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1. INTRODUCTION

Small categories forms a 2-category, but when profunctors are also taken into account, they form a double
category Prof. In | |, Cruttwell and Shulman defined a unified framework to conceive several notions of
generalised multicategories, which are kinds of category-like structures, and showed that each of those concepts
forms a wvirtual double category, which is a generalisation of double category. On the other hand, there are
also some attempts to formalise category theory by means of augmented virtual double category, which is
also an generalisation of double category | ]. Thus, it is natural to assume that the collection of 1-
dimensional structures such as categories forms a 2-dimensional structure. In general, the collection of n-
dimensional structure is expected to have an n + 1-dimensional structure. The main objective of this paper is
to give an answer to this expectation.

This paper uses the theory on familial monads introduced by Shapiro in | , | as a general framework
for defining higher categories. In general, for a cartesian monad T, a generalised notion of category, called T'-
category in this paper, is defined | , |, whereas in | |, it is asserted that there exists another
familial monad fc[T] whose algebras coincide with T-categories, whenever T is familial. When T is trivial,
T-categories are ordinary categories and fc[T]-categories are virtual double categories, hence fc[T]-category
is reworded as T-virtual double category. Moreover, for fc*[T] obtained by repeating fc[—], fc*[T]-categories
(=:virtual n + 1-tuple categories) can be considered an example of concepts of (n + 1)-dimensional structure.

In Section 4.1, under some assumptions on 7', we suggest a definition of the category of T'-simplices, hence we
obtain notions such as T'-simplicial set and T'-simplicial category, and show that the category of T-categories is
embedded in the category of T-simplicial set.

In Section 4.2, we investigate the virtual double category of T-categories and T-profunctors, Prof(T), which
is an example of the virtual double category of T-monoids defined in | |, in terms of pseudo simplicial
category, i.e. pseudo functor from the category of simplices to 2-category of categories. We show that one can
define a (2-truncated) pseudo simplicial category of T-categories and T-profunctors, Profy(T), and Prof(T)
is the free objects with respect to a “nerve” 2-functor from the 2-category of virtual double categories to the
2-category of pseudo simplicial categories, hence Prof(T") can be seen as the “realization” of Profa(T) as a
virtual double category.

Combining those observations, we suggest an definition of the fc-pseudo simplicial category of virtual double
categories, and the virtual triple category of virtual double categories as its realization.

Moreover, we suggest a way to define the virtual n 4+ 2-tuple category of virtual n + 1-tuple categories, in
general.

2. TERMINOLOGY AND PRELIMINARIES

A double category X is a category pseudo internal to the 2-category Cat of categories, hence it has the
following data:

e a set of objects in X
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e for each pair of objects X,Y, a set of horizontal arrows, written as slashed arrows like X Y
e for each pair of objects X,Y, a set of vertical arrows, written as X — Y
e for each square formed by horizontal and vertical arrows, a set of cells, written as follows

Xty
(2-1) fl o lg
A —h B

e vertical and horizontal compositions and identities satisfying coherence conditions
We say a cell « above is horizontal if f and g are identities. Horizontal arrows and horizontal cells forms a
bicategory, which we write H(X).
By the notations on the left side of the equations below, we mean the cells denoted on the right side;
xtsy Xxby ;X X x X  x®X
(2.2) NG Tyl N Sl b s ()Tl oy s
A A o A A—— B A B A A o A

For a vertical arrow f : X — A in a double category X, a companion of f is a horizontal cell f, : X » A
such that there exists two cells, o and (3, satisfying conditions below:

X
RN X X Ja X 4

(2.3) X 54 = f§:>f /a\fﬁ/ = 7 7
f\i/ A X —— A X —— A

where = and || are horizontal and vertical identity cells. A conjoint f* of f is the horizontal dual of companion.
For each vertical arrow f : X — Y, its companion and conjoint are unique if exist. X is called an equipment if
every vertical arrows have companions and conjoints. A cell a (2.1) is cartesian if any cell on the right below
uniquely factors through a:

C— s

(2.4) X -2y = lgz

B
fl o g
A—é—>B A ; B

If X is an equipment, then « is cartesian if and only if the composite below is an isomorphism in H(X).

X —+—Y
(2:5) 1 a1\
N N
X —~+—A—+—>B—4->Y
f g

Example 2.1. For each small categories X and Y, we define a profunctor X Y as a functor X°? xY — Set.
There is the double category Prof consisting of small categories as its objects, functors as its vertical arrows,
and profunctors as its horizontal arrows. A cell in Prof

X 4>y

fl « Jg

A —— B
is a family of functions ay 4 : p(x,y) — q(f(x), g(y)) which is natural in € X and y € Y. Prof is in fact an
equipment, where for each functor f : X — A, the companion f, : X - A and conjoint f*: A — X is defined

as A(f(z),a) and A(z, f(a)) respectively. The horizontal composition of X - Y - Z is given by the following
coend formula:

yeY
(2.6) qop(x,z) = / p(z,y) x q(y, 2)
By Prof, we mean the horizontal bicategory H(Prof). [ |

Example 2.2. Let E be a category with pullbacks. Then there is a double category of spans in E, $pan(E),
defined as follows: objects are those of E, vertical arrows are morphisms of E, and a horizontal arrow p : X 5 Y
is aspan X «— |p| =Y in E. A cell « like (2.1) is a morphism « : |p| — |g| which makes obvious diagram
consisting of f, g, and the legs of p and ¢ commutes. The horizontal composite q o p is given by pullback of the
right leg of p along the left leg of q. ]
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A virtual double category A has the following data:

e data of objects, horizontal arrows, and vertical arrows as in the definition of double category.
e for each square of the form below, a set of cells, written as follows

Xo -2 xy B s X, 2L X,
(2-7) fl « lg
Ao f Ay

e vertical arrows has composition, so that objects and vertical arrows form a category.
e only cell composites that preserve the shape of cell above are allowed. In particular we do not have
compositions of horizontal arrows. See | | for more detail.

By arity of a cell, we mean the length of the sequence of horizontal arrows which is the source of the cell. In
the case of (2.7), the arity is n.

Any double category can be seen as a virtual double category in an obvious way; that is, virtual double
category can be seen as a generalisation of double category. In the same way as (2.4), we say a cell « of form
(2.1) is cartesian if any cell of the form on the right below factors as the left below.

Kl 3 L } '
(2.8) X —F vy = fkl 8 lgl
" a Lo A——4— B

A——F—— B
On the other hand, we say a horizontal cell on the left below is weakly opcartesian if any cell S on the right
below factors as follows:

. p\O ce . pnrl
[ a [ ’ o
(2.9) X— 7" |y = fl 3 lg
L 3 vy e
A — B
Remark 5.8 and Theorem 5.2 in | | shows that if any composable string of horizontal arrows is the source of

a weakly opcartesian cell, and weakly opcartesian cells are closed under vertical composite, then X is a double
category.

We write A for the category of simplices, and write G, for the category of globes of dimension < 1, which is
interpreted as a subcategory of A; i.e., G; has two objects written as [0] and [1], and has two non-trivial arrows

ol ay
written as [0] — [1] and [0] —> [1].
By ), we mean both the empty set and the empty category, and we write 1 for the terminal category.

3. FAMILIAL REPRESENTATION

In this section, we briefly review some concepts surrounding familial representation, which is introduced in
[ |. Note that, since we define a profunctor C - D to be a functor C°? x D — Set, we identify a presheaf
with a profunctor to the terminal category 1.

Definition 3.1. Let C and C’ be small categories. A familial representation F = (Sp,Er) : C' - Cisa
pair of

e a presheaf Sp : C — 1, or equivalently, a discrete fibration ty : [Sp — C and

e a profunctor Ep : C' = [Sp, or equivalently, a functor Ep [-]: [Sp — C.

|

Definition 3.2. Let F' : C' - C and F’ : C” - C’ be familial representations. We define the composite
FF': C" - C as follows:

e The total category of Spps is

(3.1) JSer = [(C(Er[-], Sp)

where C'(Ep [-], Sp/) : ([SF)®— Set is the presheaf induced from Ep [~] : [Sp — C’ and Sp € C.

