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Category theory takes a bird’s eye view of mathematics. From 
high in the sky, details become invisible, but we can spot 

patterns that were impossible to detect from ground level. 

Tom Leinster, Basic Category Theory

Recap: Week 1















































Recap: Week 2

● We began to give concrete definitions
















































Category: definition

A category: a universe of objects, and morphisms between them, s.t.:

● For 𝑓 : 𝐴→𝐵 and 𝑔 :𝐵→𝐶, there is a composition, 𝑔∘𝑓 : 𝐴→𝐶
● For each object 𝐴, there is a unique identity morphism id𝐴 : 𝐴→𝐴
● For any morphism 𝑓 :𝐴→𝐵, it holds that id𝐵 ∘𝑓 = 𝑓∘id𝐴 = 𝑓
● For any composable 𝑓, 𝑔, ℎ, we have ℎ∘(𝑔∘𝑓) = (ℎ∘𝑔)∘𝑓

The collection of morphisms between 𝐴 and 𝐵 is often denoted Hom(𝐴, 𝐵)
(the “hom-set” from A to B)
















































Category: examples

● Set - sets and functions
● Rel - sets and relations
● Vect - vector spaces and linear transformations
● ℝ - numbers and order relations
● Grp - single objects, group elements are morphisms
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Constructions inside categories

● Monomorphisms
● Epimorphisms
● Products
● Coproducts
● Exponential objects
● …
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Pattern-hunting for the product

In some sense, 𝐴×𝐵 is the “minimal” combination of data 
in 𝐴 and 𝐵. Therefore, if any other object 𝑋 presents 
projections, they must be somehow decomposable into a 
form that uses the “true” projections.

In other words, if 𝐴×𝐵 is a product object, and any other 
object 𝑋 possesses morphisms 𝑓𝐴 : 𝑋→𝐴 and 𝑓𝐵 : 𝑋→𝐵, 
they must decompose through 𝐴×𝐵, as:
𝑓𝐴 = 𝑝𝐴∘𝑓, 𝑓𝐵 = 𝑝𝐵∘𝑓

With 𝑓 : 𝑋→𝐴×𝐵 being a unique morphism.
(Note, when 𝑋=𝐴×𝐵, trivially, 𝑓 = id𝐴×𝐵)
















































Coproducts













































REVERSING THE ARROWS
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Functors
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Functors, pictorially

𝐹(id𝐴) = id𝐹(𝐴)  for any object 𝐴 in C

𝐹(𝑔∘𝑓) = 𝐹(𝑔)∘𝐹(𝑓) for any composable morphisms 𝑓 and 𝑔 in C
















































Functors, pictorially

“Every sufficiently good analogy is yearning to become a functor.”---John Baez
















































Categories describe sequential processes















































What about N.N. architectures?

One Model To Learn Them All
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Backpropagation?















































Probability?















































Lecture plan

● How to model parallel processes? (Monoidal categories)
○ Graphical language of string diagrams

● Adding bells and whistles to monoidal categories
○ Ability to cross strings
○ Ability to copy/delete information
○ Ability to add/create information

● Deterministic parallel processes (Cartesian Monoidal categories)
● Deterministic bidirectional processes (Lenses)
● General bidirectional processes (Optics)
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Monoidal 
categories
















































Mon. cats. describe parallel processes















































String diagrams

● Originating with Penrose’s graphical notation for tensor networks

● Objects - strings
● Morphisms - boxes
















































Moncats: What’s the idea?
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Monoidal category: definition

Johnson, Yau, 2-Dimensional Categories
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Monoidal category: definition

Johnson, Yau, 2-Dimensional Categories
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…such that these axioms are satisfied

Johnson, Yau,
 2-Dimensional Categories
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Laws of a monoidal category capture the 
geometry of the plane
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Q: Why does ⊗ need to be a functor?
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Q: Why does ⊗ need to be a functor?
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String diagrams: sound and complete

A well-typed equation between morphisms in a monoidal category follows 
from the axioms if and only if it holds in the graphical language up to 

planar isotopy.
















































Q: Which of these diagrams are equal…

...in a monoidal category? Heunen, Lecture Notes,
Categories and Quantum Informatics
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ABOVE DIAGRAMS IN EQUATION FORM

1 DEIOLI D both IAMB E.at MIQCxOI C

2 DID IXIho.to EoxF oAoB oI FIoCoI

c3D EOF EMI F EMPEOLIOF EEoF ItAoB C

USING THE STRUCTURE OF A MONOIDAL CATEGORY Ap L
WE CAN TRANSFORM 1 INTO 2 AND BACK

BUT THERE IS NO WAY TOTRANSFORM EITHER ONEINTO3



Example: (Set, ×, 1)
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Example: (Set, ⊔, ∅)
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● Monoidal categories generalise products and coproducts!
















































A category can have many monoidal 
products
















































Example: (Vect, ⊗, ℝ), (Vect, ⊕, 1)
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Example: (Rel, ⊗, 1)
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Example: any monoid

● A monoid is a monoidal category with only identity morphisms
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A monoid is a discrete monoidal category

● (ℝ, +, 0)
● (ℝ, *, 1)
● (List X, concat, []), where X is any set
● (𝔹, AND, True)
● ([X, X], ∘, idX), where X is any set
● …
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Example: (Euc, ×, 1)
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Our categories need not be deterministic!

