Triple categories in lifting problems

Patrick Nicodemus

August 17, 2023

Contents

1	Lifting structures on morphisms, background on double categories	1
2	A "tensor product" of two double categories 2.1 The "tensor product"	2 3
3	A Triple Category of Lifting Structures3.1 Objects and 1-cells of $\text{Lift}(\mathcal{C})$ 3.2 Horizontal and Vertical double categories in $\text{Lift}(\mathcal{C})$ 3.3 The Basic double category $\text{Lift}_{xy}(\mathcal{C})$ 3.4 Cubes	4 4 5 5
4	Applications	6

1 Lifting structures on morphisms, background on double categories

Definition 1 (Lift, lifting structure). Let C be a category. Let $f : a \to a', g : b \to b'$ be morphisms in C.

- Given $h: a \to b, k: a' \to b'$ with $g \circ h = k \circ f$, a lift of (h, k) is a morphism $t: b \to a'$ such that $h = t \circ f$ and $k = g \circ t$.
- A *lifting structure* on f, g is a function which assigns to each pair (h, k): $f \to g$ a lift of h, k.

The set of lifting structures on (f, g) will here be denoted Lift(f, g).

Definition 2 (Right, left composition of lifting structures). Let a_0, a_1, a_2, b_0, b_1 be objects in C; let $v_0 : a_0 \to a_1, v_1 : a_1 \to a_2, w : b_0 \to b_1$. If $\rho \in \text{Lift}(v_0, w)$ and $\pi \in \text{Lift}(v_1, w)$ are lifting structures, their *left composite* is a function $\pi \star^{\ell} \rho \in \text{Lift}(v_1 \circ v_0, w)$ defined by

$$(\pi \star^{\ell} \rho)(h,k) = \pi(\rho(h,k \circ v_1),k) \tag{1}$$

The notion of *right composite* is straightforwardly dual and gives a function

$$\star^{r} : \operatorname{Lift}(v, w_{0}) \times \operatorname{Lift}(v, w_{1}) \to \operatorname{Lift}(v, w_{1} \circ w_{0})$$

$$\tag{2}$$

whenever $w_1 \circ w_0$ is defined.

We assume the reader is familiar with double categories. Double categories are all strict; so are double functors.

Recall that a double category is called *flat* if there is at most one 2-cell lying over a given square; such a double category is a kind of two-dimensional version of a poset category.

Definition 3 (Double category of commutative squares). Let C be a 1-category. The double category Sq(C) of commutative squares has the same objects as C; its horizontal and vertical morphisms are both the morphisms of C and inherit the multiplication. The double category Sq(C) is flat and a 2-cell through a given square exists iff the square commutes.

Definition 4 (Horizontally discrete, vertically discrete double categories). A double category is called horizontally discrete if its only horizontal morphisms are identities. If C is a 1-category, there is a horizontally discrete double category denoted $\mathbb{V}(C)$ whose objects are those of C and whose vertical arrows are the arrows of C; all horizontally discrete double categories are essentially of this form for some C.

Similarly, a vertically discrete category has no vertical morphisms other than the identities. $\mathbb{H}(\mathcal{C})$ denotes the vertically discrete double category associated to a 1-category \mathcal{C} .

Definition 5 (Horizontal, vertical duality). If \mathbb{D} is a double category, \mathbb{D}^{op} refers to the horizontal dual of \mathbb{D} , whose horizontal morphisms and horizontal 2-cells between vertical arrows are reversed. \mathbb{D}^{co} refers to the vertical dual of \mathbb{D} , whose vertical arrows reverse in direction.

If A is a double category, the 1-category of objects and horizontal maps of A is denoted A_O , and the category of vertical arrows and 2-cells between them is denoted A_A .

2 A "tensor product" of two double categories

A triple category \mathcal{E} is a data structure which starts with

- objects
- three classes of 1-cells, called "horizontal", "vertical" and "transversal", which can be composed with other 1-cells of the same class
- three classes of 2-cells, called "vertical", "horizontal" and "basic". A vertical cell is one with boundaries which are transversal and vertical. A horizontal cell is one with boundaries which are transversal and horizontal. A basic cell is one with boundaries which are horizontal and vertical arrows.

• a class of 3-cells, called "cubes."

A triple category \mathcal{E} has three distinct category structures on the same common class of objects given by the composition of 1-cells. I will refer to these category structures as $\mathcal{E}_{\mathbf{x}}, \mathcal{E}_{\mathbf{y}}, \mathcal{E}_{\mathbf{z}}$ respectively. It also has three underlying double category structures; $\mathcal{E}_{\mathbf{xy}}$ denotes the double category of horizontal and vertical morphisms, and so on.

2.1 The "tensor product"

Let \mathbb{J} , \mathbb{K} be two strict double categories.