This presheaf is the same as the right extension rexg, Sp: : fSF —+ 1 of Spr : C'—+ 1 along Ef :

C' - [Sp. We mean by Ftyp, : [Spr — [Sp the discrete fibration corresponding to a(EF -], SF).
e The discrete fibration typp : [Spp — C is the composite tyy - Ftyp of discrete fibrations.
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e Epp : C" - [Spps is defined as the composite

FSry

E
(3.2) " ZE [Sp = [Spp

Hom(\,—)
—_—

of profunctors where Ez—(A, k) := colim ( JEF [Ftyp (k)] I, Sk Set ) for each A € Sp/

and k : Ep [Ftyp (k)] — S/, hence Epp: (¢’ k) = colim  Ep(c”, k(z)).
C€ [Er[Fty o ()]

The identity familial representation on C is defined as the pair ((!¢),, Idc), where Idc is the identity profunctor
on C and !¢ : C — 1 is the unique functor to the terminal category 1. ]

Remark 3.3. For any presheaf S : C — 1 and any profunctor E : C' - C, we mean by S : [S - C the

familial representation (S, Idg) and by E : C' - C we mean ((le),, E) where !¢ is the unique functor from C
to 1. The notation F FS for the profunctor defined in Definition 3.2 is justified as the E-part of the composite

FSp . Any familial representation F : C’ —> C factors as SpEp. [ |

Remark 3.4. On the other hand, a presheaf X : C — 1 can be identified with a familial representation @) -£> C
since there is precisely one profunctor whose type is ) > [X. For a familial representation F : C - C’, the

composite F'X : ) — C’ is the presheaf presented as [[cg, () C(Er [\, X). [ ]

Definition 3.5. A morphism of familial representation ¢ : F' = G between parallel familial representa-
tions is a pair (¢, ¢¥) such that

e ¢°:Sp = S¢ is a morphism of presheaves, and
e ¢% is a natural isomorphism Er [~] — Eg U(;SS(—)], or equivalently, a cartesian cell below in Prof.

c 5 Sk
(3.3) | o Jges
C' > J%

The composite po¢ : F = H of two morphisms ¢ : F' = G and ¢ : G = H is defined as the pairwise composite
of natural transformations ()° o ¢, ¥ o ¢¥), where 1) o ¢¥ is the vertical composite of the cells (3.3). There

are obvious identity morphisms, hence they form a category Rep(C’, C) of familial representations from C’ to
C. |

Consider a cell in Prof

A——C
(3.4) f ! lg
B—+—D

and its conjoint o*; the composite of the cells below.

B-f.A_—>cC

(3.5) \‘5 o %\

B—IHD—;*HC

If f is an identity, then o™ is an isomorphism if and only if « is cartesian. It is straightforward to check cells
whose conjoints are isomorphisms are closed under horizontal and vertical compositions.
Definition 3.6 (Whiskerings). Let ¢ : F = G : C' & C and ¢' : F' = G’ : C" -&> C’ be morphisms of familial
representations.

e A morphism F¢' : FF' = FG’ consists of the following

e S - 1S~
— [Skr e [Srer is derived from the post-composition C'(Er [—], Spr) A C'(Er[-],Sc).
— We write

EFS /

fSF/ —5 fSFF'
(3.6) Jo=| (Fe®)" | fre®

[Ser 57— [Srar
FSG,
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for the cell whose component

— \E
F¢'®) li Sp (¥ li Ser (85 (1), 48
(FO5),, el [Sp(sr@) = colim  [Sa(6*5(0), ¢ or(a)

is given by the functor [¢"® on maps. Ftys (¢"® o 7) = Ftyp (7), hence the right hand side is
precisely E FSo (¢"5(t'), ¢ o 7). This conjoint of this cell is an isomorphism since those colimits

commutes with the coend defining the composition EF.ST, o [¢ 5% of profunctors.
The E-part (F¢')” is defined as the composite:
Ep/ EFTW
c’ ISF’ —— fSFF’
\ —\E
| or s ()" e
CI/ —'% ’ —'—) ’
Eor JSa Eps [Ska

which is cartesian.
e A morphism ¢F’ : FF' = GF’ consists of the following

J(eF")? . . e T —(65) ' =; s

— [Spp ——> [Scp is derived from the pre-composition C'(Ep [—], Sp) — C'(Eg [(b f] ,SEr)

which can be interpreted as a cartesian morphism G(EF [-],S9F) — C'(Eg [],SF/) in the fibra-

tion obtained through the Grothendieck construction of the pseudo-functor C +— C: Cat® — CAT.
— We write

Eps—
fSF/ — fSFF'
(3.7) H (657) " lf(gst’)S

[SF == [Scr
G’SF/

for the cartesian cell whose components are the canonical isomorphisms

coim  [Sp(t',7(x)) = colim [Sc/ (t', 70 (¢7)
z€ [EF[Ftypr (1)) yefEG[¢>s(FtyF/(-r))]

f(¢E);':yF/ (T

-1

(y))

induced from the isomorphisms [E¢[¢® (Ftyp (7))] )fEF [Ftyp ()] foreach 7 € [Spp.

The E-part (¢F')F is defined as the composite

Eg EFsi,
[ @ N fSF/ —5 fSFF/
H | @Se)® e
C" 45— [Sr 51— [Sar
F’ GSp/

Proposition 3.7. Definition 3.2, Definition 3.5, and Definition 3.6 define a bicategory Rep.

Remark 3.8. For any small category C, Rep(), C) is equivalent to the presheaf category C. This is through
the assignment S + S remarked in Remark 3.4. Therefore Rep(), —) induces a pseudo functor Rep — CAT
which sends small categories to their presheaf categories. Functors between presheaf categories induced by this
pseudo functor are called familial functors, and natural transformations between familial functors are in
the image of this pseudo functor precisely when they are cartesian, where a natural transformation is said
to be cartesian if its naturality squares are pullback squares. Moreover, any familial functor is cartesian, i.e.
preserving pullbacks.

We often identify a familial functor C — D with its familial representation C - D. ]

Remark 3.9. Recall that any small set of objects in an accessible category is a set of k-presentable objects for
some regular cardinal £ (Corollary 2.3.12 of | |), any presheaf category is accessible, and {Er[A] |\ € [SFr}

is small. Therefore, any familial functor F'? = [T, Sp(o) C(EFr [A],?) is accessible; that is, it preserves x-filtered
colimits for some &. u

Remark 3.10. For any familial representation F' : C’ - C, tyy can be seen as the unique morphism Sp — (I¢),
between presheaves, and the notation F'ty . for the functor defined in Definition 3.2 is justified as the whiskering
of typ : Spr = (o), : 0 4 C' with F': C' - C. [ ]
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Definition 3.11. A monad in Rep is identified with the cartesian monad induced by Rep(#), —), which is called
a familial monad. |

4. CATEGORICAL STRUCTURES

In this section, we fix a familial monad 7" on C. Moreover, we suppose the following two conditions for T’

e Ep [\ is connected | | in C, which means Gph(T)(Ez [A],—) : C — Set preserves small coprod-
ucts.
e C has no non-trivial endo-morphisms.

For example, the free category monad fc on G; satisfies these condition since Fy [n] is connected for each
n € N = 5¢([1]), and G has no non-trivial endo-morphisms. See the proof of Proposition4.12 for more detail.

4.1. T-graphs, T-categories, and T-simplicial sets. First of all, let us extend the Grothendieck construction
to normal lax functors to Prof. This is due to Section 7 of | |-

Definition 4.1. Let C be a category and X : C— Prof be a normal lax functor. The Grothendieck
construction of X is a category (fiX equipped with a functor tyy : iX — C defined as follows:

* Obj(fx) = [ ] Obj(X.
ceC
e Foreach ¢, € C,z € X, and 2’ € X0, fX(z,2) := H Xz, 2").
fie—=c’'inC

We Writet:x*;m' when f:c—d inC,z e X, 2’ € Xo, and t € Xy(x,2").

e Foreach t:z— z' and t' : 2’/ -2 z”, the composite t't : x 7fx” in fiX is defined by applying the lax

Z'eEX

functoriality pur p : Xpo Xy = Xpp to [t, 8] € [T 779 Xyp(2, 7)) x Xp (&', 2") = Xy o Xp(x,2").

|
Example 4.2. For any presheaf S : C°? — Set, the corresponding discrete fibration [S — C is the same as the

Grothendieck construction on C 5% Set® s Cat® =5 Pro [, where, for each i : ¢ — ¢ in C and X\, N € [,

morphism written as A — X in fiS = ['S is unique if exists, which is denoted by iy. [ |

Let 2 := {0 — 1} be the 2-element chain. Any profunctor p : C - D can be seen as a functor "p' : 2 — Prof
, hence as a category fi’p' equipped with a functor ffi"p’ — 2 whose pullback along * — 0 : 1 — 2 (resp.
x> 1:1-—2)is C (resp. D).

