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1 Universal Algebra and Monads
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In this chapter, we cover most of the content on universal algebra and monads
that we will need in the rest of the thesis. This material has appeared many times
in the literature0, but for completeness (and to be honest my own satisfaction) we 0 [Wec12] and [Bau19] are two of my favorite refer-

ences on universal algebra, and both [Rie17, Chap-
ter 5] and [BW05, Chapter 3] are great references for
monads (the latter calls them triples).

take our time with it. In Chapter 3, we will follow the outline of the current chapter
to generalize the definitions and results to sets equipped with a notion of distance.
Thus, many choices in our notations and presentation are motivated by the needs
of Chapter 3.

Outline: In §1.1, we define algebras, terms, and equations over a signature of
finitary operation symbols. In §1.2, we explain how to construct the free algebra for
a given signature and set of equations. In §1.3, we give the rules for equational logic
to derive equations from other equations, and we show it sound and complete. In
§1.4, we define monads and algebraic presentations for monads. We give examples
all throughout, some small ones to build intuition, and some bigger ones that will
be needed later.

1.1 Algebras and Equations

Definition 1 (Signature). A signature is a set Σ whose elements, called operation
symbols, each come with an arity n ∈ N. We write op : n ∈ Σ for a symbol op

with arity n in Σ. With some abuse of notation, we also denote by Σ the functor
Σ : Set→ Set with the following action:1 1 The set Σ(A) can be identified with the set contain-

ing op(a1, . . . , an) for all op : n ∈ Σ and a1, . . . , an ∈
A. Then, the function Σ( f ) sends op(a1, . . . , an) to
op( f (a1), . . . , f (an)).

Σ(A) := ⨿
op:n∈Σ

An on sets and Σ( f ) := ⨿
op:n∈Σ

f n on functions.

Definition 2 (Σ-algebra). A Σ-algebra (or just algebra) is a set A equipped with
functions JopKA : An → A for every op : n ∈ Σ called the interpretation of the
symbol. We call A the carrier or underlying set, and when referring to an algebra,
we will switch between using a single symbol A2 or the pair (A, J−KA), where 2 We will try to match the symbol for the algebra

and the one for the underlying set only modifying
the former with mathbb.

J−KA : Σ(A) → A is the function sending op(a1, . . . , an) to JopKA(a1, . . . , an) (it
compactly describes the interpretations of all symbols).

https://youtube.com/playlist?list=OLAK5uy_n93-f6dE8eLC8LuZfpAoXgY8N3cTRIeJo&si=0GyWN6z9Z09dEnv_
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A homomorphism from A to B is a function h : A→ B between the underlying
sets of A and B that preserves the interpretation of all operation symbols in Σ,
namely, for all op : n ∈ Σ and a1, . . . , an ∈ A,3 3 Equivalently, h makes the following square com-

mute:

Σ(A) Σ(B)

A B

Σ( f )

J−KA

f

J−KB
(0)

This amounts to an equivalent and more concise def-
inition of Alg(Σ): it is the category of algebras for
the signature functor Σ : Set→ Set [Awo10, Defini-
tion 10.8].

h(JopKA(a1, . . . , an)) = JopKB(h(a1), . . . , h(an)). (1)

The identity maps idA : A → A and the composition of two homomorphisms are
always homomorphisms, therefore we have a category whose objects are Σ-algebras
and morphisms are Σ-algebra homomorphisms. We denote it by Alg(Σ).

This category is concrete over Set with the forgetful functor U : Alg(Σ) → Set
which sends an algebra A to its carrier and a homomorphism to the underlying
function between carriers.

Remark 3. In the sequel, we will rarely distinguish between the homomorphism
h : A→ B and the underlying function h : A→ B. Although, we may write Uh for
the latter, when disambiguation is necessary.

Examples 4. 1. Let Σ = {p : 0} be the signature containing a single operation sym-
bol p with arity 0. A Σ-algebra is a set A equipped with an interpretation of p as
a function JpKA : A0 → A. Since A0 is the singleton 1, JpKA is just a choice of el-
ement in A,4 so the objects of Alg(Σ) are pointed sets (sets with a distinguished 4 For this reason, we often call 0-ary symbols con-

stants.element). Moreover, instantiating (1) for the symbol p, we find that a homomor-
phism from A to B is a function h : A→ B sending the distinguished point of A
to the distinguished point of B. We conclude that Alg(Σ) is the category Set∗ of
pointed sets and functions preserving the points.

2. Let Σ = {f : 1} be the signature containing a single unary operation symbol
f. A Σ-algebra is a set A equipped with an interpretation of f as a function
JfKA : A→ A.

For example, we have the Σ-algebra whose carrier is the set of integers Z and
where f is interpreted as “adding 1”, i.e. JfKZ(k) = k + 1. We also have the
integers modulo 2, denoted by Z2, where JfKZ2(k) = k + 1(mod 2).

The fact that a function h : A → B satisfies (1) for the symbol f is equivalent to
the following commutative square.

A B

A B

JfKA

h

JfKB

h

We conclude that Alg(Σ) is the category whose objects are endofunctions and
whose morphisms are commutative squares as above.5 There is a homomor- 5 For more categorical thinkers, we can also identify

Alg(Σ) with the functor category [BN, Set] from
the delooping of the (additive) monoid N to the
category of sets. Briefly, it is because a functor
BN → Set is completely determined by where it
sends 1 ∈N.

phism is_odd from Z to Z2 that sends k to k(mod 2), that is, to 0 when it is even
and to 1 when it is odd.

3. Let Σ = {+ : 2} be the signature containing a single binary operation symbol. A
Σ-algebra is a set A equipped with an interpretation J+KA : A× A → A. Such
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a structure is often called a magma, and it is part of many more well-known
algebraic structures like groups, rings, monoids, etc. While every group has an
underlying Σ-algebra, not every Σ-algebra underlies a group since J+KA is not
required to be associative for example. The following definitions will allow us to
talk about certain classes of Σ-algebras with some properties like associativity.

Definition 5 (Term). Let Σ be a signature and A be a set. We denote with TΣ A the
set of Σ-terms built syntactically from A and the operation symbols in Σ, i.e., the
set inductively defined by

a ∈ A
a ∈ TΣ A

and
op : n ∈ Σ t1, . . . , tn ∈ TΣ A

op(t1, . . . , tn) ∈ TΣ A
.

We identify elements a ∈ A with the corresponding terms a ∈ TΣ A, and we also
identify (as outlined in Footnote 1) elements of Σ(A) with terms in TΣ A containing
exactly one occurrence of an operation symbol.6 6 Note that any constant p : 0 ∈ Σ belongs to all TΣ A

by the second rule defining TΣX.The assignment A 7→ TΣ A can be turned into a functor TΣ : Set → Set by
inductively defining, for any function f : A → B, the function TΣ f : TΣ A → TΣB
as follows:7 7 Note that TΣ f acts as identity on constants.

a ∈ A
TΣ f (a) = f (a)

and
op : n ∈ Σ t1, . . . , tn ∈ TΣ A

TΣ f (op(t1, . . . , tn)) = op(TΣ f (t1), . . . , TΣ f (tn))
. (2)

Proposition 6. We defined a functor TΣ : Set→ Set, i.e. TΣidA = idTΣ A and TΣ(g ◦ f ) =
TΣg ◦ TΣ f .

Proof. We proceed by induction for both equations. For any a ∈ A, we have
TΣidA(a) = idA(a) = a and

TΣ(g ◦ f )(a) = (g ◦ f )(a) = TΣg(TΣ f (a)).

For any t = op(t1, . . . , tn), we have

TΣidA(op(t1, . . . , tn))
(2)
= op(TΣidA(t1), . . . , TΣidA(tn))

I.H.
= op(t1, . . . , tn),

and

TΣ(g ◦ f )(t) = TΣ(g ◦ f )(op(t1, . . . , tn))

= op(TΣ(g ◦ f )(t1), . . . , TΣ(g ◦ f )(tn)) by (2)

= op(TΣg(TΣ f (t1)), . . . , TΣg(TΣ f (tn))) I.H.

= TΣg(op(TΣ f (t1), . . . , TΣ f (tn))) by (2)

= TΣgTΣ f (op(t1, . . . , tn)). by (2)

Examples 7. 1. With Σ = {p : 0}, a Σ-term over A is either an element of A or p.
The functor TΣ is then naturally isomorphic to the functor sending A to A + 1.

2. With Σ = {f : 1}, a Σ-term over A is either an element of A or a term f(f(· · · f(a)))
for some a and a finite number of iterations of f. The functor TΣ is then naturally
isomorphic to the functor sending A to N× A.

https://en.wikipedia.org/wiki/Magma_(algebra)
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3. With Σ = {+ : 2}, a Σ-term is either an element of A or any expression formed
by “adding” elements of A together like a + b, a + (b + c), ((a + a) + c) + (b + c)
and so on when a, b, c ∈ A.8 8 We write + infix as is very common. The paren-

theses are formal symbols to help delimit which +
is taken first. They are necessary because the in-
terpretation of + is not necessarily associative so
a + (b + c) and (a + b) + c can be interpreted dif-
ferently in some Σ-algebras.

As we said above, any element in A is a term in TΣ A, we will denote this embed-
ding with ηΣ

A : A → TΣ A, in particular, we will write ηΣ
A(a) to emphasize that we

are dealing with the term a and not the element of A. For instance, the base case of
the definition of TΣ f in (2) becomes

a ∈ A
TΣ f (ηΣ

A(a)) = ηΣ
B( f (a))

.

This is exactly what it means for the family of maps ηΣ
A : A → TΣ A to be natural in

A,9 in other words that ηΣ : idSet ⇒ TΣ is a natural transformation. We can mention 9 As a commutative square:

A B

TΣ A TΣ B

ηΣ
B

f

ηΣ
A

TΣ f

(3)

now that it will be part of some additional structure on the functor TΣ (a monad).
The other part of that structure is a natural transformation µΣ : TΣTΣ ⇒ TΣ, that is
more easily described using trees.

For an arbitrary signature Σ, we can think of TΣ A as the set of rooted trees whose
leaves are labelled with elements of A and whose nodes with n children are labelled
with n-ary operation symbols in Σ. This makes the action of a function TΣ f fairly
straightforward: it applies f to the labels of all the leaves as depicted in Figure 1.1.

t =

+

b +

a c

TΣ f (t) =

+

f b +

f a f c

Figure 1.1: Applying TΣ f to b + (a + c) yields f (b) +
( f (a) + f (c)).

This point of view is particularly helpful when describing the flattening of terms:
there is a natural way to see a Σ-term over Σ-terms over A as a Σ-term over A. This
is carried out by the map µΣ

A : TΣTΣ A → TΣ A which takes a tree T whose leaves are
labelled with trees T1, . . . , Tn to the tree T where instead of the leaf labelled Ti, there
is the root of Ti with all its children and their children and so on (we “glue” the
tree Ti at the leaf labelled Ti). Figure 1.2 shows an example for Σ = {+ : 2}. More
formally, µΣ

A is defined inductively by:

µΣ
A(η

Σ
TΣ A(t)) = t and µΣ

A(op(t1, . . . , tn)) = op(µΣ
A(t1), . . . , µΣ

A(tn)). (4)

T =
+

T1 T2

T1 =

+

a b

T2 = a µΣ
AT =

+

+ a

a b

Figure 1.2: Flattening of a term

The use of the word “natural” above is not benign, µΣ is actually a natural trans-
formation.

Proposition 8. The family of maps µΣ
A : TΣTΣ A→ TΣ A is natural in A.

Proof. We need to prove that for any function f : A→ B, TΣ f ◦ µΣ
A = µΣ

B ◦ TΣTΣ f .10 It
10 As a commutative square:

TΣTΣ A TΣTΣ B

TΣ A TΣ B

µΣ
A

TΣTΣ f

µΣ
B

TΣ f

(5)

makes sense intuitively, we should get the same result when we apply f to all the
leaves before or after flattening. Formally, we use induction.
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For the base case (i.e. terms in the image of ηΣ
TΣ A), we have

µΣ
B(TΣTΣ f (ηΣ

TΣ A(t))) = µΣ
B(η

Σ
TΣB(TΣ f (t))) by (3)

= TΣ f (t) by (4)

= TΣ f (µΣ
A(η

Σ
TΣ A(t))). by (4)

For the inductive step, we have

µΣ
B(TΣTΣ f (op(t1, . . . , tn))) = µΣ

B(op(TΣTΣ f (t1), . . . , TΣTΣ f (tn))) by (2)

= op(µΣ
B(TΣTΣ f (t1)), . . . , µΣ

B(TΣTΣ f (tn))) by (4)

= op(TΣ f (µΣ
A(t1)), . . . , TΣ f (µΣ

A(tn))) I.H.

= TΣ f (op(µΣ
A(t1), . . . , µΣ

A(tn))) by (2)

= TΣ f (µΣ
A(op(t1, . . . , tn))) by (4)

By definition, we have that µΣ · ηΣTΣ is the identity transformation 1TΣ : TΣ ⇒ TΣ.11 11 We write · to denote the vertical composition
of natural transformations and juxtaposition (e.g.
Fϕ or ϕF to denote the action of functors on nat-
ural transformations), namely, the component of
µΣ · ηΣTΣ at A is µΣ

A ◦ ηΣ
TΣ A which is idTΣ A by (4).

In words, we say that seeing a term trivially as a term over terms then flattening
it yields back the original term. Another similar property is that if we see all the
variables in a term trivially as terms and flatten the resulting term over terms, the
result is the original term. Formally:

Lemma 9. For any set A, µΣ
A ◦ TΣηΣ

A = idTΣ A, hence µΣ · TΣηΣ = 1TΣ .

Proof. We proceed by induction. For the base case, we have

µΣ
A(TΣηΣ

A(η
Σ
A(a)))

(3)
= µΣ

A(η
Σ
TΣ A(η

Σ
A(a)))

(4)
= ηΣ

A(a).

For the inductive step, if t = op(t1, . . . , tn), we have

µΣ
A(TΣηΣ

A(t)) = µΣ
A(TΣηΣ

A(op(t1, . . . , tn)))

= µΣ
A(op(TΣηΣ

A(t1), . . . , TΣηΣ
A(tn))) by (2)

= op(µΣ
A(TΣηΣ

A(t1)), . . . , µΣ
A(TΣηΣ

A(tn))) by (4)

= op(t1, . . . , tn) = t I.H.

Trees also make the depth of a term a visual concept. A term t ∈ TΣ A is said to
be of depth d ∈ N if the tree representing it has depth d.12 We give an inductive 12 i.e. the longest path from the root to a leaf has d

edges. In Figure 1.2, the depth of T and T1 is 1, the
depth of T2 is 0 and the depth of µΣ

AT is 2.
definition:

depth(a) = 0 and depth(op(t1, . . . , tn)) = 1 + max{depth(t1), . . . , depth(tn)}.

A term of depth 0 is a term in the image of ηΣ
A. A term of depth 1 is an element of

Σ(A) seen as a term (recall Footnote 1).
In any Σ-algebra A, the interpretations of operation symbols give us an element

of A for each element of Σ(A). Using, the inductive definition of TΣ A, we can
extend these interpretations to all terms: abusing notation, we define the function
J−KA : TΣ A→ A by13 13 For categorical thinkers, TΣ A is essentially defined

to be the initial algebra for the endofunctor Σ + A :
Set → Set sending X to Σ(X) + A. Any Σ-algebra
(A, J−KA) defines another algebra for that functor
[J−KA, idA] : Σ(A) + A → A. Then, the extension
of J−KA to terms is the unique algebra morphism
drawn below.

Σ(TΣ A) + A Σ(A) + A

TΣ A A

[J−KA ,idA ]

a ∈ A
JaKA = a

and
op : n ∈ Σ t1, . . . , tn ∈ TΣ A

Jop(t1, . . . , tn)KA = JopKA(Jt1KA, . . . , JtnKA)
. (6)
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This allows to further extend the interpretation J−KA to all terms TΣX over some
set of variables X, provided we have an assignment of variables ι : X → A, by
precomposing with TΣι. We denote this interpretation with J−Kι

A:

J−Kι
A = TΣX

TΣ ι−→ TΣ A
J−KA−−−→ A. (7)

Example 10. In the signature Σ = {f : 1} and over the variables X = {x}, we have
(amongst others) the terms t = ffx and s = fffx. If we compute the interpretation of
t and s in Z and Z2,14 we obtain 14 Recall their Σ-algebra structure given in Exam-

ples 4.
JtKι

Z = ι(x) + 2 JsKι
Z = ι(x) + 3 JtKι

Z2
= ι(x) JsKι

Z2
= ι(x) + 1(mod 2),

for any assignment ι : X → Z (resp. ι : X → Z2).

By definition, a homomorphism preserves the interpretation of operation sym-
bols. We can prove by induction that it also preserves the interpretation of arbitrary
terms. Namely, if h : A → B is a homomorphism, then the following square com-
mutes.15 15 Quick proof. If t = a ∈ A, then both paths send it

to h(a). If t = op(t1, . . . , tn), then

h(JtKA) = h(JopKA(Jt1KA, . . . , JtnKA))

= JopKB(h(Jt1KA), . . . , h(JtnKA))

= JopKB(JTΣh(t1)KB, . . . , JTΣh(tn)KB)

= Jop(TΣh(t1), . . . , TΣh(tn))KB

= JTΣh(t)K.

TΣ A TΣB

A B

TΣh

J−KA

h

J−KB
(8)

The converse is (almost trivially) true, if (8) commutes, then we can quickly see (0)
commutes by embedding Σ(A) into TΣ A and Σ(B) into TΣB. It follows readily that
for all homomorphisms h : A→ B and all assignments ι : X → A,

h ◦ J−Kι
A = J−Kh◦ι

B . (9)

Definition 11 (Equation). An equation over a signature Σ is a triple comprising a
set X of variables called the context, and a pair of terms s, t ∈ TΣX. We write these
as X ⊢ s = t.

A Σ-algebra A satisfies an equation X ⊢ s = t if for any assignment of variables
ι : X → A, JsKι

A = JtKι
A. We use ϕ and ψ to refer to equations, and we write A ⊨ ϕ

when A satisfies ϕ. We also write A ⊨ι ϕ when the equality JsKι
A = JtKι

A holds for
a particular assignment ι : X → A and not necessarily for all assignments.

Example 12 (Associativity). Let Σ = {+ : 2}, X = {x, y, z}, s = x + (y + z) and
t = (x + y) + z. The equation ϕ = X ⊢ s = t16 asserts that the interpretation of + is 16 Alternatively, we may write ϕ omitting brackets:

x, y, z ⊢ x + (y + z) = (x + y) + z.associative. Indeed, suppose A ⊨ ϕ, we need to show that for any a, b, c ∈ A,

J+KA(a, J+KA(b, c)) = J+KA(J+KA(a, b), c). (10)

Observe that the L.H.S. is the interpretation of s under the assignment ι : X → A
sending x to a, y to b and z to c, that is, we have J+KA(a, J+KA(b, c)) = JsKι

A. Under
the same assignment, the interpretation of t is the R.H.S. By hypothesis, JsKι

A = JtKι
A,

so we conclude (10) holds.

Examples 13. Without going into that much details, there are many other simple
examples of equations.
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• x, y ⊢ x + y = y + x states that the binary operation + is commutative.

• x ⊢ x + x = x states that the binary operation + is idempotent.

• x ⊢ fx = ffx states that the unary operation f is idempotent.

• x ⊢ p = x states that the constant p is equal to all elements in the algebra (this
means the algebra is a singleton).

• x, y ⊢ x = y states that all elements in the algebra are equal (this means the
algebra is either empty or a singleton).

Since interpretations are preserved by homomorphisms, it is expected that satis-
faction is also preserved.

Lemma 14. Let ϕ be a equation with context X. If h : A → B is a homomorphism and
A ⊨ι ϕ for an assignment ι : X → A, then B ⊨h◦ι ϕ.

Proof. Let ϕ be the equation X ⊢ s = t, we have

A ⊨ι ϕ⇐⇒ JsKι
A = JtKι

A definition of ⊨

=⇒ h(JsKι
A) = h(JtKι

A)

=⇒ JsKh◦ι
B = JtKh◦ι

B by (9)

⇐⇒ B ⊨h◦ι ϕ. definition of ⊨

What is more surprising is that flattening interacts well with intepreting in the
following sense.

Lemma 15. For any Σ-algebra A, the following square commutes.17 17 In words, given a term in TΣTΣ A, you obtain the
same result if you interpret its flattening in A, or if
you interpret the term obtained by first interpreting
all the “inner” terms.

This also generalizes to terms in TΣTΣX. Indeed,
given an assignment, ι : X → A, we can either flat-
ten a term and interpret it under ι, or we can inter-
pret all the inner terms under ι, then interpret the
result, as shown in (12).

TΣTΣ A TΣ A

TΣ A A

µΣ
A

TΣJ−KA

J−KA

J−KA

(11)

TΣTΣX TΣTΣ A TΣ A

TΣX TΣ A A

µΣ
A

TΣJ−KA

J−KA

J−KA

µΣ
X

TΣ ι

TΣTΣ ι

J−Kι
A

TΣJ−Kι
A

(7)

(7)

(11)(5) (12)

Proof. We proceed by induction. For the base case, we have

JµΣ
A(η

Σ
A(t))KA

(4)
= JtKA

(6)
= JηΣ

A(JtKA)KA
(3)
= JTΣJ−KA(η

Σ
A(t))K.

For the inductive step, if t = op(t1, . . . , tn), then

JµΣ
A(t)KA = Jop(µΣ

A(t1), . . . , µΣ
A(tn))KA by (4)

= JopKA (JµΣ
A(t1)KA, . . . , JµΣ

A(tn)KA) by (6)

= JopKA (JTΣJ−KA(t1)KA, . . . , JTΣJ−KA(tn)KA) I.H.

= Jop(TΣJ−KA(t1), . . . , TΣJ−KA(tn))KA by (6)

= JTΣJ−KA(op(t1, . . . , tn))KA by (2)

= JTΣJ−KA(t)KA.
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Remark 16. To see Lemma 15 in another way, notice that (11) looks a lot like (8), but
the map on the left is not the interpretation on an algebra. Except it is! Indeed, we
can give a trivial interpretation of op : n ∈ Σ on the set TΣ A by JopKTΣ A(t1, . . . , tn) =

op(t1, . . . , tn). Then, we can verify by induction18 that J−KTΣ A : TΣTΣ A → TΣ A 18 Or we can compare (4) and (6) to see they become
the same inductive definition in this instance.is equal to µΣ

A. We conclude that Lemma 15 says that for any algebra, J−KA is a
homomorphism from (TΣ A, J−KTΣ A) to A.

In light of this remark, we mention two very similar results: given a set A, µΣ
A is

a homomorphism between TΣTΣ A and TΣ A, and given function f : A → B, TΣ f is a
homomorphism between TΣ A and TΣB.

Lemma 17. For any function f : A→ B, the following squares commute.19 19 Proof. We have already shown both these squares
commute. Indeed, (13) is an instance of (11) where
we identify µΣ

A with the interpretation J−KTΣ A as
explained in Remark 16, and (14) is the naturality
square (5).

TΣTΣTΣ A TΣTΣ A

TΣTΣ A TΣ

µΣ
TΣ A

TΣµΣ
A

µΣ
A

µΣ
A

(13)
TΣTΣ A TΣTΣB

TΣ TΣB

µΣ
A µΣ

B

TΣ f

TΣTΣB

(14)

Another consequence of (13) is that if you have a term in T n
Σ A for any n ∈ N,

there are (n− 1)! ways to flatten it20 by successively applying an instance of T i
Σ µΣ

T j
Σ A

20 There is 1 way to flatten a term in T 2
Σ A to one in

TΣ A, and there are n− 1 ways to flatten from T n
Σ A

to T (n−1)
Σ A. By induction, we find (n− 1)! possible

combinations of flattening T n
Σ A→ TΣ A.

with different i and j (i.e. flattening at different levels inside the term), but all these
ways lead to the same end result in TΣ A. It is like when you have an expression built
out of additions with possibly lots of nested bracketing, you can compute the sums
in any order you want and it will give the same result. That property of addition is
called associativity, and we will also say µΣ is associative.

Given a set E of equations, we say A satisfies E and write A ⊨ E if A ⊨ ϕ for all
ϕ ∈ E.21 A (Σ, E)-algebra is a Σ-algebra that satisfies E. We define Alg(Σ, E), the 21 Similarly for satisfaction under a particular assign-

ment ι:
A ⊨ι E⇐⇒ ∀ϕ ∈ E, A ⊨ι ϕ.

category of (Σ, E)-algebras, to be the full subcategory of Alg(Σ) containing only
those algebras that satisfy E. There is an evident forgetful functor U : Alg(Σ, E)→
Set which is the composition of the inclusion functor Alg(Σ, E) → Alg(Σ) and
U : Alg(Σ)→ Set.22 22 We will denote all the forgetful functors with the

symbol U unless we need to emphasize the distinc-
tion. However, thanks to the knowledge package,
you can click on (or hover) that symbol to check ex-
actly which forgetful functor it is referring to.

Examples 18. 1. With Σ = {p : 0}, there are morally only four different equations:23

23 Let us not formally argue about that here, but your
intuition on equality and the fact that terms in TΣX
are either x ∈ X or p should be enough to convince
you.

⊢ p = p, x ⊢ x = x, x ⊢ p = x, and x, y ⊢ x = y.

Any algebra A satisfies the first two equations because JpKι
A = JpKι

A, where
ι : ∅ → A is the only possible assignment,24 and JxKι

A = ι(x) = JxKι
A for all

24 We write nothing before the turnstile (⊢) instead
of the empty set ∅.

ι : {x} → A. If A satisfies the third, it means that A is a singleton because for
any a, b ∈ A, the assignments ιa = x 7→ a and ιb = x 7→ b give us25

25 We find a = b for any a, b ∈ A and A contains at
least one element, the interpretation of the constant
p, so A is a singleton.a = ιa(x) = JxKιa

A = JpKιa
A = JpKιb

A = JxKιb
A = ιb(x) = b.

If A satisfies the fourth equation, it is also a singleton because for any a, b ∈ A,
the assignment ι sending x to a and y to b gives us

a = ι(x) = JxKι
A = JyKι

A = ι(y) = b.

Therefore,26 there are only two things Alg(Σ, E) can be for any E, either it is all 26 Modulo the argument about these being all the
possible equations over Σ.of Alg(Σ), or it contains only the singletons.
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2. With Σ = {+ : 2, e : 0}, there are many more possible equations, but the following
three are quite famous:

x, y, z ⊢ x+(y+ z) = (x+ y)+ z, x, y ⊢ x+ y = y+ x, and x ⊢ x+ e = x. (15)

We already saw in Example 12 that the first asserts associativity of the interpre-
tation of +. With a similar argument, one shows that the second asserts J+K
is commutative, and the third asserts JeK is a neutral element (on the right) for
J+K.27 Moreover, note that a homomorphism of Σ-algebras from A to B is any 27 i.e. if A satisfies x ⊢ x + e = x, then for all a ∈ A,

J+KA(a, JeKA) = a.function h : A→ B that satisfies

∀a, a′ ∈ A, h(J+KA(a, a′)) = J+KB(h(a), h(a′)) and h(JeKA) = JeKB.

Namely, a homomorphism preserves the “addition” and its neutral element.
Thus, letting E be the set containing the three equations in (15), we find that
Alg(Σ, E) is the category CMon of commutative monoids and monoid homo-
morphisms.

3. We can add a unary operation symbol − to get Σ = {+ : 2, e : 0,− : 1}, and add
the equation x ⊢ x + (−x) = e to those in (15),28 and we can show that Alg(Σ, E) 28 While the signature has changed between the two

examples, the equations of (15) can be understood
over both signatures because they concern terms
constructed using the symbols common to both sig-
natures.

is the category Ab of abelian groups and group homomorphisms.

Definition 19 (Algebraic theory). Given a set E of equations over Σ, the algebraic
theory generated by E, denoted by Th(E), is the class of equations (over Σ) that are
satisfied in all (Σ, E)-algebras:29 29 Note that there is no guarantee that Th(E) is a

set (in fact it never is) because there is no set of all
equations (because the contexts can be any set).Th(E) = {X ⊢ s = t | ∀A ∈ Alg(Σ, E), A ⊨ X ⊢ s = t} .

Formulated differently, Th(E) contains the equations that are semantically entailed
by E, namely ϕ ∈ Th(E) if and only if

∀A ∈ Alg(Σ), A ⊨ E =⇒ A ⊨ ϕ.

Of course, Th(E) contains all of E,30 but also many more equations like x ⊢ x = x 30 Because a (Σ, E)-algebra satisfies E by definition.

which is satisfied by any algebra. We will see in §1.3 how to find which equations
are entailed by others.

We call a class of equations an algebraic theory if it equals Th(E) for some set E
of generating equations.

Example 20. If E contains the equations in (15), then Th(E) will contain all the
equations that every commutative monoid satisfies. Here is a non-exhaustive list:

• x ⊢ e+ x = x says that JeK is a neutral element on the left for J+K which is true
because, by equations in (15), it JeK is neutral on the right and J+K is commutative.

• z, w ⊢ z + w = w + z also states commutativity of J+K but with different variable
names.

• x, y, z, w ⊢(x + w) + (x + z) + (x + y) = ((x + x) + x) + (y + (z + (e + w))) is
just a random equation that can be shown using the properties of commutative
monoids.
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1.2 Free Algebras

Up to now we have not given a single concrete example of an algebra, we give here
a very special example.

Example 21 (Words). Let ΣMon = {· : 2, e : 0}, X = {a, b, · · · , z} be the set of (lower-
case) letters in the latin alphabet, and X∗ be the set of finite words using only these
letters.31 There is a natural ΣMon-algebra structure on X∗ where + is interpreted 31 We are talking about words in a mathematical

sense, so X∗ contains weird stuff like aczlp and the
empty word ε.

as concatenation, i.e. J·KX∗(u, v) = uv, and e as the empty word ε. This algebra
satisfies the equations defining a monoid given in (16).

EMon = {x, y, z ⊢ x · (y · z) = (x · y) · z, x ⊢ x · e = x, x ⊢ e · x = x} . (16)

In fact, X∗ is the free monoid over X. This means that for any other (ΣMon, EMon)-
algebra A and any function f : X → A, there exists a unique homomorphism
f ∗ : X∗ → A such that f ∗(x) = f (x) for all x ∈ X ⊆ X∗. This can be summarized
in the following diagram.

X X∗ X∗

A A

f ∗
f

f ∗

in Set in Alg(ΣMon ,EMon)

U (17)

The free (ΣMon, EMon)-algebra over any set is always32 the set of finite words over 32 We have to say up to isomorphism here if we want
to be fully rigorous. Let us avoid this bulkiness here
and later in most places where it can be inferred.

that set with · and e interpreted as concatenation and the empty word respectively.
At a first look, X∗ does not seem correlated to the operation symbols in ΣMon and

the equations in EMon, so it may seem hopeless to generalize this construction of
free algebra for an arbitrary Σ and E. It is possible however to describe the algebra
X∗ starting from ΣMon and EMon.

Recall that TΣMon X is the set of all terms constructed with the symbols in ΣMon

and the elements of X.33 Since we want the interpretation of e to be a neutral 33 For instance, it contains e, e · e, a · a, a · (r · (e · u)),
and so on.element for the interpretation of ·, we could identify many terms together like e

and e · e, in fact whenever a term has an occuence of e, we can remove it with no
effect on its interpretation in a (ΣMon, EMon)-algebra. Similarly, since we want · to
be interpreted as an associative operation, we could identify r · (s · m) and (r · s) · m,
and more generally, we can rearrange the parentheses in a term with no effect on
its interpretation in a (ΣMon, EMon)-algebra.

Squinting a bit, you can convince yourself that a ΣMon-term over X considered
modulo occurrences of e and parentheses is the same thing as a finite word in X∗.34 34 For instance, both r · (s · m) and (r · s) · m become

the word rsm and e, e · e and e · (e · e) all become the
empty word.

Under this correspondence, we find that the interpretation of · on X∗ (which was
concatenation) can be realized syntactically by the symbol ·. For example, the con-
catenation of the words corresponding to r · r and u · p is the word corresponding
to (r · r) · (u · p). The interpretation of e in X∗ is the empty word which corresponds
to e. We conclude that the algebra X∗ could have been described entirely using the
syntax of ΣMon and equations in EMon.
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We promptly generalize this to other signatures and sets of equations. Fix a
signature Σ and a set E of equations over Σ. For any set X, we can define a binary
relation ≡E on Σ-terms35 that contains the pair (s, t) whenever the interpretation of 35 We omit the set X from the notation as it would

be more bulky than illuminative.s and t coincide in any (Σ, E)-algebra. Formally, we have for any s, t ∈ TΣX,

s ≡ E t⇐⇒ X ⊢ s = t ∈ Th(E). (18)

We now show ≡ E is a congruence relation.

Lemma 22. For any set X, the relation ≡ E is reflexive, symmetric, transitive, and satisfies
for any op : n ∈ Σ and s1, . . . , sn, t1, . . . , tn ∈ TΣX,

∀1 ≤ i ≤ n, si ≡ E ti =⇒ op(s1, . . . , sn) ≡ E op(t1, . . . , tn). (19)

Proof. Briefly, reflexivity, symmetry and transitivity all follow from the fact that
equality satisfies these properties, and (19) follows from the fact that operation
symbols are interpreted as deterministic functions, so they preserve equality. We
detail this below.

