, rj, then there must be

at least a pair of states Rð1Þ and Rð2Þ with rð1Þj 6¼ rð2Þj , and

rð1Þk ¼ rð2Þk for k 6¼ j, such that fiðRð1ÞÞ 6¼ fiðRð2ÞÞ. This is

equivalent to requiring that the Boolean derivative of fi
with respect to rj is nonzero for at least a pair of network

states.59

3. If, for a state of a subset of the inputs of fi, one has fi ¼ 1

(whatever the states of the remaining inputs), then the dis-

junctive form of fi must have at least one of its conjunc-

tive clauses equal to 1 when evaluated at the state of this

subset of nodes.

The first property makes sure we have no source nodes.

For our purposes, this can be assumed without loss of gener-

ality, because even if that is not the case, we can use the

reduction method of Saadatpour et al.56 and remove all

source nodes while preserving all attractors. The second

property can also be assumed without any loss of generality;

it is just a way of stating that we consider fi to depend on rj

only if it explicitly depends on rj for at least a pair of net-

work states. The third property is also general, since one can

construct the respective disjunctive normal form from the

truth table of the Boolean function.

Our first proposition states that the stable motifs found

from the expanded network are such that the corresponding

states of these motifs are partial fixed points of the Boolean

rules of the nodes involved.

Proposition 1. Let M ¼ ðVm1
;Vm2

;…;Vml
; Vmlþ1

;
Vmlþ2

;…;VmL
Þ be a stable motif in the expanded network rep-

resentation, where Vm1
;Vm2

;…;Vml
can either be a normal

node or a complementary node, and where Vmlþ1
;

Vmlþ2
;…;VmL

are composite nodes. We denote Mstate

¼ ðrm1
¼ bm1

; rm2
¼ bm2

;…; rml
¼ bml

Þ, with bmj
2 f0; 1g

as the corresponding state of M in the network state R:
bmj
¼ 1 if it is a normal node, and bmj

¼ 0 if it is a comple-
mentary node. Then, for any normal node vmj

or complemen-
tary node �vmj

in M and for any network state RM in which
rmk
¼ bmk

8mk 2 fm1;m2;…;mlg, we will have fmj
ðRMÞ

¼ bmj
.

Let us sketch the proof for this proposition. First,

because a stable motif only contains a node or its comple-

mentary node, one can do a change of variables in the

original network, so that the state of the nodes in M is 1 in

Mstate. This simplifies the problem, since we now just need to

show that fmjðRMÞ ¼ 1. Now, the Boolean function of

node vmj
has the form fmj

¼ S1 OR S2 OR � � � OR Sn, where

FIG. 11. The PDGFR-S1P-SPHK1-Ceramide motif, its allowed stable states,

and the cell fates associated to them. For both set of stable states, the apopto-

sis cell fate can be reached depending on the signals present, the asynchro-

nous update order, and on the initial state. On the other hand, the T-LGL

leukemia cell fate can only be reached if the motif stabilizes in the

{PDGFR¼S1P ¼ SPHK1¼ON, Ceramide ¼ OFF} state, regardless of the

signals present, the asynchronous update order or of the initial state.
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Si ¼ s1 AND s2 AND � � � AND sI and where the sk’s are ei-

ther a node state or its negation. Since every node vmj
in M

has at least an input from another node in M, then this means

that one of the Si’s of fmj
corresponds to this node input. If

we call Sj the corresponding Si, then it must be such that all

the sk’s of this Sj must be the states of nodes in M. As a con-

sequence SjðRMÞ ¼ 1, since in the state RM, all the states of

nodes in M is 1.