Definition 4.3. For each normal lax functors X : C — Prof and X' : C' — Prof, a proarrow between
normal lax functors P : X —b X’ consists of a profunctor dom(P) : C - C’ and a normal lax functor |P| :
fi'dom(P)" — Prof whose restriction to C (resp. C’) is equal to X (resp. X'). One can easily check that the
Grothendieck construction i P| — fifdom(P)! — 2 defines another profunctor fiP : iX — fiX’ equipped with
a forgetful natural transformation

(4'1) t)’xl lt)’x’
C ey dom( ) c
which is called the Grothendieck construction for the proarrow P. |

In detail, a proarrow P : X — X’ consists of

e a profunctor dom(P) : C -+ C’
e for each c € C and ¢’ € C', a functor P, . : dom(P)(c,c’) — Prof(X(c), X'())
e for each g € dom(P)(¢,d'), f:¢—cin C, and f': ¢ — & in C’, natural transformations

x@ X x(0) Pe () ) @) X(e) @ Peq(9) X1() X'() x/(
2 | Mo | o H
X(E) Pé c’{(g‘f) X/(Cl) X(C) Pc a/éf/'g) /(El)

satisfying suitable coherence conditions.
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Definition 4.4. There exists a pseudo (hence normal lax) functor 761 : G; — Prof defined as the following
diagram.

(4.3) C ' [Sr

We define the category of T-globes of dimension < 1, G(T), as the Grothendieck construction on TG i.e.
G(T) = gﬁTGl. G1(T) is presented as follows:
e objects are those in C and [Sr.
e morphisms generated by the following maps
— maps in C: each copy of i : ¢— ¢ in C
— maps in [Sp: each copy of iy : A— N in [Sp
— a:c— \for each a € Ep(c, \)
— target maps: Ty : tyy, — A for each X € [Sr.
subject to the following
— any commutative diagram in C and [Sr commutes
— foreachi:c —cin C, j,, : A — N in JSt, and a € Er(c, \), the following diagram commutes

, Er(ijy)(a)

(4.4) z. 4
Lo ]

(43) oo
tyT(A/) T )\/

Therefore, G1(T") has no non-trivial endo-morphisms if C is so. [ |

o —

Definition 4.5. A T-graph is a presheaf on G1(T). We write Gph(T) for the presheaf category G1 (7). N
Remark 4.6. For any ordinary monad T on a (possibly large) category E, a T-graph is an endo-span
TXo«— X1 — Xy. If T is familial then the two definitions of T-graph coincides:
Given a presheaf X on G1(T"), we obtain a span T Xy «— X; — X in C as follows:

o tyy, : [Xo — Cis the pullback of tyx : [X — G1(T) along the canonical inclusion C — G(T).

e [X; is the domain of the pullback ty’y : [X; — [Sr of tyy : [X — G;(T) along the canonical
inclusion [S7 — G1(T), and tyy, is the composite of ty’y and ty; : [Sp — C.

e for each A € [Sr and € € [X; over X with respect to ty’y , src(€) € C(Er[\, Xo) C [TX, is defined
as src(§), : a — a*¢ for each ¢ € C, where, for each a € Er(c,\), a*{ is the outcome of reindexing &
along a : ¢ — A in G1(T') with respect to tyx.

1

o for each A € [Sp and £ € [X; over A with respect to ty’y , tgt(¢) € [Xo is defined as 7,*¢ which is
the outcome of reindexing & along 7 : ty;(A) —Ain G1(T) with respect to tyy.
0

Let A, be the augmented simplex category, which is presented as follows:
e objects are finite ordinals [n] := {0,...,n} (n> -1, [-1]=0)
e morphisms generated by the following two kinds of maps
— face maps: O : [n—1] — [n] (n>0and i€ [n])
— degeneracy maps: ol : [n+1] — [n] (n>0and i € [n])
subject to the following simplicial identities

(4.6) ooy =orttor i<j

(4.7 O'?O',ZhLl = O'?J?_F_Lll 1<y
ol i<

(4.8) o Ol = Qidjyy i€ {jj+1}

oMol i1
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A, is a monoidal category with the tensor product [n]® [m] := [n +m + 1]. By a simplex, we mean an object of
A,. The simplex category A is the full subcategory of A, consisting of simplices of dimension greater than
—1. A face map 97" : [n — 1] — [n] is said to be inner if i is neither 0 nor n. The subcategory of A generated
from all inner faces and degeneracies is written as Ajqy,.

Proposition 4.7. There exists a surjective-on-object and full functor Aipy —» AP which sends

e [n] to [n—1],
o OI12 to ol and
o o' to O}

for eachm >0 and i € [n].

The assignment F' +— Spg extends to a functor S : Rep(C’,C) — Rep(B, C) which can be seen as the
pre-composition by (I¢/), : @ -& C’. On the other hand, T is a monoid in the monoidal category Rep(C, C),
hence induces a (strong monoidal) functor 717 : A, — Rep(C, C). Thus we obtain a pseudo functor T ;s
defined as the composite of the following (pseudo) functors

op op "op Y
(4.9) Aim A% T Rep(C, C)®° -5 Rep(0), C)°P —— Cat®? i Prof

Proposition 4.8. By setting T*(951") := (T"ty;)" and T2(90 1)) == Erg for each n >0, T2 |ina extends
to a pseudo functor T® : A — Prof.

Proof. For each n > 0 and i € [n], T2(0/?) = (T uSTH* ¢ [Spnts = [Spate and T2 (0F) = (T 95T
[Srn+1 = [Spn. Of the remaining simplicial identities, those not involving 8:;1} are trivial, considering iden-
tities such as ty; o u® = type, ty; on® = idg, and tyy o Tty = tye.

e The isomorphism corresponding to 0; {10/ = 971200+ (n > i > 0) is given by a cell whose conjoint

—\E
is an isomorphism, written as (T(T"*iuTi)S) , which appears when one defines the post-whiskering
of T"=uT" by T, see (3.6).
e In the same way, the isomorphism corresponding to U;LH@Z_tg’ = 8;‘1%0? (n4+1 > j) is given by
— .\ E
(T(T"—jnTj)S)
e The isomorphism corresponding to aﬁ@ﬁi% = idy,) is given by the cell appearing when one defines
pre-whiskering, (nSTn)E, see (3.7).
e T"ty, induces a morphism of familial representations ¢ : Spn+1 = Spn (see Remark 3.3). Therefore
__\E
the post-whiskering <T¢S ) gives rise to an isomorphism for 9,770, = oy t2o) 1.
|

Definition 4.9. We define the category of T-simplices, A(T), as the total category of the Grothendieck
construction on T2. A presheaf on A(T) is called a T-simplicial set, and we write SSet(T) for the presheaf

—

category A(T). [ |
Notation 4.10. Let X be a T-graph. For each n € N, \y1 € [Spni1, 2, € [T X0, Tpy1 € [T Xo,
and §, € f T" X1, we mean by ;41 5—;; T that there exists A\, € f Stn such that the following diagram

commutes in C.

- Ere [A]
(410 e e X

TX() X1 XO

ST TtYXO src tgt
When n = 0, we say & € f X; is a A\j-arrow. A T-graph is completely determined by A;-arrows equipped with
their types for all \; € fST.

A path of shape (Ay1+m,n), or Ayt -path of length n > 0, written as p : Zp4m 2, Tms is a sequence

(411) p= (xn+m7 €n+m717 Tn4+m—1y+++3Tm+1, §m7 xm)

Eitm

such that z;ymi1 L Ligm holds for each i € [n —1]. If A\, = T™tyx, (2m) and m > 0, we admits unique

Nt
Am-path of length 0 for each z,, € [T™X,, which is written as ()

zo € Xo(c), we admits unique c-path zg —» xo,.

Dm0 T For each ¢ € C and

Tm
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In short, a Apm-path is an element of [(T"T 1 X o...0T™X), (over A,4., in a sense), where 7" ™1 X o
-+-0T™X is the composite of n spans T*tmX : THMHL X, 5 THmX, (i <n), and (---), means the root of
the span. |

For any Ap1m-path p: z,1m .7, Tm as above, A\, 1= T™typnx, (Tnim), ¢ € C, and a € Erm(c, A), We

can define a A\, 4p(a)-path z,4m(a) %(gm(a) , whose component is written as follows:
(@ntm(a); Ensm—1(0a), Tngm—1(a), ..., Tm1(a), m(a), Tm(a))

where each of x;,,, and &, is interpreted as a morphism Epm [\,,] — T*X j

Definition 4.11. A T-category is a T-graph X equipped with compositions, written as comp: for each

Ap-path p : x, —» Zo, comp,, assigns an p" (An)-arrow comp,, (p) : W, (zn) — %0, where p : T" — T is

the n-ary multiplication for T'. We suppose that comp satisfies the following coherence condition:

" om comp,, (1™ (p)) m comp,, (q)
412 compy (T (0 (o) —BU s ) <D ) — conp, (4 0)

P q
for each composable paths x4, 2 Im T 2o where
n+m m

o comp,(p) : T u"(Tntm) — o, m is defined as an arrow obtained by applying comp,, to all
m+n
p(a) : Tpym(a) m(a)xm(a) for each a € Epm [Apym—1]-

o 1"(p) : WM (Tnsm)
a sequemnce.