(Reflexivity) For any t ∈ TΣX, and any Σ-algebra A, A ⊨ X ⊢ t = t because it
holds that JtKι

A = JtKι
A for all ι : X → A.

(Symmetry) For any s, t ∈ TΣX and A ∈ Alg(Σ), if A ⊨ X ⊢ s = t, then A ⊨
X ⊢ t = s. Indeed, if JsKι

A = JtKι
A holds for all ι, then JtKι

A = JsKι
A holds too.

Symmetry follows because if all (Σ, E)-algebras satisfy X ⊢ s = t, then they also
satisfy X ⊢ t = s.

(Transitivity) For any s, t, u ∈ TΣX, if all (Σ, E)-algebras satisfy X ⊢ s = t and
X ⊢ t = u, then they also satisfy X ⊢ s = u.36 Transitivity follows. 36 Just like for symmetry, it is because for any A ∈

Alg(Σ) and ι : X → A, JsKι
A = JtKι

A with JtKι
A =

JuKι
A imply JsKι

A = JuKι
A.

(19) For any op : n ∈ Σ, s1, . . . , sn, t1, . . . , tn ∈ TΣX, and A ∈ Alg(Σ), if A satisfies
X ⊢ si = ti for all i, then for any assignment ι : X → A, we have JsiKι

A = JtiKι
A for all

i. Hence,

Jop(s1, . . . , sn)Kι
A = JopKA(Js1Kι

A, . . . , JsnKι
A) by (6)

= JopKA(Jt1Kι
A, . . . , JtnKι

A) ∀i, JsiKι
A = JtiKι

A

= Jop(s1, . . . , sn)Kι
A by (6),

which means A ⊨ X ⊢ op(s1, . . . , sn) = op(t1, . . . , tn). This was true for all Σ-
algebras, so we can use the same arguments as above to conclude (19).

This lemma shows ≡ E is an equivalence relation, so we can define terms modulo
E. Given Σ, E and X, let TΣ,EX = TΣX/≡ E denote the set of Σ-terms modulo E.
We will write [−]E : TΣX → TΣ,EX for the canonical quotient map, so [t]E is the
equivalence class of t in TΣ,EX.

This yields a functor TΣ,E : Set → Set which sends a function f : X → Y to the
unique function TΣ,E f making (20) commute, i.e. satisfying TΣ,E f ([t]E) = [TΣ f (t)]E.
By definition, [−]E is also a natural transformation from TΣ to TΣ,E.

TΣX TΣ,EX

TΣY TΣ,EY

TΣ f

[−]E

TΣ,E f

[−]E

(20)
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Definition 23 (Term algebra, semantically). The term algebra for (Σ, E) on X is the
Σ-algebra whose carrier is TΣ,EX and whose interpretation of op : n ∈ Σ is defined
by37 37 This is well-defined (i.e. invariant under change

of representative) by (19).JopKTX([t1]E, . . . , [tn]E) = [op(t1, . . . , tn)]E. (21)

We denote this algebra by TΣ,EX or simply TX.

A main motivation behind this definition is that it makes [−]E : TΣX → TΣ,EX a
homomorphism,38 namely, (22) commutes. 38 Indeed, (21) looks exactly like (1) with h = [−]E,

A = TΣX and B = TX.

TΣTΣX TΣTΣ,EX

TΣX TΣ,EX

µΣ
X

TΣ [−]E

J−KTX

[−]E

(22)

Remark 24. We can understand Definition 23 a bit more abstractly. If A is a Σ-
algebra and R ⊆ A × A is a congruence39, then the quotient A/R inherits a Σ- 39 i.e. for all op : n ∈ Σ

∀i, (ai , bi) ∈ R =⇒ (op(a1, . . . , an), op(b1, . . . , bn)) ∈ R.algebra structure defined as in (21) ([a] denotes the equivalence class of a in A/R):

JopKA/R([a1], . . . , [an]) = [JopKA(a1, . . . , an)]. (23)

Then, TΣ,EX is the quotient of the algebra TΣX defined in Remark 16 by the congru-
ence ≡ E. From this point of view, one can give an equivalent defintion of ≡ E as
the smallest congruence on TΣX such that the quotient satisfies E.

It is very easy to “compute” in the term algebra because all operations are re-
alized syntactically, that is, only by manipulating symbols. Let us first look at the
interpretation of Σ-terms in TX, i.e. the function J−KTX : TΣTΣ,EX → TΣ,EX. It was
defined inductively to yield40 40 where t ∈ TΣX, op : n ∈ Σ, and t1, . . . , tn ∈ TΣTΣ,EX.

JηΣ
TΣ,EX([t]E)KTX = [t]E and Jop(t1, . . . , tn)KTX = JopKTX(Jt1KTX , . . . , JtnKTX). (24)

Remark 25. In particular, when E is empty, the set TΣ,∅X is TΣX quotiented by ≡ ∅,
but one can show that equivalence relation ≡ ∅ is equal to equality (=), i.e. Th(∅)

only contains equation of the form X ⊢ t = t.41 Therefore, TΣ,∅X = TΣX. Moreover, 41 For any other equation X ⊢ s = t where s and t
are not the same term, the Σ-algebra TΣX does not
satisfy because the assignment ηΣ

X : X → TΣX yields

JsK
ηΣ

X
TΣ X = s ̸= t = JtK

ηΣ
X
TΣ X .

since [−]∅ is the identity map, we find that (21) becomes the definition of the in-
terpretations given in Remark 16, so TΣ,∅X is the algebra on TΣX we had defined.
Also, we find the interpretation of terms J−KTΣ,∅X is the flattening.42

42 By Remark 16 or by comparing (24) when E = ∅
and µΣ

X .
Example 26. Let Σ = ΣMon and E = EMon be the signature and equations defnin-
ing monoids as explained in Example 21. We saw informally that TΣ,EX is in corre-
spondence with the set X∗ of finite words over X, and we already have a monoid
structure on X∗.43 Thus, we may wonder whether the term algebra TX describes 43 The interpretation of · and e is concatenation and

the empty word.the same monoid. Let us compute the interpretation of u · (v · w) where u = uu,
v = vv and w = www are words in X∗ ∼= TΣ,EX. First we use the inductive definition:

Ju · (v · w)KTX = J·KTX(JuKTX , Jv · wKTX) = J·KTX(JuKTX , J·KTX(JvKTX , JwKTX)).
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Next, we choose a representative for u, v, w ∈ TΣ,EX and apply the base step of the
inductive definition:

Ju · (v · w)KTX = J·KTX([u · u]E, J·KTX([v · v]E, [w · (w · w)]E)).

Finally, we can apply (21) a couple times to find

Ju · (v · w)KTX = J·KTX([u ·u]E, [(v ·v) · (w · (w ·w))]E) = [(u ·u) · ((v ·v) · (w · (w ·w)))]E,

which means that the word corresponding to Ju · (v · w)KTX is uuvvwww, i.e. the
concatenation of u, v and w.

In general (for other signatures), what happens when applying J−KTX to some
big term in TΣTΣ,EX can be decomposed in three steps.

1. Apply the inductive definition until you have an expression built out of many
JopKTX and JcKTX where op ∈ Σ and c is an equivalence class of Σ-terms.

2. Choose a representative for each such classes (i.e. c = [t]E).

3. Use (21) repeatedly until the result is just an equivalence class in TΣ,EX.

Working with terms in TΣTΣ,EX as trees whose leaves are labelled in TΣ,EX, J−KTX

replaces each leaf by the tree corresponding to a representative for the equivalence
class of the leaf’s label, and then returns the equivalence class of the resulting tree.
In this sense, J−KTX looks a lot like the flattening µΣ

X except it deals with equivalence
classes of terms. This motivates the definition of µΣ,E

X to be the unique function
making (25) commute.44 44 This guarantees µΣ,E

X satisfies the following equa-
tions that looks like the inductive definition of µΣ

X in
(4): for any t ∈ TΣX, µΣ,E

X ([[t]E]E) = [t]E and for any
op : n ∈ Σ and t1, . . . , tn ∈ TΣX,

µΣ,E
X ([op([t1]E, . . . , [tn]E)]E) = [op(t1, . . . , tn)]E.

Thanks to Remark 25, we can immediately see
that µΣ,∅

X = µΣ
X because [−]∅ is the identity, and

J−KTΣ,∅ X = µΣ
X .

TΣTΣ,EX TΣ,EX

TΣ,ETΣ,EX

J−KTX

[−]E µΣ,E
X

(25)

The first thing we showed when defining µΣ
X was that it yielded a natural transfor-

mation µΣ : TΣTΣ ⇒ TΣ. We can also do this for µΣ,E.

Proposition 27. The family of maps µΣ,E
X : TΣ,ETΣ,EX → TΣ,EX is natural in X.

Proof. We need to prove that for any function f : X → Y, the square below com-
mutes.

TΣ,ETΣ,EX TΣ,ETΣ,EY

TΣ,EX TΣ,EY

µΣ,E
X µΣ,E

Y

TΣ,ETΣ,E f

TΣ,E f

(26)

We can pave the following diagram.45 45 By paving a diagram, we mean to build a large
diagram out of smaller ones, showing all the smaller
one commute, and then concluding the bigger must
commute. We often refer parts of the diagram with
them letters written inside them, and explain how
each of them commutes one at a time.
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TΣTΣ,EX TΣ,ETΣ,EX TΣ,ETΣ,EY

TΣTΣ,EY

TΣ,ETΣ,EX TΣ,EX TΣ,EY

µΣ,E
Y

TΣ,ETΣ,E f

TΣ,E f

[−]E

J−KTX

µΣ,E
X

[−]E

TΣTΣ,E f
[−]E

J−KTY

(a)

(b) (c)
(d)

All of (a), (b) and (d) commute by definition. In more details, (a) is an instance of
(20) with X replaced by TΣ,EX, Y by TΣ,EY and f by TΣ,E f , and both (b) and (d) are
instances of (25). To show (c) commutes, we draw another diagram that looks like a
cube and where (c) is the front face. We can show all the other faces commute, and
then use the fact that TΣ[−]E is surjective (i.e. epic) to conclude that the front face
must also commute.46 46 In more details, the left and right faces commute

by (22), the bottom and top faces commute by (20),
and the back face commutes by (5).

The function TΣ[−]E is surjective (i.e. epic) because
[−]E is (it is a canonical quotient map) and functors
on Set preserve epimorphisms (if we assume the ax-
iom of choice). Thus, it suffices to show that TΣ[−]E
pre-composed with the bottom path or the top path
of the front face gives the same result.

Now it is just a matter of going around the cube
using the commutativity of the other faces. Here is
the complete derivation (we write which face was
used as justifications for each step).

TΣ,E f ◦ J−KTX ◦ TΣ[−]E
= TΣ,E f ◦ [−]E ◦ µΣ

X left

= [−]E ◦ TΣ f ◦ µΣ
X bottom

= [−]E ◦ µΣ
Y ◦ TΣTΣ f back

= J−KTY ◦ TΣ[−]E ◦ TΣTΣ f right

= J−KTY ◦ TΣTΣ,E f ◦ TΣ[−]E top

TΣTΣX TΣTΣY

TΣTΣ,EX TΣTΣ,EY

TΣX TΣY

TΣ,EX TΣ,EY
TΣ,E f

J−KTX

TΣTΣ,E f

J−KTY

TΣ [−]E

TΣTΣ f

TΣ [−]E

[−]E

TΣ f

[−]E

µΣ
X

µΣ
Y

The first diagram we paved implies (110) commutes because [−]E is surjective.

The front face of the cube is interesting on its own, it says that for any function
f : X → Y, TΣ,E f is a homomorphism from TΣ,EX to TΣ,EY. We redraw it below for
future reference.

TΣTΣ,EX TΣTΣ,EY

TΣ,EX TΣ,EY
TΣ,E f

J−KTX

TΣTΣ,E f

J−KTY (27)

Stating it like this may remind you of Lemma 15 and Remark 16. We will need a
variant of Lemma 15 for TΣ,E, but there is a slight obstacle due to types. Indeed,
given a Σ-algebra A we would like to prove a square like in (28) commutes.

TΣTΣ,E A TΣ A

TΣ,E A A

J−KTA

TΣJ−KA

J−KA

J−KA (28)

However, the arrows on top and bottom do not really exist, the interpretation
J−KA takes terms over A as input, not equivalence classes of terms. The quick fix is
to assume that A satisfies the equations in E. This means that J−KA is well-defined
on equivalence class of terms becuase if [s]E = [t]E, then A ⊢ s = t ∈ Th(E), so A
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satisfies that equation, and taking the assignment idA : A→ A, we obtain

JsKA = JsKidA
A = JtKidA

A = JtKA.

When A is a (Σ, E)-algebra, we abusively write J−KA for the interpretation of terms
and equivalence classes of terms as in (29).

TΣ A TΣ,E A

A
J−KAJ−KA

[−]E

(29)

Lemma 28. For any (Σ, E)-algebra A, the square (28) commutes.

Proof. Consider the following diagram that we can view as a triangular prism and
whose front face is (28). Both triangles commute by (29), the square face at the back
and on the left commutes by (22), and the square face at the back and on the right
commutes by (11). With the same trick as in the proof of Proposition 27 using the
surjectivity of TΣ[−]E, we conclude that the front face commutes.47 47 Here is the complete derivation.

J−KA ◦ J−KTA ◦ TΣ[−]E
= J−KA ◦ [−]E ◦ µΣ

A left

= J−KA ◦ µΣ
A bottom

= J−KA ◦ TΣJ−KA right

= J−KA ◦ TΣJ−KA ◦ TΣ[−]E top

Then, since TΣ[−]E is epic, we conclude that J−KA ◦
J−KTA = J−KA ◦ TΣJ−KA.

TΣTΣ A

TΣTΣ,E A TΣ A

TΣ A

TΣ,E A A

J−KTA

TΣJ−KA

J−KA

J−KA
[−]E J−KA

TΣ [−]E TΣJ−KA

µΣ
A

An important consequence of Lemma 15 was (13) saying that flattening is a ho-
momorphism from TΣ,∅TΣ,∅ A to TΣ,∅ A. This is also true when E is not empty, i.e.
µΣ,E

A is a homomorphism frmo TTA to TA.

Lemma 29. For any set A, the following square commutes.

TΣTΣ,ETΣ,E A TΣTΣ,E A

TΣ,ETΣ,E A TΣ,E A

J−KTA

µΣ,E
A

J−KTTA

TΣµΣ,E
A

(30)

Proof. We prove it exactly like Lemma 28 with the following diagram.48 48 The top and bottom faces commute by definition
of µΣ,E

A (25), the back-left face by (22), and the back-
right face by (11).

Then, TΣ[−]E is epic, so the following derivation
suffices.

µΣ,E
A ◦ J−KTTA ◦ TΣ[−]E
= µΣ,E

A ◦ [−]E ◦ µΣ
TΣ,E A left

= J−KTA ◦ µΣ
TΣ,E A bottom

= J−KTA ◦ TΣJ−KTA right

= J−KTA ◦ TΣµΣ,E
A ◦ TΣ[−]E top

TΣTΣTΣ,E A

TΣTΣ,ETΣ,E A TΣTΣ,E A

TΣTΣ,E A

TΣ,ETΣ,E A TΣ,E A

J−KTA

µΣ,E
A

J−KTTA

TΣµΣ,E
A

[−]E J−KTA

µΣ
TΣ,E A

TΣJ−KTATΣ [−]E
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In a moment, we will show that TΣ,EX is not only a Σ-algebra, but also a (Σ, E)-
algebra. This requires us to talk about satisfaction of equations, hence about the
interpretation of terms in some TΣY under an assignment σ : Y → TΣ,EX. By the
definition J−Kσ

TX = J−KTX ◦ TΣσ, and our informal description of J−KTX , we can
infer that JtKσ

TX is the equivalence class of the term t where all occurences of the
variable y have been substituted by a representative of σ(y).

In particular, this means that under the assignment σ : X → TΣ,EX that sends a
variable x to its equivalence class [x]E, the interpretation of a term t ∈ TΣX is [t]E.49 49 The representative chosen for σ(x) is x so the term

t is not modified.We prove this formally below.

Lemma 30. Let σ = X
ηΣ

X−→ TΣX
[−]E−−→ TΣ,EX be an assignment. Then, J−Kσ

TX = [−]E.

Proof. We proceed by induction. For the base case, we have

JηΣ
X(x)Kσ

TX = JTΣσ(ηΣ
X(x))KTX by (7)

= JTΣ[−]E(TΣηΣ
X(η

Σ
X(x)))KTX by Proposition 6

= JTΣ[−]E(ηΣ
TΣX(η

Σ
X(x)))KTX by (3)

= JηΣ
TΣ,EX([η

Σ
X(x)]E)KTX by (3)

= [ηΣ
X(x)]E by (24)

For the inductive step, if t = op(t1, . . . , tn), we have

JtKσ
TX = JTΣσ(t)KTX by (7)

= JTΣ[−]E(TΣηΣ
X(t))KTX by Proposition 6

= JTΣ[−]E(TΣηΣ
X(op(t1, . . . , tn)))KTX

= JTΣ[−]E(op(TΣηΣ
X(t1), . . . , TΣηΣ

X(tn)))KTX by (2)

= Jop(TΣ[−]E(TΣηΣ
X(t1)), . . . , TΣ[−]E(TΣηΣ

X(tn)))KTX by (2)

= JopKTX (JTΣ[−]E(TΣηΣ
X(t1))KTX , · · · , JTΣ[−]E(TΣηΣ

X(tn))KTX) by (24)

= JopKTX ([t1]E, · · · , [tn]E) I.H.

= [op(t1, . . . , tn)]E by (21)

We will denote that special assignment ηΣ,E
X = [−]E ◦ ηΣ

X : X → TΣ,EX.50 A quick
50 Note that ηΣ,E becomes a natural transformation
idSet → TΣ,E because it is the vertical composition
[−]E · ηΣ.

corollary of the previous lemma is that for any equation ϕ with context X, ϕ belongs
to Th(E) if and only if the algebra TΣ,EX satisfies it under the assignment ηΣ,E

X .

Lemma 31. Let s, t ∈ TΣX, X ⊢ s = t ∈ Th(E) if and only if TΣ,EX ⊨ηΣ,E
X X ⊢ s = t.51 51 Proof. By Lemma 30, we have

JsK
ηΣ,E

X
TX = [s]E and JtK

ηΣ,E
X

TX = [t]E,

then by definition of ≡ E, X ⊢ s = t ∈ E if and only
if [s]E = [t]E.

The interaction between µΣ and ηΣ is mimicked by µΣ,E and ηΣ,E.

Lemma 32. The following diagram commutes.

TΣ,EX TΣ,ETΣ,EX TΣ,EX

TΣ,EX

ηΣ,E
TΣ,EX

µΣ,E
X

TΣ,EηΣ,E
X

idTΣ,EXidTΣ,EX
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Proof. For the triangle on the left, we pave the following diagram.

Showing (31) commutes:

(a) Definition of ηΣ,E
X .

(b) Definition of J−KTX (24).

(c) Definition of µΣ,E
X (25).

TΣ,EX TΣTΣ,EX TΣ,ETΣ,EX

TΣ,EX
J−KTX

[−]E

µΣ,E
X

ηΣ
TΣ,EX

ηΣ,E
TΣ,EX

idTΣ,EX

(a)

(b)
(c) (31)

For the triangle on the right, we show that [−]E = µΣ,E
X ◦ TΣ,EηΣ,E

X ◦ [−]E by paving
(32), and we can conclude since [−]E is surjective (or epic) that idTΣ,EX = µΣ,E

X ◦
TΣ,EηΣ,E

X .

Showing (32) commutes:

(a) Definition of ηΣ,E
X and functoriality of TΣ,E.

(b) Naturality of [−]E (20).

(c) Naturality of [−]E again.

(d) Definition of µΣ
X (4).

(e) By (22).

(f) By (25).

TΣX TΣ,EX TΣ,ETΣX TΣ,ETΣ,EX

TΣTΣX TΣTΣ,EX

TΣX TΣ,EX

TΣ,E [−]E

µΣ,E
X

TΣ,EηΣ
X

TΣ,EηΣ,E
X

[−]E

TΣηΣ
X

[−]E

TΣ [−]E

[−]E

J−KTX
µΣ

X

[−]E

idTΣX (d)

(b)

(a)

(c)

(e)

(f)
(32)

We single out another special case of interpretation in a term algebra when E is
empty (recall from Remark 25 that TΣ,∅X is the algebra on TΣX whose interpretation
of op applies op syntactically).

Definition 33 (Substitution). Given a signature Σ, an empty set of equations, and
an assignment σ : Y → TΣX,52 we call J−Kσ

TX the substitution map, and we denote 52 We can identify TΣX with TΣ,∅X because ≡ ∅ is the
equality relation.it by σ∗ : TΣY → TΣX. We saw in Remark 25 that J−KTX = µΣ

X , thus substitution is

σ∗ = TΣY
TΣσ−−→ TΣTΣX

µΣ
X−→ TΣX. (33)

In words, σ∗ replaces the occurences of a variable y by σ(y).53 53 You may be more familiar with the notation
t[σ(y)/y] (e.g. from substitution in the λ-calculus).
An inductive definition can also be given: for any
y ∈ Y, σ∗(ηΣ

Y(y)) = σ(y), and

σ∗(op(t1, . . . , tn)) = op(σ∗(t1), . . . , σ∗(tn)).

That simple description makes substitution a little special, and the following
result has even deeper implications. It morally says that substitution preserves the
satisfaction of equations.

Lemma 34. Let Y ⊢ s = t be an equation, σ : Y → TΣX an assignment, and A a Σ-algebra.
If A satisfies Y ⊢ s = t, then it also satisfies X ⊢ σ∗(s) = σ∗(t).
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Proof. Let ι : X → A be an assignment, we need to show Jσ∗(s)Kι
A = Jσ∗(t)Kι

A.
Define the assignment ισ : Y → A that sends y ∈ Y to Jσ(y)Kι

A, we claim that
J−Kισ

A = Jσ∗(−)Kι
A. The lemma then follows because by hypothesis, JsKισ

A = JtKισ
A .

The following derivation proves our claim.

J−Kισ
A = J−KA ◦ TΣ(ισ) by (7)

= J−KA ◦ TΣ(Jσ(−)Kι
A) definition of ισ

= J−KA ◦ TΣ (J−KA ◦ TΣι ◦ σ) by (7)

= J−KA ◦ TΣJ−KA ◦ TΣTΣι ◦ TΣσ by Proposition 6

= J−KA ◦ µΣ
A ◦ TΣTΣι ◦ TΣσ by (11)

= J−KA ◦ TΣι ◦ µΣ
Y ◦ TΣσ by (5)

= J−KA ◦ TΣι ◦ σ∗ by (33)

= Jσ∗(−)Kι
A. by (7)

We are finally ready to show that TΣ,E A is a (Σ, E)-algebra.54 54 All the work we have been doing finally pays off.

Proposition 35. For any set A, the term algebra TΣ,E A satisfies all the equations in E.

Proof. Let X ⊢ s = t belong to E and ι : X → TΣ,E A be an assignment. We need to
show that JsKι

TA = JtKι
TA. We factor ι into55 55 This factoring is correct because

ι = idTΣ,E A ◦ ι

= µΣ,E
A ◦ ηΣ,E

TΣ,E A ◦ ι Lemma 32

= µΣ,E
A ◦ TΣ,E ι ◦ ηΣ,E

X . naturality of ηΣ,E

ι = X
ηΣ,E

X−−→ TΣ,EX
TΣ,E ι
−−→ TΣ,ETΣ,E A

µΣ,E
A−−→ TΣ,E A.

Now, Lemma 31 says that the equation is satisfied in TX under the assignment

ηΣ,E
X , i.e. that JsKηΣ,E

X
TX = JtKηΣ,E

X
TX . We also know by Lemma 14 that homomorphisms

preserve satisfaction, so we can apply it twice using the facts that TΣ,Eι and µΣ,E
A are

homomorphisms (by (27) and (30) respectively) to conclude that

JsKι
TA = JsKµΣ,E

A ◦TΣ,E ι◦ηΣ,E
X

TA = JtKµΣ,E
A ◦TΣ,E ι◦ηΣ,E

X
TA = JtKι

TA.

We now know that TΣ,EX belongs to Alg(Σ, E), in order to tie up the parallel with
Example 21, we will show that TΣ,EX is the free (Σ, E)-algebra over X.

Definition 36 (Free object). Let C and D be categories, U : D → C be a functor
between them, and X ∈ C0. A free object on X (with respect to U) is an object Y ∈
D0 along with a morphism i ∈ HomC(X, UY) such that for any object A ∈ D0 and
morphism f ∈ HomC(X, UA), there exists a unique morphism f ∗ ∈ HomD(Y, A)

such that U f ∗ ◦ i = f . This is summarized in the following diagram.56 56 This is almost a copy of (17).

X UY Y

UA A

i

U f ∗
f

f ∗

in C in D

U (34)

Proposition 37. Free objects are unique up to isomorphism, namely, if Y and Y′ are free
objects on X, then Y ∼= Y′.57 57 Very abstractly: a free object on X is the same

thing as an initial object in the comma category
∆(X) ↓ U, and initial objects are unique up to iso-
morphism.
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Proposition 38. For any set X, the term algebra TX is the free (Σ, E)-algebra on X.

Proof. Let A be another (Σ, E)-algebra and f : X → A a function. We claim that
f ∗ = J−KA ◦ TΣ,E f is the unique homomorphism making the following commute.

X TΣ,EX TX

A A

ηΣ,E
X

f ∗
f

f ∗

in Set in Alg(Σ,E)

U

First, f ∗ is a homomorphism because it is the composite of two homomorphisms
TΣ,E f (by (27)) and J−KA (by Lemma 28 since A satisfies E). Next, the triangle
commutes by the following derivation.

J−KA ◦ TΣ,E f ◦ ηΣ,E
X = J−KA ◦ ηΣ,E

A ◦ f naturality of ηΣ,E

= J−KA ◦ [−]E ◦ ηΣ
A ◦ f definition of ηΣ,E

= J−KA ◦ ηΣ
A ◦ f by (29)

= f definition of J−KA (6)

Finally, uniqueness follows from the inductive definition of TX and the homomor-
phism property. Briefly, if we know the action of a homomorphism on equivalence
classes of terms of depth 0, we can infer all of its action because all other classes of
terms can be obtained by applying operation symbols.58 58 Formally, let f , g : TX → A be two homomor-

phisms such that for any x ∈ X, f [x]E = g[x]E,
then, we can show that f = g. For any t ∈ TΣX,

we showed in Lemma 30 that [t]E = JtK
ηΣ,E

X
TX . Then

using (9), we have

f [t]E = JtK
f ◦ηΣ,E

X
A = JtK

g◦ηΣ,E
X

A = g[t]E,

where the second inequality follows by hypothesis
that f and g agree on equivalence classes of terms
of depth 0.

Once we have free objects, we have an adjunction, and once we have an ad-
junction, we have a monad, so we need to talk about monads. Unfortunately, our
univeral algebra spiel is not finished yet, we will get back to monads shortly.

1.3 Equational Logic

We were happy that interpretations in the term algebra are computed syntactically,
but there is a big caveat. Evertything is done modulo ≡ E which was defined in (18)
to morally contain all equations in Th(E), that is, all equations semantically implied
by E. Equational logic is a deductive system that allows to derive syntactically all
of Th(E) starting from E.

In Lemma 22, we proved that ≡ E is a congruence (i.e. reflexive, symmetric,
transitive, and invariant under operations), and in Lemma 34 we showed ≡ E is also
preserved by substitutions. This can help us syntactically derive Th(E) because,
for instance, if we know X ⊢ s = t ∈ E, we can conclude X ⊢ t = s ∈ Th(E) by
symmetry. Then, by transitivity, we can conclude that X ⊢ s = s ∈ Th(E), which
we already knew by reflexivity. This can be summarized with the inference rules of
equational logic in Figure 1.3.

The first four rules are fairly simple, and they essentially say that equality is
an equivalence relation that is preserved by operations. The Sub rule looks a bit
more complicated, it is named after the function σ∗ used in the conclusion which
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ReflX ⊢ t = t
X ⊢ s = t SymmX ⊢ t = s

X ⊢ s = t X ⊢ t = u TransX ⊢ s = u

op : n ∈ Σ ∀1 ≤ i ≤ n, X ⊢ si = ti Cong

X ⊢ op(s1, . . . , sn) = op(t1, . . . , tn)

σ : Y → TΣX Y ⊢ s = t
Sub

X ⊢ σ∗(s) = σ∗(t)

Figure 1.3: Rules of equational logic over the signa-
ture Σ, where X and Y can be any set, and s, t, u,
si and ti can be any terms in TΣX. As indicated in
the premises of the rules Cong and Sub, they can
be instantiated for any n-ary operation symbol and
for any function σ respectively.

we called substitution. Intuitively, it reflects the fact that variables in the context Y
are universally quantified. If you know Y ⊢ s = t holds, then you can replace each
variable y ∈ Y by σ(y) (which may even be a complex terms using new variables in
X), and you can prove that X ⊢ σ∗(s) = σ∗(t) holds. We did this in Lemma 34, and
the argument to extract from there is that the interpretation of σ∗(t) under some
assignment ι : X → A is equal to the interpretation of t under the assignment ισ
sending y ∈ Y to the interpretation of σ(y) under ι. Since satisfaction of Y ⊢ s = t
means satisfaction under any assignment (this is where universal quantification
comes in), we conclude that X ⊢ σ∗(s) = σ∗(t) must be satisfied.

Definition 39 (Derivation). A derivation59 of X ⊢ s = t in equational logic with
59 Many other definitions of derivation exist, and our
treatment of them will not be 100% rigorous.axioms E (a set of equations) is a finite rooted tree such that:

• all nodes are labelled by equations,

• the root is labelled by X ⊢ s = t,

• when an internal node (not a leaf) is labelled by ϕ and its children are labelled
by ϕ1, . . . , ϕn, there is a inference rule in Figure 1.3 which concludes ϕ from
ϕ1, . . . , ϕn, and

• all the leaves are either in E or instances of Refl, i.e. an equation Y ⊢ u = u for
some set Y and u ∈ TΣY.

Example 40. We write a derivation with the same notation used to specify the
inference rules in Figure 1.3. Consider the signature Σ = {+ : 2, e : 0} with E con-
taining the equations defining commutative monoids in (15). Here is a derivation
of x, y, z ⊢ x + (y + z) = z + (x + y) in equational logic with axioms E.

∈ E
x, y, z ⊢ x + (y + z) = (x + y) + z

σ =
x 7→ x + y
y 7→ z

∈ Ex, y ⊢ x + y = y + x

Sub

x, y, z ⊢(x + y) + z = z + (x + y)
Trans

x, y, z ⊢ x + (y + z) = z + (x + y)

Given any set of equations E, we denote by Th′(E) the class of equations that
can be proven from E in equational logic, i.e. ϕ ∈ Th′(E) if and only if there is a
derivation of ϕ in equational logic with axioms E.
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Our goal for the rest of this section is to prove that Th′(E) = Th(E). We say
that equational logic is sound and complete for (Σ, E)-algebras. Less concisely,
soundness means that whenever equational logic proves an equation ϕ with axioms
E, then ϕ is satisfied by all (Σ, E)-algebras, and completeness says that whenever
an equation ϕ is satisfied by all (Σ, E)-algebras, then there is a derivation of ϕ in
equational logic with axioms E.

Soundness is a straightforward consequence of earlier results.60 60 In the story we are telling here, the rules of equa-
tional logic were designed to be sound because we
knew some properties of ≡ E already. In general
when defining rules of a logic, we may use intu-
itions and later prove soundness to confirm them,
or realize that soundness does not hold and infirm
them.

Theorem 41 (Soundness). If ϕ ∈ Th′(E), then ϕ ∈ Th(E).

Proof. In the proof of Lemma 22, we proved that each of Refl, Symm, Trans, and
Cong are sound rules for a fixed arbitrary algebra. Namely, if A ∈ Alg(Σ) satisfies
the equations on top, then it satisfies the one on the bottom. Lemma 34 states the
same soundness property for Sub. This implies a weaker property: if all (Σ, E)-
algebras satisfy the equations on top, then they satisfy the one on the bottom.61 61 This is a classical theorem of first order logic:

(∀A.(PA⇒ QA))⇒ (∀A.PA⇒ ∀A.QA)Now, if ϕ ∈ Th′(E) was proven using equational logic and the axioms in E, then
since all A ∈ Alg(Σ, E) satisfy all the axioms, by repeatedly applying the weaker
property above for each rule in the derivation, we find that all A ∈ Alg(Σ, E) satisfy
ϕ, i.e. ϕ ∈ Th(E).

Completeness is a wilder beast we need to tame. The more classical proofs rely
on a theory of congruences. Our method is based on uniqueness free algebras
(Proposition 37). We will define an algebra exactly like TA but using the equality
relation induced by Th′(E) instead ≡ E which is induced by Th(E). We then show
that algebra is the free (Σ, E)-algebra and conclude that Th(E) and Th′(E) must
coincide (this proves soundness again).