The reverse of this proposition is also true, that is, if for

a given set of node states updating any of the states in the set

gives back the same state, regardless of the state of any node

outside of the set, then this set of states will correspond to a

set of stable motifs in the expanded network representation:

Proposition 2. Let Mstate¼ðrm1
¼ bm1

;rm2
¼ bm2

;…;rml

¼ bml
Þ be the state of a set of nodes such that if RM is any

network state in which rmk
¼ bmk

8mk 2fm1;m2;…;mlg, then
fmj
ðRMÞ¼ bmj

. Then (i) there is a set of stable motifs fMng in
the expanded network representation such that each of the
Mn’s contain only normal nodes or complementary nodes of
the nodes whose state is specified in Mstate (normal nodes if
bmk
¼ 1, and complementary nodes if bmk

¼ 0) and in which
all other nodes in the Mn’s (if any) will be composite nodes
made up of the normal nodes or complementary nodes in the
corresponding Mn, and (ii) the nodes whose state is specified
in Mstate but that are not included in the set of stable motifs
fMng will be downstream of the nodes in at least one of the
stable motifs.

Part of the proof for this proposition is very similar to

the one of Proposition 1. First, one does the same change of

variables and writes down the Boolean function of an arbi-

trary element of the nodes whose state is specified in Mstate.

Then, from the form of the Boolean function and since

fmj
ðRMÞ ¼ 1, at least one of the conjunctive clauses of this

Boolean function will be composed only of a normal node of

the nodes whose state is specified in Mstate, or composite

nodes composed of these normal nodes. Finally, if one cre-

ates the network composed only of these normal nodes and

composite nodes, and separates them into SCCs, one will

find a set of source SCCs. Since a source SCC contains all of

its inputs (by definition), and the elements of these SCCs

contain only normal nodes and composite nodes composed

of these normal nodes (by construction), then these source

SCCs will be the stable motifs we are looking for.

For the next propositions, we need to remember certain

properties of the attractors of the asynchronous updating

scheme. For any attractor A, we can divide the N nodes into

two classes: those that take the same value in all network

states of A (i.e., either 0 or 1), and those that take more than

one value in the different network states of A (i.e., both 0 and

1). We refer to the former as stabilized nodes, and to the latter

as oscillating nodes. The following propositions state that sta-

bilized nodes can have inputs from stabilized nodes or oscil-

lating nodes (Proposition 3), while oscillating nodes must

have at least one oscillating node as an input (Proposition 4).

Proposition 3. Let A be an attractor of the Boolean net-
work ðV;R;FÞ, and let S and O be the set of the stabilized
and oscillating nodes in the attractor, respectively. If vs 2 S,
and bs is the stabilized state of node vs, then one of the fol-
lowing two cases holds: (i) one of the conjunctive clauses of

fs (if bs ¼ 1) or �f s (if bs ¼ 0) depends only on the specific
state of the nodes of S in A. If (i) is not true, then (ii) for
both fs and �f s at least one conjunctive clause depends on the
state of one or more nodes in O and, if the clause depends
on any more states, they have to be the state of the nodes of
S in A.

Proposition 4. Let A be an attractor of the Boolean net-
work ðV;R;FÞ, and let S and O be the set of the stabilized
and oscillating nodes, respectively. If vo 2 O, then (i) neither
fo nor �f o can have any conjunctive clauses that depend only
on the state of the nodes of S in A (i.e., on rs if bs ¼ 1, or �rs

if bs ¼ 0), and (ii) both fo and �f o must have at least one con-
junctive clause that depends on the state of one or more
nodes in O and, if this same clause depends on any other
states, they must be the states of nodes of S in A.

To illustrate the implications of Propositions 3 and 4,

consider the three node network with nodes A, B, and C, and

the following Boolean functions (and their Boolean

negations)

fA ¼ NOT A OR NOT B OR C;

fB ¼ NOT A OR NOT B OR C;

fC ¼ ðA AND BÞOR C;

�f A ¼ A AND B AND NOT C;

�f B ¼ A AND B AND NOT C;

�f C ¼ ðNOT A AND NOT CÞOR ðNOT B AND NOT CÞ:

Note that these Boolean functions satisfy the three properties

for a Boolean function in F outlined at the beginning of this

Appendix. For this network, there is an attractor A with A
and B oscillating and C¼ 0. For this attractor, the set of sta-

bilized and oscillating nodes is S ¼ fCg and O ¼ fA;Bg,
respectively. Point (i) of Proposition 3 states that, for the

attractor A, one possibility is that a conjunctive clause of �f C

has only the specific state of nodes of S in A (i.e., NOT C,

since C¼ 0 in A). Since none of the conjunctive clauses of
�f C satisfies point (i), Proposition 3 states that fC and �f C must

satisfy point (ii). For the case of fC, the clause A AND B
depends on at least a node in O, so it does satisfy point (ii).