)//”(mm) is defined as a path obtained by u™ to each component of p as

[ C Y

The naturality of u” guarantees that

u™ (comp,, (p)) . .
p" (T (Zpgm)) WA”JH”)/‘Lm (zm) is equivalent to Tu™ (U™ (Zn4m))

m

comp,, (1™ (p))

Tu™ 1™ Xy m

(L) [ |

In | |, it is shown that S-categories are cartesian monadic over Gph(S) provided that S is what is called
a suitable monad, see | ] or Appendix D of | |. Although it is not clear that our T is suitable, the proof
of this fact in | | is still valid for monad S on a presheaf category which preserves coproducts but is not
necessarily suitable, hence there is a cartesian monad fc[T] on Gph(T') whose algebras are T-categories.

In detail, £c[T](X)o is defined as X, and fc[T](X); is defined as the coproduct [], . (T" ' X 0-- 0 X),,
hence the discrete fibration tyf i, x) : J£c[T](X)1 — [St (see Remark 4.6) places Ay,-paths of length m over
W™ (Am) € [St for each A, € [Spm.

Note that since p'™ is cartesian, a A, ym-path p: xpim 7, Tm of length n corresponds to a pair

)\711,71.

(4.13) ()‘nerv 1" (p) " (Tnrm) “T(;;+n>//n($m))

where p™(p) is u™(Am+n)-path obtained by applying u™ to each component of p.

Moreover, a Ap,41-aITOW i1 32, Tm in fc[T](X) corresponds to a Aj,,,-path zp 1, —» T, such that
m m4+n
W (Aryn) = Am+1 holds, since Epm [A,;,] is connected.

Therefore an element of [£c[T]"(X); corresponds to an n-times nested path whose target is in Xo:

e a (-times nested path is an arrow x,,41 3 Tm in X and
m

. . Cs—1 €
e an n + 1-times nested path is a sequence xy, ST,: Thy 1 - Thy ?Ok Ty, Where k11 > ki, ko :=m, and (;
‘s 1

is an n-times nested path for each i € [s — 1].
The n-ary multiplication fc[T|"(X) — fc[T](X) is given by the concatenation of n times nested paths in X,
in particular, the unit £¢[T]°(X) — £c[T](X) sends an arrow to a path of length 1.
It is asserted in | | that fc[T] is familial if T is so.
In this paper, we directly give the familial representation of fc[T7].

Proposition 4.12. £c[T] is familial.

Proof. There are two pseudo (hence normal lax) functors TGt : G; — Prof and ™17 : 1 — Prof which cor-

responds to G1(T) — G; and 1 — 1 respectively. We define a proarrow (Definition 4.3) 7% : TG -5 ™17 as
follows:

e The domain profunctor dom(7°%) is the presheaf part Sz : G — 1 of the familial representation

fc : Gy —#> Gy of the ordinary free category monad. Sy is defined as S ([0]) := {0} and Sx([1]) := N,

where {0} = [0] is the terminal set. Note that for each n € N, the two morphisms 0 = n in [Sg can

o

0
be interpreted as monotone functions [0] =3 [n] which send 0 to 0 and n respectively.
!
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e For each [¢] € Gy, define a function T : Sg([g]) — Prof (TS ([¢]), 1) as follows:

- T[*g]f“(o) =(lg)e: C 1

- T[f]f“ : [St — 1 is the presheaf corresponding to the discrete fibration [(u™)® : [Spn — [Sr,
where (™) is the presheaf part of n-th composition p” : T% — T.
e The left actions (4.2) are uniquely determined through the universality of the terminal presheaf T[*g]ﬁc (0) =
('C)* :C 1.

Ste[r) 1= ﬁTSﬁ : G1(T) - 1 is the Grothendieck construction on this proarrow, see Definition 4.3. Since the
E-part of any morphism of familial representations is cartesian, the canonical forgetful natural transformation
(4.1) induces a functor [Ser) — [Ss which corresponds to a normal lax functor fT5 : [Sg. — Prof defined
as follows:

ol tyrn
(4.14) O S = € [Sr
Ky Ern

For Eg 7y : G1(T) = [Sg(r), we define a proarrow T : TG — fT5= as follows
e The domain profunctor dom(7%) is the E-part Eg : G; — f St of the familial representation fc. Fg
is defined as Ex([¢],a) := {i|i + ¢ € [a]} where [0] := [0]. i € Ex([¢],a) is interpreted as a monotone
function i+— : [e] — [a] and the left and right actions for Ej. are given by pre- and post- compositions.
e For each [¢] € G; and a € [Sgk, define a function T[f]fca : Ex(e],a) — Prof (TG ([e]), {T5=(a)) as
T[f]ﬁ“a(') = T2 (i + —), hence in detail,
T[g]ﬁo (0) = T[E]ﬁ (0) := Id¢ : C - C is the identity profunctor on C.
[1] 1( )= Ide : [Sr — [Sr is the identity profunctor on [Sr.

Ty o= (i)t [Spo = C —> [Srn is the composite of profunctors

(T" Mty r)”
S e N

(4.15) c T [Spn-i [Srn

T[]f]‘“ i) : [St — [Srn is the composite of profunctors

(Tnf'ity i)*
A N

Ern—i-1g5=
(416) fST 4}& fS n—i fSTn

Moreover, the pseudo-functoriality of T2 defines the (isomorphic) actions since TG (9} ;) =
TA(i+—): C— [Sr and 7% () =T?(j+ —) : C— [Spn for each i € {0,1} and j € {0,n}.
Egir) = gﬁTEfc :G1(T) =+ [ See[r) is its Grothendieck construction. In detail, Eg 7 is generated by the following
components:
1) "1 € Erpr)(Ttypi 0 Ang1(a), Any1) foreach n > 1,0 € [n— 1], Ay € [Spn—i, a € [Epn-i [An_il,
and Apt1 € [Spa+r = [Spa—ipitr which can be interpreted as Apt1 : Egn—i [An—;] — Spit
a € Egjri(c, A) for each c € C, A € [Sp, and a € Ep(c,\)
iii) 75 € Egpr)(tyr(A), A) for each A € [Sr

ii)
i)

iv) " — 1\, € Egr(Ttypn- 1()\ )s An) for each n > 0 and A\, € [Sn
)
i)

—-

v) j € Egp)(c,c) for each ¢ Lcin C=T% (] fTSﬁc , where ¢ is in {7 (0).

vi) j € Egir(c/, Xo) for each ¢/ 5 ', Mo in [Sro = TGl = fT%(0) where Ao is in {7 (0).
which are subject to the following conditions:
e the restriction of Eg 1) to G1(T) - G1(T) is identity profunctor, hence morphisms in ii), iii), v), and
07y, in iv) satisfy obvious commutativity.
e morphisms in vi) defines identity profunctor 76 = C - C = 7= (0)
b Efc[T] (Ttny' o )\n+1(3a); )‘nJrl) (r[l)\wrl,a) = ri—l)\nJrl»a'

for each a’ 2% q in JEpn-i Mn—i]) and A1 : Epn—i [Ap—i] — Spins
o Eeim (TtYTi o >\n+1(a)a5,\n+1) ("

1
. )_ U Any1,a

] n+1 . 12 / — 12
for each X, | —=> Apy1 in [Spntr, @’ € [Epn—i [N, ], a:= Epna[jy , 1(a) € [Epn—i[Ani], Any1

Ern-i [An—i) — Srisr, and N,y © Epa-i [N,_;] — Spiv1. Note that Ayq1(a) = X, ;;(a’) holds by
definition of STn—iTi+1.
Now it is straightforward to check that, for any T-graph X and A, € [Sr», a morphism o : Egj) [An] — X

En—1 &o .
corresponds to a A,-path z, — -1 — ... —, %1~ o in X as follows:
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o Ifn>1,
xo :=a(™m — 17 -7y, ), where 7y, is seen as a morphism in G1(T).

— 21 : Epi [M] — Xo sends u € [Epi [A1] to a("n — 17y, -u) for i <n—1.

—&i=a(m-—1",)).