Fix a signature Σ and a set E of equations over Σ. For any set X, we can define a
binary relation ≡′E on Σ-terms62 that contains the pair (s, t) whenever X ⊢ s = t can 62 Again, we omit the set X from the notation.

be proven in equational logic. Formally, we have for any s, t ∈ TΣX,

s ≡′E t⇐⇒ X ⊢ s = t ∈ Th′(E). (35)

We can show ≡′E is a congruence relation.

Lemma 42. For any set X, the relation ≡′E is reflexive, symmetric, transitive, and for any
op : n ∈ Σ and s1, . . . , sn, t1, . . . , tn ∈ TΣX,

∀1 ≤ i ≤ n, si ≡′E ti =⇒ op(s1, . . . , sn) ≡′E op(t1, . . . , tn). (36)

Proof. This is immediate from the presence of Refl, Symm, Trans, and Cong in
the rules of equational logic.

We write *− +E : TΣX → TΣX/≡′E for the canonical quotient map, so *t + E is the
equivalence class of t modulo the congruence ≡′E induced by equational logic.

Definition 43 (Term algebra, syntactically). The new term algebra for (Σ, E) on X
is the Σ-algebra whose carrier is TΣX/≡′E and whose interpretation of op : n ∈ Σ is
defined by63 63 This is well-defined (i.e. invariant under change

of representative) by (36).
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JopKT′X(*t1 + E, . . . , *tn + E) = *op(t1, . . . , tn) + E. (37)

We denote this algebra by T′Σ,EX or simply T′X.

We will prove this alternative definition of the term algebra coincides with TX.
First, we have to show that T′X belongs to Alg(Σ, E) like we did for TX in Propo-
sition 35, and we prove a technical lemma before that.

Lemma 44. Let ι : Y → TΣX/≡′E be an assignment. For any function σ : Y → TΣX
satisfying *σ(y) + E = ι(y) for all y ∈ Y, we have J−Kι

T′X = *σ∗(−) + E.

Proof. We proceed by induction. For the base case, we have by definition of the
interpretation of terms (6), definition of σ, and definition of σ∗ (33),

JηΣ
Y(y)K

ι
T′X

(6)
= ι(y) = *σ(y) + E

(33)
= *σ∗(ηΣ

Y(y)) + E.

For the inductive step, we have

Jop(t1, . . . , tn)Kι
T′X = JopKT′X(Jt1Kι

T′X , . . . , JtnKι
T′X) by (6)

= JopKT′X(*σ∗(t1) + E, . . . , *σ∗(tn) + E) I.H.

= *op(σ∗(t1), . . . , σ∗(tn)) + E by (37)

= *σ∗(op(t1, . . . , tn)) + E. definition of σ∗

Proposition 45. For any set X, T′X satisfies all the equations in E.

Proof. Let Y ⊢ s = t belong to E and ι : Y → TΣX/≡′E be an assignment. By the
axiom of choice,64 there is a function σ : Y → TΣX satisfying *σ(y) + E = ι(y) for 64 Choice implies the quotient map *− +E has a left

inverse r : TΣX/≡′E → TΣX, and we can then set
σ = r ◦ ι.

all y ∈ Y. Thanks to Lemma 44, it is enough to show *σ∗(s) + E = *σ∗(t) + E.65

65 By Lemma 44, it implies

JsKι
T′X = *σ∗(s) + E = *σ∗(t) + E = JtKι

T′X ,

and since ι was an arbitrary assignment, we con-
clude that T′X ⊨ Y ⊢ s = t.

Equivalently, by definition of *− +E and Th′(E), we can just exhibit a derivation of
X ⊢ σ∗(s) = σ∗(t) in equational logic with axioms E. This is rather simple because
that equation can be proven with the Sub rule instantiated with σ : Y → TΣX and
the equation Y ⊢ s = t which is an axiom.

Completeness of equational logic readily follows.

Theorem 46 (Completeness). If ϕ ∈ Th(E), then ϕ ∈ Th′(E).

Proof. Write ϕ = X ⊢ s = t ∈ Th(E). By Proposition 45 and definition of Th(E), we
know that T′X ⊨ ϕ. In particular, T′X satisfies ϕ under the assignment

ι = X
ηΣ

X−→ TΣX
*−+E−−−→ TΣX/≡′E,

namely, JsKι
T′X = JtKι

T′X . Moreover with σ = ηΣ
X , we can show σ satisfies the

hypothesis of Lemma 44 and σ∗ = idTΣX ,66 thus we conclude 66 We defined ι precisely to have *σ(x) + E = ι(x). To
show σ∗ = ηΣ

X
∗ is the identity, use (33) and the fact

that µΣ · ηΣTΣ = 1TΣ (it holds by definition (4)).*s + E = JsKι
T′X = JtKι

T′X = *t + E.

By definition of *− +E, this implies s ≡′E t which in turn means X ⊢ s = t belongs
to Th′(E).
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Note that because TX and T′X were defined in the same way in terms of Th(E)
and Th′(E) respectively, and since we have proven the latter to be equal, we obtain
that TX and T′X are the same algebra. In the sequel, we will work with TX mostly
but we may use the fact that s ≡ E t if and only if there is a derivation of X ⊢ s = t
in equational logic.

Remark 47. We have used the axiom of choice twice in proving completeness of
equational logic. That is only an artifact of our presentation that deals with arbitrary
contexts. Since terms are finite and operation symbols have finite arities, we can
make do with only finite contexts (which removes the need for choice). Formally,
one can prove by induction on the derivation that a proof of X ⊢ s = t can be
transformed into a proof of FV{s, t} ⊢ s = t which uses only equations with finite
contexts.67 You can also verify semantically that A satisfies X ⊢ s = t if and only if 67 We denoted by FV{s, t} the set of free variables

used in s and t. This can be defined inductively as
follows:

FV{ηΣ
X(x)} = {x}

FV{op(t1, . . . , tn)} = FV{t1} ∪ · · · ∪ FV{tn}
FV{t1, . . . , tn} = FV{t1} ∪ · · · ∪ FV{tn}.

Note that FV{−} applied to a finite set of terms is
always finite.

it satisfies FV{s, t} ⊢ s = t essentially because the extra variables have no effect on
the quantification of the free variables in s and t nor on the interpretation.

We mention now two related results for the sake of comparison when we intro-
duce quantitative equational logic. For any set X and variable y, the following rules
are derivable in equational logic.

X ⊢ s = t Add

X ∪ {y} ⊢ s = t
X ⊢ s = t y /∈ FV{s, t}

Del

X \ {y} ⊢ s = t

In words, Add says that you can always add a variable to the context, and Del

says you can remove a variable from the context when it is not used in the terms of
the equations. Both these rules are instances of Sub. For the first, take σ to be the
inclusion of X in X ∪ {y} (it may be the identity if y ∈ X). For the second, let σ send
y to whatever element of X \ {y} and all the other elements of X to themselves68, 68 When X is empty, the equations on the top and

bottom of Del coincide, so the rule is clearly deriv-
able.

then since y is not in the free variables of s and t, σ∗(s) = s and σ∗(t) = t.

1.4 Monads

Definition 48 (Monad). A monad on a category C is a triple (M, η, µ) comprised
of an endofunctor M : C → C and two natural transformations η : idC ⇒ M and
µ : M2 ⇒ M called the unit and multiplication respectively that make (38) and (39)
commute in [C, C].69 69 In equations, ie means for any object A ∈ C0, µA ◦

MηA = idA, µA ◦ ηMA = idA, and µA ◦ µMA = µA ◦
MµA.M M2 M

M

Mη

µ
1M

ηM

1M

(38)
M3 M2

M2 Mµ

Mµ

µM

µ (39)

In this chapter we will mostly talk about monads on Set, but it is good to keep
some arguments general for later. Here are some very important examples (for the
literature and especially for this manuscript).

Example 49 (Maybe). Suppose C has (binary) coproducts and a terminal object 1,
then (−+ 1) : C → C is a monad. It is called the maybe monad. We write inlX+Y
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(resp. inrX+Y) for the coprojection of X (resp. Y) into X + Y.70 First, note that for a 70 These notations are very common in the commu-
nity of programming language research, they stand
for injection left (resp. right). We may omit the su-
perscript in case it is too cumbersome.

morphism f : X → Y,

f + 1 = [inlY+1 ◦ f , inrY+1] : X + 1→ Y + 1.

The components of the unit are given by the coprojections, i.e. ηX = inlX+1 : X →
X + 1, and the components of the multiplication are

µX = [inlX+1, inrX+1, inrX+1] : X + 1 + 1→ X + 1.

Checking that (38) and (39) commute is an exercise in reasoning with coproducts. It
is much more interesting to give the intuition in Set where + is the disjoint union
and 1 is the singleton {∗}:71 71 This intuition should carry over well to many cat-

egories where the coproduct and terminal objects
have similar behaviors.• X + 1 is the set X with an additional (fresh) element ∗,

• the function f + 1 acts like f on X and sends the new element ∗ ∈ X to the new
element ∗ ∈ Y,

• the unit ηX : X → X + 1 is the injection (sending x ∈ X to itself),

• the multiplication µX acts like the identity on X and sends the two new elements
of X + 1 + 1 to the single new element X + 1,

• one can check (38) and (39) commute by hand because (briefly) x ∈ X is always
sent to x ∈ X and ∗ is always sent to ∗.

Example 50 (Powerset). The covariant non-empty finite powerset functor Pne :
Set → Set sends a set X to the set of non-empty finite subsets of X which we
denote by PneX. It acts on functions just like the usual powerset functor, i.e. given
a function f : X → Y, Pne f is the direct image function, it sends S ⊆ X to
f (S) = { f (x) | x ∈ S}.72 72 It is clear that f (S) is non-empty and finite when

S is non-empty and finite.One can show Pne is a monad with the following unit and multiplication:

ηX : X → Pne(X) = x 7→ {x} and µX : Pne(Pne(X))→ Pne(X) = F 7→
⋃
s∈F

s.

Example 51 (Distributions). The functor D : Set → Set sends a set X to the set of
finitely supported distributions on X:73 73 We will simply call them distributions.

D(X) := {φ : X → [0, 1] | ∑
x∈X

φ(x) = 1 and φ(x) ̸= 0 for finitely many x’s}.

We call φ(x) the weight of φ at x, and let supp(φ) denote the support of φ, that
is, supp(φ) contains all the elements x ∈ X such that φ(x) ̸= 0. On morphisms, D
sends a function f : X → Y to the function between sets of distributions defined by

D f : DX → DY = φ 7→

y 7→ ∑
x∈X, f (x)=y

φ(x)

 .
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In words, the weight of D f (φ) at y is equal to the total weight of φ on the preimage
of y under f .

One can show that D is a monad with unit ηX = x 7→ δx, where δx is the Dirac
distribution at x (the weight of δx is 1 at x and 0 everywhere else), and multiplication

µX = Φ 7→

x 7→ ∑
φ∈supp(Φ)

Φ(φ)φ(x)

 .

In words, the weight µX(Φ) at x is the average weight at x of distributions in the
support of Φ.

Monads have historically been the prevailing categorical approach to universal
algebra.74 This is due to a result of Linton [Lin66] stating that any algebraic theory 74 Although this has been changing, in part due to

[HP07] (and the articles leading to that paper, e.g.
[PP01, HPP06]) where the authors argue for using
Lawvere theories instead.

gives rise to a monad. Given a signature Σ and a set E of equations, the monad
Linton constructed is TΣ,E.

Proposition 52. The functor TΣ,E : Set→ Set defines a monad on Set with unit ηΣ,E and
multiplication µΣ,E. We call it the term monad for (Σ, E).

Proof. We have done most of the work already.75 We showed that ηΣ,E and µΣ,E are 75 In fact, we have done it twice because we showed
that TΣ,E A is the free (Σ, E)-algebra on A for every
set A, and that automatically yields (through ab-
stract categorical arguments) a monad sending A to
the carrier of TΣ,E A, i.e. TΣ,E A.

natural transformations of the right type in Footnote 50 and Proposition 27 respec-
tively, and we showed the appropriate instance of (38) commutes in Lemma 32. It
remains to prove (39) commutes which, instantiated here, means proving the fol-
lowing diagram commutes for every set A.

TΣ,ETΣ,ETΣ,E A TΣ,ETΣ,E A

TΣ,ETΣ,E A TΣ,E A

µΣ,E
A

µΣ,E
A

µΣ,E
TΣ,E A

TΣ,EµΣ,E
A

It follows from the following paved diagram.76 76 We know that (a), (b) and (c) commute by (25),
(20), and (25) respectively. This means that (d) pre-
composed by the epimorphism [−]E yields the outer
square. Moreover, we know the outer square com-
mutes by (30), therefore, (d) must also commute.

TΣTΣ,ETΣ,E A TΣTΣ,E A

TΣ,ETΣ,ETΣ,E A TΣ,ETΣ,E A

TΣ,ETΣ,E A TΣ,E A

J−KTA

µΣ,E
A

J−KTTA

TΣµΣ,E
A

[−]E

µΣ,E
TΣ,E A

TΣ,EµΣ,E
A

[−]E

µΣ,E
A

(a)

(b)

(d)

(c)

Note that when E is empty, we get a monad (TΣ, ηΣ, µΣ).77 77 Here is an alternative proof that TΣ is a monad.
We showed ηΣ and µΣ are natural in (3) and (5) re-
spectively. The right triangle of (38) commutes by
definition of µΣ (4), the left triangle commutes by
Lemma 9, and the square (39) commutes by (13).

It makes sense now to ask to go in the other direction, namely, given a monad,
how do we obtain a signature and a set of equations? First, just like (Σ, E)-algebras
are models of the theory (Σ, E), we can define models for a monad, which we also
call algebras.
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Definition 53 (M–algebra). Let (M, η, µ) be a monad on C, an M-algebra is a pair
(A, α) comprising an object A ∈ C0 and a morphism α : MA → A such that (40)
and (41) commute.

A MA

A
idA

ηA

α (40)
MMA MA

MA A

Mα

µA

α

α

(41)

We call A the carrier and we may write only α to refer to an M-algebra.

Definition 54 (Homomorphism). Let (M, η, µ) be a monad and (A, α) and (B, β)

be two M-algebras. An M-algebra homomorphism or simply M-homomorphism
from α to β is a morphism h : A→ B in C making (42) commute.

MA MB

A B

α

Mh

β

h

(42)

The composition of two M-homomorphisms is an M-homomorphism and idA

is an M-homomorphism from (A, α) to itself whenever α is an M-algebra, thus we
get a category of M-algebras and M-homomorphisms called the Eilenberg–Moore
category of M and denoted by EM(M).78 78 Named after the authors of the article introducing

that category [EM65].Since EM(M) was built from objects and morphisms in C, there is an obvious
forgetful functor UM : EM(M) → C sending an M-algebra (A, α) to its carrier A
and an M-homomorphism to its underlying morphism.

Example 55. We will see some more concrete examples in a bit, but we can mention
now that the similarities between the squares in the definitions of a monad (39), of
an algebra (41), and of a homomorphism (42) have a profound consquences. First,
for any A, the pair (MA, µA) is an M-algebra because (43) and (44) commute by the
properties of a monad.79 79 Explicitly, (43) is the component at A of the right

triangle in (38), and (44) is the component at A of
(39).MA MMA

MA

ηMA

µA
idMA

(43)
MMMA MMA

MMA MA

µAMµA

µA

µMA

(44)

Furthermore, for any M-algebra α : MA→ A, (41) (reflected through the diagonal)
precisely says that α is a M-homomorphism from (MA, µA) to (A, α). After a bit
more work80 we conclude that (MA, µA) is the free M-algebra (with respect to 80 Given an M-algebra (A′, α′) and a function f :

A → A′, we can show α′ ◦ M f is the unique M-
homomorphism such that α′ ◦M f ◦ ηA = f .

UM : EM(M)→ Set).

The terminology suggests that (Σ, E)-algebras and TΣ,E-algebras are the same
thing.81 Let us check this. 81 Also, Example 55 starts to confirm this if we com-

pare it with Remark 16, and Lemma 17.
Proposition 56. There is an isomorphism Alg(Σ, E) ∼= EM(TΣ,E).

Proof. Given a (Σ, E)-algebra A, we already explained in (29) how to obtain a
function J−KA : TΣ,E A → A which sends [t]E to the interpretation of the term t
under the trivial assignment ηΣ

A : A → TΣ A.82 Let us verify that J−KA is a TΣ,E- 82 That is well-defined because A satisfies all the
equations in Th(E).
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algebra. We need to show the following instances of (40) and (41) commutes.

A TΣ,E A

A

ηΣ,E
A

J−KAidA

TΣ,ETΣ,E A TΣ,E A

TΣ,E A A

J−KA

J−KA

TΣ,EJ−KA

µΣ,E
A

The triangle commutes by definitions,83 and the square commutes by the following. 83 We have JηΣ,E
A (a)KA = J[a]EKA = JaKA = a.

TΣTΣ,E A TΣ A

TΣ,ETΣ,E A TΣ,E A

TΣ,E A A

J−KTA

TΣJ−KA

J−KA

J−KA

[−]E

J−KA

[−]E

TΣ,EJ−KA

µΣ,E
A

(b)

(a)

(c)

(d)

Since the outer rectangle commutes by Lemma 28, (a) commutes by naturality of
[−]E (20), (b) commutes by definition of µΣ,E

A (25), and (d) commutes by (29), we can
conclude that (c) commutes because [−]E is epic.

We also already explained in Footnote 15 that any homomorphism h : A → B

makes the outer square below commutes.

TΣ A TΣB

TΣ,E A TΣ,E A

A B
J−KA

h

J−KA

TΣ,Eh

[−]E

J−KA J−KB

[−]E

TΣh

(a)

(b) (d)

(c)

Since (a), (b), and (d) commute by naturality of [−]E, (29), and (29) respectively,
we conclude that (c) commutes again because [−]E is epic. This means h is a TΣ,E-
homomorphism.

We obtain a functor84 P : Alg(Σ, E) → EM(TΣ,E) sending A = (A, J−KA) to 84 Checking functoriality is trivial because P acts like
the identity on morphisms.(A, αA) where αA = J−KA : TΣ,E A → A (we give it a different name to make the

sequel easier to follow).
In the other direction, given an algebra α : TΣ,E A → A, we define an algebra Aα

with the interpretation of op : n ∈ Σ given by

JopKα(a1, . . . , an) = α[op(a1, . . . , an)]E, (45)

and we can prove by induction that JtKα = α[t]E for any Σ-term t over A (note
that we use the TΣ,E-algebra properties of α).85 Now, if h : (A, α) → (B, β) is a 85 For the base case, we have

JaKα
(6)
= a

(40)
= α[ηΣ

A(a)]E = α[a]E.

For the inductive step, let t = op(t1, . . . , tn) ∈ TΣ A:

JtKα = Jop(t1, . . . , tn)Kα

= JopKα(Jt1Kα, . . . , JtnKα) (6)

= JopKα(α[t1]E, . . . , α[tn]E) I.H.

= α[op(α[t1]E, . . . , α[tn]E)]E (45)

= α[TΣα(op([t1]E, . . . , [tn]E))]E (2)

= α(TΣ,Eα[op([t1]E, . . . , [tn]E)]E) (20)

= α(µΣ,E
A [op([t1]E, . . . , [tn]E)]E) (40)

= α[op(t1, . . . , tn)]E (25)

= α[t]E.

TΣ,E-homomorphism, then h is a homomorphism from Aα to Bβ because for any
op : n ∈ Σ and a1, . . . , an ∈ A, we have

h(JopKα(a1, . . . , an)) = h(α[op(a1, . . . , an)]E) by (45)
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= β(TΣ,Eh[op(a1, . . . , an)]E) by (42)

= β[TΣh(op(a1, . . . , an))]E by (20)

= β[op(h(a1), . . . , h(an))]E by (2)

= JopKβ(h(a1), . . . , h(an)). by (45)

We obtain a functor P−1 : EM(TΣ,E)→ Alg(Σ, E) sending (A, α) to Aα.
Finally, we need to check that P and P−1 are inverses to each other, i.e. that

αAα = α and AαA
= A. For the former, αAα is defined to be the interpretation J−Kα

extended to terms modulo E, which we showed in Footnote 85 acts just like α. For
the latter, we need to show that J−KαA

and J−KA coincide. Using Footnote 85 for
the first equation and the definition of αA for the second, we have

JtKαA
= αA[t]E = JtKA.

We conclude P and P−1 are inverses, thus Alg(Σ, E) and EM(TΣ,E) are isomorphic.86 86 Observe that the functors P and P−1 commute
with the forgetful functors because they do not
change the carriers of the algebras.

What about algebras for other monads? Are they algebras for some signature Σ
and equations E.

Example 57 (Maybe). In Set, a (−+ 1)-algebra is a function α : A + 1→ A making
the following diagrams commute.

A A + 1

A

α
idA

ηA A + 1 + 1 A + 1

A + 1 Aα

α+1

µA

α

Reminding ourselves that ηA is the inclusion in the left component, the triangle
commuting enforces α to act like the identity function on all of A. We can also write
α = [idA, α(∗)].87 The square commuting ads no additional constraint. Thus, an 87 We identify the element α(∗) ∈ A with the func-

tion α(∗) : 1→ A picking out that element.algebra for the maybe monad on Set is just a set with a distinguished point. Let
h : A → B be a function, commutativity of (46) is equivalent to h(α(∗)) = β(∗).
Hence, a (− + 1)-homomorphism is a function that preserves the distinguished
point.

A + 1 B + 1

A B

[idA ,α(∗)] [idB ,β(∗)]

h

h+1

(46)

Seeing the distinguished point of a (− + 1)-algebra as the interpretation of a
constant, we recognize that the category EM(−+ 1) is isomorphic to the category
Alg(Σ) where Σ = {p : 0} contains a single constant.

An other option to recognize EM(−+ 1) as a category of algebras is via monad
isomorphisms.

Definition 58 (Monad morphism). Let (M, ηM, µM) and (N, ηN , µN) be two monads
on C. A monad morphism from M to N is a natural transformation ρ : M ⇒ N
making (47) and (48) commute.88 88 Recall that ρ ⋄ ρ denotes the horizontal composi-

tion of ρ with itself, i.e.

ρ ⋄ ρ = ρN ·Mρ = Nρ · ρM.
idC

M Nρ

ηM ηN (47)
MM NN

M Nρ

µM µN

ρ⋄ρ

(48)
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As expected ρ is called a monad isomorphism when there is a monad morphism
ρ−1 : N ⇒ M satisfying ρ · ρ−1 = 1N and ρ−1 · ρ = 1M. In fact, it is enough
that all the components of ρ are isomorphisms in C to guarantee ρ is a monad
isomorphism.89 89 One checks that natural isomorphisms are pre-

cisely the natural transformations whose compo-
nents are all isomorphisms, and that the inverse of
a monad morphism is automatically a monad mor-
phism.

Example 59. For the signature Σ = {p : 0}, the term monad TΣ is isomorphic to
− + 1. Indeed, recall that a Σ-term over A is either an element of A or p, this
yields a bijection ρA : TΣ A → A + 1 that sends any element of A to itself and p to
∗ ∈ 1. To verify that ρ is a monad morphism, we check these diagrams commute.90 90 All of them commute essentially because ρA and

both multiplications act like the identity on A.

TΣ A A + 1

TΣB B + 1

ρA

f+1TΣ f

ρB

(49)
A

TΣ A A + 1ρA

ηA
ηΣ

A
(50)

TΣTΣ A A + 1 + 1

TΣ A A + 1ρA

µAµΣ
A

ρTΣ A◦(ρA+1)

(51)

We obtained a monad isomorphism between the maybe monad and the term
monad for the signature Σ with only a constant. We can recover the isomorphism
between the categories of algebras EM(−+ 1) and Alg(Σ) from Example 57 with
the following result.

Proposition 60. If ρ : M ⇒ N is a monad morphism, then there is a functor −ρ :
EM(N)→ EM(M). If ρ is a monad isomorphism, then −ρ is also an isomorphism.

Proof. Given an N-algebra α : NA → A, we show that α ◦ ρA : MA → A is an
M-algebra by paving the following diagrams.

Showing (52) commutes:

(a) By (47).

(b) By (40) for α : NA→ A.

(c) By (48), noting that (ρ ⋄ ρ)A = ρNA ◦MρA.

(d) Naturality of ρ.

(e) By (41) for α : NA→ A.

A MA MMA MA

NA MNA NNA NA

A MA NA A

ηM
A

idA

ρA

α

ηN
A MρA

Mα

ρA α

ρA

α

µM
A

ρNA µN
A

Nα

(a)

(b)

(c)

(d) (e)

(52)

Moreover, if h : A → B is an N-homomorphism from α to β, then it is also a
M-homomorphism from α ◦ ρA to β ◦ ρB by the paving below.91 91 The top square commutes by naturality of ρ and

the bottom square commutes because h is an N-
homomorphism (42).MA MB

NA NB

A B

ρA

α

h

β
Nh

Mh

ρB

We obtain a functor −ρ : EM(N)→ EM(M) taking an algebra (A, α) to (A, α ◦ ρA)

and a homomorphism h : (A, α)→ (B, β) to h : (A, α ◦ ρA)→ (B, β ◦ ρB).
Furthermore, it is easy to see that −ρ = idEM(M) when ρ = 1M is the identity

monad morphism, and that for any other monad morphism ρ′ : N ⇒ L, −(ρ′ · ρ) =
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(−ρ) ◦ (−ρ′).92 Thus, when ρ is a monad isomorphism with inverse ρ−1, −ρ−1 is 92 In other words, the assignments M 7→ EM(M)
and ρ 7→ −ρ becomes a functor from the category
of monads on C and monad morphisms to the cate-
gory of categories.

the inverse of −ρ, so −ρ is an isomorphism.

With the monad isomorphism TΣ
∼= −+ 1 of Example 59, we obtain an isomor-

phism EM(−+ 1) ∼= EM(TΣ), and composing it with the isomorphism of Proposi-
tion 56 (instantiating E = ∅), we get back the result from Example 57 that algebras
for the maybe monad are the same thing as algebras for the signature with only a
constant.

This motivates the following definition.

Definition 61 (Set presentation). Let M be a monad on Set, an algebraic presenta-
tion of M is signature Σ and a set of equations E along with a monad isomorphism
ρ : TΣ,E

∼= M. We also say M is presented by (Σ, E).

We have proven in Example 59 that Σ = {p : 0} and E = ∅ is an algebraic
presentation for the maybe monad on Set. Here is a couple of additional examples.

Example 62 (Powerset). The powerset monad Pne is presented by the theory of semi-
lattices (ΣSLat, ESLat),93 where ΣSLat = {⊕ : 2} and ESLat contains the following 93 Usually, when we say “theory of X”, we mean that

Xs are the algebras for that theory. For instance,
semilattices are the (ΣSLat, ESLat)-algebras. After
some unrolling, we get the more common definition
of a semilattice, that is, a set with a binary operation
that is idempotent, commutative, and associative.

equations stating that ⊕ is idempotent, commutative and associative resepctively.

x ⊢ x = x⊕ x x, y ⊢ x⊕ y = y⊕ x x, y, z ⊢ x⊕ (y⊕ z) = (x⊕ y)⊕ z

In order to show this, we exhibit a monad isomorphism TΣSLat ,ESLat
∼= Pne.

Another thing we obtain from this isomorphism is that for any set X, interpreting
⊕ as union on PneX (i.e. (S, T) 7→ S ∪ T) yields the free semilattice on X.

Example 63 (Distributions). The distribution monad D is presented by the theory
of convex algebras (ΣCA, ECA) where ΣCA = {+p : 2 | p ∈ (0, 1)} and ECA contains
the following equations for all p, q ∈ (0, 1).

x ⊢ x = x +p x x, y ⊢ x +p y = y +1−p x

x, y, z ⊢(x +p y) +q z = x +pq +(y + p(1−q)
1−pq

z)

...

Remark 64. Not all monads on Set have an algebraic presentation. Linton also gave
in [Lin66] a characterization of which monads can be presented by a signature with
finitary operation symbols, such monads are aptly called finitary monads.

In Chapter 3, we will need to relate monads on different categories, we give a
some background on that here.

Definition 65 (Monad functor). Let (M, ηM, µM) be a monad on C, and (T, ηT , µT)

be a monad on D. A monad functor from M to T is a pair (F, λ) comprising a
functor F : C → D, and a natural transformation λ : TF ⇒ FM making (53) and
(54) commute. (Note the similarities with Definition 58.)

F

TF FM
λ

ηT F
FηM

(53)
TTF TFM FMM

TF FM
λ

µT F

Tλ λM

FµM (54)
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Proposition 66. If (F, λ) : M → T is a monad functor, then there is a functor F− ◦λ :
EM(M)→ EM(T) sending an M-algebra α : MA→ A to Fα ◦ λA : TFA→ A, and an
M-homomorphism h : A→ B to Fh : FA→ FB.94 94 By definition, the functor F − ◦λ lifts F along the

forgetful functors, namely, it makes (55) commute.

EM(M) EM(T)

C D

UM UT

F

F−◦λ

(55)

Proof. We need to show that Fα ◦ λ is a T-algebra. We pave the following diagrams
showing (40) and (41) commute respecitvely.

Showing (56) commutes:

(a) By (53).

(b) Apply F to (40).

(c) By (54).

(d) Naturality of λ.

(e) Apply F to (41).

FA TFA TTFA TFA

FMA TFMA FMMA FMA

FA TFA FMA FA

λA

Fα

λA Fα

µT
FA

TλA

TFα FMα

FµM
AλMA

ηT
FA

λA

Fα

idFA

FηM
A

(c)

(d) (e)

(a)

(b) (56)

Next, we need to show that when h : A → B is an M-homomorphism from α to
β, then Fh is a T-homomorphism from Fα ◦ λA to Fα ◦ λB. We pave the following
diagram where (a) commutes by naturality of λ and (b) by applying F to (42).

TFA TFB

FMA FMB

FA FB

λA

Fα

λB

Fβ

Fh

TFh

FMh

(a)

(b)

There are two special cases of monad functors. When M and T are on the same
category C and F = idC, a monad functor is just a monad morphism,95 and then 95 Sometimes, authors introduce monad functors

with the name monad morphism or monad map,
and take our notion of monad morphism as a par-
ticular instance. I keep the distinction here because
of the frequent usage of monad morphisms as in
Definition 58 in the adjacent literature.

the proof above reduces to the proof of Proposition 60. When λA is an identity
morphism for every A, i.e. TF = FM, we say that M is a monad lifting of T along
F. That notion is central to §3.4, where we redefine it in an even more specific
setting.
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2.1 L-Spaces

Definition 67 (Complete lattice). A complete lattice is a partially ordered set (L,≤
)96 where all subsets S ⊆ L have a infimum and a supremum denoted by inf S and 96 i.e. L is a set and ≤ ⊆ L× L is a binary relation on

L that is reflexive, transitive and antisymmetric.sup S respectively. In particular, L has a bottom element ⊥ = sup ∅ and a top
element ⊤ = inf ∅ that satisfy ⊥ ≤ ε ≤ ⊤ for all ε ∈ L. We use L to refer to the
lattice and its underlying set.

Let us describe two central (for this thesis) examples of complete lattices.

Example 68 (Unit interval). The unit interval [0, 1] is the set of real numbers be-
tween 0 and 1. It is a poset with the usual order≤ (“less than or equal”) on numbers.
It is usually an axiom in the definition of R97 that all non-empty bounded subsets 97 Or possibly a theorem proven after constructing

R.of real numbers have an infimum and a supremum. Since all subsets of [0, 1] are
bounded (by 0 and 1), we conclude that ([0, 1],≤) is a complete lattice with ⊥ = 0
and ⊤ = 1.

Later in this section, we will see elements of [0, 1] as distances between points
of some space. It would make sense, then, to extend the interval to contain values
bigger than 1. Still because a complete lattice must have a top element there must
be a number above all others. We could either stop at some arbitrary 0 ≤ B ∈ R

and consider [0, B], or we can consider ∞ to be a number as done below.98 98 If one needs negative distances, it is also possible
to work with any interval [A, B] with A ≤ B ∈ R, or
even [−∞, ∞]. We will stick to [0, 1] and [0, ∞].Example 69 (Extended interval). Similarly to the unit interval, the extended interval

is the set [0, ∞] of positive real numbers extended with ∞, and it is a poset after
asserting ε ≤ ∞ for all ε ∈ [0, ∞]. It is also a complete lattice because non-empty
bounded subsets of [0, ∞) still have an infimum and supremum, and if a subset is
not bounded above or contains ∞, then its supremum is ∞. We find that 0 is bottom
and ∞ is top.

It is the prevailing custom to consider distances valued in the extended interval.99 99 In fact, [0, ∞] is also famous under the name Law-
vere quantale because of Lawvere’s seminal paper
[Law02]. In that work, he used some structure on
[0, ∞] (now called a quantale) to give a categorical
definition very close to that of a metric, the most
accepted abstract notion of distance.