For the case of �f C, any of the two clauses (NOT A AND

NOT C or NOT B AND NOT C) are enough to satisfy point

(ii) since both clauses depend on at least one node in O (A
and B, respectively), and the other states they depend on is

the state of C in A.

For the network and attractor used in the previous para-

graph, Proposition 4 states that fA, fB, �f A, and �f B must satisfy

two properties. In this network, we have fA ¼ fB, so we only

need to consider fA and �f A. Property (i) requires that neither

fA nor �f A can have a conjunctive clause that contains only

the term NOT C, which is indeed the case. Property (ii)

requires that both fA and �f A must have at least one conjunc-

tive clause with a state of one or more nodes in O, which is

the case since fA has the clauses NOT B and NOT A, and �f A

has the clause A AND B AND NOT C. For the clause A
AND B AND NOT C, we have that it depends on the state of

a node not in O (NOT C), so property (ii) also requires that

the state it depends on must be the state of a node of S in A
(i.e., NOT C, since C¼ 0 in A), which is the case.
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We now proceed to prove the three lemmas that will

allow us to show that the reduction method conserves all

attractors. In Lemma 1, we construct the set of nodes, for an

arbitrary attractor, whose state will be identified by our

reduction method, Sred � S. We also show that there is at

least one stable motif composed of the corresponding states

in the attractor of the nodes of Sred (as long as Sred is not

empty). In Lemma 2, we show that the network reduction of

these stable motifs can only stabilize nodes in Sred.

Lemma 1. Let A be an attractor of the Boolean network
ðV;R;FÞ, and let S and O be the set of the stabilized and
oscillating nodes of A, respectively. There exists a set of
nodes Sred � S such that in the expanded network represen-
tation of ðV;R;FÞ, there will be at least one stable motif
composed only of the corresponding states of the nodes of
Sred in A, or composite nodes composed of such nodes.

Proof. Without loss of generality, we can do a change of

variables so that rs ¼ 1 if vs 2 S. By Proposition 3, we can

divide S into the nodes that have a conjunctive clause in

their rule that depends only on the specific state of nodes of

S in A, or the nodes that have at least a conjunctive clause in

their rule that depends on the state of a node in O. We will

refer to the former as S0 and to the latter as Sosc.

Let S1 � S0 be the nodes that have at least one conjunc-

tive clause in their rules that depends only on the specific

state of the nodes of S0 in A (i.e., on rs, because of the

change of variables). Let S2 � S1 be the nodes that have at

least one conjunctive clause in their rules that depends only

on the specific state of nodes of S1 in A (note they could

depend on the states of nodes in S0 � S1). We do this itera-

tively until Simaxþ1 ¼ Simax
and denote Sred ¼ Simax

� S0.

Since Sred was constructed by first removing the nodes that

required nodes in Sosc to stabilize, and then removing the

ones that depended on the previously reduced nodes, and so

on, then Sred corresponds to the set of nodes in S0 that do

not depend in any way on nodes of Sosc to stabilize in their

state on A.

We can now show that the expanded network represen-

tation of the states of the nodes of Sred in A has at least one

stable motif composed only of the corresponding states of S
in A or composite nodes composed of such nodes. Note that

because of our change of variables, we only need to consider

normal nodes in S and not complementary nodes of the

nodes in S. We first note that the construction of Sred makes

sure that its nodes have at least one conjunctive clause in

their rules that depends only on the state of nodes of Sred in

A. As a consequence, and since the stabilized state was taken

to be 1, the expanded network representation of the state of

the nodes of Sred in A will have an input from either the

nodes of the corresponding states of Sred in A, and/or com-

posite nodes composed only of said nodes.