— xiy1 ¢ Epin [>\2+1] — X sends kg(u) € Epiti(c,hiy1) to a(m —i— 17 5z -u) for 0 <i <n—1,
where a € [Eri[\;], u € Ep(c, \it+1(a)), and kg : Er(c, A\iy1(@)) — Epit1(c, Ai+1) is the coprojec-
tion of the cohmlt deﬁmng Ergi(c, Aig1)-

— &1t Episi [Nip1] — X sends a € [Eqiei [Nip1] to a(fn—i— 27y, 4) fori <n—1.

e If n =0, xg := a(id),), where id), is what is introduced in vi above.
Therefore, (Sg[r), Ex[r]) actually gives a familial representation of the functor fc[T]. Since fc[T] is a cartesian
monad and cartesian natural transformations between familial functors coincide with morphisms of familial
representations (Remark 3.8), this finishes the proof. |

Note that a path in a coproduct J[,.; X ¢ of T-graphs is contained in X for some i € I, since each component
Ty o1 &y 2 Epn [An] — [lie; X (7 =0,1) is contained in X; for some i € I for Ern [A,] is connected.

Therefore, since Eg 7] [Am] represents A,,-paths, it is connected for each Ay, € [Spm C [Sg7), hence fc[T]
satisfies conditions we imposed on T'. fc*[T] is defined as n-times iteration of T +— fc[T]].

Definition 4.13. The category of T-categories, Cat(T), is the Eilenberg-Moore category of fc[T], and mor-
phisms in this category are called T-functors. A T-virtual n-tuple category is defined as an algebra of £fc*[T7,
and we write V-n-tplCat(T) for the Eilenberg-Moore category of £fc*[T]. In particular, we write VDblCat(T')
if n = 2, which is the category of T-virtual double categories. |

Remark 4.14. When T = id;, then Cat(T) = Cat and T-virtual double categories are virtual double

categories defined in | |, for example.
On the other hand, for n > 2, our notion of virtual n-tuple category (:=idj-virtual n-tuple category) is not
consistent with the notion of “virtual widget” proposed in Section 8 of [ ] |

Let Fgpr) : Gph(T') — Cat(T') be the free functor. Recall that for ordinary category, the ordinal [n] as a
category is the free category of Eg[n]:=(0—1— -+ — n) € Gph, and A is a full subcategory of Cat. An
analogy of this fact for T-category holds:

Theorem 4.15. \,, — Fg7)(Exg7) [A]) induces a fully faithful, dense functor A(T) — Cat(T).
To show this theorem, we firstly show the following lemma:

Lemma 4.16. Let n < m, X, € Spm, and A\, € Stn. A Ay-path of length n in the T-graph Egr[\,]
precisely corresponds to a pair (1,¢) of I € [m—n] and ¢ € colimge g _,x] JS7r Ay Ty pm—n -1 (A, (@),
where X, := Tty pm—1(\],).

Proof. We write \; := T'typn—i(An) and N} := Totypm-;(A;,), so that A, and X/, are interpreted as maps
An : Epi [Nj] — Spn-i and X : Ep; [)\;] — Spm-; for each i € [n] and j € [m]. For each | € [m — n], we show
the correspondence between the following data:

i) A,-path x,fglxn 1...71 é—> o such that g is in T} f‘m( — )Mo, \Ly)

ii) e colimaefE fSTn - n+l( a))
Suppose ¢ € colimgepp [ ] JSTn(An, Al 4 (a)). Note that colimge i, (x/] JSn(Ans ALy (@) is the same as
TA((m —1—n)+ =), )\m) where (m — 1 —n)+ —: [n] — [m] is a map in A. Now we obtain a morphism

of T-graphs Eg 1) [An] — Esg1) [A,] by the post-composition of ¢ : A, — A}, in A(T), but we have already
checked that such a morphism corresponds to a A,-path in EfC[T] [A),] (see the proof of Proposition 4.12).

m—1
Moreover, if n > 0, since xg := (- ™ — 17y - 7, and the maps Ag i AN —2N, £ AL, in A(T) are over
(0] 5 1] (=Dt~ [n](m_n_l)+_[m], xg is in T[O]ﬁm(m — 1) (Ao, Np,). n =0 case is trivial.

It suffices to prove this assignment ¢ +— (Jcngn—;imn_l ...x % xo) defines a bijection between i) and ii), by

induction on n. It is trivial ¢ itself gives xg, hence the assignment is a bijection when n = 0. In the same
way, when n = 1, { = & gives rise to a bijection. Suppose the assignment is a bijection for n > 0 and let

én En— I3 . .
Tni1 32, Tn ﬁ:xn_l LT Hilxo be a A\, 1-path. We suppose there exists ¢’ € cohmaefE fSTn n Ay (@)

. En— . . .
which corresponds to x,, ?iﬂ@n—l .. T %xo. We see ¢’ as a morphism (' : A, —043_)\’”_H in A(T'), which factors

’

as A, L[) N (x) —p A, forsome z € [Eqi[)\]. ¢ is also considered the composite A, §+ DY ﬁlw AL,

n—+l
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where N
of

il ﬁlw A/ is the identity morphism on )\;H in fSTn+z, hence is one of the generating elements

TA((m—n—10)+—:[n+1 — [m]) = [Spat(id, T" M typm—ns)
which is sometimes omitted.
Let b : ¢y 52 An in A(T'), or equivalently, b € Epn(cp, Ay,) for some ¢, € C. There exists Z,,(b) : cp 57 Ay, ()

which factors z,,(b) as ¢ % An1(2) 52 Ay, which is defined as follows:

Since we have assumed that z,, is induced from post-composition of ¢/, if n = 1, 2, (b) = 1(b) = ¢’ - b holds.

Even if n > 1, b factors as ¢ %L)\n( ) OL> An for some e € [Epn-1[A,_1], hence ,(b) = ¢" - ("0, - €)

holds, but moreover x,,(b) = ¢’ - b since the actions for Eg[p is defined by restricting composites in A(7"). Let
Z,(b) be the composite ¢’ - b. .

On the other hand, for each b : ¢, 57 A, there exist a; € fETn+z [)\;%Fl] and &,(b) : Apt1(b) 2 Ay (@)
such that &, (b) is the composite

A b €n (b) ’ O e,
n+1( )—>[11 i+ (T) —2 An g

T2 sends the commutative square
0] —— [m]
(4.17) k+{ wa
k] 5= [m + K]
to an isomorphism which makes the following diagram commutes in A(T') (see the proof of Proposition 4.8):
c——% 5 A\
(4.18) TJ

~ bN m ~
Atk (@) sz Aktm

for arbitrary ¢ € C, Ak € [Spmer, and Ay, = Tty Amik)-
In summary, we have the following commutative diagrams

. n+l )
ty (gn(b)) a Tn b
- o Cav - 0+= )‘i%-irl /
419 ; ! . '
( ) l 0 1+-1 l /\nH
Ang1(h) =3 Angrgr(@) —52 Nyypis Tl lT

En(b)
\ £ (b) / Ant1(b) A1

where the square on the right hand side commutes since x,, is the codomain of the \,-arrow &,. Since any map
over 14 —: [0] — [n 41+ 1] uniquely factors through 7 : A}, — X ., ,, the following square commutes:

(4.20) tyT(én(b»J l

/
Cay — Ay

Therefore, X, 1 (2)(C - 5) = N30 (2)(@a(0) = Ny (@ - typ(€a(0))) = Spnsi (tyr(§a (b)) (N4 (@) =
An+1(b), where A, 441 is interpreted as a morphism Eqi[A]] — Spn+1 in the first and second terms and as a
morphism Ernii[A], ;] — S7 in the third term. This means the commutativity of the following:

Ant1

Ern [A]
(4.21) Ern [a]l
Ern [)‘;zﬂ(x)]

i.e. (' extends to a morphism ¢ : \,411 — >\7l+l+1 ) in [Szpn+1.
Let ¢ : Any1 52 Ayiyr € colim _ e [Epi [N] [Srnt1(Ant1, Aj+1(2)) be what is represented by C. Tt is straight-

St

>‘In+z+1($)

forward to check this precisely mduces §n( ) through the post-composition ( - b. (I
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proof of Theorem 4.15. For A\, € [Srn and X, € [Spm, it suffices to show the correspondence between the
following data:

i) An-path an"—;izn,l Sz i}lzo in £c[T)(Er= [AL.])
i) p: A, — N, in A(T)

The discussion preceding Proposition 4.12 shows that a \,-path zng%_lzn,l . % 20 in fc[T| Egry [A,]
n 1

corresponds to a 2-times nested path xknc%lxknfl TRy % 2o in Egor) [A),] such that p*» =1 (A ) = A,
n 1

We write ( for the concatenation xy,, 0, %o; which can be seen as a morphism Ay, ——— Ay ;foﬁf)\;’”
for some I.
For each sequence k,, > k,—1 > -+ k3 > ko = 0, define a monotone function uy : [n] — [k,] by i —

kn — kn_;, of which the image by TA T2 (uy,) : [Spn — [Spk,, is isomorphic to (p'™ - p™m=t-.. - )
[Stn = [Srrarrn-1..pr, where 7 _; = kipq — k for each ¢ < n. Therefore for arbitrary A, € [Srw. and

As € [S7s, amap A\ — —2, Ak, over uy uniquely factors through a map p" ™ (\g,) —ug Ak, -
Let p: Ap —2 Aj, be a morphism in A(T") over f : [n] — [m], which sends i € [n] to f; € [m]. Let I be m— f,
and k; be f,, — f,—; for each i € [n].