However, in our research, we preferred to use the unit interval for a very subtle and

https://www.youtube.com/watch?v=nKU7iz9RYV0
https://en.wikipedia.org/wiki/Quantale
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inconsequential reason (explained in ??), and that is why most examples will have
distances valued in [0, 1].

There are many other interesting complete lattices, although (unfortunately) they
are rarely viewed as possible places to value distances.

Example 70 (Booleans). The Boolean lattice B is the complete lattice containing
only two elements, bottom and top. Its name comes from the interpretation of ⊥ as
a false value and ⊤ as a true value which makes the infimum act like an AND and
the supremum like an OR.

Example 71 (Extended natural numbers). The set N∞ of natural numbers extended
with ∞ is a sublattice of [0, ∞].100 Indeed, it is a poset with the usual order and 100 As expected, a sublattice of (L,≤) is a set S ⊆

L closed under taking infimums and supremums.
Note that the top and bottom of S need not coincide
with those of L. For instance [0, 1] is a sublattice of
[0, ∞], but ⊤ = 1 in the former and ⊤ = ∞ in the
latter.

the infimum and supremum of a subset of natural numbers is either itself a natural
number of ∞ (when the subset is unbounded).

Example 72 (Powerset lattice). For any set X, we denote the powerset of X by P(X).
The inclusion relation ⊆ between subsets of X makes P(X) a poset. The infimum
of a family of subsets Si ⊆ X is the intersection ∩i∈ISi, and its supremum is the
union ∪i∈ISi. Hence, P(X) is a complete lattice. The bottom element is ∅ and the
top element is X.

It is well-known that subsets of X correspond to functions X → {⊥,⊤}.101 En- 101 A subset S ⊆ X is sent to the characteristic func-
tion χS, and a function f : X → B is sent to f−1(⊤).
We say that {⊥,⊤} is the subobject classifier of Set.

dowing the two-element set with the complete lattice structure of B is what yields
the complete lattice structure on P(X). The following example generalizes this
construction.

Example 73 (Function space). Given a complete lattice (L,≤), for any set X, we
denote the set of functions from X to L by LX . The pointwise order on functions
defined by

f ≤∗ g⇐⇒ ∀x ∈ X, f (x) ≤ g(x)

is a partial order on LX . The infimums and supremums of families of functions are
also computed pointwise.102 Namely, given { fi : X → L}i∈I , for all x ∈ X: 102 Taking L = B, we find that P(X) and BX are iso-

morphic as complete lattices under the usual corre-
spondence. Namely, pointwise infimums and supre-
mums become intersections and unions respectively.
For example, if χS, χT : X → B are the characteristic
functions of S, T ⊆ X, then

inf {χS, χT} (x) = ⊤ ⇔ χS(x) = χT(x) = ⊤
⇔ x ∈ S and x ∈ T

⇔ x ∈ S ∩ T.

(inf
i∈I

fi)(x) = inf
i∈I

fi(x) and (sup
i∈I

fi)(x) = sup
i∈I

fi(x).

This makes LX a complete lattice. The bottom element is the function that is constant
at ⊥ and the top element is the function that is constant at ⊤.

As a special case of function spaces, it is easy to show that when X is a set with
two elements, LX is isomorphic (as complete lattices) to the product L× L as defined
below.

Example 74 (Product). Let (L,≤L) and (K,≤K) be two complete lattices. Their
product is the poset (L× K,≤L×K) on the Cartesian product of L and K with the
order defined by

(ε, δ) ≤L×K (ε′, δ′)⇐⇒ ε ≤L ε′ and δ ≤K δ′. (57)
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It is a complete lattice where the infimums and supremums are computed coordi-
natewise, namely, for any S ⊆ L×K,103 103 Where πL and πK are the projections from L×K

to L and K respectively.

inf S = (inf{πL(c) | c ∈ S}, inf{πK(c) | c ∈ S}) and

sup S = (sup{πL(c) | c ∈ S}, sup{πK(c) | c ∈ S}).

The bottom (resp. top) element of L× K is the pairing of the bottom (resp. top)
elements of L and K. i.e. ⊥L×K = (⊥L,⊥K) and ⊤L×K = (⊤L,⊤K).

The following example is also based on functions and it appears in many works
on generalized notions of distances, e.g. [Fla97, HR13].

Example 75 (CDF). A cumulative distribution function104 (or CDF for short) is a
104 Although cumulative subdistribution function
might be preferred.function f : [0, ∞] → [0, 1] that is monotone (i.e. ε ≤ δ =⇒ f (ε) ≤ f (δ)) and

satisfies
f (δ) = sup{ f (ε) | ε < δ}. (58)

Intuitively, (58) says that f cannot abruptly change value at some x ∈ [0, ∞], but it
can do that “after” some x.105 For instance, out of the two functions below, only 105 This property is often called right-continuity.

f>1 is a CDF.

f≥1 = x 7→

0 x < 1

1 x ≥ 1
f>1 = x 7→

0 x ≤ 1

1 x > 1

We denote by CDF([0, ∞]) the subset of [0, 1][0,∞] containing all CDFs, it inherits
a poset structure (pointwise ordering), and we can show it is a complete lattice.106 106 Note however that CDF([0, ∞]) is not a sublat-

tice of [0, 1][0,∞] because the infimums are not always
taken pointwise. For instance, given 0 < n ∈N, de-
fine fn by (see them on Desmos)

fn(x) =


0 x ≤ 1− 1

n
nx 1− 1

n < x < 1
1 1 ≤ x

.

The pointwise infimum of { fn}n∈N clearly sends
everything below 1 to 0 and everything above and
including 1 to 1, so it does not satisfy f (1) =
supε<1 f (ε). We can find the infimum with the
general formula that defines infimums in terms of
supremums:

inf
n>0

fn = sup{ f ∈ CDF([0, ∞]) | ∀n > 0, f ≤∗ fn}.

We find that infn>0 fn = f>1.

Let { fi : [0, ∞] → [0, 1]}i∈I be a family of CDFs. We will show the pointwise
supremum supi∈I fi is a CDF, and that is enough since having all supremums im-
plies having all infimums.

• If ε ≤ δ, since all fis are monotone, we have fi(ε) ≤ fi(δ) for all i ∈ I which
implies

(sup
i∈I

fi)(ε) = sup
i∈I

fi(ε) ≤ sup
i∈I

fi(δ) = (sup
i∈I

fi)(δ).

• For any δ ∈ [0, ∞], we have

(sup
i∈I

fi)(δ) = sup
i∈I

fi(δ) = sup
i∈I

sup
ε<δ

fi(ε) = sup
ε<δ

sup
i∈I

fi(ε) = sup
ε<δ

(sup
i∈I

fi)(ε).

Nothing prevents us from defining CDFs on other domains, and we will write
CDF(L) for the complete lattice of functions L→ [0, 1] that are monotone and satisfy
(58). We could also change the codomain, but we will stick to [0, 1].

Definition 76 (L-space). Given a complete lattice L and a set X, an L-relation on X
is a function d : X × X → L. We refer to the pair (X, d) as an L-space, and we will
also use a single bold-face symbol X to refer to an L-space with underlying set X
and L-relation dX.107 The set X is called the carrier or the underlying set. 107 We will often switch between referring to spaces

with X or (X, dX), and we will try to match the sym-
bol for the space and the one for its underlying set
only modifying the former with mathbf.

https://www.desmos.com/calculator/fqcudbkqge
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A nonexpansive map from X to Y is a function f : X → Y between the underlying
sets of X and Y that satisfies

∀x, x′ ∈ X, dY( f (x), f (x′)) ≤ dX(x, x′). (59)

The identity maps idX : X → X and the composition of two nonexpansive maps are
always nonexpansive108, therefore we have a category whose objects are L-spaces 108 Fix three L-spaces X, Y and Z with two nonex-

pansive maps f : X → Y and g : Y → Z, we have by
nonexpansiveness of g then f :

dZ(g f (x), g f (x′)) ≤ dY( f (x), f (x′))

≤ dX(x, x′).

and morphisms are nonexpansive maps. We denote it by LSpa.
This category is concrete over Set with the forgetful functor U : LSpa → Set

which sends an L-space X to its carrier and a morphism to the underlying function
between carriers.

Remark 77. In the sequel, we will not distinguish between the morphism f : X→ Y
and the underlying function f : X → Y. Although, we may write U f for the latter,
when disambiguation is necessary.

Instantiating L for different complete lattices, we can get a feel for what the
categories LSpa look like. We also give concrete examples of L-spaces.

Examples 78 (Binary relations). When L = B, a function d : X× X → B is the same
thing as a subset of X × X, which is the same thing as a binary relation on X.109 109 Hence, the choice of terminology L-relation.

Then, a B-space is a set equipped with a binary relation, and we choose to have,
as a convention, d(x, y) = ⊥ when x and y are related and d(x, y) = ⊤ when they
are not.110 A nonexpansive map from X to Y is a function f : X → Y such that for 110 This convention might look backwards, but it

makes sense with the morphisms.any x, x′ ∈ X, f (x) and f (x′) are related when x and x′ are. When x and x′ are not
related, f (x) and f (x′) might still be related.111 The category BSpa is well-known 111 Note that this interpretation of nonexpansiveness

depends on our just chosen convention. Swapping
the meaning of d(x, y) = ⊤ and d(x, y) = ⊥ is the
same thing as taking the opposite order on B (i.e
⊤ ≤ ⊥), namely, morphisms become functions f :
X → Y such that for any x, x′ ∈ X, f (x) and f (x′)
are not related when neither are x and x′.

under different names, EndoRel in [Vig23], Rel in [AHS06] (although that name is
more commonly used for the category where relations are morphisms) and 2Rel in
my book. Here are a couple of fun examples of B-spaces:

1. Chess. Let P be the set of positions on a chess board (a2, d6, f3, etc.) and dB :
P × P → B send a pair (p, q) to ⊥ if and only if q is accessible from p in one
bishop’s move. The pair (P, dB) is an object of BSpa. Let dQ be the B-relation
sending (p, q) to ⊥ if and only if q is accessible from p in one queen’s move.
The pair (P, dQ) is another object of BSpa. The identity function idP : P → P
is nonexpansive from (P, dB) to (P, dQ) because whenever a bishop can go from
p to q, a queen can too. However, it is not nonexpansive from (P, dQ) to (P, dB)

because e.g. a queen can go from a1 to a2 but a bishop cannot.112 112 In other words, the set of valid moves for a bishop
is included in the set of valid moves for a queen, but
not vice versa.

2. Siblings. Let H be the set of all humans (me, Paul Erdős, my brother Paul, etc.)
and dS : H × H → B send (h, k) to ⊥ if and only if h and k are full siblings.113 113 Full siblings share the same biological parents.

The pair (H, dS) is an object of BSpa. Let d= be the B-relation sending (h, k)
to ⊥ if and only if h and k are the same person. The pair (H, d=) is another
object of BSpa. The function f : H → H sending h to their biological mother is
nonexpansive from (H, dS) to (H, d=) because whenever h and k are full siblings,
they have the same biologcial mother.



categorical foundations of quantitative algebraic reasoning 39

Examples 79 (Distances). The main examples of L-spaces in this thesis are [0, 1]-
spaces or [0, ∞]-spaces. These are sets X equipped with a function d : X×X → [0, 1]
or d : X × X → [0, ∞], and we can usually understand d(x, y) as the distance be-
tween two points x, y ∈ X. With this interpretation, a function is nonexpansive
when applying it never increases the distances between points.114 Let us give sev- 114 This is a justification for the term nonexpansive.

In the setting of distances being real-valued, another
popular term is 1-Lipschitz.

eral examples of [0, 1]- and [0, ∞]-spaces:

1. Euclidean. Probably the most famous notion of distance in mathematics is the
Euclidean distance on real numbers d : R×R → [0, ∞] = (x, y) 7→ |x− y|. The
distance between any two points is unbounded, but it is never ∞. The pair (R, d)
is an object of [0, ∞]Spa. Multiplication by r ∈ R is a nonexpansive function
r · − : (R, d)→ (R, d) if and only if r is between −1 and 1. Intuitively, a function
f : (R, d) → (R, d) is nonexpansive when its derivative at any point is between
−1 and 1.115 115 The derivatives might not exist, so this is just an

intuitive explaination.

2. Collaboration. Let H be the set of humans again. A collaboration chain between
two humans h and k is a sequence of scientific papers P1, . . . , Pn such that h is
a coauthor of P1, k is a coauthor of Pn and Pi and Pi+1 always have at least one
common coauthor. The collaboration distance d between two humans h and k is
the length of a shortest collaboration chain.116 For instance d(me, Paul Erdős) = 116 As conventions, the length of a chain is number

of papers, not humans. Also, d(h, k) = ∞ when no
such chain exists between h and k, except when h =
k, then d(h, h) = 0 (or we could say it is the length
of the empty chain from h to h).

4 as computed by csauthors.net on February 20th 2024:

me D. Petrişan M. Gehrke M. Erné P. Erdős
[PS21] [GPR16] [EGP07] [EE86]

The pair (H, d) is a [0, ∞]-space, but it could also be seen as a N∞-space (because
the length of a chain is always an integer).

3. Hamming. Let W be the set of words of the English language. If two words u and
v have the same number of letters, the Hamming distance d(u, v) between u and
v is the number of positions in u and v where the letters do not match.117 When 117 For instance d(carrot, carpet) = 2 because these

words differ only in two positions, the second and
third to last (r ̸= p and o ̸= e).

u and v are of different lengths, we let d(u, v) = ∞, and we obtain a [0, ∞]-space
(W, d). (It is also a N∞-space.)

Remark 80. As Examples 79 come with many important intuitions, we will often call
an L-relation d : X × X → L a distance function and d(x, y) the distance from x to
y,118 even when L is neither [0, 1] nor [0, ∞]. 118 The asymmetry in the terminology “distance

from x to y” is justified because, in general, noth-
ing guarantees d(x, y) = d(y, x).Examples 81. We give more examples of L-spaces to showcase the potential of our

abstract framework.

1. Diversion.119 Let J be the set of products available to consumers inside a vending 119 This example takes inspiration from the diversion
matrices in [CMS23], where they consider the auto-
mobile market in the U.S. instead of a vending ma-
chine.

machine (including a “no purchase” option), the second-choice diversion d(p, q)
from product p to product q is the fraction of consumers that switch from buying
p to buying q when p is removed (or out of stock) from the machine. That fraction
is always contained between 0 and 1, so we have a function d : J × J → [0, 1]
which makes (J, d) an object of [0, 1]Spa.120 120 Eventhough d is valued in [0, 1], calling it a dis-

tance function does not fit our intuition because
when d(p, q) is big, it means the products p and q
are probably very similar.

https://www.csauthors.net/distance/ralph-sarkis/paul-erdos
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2. Rank. Let P be the set of web pages available on the internet. In [BP98], the
authors introduce an algorithm to measure the importance of a page p ∈ P giving
it a rank R(p) ∈ [0, 1]. This data can be organized in a function dR : P× P→ [0, 1]
which assigns R(p) to a pair (p, p) and 0 (or 1) to a pair (p, q) with p ̸= q.121 121 The values dR(p, q) when p ̸= q are considered

irrelevant, so they are filled with an arbitrary value,
e.g. 0 or 1.

This yields a [0, 1]-space (P, dR).

The rank of a page varies over time (it is computed from the links between all
web pages which change quite frequently), so if we let T be the set of instants of
time, we can define d′R(p, p) to be the function of type T → [0, 1] which sends t
to the rank R(p) computed at time t.122 This makes (P, d′R) into a [0, 1]T-space. 122 Again, dR(p, q) can be set to some unimportant

constant value.
In order to create a search engine, we also need to consider the input of the user
looking for some web page.123 If U is the set of possible user inputs, we can 123 The rank of a Wikipedia page about ramen will be

lower when the user inputs “Genre Humaine” than
when they input “Ramen_Lord”.

define d′′R(p, p) to depend on U and T, so that (P, d′′R) is a [0, 1]U×T-space.

3. Collaboration (bis). In Examples 79, we defined the collaboration distance d :
H × H → N∞ that measures how far two people are from collaborating on a
scientific paper. We can define a finer measure by taking into account the total
number of people involved in the collaboration. It allows us to say you are closer
to Erdös if you wrote a paper with him and no one else than if you wrote a
paper with him and two additional coauthors. The distance d′ is now valued
in N∞ ×N∞, the first coordinate of d′(h, k) is d(h, k) the length of the shortest There may be cases where d′(h, k) = (4, 7) (a long

chain with few authors) and d′(h, k′) = (2, 16) (a
short chain with many authors). Then, with the
product of complete lattices defined in Example 74,
we could not compare the two distances. This is
unfortunate in this application, so we may want to
consider a different kind of product of complete lat-
tices. The lexicographical order on N∞ ×N∞ is

(ε, δ) ≤lex (ε′, δ′)⇔ ε ≤ ε′ or (ε = ε′ and δ ≤ δ′).

In words, you use the order on the first coordinates,
and only when they are equal, you use the order on
the second coordinates.

If L and K are complete lattices, (L×K,≤lex) is a
complete lattice where the infimum is not computed
pointwise, but rather

inf S = (inf πLS, sup{ε | ∀s ∈ S, (inf πLS, ε) ≤ s}).

collaboration chain between h and k, and the second coordinate of d′(h, k) is the
smallest total number of authors in a collaboration chain of length d(h, k). For
instance, according to csauthors.net on February 20th 2024, there are only two
chains of length four between me and Erdös, both involving (the same) seven
people, hence d′(me, Paul Erdös) = (4, 7).

Here is one last example further making the case for working over an abstract
complete lattice.

Example 82 (Hausdorff distance). Given an L-relation d on a set X, we define the
L-relation d↑ on non-empty finite subsets of X:

∀S, T ∈ PneX, d↑(S, T) = sup

{
sup
x∈S

inf
y∈T

d(x, y), sup
y∈T

inf
x∈S

d(x, y)

}
.

This distance is a variation of a metric defined by Hausdorff in [Hau14].124 It 124 Hausdorff considered positive real valued dis-
tances and compact subsets.measures how far apart two subsets are in three steps. First, we postulate that a

point x ∈ S and T are as far apart as x and the closest point y ∈ T. Then, the
distance from S to T is as big as the distance between the point x ∈ S furthest from
T. Finally, to obtain a symmetric distance, we take the maximum of the distance
from S to T and from T to S. As we expect from any interesting optimization
problem, there is a dual formulation given by the L-relation d↓.125 125 The notation was inspired by [BBKK18]. We write

πS(C) for {x ∈ S | ∃(x, y) ∈ C} and similarly for πT .
(We should really write PneπS(C) and PneπT(C).)

∀S, T ∈ PneX, d↓(S, T) = inf

{
sup

(x,y)∈C
d(x, y) | C ⊆ X× X, πS(C) = S, πT(C) = T

}

https://en.wikipedia.org/wiki/Ramen
https://www.youtube.com/watch?v=Y2hWi0fo97M
https://www.reddit.com/user/Ramen_Lord/
https://www.csauthors.net/distance/ralph-sarkis/paul-erdos
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To compare two sets with this method, you first need a binary relation C on X that
covers all and only the points of S and T in the first and second coordinate respec-
tively. Borrowing the terminology from probability theory, we call C a coupling of
S and T, it is a subset of X × X whose “marginals” are S and T. According to the
coupling, the distance between S and T is the biggest distance between a pair in the
coupling. Among all couplings of S and T, we take the smallest distance they give
to be d↓(S, T).

The first punchline of this example is that the two L-relations d↑ and d↓ coincide.

Proof. We show that for any S, T ∈ PneX, d↑(S, T) = d↓(S, T).126 126 Hardly adapted from [Mém11, Proposition 2.1].

(≤) For any coupling C ⊆ X× X, for any x ∈ S, there is at least one yx ∈ T such
that (x, yx) ∈ C so

sup
x∈S

inf
y∈T

d(x, y) ≤ sup
x∈S

d(x, yx) ≤ sup
(x,y)∈C

d(x, y).

After a symmetric argument, we find that d↑(S, T) ≤ sup(x,y)∈C d(x, y) for all cou-
plings, the first inequation follows.

(≥) For any x ∈ S, let yx ∈ T be a point in T that attains the infimum of d(x, y),127 127 It exists because T is non-empty and finite.

and note that our definition ensures d(x, yx) ≤ d↑(S, T). Symmetrically define xy

for any y ∈ T and let C = {(x, yx) | x ∈ S} ∪ {(xy, y) | y ∈ T}. It is clear that C is a
coupling of S and T, and by our choices of yx and xy, we ensured that

sup
(x,y)∈C

d(x, y) ≤ d↑(S, T),

therefore we found a coupling witnessing that d↓(S, T) ≤ d↑(S, T) as desired.

The second punchline of this example comes from instantiating it with the com-
plete lattice B. Recall that a B-relation d on X corresponds to a binary relation
Rd ⊆ X × X where x and y are related if and only if d(x, y) = ⊥. This seem-
ingly backwards convention makes it so that nonexpansive functions are those that
preserve the relation. Let us be careful about it while describing Rd↑ and Rd↓ .

Given S, T ∈ PneX and x ∈ S, notice that infy∈T d(x, y) = ⊥ if and only if d(x, y) =
⊥ for at least one y, or equivalently, if x is related by Rd to at least one y ∈ T. This

means the infimum behaves like an existential quantifier. Dually, the supremum
acts like a universal quantifier yielding128 128 Symmetrically,

sup
y∈T

inf
x∈S

d(x, y) = ⊥ ⇔ ∀y ∈ T, ∃x ∈ S, (x, y) ∈ Rd.
sup
x∈S

inf
y∈T

d(x, y) = ⊥ ⇐⇒ ∀x ∈ S, ∃y ∈ T, (x, y) ∈ Rd.

Combining with its symmetric counterpart, and noting that a binary universal
quantification is just an AND, we find that S and T are related by Rd↑ if and only if

∀x ∈ S, ∃y ∈ T, (x, y) ∈ Rd and ∀y ∈ T, ∃x ∈ S, (x, y) ∈ Rd. (60)

The relation Rd↑ is sometimes called the Egli–Milner extension of Rd as in [WS20]
and [GPA21].
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Given a coupling C of S and T, sup(x,y)∈X d(x, y) can only equal ⊥ when all pairs

(x, y) ∈ C are related by Rd. Then, if a coupling C ⊆ Rd exists, the infimum of d↓

will be ⊥. Therefore, S and T are related by Rd↓ if and only if

∃C ⊆ Rd, πS(C) = S and πT(C) = T. (61)

The relation Rd↓ is sometimes called the Barr lifting of Rd [Bar06].
Our proof above yields the equivalence between (60) and (61).129 129 That equivalence is folklore and has probably

been given as exercise to many students in a class
on bisimulation or coalgebras.While the categories BSpa, [0, 1]Spa and [0, ∞]Spa are interesting on their own,

they contain subcategories which are more widely studied. For instance, the cate-
gory Poset of posets and monotone maps is a full subcategory of BSpa where we
only keep B-spaces (X, d) where the binary relation corresponding to d is reflex-
ive, transitive and antisymmetric. Similarly, a [0, ∞]-space (X, d) where the distance
function satisfies the triangle inequality d(x, z) ≤ d(x, y) + d(y, z) and reflexivity
d(x, x) ≤ 0 is known as a Lawvere metric space [Law02].

The next section lays out the language we will use to state conditions as those
above on L-spaces. It implicitly relies on the following equivalent definition of L-
spaces.

Definition 83 (L-structure). Given a complete lattice L, an L-structure130 is a set X
130 We borrow the name “structure” from the very
abstract notion of relational structure used in
[FMS21, ?, ?].

equipped with a family of binary relations Rε ⊆ X× X indexed by ε ∈ L satisfying

• monotonicity in the sense that if ε ≤ ε′, then Rε ⊆ Rε′ , and

• continuity in the sense that for any I-indexed family of elements εi ∈ L,131 131 By monotonicity, Rδ ⊆ Rεi so the inclusion Rδ ⊆
∩i∈I Rεi always holds.⋂

i∈I
Rεi = Rδ, where δ = inf

i∈I
εi.

Intuitively132 (x, y) ∈ Rε should be interpreted as bounding the distance from x to 132 The proof of Proposition 85 will shed more light
on these objects by equating them with L-spaces.y above by ε. Then, monotonicity means the points that are at a distance below ε

are also at a distance below ε′ when ε ≤ ε′. Continuity means the points that are at
a distance below a bunch of bounds εi are also at a distance below the infimum of
those bounds infi∈I εi.

The names for these conditions come from yet another equivalent definition.133 133 This time more directly equivalent.

Organising the data of an L-structure into a function R : L→ P(X×X) sending ε to
Rε, we can recover monotonicity and continuity by seeing P(X × X) as a complete
lattice like in Example 72. Indeed, monotonicity is equivalent to R being a monotone
function between the posets (L,≤) and (P(X×X),⊆), and continuity is equivalent
to R preserving infimums. Seeing L and P(X × X) as posetal categories, we can
simply say that R is a continuous functor.134 134 Limits in a posetal category are always computed

by taking the infimum of all the points in the dia-
gram, so preserving limits and preserving infimums
is the same thing.

A morphism between two L-structures (X, {Rε}) and (Y, {Sε}) is a function f :
X → Y satisfying

∀ε ∈ L, ∀x, x′ ∈ X, (x, x′) ∈ Rε =⇒ ( f (x), f (x′)) ∈ Sε. (62)

This should feel similar to nonexpansive maps.135 Let us call LStr the category of 135 In words, (62) reads as: if x and x′ are at a dis-
tance below ε’ then so are f (x) and f (x′).L-structures.
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We give one trivial example, before proving that L-structures are just L-spaces.

Example 84. A consequence of continuity (take I = ∅) is that R⊤ is the full binary
relation X × X. Thefefore, taking L = 1 to be a singleton where ⊥ = ⊤, a 1-
structure is only a set (there is no choice for R), and a morphism is only a function
(the implication in (62) is always true because Sε = Y × Y). In other words, 1Str is
isomorphic to Set. Instantiating the next result (Proposition 85) means that 1Spa is
also isomorphic to Set, this is clear because there is only one function d : X×X → 1

for any set X. This example is relatively important because it means the theory we
develop later over an arbitrary category of L-spaces specializes to the case of Set.

Proposition 85. For any complete lattice L, the categories LSpa and LStr are isomor-
phic.136 136 This result is a stripped down version of [MPP17,

Theorem 4.3]
Proof. Given an L-relation (X, d), we define the binary relations Rd

ε ⊆ X× X by

(x, x′) ∈ Rd
ε ⇐⇒ d(x, x′) ≤ ε. (63)

This family satisfies monotonicity because for any ε ≤ ε′ we have

(x, x′) ∈ Rd
ε

(63)⇐⇒ d(x, x′) ≤ ε =⇒ d(x, x′) ≤ ε′
(63)⇐⇒ (x, x′) ∈ Rd

ε′ .

It also satisfies continuity because if (x, x′) ∈ Rεi for all i ∈ I, then d(x, x′) ≤ εi

for all i ∈ I. By defintion of infimum, we must have d(x, x′) ≤ infi∈I εi, hence
(x, x′) ∈ Rinfi∈I εi

. We conclude the forward inclusion (⊆) of continuity holds, the
converse (⊇) follows from monotonicity. Taking L = B, Proposition 85 gives back our inter-

pretation of BSpa as the category 2Rel from Ex-
amples 78. Indeed, a B-structure is just a set X
equipped with a binary relation R⊥ ⊆ X × X (be-
cause R⊤ is required to equal X × X), and mor-
phisms of B-structures are functions that preserve
that binary relation. This also justifies our weird
choice of d(x, y) = ⊥ meaning x and y are related.

Any nonexpansive map f : (X, d)→ (Y, ∆) in LSpa is also a morphism between
the L-structures (X, {Rd

ε }) and (Y, {R∆
ε }) because for all ε ∈ L and x, x′ ∈ X, we

have

(x, x′) ∈ Rd
ε

(63)⇐⇒ d(x, x′) ≤ ε
(59)
=⇒ ∆( f (x), f (x′)) ≤ ε

(63)⇐⇒ ( f (x), f (x′)) ∈ R∆
ε .

It follows that the assignment (X, d) 7→ (X, {Rd
ε }) is a functor F : LSpa → LStr

acting trivially on morphisms.
Given an L-structure (X, {Rε}), we define the function dR : X× X → L by

dR(x, x′) = inf
{

ε ∈ L | (x, x′) ∈ Rε

}
.

Note that monotonicity and continuity of the family {Rε} imply137 137 The converse implication (⇐) is by definition of
infimum. For (⇒), continuity says that

RdR(x,x′) =
⋂

ε∈L,(x,x′)∈Rε

Rε,

so RdR(x,x′) contains (x, x′), then by monotonicity,
dR(x, x′) ≤ ε implies Rε also contains (x, x′).

dR(x, x′) ≤ ε⇐⇒ (x, x′) ∈ Rε. (64)

This allows us to prove that a morphism f : (X, {Rε})→ (Y, {Sε}) is nonexpansive
from (X, dR) to (Y, dS) because for all ε ∈ L and x, x′ ∈ X, we have

dR(x, x′) ≤ ε
(64)⇐⇒ (x, x′) ∈ Rε

(62)
=⇒ ( f (x), f (x′)) ∈ Sε

(64)⇐⇒ dS( f (x), f (x′)) ≤ ε,

hence putting ε = d(x, x′), we obtain dS( f (x), f (x′)) ≤ dR(x, x′). It follows that the
assignment (X, {Rε}) 7→ (X, dR) is a functor G : LStr → LSpa acting trivially on
morphisms.

Observe that (63) and (64) together say that RdR
ε = Rε and dRd = d, so F and G

are inverses to each other on objects. Since both functors do nothing to morphisms,
we conclude that F and G are inverses to each other, and that LSpa ∼= LStr.
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2.2 Equational Constraints

It is often the case one wants to impose conditions on the L-spaces they consider.
For instance, recall that when L is [0, 1] or [0, ∞], L-spaces are sets with a notion
of distance between points. Starting from our intuition on the distance between
points of the space we live in, people have come up with several abstract condi-
tions they enforce on distance functions. For example, we can restate (with a slight
modification138) the axioms defining metric spaces. 138 The separation axiom is now divided in two, (66)

and (67).First, symmetry says that the distance from x to y is the same as the distance
from y to x:

∀x, y ∈ X, d(x, y) = d(y, x). (65)

Reflexivity, also called indiscernibility of identicals, says that the distance between
x and itself is 0 (i.e. the smallest distance possible):

∀x ∈ X, d(x, x) = 0. (66)

Identity of indiscernibles, also called Leibniz’s law, says that if two points x and y
are at distance 0, then x and y must be the same:

∀x, y ∈ X, d(x, y) = 0 =⇒ x = y. (67)

Finally, the triangle inequality says that the distance from x to z is always smaller
than the sum of the distances from x to y and from y to z:

∀x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z). (68)

There are also very famous axioms on B-spaces (X, d) that arise from viewing
the binary relation corresponding to d as some kind of order on elements of X.

First, reflexivity says that any element x is related to itself.139 Translating back 139 We abstract orders that look like the “smaller or
equal” order ≤ on say real numbers rather than the
strict order <.

to the B-relation, this is equivalent to:

∀x ∈ X, d(x, x) = ⊥. (69)

Antisymmetry says that if both (x, y) and (y, x) are in the order relation, then they
must be equal:

∀x, y ∈ X, d(x, y) = ⊥ = d(y, x) =⇒ x = y. (70)

Finally, transitivity says that if (x, y) and (y, z) belong to the order relation, then so
does (x, z):

∀x, y, z ∈ X, d(x, y) = ⊥ = d(y, z) =⇒ d(x, z) = ⊥. (71)

We can immediately notice that all the axioms (65)–(71) start with a universal
quantification of variables. A harder thing to see is that we never actually need to
talk about equality between distances. For instance, the equation d(x, y) = d(y, x)
in the axiom of symmetry (65) can be replaced by two inequations d(x, y) ≤ d(y, x)
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and d(y, x) ≤ d(x, y), and moreover since x and y are universally quantified, only
one of these inequations is necessary:

∀x, y ∈ X, d(x, y) ≤ d(y, x). (72)

If we rely on the equivalence between L-spaces and L-structures (Proposition 85),
we can transform (72) into a family of implications indexed by all ε ∈ L:140 140 Recall that (x, y) ∈ Rd

ε is the same thing as
d(x, y) ≤ ε. Hence, (72) and (73) are equivalent be-
cause requiring d(x, y) to be smaller than d(y, x) is
equivalent to requiring all upper bounds of d(y, x)
(in particular d(y, x) itself) to also be upper bounds
of d(x, y).

∀x, y ∈ X, (y, x) ∈ Rd
ε =⇒ (x, y) ∈ Rd

ε . (73)

Starting from the triangle inequality (68) and applying the same transformations
that got us from (65) to (73), we obtain a family of implications indexed by two
values ε, δ ∈ L:141 141 You can try to prove how (68) and (74) are equiv-

alent if the process of going from the former to the
latter was not clear to you.∀x, y, z ∈ X, (x, y) ∈ Rd

ε and (y, z) ∈ Rd
δ =⇒ (x, z) ∈ Rd

ε+δ. (74)

The last conceptual step is to make the L.H.S. of the implication part of the
universal quantification. That is, instead of saying “for all x and y, if P then Q”,
we say “for all x and y such that P, Q”. We do this by introducing a syntax very
similar to the equations of universal algebra. We fix a complete lattice (L,≤), but as
mentioned before, you can keep in mind the examples L = [0, 1] and L = [0, ∞].