From the expanded network representation, we take the

nodes of the corresponding states of Sred in A (normal

nodes) and the composite nodes composed only of said

nodes, and construct a network V with these normal nodes,

composite nodes, and the edges between them. From the dis-

cussion in the previous paragraph, each of the nodes in V
must have, at least, one input node. This means that if we

divide V into SCCs, there will be at least one SCC in which

the nodes have no inputs outside the SCC itself (a source

SCC). These source SCCs are stable motifs since the com-

posite nodes in each of these SCCs have all their inputs

included (the nodes in these SCCs have no inputs outside the

SCC itself) and by construction these SCCs contain no com-

plementary nodes. �

Lemma 2. Let Sred � S be the constructed set of nodes
in Lemma 1. Then, (i) Sred is such that the network reduction
of any stable motif composed only of the corresponding
states of Sred in A (or composite nodes composed of such
nodes) can only stabilize nodes in Sred, and (ii) if any of the
states of the nodes in Sred stabilizes, then it has to be on their
corresponding state in A; if they do not stabilize, then either
their rule (if their stabilized state in A is 1) or the negation
of their rule (if their stabilized state is 0) will have a con-
junctive clause that only depends on the specific state of the
nodes of Sred in A (i.e., on rs if bs ¼ 1, or �rs if bs ¼ 0) that
did not stabilize during network reduction.

Proof. Without loss of generality, we will again do a

change of variables so that rs ¼ 1 if vs 2 S. Let us start with

the nodes in S0 � Sred (the stabilized nodes not in Sred), as

constructed in Lemma 1. These nodes cannot have a con-

junctive clause in their rules that depend only on the specific

state of the nodes of Sred in A, since that would make them

part of Sred. This means that setting the states of the nodes of

Sred in A in their rules will not set the value of the rule to 1.

It can also not make it be equal to 0, since each of them has

a conjunctive clause in their rule that can be equal to 1 if the

state of the rest nodes they have as an input (which have not

been set to any value) take any of the states in A. Hence, the

nodes S0 � Sred will not be stabilized by the reduction of

any of the stable motifs being considered.

Let us now look at what happens to the nodes in Sosc

during the reduction of the stable motifs of interest. In

Proposition 4, we showed that for every node vo 2 Sosc nei-

ther fo nor �f o could have any of their conjunctive clauses

depend only on the specific states of the nodes of S in A. As

a consequence, none of the nodes in Sosc will be stabilized

by the reduction of stable motifs made up only of nodes in

Sred � S. Since we have now shown than neither the nodes

in S0 � Sred nor the nodes in Sosc can be stabilized by the

reduction of the nodes in Sred in their state in A, then point

(i) of the lemma has been proved.

To show point (ii), let us consider the iterative process

involved in network reduction. First, one sets the states of

the nodes in the chosen source SCC in the rules of all nodes

in Sred. As a consequence, the nodes in Sred that have any

conjunctive clause in their rule depending only on the spe-

cific state of the nodes in the source SCC will stabilize in the

1 state. The rest of the nodes in Sred cannot stabilize on ei-

ther 1 (or they would be part of the previous nodes) nor on 0

(since they still have an conjunctive clause in their rule that

depends on specific the state of the nodes of Sred in A not in

the source SCC). If one now evaluates the states of the nodes

that just stabilized on 1 in the rest of the nodes in Sred and

follows the same arguments, the result will be a new set of

nodes that just stabilized on 1, and a set of nodes that have,

at least, one conjunctive clause in their rule only depending

only on the specific state of the nodes of Sred in A that have
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not stabilized. Doing this iteratively until no more nodes sta-

bilize, one finds the desired result, that is, that the nodes in

Sred either stabilize at their state in A or if they do not, then

they still have, at least, one conjunctive clause that now

depends only on the specific state of the nodes of Sred in A
that this reduction did not stabilize. �

Lemma 3. Let A be an attractor of the Boolean net-
work ðV;R;FÞ, and let S and O be the set of the stabi-
lized and oscillating nodes, respectively. Let Sred � S be
the constructed set of nodes in Lemma 1 and assume that
Sred is empty and that O is a non empty set. Then the
expanded network representation of ðV;R;FÞ must be
such that the normal nodes and complementary nodes of
the elements in O, and the nodes corresponding to the
state of the nodes of S in A must both be downstream of
an oscillating motif that contains at least one of the
nodes in O.

Proof. We first show that the expanded network has, at

least, one source SCC which has either a normal node or

complementary node of a node in O. First, since the Boolean

network has no source nodes, then the expanded network

representation will also have no source nodes. We can then

divide the expanded network into SCCs, with at least one of

these being a source SCC. Because of the absence of source

nodes, all nodes in the expanded network will be down-

stream of one of these source SCCs. Let us assume that one

of these source SCCs has neither a normal node nor a com-

plementary node of the elements in O. This means that all

the nodes in this source SCC are either normal nodes or com-

plementary nodes of the elements in S. But, since we

assumed Sred is empty, the construction of Sred in Lemma 1

guarantees that all nodes in S are downstream of a normal

node or complementary node of the elements in O.

Therefore, this source SCC must contain a normal or com-

plementary node of the elements in O, which is a contradic-

tion. Therefore, all source SCCs contain either a normal

node or a complementary node of the elements in O. As a

consequence, all nodes in the expanded network are down-

stream of these source SCCs.

Before proceeding, we first need to note a certain prop-

erty of the Boolean function with the properties we specified

at the beginning of the section. Without loss of generality,

f can be written in the form f ¼ S1 OR S2 OR � � � OR Sn,

where Si ¼ s1 AND s2 AND � � � AND sI, and where each sj is

either a node state or the negation of a node state. Now, lets

assume that sk is one of the sj’s of f, then �f will have one of

its corresponding sj’s be the negation of sk. This can be

proved by using property 3 of the Boolean functions.

Let VO be any of the source SCCs that contains a normal

or complementary node of the elements in O. Because of the

property discussed in the previous paragraph, the comple-

ment of the normal nodes or complementary nodes of VO

will also form a source SCC. These two SCCs have to be

connected to each other, or these nodes would not be able to

oscillate in the attractor A. Since they are source SCCs, this

means they are actually part of the same source SCC. This

shows that VO contains both the nodes and complementary

nodes of every element it contains. Finally, since these

source SCCs were constructed by separating the whole

expanded network into SCCs, then they are the largest SCC

(i.e., the usual definition of SCC). Hence, we have shown

that these source SCCs are oscillating motifs. �

The following theorem is the main result of this section,

and it combines the results of Lemmas 1, 2, and 3. It shows

that for every attractor in the network, our reduction method

will find a corresponding quasi-attractor in which the state of

the nodes in Sred is the same as in the attractor, and in which

the rest of the nodes will either be part of an oscillating motif

or downstream of it.

Theorem. Let A be an attractor of the Boolean network
ðV;R;FÞ, and let S and O be the set of the stabilized and
oscillating nodes, respectively. Let Sred � S be the set of
nodes constructed in Lemma 1. Then, there exists a set of sta-
ble motifs such that, by applying network reduction, all the
nodes in Sred will stabilize in their steady state in A, while
the rest of the nodes in V will be part of the final reduced net-
work. This resulting final reduced network will be such that,
in its expanded network representation, all the nodes will ei-
ther be part of an oscillating motif containing at least one of
the nodes in O, or be downstream of an oscillating motif.