● Category FinStoch
● Objects are finite sets
● Morphisms are Markov kernels

Markov Categories
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(FinStoch, ⊗, 1)

● Implements stochastic independence
● At the level of objects given by cartesian product
● At the level of morphisms given by the Kronecker product of matrices

Markov Categories














































X g

ZAW
XIs z w

https://arxiv.org/abs/1908.07021


All of these categories have a lot of 
structure!
















































…but an arbitrary monoidal category doesn’t 
necessarily possess that structure.
















































What can’t we do in an arbitrary monoidal 
category?
















































Pass strings through each other

(Symmetric monoidal category)
















































Split/end strings

(Symmetric monoidal category 
with a supply of comonoids)
















































Add/start strings

(Symmetric monoidal category 
with a supply of monoids)
















































Idea - interfaces

● Interface based design
● As in computer science, an abstract interface 

tells us what operations are available for a 
particular object

● In CT we take this idea rigorously!
















































Symmetric Monoidal Category















































Symmetric Monoidal Category: Definition

● A monoidal category equipped with 
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…such that these axioms hold:

● For all X,Y:C
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…such that these axioms hold:

● For all X:C
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…such that these axioms hold:

● For all X, Y, Z:C
















































Example of a non-symmetric mon. cat.

● ([X, X], ∘, idX), where X is any set
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Q: Which of these diagrams are equal…

...in a symmetric monoidal category? Heunen, Lecture Notes,
Categories and Quantum Informatics
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Recall:
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SMCs with supplies
















































SMC with supplies

● Symmetric monoidal category with a specific structure on each object

Two examples:

● Symmetric monoidal category with a (homomorphic) supply of comonoids
● Symmetric monoidal category with a (homomorphic) supply of monoids
















































What is a comonoid?
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What is a comonoid homomorphism?
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Comonoid homomorphisms 
= 

Deterministic maps
















































Non-example: FinStoch!

● We cannot slide copy through arbitrary maps!

● Rolling a dice and copying the result is not the same as rolling two dice 
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A homomorphic supply of comonoids…

● (Set, ×, 1)
● (Vect, ⊗, ℝ)
● (Vect, ⊕, 1)
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…gives a category with products!

Symmetric monoidal category with a homomorphic supply of comonoids

is isomorphic to

 a monoidal category whose monoidal product is given by the 
category-theoretic product
















































Operational view

● Gives us an operational characterization of a category with products
● Ability to systematically copy and delete information
● Every map in a cartesian monoidal category is deterministic
















































Exercise:

● What does a homomorphic supply of monoids give us?
















































So far:

● Parallel processes (Monoidal categories)
● Crossing of strings (Symmetric monoidal categories)
● Copying/deleting information (Cartesian categories)
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This gives us the basic building blocks!

One Model To Learn Them All
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What about a category where morphisms have 
a forward and a backward component?
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Lenses
















































What is a lens?

● Lenses model deterministic bidirectional processes
● Give us a high-level view of the bidirectional computation pattern
















































A lens consists of two parts

Forward map                                                                           Backward map
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Lenses form a category

● Starting with any cartesian category C…

… we can form a category Lens(C) defined as follows…
















































Category of Lenses: Definition













































AA C



Lens composition
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Lens composition
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Exercise:

Starting from a monoidal category, where in the definition of Lens(C) are we 
using the fact that morphism of C are comonoid homomorphisms?
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Examples of 
Lenses
















































Derivatives as lenses
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Derivatives as lenses
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Chain rule as lens composition
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Backprop: functor Euc → Lens(Euc)

On Euclidean spaces. For manifolds, we need dependent lenses.
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Optimisers as lenses















































Optimisers as lenses















































Optimisers as lenses















































Moore machines as lenses
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But we can do more

● There’s a particular way of categorically looking at bidirectional processes

● More general form, not restricted to deterministic processes

● Gives us an insight into the internal workings of lenses
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Optics
















































Optics

● Optics model contextual bidirectional transformations
○ Probabilistic bidirectional transformations
○ Bidirectional transformations with side-effects
○ Bidirectional transformations that operate on containers

● Optics assume the base is a symmetric monoidal category C
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Optics: Definition















































How do optics compose?



























Composition formula



Optic(Set)



Optic(C) ≅ Lens(C) when C is Cartesian



Optic(C) ≅ Lens(C) when C is Cartesian

● Exercise: Prove that there is a functor G:Lens(C) -> Optic(C) such that F and 
G form an isomorphism.



Optics allow us to do more



Optic(FinStoch)



Motivation for Optics is 2-categorical!



Value iteration



Bayes’ Law!



Summary!

● Category theory gives us an rich language for describing processes found 
in neural networks

● Monoidal categories with supplies of comonoids, monoids

● With Optics, uniform way to model
○ Backpropagation
○ Bayes’ Law
○ Value iteration



Thank you!
Questions?

bruno@brunogavranovic.com