This section defines a triple category which is a kind of "tensor product" of $\mathbb J$ with $\mathbb K.$

- The objects of $\mathbb{J} \otimes \mathbb{K}$ are all pairs (j, k) where j is an object in \mathbb{J} and $k \in \mathbb{K}$.
- For its **transversal 1-cells**, a transversal morphism $(j, k) \to (j', k')$ is defined to be a pair of horizontal morphisms $g: j' \to j, f: k \to k'$; thus the transversal category $(\mathbb{J} \otimes \mathbb{K})_{\mathbf{z}}$ is just $\mathbb{J}_{O}^{\mathrm{op}} \times \mathbb{K}_{O}$.
- For its **horizontal 1-cells**, a horizontal morphism $(j,k) \to (j',k')$ exists only if j = j', and is of the form $(1_j, w)$ where $w : k \to k'$ is a vertical arrow of \mathbb{K} .
- For its vertical 1-cells, a vertical morphism (j, k) → (j', k') exists only if k = k' and is of the form (v, 1_k) where v : j → j' is a vertical arrow of J.
- For the **horizontal 2-cells**, the 2-cells of the double category $(\mathbb{J} \otimes \mathbb{K})_{\mathbf{xz}}$, if $f: j' \to j$ is a horizontal morphism in \mathbb{J} , and $\alpha: w \to w'$ is a 2-cell between vertical arrows w, w' in \mathbb{K} , then (f, α) is a 2-cell from the horizontal arrow $(1_j, w)$ to the horizontal arrow $(1_{j'}, w')$, lying over the transversal 1-cells $(f, \operatorname{dom} \alpha)$ and $(f, \operatorname{cod} \alpha)$.
- for the **vertical** 2-cells, the 2-cells of the double category $(\mathbb{J} \otimes \mathbb{K})_{\mathbf{yz}}$, if $g: k \to k'$ is a horizontal arrow in \mathbb{K} , and if $\beta: v' \to v$ is a 2-cell between vertical arrows v', v in \mathbb{J} , then (β, g) is a 2-cell from the vertical 1-cell $(v, 1_k) \to (v', 1_{k'})$ lying over the transversal 1-cells $(\operatorname{dom}(\beta), g)$ and $(\operatorname{cod} \beta, g)$.
- for the **basic** 2-cells, the 2-cells of the double category $(\mathbb{J} \times \mathbb{K})_{\mathbf{xy}}$, for every vertical arrow $v: j \to j'$ in \mathbb{J} and every vertical arrow $w: k \to k'$ in \mathbb{K} , we have a single 2-cell through the square bounded by $(1_j, w)$ and $(1_{j'}, w)$ on top and bottom and $(v, 1_k)$ and $(v, 1_{k'})$ on left and right. We will refer to this 2-cell as (v, w) for short.
- for the **cubes**, a transversal cube from $(v, w) \to (v', w')$ is exactly a pair $\beta : v' \to v$ in \mathbb{J}_A , $\alpha : w \to w'$ in \mathbb{K}_A . The category of cubes under transversal composition can be identified with $\mathbb{J}_A^{\mathrm{op}} \times \mathbb{K}_A$.

We will omit checking the details here as they are straightforward.

Proposition 1. The tensor product defines a functor $\mathbf{Dbl} \times \mathbf{Dbl} \to \mathbf{Trpl}$.

In particular, if $U : \mathbb{J} \to \mathbb{S}q(\mathcal{C})$ and $V : \mathbb{K} \to \mathbb{S}q(\mathcal{C})$ are given, there is a triple functor $U \otimes V : \mathbb{J} \otimes \mathbb{K} \to \mathbb{S}q(\mathcal{C}) \otimes \mathbb{S}q(\mathcal{C})$.

3 A Triple Category of Lifting Structures

Notation: For C a category, I denote by dis(C) the discrete category on the objects of C.

I now define the **triple category of lifting data** $\text{Lift}(\mathcal{C})$ associated to a 1-category \mathcal{C} , addressing the above structures cumulatively.

The Lift(\mathcal{C}) will be constructed in a very similar way to $\mathbb{Sq}(\mathcal{C}) \otimes \mathbb{Sq}(\mathcal{C})$ so that it is equipped with a projection triple functor Π : Lift(\mathcal{C}) $\rightarrow \mathbb{Sq}(\mathcal{C}) \otimes \mathbb{Sq}(\mathcal{C})$. In fact, Lift(\mathcal{C}) will agree with $\mathbb{Sq}(\mathcal{C}) \otimes \mathbb{Sq}(\mathcal{C})$ on all but the bullet points from section 2.1, except for the last 2. So Lift(\mathcal{C}) and $\mathbb{Sq}(\mathcal{C}) \otimes \mathbb{Sq}(\mathcal{C})$ have the same set of objects, and they have identical horizontal, vertical and transversal 1-categories; they also have Lift(\mathcal{C})_{**xz**} = $\mathbb{Sq}(\mathcal{C}) \otimes \mathbb{Sq}(\mathcal{C})_{$ **xz** $}$ and Lift(\mathcal{C})_{**yz**} = $\mathbb{Sq}(\mathcal{C}) \otimes \mathbb{Sq}(\mathcal{C})_{\mathbf{xy}}$ (and thus a fortiori the cubes) will disagree in general.