Definition 86 (Quantitative equation). A quantitative equation (over L) is a tuple
comprising an L-space X called the context, two elements x, y ∈ X and optionally
an element ε ∈ L. We write these as X ⊢ x = y when no ε is given or X ⊢ x =ε y
when it is given.

An L-space A satisfies a quantitative equation

• X ⊢ x = y if for any nonexpansive assignment ι̂ : X→ A, ι̂(x) = ι̂(y).

• X ⊢ x =ε y if for any nonexpansive assignment ι̂ : X→ A, dA(ι̂(x), ι̂(y)) ≤ ε.

We use ϕ and ψ to refer to a quantitative equation, and we write A ⊨ ϕ when A
satisfies ϕ.142 We will also write A ⊨ι̂ ϕ when the equality ι̂(x) = ι̂(y) or the bound 142 Of course, satisfaction generalizes straightfor-

wardly to sets of quantitative equations, i.e. if Ê is
a set of quantitative equations, A ⊨ Ê means A ⊨ ϕ
for all ϕ ∈ Ê.

dA(ι̂(x), ι̂(y)) ≤ ε holds for a particular assignment ι̂ : X→ A.143

143 and not necessarily for all assignments.
Example 87 (Symmetry). With L = [0, 1] or L = [0, ∞], we want to translate (73)
into a quantitative equation. A first approximation would be replacing the relation
Rd

ε with our new syntax =ε to obtain something like

x, y ⊢ y =ε x =⇒ x =ε y.

We are not allowed to use implications like this, so we have implement the last step
mentioned above by putting the premise y =ε x into the context. This means we
need to quantify over variables x and y with a bound ε on the distance from y to x.

Note that when defining satisfaction of a quantitative equation, the quantification
happens at the level of assignments ι̂ : X → A. Hence, we have to find a context X
such that nonexpansive assignments X→ A correspond to choices of two elements
in A with the same bound ε on their distance.
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Let the context Xε be the L-space with two elements x and y such that dXε(y, x) =
ε and all other distances are ⊤ (⊤ is either 1 or ∞). A nonexpansive assignment
ι̂ : Xε → A is just a choice of two elements ι̂(x), ι̂(y) ∈ A satisfying dA(ι̂(y), ι̂(x)) ≤
ε.144 For all of these, we have to impose the condition dA(ι̂(x), ι̂(y)) ≤ ε. Therefore, 144 Indeed, since ⊤ is the top element of L, the other

values of dX being ⊤ means that they impose no
further condition on dA.

our quantitative equation is
Xε ⊢ x =ε y. (75)

For a fixed ε ∈ L, an L-space A satisfies (75) if and only if it satisfies (73). Hence,145 145 Recall our argument in Footnote 140.

if A satisfies that quantitative equation for all ε ∈ L, then it satisfies (65), i.e. the
distance dA is symmetric.

In practice, defining the context like this is more cumbersome than need be, so
we will define some syntactic sugar to remedy this. Before that, we take the time to
do another example.

Example 88 (Triangle inequality). Again with L = [0, 1] or L = [0, ∞], let the context
Xε,δ be the L-space with three elements x, y and z such that dXε,δ(x, y) = ε and
dXε,δ(y, z) = δ, and all other distances are ⊤. A nonexpansive assignment ι̂ : Xε,δ →
A is just a choice of three elements a = ι̂(x), b = ι̂(y), c = ι̂(z) ∈ A such that
dA(a, b) ≤ ε and dA(b, c) ≤ δ. Hence, if A satisfies

Xε,δ ⊢ x =ε+δ z, (76)

it means that for any such assignment, dA(a, c) ≤ ε + δ also holds. We conclude
that A satisifes (74). If A satisfies Xε,δ ⊢ x =ε+δ z for all ε, δ ∈ L, then A satisfies the
triangle inequality (68).

Notice that in the contexts Xε and Xε,δ, we only needed to set one or two distances
and all the others where the maximum they could be ⊤. In our syntactic sugar for
quantitative equations, we will only write the distances that are important (using
the syntax =ε), and we understand the underspecified distances to be as high as
they can be. For instance, (75) will be written146 146 We can understand this syntax as putting back

the information in the context into an implication.
For instance, you can read (77) as “if the distance
from y to x is bounded above by ε, then so is the
distance from x to y”.

y =ε x ⊢ x =ε y, (77)

and (76) will be written
x =ε y, y =δ z ⊢ x =ε+δ z. (78)

In this syntax, we call premises everything on the left of the turnstile ⊢ and conclu-
sion what is on the right.

More generally, when we write {xi =εi yi}i∈I ⊢ x =ε y (resp. {xi =εi yi}i∈I ⊢ x =

y), it corresponds to the quantitative equation X ⊢ x =ε y (resp. X ⊢ x = y), where
the context X contains the variables in147 147 Note that the xis, yis, x and y need not be distinct.

In fact, x and y almost always appear in the xis and
yis.X = {x, y} ∪ {xi | i ∈ I} ∪ {yi | i ∈ I},

and the L-relation is defined for u, v ∈ X by148 148 In words, the distance from u to v is the smallest
value ε such that u =ε v was a premise. If no such
premise occurs, the distance from u to v is ⊤. It
is rare that u and v appear several times together
(because u =ε v and u =δ v can be replaced with
u =inf{ε,δ} v), but our definition allows it.

dX(u, v) = inf{ε | u =ε v ∈ {xi =ε yi}i∈I}.

Here are some more translations:
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• (66) becomes ⊢ x =0 x,149 149 We write nothing to the left of the turnstile ⊢ in-
stead of writing ∅.

• (67) becomes x =0 y ⊢ x = y,

• (69) becomes ⊢ x =⊥ x,

• (70) becomes x =⊥ y, y =⊥ x ⊢ x = y, and

• (71) becomes x =⊥ y, y =⊥ z ⊢ x =⊥ z.

Remark 89. The translations of (66) and (69) look very close. In fact, noting that 0 is
the bottom element of [0, 1] and [0, ∞], the quantitative equation ⊢ x =⊥ x can state
the reflexivity of a distance in [0, 1] or [0, ∞] or the reflexivity of a binary relation.

Similarly, in the translation of the triangle inequality (78), if we let ε and δ range
over B and interpret + as an OR, we get three vacuous quantitative equations150 150 When either ε or δ equals ⊤, ε + δ = ⊤, but when

the conclusion of a quantitative equation is x =⊤ z,
it must be satisfied because ⊤ is an upper bound on
all distances by definition.

and the translation of (71) above. So transitivity and triangle inequality are the
same under this abstract point of view.151

151 These observations were probably folkloric since
at least the original publication of [Law02] in 1973.

Let us emphasize one thing about contexts of quantitative equations, they only
give constraints that are upper-bounds for distances. In particular, it can be very
hard to operate on the quantities in L non-monotonically. For instance, we will see
(after Definition 98) that we cannot read x =ε1 y, y =ε2 z, y =ε3 y ⊢ x =ε1+ε2−ε3 z as
saying that d(x, z) ≤ d(x, y) + d(y, z)− d(y, y), and one intuitive explaination is that
subtraction is not a monotone operation on [0, ∞]× [0, ∞].152 Another consequence 152 We work in L = [0, ∞] and d(y, y) might be non-

zero.is that an equation ϕ will always entail ψ when the latter has a “stricter” context,
that is, when the upper-bounds are smaller. We prove (a more general version of)
this below.

Lemma 90. Let f : X → Y be a nonexpansive map. If A satisfies X ⊢ x = y (resp.
X ⊢ x =ε y), then A satisfies Y ⊢ f (x) = f (y) (resp. Y ⊢ f (x) =ε f (y)).

Proof. Any nonexpansive assignment ι̂ : Y → A, yields a nonexpansive assignment
ι̂ ◦ f : X→ A. By hypothesis, we have

A ⊨ι̂◦ f X ⊢ x = y (resp. A ⊨ι̂◦ f X ⊢ x =ε y),

which means ι̂( f (x)) = ι̂( f (y)) (resp. dA(ι̂( f (x)), ι̂( f (y))) ≤ ε). Thus, we conclude

A ⊨ι̂ Y ⊢ f (x) = f (y) (resp. A ⊨ι̂ Y ⊢ f (x) =ε f (y)).

Let us continue this list of examples for a while, just in case it helps a reader
that is looking to translate an axiom into a quantitative equation. We will also give
some results later which could imply that reader’s axiom cannot be translated in
this language.

Examples 91. For any complete lattice L.

1. The strong triangle inequality states that d(x, z) ≤ max{d(x, y), d(y, z)}, it is
equivalent to the satisfaction of the following family of quantitative equations

∀ε, δ ∈ L, x =ε y, y =δ z ⊢ x =sup{ε,δ} z. (79)
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Let L = [0, 1] or L = [0, ∞].

1.

Let L = B.

1. A binary relation R on X× X is said to be functional if there are no two distinct
y, y′ ∈ X such that (x, y) ∈ R and (x, y′) ∈ R for a single x ∈ X. This is equivalent
to satisfying

x =⊥ y, x =⊥ y′ ⊢ y = y′. (80)

2. We say R ⊆ X × X is injective if there are no two distinct x, x′ ∈ X such that
(x, y) ∈ R and (x′, y) ∈ R for a single y ∈ X.153 This is equivalent to satisfying 153 Equivalently, the opposite (or converse) of R is

functional.

x =⊥ y, x′ =⊥ y ⊢ x = x′. (81)

You may try to formulate totality or surjectivity of a
binary relation with quantitative equations, but you
will find that difficult. We show in Examples 103

that it is not possible.
3. We say R ⊆ X × X is circular if whenever (x, y) and (y, z) belong to R, then so

does (z, x) (compare with transitivity (71)). This is equivalent to satisfying

x =⊥ y, y =⊥ z ⊢ z =⊥ x. (82)

That is enough concrete examples. We now turn to the study of subcategories
of LSpa that are defined via (sets of) quantitative equations. The most notable
examples are the categories Poset of posets and Met of (extended) metric spaces:

• Poset is the full subcategory of BSpa with all B-spaces satisfying reflexivity,
antisymmetry and transitivity stated as quantitative equations:

ÊPoset = {⊢ x =⊥ x, x =⊥ y, y =⊥ x ⊢ x = y, x =⊥ y, y =⊥ z ⊢ x =⊥ z} .

• Met is the full subcategory of [0, 1]Spa (taking [0, ∞] works just as well) with all
[0, 1]-spaces satisfying symmetry, reflexivity, identity of indiscernibles and trian-
gle inequality stated as quantitative equations: ÊMet contains all of the following

∀ε ∈ [0, 1], y =ε x ⊢ x =ε y

⊢ x =0 x

x =0 y ⊢ x = y

∀ε, δ ∈ [0, 1], x =ε y, y =δ z ⊢ x =ε+δ z.

Example 92.

Given a set Ê of quantitative equations, we can define a full subcategory of LSpa
that contains only those L-spaces that satisfy Ê, this is the category GMet(L, Ê)
whose objects we call generalized metric spaces or spaces for short. We also write
GMet(Ê) or GMet when the complete lattices L or the set Ê are fixed or irrelevant.
There is an evident forgetful functor U : GMet → Set which is the composition of
the inclusion functor GMet→ LSpa and U : LSpa→ Set.154 154 Recall that while we use the same symbol for both

forgetful functors, you can disambiguate them with
the hyperlinks.
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2.3 The Categories GMet

In this section, we study various properties of the categories of generalized metric
spaces. We fix a complete lattice L and a set of quantitative equations Ê throughout,
and denote by GMet the category of L-spaces that satisfy Ê.

The goal here is mainly to become familiar with L-spaces and quantitative equa-
tions, so not all results will be useful later. This also means we will often avoid the
use of some abstract results (many will be proved later) that can (sometimes drasti-
cally) simplify some proofs.155 In order to keep all the information about GMet in 155 For instance, we will see that U : GMet → Set is

a right adjoint, so it has many nice properties which
we could use in this section.

the same place, we will quickly mention at the end some natural things that can be
derived via the big theorems of Chapter 3.

We also take some time to identify some (well-known) conditions on L-spaces
that cannot be expressed via quantitative equations.156 These proofs are always in 156 Unfortunately, we cannot make an exhaustive list

since the literature on different notions of metric
spaces is too vast.

the same vein, we know GMet has some property, we show the class of L-spaces
with a condition does not have that property, hence that condition is not expressible
as a set of quantitative equations.

Products

The category GMet has all products. We prove this in three steps. First, we find
the terminal object, second we show LSpa has all products, and third we show the
products of L-spaces which all satisfy some quantitative equation also satisfies that
quantitative equation.

Proposition 93. The category GMet has a terminal object.

Proof. The terminal object 1 in LSpa is relatively easy to find,157 it is a singleton 157 Again, many abstract results could help guide
our search, but it is enough to have a bit of intuition
about L-spaces.

{∗} with the L-relation d1 sending (∗, ∗) to ⊥. Indeed, for any L-space X, we have a
function ! : X → ∗ that sends any x to ∗, and because d1(∗, ∗) = ⊥ ≤ dX(x, x′) for
any x, x′ ∈ X, ! is nonexpansive. We obtain a morphism ! : X → 1, and since any
other morphism X→ 1 must have the same underlying function158, ! is the unique 158 Because {∗} is terminal in Set.

morphism of this type.
Since GMet is a full subcategory of LSpa, it is enough to show 1 is in GMet to

conclude it is the terminal object in this subcategory. We can do this by showing 1
satisfies absolutely all quantitative equations, and in particular those of Ê.159 Let 159 Which defined GMet at the start of this section.

X be any L-space, x, y ∈ X and ε ∈ L. As we have seen above, there is only one
assignment ι̂ : X→ 1, and it sends x and y to ∗. This means

ι̂(x) = ∗ = ι̂(y) and d1(ι̂(x), ι̂(y)) = d1(∗, ∗) = ⊥ ≤ ε.

Therefore 1 satisfies both X ⊢ x = y and X ⊢ x =ε y.

Proposition 94. The category LSpa has all products.

Proof. Let {Ai = (Ai, di) | i ∈ I} be a family of L-spaces indexed by I. We define the
L-space A = (A, d) with carrier A = ∏i∈I Ai (the Cartesian product of the carriers)
and L-relation d : A× A→ L defined by the following supremum:160 160 For a ∈ A, we write ai the ith coordinate of a.
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∀a, b ∈ A, d(a, b) = sup
i∈I

di(ai, bi). (83)

For each i ∈ I, we have the evident projection πi : A→ Ai sending a ∈ A to ai ∈ Ai,
and it is nonexpansive because, by definition, for any a, b ∈ A,

di(ai, bi) ≤ sup
i∈I

di(ai, bi) = d(a, b).

We will show that A with these projections is the product ∏i∈I Ai.
Let X be some L-space and fi : X→ Ai be a family of nonexpansive maps. By the

universal property of the product in Set, there is a unique function ⟨ fi⟩ : X → A
satisfying πi ◦ ⟨ fi⟩ = fi for all i ∈ I. It remains to show ⟨ fi⟩ is nonexpansive from X
to A. For any x, x′ ∈ X, we have161 161 The equation holds because the ith coordinate of

⟨ fi⟩(x) is fi(x) by definition of ⟨ fi⟩, and the inequa-
tion holds because for all i ∈ I, di( fi(x), fi(x′)) ≤
dX(x, x′) by nonexpansiveness of fi .

d(⟨ fi⟩(x), ⟨ fi⟩(x′)) = sup
i∈I

di( fi(x), fi(x′)) ≤ dX(x, x′).

Note that a particular case of this construction for I being empty is the terminal
object 1 from Proposition 93. Indeed, the empty Cartesian product is the singleton,
and the empty supremum is the bottom element ⊥.

In order to show that satisfaction of a quantitative equation is preserved by the
product of L-spaces, we first prove a simple lemma.

Lemma 95. Let ϕ be a quantitative equation with context X. If f : A→ B is a nonexpan-
sive map and A ⊨ι̂ ϕ for an assignment ι̂ : X→ A, then B ⊨ f ◦ι̂ ϕ.

Proof. There are two very similar cases. If ϕ is of the form X ⊢ x = y, we have162 162 The equivalences hold by definition of ⊨.

A ⊨ι̂ ϕ⇐⇒ ι̂(x) = ι̂(y) =⇒ f ι̂(x) = f ι̂(y)⇐⇒ B ⊨ f ◦ι̂ ϕ.

If ϕ is of the form X ⊢ x =ε y, we have163 163 The equivalences hold by definition of ⊨, and the
implication holds by nonexpansiveness of f .

A ⊨ι̂ ϕ⇐⇒ dA(ι̂(x), ι̂(y)) ≤ ε =⇒ dB( f ι̂(x), f ι̂(y)) ≤ ε⇐⇒ B ⊨ f ◦ι̂ ϕ.

Proposition 96. If all L-spaces Ai satisfy a quantitative equation ϕ, then ∏i∈I Ai ⊨ ϕ.

Proof. Let A = ∏i∈I Ai and X be the context of ϕ. It is enough to show that for any
assignment ι̂ : X→ A, the following equivalence holds:164 164 When I is empty, the L.H.S. of (84) is vacuously

true, and the R.H.S. is true since A is the termi-
nal object of L-space which we showed satisfies all
quantitative equations in Proposition 93.

(
∀i ∈ I, Ai ⊨

πi◦ι̂ ϕ
)
⇐⇒ A ⊨ι̂ ϕ. (84)

The proposition follows because if Ai ⊨ ϕ for all i ∈ I, then the L.H.S. holds for any
ι̂, hence the R.H.S. does too, and we conclude A ⊨ ϕ. Let us prove (84).

(⇒) Consider the case ϕ = X ⊢ x = y. The satisfaction Ai ⊨ ϕ means πi ι̂(x) =

πi ι̂(y). If it is true for all i ∈ I, then we must have ι̂(x) = ι̂(y) by universality of the
product, thus we get A ⊨ι̂ ϕ. In case ϕ = X ⊢ x =ε y, the satisfaction Ai ⊨ ϕ means
dAi (πi ι̂(x), πi ι̂(y)) ≤ ε. If it is true for all i ∈ I, we get A ⊨ ϕ because

dA(ι̂(x), ι̂(y)) = sup
i∈I

dAi (πi ι̂(x), πi ι̂(y)) ≤ ε.

(⇐) Apply Lemma 95 for all πi.
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Corollary 97. The category GMet has all products, and they are computed like in LSpa.165 165 We showed that products in LSpa of objects in
GMet also belong to GMet, it follows that this is
also their products in GMet because the latter is a
full subcategory of LSpa.

Unfortunately, this means that the notion of metric space originally defined in
[Fré06], and incidentally what the majority of mathematicians calls metric spaces,
are not instances of generalized metric spaces as we defined them. Since they only
allow finite distances, some infinite products do not exist.166 In general, if one wants 166 For instance let An be the metric space with two

points {a, b} at distance n > 0 ∈N from each other.
Then A = ∏n>0∈N An exists in [0, ∞]Spa as we have
just proven, but

dA(a∗, b∗) = sup
n>0∈N

dAn (a, b) = sup
n>0∈N

n = ∞,

which means A is not a metric space in the sense of
[Fré06].

to bound the distance above by some B ∈ L, this can be done with the equation
⊢ x =B y, but the value B is still allowed as a distance. For instance [0, 1]Spa is the
full subcategory of [0, ∞]Spa defined by the equation ⊢ x =1 y.

Arguably, this is only a superficially negative result since it is already common in
parts of the literature [?] to allow infinite distances because the resulting category of
metric spaces has better properties (like having infinite products and coproducts).
There are some other conditions that one would like to impose on [0, ∞]-spaces
which are not even preserved under finite products. We give two examples arising
under the terminology partial metric.

Definition 98. An [0, ∞]-space (A, d) is called a partial metric space if it satisfies
the following condiditons [Mat94, Definition 3.1]:167 167 There is some ambiguity in what + and − means

when dealing with ∞ (the original paper supposes
distances are finite), but it is rather unimportant to∀a, b ∈ A, a = b⇐⇒ d(a, a) = d(a, b) = d(b, b) (85)

∀a, b ∈ A, d(a, a) ≤ d(a, b) (86)

∀a, b ∈ A, d(a, b) = d(b, a) (87)

∀a, b, c ∈ A, d(a, c) ≤ d(a, b) + d(b, c)− d(b, b) (88)

These conditions look similar to what we were able to translate into equations
before, but the first and last are problematic. We can translate (86) into x =ε y ⊢ x =ε

x, (87) is just symmetry which we can translate into y =ε x ⊢ x =ε y.
For (85), note that the forward implication is trivial, but for the converse, we

would need to compare three distances inside the context, which seems impossible
because the context only bounds distances by above. For (88), the problem comes
from the minus operation on distances which will not interact well with our only
possibility of bounding by above. Indeed, if we tried something like x =ε1 y, y =ε2

z, y =ε3 y ⊢ x =ε1+ε2−ε3 z, we could always take ε3 really big (even ∞) and make the
distance between x and z as close to 0 as we would like.

These are just informal arguments, but thanks to Corollary 97, we can prove
formally that these conditions are not expressible as (sets of) quantitative equations.
Let A and B be the [0, ∞]-spaces pictured below (the distances are symmetric).168 168 The numbers on the lines indicate the distance

between the ends of the line, e.g. dA(a1, a1) = 0,
dA(a1, a3) = 1, and dB(b2, b3) = 10.

A =

a1

a2

a3

10

0

1

10

10

0

B = b1 b2 b3
10

0

15

10

5 0
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We can verify (by exhaustive checks) that A and B are partial metric spaces. If
we take their product inside [0, ∞]Spa, we find the following [0, ∞]-space (some
distances are omitted) which does not satisfy (85) nor (88).169 169 For (85), the three points in the middle row

{a2b1, a2b2, a2b3} are all at distance from each other
and from themselves while not being equal. For (88),
we have

dA(a1b1, a3b3) = 15, and

dA(a1b1, a2b2) + dA(a2b2, a3b3)− dA(a2b2, a2b2) = 10,

but 15 > 10.
A× B =

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

10

0

10

15

10

10

5

10

0

10

10

10

10
10

10

10

10
10

10

0

10

5

10

0

We conclude that there is no set E of quantitative equations such that GMet([0, ∞], E)
is the full subcategory of [0, ∞]Spa containing all the partial metric spaces.170 170 It is still possible that the category of partial met-

rics and nonexpansive maps is identified with some
GMet. That would mean (infinite) products of par-
tial metrics exist but they are not computed with
supremums.

This result is a bit more damaging to our concept of generalized metric space
(especially since partial metric spaces were motivated by some considerations in
programming semantics), but we had to expect something like this would happen
with how much time mathematicians had to use and abuse the name metric.

Isometries

Since the forgetful functor U : LSpa → Set preserves isomorphisms, we know
that the underlying function of an isomorphism in LSpa is a bijection between the
carriers. What is more, we show in Proposition 100 it must preserve distances on
the nose, i.e. it is an isometry.

Definition 99 (Isometry). A morphism f : X → Y of L-spaces is called an isometry
if171 171 The inequation in (59) was replaced by an equa-

tion.∀x, x′ ∈ X, dY( f (x), f (x′)) = dX(x, x′). (89)

If furthermore, f is injective, we call it an isometric embedding.172
172 If f : X → Y is an isometric embedding, we can
identify X with the subspace of Y containing all the
elements in the image of f . Conversely, the inclu-
sion of a subspace of Y in Y is always an isometric
embedding.

Proposition 100. In GMet, isomorphisms are precisely the bijective isometries.

Proof. We show a morphism f : X→ Y is has an inverse f−1 : Y→ X if and only if
it is a bijective isometry.

(⇒) Since the underlying functions of f and f−1 are inverses, they must be
bijections. Moreover, using (59) twice, we find that for any x, x′ ∈ X,173 173 This is a general argument showing that any non-

expansive function with a right inverse is an isome-
try, it is also an isometric embedding because a right
inverse in Set implies injectivity.

dX(x, x′) = dX( f−1 f (x), f−1 f (x′)) ≤ dY( f (x), f (x′)) ≤ dX(x, x′),

thus dX(x, x′) = dY( f (x), f (x′)), so f is an isometry.
(⇐) Since f is bijective, it has an inverse f−1 : Y → X in Set, but we have to

show f−1 is nonexpansive from Y to X. For any y, y′ ∈ Y, by surjectivity of f , there
are x, x′ ∈ X such that y = f (x) and y′ = f (x′), then we have

dX( f−1(y), f−1(y′)) = dX( f−1 f (x), f−1 f (x′)) = dX(x, x′) = dY( f (x), f (x′)) = dY(y, y′).
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Hence f−1 is nonexpansive, it is even an isometry.

In particular, this means, as is expected, that isomorphisms preserve the satis-
faction of quantitative equations. We can show a stronger statement: any isometric
embedding reflects the satisfaction of quantitative equations.174 174 This is stronger because we have just shown the

inverse of an isomorphisms is an isometric embed-
ding.Proposition 101. Let f : Y → Z be an isometric embedding between L-spaces and ϕ a

quantitative equation, then
Z ⊨ ϕ =⇒ Y ⊨ ϕ. (90)

Proof. Let X be the context of ϕ. Any nonexpansive assignment ι̂ : X → Y yields
an assignment f ◦ ι̂ : X → Z. By hypothesis, we know that Z satisfies ϕ for this
particular assignment, namely,

Z ⊨ f ◦ι̂ ϕ. (91)

We can use this and the fact that f is an isometric embedding to show X ⊨ι̂ ϕ. There
are two very similar cases.

If ϕ = X ⊢ x = y, then we can show ι̂(x) = ι̂(y) because we know f ι̂(x) = f ι̂(x)
by (91) and f is injective.

If ϕ = X ⊢ x =ε y, then we have dY(ι̂(x), ι̂(y)) = dZ( f ι̂(x), f ι̂(y)) ≤ ε, where the
equation holds because f is an isometry and the inequation holds by (91).

Corollary 102. Let f : Y → Z be an isometric embedding between L-spaces. If Z belongs
to GMet, then so does Y. In particular, all the subspaces of a generalized metric space are
also generalized metric spaces.175 175 Both parts are immediate. The first follows from

applying (90) to all ϕ in Ê, the set of quantitative
equations defining GMet. The second follows from
Footnote 172.

Examples 103. Corollary 102 can be useful to identify some properties of L-spaces
that cannot be modelled with quantitative equations. Here are a couple of examples.

1. A binary relation R ⊆ X × X is called total if for every x ∈ X, there exists y ∈ X
such that (x, y) ∈ R. Let TotRel be the full subcategory of BSpa containing only
total relations, is TotRel equal to some GMet(B, Ê) for some Ê? The existential
quantification in the definition of total seems hard to simulate with a quantitative
equation, but this is not a guarantee that maybe several equations cannot interact
in such a counter-intuitive way.

In order to prove that no set Ê defines total relations (i.e. X ⊨ Ê if and only if
the relation corresponding to dX is total), we can exhibit an example of a B-space
that is total with a subspace that is not total. It follows that TotRel is not closed
under taking subspaces, so it is not a category of generalized metric spaces by
Corollary 102.176 176 Actually, we have only proven that TotRel cannot

be defined as a subcategory of BSpa with quantita-
tive equations. There may still be some convoluted
way that TotRel ∼= GMet(L, Ê) for some cleverly
picked L and Ê (L could even be equal to B).

Let N be the B-space with carrier N and B-relation dN(n, m) = ⊥ ⇔ m = n + 1
(the corresponding relation is the graph of the successor function). This space
satisfies totality, but the subspace obtained by removing 1 is not total because
dN(0, n) = ⊥ only when n = 1.

This same example works to show that surjectivity177 cannot be defined via 177 This condition is symmetric to totality: R ⊆ X ×
X is surjetive if for every y ∈ X, there exists x ∈ X
such that (x, y) ∈ R.

quantitative equations.
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2. A very famous condition to impose on metric spaces is completeness (we do
not need to define it here). Just as famous is the fact that R with the Euclidean
distance from Examples 79 is complete but the subspace Q is not. Thus, com-
pleteness cannot be defined via quantitative equations.178 178 Still with the caveat that the category of complete

metric spaces might still be isomorphic to some
GMet.With this characterization of isomorphisms, we can also show the forgetful func-

tor U : GMet → Set is an isofibration which concretely means that if you have a
bijection f : X → Y and a generalized metric dY on Y, then you can construct a
generalized metric dX on X such that f : X → Y is an isomorphism. Indeed, if you
let dX(x, x′) = dY( f (x), f (x′)), then f is automatically a bijective isometry.179 179 Clearly, it is the unique distance on X that works,

and we know that X belongs to GMet thanks to
Corollary 102.Definition 104 (Isofibration). A functor P : C → D is called an isofibration if for

any isomorphism f : X → PY in D, there is an isomorphism g : X′ → Y such that
Pg = f , in particular PX′ = X.

Proposition 105. The forgetful functor U : GMet→ Set is an isofibration.

We wonder now how to complete the conceptual diagram below.

isomorphism in GMet←→ bijective isometries

??? in GMet←→ isometric embeddings

Since isometric embeddings correspond to subspaces, one might think that they are
the monomorphisms in GMet. Unfortunately, they are way more restrained. Any
nonexpansive map that is injective is a monomorphism. To prove this, we rely on
the existence of a space F1 that (informally) can pick elements.

Proposition 106. There is a generalized metric space F1 on the set {∗} such that for any
other space X, any function f : {∗} → X is a nonexpansive map F1→ X.180 180 In category theory speak, F1 is a representing ob-

ject of the forgetful functor U : GMet→ Set.
Proof. In LSpa, F1 is also easy to find, its L-relation is defined by dF1(∗, ∗) = ⊤.
Indeed, any function f : {∗} → X is nonexpansive because ⊤ is the maximum
value dX can assign, so

dX( f (∗), f (∗)) ≤ ⊤ = dF1(∗, ∗).

Unfortunately, this L-space does not satisfy some quantitative equations (e.g. reflex-
ivity x ⊢ x =⊥ x), so we cannot guarantee it belongs to GMet.

Recall that 1 is a generalized metric space on the same set {∗}, but with d1(∗, ∗) =
⊥. However, in many cases, 1 is not the right candidate either because if every func-

tion f : {∗} → X is nonexpansive from 1 to X, it means dX(x, x) = ⊥ for all x ∈ X,
which is not always the case.181 181 It is equivalent to satisfying reflexivity.

We have two L-spaces at the extremes of a range of L-spaces {({∗}, dε)}ε∈L, where
the L-relation dε sends (∗, ∗) to ε. At one extreme, we are guaranteed to be in GMet,
but we are too restricted, and at the other extreme we might not belong to GMet.
Getting inspiration from the intermediate value theorem, we can attempt to find a
middle ground, namely, a value ε ∈ L such that setting dF1(∗, ∗) = ε yields a space
that lives in GMet but is not too restricted.

https://en.wikipedia.org/wiki/Intermediate_value_theorem


categorical foundations of quantitative algebraic reasoning 55

One thing that could make sense is to take the biggest value (and hence the least
restricted space that is in GMet). Formally, let

dF1(∗, ∗) = sup
{

ε ∈ L | ({∗}, dε) ⊨ Ê
}

.

It remains to check that any function f : {∗} → X is nonexpansive from F1 to X.
Consider the image of f seen as a subspace of X. By Corollary 102, it belongs
to GMet and hence satisfies Ê. Moreover, it is clearly isomorphic to the L-space
({∗}, dε) with ε = dX( f (∗), f (∗))182, which means that L-space satisfies Ê as well 182 The isomorphism is the restriction of f to its im-

age.(by Corollary 102 again). We conclude that dX( f (∗), f (∗)) ≤ dF1(∗, ∗).
As a bonus, one could check that for any ε ∈ L that is smaller than dF1(∗, ∗),

({∗}, dε) also belongs to GMet.

Proposition 107. In GMet, monomorphisms are precisely the injective nonexpansive
maps.

Proof. We show a morphism f : X→ Y is monic if and only if it is injective.
(⇒) Let x, x′ ∈ X be such that f (x) = f (x′), and identify these elements with

functions x, x′ : {∗} → X sending ∗ to x and x′ respectively. By Proposition 106,
we get two nonexpansive maps x, x′ : F1 → X. Post-composing by f , we find that
f ◦ x = f ◦ x′ because they both send ∗ to f (x) = f (x′). By monicity of f , we find
that x = x′ (as morphisms and hence as elements of X). We conclude that f is
injective.

(⇐) Suppose that f ◦ g = f ◦ h for some nonexpansive maps g, h : Z → X.
Applying the forgetful functor U : GMet→ Set, we wind that f ◦ g = f ◦ h also as
functions. Since U f is injective, Ug and Uh must be equal, and since U is faithful,
we obtain g = h.

It remains to give a categorical characterisation of isometric embeddings. This
will rely on a well-known183 abstract notion that we define here for completeness. 183 While it is well-known, especially to those famil-

iar with fibered category theory, it does not usually
fit in a basic category theory background.Definition 108 (Cartesian morphism). Let F : C → D be a functor, and f : A → B

be a morphism in D. We say f is a cartesian morphism if for every morphism
g : X → B and factorization Fg = F f ◦ u, there exists a unique morphism û : X → A
with Fû = u satisfying x = f ◦ û. This can be summarized (without the quantifiers)
in the diagram below.