Proof. Using Lemma 2, the network obtained after

reducing any stable motif composed only of the correspond-

ing states of Sred in A will have a new Sred containing only

the nodes in the previous Sred that did not stabilize. If one

performs network reduction using the stable motif that nec-

essarily exists in the new network (because of Lemma 1),

and does this iteratively, one will obtain a network where

Sred is empty and where only the states of the nodes in the

original Sred stabilized during reduction in their state in A.

By the results in Lemma 3, this resulting network has a set

of oscillating motifs with at least one of the nodes in O, and

with the rest of the nodes downstream of these oscillating

motifs. �

APPENDIX B: THE FULL NETWORK REDUCTION
ALGORITHM

In the following, we describe the full network reduction

algorithm. During the description of the algorithm, we refer

the reader to the subsections in Sec. II where each of these

steps are described in more detail. A Java implementation of

the network reduction algorithm is available per request to

the interested reader.

1. For every combination of the states of the source nodes

(nodes with no upstream components) apply the two steps

of network reduction method described in Sec. II F recur-

sively until neither of them can be applied anymore.

2. Create the expanded network representation for each of

the resulting networks (Sec. II D).

3. Search the expanded network for stable motifs (Sec. II E)

and oscillating components (Sec. II G).

4. For every separate stable motif create a copy of the cur-

rent network. On each of the networks created use the

states of the corresponding stable motif as inputs and

apply the two steps of the network reduction described in

Sec. II F recursively until neither of them can be applied

anymore.
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5. For every oscillating component of more than two nodes

(i.e., every oscillating component that could display

incomplete oscillations) create a copy of the current net-

work. On each of the networks created, the nodes in the

corresponding oscillating component and the nodes down-

stream of this component will be marked. The marked

nodes cannot be reduced at any later step of the algorithm

(i.e., they will have their state undetermined in the quasi-

attractors that are derived from these networks).

6. For the oscillating components of two nodes (i.e., only

one normal node and its corresponding complementary

node), check if any node downstream of these oscillating

motifs participates in a stable motif with no composite

nodes. If any of them do, go to step 7; otherwise, check if

there are any stable motifs that are downstream of these

oscillating components (these stable motifs would neces-

sarily have a composite node). If there are not, go to step

7; if there are, check if any of them is downstream of a

stable motif that is itself not downstream of any of these

oscillating components. If this is the case, go to step 7; if

this is not the case, then create one copy of the current

network and mark the nodes in the oscillating motifs con-

sidered in this step and the nodes downstream of them.

The marked nodes cannot be reduced at any later step of

the algorithm (i.e., they will have their state undetermined

in the quasi-attractors that are derived from these

networks).

7. Repeat 2, 3, 4, 5, and 6 for each of the networks itera-

tively until no more stable motifs are found. The result, a

set of fixed state nodes and their stabilized states, and a

set of nodes with undetermined states with their reduced

Boolean functions, is the set of quasi-attractors (Sec. II F).

8. Prune the set of quasi-attractors of duplicates (two quasi-

attractors are the same if they have the same set of fixed

state nodes and the same state for these stabilized nodes;

if two quasi-attractors are the same, except that one of

them has some nodes marked while the other one does

not, remove the one that has the marked nodes).

Some of the resulting quasi-attractors will have marked

nodes while others will not. For every unmarked quasi-

attractor, there will necessarily be a corresponding attractor

in the Boolean network. For a marked quasi-attractor, there

may not be a corresponding attractor in the Boolean network;

only by knowing the specific states visited during oscilla-

tions by the undetermined nodes in the quasi-attractor’s

reduced network can one confirm whether there is a corre-

sponding attractor (this is a consequence of incomplete oscil-

lations and unstable oscillations, see Sec. II G).