3.1 Objects and 1-cells of $Lift(\mathcal{C})$

To begin with, $\text{Lift}(\mathcal{C})$ is a class of objects, together with three 1-category structures on that common class of objects.

- The objects or 0-cells of $Lift(\mathcal{C})$ are ordered pairs of objects (a, b) of \mathcal{C} .
- For its **transversal 1-cells**, a transversal morphism $(a, b) \rightarrow (a', b')$ is defined to be a pair $g: a' \rightarrow a, f: b \rightarrow b'$; thus the transversal category $\text{Lift}(\mathcal{C})_{\mathbf{z}}$ is just $\mathcal{C}^{\text{op}} \times \mathcal{C}$.
- for its **horizontal 1-cells**, $\text{Lift}(\mathcal{C})_{\mathbf{x}}$ is the product $\text{dis}(\mathcal{C}) \times \mathcal{C}$; thus a morphism $(a, b) \to (a', b')$ exists only if a = a', and in this case a morphism consists of a pair $(1_a, f)$ where $f \in \text{Hom}_{\mathcal{C}}(b, b')$.
- for its vertical 1-cells, $\text{Lift}(\mathcal{C})_{\mathbf{y}}$ is the product $\mathcal{C} \times \text{dis}(\mathcal{C})$; a morphism $(a, b) \to (a', b')$ exists only if b = b', and in this case, a morphism is exactly a pair $(g, 1_b)$ where $g \in \text{Hom}_{\mathcal{C}}(a, a')$.

3.2 Horizontal and Vertical double categories in $Lift(\mathcal{C})$

We address these separately as they are easier.

• The double category $\operatorname{Lift}_{\mathbf{xz}}(\mathcal{C})$ is flat; if we regard $\operatorname{dis}(\mathcal{C})$ as a subcategory of $\mathcal{C}^{\operatorname{op}}$ then there exists a (unique) 2-cell through a square iff the square commutes in $\mathcal{C}^{\operatorname{op}} \times \mathcal{C}$. This double category can be identified with $\mathbb{H}(\mathcal{C})^{\operatorname{op}} \times$

 $\mathbb{Sq}(\mathcal{C})$ (where the *horizontal* 1-cells of $\mathbb{H}(\mathcal{C})^{\mathrm{op}} \times \mathbb{Sq}(\mathcal{C})$ are identified with *transversal* 1-cells in Lift_{**xz**}, and the *vertical* 1-cells of $\mathbb{H}(\mathcal{C})^{\mathrm{op}} \times \mathbb{Sq}(\mathcal{C})$ are identified with the *horizontal* 1-cells of Lift_{**xz**}.

The double category Lift_{yz}(C) is flat; if we regard dis(C) as a subcategory of C then there exists a (unique) 2-cell through a square iff the square commutes in C × C. This double category can be identified with Sq(C)^{op} × H(C), where the y-axis is matched to the "vertical" direction and the z-axis is matched to the "horizontal" direction. (Note the distinction between Sq(C^{op}) and Sq(C)^{op}; we only want to dualize the horizontal direction.)

We omit verification of the basic properties of a double category here as they are trivial.

3.3 The Basic double category $\text{Lift}_{xy}(\mathcal{C})$

We already have the objects and horizontal and vertical cells, so it suffices to define the 2-cells and horizontal and vertical composition of 2-cells. Unlike $\operatorname{Lift}_{\mathbf{xz}}(\mathcal{C})$ and $\operatorname{Lift}_{\mathbf{yz}}(\mathcal{C})$, the double category $\operatorname{Lift}_{\mathbf{xy}}(\mathcal{C})$ is not flat in general. Given a square of horizontal and vertical arrows in $\operatorname{Lift}_{\mathbf{xy}}(\mathcal{C})$, if the square does not commute in $\mathcal{C} \times \mathcal{C}$, there are no 2-cells.

If the square does commute, then there are objects a, a', b, b' and morphisms $f: a \to a', g: b \to b'$ in \mathcal{C} such that the commutative square is of the form $(f, 1_{b'}) \circ (1_a, g) = (1_{a'}, g) \circ (f, 1_b)$.