X FX

A B FA FB

u

F f

Fg
û

f

g F

Example 109 (in GMet). Let us unroll this in the important case for us, when
F is the forgetful functor U : GMet → Set. A nonexpansive map f : A → B is a
cartesian morphism if for any nonexpansive map g : X→ B, all functions u : X → A
satisfying g = f ◦ u are nonexpansive maps u : X→ A.184 184 We do not bother to write û as it is automati-

cally unique with underlying function u because U
is faithful.

We can turn this around into an equivalent definition. The morphism f : A→ B
is cartesian if for all functions u : X → A, f ◦ u being nonexpansive from X to
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B implies u is nonexpansive from X to A.185 In [AHS06, Definition 8.6], f is also 185 If f ◦ u is nonexpansive from X to B, then it is
equal to g for some g : X→ B which yields u : X→
A being nonexpansive.

called an initial morphism.

Proposition 110. A morphism f : A→ B in GMet is an isometric embedding if and only
if it is monic and cartesian.

Proof. By Proposition 107, being an isometric embedding is equivalent to being a
monomorphism (i.e. being injective) and being an isometry. Therefore, it is enough
to show that when f is injective, isometry⇐⇒ cartesian.

(⇒) Suppose f is an isometry, and let u : X → A be a function such that f ◦ u
is nonexpansive from X → B, we need to show u is nonexpansive from X → A.186 186 We use the definition of cartesian in Example 109.

This is true because

∀x, x′ ∈ X, dA(u(x), u(x′)) = dB( f u(x), f u(x′)) ≤ dX(x, x′),

where the equation follows from f being an isometry and the inequation from
nonexpansiveness of f ◦ u.

(⇐) Suppose f is cartesian. For any a, a′ ∈ A, we know that dB( f (a), f (a′)) ≤
dA(a, a′), but we still need to show the converse inequality. Let X be the subspace
of B containing only the image of a and a′ (its carrier is { f (a), f (a′)}), and g : X →
A be the function sending f (a) to a and f (a′) to a′.187 Notice that f ◦ g is the 187 We use the injectivity of f here.

inclusion of X in B which is nonexpansive. Because f is cartesian, g must then be
nonexpansive from X to A which implies

dA(a, a′) = dA(g( f (a)), g( f (a′))) ≤ dX( f (a), f (a′)) = dB( f (a), f (a′)).

We conclude that f is an isometry.

Corollary 111. If the composition A
f−→ B

g−→ C is an isometric embedding, then f is an
isometric embedding.188 188 With the characterisation of Proposition 110, this

abstractly follows from [AHS06, Proposition 8.9].
We give the concrete proof anyways.Proof. It is a standard result that if g ◦ f is monic then so is f . Even more standard

for injectivity. Now, if g ◦ f is an isometry, we have for any a, a′ ∈ X,189 189 The equation holds by hypothesis that g ◦ f is an
isometry and the two inequations hold by nonex-
pansiveness of g and f .dA(a, a′) = dC(g f (a), g f (a′)) ≤ dB( f (a), f (a′)) ≤ dA(a, a′),

and we conclude that dA(a, a′) = dB( f (a), f (a′)), hence f is an isometry.

The question of concretely characterizing epimorphisms is harder to settle. We
can do it for LSpa, but not for an arbitrary GMet.

Proposition 112. In LSpa, a morphism f : X→ A is epic if and only if it is surjective.

Proof. (⇒) Given any a ∈ A, we define the L-space Aa to be A with an additional
copy of a with all the same distances. Namely, the carrier is A + {∗a}, for any
a′ ∈ A, dAa(∗a, a′) = dA(a, a′) and dAa(a′, ∗a) = dA(a′, a), and all the other distances
are as in A.190 190 This construction is already impossible to do in

an arbitrary GMet. For instance, if A satisfies x =0
y ⊢ x = y, then Aa does not because dAa (a, ∗a) = 0.

If f : X → A is not surjective, then pick a ∈ A that is not in the image of f , and
define two functions ga, g∗ : A → A + {∗a} that act as identity on all A except a
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where ga(a) = a and g∗(a) = ∗a. By construction, both ga and g∗ are nonexpansive
from A to Aa and ga ◦ f = g∗ ◦ f . Since ga ̸= g∗, f cannot be epic, and we have
proven the contrapositive of the forward implication.

(⇐) Suppose that g, g′ : A → B are morphisms in LSpa such that g ◦ f = g′ ◦ f .
Apply the forgetful functor to get Ug ◦U f = Ug′ ◦U f , and since U is epic in Set,
we know Ug = Ug′. Since U is faithful, we conclude that g = g′.191 191 This direction works in an arbitrary GMet, that

is, surjections are epic in any GMet.

Proposition 113. Let f : A → B be a split epimorphism between L-spaces and ϕ a
quantitative equation, then

A ⊨ ϕ =⇒ B ⊨ ϕ. (92)

Proof. Let g : B→ A be the right inverse of f (i.e. f ◦ g = idB) and X be the context
of ϕ.192 Any nonexpansive assignment ι̂ : X→ B yields an assignment g ◦ ι̂ : X→ A. 192 Note that we already argued in Footnote 173 that

the right inverse implies g is an isometric embed-
ding. Then we could conclude by Corollary 102, and
the proof given is essentially the same.

By hypothesis, we know that A satisfies ϕ for this particular assignment, namely,

A ⊨g◦ι̂ ϕ. (93)

Now, we can apply Lemma 95 with f : A → B to obtain B ⊨ f ◦g◦ι̂ ϕ, and since
f ◦ g = idB, we conclude B ⊨ι̂ ϕ.

Remark 114. It is not true in general that the image f (A) of a nonexpansive function
f : A→ B (seen as a subspace of B) satisfies the same equations as A. For instance,
let A contain two points {a, b} all at distance 1 ∈ [0, ∞] from each other (even from
themselves). The [0, ∞]-relation is symmetric so it satisfies for all ε ∈ [0, 1]. y =ε

x ⊢ x =ε y. If we define B with the same points and distances except dB(a, b) = 0.5,
then the identity function is nonexpansive from A to B, but its image is B in which
the distance is not symmetric.

Coproducts

Proposition 115. The category GMet has an initial object.

Proof. The initial object ∅ in LSpa is the empty set with the only possible L-relation
∅× ∅ → L (the empty function). The empty function f : ∅ → X is always nonex-
pansive from ∅ to X because (59) is vacuously satisfied.

Just as for the terminal object, since GMet is a full subcategory of LSpa, it suffices
to show ∅ is in GMet to conclude it is initial in this subcategory. We do this by
showing ∅ satisfies absolutely all quantitative equations, and in particular those of
Ê. This is easily done because when X is not empty,193 there are no assignments 193 The context of a quantitative equation cannot be

empty because the latter must come with some ele-
ments of the context.

X→ ∅, so ∅ vacuously satisfies X ⊢ x = y and X ⊢ x =ε y.

Proposition 116. The category LSpa has all coproducts.

Proof. We just showed the empty coproduct (i.e. the initial object) exists. Let {Ai =

(Ai, di) | i ∈ I} be a family of L-spaces indexed by a non-empty set I. We define the
L-space A = (A, d) with carrier A = ⨿i∈I Ai (the disjoint union of the carriers) and
L-relation d : A× A→ L defined by:194 194 In words, A is the L-space with a copy of each Ai

where the L-relation sends two points in different
copies to ⊤ (intuitively, the copies are completely
unrelated inside A).
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∀a, b ∈ A, d(a, b) =

di(a, b) ∃i ∈ I, a, b ∈ Ai

⊤ otherwise
.

For each i ∈ I, we have the evident coprojection κi : Ai → A sending a ∈ Ai

to its copy in A, and it is nonexpansive because, by definition, for any a, b ∈ Ai,
d(a, b) = di(a, b).195 We show A with these coprojections is the coproduct ⨿i∈I Ai. 195 Each coprojection is even an isometric embed-

ding.Let X be some L-space and fi : Ai → X be a family of nonexpansive maps. By the
universal property of the coproduct in Set, there is a unique function [ fi] : A → X
satisfying [ fi] ◦ κi = fi for all i ∈ I. It remains to show [ fi] is nonexpansive from A
to X. For any a, b ∈ A, suppose a belongs to Ai and b to Aj for some i, j ∈ I, then
we have196 196 The first equation holds by definition of [ fi ] (it

applies fi to elements in the copy of Ai). The in-
equation follows by nonexpansiveness of fi which is
equal to f j when i = j. The second equation is by
definition of d.

dX([ fi](a), [ fi](b)) = dX( fi(a), f j(b)) ≤

di(a, b) i = j

⊤ otherwise
= d(a, b).

The forgetful functor U : GMet→ Set has a left adjoint. Its concrete description
is too involved, so we will prove this later in ??, but for the special case of LSpa, we
can prove it now.

Proposition 117. The forgetful functor U : LSpa→ Set has a left adjoint.

Proof. For any set X, we define the discrete space X⊤ to be the set X equipped with
the L-relation d⊤ : X× X → L sending any pair to ⊤.

For any L-space A and function f : X → A, the function f is nonexpansive
from X⊤ to A, thus X⊤ is the free object on X (with respect to U). By categorical
arguments, we obtain the left adjoint sending X to X⊤.
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In the sequel and unless otherwise stated, Σ is an arbitrary signature and GMet
is am arbitrary category of generalized metric spaces defined by a set EGMet of
quantitative equations.

3.1 Quantitative Algebras

Definition 118 (Quantitative algebra). A quantitative Σ-algebra (or just quantita-
tive algebra)197 is a set A equipped with a Σ-algebra structure (A, J−KA) ∈ Alg(Σ) 197 We sometimes write simply algebra, with the

knowledge link going to this definition.and a generalized metric space structure (A, dA) ∈ GMet. We will switch be-
tween using the single symbol Â or the triple (A, J−KA, dA) when referring to a
quantitative algebra, we will also write A for the underlying Σ-algebra, A for the
underlying space, and A for the underlying set.

A homomorphism from Â to B̂ is a function h : A → B between the underly-
ing sets of Â and B̂ that is both a homomorphism h : A → B and a nonexpansive
function h : A→ B. We sometimes emphasize and call h a nonexpansive homomor-
phism.198 The identity maps idA : A → A and the composition of two homomor- 198 We will not distinguish between a nonexpansive

homomorphism h : Â → B̂ and its underlying ho-
momorphism or nonexpansive function or function.
We may write Uh with U being the appropriate for-
getful functor when necessary.

phisms are always homomorphisms, therefore we have a category whose objects
are quantitative algebras and morphisms are nonexpansive homomorphisms. We
denote it by QAlg(Σ).

This category is concrete over Set, Alg(Σ), GMet with forgetful functors:

• U : QAlg(Σ) → Set sends a quantitative algebra Â to its underlying set A and
a nonexpansive homomorphism to the underlying function between carriers.

• U : QAlg(Σ)→ Alg(Σ) sends Â to its underlying algebra A and a nonexpansive
homomorphism to the underlying homomorphism.

• U : QAlg(Σ) → GMet sends Â to its underlying space A and a nonexpansive
homomorphism to the underlying nonexpansive function.

One can quickly check that the following diagram commutes, and that it yields an
alternative definition of QAlg(Σ) as a pullback of categories.199 199 We can also mention there is another forgetful

functor U : QAlg(Σ) → LSpa obtained by com-
posing U : QAlg(Σ) → GMet with the inclusion
GMet→ LSpa.

https://www.youtube.com/watch?v=uv9HisWwa_w
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QAlg(Σ) GMet

Alg(Σ) Set

U

U

U

U

⌟

U

Example 119. Since a quantitative algebra is just an algebra and a generalized metric
space on the same set, we can find simple examples by combining pieces we have
already seen.

1. In Examples 4, we saw that an algebra for the signature Σ = {p : 0} is just a pair
(X, x) comprising a set X with a distinguished point x ∈ X. In Examples 79, we
discussed the N∞-space (H, d) where H is the set of humans and d is the collab-
oration distance. We can consider the quantitative Σ-algebras (H, Paul Erdös, d),
which is the set of all humans with Paulo Erdös as a distinguished point and the
collaboration distance. Note that GMet is instantiated as N∞Spa, i.e. L = N∞

and EGMet = ∅.

2. In Examples 4, we saw the {f : 1}-algebra Z where f is interpreted as adding 1.
On top of that, we consider the B-relation d≤ : Z×Z → B that sends (n, m) to
⊥ if and only if n ≤ m. We get a quantitative algebra (Z,−+ 1, d≤).200 200 This time, GMet is instantited as BSpa.

3. In Example 92, we saw that R equipped with the Euclidean distance d is a metric
space, i.e. an object of GMet = Met. The addition of real numbers is the most
natural interpretation of Σ = {+ : 2}, thus we get a quantitative algebra (R,+, d).

Here are some more compelling examples from the adjacent literature.

Example 120 (Hausdorff). In Example 82, we defined the Hausdorff distance d↑ on
PneX that depends on an L-relation d : X × X → L. In Example 62, we descibed a
ΣSLat-algebra structure on PneX (interpreting ⊕ as union). Combining these, we get
a quantitative ΣSLat-algebra (PneX,∪, d↑) for any L-space (X, d).

If we know that (X, d) satisfies some quantitative equations in EGMet, we can
sometimes prove that so does (PneX, d↑). For instance, picking L = [0, 1] or L =

[0, ∞], GMet = Met, and EGMet = ÊMet, one can show that if (X, d) belongs to
Met, then so does (PneX, d↑), and we still get a quantitative ΣSLat-algebra (PneX,∪, d↑).

Examples 121 (In Met).

Examples 122 (In 2Rel).

Definition 123 (Quantitative Equation). A quantitative equation (over Σ and L) is
a tuple comprising an L-space X called the context,201 two terms s, t ∈ TΣX and 201 Note that even with algebras in GMet, the con-

text is in LSpa.optionally an element ε ∈ L. We write these as X ⊢ s = t when no ε is given or
X ⊢ s =ε t when it is given.

An quantitative algebra Â satisfies a quantitative equation

• X ⊢ s = t if for any nonexpansive assignment ι̂ : X→ A, JsKι̂
A = JtKι̂

A.
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• X ⊢ s =ε t if for any nonexpansive assignment ι̂ : X→ A, dA(JsKι̂
A, JtKι̂

A) ≤ ε.

We use ϕ and ψ to refer to a quantitative equation, and we write Â ⊨ ϕ when Â

satisfies ϕ.202 We will also write Â ⊨ι̂ ϕ when the equality JsKι̂
A = JtKι̂

A or the bound 202 As usual, satisfaction generalizes straightfor-
wardly to sets of quantitative equations, i.e. if Ê is
a set of quantitative equations, Â ⊨ Ê means Â ⊨ ϕ
for all ϕ ∈ Ê.

dA(JsKι̂
A, JtKι̂

A) ≤ ε holds for a particular assignment ι̂ : X→ A.203

203 and not necessarily for all assignments.
Our overloading of the terminology quantitative equation (recall Definition 86) is

practically harmless because an equation from Chapter 2 X ⊢ x = y (or X ⊢ x =ε y)
can be seen as the new kind of equation by viewing x and y as terms via the
embedding ηΣ

X . Formally, since JηΣ
X(x)Kι̂

A = ι̂(x) for any x ∈ X and ι̂ : X → A, we
have204 204 Later on, we will seldom distinguish between x

and ηΣ
X(x) and write the former for simplicity.

A ⊨ X ⊢ x = y⇐⇒ Â ⊨ X ⊢ ηΣ
X(x) = ηΣ

X(y)

A ⊨ X ⊢ x =ε y⇐⇒ Â ⊨ X ⊢ ηΣ
X(x) =ε ηΣ

X(y).

In particular, since we assumed the underlying space of any Â ∈ QAlg(Σ) to be
a generalized metric space, we can say that Â ⊨ ϕ for any ϕ ∈ EGMet.205 An- 205 We implicitly see the equations in EGMet as the

new kind of equations from Definition 123.other consequence is that over the empty signature Σ = ∅, the class of possible
quantitative equations from both chapters coincide.

Furthermore, the new quantitative equations also generalize the equations of
universal algebra (Definition 11). Indeed, given an equation X ⊢ s = t, we construct
the quantitative equation X⊤ ⊢ s = t where the new context is the discrete space on
the old context. We show that

A ⊨ X ⊢ s = t⇐⇒ Â ⊨ X⊤ ⊢ s = t. (94)

By Proposition 117, any assignment ι : X → A is nonexpansive from X⊤ to A. Any
nonexpansive assignment ι̂ : X⊤ → A also yields an assignment X → A by applying
the forgetful functor U since the carrier of X⊤ is X. Therefore, the interpretations
of s and t coincide under all assignments if and only if they coincide under all
nonexpansive assignments.

Let us get to more interesting examples now.

Example 124 (Almost commutativity). Let + : 2 ∈ Σ be a binary operation sym-
bol. As shown above, to ensure + is interpreted as a commutative operation in a
quantitative algebra, we can use the quantitative equation X⊤ ⊢ x + y = y+ x where
X = {x, y}. In fact, using the same syntactic sugar as we did in Chapter 2 to avoid
explicitly describing all the context, we can write x, y ⊢ x + y = y + x.206 206 In fact, whenever we write x1, . . . , xn ⊢ s = t, we

mean X⊤ ⊢ s = t where X = {x1, . . . , xn}, and simi-
larly for =ε.

Since the context can be any L-space, we can now add some nuance to the com-
mutativity property. For instance, we can guarantee that + is commutative only
between elements that are close to each other with x =ε y ⊢ x + y = y + x where
ε ∈ L is fixed.207 Unrolling the syntactic sugar, the context is the space Xε contain- 207 I saw this example first in [Ada22].

ing two points x and y with dX(x, y) = ε and all other distances being ⊤. There-
fore, a nonexpansive assignment ι̂ : X → A is a choice of two elements ι̂(x) and
ι̂(y) with dA(ι̂(x), ι̂(y)) ≤ ε and no other constraint. We conclude that Â satisfies
x =ε y ⊢ x + y = y + x if and only if J+KA(a, b) = J+KA(b, a) whenever dA(a, b) ≤ ε.



62 ralph sarkis

Another possible variant on commutativity is x =⊥ x, y =⊥ y ⊢ x + y = y + x.
This means + is guaranteed to be commutative only on elements which have a
self-distance of ⊥.

As a sanity check for our definitions, we can verify that homomorphisms pre-
serve the satisfaction of quantitative equations.208 208 Just like we did in Lemma 14 for Set. In fact, the

proofs are very similar.

Lemma 125. Let ϕ be a equation with context X. If h : Â → B̂ is a homomorphism and
Â ⊨ι̂ ϕ for an assignment ι̂ : X→ A, then B̂ ⊨h◦ι̂ ϕ.

Proof. We have two very similar cases. Let ϕ be the equation X ⊢ s = t, we have

Â ⊨ι̂ ϕ⇐⇒ JsKι̂
A = JtKι̂

A definition of ⊨

=⇒ h(JsKι̂
A) = h(JtKι̂

A)

=⇒ JsKh◦ι̂
B = JtKh◦ι̂

B by (9)

⇐⇒ B̂ ⊨h◦ι̂ ϕ. definition of ⊨

Let ϕ be the equation X ⊢ s =ε t, we have

Â ⊨ι̂ ϕ⇐⇒ dA(JsKι̂
A, JtKι̂

A) ≤ ε definition of ⊨

=⇒ dA(h(JsKι̂
A), h(JtKι̂

A)) ≤ ε

=⇒ dA(JsKh◦ι̂
B , JtKh◦ι̂

B ) ≤ ε by (9)

⇐⇒ B̂ ⊨h◦ι̂ ϕ. definition of ⊨

Given a set Ê of quantitative equations, A (Σ, Ê)-algebra is a Σ-algebra that sat-
isfies Ê. We define QAlg(Σ, Ê), the category of (Σ, Ê)-algebras, to be the full sub-
category of QAlg(Σ) containing only those algebras that satisfy Ê. There are many
forgetful functors obtained by composing the forgetful functors from QAlg(Σ) with
the inclusion functor QAlg(Σ, Ê)→ QAlg(Σ):

• U : QAlg(Σ, Ê)→ Set = QAlg(Σ, Ê)→ QAlg(Σ) U−→ Set

• U : QAlg(Σ, Ê)→ Alg(Σ) = QAlg(Σ, Ê)→ QAlg(Σ) U−→ Alg(Σ)

• U : QAlg(Σ, Ê)→ GMet = QAlg(Σ, Ê)→ QAlg(Σ) U−→ GMet

• U : QAlg(Σ, Ê)→ LSpa = QAlg(Σ, Ê)→ QAlg(Σ) U−→ LSpa

Definition 126 (Quantitative algebraic theory). Given a set Ê of quantitative equa-
tions over Σ and L, the quantitative algebraic theory generated by Ê, denoted
by QTh(Ê), is the class of quantitative equations that are satisfied in all (Σ, Ê)-
algebras:209 209 Again QTh(Ê) is never a set (recall Definition 19).

QTh(Ê) =
{

ϕ | ∀Â ∈ QAlg(Σ, Ê), Â ⊨ ϕ
}

.

Equivalently, QTh(Ê) contains the equations that are semantically entailed by Ê,210 210 As in the non-quantitative case, QTh(Ê) contains
all of Ê but also many more equations like x ⊢ x = x
or x =ε y ⊢ x =ε y. Furthermore, QTh(Ê) contains
all the quantitative equations in EGMet because the
underlying spaces of algebras in QAlg(Σ, Ê) belong
to GMet.



categorical foundations of quantitative algebraic reasoning 63

namely ϕ ∈ QTh(Ê) if and only if

∀Â ∈ QAlg(Σ), Â ⊨ Ê =⇒ Â ⊨ ϕ.

We will see in §3.2 how to find which quantitative equations are entailed by others.
We call a class of quantitative equations a quantitative algebraic theory if it is

generated by some set Ê.

Fix a set Ê of quantitative equations over Σ and L. For any generalized metric
space X, we can define a binary relation ≡Ê and an L-relation dÊ on Σ-terms as
follows:211 for any s, t ∈ TΣX, 211 The notation for ≡ Ê and dÊ should really depend

on the space X, but we prefer to omit this for better
readability.s ≡ Ê t⇐⇒ X ⊢ s = t ∈ QTh(Ê) and dÊ(s, t) = inf{ε | X ⊢ s =ε t ∈ QTh(Ê)}.

The definition of≡ Ê is completely analogous to what we did in the non-quantitative
case (18). The definition of dÊ is new but it also looks like how we defined an L-
relation from an L-structure in Proposition 85. In fact, we can also prove a coun-
terpart to (64), giving us an equivalent definition of dÊ: for any s, t ∈ TΣX and
ε ∈ L,

dÊ(s, t) ≤ ε⇐⇒ X ⊢ s =ε t ∈ QTh(Ê). (95)

Proof of (95). (⇐) holds directly by definition of infimum. For (⇒), we need to show
that any (Σ, Ê)-algebra satisfies X ⊢ s =ε t. Let Â ∈ QAlg(Σ, Ê) and ι̂ : X → A be a
nonexpansive assignment. We know that for every δ such that X ⊢ s =δ t ∈ QTh(Ê),
dA(JsKι̂

A, JtKι̂
A) ≤ δ, thus212 212 Both inequations hold by hypothesis.

dA(JsKι̂
A, JtKι̂

A) ≤ inf{δ | X ⊢ s =δ t ∈ QTh(Ê)} = dÊ(s, t) ≤ ε.

We conclude that Â ⊨ι̂ X ⊢ s =ε t, and we are done since Â and ι̂ were arbitrary.

When we were not dealing with distances, we only had to prove that the relation
defined between terms was a congruence (Lemma 22), and then we were able to
construct the term algebra by quotienting the set of terms and interpreting the
operation symbols syntactically. Right now, we have to prove a bit more, namely
that dÊ is invariant under ≡ Ê so the L-relation restricts to the quotient, and that the
resulting L-space is a generalized metric space.

Let us decompose this in several small lemmas. We also collect here some more
lemmas that look similar, many of which will be part of the proof of soundness
when we introduce quantitative equational logic.213 Let X ∈ LSpa and Â ∈ 213 We were less explicit back then, but that is what

happenned with Lemma 22 and soundness of equa-
tional logic.

QAlg(Σ) be universally quantified in all these lemmas.
First, Lemmas 127–130 mean that ≡ Ê is a congruence.214

214 The proofs are exactly the same as for Lemma 22

because ≡ Ê does not involve distances.
Lemma 127. For any t ∈ TΣX, Â satisfies X ⊢ t = t.

Proof. Obviously, JtKι̂
A = JtKι̂

A holds for all ι̂ : X→ A.

Lemma 128. For any s, t ∈ TΣX, if Â satisfies X ⊢ s = t, then Â satisfies X ⊢ t = s.

Proof. If JsKι̂
A = JtKι̂

A holds for all ι̂, then JtKι̂
A = JsKι̂

A holds too.
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Lemma 129. For any s, t, u ∈ TΣX, if Â satisfies X ⊢ s = t and X ⊢ t = u, then Â satisfies
X ⊢ s = u.

Proof. If JsKι̂
A = JtKι̂

A and JtKι̂
A = JuKι̂

A holds for all ι̂, then JsKι̂
A = JuKι̂

A holds too.

Lemma 130. For any op : n ∈ Σ, s1, . . . , sn, t1, . . . , tn ∈ TΣX, if Â satisfies X ⊢ si = ti for
all 1 ≤ i ≤ n, then Â satisfies X ⊢ op(s1, . . . , sn) = op(t1, . . . , tn).

Proof. For any assignment ι̂ : X→ A, we have JsiKι̂
A = JtiKι̂

A for all i. Hence,

Jop(s1, . . . , sn)Kι̂
A = JopKA(Js1Kι̂

A, . . . , JsnKι̂
A) by (6)

= JopKA(Jt1Kι̂
A, . . . , JtnKι̂

A) ∀i, JsiKι̂
A = JtiKι̂

A

= Jop(s1, . . . , sn)Kι̂
A. by (6)

Lemmas 131 and 132 mean that dÊ(s, t) = dÊ(s
′, t′) whenever s ≡ Ê s′ and t ≡ Ê

t′.215 215 By Lemma 131, if t ≡ Ê t′, then

X ⊢ s =ε t⇐⇒ X ⊢ s =ε t.

By Lemma 132, if s ≡ Ê s′, then

X ⊢ s =ε t′ ⇐⇒ X ⊢ s′ =ε t′.

Combining these with (95), we get

dÊ(s, t) ≤ ε⇐⇒ dÊ(s
′, t′) ≤ ε.

Since ε is arbitrary, we conclude dÊ(s, t) = dÊ(s
′, t′).

Lemma 131. For any s, t, t′ ∈ TΣX and ε ∈ L, if Â satisfies X ⊢ s =ε t and X ⊢ t = t′,
then Â satisfies X ⊢ s =ε t′.

Proof. For any ι̂ : X→ A, we have dA(JsKι̂
A, JtKι̂

A) ≤ ε and JtKι̂
A = JtKι̂

A, thus

dA(JsKι̂
A, Jt′Kι̂

A) = dA(JsKι̂
A, Jt′Kι̂

A) ≤ ε.

Lemma 132. For any s, s′, t ∈ TΣX and ε ∈ L, if Â satisfies X ⊢ s =ε t and X ⊢ s = s′,
then Â satisfies X ⊢ s′ =ε t.

Proof. Symmetric argument to the previous proof.

Lemmas 133–136 will correspond to other rules in quantitative equational logic.

Lemma 133. For any s, t ∈ TΣX, Â satisfies X ⊢ s =⊤ t.

Proof. By definition of ⊤ (the supremum of all L), for any ι̂, dA(JsKι̂
A, JtKι̂

A) ≤ ⊤.

Lemma 134. For any x, x′ ∈ X, if dX(x, x′) = ε, then Â satisfies X ⊢ x =ε x′.

Proof. For any nonexpansive ι̂ : X→ A, we have216 216 The equation holds by definition of J−Kι̂
A on vari-

ables, and the inequation holds by definition of non-
expansiveness.dA(JxKι̂

A, Jx′Kι̂
A) = dA(ι̂(x), ι̂(x′)) ≤ dX(x, x′) = ε.

Lemma 135. For any s, t ∈ TΣX and ε, ε′ ∈ L, if Â satisfies X ⊢ s =ε t and ε ≤ ε′, then Â

satisfies X ⊢ s =ε′ t.217 217 In words, if the interpretations of s and t are at
distance at most ε, then they are also at distance at
most ε′ when ε ≤ ε′.Proof. For any ι̂ : X→ A, we have dA(JsKι̂

A, JtKι̂
A) ≤ ε ≤ ε′.

Lemma 136. For any s, t ∈ TΣX, and {εi}i∈I ⊆ L, if Â satisfies X ⊢ s =εi t for all i ∈ I,
then Â satisfies X ⊢ s =ε t with ε = infi∈I εi.

Proof. For any ι̂, and for all i ∈ I, we have dA(JsKι̂
A, JtKι̂

A) ≤ εi by hypothesis. By
definition of infimum, this means dA(JsKι̂

A, JtKι̂
A) ≤ infi∈I εi = ε.
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This takes care of all except two rules in quantitative equational logic which we
will explain in no time. The last result we will use to define the term algebra is a
generalization of Lemma 90.

Lemma 137. Let f : X → Y be a nonexpansive map. If A satisfies X ⊢ s = t (resp.
X ⊢ s =ε t), then A satisfies Y ⊢ TΣ f (s) = TΣ f (t) (resp. Y ⊢ TΣ f (s) =ε TΣ f (t)).218 218 Note that when s and t are variables, we get back

Lemma 90. When

Proof. Any nonexpansive assignment ι̂ : Y → A, yields a nonexpansive assignment
ι̂ ◦ f : X→ A. Moreover, by functoriality of TΣ, we have

J−Kι̂◦ f
A

(7)
= J−KA ◦ TΣ(ι̂ ◦ f ) = J−KA ◦ TΣ ι̂ ◦ TΣ f = JTΣ f (−)Kι̂

A.

By hypothesis, we have

A ⊨ι̂◦ f X ⊢ s = t (resp. A ⊨ι̂◦ f X ⊢ s =ε t),

which means

JTΣ f (s)Kι̂
A = JsKι̂◦ f

A = JtKι̂◦ f
A = JTΣ f (t)Kι̂

A

resp. dA(JTΣ f (s)Kι̂
A, JTΣ f (t)Kι̂

A) = dA(JsKι̂◦ f
A , JtKι̂◦ f

A ) ≤ ε.

Thus, we conclude

A ⊨ι̂ Y ⊢ TΣ f (s) = TΣ f (t) (resp. A ⊨ι̂ Y ⊢ TΣ f (s) =ε TΣ f (t)).

Let us end our list of small results with Lemmas 138 and 139 which are for later.

Lemma 138. For any s, t ∈ TΣX if Â satisfies X⊤ ⊢ s = t, then Â satisfies X ⊢ s = t, and
for any ε ∈ L, if Â satisfies X⊤ ⊢ s =ε t, then Â satisfies X ⊢ s =ε t.219 219 In words, if Â satisfies an equation where the

context is the discrete space on X, then Â satisfies
that same equation with the context replaced by any
other L-space on X. This is also a special case of
Lemma 137 where f : X⊤ → X is the identity func-
tion.

Proof. For any nonexpansive assignment ι̂ : X → A, you can pre-compose it with
idX : X⊤ → X (which is nonexpansive) without changing the interpretation of
terms: JsKι̂

A = JsKι̂◦idX
A . By hypothesis, we know that Â satisfies s = t (resp. s =ε t)

under the nonexpansive assignement ι̂ ◦ idX : X⊤ → A, and we conclude Â also
satisfies s = t (resp. s =ε t) under the assignment ι̂.

Lemma 139. For any s, t ∈ TΣX, if A satisfies X ⊢ s = t, then Â satisfies X ⊢ s = t.220 220 In words, if the underlying (not quantitative) al-
gebra satisfies an equation, then so does the quan-
titative algebra where the context can be endowed
with any L-relation.

Proof. Any nonexpansive assignment ι̂ : X → A is in particular an assignment
ι̂ : X → A, thus JsKι̂

A = JtKι̂
A hold by hypothesis that A satisfies X ⊢ s = t.

We can now get back to the equality ≡ Ê and distance dÊ between terms, and
define the underlying space of the quantitative term algebra.

Since ≡ Ê is an equivalence for any X, we can consider the set TΣX/≡ Ê of terms
modulo Ê. We still denote with [ − ]Ê : TΣX → TΣX/≡ Ê the canonical quotient
map, and by Lemmas 131 and 132, we can define an L-relation on terms modulo
Ê by factoring dÊ through [−]Ê. We obtain the L-relation dÊ as the unique function
making the triangle below commute.221 221 We used the same symbol, because the first dÊ

was only used to define this new dÊ.
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TΣX× TΣX L

TΣX/≡ Ê × TΣX/≡ Ê

[−]Ê×[−]Ê dÊ

dÊ

(96)

We write T̂Σ,ÊX for the resulting L-space (TΣX/≡ Ê, dÊ). We still have an alternative
definition analog to (95).

dÊ([s]Ê, [t]Ê) ≤ ε⇐⇒ X ⊢ s =ε t ∈ QTh(Ê). (97)

In order to prove that T̂Σ,ÊX belongs to GMet, we will show a generalization of
Lemma 34. It essentially states that satisfaction of quantitative equations is pre-
served by substitutions that satisfy some nonexpansiveness-like condition.