APPENDIX C: THE LOGICAL RULES OF THE T-LGL
LEUKEMIA SURVIVAL NETWORK

Logical rules governing the state of the T-LGL leukemia

survival signaling network depicted in Figure 5. For simplic-

ity, the nodes’ states are represented by the node names. The

Boolean rules were constructed based on experimental

results of the corresponding cellular elements in healthy and

leukemic cytotoxic T cells, in such a way that that the model

reproduces the result of knockout and overexpression experi-

ments. The “NOT Apoptosis” clause in each rule implements

the fact that in the apoptosis (cell death) state every node

except Apoptosis is OFF. This table is adapted from.11,41

The interested reader is referred to Ref. 11 for the detailed

explanation of the rules.

fCTLA4¼TCR AND NOT Apoptosis

fTCR¼Stimuli AND NOT (CTLA4 OR Apoptosis)

fPDGFR¼ (S1P OR PDGF) AND NOT Apoptosis

fFYN¼ (TCR OR IL2RB) AND NOT Apoptosis

fCytoskeleton signaling¼ FYN AND NOT Apoptosis

fLCK¼ (CD45 OR ((TCR OR IL2RB) AND NOT

ZAP70)) AND NOT Apoptosis

fZAP70¼LCK AND NOT (FYN OR Apoptosis)

fGRB2¼ (IL2RB OR ZAP70) AND NOT Apoptosis

fPLCG1¼ (GRB2 OR PDGFR) AND NOT Apoptosis

fRAS¼ (GRB2 OR PLCG1) AND NOT (GAP OR

Apoptosis)

fGAP¼ (RAS OR (PDGFR AND GAP)) AND NOT

(IL15 OR IL2 OR Apoptosis)

fMEK¼RAS AND NOT Apoptosis

fERK¼ (MEK AND PI3K) AND NOT Apoptosis

fPI3K ¼ (PDGFR OR RAS) AND NOT Apoptosis

fNFKB¼ ((TPL2 OR PI3K) OR (FLIP AND TRADD

AND IAP)) AND NOT Apoptosis

fNFAT¼PI3K AND NOT Apoptosis

fRANTES¼NFKB AND NOT Apoptosis

fIL2¼ (NFKB OR STAT3 OR NFAT) AND NOT

(TBET OR Apoptosis)

fIL2RBT ¼ (ERK AND TBET) AND NOT Apoptosis

fIL2RB¼ (IL2RBT AND (IL2 OR IL15)) AND NOT

Apoptosis

fIL2RAT ¼ (IL2 AND (STAT3 OR NFKB)) AND NOT

Apoptosis

fIL2RA¼ (IL2 AND IL2RAT) AND NOT (IL2RA OR

Apoptosis)

fJAK¼ (IL2RA OR IL2RB OR RANTES OR IFNG)

AND NOT (SOCS OR CD45 OR Apoptosis)

fSOCS¼ JAK AND NOT (IL2 OR IL15 OR Apoptosis)

fSTAT3¼ JAK AND NOT Apoptosis

fP27¼ STAT3 AND NOT Apoptosis

fProliferation¼STAT3 AND NOT (P27 OR Apoptosis)

fTBET¼ (JAK OR TBET) AND NOT Apoptosis

fCREB¼ (ERK AND IFNG) AND NOT Apoptosis

fIFNGT¼ (TBET OR STAT3 OR NFAT) AND NOT

Apoptosis

fIFNG¼ ((IL2 OR IL15 OR Stimuli) AND IFNGT) AND

NOT (SMAD OR P2 OR Apoptosis)

fP2¼ (IFNG OR P2) AND NOT (Stimuli2 OR

Apoptosis)

fGZMB¼ ((CREB AND IFNG) OR TBET) AND NOT

Apoptosis

fTPL2¼ (TAX OR (PI3K AND TNF)) AND NOT

Apoptosis

fTNF¼NFKB AND NOT Apoptosis

fTRADD¼TNF AND NOT (IAP OR A20 OR Apoptosis)

fFasL¼ (STAT3 OR NFKB OR NFAT OR ERK) AND

NOT Apoptosis
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fFasT¼NFKB AND NOT Apoptosis

fFas¼ (FasT AND FasL) AND NOT (sFas OR

Apoptosis)

fsFas¼FasT AND S1P AND NOT Apoptosis

fCeramide¼Fas AND NOT (S1P OR Apoptosis)