We define a 2-times nested path zy, C%l Tk . Thy % xo satisfying p = (- vp.
‘. 1

n—1"°"

Since | = m — f,, p factors through X} ) ﬁ)\;n. Moreover, since there is a commutative diagram

[kn] —— [n]
(4.22) 0+—l o+fl
[kn + 1] 2222 1 4]

p uniquely factors through Ty (N, 1) == )\;f +l Therefore, there exists a x € [E:[)\]] such that p factors

through p ™ - A} (x) 52 A} ;> and since p™ ¢ [Stka — [Srn is a discrete fibration, there exists a

Mg, such that g "1(\z ) = A, and p factors through X, %)\kn- This Ak, does not depends on the choice

of z since we have assumed that C has no non-trivial endo-morphisms and hence so is [Sr» and all possible
candidates of Ay, is connected through maps over a fixed element \,, with respect to "™, which is a discrete
fibration.

Now we have a map ¢ : A\, — )\k 41> which yields a path xy, —» 0, which is uniquely decomposed to a

n 0f—
2-times nested path since u® are cartesian through the sequence k,, > --- kg = 0.

Thus we obtain a fully faithful functor [—], : A(T) — Cat(T). The induced nerve functor Cat(T)([—];,?) :
Cat(T) — SSet(T) is faithful, since maps of T-categories are completely determined by assignments on paths.
It is also full since reindexing by inner faces and degeneracies in A(7") means compositions of paths, and a

T-graph morphism commutes with those if and only if it is a T-functor. O

On the other hand, since

e any familial monad is accessible as an endo-functor on C (Remark 3.9),

e fc[T] is familial by Proposition4.12,

e and the Eilenberg-Moore category for an accessible monad on any locally presentable category is locally
presentable (Theorem 5.5.9. of | D,

Cat(T) is locally presentable, hence cocomplete as a category. Therefore, Cat(T) can be seen as a reflective
full subcategory of SSet(T).
For each category X, (typa(X))n is [[,cx, S, whose elements are pairs of paths in X and A, € [S7». On

the other hand, a A, 41-arrow 41 5421133” in the underlying T-graph of ty;a (X) is a pair (||, Ant1), where

|€n| € X1 is an arrow in X such that for each a € [Epn [A,] and @’ € [Epn+1 [Apt1], 2p(a) = src(|&,]) and
Zni1(a’) = tgt(|€n]), since Epn [A,] is connected. Therefore a path of length n whose target is in Xg in this
T-graph precisely corresponds to an element of (typa(X)),. This shows that ty;a(X) is a T-category, hence
we have a functor Vr(X) : Cat — Cat(T).

4.2. Structures of T-categories. In the framework of | |, for a cartesian monad S on E, an S-category
is an example of what they call a $pan(S)-monoid, where $pan(S) is the outcome of extending S to a monad
on the double category of spans in E, $pan(E). In general, for any virtual double category X and monad S on
X, they define another virtual double category of S-monoids, KMod(X, S).
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Definition 4.17. We write Prof(T") for H(Mod(ﬂﬂpan(é), $pan(T)). A T-profunctor is a horizontal cell in
Prof(T).
Prof(T') has units (Proposition 5.5 of | ]), hence one obtains its vertical 2-category (Proposition 6.1 of
[ 1), Cat(T), of Prof(T"). We write VDbiCat(T) for Cat(fc[T]) and V-n-tplCat(T) for Cat(fc™[T]). In detail,
Prof(T) consists of the following data
e objects are T-categories, and vertical arrows are morphisms in Cat(7T'), T-functors.
e for each T-categories X and Y, a horizontal arrow p : X —» Y, a T-profunctor, consists of
— a span T X, « |p| — Yo, i.e., a horizontal arrow T X XY, in Span((/i)7 and
— left and right actions: cells in the double category SSpan(é)

72Xy IX TXy 25 ¥y T2X, -5 TY, —X Y,
29 RN
TX, 4 Yy TX, n Yy

where X : TXg—+ Xg and Y : TYy — Yy are spans defining underlying T-graphs of X and Y.

~

The compositions of X and Y can be seen as cells in Span(C): e.g.

72X, L5 7x, —%F X,

(4.24) [ixe comp? H
TXo ¥ Xo
We suppose that AP and pP are compatible with those compositions.
— acell
X0 L, xt #, L 2 xn
(4.25) lf o lg
Yo 4 y!

in Prof(T) is a cell
n—1_0 n—2_1
T x9 T b rroixt T s Xy
(4.26) JTfo-/f‘ a lyo
TYOO zJ} Y'Ol

in $pan(C) which is compatible with the “arrow” part f; : X0 — Y? and g1 : X — Y} of f and
g, and the left and right actions of p* (i € [n — 1]) and gq.
We write p"~t v ...pt v p®: TXJ - X for the composite

* n—1_0 n—1
(4.27) TXO s x0T s L 2 X

in $pan(C). It is straightforward to show this span extends to a T-profunctor X° - X" by
equipping the left action of X and the right action of X™. Right and left actions define 2"~ cells
of the form

X0 P VIdyno1 \/~~»\/IIdX2\/p1\/IdX1 vp? n
(4.28) H H
0 | n
X p"71V~~I~Vp1\/p° X
and any cell « can be seen as a cell
XO PPV vplvp? xn
(4.29) l a l
YO JIJ Yl

equalizing those cells, where Idy, the identity T-profunctor, is the span defining underlying graph
of Y, TYy «— Y] — YY), equipped with 2-ary compositions of Y as its left and right actions, for
each T-category Y. Since u" is cartesian, V is associative up to isomorphism: (p"~%---vp! v p°:
TX) - XDV (gm V.- -vgtvg® : TYY - YJ") is invertible to (pn =1 -+ ptvpPvg™=t... gt vl :
TX§ — Yg™) both in $pan(T) and Prof(T), where Y = X".
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Cat(T) consists of the following data:
— The underlying category is Cat (7).
—A2cello: f=¢g: X —Y isacel

(4.30) f/ jﬁ
Y —I(}y—> Y

The identity T-profunctor satisfies some suitable property and called unit in | |, and this
property implies that o can be seen as a cell

X M x
(4-31) fl o g

A T-profunctor p: X 4 Y can be seen as a T-category "p' defined as follows

e "ply is the coproduct X U Yy

e "p'y is the coproduct X U [p|U Y7, and a Ad-arrow & : a1 — ag in p' is one of the following
— a A-arrow &1 1 — 20 in X
—a Aarrow §1 1y1 — Yo in Y
— & is an element of [|p[, a1 = srcp,((&1), and ag = tgt), (§1), where src), and tgt), are the left

and right legs of the underlying span of p.
e since E7n [A,] is connected, a A,-path is either contained in X or Y, or of the form

En—1 Em o
(432) Tn o Tn—1 a1 LTm+1 *m+1ym o A1 Yo

where all but &, are either contained in X or Y. The composite of such a \,,-path is defined by applying
composition of X and Y for its parts contained in X and Y respectively, and applying left and right
actions to those composites with &,,.

On the other hand, V [1] consists of the following data:

e (Vr[1])o is the coproduct of two terminal presheaves 1¢ U 1c, whose elements are written as pairs
(¢, [i]) where i = 0,1 and ¢ € C. Since T preserves coproducts, elements in T'(Vr [1])o is also written
as (A\,1).
e (Vr[1])1 is the coproduct St St ST, whose elements are written as pairs (A, 00), (A, 01), and (A, 11).
For each (A, ij) € (Vr[1])1, src(A) = (A, 1) and tgt(A) = (typ(A),5).
which is the same data as the identity T-profunctor on the terminal T-category, Vr [0].