Lemma 140. Let Y ⊢ s = t be an equation, σ : Y → TΣX an assignment such that

∀y, y′ ∈ Y, X ⊢ σ(y) =dY(y,y′) σ(y′) ∈ QTh(Ê), (98)

and Â a (Σ, Ê)-algebra. If Â satisfies Y ⊢ s = t (resp. Y ⊢ s =ε t), then it also satisfies
X ⊢ σ∗(s) = σ∗(t) (resp. X ⊢ σ∗(s) =ε σ∗(t)).

Proof. Let ι̂ : X → A be a nonexpansive assignment, we need to show Jσ∗(s)Kι̂
A =

Jσ∗(t)Kι̂
A (resp. dA(Jσ∗(s)Kι̂

A, Jσ∗(t)Kι̂
A) ≤ ε). Just like in Lemma 34, we define the

assignment ι̂σ : Y → A that sends y ∈ Y to Jσ(y)Kι̂
A, and we had already proven

J−Kι̂σ
A = Jσ∗(−)Kι̂

A. Now, it is enough to show ι̂σ is nonexpansive Y→ A222 and the 222 Something we did not have to do in the non-
quantitative case.lemma will follow because by hypothesis, JsKι̂σ

A = JtKι̂σ
A (reps. dA(JsKι̂σ

A , JtKι̂σ
A) ≤ ε).

For any y, y′ ∈ Y, we have

dA(ι̂σ(y), ι̂σ(y′)) = dA(Jσ(y)Kι̂
A, Jσ(y′)Kι̂

A) ≤ dY(y, y′),

where the equation holds by definition of ι̂σ, and the inequation holds because Â

belongs to QAlg(Σ, Ê) and hence satisfies X ⊢ σ(y) =dY(y,y′) σ(y′) ∈ QTh(Ê) (in
particular under the nonexpansive assignment ι̂). Hence ι̂σ is nonexpansive.

Lemma 141. For any L-space X and any quantitative equation ϕ ∈ EGMet, T̂Σ,ÊX ⊨ ϕ.

Proof. We mentioned in Footnote 210 that ϕ ∈ QTh(Ê), so any (Σ, Ê)-algebra Â

satisfies it.
Let ι̂ : Y → T̂Σ,ÊX is a nonexpansive assignment. By the axiom of choice,223 there 223 Choice implies the quotient map [−]Ê has a left

inverse r : TΣX/≡ Ê → TΣX, and we can then set
σ = r ◦ ι̂.

is a function σ : Y → TΣX satisfying [σ(y)]Ê = ι̂(y) for all y ∈ Y. This assignment
satisfies (98) because for all y, y′ ∈ Y, (97) yields

dÊ([σ(y)]Ê, [σ(y′)]Ê) ≤ dY(y, y′)⇐⇒ X ⊢ σ(y) =dY(y,y′) σ(y′) ∈ QTh(Ê),

and the L.H.S. holds because ι̂ is nonexpansive.
Therefore, if ϕ has the shape Y ⊢ y = y′ (resp. Y ⊢ y =ε y′), by Lemma 140, all

(Σ, Ê)-algebras satisfy X ⊢ σ(y) = σ(y′) (resp. X ⊢ σ(y) =ε σ(y′)). By definition of
≡ Ê (resp. by (97)), we have

ι̂(y) = [σ(y)]Ê = [σ(y′)]Ê = ι̂(y′) (resp. dÊ(ι̂(y), ι̂(y′)) = dÊ([σ(y)]Ê, [σ(y′)]Ê) ≤ ε ),

which means T̂Σ,ÊX satisfies ϕ.
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As for Set, we obtain a functor T̂Σ,Ê : GMet → GMet224 by setting T̂Σ,Ê f equal 224 In fact, we defined a functor LSpa → GMet, but
we are interested in its restriction to GMet.to the unique function making (99) commute. Concretely, we have T̂Σ,E f ([t]Ê) =

[TΣ f (t)]Ê.

TΣX TΣX/≡ Ê

TΣY TΣY/≡ Ê

TΣ f

[−]Ê

T̂Σ,Ê f

[−]Ê

(99)

Although we do have to check that T̂Σ,Ê f is nonexpansive whenever f is.

Lemma 142. If f : X→ Y is nonexpansive, then so is T̂Σ,Ê f : T̂Σ,ÊX→ T̂Σ,ÊY.

Proof. This is a direct consequence of Lemma 137. For any s, t ∈ TΣX, we have

dÊ([s]Ê, [t]Ê) ≤ ε⇐⇒ X ⊢ s =ε t ∈ QTh(Ê) by (97)

=⇒ X ⊢ TΣ f (s) =ε TΣ f (t) ∈ QTh(Ê) by Lemma 137

⇐⇒ dÊ([TΣ f (s)]Ê, [TΣ f (t)]Ê) ≤ ε by (97)

⇐⇒ dÊ(T̂Σ,Ê f [s]Ê, T̂Σ,Ê f [t]Ê) ≤ ε. by (99)

Therefore, dÊ(T̂Σ,Ê f [s]Ê, T̂Σ,Ê f [t]Ê) ≤ dÊ([s]Ê, [t]Ê).

We may now define the interpretation of operation symbols syntactically to ob-
tain the term algebra.

Definition 143 (Quantitative term algebra, semantically). The quantitative term
algebra for (Σ, Ê) on X is the quantitative Σ-algebra whose underlying space is
T̂Σ,ÊX and whose interpretation of op : n ∈ Σ is defined by225 225 This is well-defined by Lemma 130.

JopK
T̂X([t1]Ê, . . . , [tn]Ê) = [op(t1, . . . , tn)]Ê. (100)

We denote this algebra by T̂Σ,ÊX or simply T̂X.

This should feel very familiar to what we had done in Definition 23.226 In partic- 226 In fact, we can make the connection more pre-
cise, TX is constructed by quotienting TΣX by the
congruence ≡ E and (the underlying algebra of) T̂X
by quotienting TΣX by the congruence ≡ Ê (see Re-
mark 24).

ular, we still have that [−]Ê is a homomorphism from TΣX to the underlying algebra
of T̂X,227 namely, (101) commutes (recall Footnote 15).

227 Put h = [−]Ê in (1) to get (100)TΣTΣX TΣT̂Σ,ÊX

TΣX T̂Σ,ÊX

µΣ
X

TΣ [−]Ê

J−K
T̂X

[−]Ê

(101)

While (101) is a diagram in Set, we write T̂Σ,ÊX instead of the underlying set
TΣX/≡ Ê for better readability. We will keep doing this in the sequel.

Your intuition on J−K
T̂X (the interpretation of arbitrary terms) should be exactly

the same as the one for J−KTX in classical universal algebra: it takes a term in TΣT̂Σ,ÊX,
replaces the leaves with a representative term, and gives back the equivalence class
of the resulting term. We can also use it to define an analog to flattening.228 For 228 Just as we did in (25).
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any space X, we let µ̂Σ,Ê
X be the unique function making (102) commute.

TΣT̂Σ,ÊX T̂Σ,ÊX

T̂Σ,ÊT̂Σ,ÊX

J−K
T̂X

[−]Ê µ̂Σ,Ê
X

(102)

Let us show that µ̂Σ,Ê
X is nonexpansive and natural.

Lemma 144. For any space X, µ̂Σ,Ê
X is a nonexpansive map T̂Σ,ÊT̂Σ,ÊX→ T̂Σ,ÊX.

Proof. Let [s]Ê, [t]Ê ∈ T̂Σ,ÊT̂Σ,ÊX be such that dÊ([s]Ê, [t]Ê) ≤ ε. By (97), this means

T̂Σ,ÊX ⊢ s =ε t ∈ QTh(Ê), (103)

namely, the distance between interpretations of s and t is bounded above by ε in all
(Σ, Ê)-algebras. We need to show dÊ(µ̂

Σ,Ê
X ([s]Ê), µ̂Σ,Ê

X ([t]Ê)) ≤ ε, or using (102),

dÊ(JsK
T̂X, JtK

T̂X) ≤ ε. (104)

We want to use (97) again to reduce that inequation to a bound on distances between
interpretations, but that requires choosing representatives for JsK

T̂X, JtK
T̂X ∈ T̂Σ,ÊX.

Instead of choosing them naively, let s′, t′ ∈ TΣTΣX be such that TΣ[−]Ê(s′) = s
and TΣ[−]Ê(t′) = t. In words, s′ and t′ are the same as s and t where equivalence
classes at the leaves are replaced representative terms. Commutativity of (101)
implies [µΣ

X(s
′)]Ê = JsK

T̂X and similarly for t. We can now use (97) to infer that
proving (104) is equivalent to proving

X ⊢ µΣ
X(s
′) =ε µΣ

X(t
′) ∈ QTh(Ê). (105)

This means we need to show that, for all Â ∈ QAlg(Σ, Ê) and ι̂ : X → A,
dA(JµΣ

X(s
′)Kι̂

A, JµΣ
X(t
′)Kι̂

A) ≤ ε.
We already know by (103) that for all σ̂ : T̂Σ,ÊX → A, dA(JsKσ̂

A, JtKσ̂
A) ≤ ε, so it

suffices to find, for each ι̂ : X → A, a nonexpansive assignment σ̂ι̂ : T̂Σ,ÊX → A such
that

JµΣ
X(s
′)Kι̂

A = JsKσ̂
A and JµΣ

X(t
′)Kι̂

A = JtKσ̂
A. (106)

We define σ̂ι̂ : T̂Σ,ÊX→ A to be the unique function making (107) commute.

TΣX TΣ A

T̂Σ,ÊX A

TΣ ι̂

J−KA[−]Ê

σ̂ι̂

(107)

First, σ̂ι̂ is a nonexpansive map T̂Σ,ÊX→ A because for any [u]Ê, [v]Ê ∈ T̂Σ,ÊX,

dA(σ̂ι̂[u]Ê, σ̂ι̂[v]Ê)
(107)
= dA(JTΣ ι̂(u)KA, JTΣ ι̂(v)KA)

(7)
= dA(JuKι̂

A, JvKι̂
A) ≤ dÊ([u]Ê, [v]Ê),
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where the inequation holds by definition of dÊ and because Â satisfies all the equa-
tions in QTh(Ê).

Second, we can prove that

J−Kι̂
A ◦ µΣ

X = J−Kσ̂ι̂
A ◦ TΣ[−]Ê, (108)

which means (106) holds (by applying both sides of (108) to s′ and t′). We pave the
following diagram. Showing (109) commutes:

(a) Apply TΣ to (107).

(b) By (12).

(c) By (7).
TΣTΣX TΣT̂Σ,ÊX

TΣX TΣ A

TΣX A

µΣ
X

J−Kι̂
A

TΣ [−]Ê

J−Kσ̂ι̂
A

J−KA

TΣ σ̂ι̂TΣTΣ ι̂

TΣJ−KA

(a)

(b)

(c)
(109)

Lemma 145. The family of maps µ̂Σ,Ê
X : T̂Σ,ÊT̂Σ,ÊX→ T̂Σ,ÊX is natural in X.

Proof. We will (for posterity) reproduce the proof we did for Proposition 27, but it
is important to note that nothing changes except the notation which now has lots
of little hats.

We need to prove that for any function f : X→ Y, the square below commutes.

T̂Σ,ÊT̂Σ,ÊX T̂Σ,ÊT̂Σ,ÊY

T̂Σ,ÊX T̂Σ,ÊY

µ̂Σ,Ê
X µ̂Σ,Ê

Y

T̂Σ,Ê T̂Σ,Ê f

T̂Σ,Ê f

(110)

We can pave the following diagram.

TΣT̂Σ,ÊX T̂Σ,ÊT̂Σ,ÊX T̂Σ,ÊT̂Σ,ÊY

TΣT̂Σ,ÊY

T̂Σ,ÊT̂Σ,ÊX T̂Σ,ÊX T̂Σ,ÊY

µ̂Σ,Ê
Y

T̂Σ,Ê T̂Σ,Ê f

T̂Σ,Ê f

[−]Ê

J−K
T̂X

µ̂Σ,Ê
X

[−]Ê

TΣ T̂Σ,Ê f
[−]Ê

J−K
T̂Y

(a)

(b) (c)
(d)

All of (a), (b) and (d) commute by definition. In more details, (a) is an instance of
(99) with X replaced by T̂Σ,ÊX, Y by T̂Σ,ÊY and f by T̂Σ,Ê f , and both (b) and (d) are
instances of (102). To show (c) commutes, we draw another diagram that looks like
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a cube and where (c) is the front face. We can show all the other faces commute,
and then use the fact that TΣ[−]Ê is surjective (i.e. epic) to conclude that the front
face must also commute.229 229 In more details, the left and right faces commute

by (101), the bottom and top faces commute by (99),
and the back face commutes by (5).

The function TΣ[−]Ê is surjective (i.e. epic) because
[−]Ê is (it is a canonical quotient map) and functors
on Set preserve epimorphisms (if we assume the ax-
iom of choice). Thus, it suffices to show that TΣ[−]Ê
pre-composed with the bottom path or the top path
of the front face gives the same result.

Now it is just a matter of going around the cube
using the commutativity of the other faces. Here is
the complete derivation (we write which face was
used as justifications for each step).

T̂Σ,Ê f ◦ J−K
T̂X ◦ TΣ[−]Ê

= T̂Σ,Ê f ◦ [−]Ê ◦ µΣ
X left

= [−]Ê ◦ TΣ f ◦ µΣ
X bottom

= [−]Ê ◦ µΣ
Y ◦ TΣTΣ f back

= J−K
T̂Y ◦ TΣ[−]Ê ◦ TΣTΣ f right

= J−K
T̂Y ◦ TΣT̂Σ,Ê f ◦ TΣ[−]Ê top

TΣTΣX TΣTΣY

TΣT̂Σ,ÊX TΣT̂Σ,ÊY

TΣX TΣY

T̂Σ,ÊX T̂Σ,ÊY
T̂Σ,Ê f

J−K
T̂X

TΣ T̂Σ,Ê f

J−K
T̂Y

TΣ [−]Ê

TΣTΣ f

TΣ [−]Ê

[−]Ê

TΣ f

[−]Ê

µΣ
X

µΣ
Y

The first diagram we paved implies (110) commutes because [−]Ê is surjective.

From the front face of the cube above, we find that for any f : X → Y, T̂Σ,Ê f
is a homomorphism between the underlying algebras of T̂X and T̂Y. We already
showed T̂Σ,Ê f is nonexpansive in Lemma 142, thus it is a homomorphism between
the quantitative algebras T̂X and T̂Y.

We now prove many generalizations of results from Chapter 1
230 in order to 230 Contrary to what we did for Lemma 145, we will

not reproduce the arguments that can be reused, you
can trust us that it would go as smoothly for the
other reults.

show that T̂X is not just a quantitative Σ-algebra but a (Σ, Ê)-algebra.
We can prove, analogously to Lemma 28, that for any Â, J−KA is a homomor-

phism between T̂A and Â.

Lemma 146. For any (Σ, Ê)-algebra Â, the square (111) commutes, and J−KA is a nonex-
pansive map T̂Σ,ÊA→ A.231 231 We use the same convention as in (29) and write

J−KA for both maps TΣ A → A and T̂Σ,ÊA → A.
Recall the latter is well-defined because whenever
[s]Ê = [t]Ê, Â must satisfy A ⊢ s = t, and in partic-
ular under the assignment idA : A → A, this yields
JsKA = JtKA.

TΣT̂Σ,ÊA TΣ A

T̂Σ,ÊA A

J−K
T̂A

TΣJ−KA

J−KA

J−KA
(111)

Proof. For the commutative square, we can reuse the proof of Lemma 28. For non-
expansiveness, if dÊ([s]Ê, [t]Ê) ≤ ε, then Â must satisfy A ⊢ s =ε t, and in particular
under the assignment idA : A→ A, this yields dA(JsKA, JtKA) ≤ ε.

We can prove, analogously to Lemma 29, that for any X, µ̂Σ,Ê
X is a homomorphism

from T̂T̂X to T̂X.

Lemma 147. For any generalized metric space X, the following square commutes, and µ̂Σ,Ê
X
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is a nonexpansive map T̂Σ,ÊT̂Σ,ÊX→ T̂Σ,ÊX.

TΣT̂Σ,ÊT̂Σ,ÊX TΣT̂Σ,ÊX

T̂Σ,ÊT̂Σ,ÊX T̂Σ,ÊX

J−K
T̂X

µ̂Σ,Ê
X

J−K
T̂T̂X

TΣ µ̂Σ,Ê
X

(112)

Proof. For the commutative square, we can reuse the proof of Lemma 29. For non-
expansiveness, we have already shown this in Lemma 144.

Of course, paired with the flattening we also have a map η̂Σ,Ê
X which sends ele-

ments x ∈ X to the class containing x seen as a trivial term, namely,

η̂Σ,Ê
X = X

ηΣ
X−→ TΣX

[−]Ê−−→ T̂Σ,ÊX. (113)

We need to show η̂Σ,Ê
X is nonexpansive and natural in X.

Lemma 148. For any space X, η̂Σ,Ê
X is a nonexpansive map X→ T̂Σ,ÊX.

Proof. This is a direct consequence of Lemma 134. For any x, x′ ∈ X, we have

dX(x, x′) ≤ ε =⇒ X ⊢ x =ε x′ ∈ QTh(Ê) by Lemma 134

⇐⇒ dÊ([x]Ê, [x′]Ê) ≤ ε. by (97)

Therefore, dÊ([x]Ê, [x′]Ê) ≤ dX(x, x′).

Lemma 149. For any nonexpansive map f : X→ Y, the following square commutes.232 232 Naturality of ηΣ,E was easier in Set because it is
the vertical composition of two natural transforma-
tions, ηΣ and [−]E, which do not have counterparts
in GMet.X T̂Σ,ÊX

Y T̂Σ,ÊY

f

η̂Σ,Ê
X

T̂Σ,Ê f

η̂Σ,Ê
Y

(114)

Proof. We pave the following diagram.

Showing (115) commutes:

(a) Definition of η̂Σ,Ê (113).

(b) Naturality of ηΣ (3).

(c) Definition of T̂Σ,Ê f (99).

(d) Definition of η̂Σ,Ê (113).

X T̂Σ,ÊX

TΣX

TΣY

Y T̂Σ,ÊY

f

η̂Σ,Ê
X

T̂Σ,Ê f

η̂Σ,Ê
Y

ηΣ
X

ηΣ
Y

[−]Ê

TΣ f

[−]Ê

(a)

(b) (c)

(d)

(115)
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We also have the following technical lemma analogous to Lemma 30.

Lemma 150. For any generalized metric space X, J−Kη̂Σ,Ê
X

T̂X
= [−]Ê.233 233 We can reuse the proof for Lemma 30.

As a corollary (analogous to Lemma 31), we get that for any quantitative equation
ϕ with context X, ϕ belongs to QTh(Ê) if and only if the algebra T̂Σ,ÊX satisfies it
under the assignment η̂Σ,Ê

X .

Lemma 151. Let ϕ be an equation with context X, ϕ ∈ QTh(Ê) if and only if T̂X ⊨η̂Σ,Ê
X ϕ.

The next result, analogous to Lemma 32, tells us that η̂Σ,Ê and µ̂Σ,Ê behave like
the unit and multiplication of a monad.

Lemma 152. The following diagram commutes.234 234 We can reuse the proof of Lemma 32, although
when using naturality of [−]Ê in Set, we replace it
by (99) which is not formally a naturality property
(because TΣ is not a functor on GMet).

T̂Σ,ÊX T̂Σ,ÊT̂Σ,ÊX T̂Σ,ÊX

T̂Σ,ÊX

η̂Σ,Ê
T̂Σ,ÊX

µ̂Σ,ÊX

T̂Σ,Ê η̂Σ,Ê
X

idT̂Σ,ÊXidT̂Σ,ÊX

Finally, we can show that T̂Σ,ÊX is (Σ, Ê)-algebra (analogous to Proposition 35).

Proposition 153. For any space A, the term algebra T̂Σ,ÊA satisfies all the equations in Ê.

Proof. Let ϕ ∈ Ê be an equation with context X and ι̂ : X→ T̂Σ,ÊA be a nonexpansive
assignment. We factor ι̂ into235 235 This factoring is correct because

ι̂ = idT̂Σ,ÊA ◦ ι̂

= µ̂Σ,Ê
A ◦ η̂Σ,Ê

T̂Σ,ÊA
◦ ι̂ Lemma 152

= µ̂Σ,Ê
A ◦ T̂Σ,Ê ι̂ ◦ η̂Σ,Ê

X . naturality of η̂Σ,Ê

ι̂ = X
η̂Σ,Ê

X−−→ T̂Σ,ÊX
T̂Σ,Ê ι̂
−−→ T̂Σ,ÊT̂Σ,ÊA

µ̂Σ,Ê
A−−→ T̂Σ,ÊA.

Now, Lemma 151 says that ϕ is satisfied in T̂X under the assignment η̂Σ,Ê
X . We also

know by Lemma 125 that homomorphisms preserve satisfaction, so we can apply it
twice using the facts that T̂Σ,Ê ι̂ and µ̂Σ,Ê

A are homomorphisms (the former was shown
after Lemma 145 and the latter in Lemma 147) to conclude that T̂A satisfies ϕ under
µ̂Σ,Ê

A ◦ T̂Σ,Ê ι̂ ◦ η̂Σ,Ê
X = ι̂.

We end this section just like we ended §1.1 by showing that T̂X is the free (Σ, Ê)-
algebra.

Proposition 154. For any space X, the term algebra T̂X is the free (Σ, Ê)-algebra on X.

Proof. Note that the morphism witnessing freeness of T̂X is η̂Σ,Ê
X : X → T̂Σ,ÊX. As

expected, the proof goes exactly like for Proposition 38 except, we have to show
that when f : X → A is nonexpansive, so is f ∗ : T̂Σ,ÊX → A. This follows by the
following derivation.236 236 We implicitly use nonexpansiveness of f in the

second step, where f is used as a nonexpansive as-
signment.dÊ([s]Ê, [t]Ê) ≤ ε⇐⇒ X ⊢ s =ε t ∈ QTh(Ê) by (97)

=⇒ dA(JsK f
A, JtK f

A) ≤ ε Â ∈ QAlg(Σ, Ê)
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⇐⇒ dA(JTΣ f (s)KA, JTΣ f (t)AK) by (7)

⇐⇒ dA(J[TΣ f (s)]ÊKA, J[TΣ f (t)]ÊKA) by Footnote 231

⇐⇒ dA(JT̂Σ,Ê f [s]ÊKA, JT̂Σ,Ê f [t]ÊKA) by (99)

⇐⇒ dA( f ∗[s]Ê, f ∗[t]Ê) definition of f ∗

3.2 Quantitative Equational Logic

It is now time to introduce the quantitative equational logic (QEL), which you can
think of as both a generalization and an extension of equational logic. It is a gener-
alization when instantiating L = 1 as explained in Example 157. It is an extension
because all the rules of equational logic are valid in QEL when replacing the con-
texts with discrete spaces. Figure 3.1 displays the inference rules of quantitative
equational logic. The notion of derivation is straightforwardly adapted from Defi-
nition 39. Let us explain the rules while proving soundness.

ReflX ⊢ t = t
X ⊢ s = t SymmX ⊢ t = s

X ⊢ s = t X ⊢ t = u TransX ⊢ s = u
op : n ∈ Σ ∀1 ≤ i ≤ n, X ⊢ si = ti Cong

X ⊢ op(s1, . . . , sn) = op(t1, . . . , tn)

σ : Y → TΣX Y ⊢ s = t ∀y, y′ ∈ Y, X ⊢ σ(y) =dX(y,y′) σ(y′)
Sub

X ⊢ σ∗(s) = σ∗(t)

TopX ⊢ s =⊤ t
dX(x, x′) = ε

Vars

X ⊢ x =ε x′
X ⊢ s =ε t ε ≤ ε′

MaxX ⊢ s =ε′ t
∀i, X ⊢ s =εi t ε = infi εi

ContX ⊢ s =ε t
ϕ ∈ EGMet

GMet
ϕ

X ⊢ s = t X ⊢ s =ε u
CompLX ⊢ t =ε u

X ⊢ s = t X ⊢ u =ε s
CompRX ⊢ u =ε t

σ : Y → TΣX Y ⊢ s =ε t ∀y, y′ ∈ Y, X ⊢ σ(y) =dX(y,y′) σ(y′)
SubQ

X ⊢ σ∗(s) =ε σ∗(t)

Figure 3.1: Rules of quantitative equational logic
over the signature Σ and the complete lattice L,
where X and Y can be any L-space, and s, t, u, si
and ti can be any terms in TΣX. As indicated in the
premises of the rules Cong, Sub and SubQ, they
can be instantiated for any n-ary operation symbol
and for any function σ respectively.

Given any set of quantitative equations Ê, we denote by QTh′(Ê) the class of
equations that can be proven from Ê in quantitative equational logic, i.e. ϕ ∈
QTh′(E) if and only if there is a derivation of ϕ in QEL with axioms Ê.

Our goal for the rest of this section is to prove that QTh′(Ê) = QTh(Ê). We
say that QEL is sound and complete for (Σ, Ê)-algebras. Less concisely, soundness
means that whenever QEL proves an equation ϕ with axioms Ê, then ϕ is satisfied by
all (Σ, Ê)-algebras, and completeness says that whenever an equation ϕ is satisfied
by all (Σ, Ê)-algebras, then there is a derivation of ϕ in QEL with axioms Ê.

Just like for equational logic, all the rules in Figure 3.1 are sound for any fixed
quantitative algebra meaning that if Â satisfies the equations on top of a rule, it
must satisfy the conclusion of that rule.
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The first four rules say that equality is an equivalence relation that is preserved
by the operations, we showed they were sound in Lemmas 127–130. More formally,
we can define (for any X) a binary relation ≡′̂E on Σ-terms237 that contains the pair 237 Again, we omit the L-space X from the notation.

(s, t) whenever X ⊢ s = t can be proven in QEL: for any s, t ∈ TΣX,

s ≡′Ê t⇐⇒ X ⊢ s = t ∈ QTh′(Ê). (116)

Then, we can show ≡′Ê is a congruence relation.238 238 We will denote with *− +Ê the canonical quotient
map TΣX → TΣX/≡′Ê.

Lemma 155. For any L-space X, the relation ≡′Ê is reflexive, symmetric, transitive, and
for any op : n ∈ Σ and s1, . . . , sn, t1, . . . , tn ∈ TΣX,

∀1 ≤ i ≤ n, si ≡′Ê ti =⇒ op(s1, . . . , sn) ≡′Ê op(t1, . . . , tn). (117)

Skipping Sub for now, the Top rule says that ⊤ is an upper bound for all dis-
tances since it is the maximum element of L. We showed it is sound in Lemma 133.

The Vars rule is, in a sense, the quantitative version of Refl. It reflects the fact
that assignments of variables are nonexpansive with respect to the distance in the
context. Indeed, ι̂ : X→ A is nonexpansive precisely when, for all x, x′ ∈ X,

dA(JxKι̂
A, Jx′Kι̂

A) = dA(ι̂(x), ι̂(x′)) ≤ dX(x, x′).

How is this related to Refl? Letting t = x ∈ X, Refl says that for any assignment
ι̂ : X → A, ι̂(x) = ι̂(x). This seems trivial, but it hides a deeper fact that the
assignment must be deterministic (a functional relation), as it cannot assign two
different values to the same input.239 So just like Refl imposes the constraint of 239 A similar thing happens for Cong which says

that the interpretation of operation symbols are de-
terministic. These remarks already made sense in
equational logic.

determinism on assignments, Vars imposes nonexpansiveness. We showed Vars

is sound in Lemma 134.
The rules Max and Cont should remind you of the definition of L-structure

(Definition 83). Very briefly, they ensure that equipping the set of terms over X
with the relations RX

ε ⊆ TΣX× TΣX defined by

s RX
ε t⇐⇒ X ⊢ s =ε t ∈ QTh′(Ê), (118)

yields an L-structure.240 We showed they are sound in Lemmas 135 and 136. Note 240 Monotonicity and continuity hold by Max and
Cont respectively.that Top is an instance of Cont with the empty index set (recall that ⊤ = inf ∅).

The soundness of GMet is a consequence of the definition of quantitative algebra
which requires the underlying space to satisfy all the equations in EGMet.

CompL and CompR guarantee that the L-structure we just defined factors through
the quotient TΣX/≡′Ê.241 We showed they are sound in Lemmas 131 and 132. 241 i.e. the following relation is well-defined:

*s + Ê RX
ε *t + Ê ⇐⇒ X ⊢ s =ε t ∈ QTh′(Ê), (119)Finally, we get to the substitutions Sub and SubQ, they are the same except for

replacing = with =ε. Recall that the substitution rule in equational logic is

σ : Y → TΣX Y ⊢ s = t
X ⊢ σ∗(s) = σ∗(t)

,

which morally means that variables in the context Y are universally quantified.
In Sub and SubQ, there is an additional condition on σ which arises because the
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variables in Y are not universally quantified, an assignment Y → A is considered in
the definition of satisfaction only if it is nonexpansive from Y to A.242 242 Put differently, the variables are universally quan-

tified subject to certain constraints on their distances
relative to the context Y.

We proved Sub and SubQ are sound in Lemma 140, and we can compare with
the proof of soundness of Sub in equational logic (Lemma 34) to find the same
key argument: the interpretation of σ∗(t) under some assignment ι̂ is equal to the
interpretation of t under the assignment ι̂σ sending y to the interpretation of σ(y)
under ι̂. Since satisfaction for quantitative algebras only deals with nonexpansive
assignments, we needed to check that ι̂σ is nonexpansive whenever ι̂ is, and this
was true thanks to the condition on σ. Let us give an illustrative example of why
the extra conditions are necessary.

Example 156. We work over L = [0, 1], GMet = Met, and an empty theory Σ = ∅
and Ê = ∅. Let Y = {y0, y1} with dY(y0, y1) = dY(y1, y0) = 1

2 and X = {x0, x1}
with dX(x0, x1) = dX(x1, x0) = 1.243 We consider the algebra Â whose underlying 243 We can see both Y and X as subspaces of [0, 1]

with the Euclidean metric, where e.g. y0 is embed-
ded as 0 and y1 as 1

2 , and x0 is embedded as 0 and
x1 as 1.

space is A = X (since Σ is empty that is the only data required to define an algebra).
It satisfies the equation Y ⊢ y0 = y1 because any nonexpansive assignment of Y into
A must identify y0 and y1 (there are no distinct points with distance less than 1

2 ).
Take the substitution σ : Y → TΣX defined by y0 7→ x0 and y1 7→ x1, we can

check Â does not satisfy X ⊢ σ∗(y0) = σ∗(y1).244 This means that σ cannot satisfty 244 That equation is X ⊢ x0 = x1 and with the assign-
ment idX : X→ X = A, we have

Jx0K
idX
A = x0 ̸= x1 = Jx1K

idX
A .

the extra conditions in Sub. Indeed, Â does not satisfy X ⊢ σ(y0) = 1
2

σ(y1) (take
the assignment idX again).

Example 157 (Recovering equational logic).

Definition 158 (Quantitative term algebra, syntactically). The new quantitative term
algebra for (Σ, Ê) on X is the quantitative Σ-algebra whose underlying space is
TΣX/≡′Ê equipped with the L-relation corresponding to the L-structure defined in
(119),245 and whose interpretation of op : n ∈ Σ is defined by246 245 Explicitly, it is the L-relation d′Ê that satisfies

d′Ê([s]Ê, [t]Ê) ≤ ε⇐⇒ X ⊢ s =ε t ∈ QTh′(Ê). (120)

246 This is well-defined (i.e. invariant under change
of representative) by (117).

JopK
T̂′X(*t1 + Ê, . . . , *tn + Ê) = *op(t1, . . . , tn) + Ê. (121)

We denote this algebra by T̂′Σ,ÊX or simply T̂′X.

We will prove this alternative definition of the term algebra coincides with T̂X.
First, we have to show that T̂′X belongs to QAlg(Σ, Ê) like we did for T̂X in Propo-
sition 153, and we state a technical lemma before that.

Lemma 159. Let ι : Y → TΣX/≡′E be any assignment. For any function σ : Y → TΣX
satisfying *σ(y) + Ê = ι(y) for all y ∈ Y, we have J−Kι

T̂′X
= *σ∗(−) + Ê.247 247 The proof goes as in the classical case

(Lemma 44). We do not even need to ask ι to be
nonexpansive, but we will use the result with a non-
expansive assignment.

Proposition 160. For any space X, T̂′X satisfies all the equations in Ê.