fDISC¼ (FasT AND ((Fas AND IL2) OR Ceramide OR

(Fas AND NOT FLIP))) AND NOT Apoptosis

fCaspase¼ ((((TRADD OR GZMB) AND BID) AND

NOT IAP) OR DISC) AND NOT Apoptosis

fFLIP¼ (NFKB OR (CREB AND IFNG)) AND NOT

(DISC OR Apoptosis)

fA20¼NFKB AND NOT Apoptosis

fBID¼ (Caspase OR GZMB) AND NOT (BclxL OR

MCL1 OR Apoptosis)

fIAP¼NFKB AND NOT (BID OR Apoptosis)

fBclxL¼ (NFKB OR STAT3) AND NOT (BID OR

GZMB OR DISC OR Apoptosis)

fMCL1¼ (IL2RB AND STAT3 AND NFKB AND PI3K)

AND NOT (DISC OR Apoptosis)

fApoptosis¼Caspase OR Apoptosis

fGPCR¼ S1P AND NOT Apoptosis

fSMAD¼GPCR AND NOT Apoptosis

fSPHK1¼ PDGFR AND NOT Apoptosis

fS1P¼ SPHK1 AND NOT (Ceramide OR Apoptosis)

APPENDIX D: THE ATTRACTORS OF T-LGL LEUKEMIA
SURVIVAL NETWORK

In Table I, we show the state of the nodes for all pos-

sible combinations of input signals in the presence of anti-

gen (Stimuli ¼ ON). We do not show the Apoptosis ¼ ON

attractor, in which all nodes except Apoptosis are inactive,

since it is always a possibility. For simplicity, we only

show which nodes oscillate and which of them stabilize in a

steady state (i.e., the quasi-attractor) and not the actual

attractor, which would include all the network states that

the nodes that oscillate can visit along with the transitions

between these states. The signal combinations not shown in

the table (i.e., CD45¼OFF and IL15¼OFF, with any other

value for the other input signals) have apoptosis as their

only attractor.

TABLE I. The attractors of T-LGL leukemia survival network. This table shows the state of the nodes for all possible combinations of input signals in the pres-

ence of antigen (Stimuli ¼ ON).

CD45¼ON CD45¼ON CD45¼OFF CD45¼OFF

PDGF¼ON/OFF PDGF¼ON/OFF PDGF¼ON/OFF PDGF¼ON/OFF

IL15¼ON/OFF IL15¼ON/OFF IL15¼ON IL15¼ON

Stimuli2¼OFF Stimuli2¼ON Stimuli2¼OFF Stimuli2¼ON

Node TAX¼ON/OFF TAX¼ON/OFF TAX¼ON/OFF TAX¼ON/OFF

IL2RBT OFF OFF ON ON

BclxL ON ON OFF OFF

IFNGT ON ON ON ON

PDGFR ON ON ON ON

IFNG OFF OFF OFF OFF

GAP OFF OFF OFF OFF

Proliferation OFF OFF OFF OFF

GZMB OFF OFF ON ON

RAS ON ON ON ON

TPL2 ON ON ON ON

FasT ON ON ON ON

FLIP ON ON ON ON

LCK ON ON ON ON

NFAT ON ON ON ON

FasL ON ON ON ON

Caspase OFF OFF OFF OFF

NFKB ON ON ON ON

IAP ON ON ON ON

BID OFF OFF OFF OFF

Cyto. Signal. Oscillates Oscillates ON ON

TNF ON ON ON ON

MCL1 OFF OFF ON ON

Ceramide OFF OFF OFF OFF

GRB2 Oscillates Oscillates ON ON

PI3K ON ON ON ON

SMAD ON ON ON ON

P27 OFF OFF ON ON

ZAP70 Oscillates Oscillates OFF OFF

CREB OFF OFF OFF OFF

DISC OFF OFF OFF OFF

IL2RB OFF OFF ON ON

Fas OFF OFF OFF OFF
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