Thus, Vr [1] classifies T-profunctors, i.e., a T-profunctor can be seen as a T-functor p' — V7 ([1]) whose
pullbacks along V7(91) and Vr(8}) are the unique maps X — 1 and Y — 1 respectively. Moreover, identity
T-profunctors are images of the pullback along Vr(c°) : Vr [1] — V7 [0].

A 2-ary horizontal cell

X0 P, oyt P2, oy

(4.33) H o H

0 2
XV —m8M F— 5 X
Po2

can be seen as a T-functor "p' — V [2] as follows

e p'y is the coproduct X} U Xg LU X2
e "p'; is the coproduct X U X{ LI X7 U [po1| U |p12| U |poz], and a A-arrow & : 2 —; @0 in p' is either of
the following
— a A-arrow & : x1 —3 @p in X' for some i € [2]
— & is an element of [|p;;|, 1 = srcy,,;|(&1), and zg = tgty,, (&)
e since Epn [\,] is connected, a A,-path is either of the following:
— a path contained in X' for some i € [2], which is composed in each T-categories.
— a path of the form

En— Em 3
(4.34) T o Tt Y .. Oh Yo

An Am41 Am
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where, &, is in |pi|, x; and ¢ are in X' for each j > m, and y,41 and & are in X* for each [ < m,
for some i < k € [2]. Such a path is composed through the composition of X and X* and left and
right actions of p;.

— a path of the form

En—1 Em Est1 s o
~ Tm+1 Ym Ys+1 PWR ~ x

(4.35) Tn

20

Am1 Am As41

where, z; and §; are in X0 for each j > m, &, is in |po1|, yi11 and & are in X! for each s < [ < m,
& is in |p12|, and y;41 and & are in X! for each ¢t < s. Such a path composed to a path of the
form

&1 &1

_ 3
(4.36) P (@) ——m 1 (Ym) ———m, 0

by applying compositions of X* (i € [2]) and actions of py; and p;, and then composed to an

arrow p"(x,) —2. 70 contained in |po2| by applying a.

In the same way, one can check that a functor "p' — Vr [n] corresponds to n(n + 1)/2 T-profunctors p;;
(i < j € [n]) equipped with horizontal cells

ij Pik
(4.37) H Qijk H
—_—t
Pik

for each i < j < k € [n] which are coherent in obvious way. The pullback along the unique map of the form
Vr('n) : Vr [n] — V7 [0] sends a T-category X to n(n + 1)/2 copies of the identity Idy : X - X equipped
with the canonical cells induced from the 2-ary composition of X.

Example 7.7 of | | shows that Prof(T) is in fact a virtual equipment; i.e., for each horizontal and vertical
arrows p, f and g in the diagram below, there exists a horizontal arrow ¢(f,g) : X - Y, which is called the
restriction of q along f and g, equipped with an cartesian cell (see (2.8))

X a(f.9) %

(4.38) fi cart lg
A — B

Proposition 4.18. Any path of horizontal arrows in Prof(T) is a source of an weakly opcartesian cell. More-
over, the composite of cells below is weakly opcartesian if a and B are so:

n—1
|

P
T X n

0

p D
> X0 4
a

|
|
T

Y |
(4.39) v
H 7 H

}
n—1

("~ tor0p?)op

|
T

Proof. (See (2.9) and proceeding discussions.)
For each path of T-profunctors p® (i = 0,...,n — 1), define a span p"~
27~ arrows explained in (4.28), interpreted as parallel morphisms in H($pan(C))(TX{, X§') of the form

Lo...plop? as the coequalizer of the

—_— —>
(4.40) p"lV e VIdxe Vpl VIdy VPO ignt prlveovplvip

_—
Since pullbacks in C preserves coequalizers, for each spans p : TAg —+ X{ and q : TX} — By, the above
coequalizer is preserved by ¢ V — V p. Therefore, by taking p := Idxo and g := Idxn, the left and right actions
of p"~! and p induces those for p» ! o---p' 0 p® and it becomes a T-profunctor. It is straightforward to check
the canonical cell defining p"~' o ---p' o p® is weakly opcartesian.

Since T preserves pullbacks and pullbacks in C preseves coequalizers, the universality of the coequalizer

defining p"~!o---p! o p®op is the same as that defining (p"~!o---p!op®)op, which means that the cell (4.39)
is weakly opcartesian. O

Remark 4.19. Prof(T) is not a double category in general, which means some composite of weakly opcartesian
cells may not be weakly opcartesian. This is because T' does not have to preserve coequalizers defining those
weakly opcartesian cells. |



TOWARDS STRUCTURES OF HIGHER CATEGORICAL STRUCTURES 17

For any two 2-categories A and B, we write 3[A, B] for the 2-category of 2-functors, 2-natural transformations,
and modifications, and 5[A, B] for the 2-category of pseudo functors, pseudo natural transformations, and
modifications. If we take B := Cat and A to be small, the canonical inclusion 3[A, Cat] — E[A, Cat] is the right
adjoint part of a 2-adjoint whose unit is an equivalence; see 4.2 of | | and | ]

We write Ao(T) for the subcategory of A(T) obtained by taking the pullback of A(T) — A along Ay — A,
where Ay is the full subcategory of A which consists of simplices of dimension lower than or equal to 2.

Definition 4.20. We write SCat(T), SCaty(T), PSCat(T), and PSCaty(T) for 3[A(T)®, Cat], 3[As(T),Cat],
PIA(T)®,Cat], and B[As(T)*,Cat] respectively. Objects in SCat(T') (SCats(T)) are called (2-truncated)
T-simplicial categories, while those in PSCat(T) (PSCata(T)) are (2-truncated) pseudo T-simplicial
categories. We omit the preposition “7T-” when T = id;. |

The classical Grothendieck construction shows that a pseudo T-simplicial category can be seen as a fibration
over A(T).

The discussion about T-profunctors above suggests that profunctors may be treated in an ordinary pseudo
simplicial category, i.e. a fibration over A.

Note that since Cat(T') is finitely complete, its codomain functor Cat(T)m — Cat(T) is a fibration.

Definition 4.21. The large pseudo simplicial category of T-categories, Prof(T), is the pullback of

the codomain fibration Cat(T)[l] —> Cat(T) along the functor A — Cat v Cat(T). The large 2-truncated
pseudo simplicial category of T-categories, Profa(T), is defined as the restriction of Prof(T) to Ax(T). W

The reflection SSET — CAT preserves finite products, see for example Lemma 3.3.13 of | |, hence
the 2-category of locally large large 2-categories, CAT-CAT, is a full sub 2-category of the 2-category of
large simplicially enriched categories, SSET-CAT. A simplicially enriched category is precisely a simplicial
category whose structure maps are identity-on-object functors, and one can check that 2-functors and 2-natural
transformations are precisely 1-cells and 2-cells in SCAT := 3[A°P,CAT], i.e. SSET-CAT is a full sub 2-category
of SCAT. We write N : CAT-CAT — SCAT for the composite of those embeddings.

Since a vertically composable n-tuple of natural transformations (51,...8,) in Cat(T) is precisely a map in
Cat(T)/Vr [n] between identities, N'(Cat(T)),, is given by the (bijective-on-objects, fully faithful)-factorization
of the functor Cat(T)/Vr [0] — Cat(T)/Vr [n] induced by pullback along the unique map Vr [n] — Vo [0].
This means that the 2-category structure of T-categories is induced from Prof(T").

Let us denote by T-Alg the Eilenberg-Moore category of T. A T-algebra is an element of T-Alg. Given a
T-algebra X, one obtains a T-category X* as follows:

e (X*)g is the underlying object |X| € C.
o (X*)1isT|X|. src:=idpx|: T|X|— T|X]|, and tgt := hx : T|X| — | X] is the structure map of X.
e Now that we obtain a T-graph, a path z,, ——» z makes sense and corresponds to a sequence (An; Zny - -
such that T%hx (71 1) = x; and Tty y (x,) = A, for each i < n. One can easily check that
comp,, (An; Tn, ..., 20) = (" (An); 0" (xn), To) is well defined; i.e. the right hand side is p™(Ay,)-arrow,
which is exactly the same as the condition for hx to be an algebra.
This construction induces a functor (—)* : T-Alg — Cat(T).

Therefore, we obtain a 2-functor My : VDbICat(T) — SCaty(T) as the Cat-enriched left Kan extension

of the 2-Yoneda embedding X : Ao(T) — SCato(T) along [—]7, which is a 2-functor from locally discrete 2-

category Ao(T), i.e., Mp(X) is VDICat(T)([-]5 , X).
We write My for the composite VDbICat(T) i SCaty(T) — PSCato(T).