There exists a 2-cell only if the square commutes in $\mathcal{C} \times \mathcal{C}$. In this case, a 2-cell is precisely a lifting structure on f, g.

The vertical composition of 2-cells is precisely the left composition of lifting functions defined in 1. A pair of vertically composable basic squares in $\text{Lift}_{\mathbf{xy}}(\mathcal{C})$ is equivalent to a list of objects a_0, a_1, a_2b_0, b_1 in \mathcal{C} , and $v_0 : a_0 \to a_1, v_1 : a_1 \to a_2, w =: b_0 \to b_1$ morphisms between them, and lifting functions $\rho \in \text{Lift}(v_0, w), \pi \in \text{Lift}(v, w)$ be 2-cells. Their left-composite as lifting functions is again a 2-cell in the square framed by $v_1 \circ v_0$ and w.

The *horizontal* composition of 2-cells is precisely the right composition of lifting functions 2.

The double category axioms are easy to verify.

In what follows, given $f: a_0 \to a_1, g: b_0 \to b_1$, we will identify an element of Lift(f,g) with a 2-cell in $\text{Lift}_{\mathbf{xy}}(\mathcal{C})$ with vertical domain $(1_{a_0},g)$, vertical codomain $(1_{a_1},g)$, horizontal domain $(f, 1_{b_0})$, and horizontal codomain $(f, 1_{b_1})$; these 1-cells will not be spelled out explicitly when we refer to a 2-cell $\rho \in$ Lift(f,g), instead we will simply say "the square framed by f and g."

3.4 Cubes

The cubes of the triple category are again "flat", they exist (uniquely) if their boundary satisfies a coherence condition. Suppose we are given morphisms $a: a_0 \to a_1, b: b_0 \to b_1, s: s_0 \to s_1, t: t_0 \to t_1$; and suppose we are given a 2cell $\rho \in \text{Lift}(a, b)$ lying over the square in the **xy** plane framed by f, g. Similarly, suppose we are given $\pi \in \text{Lift}(s, t)$ lying over the square in the **xy** plane framed by s, t. Last, suppose we are given $r_0 : s_0 \to a_0, r_1 : s_1 \to a_1, q_0 : b_0 \to t_0, q_1 :$ $b_1 \to t_1$, such that $a \circ r_0 = r_1 \circ s$ and $t \circ q_0 = q_1 \circ b$; in the formalism of double categories, this gives us that

- (r, q_0) is a 2-cell in $\operatorname{Lift}_{\mathbf{yz}}(\mathcal{C}) \cong \mathbb{Sq}(\mathcal{C})^{\operatorname{op}} \times \mathbb{H}(\mathcal{C})$ from (a, b_0) to (s, t_0) ;
- (r, t_1) is a morphism in Lift_{yz} from (a, b_1) to (s, t_1) ;
- (r_0, q) is a 2-cell in Lift_{**xz**} (\mathcal{C}) from (a_0, t) to (s_0, t)
- (r_1, q) is a 2-cell in Lift_{**xz**}(\mathcal{C}) from (a_1, t) to (s_1, t)

and in sum, given (ρ, π, r, q) , we have have a cube boundary.

Then this cube is inhabited by a (unique) filler iff for all $h : s_0 \to t_0$ and $k : s_1 \to t_1$ with $t \circ h = k \circ s$, we have

$$r_1 \circ \pi(h,k) \circ q_0 = \rho(r_0 \circ h \circ q_0, r_1 \circ k \circ q_1) \tag{3}$$

We will omit the checking of coherence conditions here. The fact that composition in each direction is well-defined is elementary to check; for the various coherence conditions, these are all trivially satisfied because the cube inhabiting the boundary is unique.

This concludes our argument that we have constructed a triple category.

There is an obvious triple functor Π : Lift $(\mathcal{C}) \to \mathbb{S}q(\mathcal{C}) \otimes \mathbb{S}q(\mathcal{C})$ which collapses all 2-cells in Lift $(\mathcal{C})_{xy}$ down to the unique one, and similarly on cubes.

4 Applications

Proposition 2. Let $U : \mathbb{J} \to \mathbb{S}q(\mathcal{C}), V : \mathbb{J} \to \mathbb{S}q(\mathcal{C})$ be double functors. Then a lifting structure on (U, V) in the sense of Section of 6.1 "Algebraic weak factorization systems I: Accessible awfs" of is exactly equivalent to a lift of $U \otimes V : \mathbb{J} \otimes \mathbb{K} \to \mathbb{S}q(\mathcal{C}) \otimes \mathbb{S}q(\mathcal{C})$ along $\Pi : \text{Lift}(\mathcal{C}) \to \mathbb{S}q(\mathcal{C}) \otimes \mathbb{S}q(\mathcal{C})$.