Proof. Let Y ⊢ s = t (resp. Y ⊢ s =ε t) belong to Ê and ι̂ : Y → (TΣX/≡′Ê, d′
Ê
) be a

nonexpansive assignment. By the axiom of choice,248 there is a function σ : Y → 248 Choice implies the quotient map *− +Ê has a left
inverse r : TΣX/≡′Ê → TΣX, and we can then set
σ = r ◦ ι̂.

TΣX satisfying *σ(y) + Ê = ι̂(y) for all y ∈ Y. Thanks to Lemma 159, it is enough to
show *σ∗(s) + Ê = *σ∗(t) + Ê (resp. d′

Ê
(*σ∗(s) + Ê, *σ∗(t) + Ê) ≤ ε).249

249 By Lemma 159, it implies

JsKι̂
T̂′X = *σ∗(s) + Ê = *σ∗(t) + Ê = JtKι

T̂′X ,

resp. d′Ê(JsKι̂
T̂′X, JtKι̂

T̂′X) = d′Ê(*σ∗(s) + Ê, *σ∗(t) + Ê) ≤ ε

and since ι̂ was arbitrary, we conclude that T̂′X sat-
isfies Y ⊢ s = t (resp. Y ⊢ s =ε t).

Equivalently, by definition of *− +Ê and QTh′(Ê), we can just exhibit a derivation
of X ⊢ σ∗(s) = σ∗(t) (resp. X ⊢ σ∗(s) =ε σ∗(t)) in QEL with axioms Ê. That equation
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can be proven with the Sub (resp. SubQ) rule instantiated with σ : Y → TΣX and
the equation Y ⊢ s = t (resp. Y ⊢ s =ε) which is an axiom, but we need derivations
showing σ satisfies the side conditions of the substitution rules. This follows from
nonexpansiveness of ι̂ because for any y, y′ ∈ Y, we know that

dÊ(*σ(y) + Ê, *σ(y) + Ê) = dÊ(ι̂(y), ι̂(y′)) ≤ dY(y, y′),

which means by (120) that X ⊢ σ(y) =dY(y,y′) σ(y) belongs to QTh′(Ê).

Completeness of quantitative equational logic readily follows.

Theorem 161 (Completeness). If ϕ ∈ QTh(Ê), then ϕ ∈ QTh′(Ê).

Proof. Let ϕ ∈ QTh(Ê) and X be its context. By Proposition 160 and definition of
QTh(Ê), we know that T̂′X ⊨ ϕ. In particular, T̂′X satisfies ϕ under the assignment

ι̂ = X
ηΣ

X−→ TΣX
*−+Ê−−−→ TΣX/≡′Ê,

which is nonexpansive by Vars.250 250 Explicitly, Vars means X ⊢ x =dX(x,x′) x′ belongs
to QTh′(Ê), hence, (120) implies

d′Ê(*x + Ê, *x′ + Ê) ≤ dX(x, x′).

Moreover with σ = ηΣ
X , we can show σ satisfies the hypothesis of Lemma 159

and σ∗ = idTΣX ,251 thus we conclude

251 We defined ι̂ precisely to have *σ(x) + Ê = ι̂(x).
To show σ∗ = ηΣ

X
∗ is the identity, use (33) and the

fact that µΣ · ηΣTΣ = 1TΣ (it holds by definition (4)).

• if ϕ = X ⊢ s = t: *s + Ê = JsKι̂
T̂′X

= JtKι̂
T̂′X

= *t + Ê, and

• if ϕ = X ⊢ s =ε t: d′
Ê
(*s + Ê, *t + Ê) = d′

Ê
(JsKι̂

T̂′X
, JtKι̂

T̂′X
) ≤ ε.

By definition of *− +Ê and d′
Ê

, this implies X ⊢ s = t (resp. X ⊢ s =ε t) belongs to
QTh′(Ê).

Note that because T̂X and T̂′X were defined in the same way in terms of QTh(Ê)
and QTh′(Ê) respectively, and since we have proven the latter to be equal, we obtain
that T̂X and T̂′X are the same algebra. In the sequel, we will work with T̂X mostly
but we may use the fact that s ≡ Ê t (resp. dÊ(s, t) ≤ ε) if and only if there is a
derivation of X ⊢ s = t (resp. X ⊢ s =ε t) in QEL.

3.3 Quantitative Algebraic Presentations

In order to obtain a more categorical understanding of quantitative algebras, a first
step is to show that the functor T̂Σ,Ê : GMet → GMet we constructed is actually a
monad.

Proposition 162. The functor T̂Σ,Ê : GMet → GMet defines a monad on GMet with
unit η̂Σ,Ê and multiplication µ̂Σ,Ê. We call it the term monad for (Σ, Ê).

Proof. A first proof uses a standard result of category theory. Since we showed that
T̂Σ,ÊA is the free (Σ, Ê)-algebra on A for every space A (Proposition 154), we obtain
a monad sending A to the underlying space of T̂Σ,ÊA, i.e. T̂Σ,ÊA.252 252 The unit is automatically η̂Σ,Ê, but some computa-

tions are needed to show the multiplication is µ̂Σ,Ê.One could also follow the proof we gave for Set and explicitly show that η̂Σ,Ê and
µ̂Σ,Ê obey the laws for the unit and multiplication (most of the work having been
done earlier in this chapter).
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What is arguably more important is that quantitative algebras for (Σ, Ê) corre-
spond to T̂Σ,Ê-algebras. We will construct an isomorphism between QAlg(Σ, Ê) and
EM(T̂Σ,Ê) by relying on the isomorphism P : Alg(Σ) ∼= EM(TΣ) : P−1 that we de-
fined in Proposition 56,253 the forgetful functor U : QAlg(Σ, Ê) → Alg(Σ) that 253 Take the statement of Proposition 56 with E = ∅.

sends Â to the underlying algebra A, and the functor EM(T̂Σ,Ê) → EM(TΣ) we
define below.

Lemma 163. For any T̂Σ,Ê-algebra (A, α), the map Uα ◦ [−]Ê : TΣ A → A is a TΣ-algebra.
Furthermore, this defines a functor U[−]Ê : EM(T̂Σ,Ê)→ EM(TΣ).

Proof. Apply Proposition 66 after checking that (U, [−]Ê) is monad functor from
T̂Σ,Ê to TΣ.254 254 The appropriate diagrams (53) and (54) commute

by (113) and a combination of (101) and (102).
Theorem 164. There is an isomorphism QAlg(Σ, Ê) ∼= EM(T̂Σ,Ê).

Proof. In the diagram below, we already have the functors drawn with solid arrows,
and we want to construct P̂ and P̂−1 drawn with dashed arrows before proving they
are inverses to each other.

QAlg(Σ, Ê) EM(T̂Σ,Ê) QAlg(Σ, Ê) EM(T̂Σ,Ê)

Alg(Σ) EM(TΣ) GMet

U U[−]Ê
P

P−1

P̂

P̂−1

P̂

U
U
T̂Σ,Ê

P̂−1

A (meaningful) sidequest for us is to make the diagrams above commute, namely,
the underlying TΣ-algebra of P̂Â should be PA and the underlying space of P̂Â

should be the underlying space of Â, and similarly for P̂−1. It turns out this com-
pletely determines our functors, up to some quick checks. We will move between
spaces and their underlying sets without indicating it by U : GMet→ Set.

Given Â ∈ QAlg(Σ, Ê), we look at the underlying Σ-algebra A, apply P to it to
get αA : TΣ A → A which sends a term t to its interpretation JtKA, and we need to
check that it factors through [−]Ê and a nonexpansive map α̂Â : T̂Σ,ÊA as in (122).

TΣ A A

T̂Σ,ÊA
[−]Ê α̂

Â

αA

(122)

First, αA is well-defined on terms modulo Ê because if s ≡ Ê t, then Â satisfies
A ⊢ s = t ∈ QTh(Ê), and this in turn means (taking the assignment idA : A→ A):

αA(s) = JsKA = JsKidA
A = JtKidA

A = JtKA = αA(t).

Next, the factor we obtain α̂Â : TΣ A/≡ Ê → A is nonexpansive from T̂Σ,ÊA to A.
Indeed, if dÊ([s]Ê, [t]Ê) ≤ ε, then Â satisfies A ⊢ s =ε t ∈ QTh(Ê), and this means:

dA(α̂Â[s]Ê, α̂Â[t]Ê) = dA(αA(s), αA(t)) = dA(JsKA, JtKA) = dA(JsKidA
A , JtKidA

A ) ≤ ε.

Finally, if h : Â → B̂ is a homomorphism, then by definition it is nonexpansive
A → B and it commutes with J−KA and J−KB. The latter means it commutes with
αA and αB, which in turn means it commutes with α̂Â and α̂B̂ because [−]Ê is epic
(see (123)). We obtain our functor P̂ : QAlg(Σ, Ê)→ EM(T̂Σ,Ê).

TΣ A TΣ B

A B

T̂Σ,ÊA T̂Σ,ÊB

[−]Ê
α̂

Â

αA

TΣh

[−]Ê

α̂
B̂

αB

T̂Σ,Êh

h

(123)
The top face of (123) commutes because h is a ho-
momorphism, the back face commutes by (99), and
the side faces commute by (122). Thus, the bottom
face commutes because [−]Ê is epic.

Given a T̂Σ,Ê-algebra α̂ : T̂Σ,ÊA→ A, we look at the TΣ-algebra

U[−]Ê α̂ = Uα̂ ◦ [−]Ê : TΣ A→ A
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obtained via Lemma 163, then we apply P−1 to get the Σ-algebra (A, J−K
U[−]Ê α̂

).

Since A = (A, dA) is a generalized metric space (because α̂ belongs to EM(T̂Σ,Ê)),
we obtain a quantitative algebra Âα̂ = (A, J−K

U[−]Ê α̂
, dA), and we need to check it

satisfies the equations in Ê.
Recall from the proof of Proposition 56 that the interpreting terms in Âα̂ is the

same thing as applying U[−]Ê α̂ = Uα̂ ◦ [−]Ê. Therefore, given any L-space X, non-
expansive assignment ι̂ : X→ A, and t ∈ TΣX, we have

JtKι̂
A

(7)
= JTΣ ι̂(t)KA = α̂[TΣ ι̂(t)]Ê.

Now, if X ⊢ s = t ∈ Ê, we also have A ⊢ TΣ ι̂(s) = TΣ ι̂(t) ∈ QTh(Ê) by Lemma 137,
which means

JsKι̂
A = α̂[TΣ ι̂(s)]Ê = α̂[TΣ ι̂(t)]Ê = JtKι̂

A.

Similarly for X ⊢ s =ε t ∈ Ê, Lemma 137 means A ⊢ TΣ ι̂(s) =ε TΣ ι̂(t) ∈ QTh(Ê), so255 255 The first inequation holds by nonexpansiveness
of α̂ and the second by definition of dÊ (97).

dA(JsKι̂
A, JtKι̂

A) = dA(α̂[TΣ ι̂(s)]Ê, α̂[TΣ ι̂(t)]Ê) ≤ dÊ([TΣ ι̂(s)]Ê, [TΣ ι̂(t)]Ê) ≤ ε.

Finally, if h : (A, α̂) → (B, β̂) is T̂Σ,Ê-homomorphism, then by definition, it is non-
expansive A → B, and by Lemma 163 it commutes with U[−]Ê α̂ and U[−]Ê β̂ which
means it is a homomorphism of the underlying algebras of Âα̂ and B̂

β̂
. We con-

clude it is also a homomorphism between the quantitative algebras Â and B̂.256 We 256 Recall that homomorphisms between quantitative
algebras are just nonexpansive homomorphisms.obtain our functor P̂−1 : EM(T̂Σ,Ê)→ QAlg(Σ, Ê).

The diagrams at the start of the proof commute by construction, and P and P−1

are inverses by Proposition 56. That is enough to conclude that P̂ and P̂−1 are
also inverses. Indeed, by commutativity of the triangle, P̂ and P̂−1 preserve the
underlying spaces, and if we fix a space A, the forgetful functors U and U[−]Ê are
injective.257 Then, still with a fixed space A, by commutativity of the square, we 257 For U, it is clear because it only forgets the L-

relation. For U[−]Ê , it is also not to hard to see, and
it is because U : GMet→ Set is faithful and [−]Ê is
epic.

have

UP̂−1P̂Â = P−1U[−]Ê P̂Â = P−1PUÂ = UÂ, and

U[−]Ê P̂P̂−1α̂ = PUP̂−1α̂ = PP−1U[−]Ê α̂ = U[−]Ê α̂,

with which we can conclude by injectivity of U and U[−]Ê .

This motivates the following definition.

Definition 165 (GMet presentation). Let M be a monad on GMet, a quantitative
algebraic presentation of M is signature Σ and a set of quantitative equations Ê
along with a monad isomorphism ρ : T̂Σ,Ê

∼= M. We also say M is presented by
(Σ, Ê).

3.4 Lifting Presentations

Most examples of GMet presentations in the literature [MPP16, MV20, ?, MSV22]
(including the above) are built on top of a Set presentation. In summary, there is



categorical foundations of quantitative algebraic reasoning 79

a monad M on Set with a known algebraic presentation (Σ, E) (e.g. Pne and semi-
lattices or D and convex algebras) and a lifting of every space (X, d) to a space
(MX, d̂). Then, a quantitative algebraic theory (Σ, Ê) over the same signature is
generated by counterparts to the equations in E as well as new quantitative equa-
tions to model the liftings. Finally, it is shown how the theory axiomatises the
lifting, namely the GMet monad induced by the theory is isomorphic to a monad
whose action on objects is the assignment (X, d) 7→ (MX, d̂).

In this section, we prove our main result (??) which makes this process more
automatic and gives necessary and sufficient conditions for when it can actually be
done. Throughout, we fix a monad (M, η, µ) on Set and an algebraic theory (Σ, E)
presenting M via the isomorphism ρ : TΣ,E

∼= M. We first give multiple definitions
to make precise what we mean by lifting.

Definition 166 (Liftings). We have three different notions of lifting that we intro-
duce from weakest to strongest.

• A mere lifting of M to GMet is an assignment (X, dX) 7→ (MX, d̂X) defining a
generalized metric on MX for every generalized metric on X.258 258 The name lifting more commonly refers to what

we call functor lifting or monad lifting below which
require more conditions than a mere lifting, hence
the name.

• A functor lifting of M to GMet is a functor M̂ : GMet→ GMet that makes the
square below commute.

GMet GMet

Set Set

U

M

U

M̂

(124)

Note in particular that for every space X, the carrier of M̂X is MX, so we obtain
a mere lifting X 7→ M̂X. Furthermore, given a nonexpansive map f : X → Y, the
underlying function of M̂ f is M f , i.e. M f : M̂X→ M̂Y is nonexpansive.

In fact, if we have a mere lifting (X, dX) 7→ (MX, d̂X) such that for every non-
expansive map f : X → Y, M f : (MX, d̂X) → (MY, d̂Y) is nonexpansive, we
automatically get a functor lifting M̂ whose action on objects is given by the
mere lifting.259 We conclude that functor liftings are just mere liftings with that 259 The action on morphisms is prescribed by (124),

namely, the underlying function of M̂ f is M f which
is nonexpansive by hypothesis, and since U is faith-
ful, that determines M̂ f .

additional condition.

• A monad lifting of M to GMet is a monad (M̂, η̂, µ̂) on GMet such that M̂ is
a functor lifting of M and furthermore Uη̂ = ηU and Uµ̂ = µU. These two
equations mean that the underlying function of the unit and multiplication η̂X

and µ̂X are ηX and µX for any space X. In particular, the maps

ηX : X→ M̂X and µX : M̂M̂X→ M̂X

are nonexpansive for every X. In fact, since U is faithful, that completely deter-
mines η̂X and µ̂X, and we conclude as before that a monad lifting is just a mere
lifting with three additional conditions:

1. M f : (MX, d̂X)→ (MY, d̂Y) is nonexpansive if f : X→ Y is nonexpansive,
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2. ηX : (X, dX)→ (MX, d̂X) is nonexpansive for every X, and

3. µX : (MMX, ̂̂dX)→ (MX, d̂X) is nonexpansive for every X.

In practice, when defining a monad lifting, we will define a mere lifting and
check Items 1–3. Let us give an example.

Example 167. Given an L-space (X, d), we define an L-relation d̂ on PneX as follows:
for any non-empty finite S, S′ ⊆ X,

d̂(S, S′) =


⊥ S = S′

d(x, y) S = {x} and S′ = {y}
⊤ otherwise

. (125)

This defines a mere lifting of Pne to LSpa given by (X, d) 7→ (PneX, d̂). Viewing Pne

as modelling nondeterminism (recall ??), this lifting could model a system where
nondeterministic processes cannot be meaningfully compared (they are put at max-
imum distance) unless the sets of possible outcomes are the same (distance is min-
imal) or both processes are deterministic (distance is inherited from the distance
between the only possible outcomes).

To show this is a monad lifting of (Pne, η, µ),260 it is enough to prove Lemmas 168– 260 The unit and multiplication of Pne were defined in
Example 50.

170.

Lemma 168. If f : (X, d) → (Y, ∆) is nonexpansive, then so is the direct image function
Pne f : (PneX, d̂)→ (PneY, ∆̂).261 261 We write f (S) instead of Pne f (S) for better read-

ability.
Proof. Let S, S′ ∈ PneX. If S = S′, then f (S) = f (S′), so

∆̂( f (S), f (S′)) = ⊥ ≤ ⊥ = d̂(S, S′).

If S = {x} and S′ = {y}, then f (S) = { f (x)} and f (S′) = { f (y)}, so262 262 The inequation holds because f is nonexpansive.

∆̂( f (S), f (S′)) = ∆( f (x), f (y)) ≤ d(x, y) = d̂(S, S′).

Otherwise, d̂(S, S′) = ⊤ and ∆̂( f (S), f (S′)) is always less or equal to ⊤.

Lemma 169. For any (X, d), the map ηX : (X, d)→ (PneX, d̂) is nonexpansive.

Proof. Recall that ηX(x) = {x}. For any x, y ∈ X, d̂({x}, {y}) = d(x, y), so ηX is
even an isometry.

Lemma 170. For any (X, d), the map µX : (PnePneX, ̂̂d)→ (PneX, d̂) is nonexpansive.

Proof. Recall that µX(F) = ∪F and let F, F′ ∈ PnePneX. The case F = F′ is dealt with
like in Lemma 168, it implies ∪F = ∪F′, hence the distances on both sides are ⊥. If
F = {S} and F′ = {S′}, ∪F = S and ∪F′ = S′, then

d̂(µX(F), µX(F′)) = d̂(S, S′) = ̂̂d({S}, {S′}).
Otherwise, ̂̂d(F, F′) = ⊤, so the inequality holds because d̂(µX(F), µX(F′)) is always
less or equal to ⊤.
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We obtain a monad lifting of Pne to LSpa that we will denote by P̂ .

Given a monad lifting M̂, we can start to understand how it transforms distances
using the presentation ρ : TΣ,E

∼= M. For any space X, we see the distance d̂X on MX
as a distance d̂ on terms modulo E via the isomorphism ρX :

d̂([s]E, [t]E) = d̂X(ρX [s]E, ρX [t]E).

Can we find some quantitative equations Ê that axiomatize d̂, i.e. such that dÊ and
d̂ are isomorphic (uniformly for all X)?

First of all, for the distances to be isomorphic, they need to be on the same set,
namely, we need to have TΣX/≡ E ∼= TΣX/≡ Ê, or equivalently, s ≡ E t ⇐⇒ s ≡ Ê t.
At once, this removes some options for which equations to add in Ê. For instance,
we cannot add X ⊢ s = t if X ⊢ s = t does not already belong to Th(E). Conversely,
if X ⊢ s = t ∈ E, we need to ensure X ⊢ s = t belongs to QTh(Ê). We can do this by
adding X⊤ ⊢ s = t to Ê thanks to Example 157.263 263

After that, we will have to add quantitative equations with some ε’s to axiomatize
d̂, but we have to be careful not to break the equivalence we just obtained between
≡ E and ≡ Ê. For instance, if GMet = Met, f : 1 ∈ Σ and E = ∅, then we cannot
have x = 1

2
y ⊢ fx =0 fy ∈ Ê, because using the equation x =0 y ⊢ x = y that defines

Met, we could conclude that x = 1
2
⊢ fx = fy belongs to QTh(Ê), which means

fx ≡ Ê fy whenever dX(x, y) ≤ 1
2 while fx ̸≡ E fy.

The relation between Ê and E seems to mimick our intution about mere liftings.
We say that Ê extends E.

Definition 171 (Extension). Given a set E of equations over Σ and a set Ê of quanti-
tative equations over Σ, we say that Ê is an extension of E if for all X ∈ GMet and
s, t ∈ TΣX,

X ⊢ s = t ∈ Th(E)⇐⇒ X ⊢ s = t ∈ QTh(Ê). (126)

It turns out that extensions are stronger than mere liftings because we can show
the monad we constructed via terms modulo Ê is a monad lifting of TΣ,E.

Proposition 172. If Ê is an extension of E, then T̂Σ,Ê is a monad lifting of TΣ,E.

Proof. We need to check the following three equations where U : GMet → Set is
the forgetful functor:

UT̂Σ,Ê = TΣ,EU Uη̂Σ,Ê = ηΣ,EU Uµ̂Σ,Ê = µΣ,EU.

First, we have to show that for any space X, UT̂Σ,ÊX = TΣ,EUX. By definitions, the
L.H.S. is TΣX/≡ Ê and the R.H.S. is TΣX/≡ E, so it boils down to showing s ≡ Ê
t ⇐⇒ s ≡ E t for all s, t ∈ TΣX. This readily follows from the definitions of ≡ Ê, ≡ E

and (126):

s ≡ Ê t⇐⇒ X ⊢ s = t ∈ QTh(Ê)⇐⇒ X ⊢ s = t ∈ Th(E)⇐⇒ s ≡ E t.

Next, we have to show that UT̂Σ,Ê f = TΣ,E f for any f : X → Y. This is done rather
quickly by comparing their definitions, they make the same squares (20) and (99)
commute now that we know ≡ Ê and ≡ E coincide.
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This takes care of the first equation, and the other two are done very similarly,
we compare the definitions of η̂Σ,Ê and ηΣ,E (resp. µ̂Σ,Ê and µΣ,E) and conclude they
are the same when ≡ Ê and ≡ E coincide.264 264 We defined η̂Σ,Ê in (113), ηΣ,E in Footnote 50, µ̂Σ,Ê

in (102), and µΣ,E in (30).
So if we are able to construct an extension Ê of E, we can obtain a monad lifting

of M by passing through the isomorphism ρ : TΣ,E
∼= M.

Corollary 173. If M is presented by (Σ, E), and Ê is an extension of E, then Ê presents a
monad lifting of M.

Proof. We first construct a monad lifting of (M, η, µ). For any space X, we have
an isomorphism ρ−1

X : MX → TΣ,EX, and a generalized metric dÊ on TΣ,E (since the
underlying set of T̂Σ,Ê is TΣ,E by Proposition 172). We can define a generalized metric
d̂X on MX as we have done for Proposition 105 to guarantee that ρ−1

X : (MX, d̂X)→
T̂Σ,ÊX is an isomorphism:265 265 In words, the distance between m and m′ in MX is

computed by viewing them as (equivalence classes
of) terms in TΣX, then using the distance between
them given by dÊ.

d̂X(m, m′) = dÊ(ρ
−1
X (m), ρ−1

X (m′)). (127)

This yields a mere lifting (X, dX) 7→ (MX, d̂X).
In order to show this is a monad lifting, we use the following diagrams (quan-

tified for all X and nonexpansive f : X → Y) which hold because ρ is a monad
isomorphism with inverse ρ−1.266 266 The first holds by naturality, the second by (47),

and the third by (48). Moreover, all the functions in
these diagrams are nonexpansive (with the sources
and targets as drawn) by previous results:

• We just showed the components of ρ are isome-
tries.

• We showed TΣ,E f is the underlying function of
T̂Σ,E f because T̂Σ,E is a monad lifting of TΣ,E

(Proposition 172), so TΣE f is nonexpansive when
f is nonexpansive.

• By the previous two points, TΣ,Eρ−1
X is nonexpan-

sive.

• Again since T̂Σ,Ê is a monad lifting of TΣ,E, ηΣ,E
X

and µΣ,E
X are nonexpansive.

(MX, d̂X) T̂Σ,ÊX

(MY, d̂Y) T̂Σ,ÊY

M f

ρ−1
X

TΣ,E f

ρY

X T̂Σ,ÊX

(MX, d̂X)

ηΣ,E
X

ρXηX

(MMX, ̂̂dX) T̂Σ,Ê(X, d̂X) T̂Σ,ÊT̂Σ,ÊX

(MX, d̂X) T̂Σ,ÊX

µX

ρ−1
MX TΣ,Eρ−1

X

µΣ,E
X

ρX

These show (detailed in the footnote) that M f , ηX and µX are compositions of
nonexpansive maps, and hence are nonexpansive. We obtain a monad lifting M̂ of
M to GMet which sends (X, dX) to (MX, d̂X).

It remains to show that M̂ is presented by (Σ, Ê). By construction, we have the
isomorphisms ρ̂X : T̂Σ,ÊX → M̂X whose underlying function is ρX . The fact that ρ̂

is a monad morphism follows from the facts that ρ is a monad morphism, and that
U : GMet→ Set is faithful so it reflects commutativity of diagrams.267 267 Let us detail the argument for naturality, the oth-

ers would follow the same pattern. We need to
show that ρ̂Y ◦ M̂ f = M̂ f ◦ ρ̂X. Applying U, we
get ρY ◦ M f = M f ◦ ρX which is true because ρ is
natural, hence U(ρ̂Y ◦ M̂ f ) = U(M̂ f ◦ ρ̂X). Since U
is faithful, and the desired equation holds.

Now, we would like to have a converse result. Namely, if (X, dX) 7→ (MX, d̂X) is
given by a monad lifting M̂ of M to GMet, our goal is to construct an extension Ê
of E such that the monad lifting corresponding to Ê (given in Corollary 173) is M̂.
There is no obvious reason this is even possible, maybe M̂ is a monad lifting that
has no quantitative algebraic presentation.268 Our next theorem shows that such a 268 Or maybe M̂ has a presentation that is not an ex-

tension of E, but our informal discussion leading
to the definition of extensions indicates that is less
probable.

Ê always exists. In fact, it is constructed very naively.
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As discussed in Footnote 263, when Ê contains all the quantitative equations in

Ê1 = {X⊤ ⊢ s = t | X ⊢ s = t ∈ E} , (128)

then we have at least one direction of (126), namely, that X ⊢ s = t ∈ Th(E) implies
X ⊢ s = t ∈ QTh(Ê) for all X and s, t ∈ TΣX. Next, we include in Ê all the possible
equations X ⊢ s =ε t where ε is the distance between s and t when viewed inside
M̂X (via ρX), namely, Ê2 ⊆ Ê where

Ê2 =
{

X ⊢ s =ε t | X ∈ GMet, s, t ∈ TΣX, ε = d̂X(ρX [s]E, ρX [t]E)
}

. (129)

This is a very large bunch of equations (it is not even a set), but it leaves no stone
unturned, meaning that the distance computed by Ê will always be smaller than
the distance in M̂X. Indeed, we have for any m, m′ ∈ MX, letting s, t ∈ TΣX be such
that ρX [s]E = m and ρX [t]E = m′ (by surjectivity of ρX), we have269 269 The implication follows because by definition, Ê

will contain X ⊢ s =dX(m,m′) t, hence by the Max

rule, we will have X ⊢ s =ε t ∈ QTh(Ê). The first
equivalence is (97), and the second holds because
ρ−1

X is the inverse of ρX .

d̂X(m, m′) ≤ ε =⇒ X ⊢ s =ε t ∈ QTh(Ê)

⇐⇒ dÊ([s]E, [t]E) ≤ ε

⇐⇒ dÊ(ρ
−1
X (m), ρ−1

X (m′)) ≤ ε.

In order to conclude that Ê = Ê1 ∪ Ê2 presents M̂, we need to show that Ê is an
extension of E, i.e. the other direction of (126), and that the monad lifting defined
in Corollary 173 coincides with M̂, i.e. the converse implication of the previous
derivation holds. We will prove these by constructing a (family of) special algebra
in QAlg(Σ, Ê).270 270 In turns out (after the rest of the proof) we are

constructing the free algebra over A, but we feel it is
not necessary to make that explicit.

For any generalized metric space A, we denote by MA the quantitative Σ-algebra
(MA, J−KµA , d̂A), where

• (MA, d̂A) is the space obtained by applying M̂ to A, and

• (MA, J−KµA) is the Σ-algebra obtained by applying the isomorphism Alg(Σ, E) ∼=
EM(M) (from the presentation) to the M-algebra (MA, µA) (from Example 55).

We can show that MA belongs to QAlg(Σ, Ê1 ∪ Ê2).

Lemma 174. For all ϕ ∈ Ê1 ∪ Ê2, MA ⊨ ϕ.

Proof. If ϕ = X⊤ ⊢ s = t ∈ Ê1, then by construction (MA, J−KµA) satisfies X ⊢ s =

t ∈ E. This means that for any assignment ι̂ : X⊤ → M̂A, we have JsKι̂
µA

= JtKι̂
µA

.

Suppose now that ϕ = X ⊢ s =ε t ∈ Ê2 with ε = d̂X(ρX [s]E, ρX [t]E). A bit of
unrolling271 shows that for an assignment ι : X → MA, the interpretation J−Kι

µA
is 271 Look at the definition of P−1 in Proposition 56, in

particular what we proved in Footnote 85, and the
definition of −ρ in (52).

the composite

TΣX
TΣ ι−→ TΣ MA

[−]E−−→ TΣ,E MA
ρMA−−→ MMA

µA−→ MA.

For later use, we apply the naturality of [−]E (20) and ρ to rewrite the composite as

J−Kι
µA

= TΣX
[−]E−−→ TΣ,EX

ρX−→ MX Mι−→ MMA
µA−→ MA. (130)
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We conclude that MA ⊨ ϕ with the following derivation which holds for all nonex-
pansive ι̂ : X→ M̂A.272 272 Our hypothesis that M̂ is a monad lifting yields

nonexpansiveness of µA and Mι̂.

d̂A(JsKι̂
µA

, JtKι̂
µA

) = d̂A (µA(Mι̂(ρX [s]E)), µA(Mι̂(ρX [t]E))) by (130)

≤ ̂̂dA (Mι̂(ρX [s]E), Mι̂(ρX [t]E)) µA is nonexpansive

≤ d̂X (ρX [s]E, ρX [t]E) Mι̂ is nonexpansive

= ε

Theorem 175. Let M̂ be a monad lifting of M to GMet, and Ê = Ê1 ∪ Ê2. Then, Ê is an
extension of E and it presents M̂.

Proof. We already showed the forward implication of (126) when we defined Ê1

(128). For the converse, suppose that X ⊢ s = t ∈ QTh(Ê), we saw in Lemma 174 that
MX satisfies X ⊢ s = t. Taking the assignment ηX : X→ M̂X which is nonexpansive
because M̂ is a monad lifting, we have JsKηX

µX = JtKηX
µX . Using (130) and the monad

law µX ◦MηX = idMX (left triangle in (38)), we find

ρX [s]E = µX(MηX(ρX [s]E)) = JsKηX
µX = JtKηX

µX = µX(MηX(ρX [t]E)) = ρX [t]E.

Finally, since ρX is a bijection, we have [s]E = [t]E, i.e. X ⊢ s = t ∈ Th(E).
We already showed that d̂X(m, m′) ≥ dÊ(ρ

−1
X (m), ρ−1

X (m′)) when defining Ê2. For
the converse, let m = ρX [s]E and m′ = ρX [t]E for some s, t ∈ TΣX and suppose
that dÊ([s]E, [t]E) ≤ ε, or equivalently by (97), that X ⊢ s =ε t ∈ QTh(Ê). As above,
Lemma 174 says that MX satisfies that equation. Taking the assignment ηX : X →
M̂X which is nonexpansive because M̂ is a monad lifting, we have273 273 The second inequality holds again by (130) and

(38).

d̂X(m, m′) = d̂X (ρX [s]E, ρX [t]E) = d̂X

(
JsKηX

µX , JtKηX
µX

)
≤ ε.

Comparing with (127), we conclude that M̂ is exactly the monad lifting from Corol-
lary 173. In particular, Ê presents M̂ via ρ̂ whose component at X is ρX .

Remark 176. When constructing the extension Ê = Ê1 ∪ Ê2, Ê1 can be fairly small
since it has the size of E, but Ê2 as defined is always huge (not even a set). In theory,
some results in the literature could allow us to restrict the size of contexts to be of a
moderate size only with mild size conditions on L and EGMet.274 In practice, we will 274 I will not write the proofs because I am not con-

fident enough with the literature on accessible and
presentable categories, but I believe [FMS21, Propo-
sitions 3.8 and 3.9] make it possible to reproduce the
arguments of ?? with a different cardinal replacing
ℵ0 (which we implicitly used because λ < ℵ0 ⇔
λ finite).

give a few examples where we can find some simple set of quantitative equations
which will be equivalent to Ê2 (when Ê1 is present). For now, these always requires
some clever argument that depends on the application, but there may be room for
optimization in the definition of Ê2.
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