Remark 4.22. If the 2-category VDblCat(T') is cocomplete as a 2-category, those 2-functors are the right parts
of 2-adjoints. This follows from Theorem 4.51 of | |- |
When T = idy, for each [n] € A, [n]" is a virtual double category defined as follows
e the set of objects is the underlying set of [n].
e there is no non-trivial vertical arrows i.e. the vertical category is discrete.

for each pair ¢ < j in [n], there is a unique horizontal arrow i 4, j-
any possible squares are filled in with a unique cell.

A map [0]" — X in VDbICat is precisely a monoid in X (in the sense of | ]) and a map [1]* — X is
what is called a module between monoids.

Theorem 4.23. Prof(T) is equivalent to a free object of Profy(T) with respect to the 2-functor Mig, :
VDbiCat — PSCAT 5.

Proof. The discussion proceeding Definition 4.17 suggests Prof(T) can be seen as a strict simplicial cate-
gory ]Prof(T)/ up-to-equivalence defined as follows: ]Prof(T)'n is the full subcategory of M4, (Prof(T)), =
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VDbiCat([n]" ,Prof(T)) consisting of strictly normal functors; i.e., maps [n]* — Prof(T) in VDbICAT which
send i 4> i to identity profunctors, and cells

i ij ij ij
(4.41)

_t _t
(%) (¥

to cells in Prof(7T') induced from left and right actions:

Idx, Idx,

X, 5 X, 2 X X, 2 x; X

v RN
X; — X; X; — X;

This induces a strict simplicial category since images of maps in A sends each i i to J EiR j for some j.
Let Prof, (T)/ be the restriction of IProf(T)l to Ag. Now we show that Prof(T) is a free object of Profy (T)/
with respect to ﬁjdl. Let X be a virtual double category. For each map Prof(T) — X in VDbiCat, the post

composition gives rise to a map Profs (T)/ — ﬁ:dl (X), and this induces a functor

=55

VDbICat(Prof (T), X) — SCAT (Prof(T)', M, (X))

which is 2-natural in X. In fact, this functor is faithful since any 2-cell in VDbiICat is completely deter-
mined by its whiskerings with strictly normal functors [1]* — Prof(T). On the other hand, for each map

F : Prof, (T)/ — ﬁ:dl (X), we can construct F : Prof(T) — X as follows:
e F sends a T-category X to Fy("X")(0), where "X is the strictly normal functor [0]* — Prof(T’) repre-
senting X, and Fy("X") is a map [0]* — X.
e F sends a T-profunctor X %5 Y to Fy("p")(01), where 5" is the strictly normal functor [1]* — Prof(T)
representing p, and F;("p") is a map [1]* — X.

o F sends a T-functor X 5>V to Fo("f Mo, where "f7 is the 2-cell Tf7 : "X7="Y" : [0]* — Prof(T)
representing f.
e In the same way, F' sends a unary cell

_r

b

(4.43)

—
—
Q
UUT"<

—+-

to F1("a)o1, where "o is the 2-cell "a': "p' = Tq" : [1]* — Prof(T') representing «.
e Let « be an arbitrary cell in Prof(7) of the form

N

X0 F, xt #, L 2 xn
(4.44) lf o lg
yo0 ; y1

Proposition4.18 shows « uniquely factors through the weakly opcartesian cell written as p” o --opP.

We write & for the result of this factorization; i.e., o factors as follows:

X0 P, xt A NS &
0 pO 1 pl pnfl ~
xo x| ) |
n—1 0
(4'45) J{f o J/g = XO p cl)...op X"
Yo 5 v! lf a lg
yo + vt

Since we have already defined where « is sent, we define the cell F(p) in X when n # 1, and F(a) is
defined as the composite in X.
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n—1

— If n =0, then the identity T-profunctor is the 0-ary composition i.e., p o---0opY =1TIdyo. pis

sent to what the following cell in [0]" is sent to by Fy("X"):

(““ AN

— If n > 1, again by Proposition4.18, p"~!o-..op? is isomorphic to (... (p"top™2)op ..op?),

and p is the composite of n — 1 opcartesian cells whose sources are of length 2. Therefore what
to define is n = 2 case. In this case, F(p) is defined as the image of the unique cell filling the
square below in [2]" by Fy(5") : [2]" — X, where j" is the strictly normal functor [2]* — Prof(T')
representing p.

n73) .

0—%51 12502
(4.47) H H

0 ———2

It is straightforward to check this F is a morphism in VDbiICat(T) and prove surjectiveness of the functor
=595

VDbiCat(Prof(T), X) — SCat(Prof (T ) Mg, (X)).
Moreover, the construction of F suggests that this functor is full since naturality with a above of a transfor-
mation between morphisms F' and G in VDblCat is determined by

e naturality with @, which follows from naturality of F = G in SCats on [1].
e naturality with p, which follows from naturality of F = G in SCats on [2].

Thus this functor is an isomorphism, which means freeness of Prof(T). O

Finally, we suggest a way to define a n + 2-dimensional structure of virtual n 4 1-tuple categories.

In the Section 3 of | |, for each virtual double category X, the virtual double category of monoids in
X, Mod(X), is defined and it is proved that Mod extends to an endo-functor on VDblCat. Moreover, in the
Section 5, it is proved that this endo-functor is induced from the pseudo-adjunction between the 2-category of
virtual double categories and the category of unital virtual double categories.

On the other hand, there are elements written as 0 € [Se C Gi(fc) and [1] € G1 C Gq(fc), and the virtual
double category [[1]];, is the smallest virtual double category which contains a horizontal arrow 0 — 1, while
[0];. is the smallest virtual double category which contains a vertical arrow 0 — 1. In particular Mod([0].) is
the same as Vi ([1]), hence a fc-functor p : 'p' — Mod([0],) is the same as a fc-profunctor X -+ Y, which
can be seen as a vertical profunctor, since if the restrictions of p on 0 and 1 are X and Y respectively, then
it can be seen as a virtual double category which consists of each copy of X and Y, additional vertical arrows
from elements in X to those in Y, and additional cells containing those vertical arrows. In the same way, we can
define a horizontal profunctor u : X -+ Y: a virtual double category which consists of each copy of X and Y,
additional horizontal arrows from elements in X to those in Y, and additional cells containing those horizontal
arrows. One can easily check that a horizontal profunctor can be seen as a fc-functor "u’ — Mod([[1]];,) in the
same way as vertical profunctors.

For each n € [Sx C Gi(fc), the virtual double category [n]; classifies n-cells in arbitrary virtual double
category, i.e., a map [n],, — X is the same as a n-ary cell in X. Therefore, Mod([n]; ) has the same objects as
[n]4, but each object has its unit. Hence a fc-functor "a' — Mod([n],.) is a virtual double category consisting
of n + 1 horizontal profunctors and 2 vertical profunctors which makes the frame of the square below and
additional cells connecting those profunctors.

(4.48) f @ f
Those define a fc-graph of virtual double categories and vertical and horizontal profunctors.

By considering the analogy of Theorem 4.23, we obtain a definition of the virtual triple category of virtual
double categories, as follows:

Definition 4.24. The large fc-pseudo simplicial category of virtual double categories, 2vof, is defined
as the pullback of the codomain fibration VDblCat!!! — VDbICat along the composite

(4.49) A(fe) 7%=, vDbICat 2% VDbICat

The large 2-truncated fc-pseudo simplicial category of virtual double categories, 2Brof,, is defined as
the restriction of 2tof to As(fc). The wvirtual triple category of virtual double categories, 2Brof, is the
free object of 2Prof, with respect to the 2-functor My, : V-3-tplICAT — PSCAT o (fc). |
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This clearly indicates a way to define the virtual n + 2-tuple category of virtual n + 1-tuple category: Firstly
we define endo-functors M, : V-n + 1-tplCat — V-n + 1-tplCat which makes virtual n + 1-tuple categories
“unital” in some way. Then we can define structures of virtual n + 1-tuple categories as follows:

(4.50)

[Ben00]
[Bor94]|

[Bur71]
[CCT14]
[Cis19]
[CS10]
[Kel82]

[Kou22|
[Lac02]

[Lei99)]
[Lei04]

[MP90]
[Pow89|

[Sha21]
[Sha22]

The large fc™-pseudo simplicial category, n + 1Brof, is the pullback of the codomain fibration on
V-n + 1-tplCat along

[—en

A(fe") ——=5 Von + 1-tplCat —2"5 V-n + 1-tplCat

and let n + 1Prof, be its 2-truncated version.
The large virtual n + 2-tuple category, n + 19vof, is the free object of n + 1PBrof, with respect to the
2-functor Mse : V-n + 2-tplCAT — PSCAT o(£c?).
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