Triple categories in lifting problems

Patrick Nicodemus
August 17, 2023

Contents

1 Lifting structures on morphisms, background on double cate-	
gories	1

2 A "tensor product" of two double categories $\quad \mathbf{2}$

3 A Triple Category of Lifting Structures 4
3.1 Objects and 1-cells of Lift(C)] . 4
3.2 Horizontal and Vertical double categories in $\operatorname{Lift}(\mathcal{C})$. 4
3.3 The Basic double category $\operatorname{Lift}_{\mathbf{x y}}(\mathcal{C})$. 5
3.4 Cubes . 5

4 Applications 6

1 Lifting structures on morphisms, background on double categories

Definition 1 (Lift, lifting structure). Let \mathcal{C} be a category. Let $f: a \rightarrow a^{\prime}, g$: $b \rightarrow b^{\prime}$ be morphisms in \mathcal{C}.

- Given $h: a \rightarrow b, k: a^{\prime} \rightarrow b^{\prime}$ with $g \circ h=k \circ f$, a lift of (h, k) is a morphism $t: b \rightarrow a^{\prime}$ such that $h=t \circ f$ and $k=g \circ t$.
- A lifting structure on f, g is a function which assigns to each pair (h, k) : $f \rightarrow g$ a lift of h, k.

The set of lifting structures on (f, g) will here be denoted $\operatorname{Lift}(f, g)$.
Definition 2 (Right, left composition of lifting structures). Let $a_{0}, a_{1}, a_{2}, b_{0}, b_{1}$ be objects in \mathcal{C}; let $v_{0}: a_{0} \rightarrow a_{1}, v_{1}: a_{1} \rightarrow a_{2}, w: b_{0} \rightarrow b_{1}$. If $\rho \in \operatorname{Lift}\left(v_{0}, w\right)$ and $\pi \in \operatorname{Lift}\left(v_{1}, w\right)$ are lifting structures, their left composite is a function $\pi \star^{\ell} \rho \in \operatorname{Lift}\left(v_{1} \circ v_{0}, w\right)$ defined by

$$
\begin{equation*}
\left(\pi \star^{\ell} \rho\right)(h, k)=\pi\left(\rho\left(h, k \circ v_{1}\right), k\right) \tag{1}
\end{equation*}
$$

The notion of right composite is straightforwardly dual and gives a function

$$
\begin{equation*}
\star^{r}: \operatorname{Lift}\left(v, w_{0}\right) \times \operatorname{Lift}\left(v, w_{1}\right) \rightarrow \operatorname{Lift}\left(v, w_{1} \circ w_{0}\right) \tag{2}
\end{equation*}
$$

whenever $w_{1} \circ w_{0}$ is defined.
We assume the reader is familiar with double categories. Double categories are all strict; so are double functors.

Recall that a double category is called flat if there is at most one 2-cell lying over a given square; such a double category is a kind of two-dimensional version of a poset category.

Definition 3 (Double category of commutative squares). Let \mathcal{C} be a 1-category. The double category $\operatorname{Sq}(\mathcal{C})$ of commutative squares has the same objects as \mathcal{C}; its horizontal and vertical morphisms are both the morphisms of \mathcal{C} and inherit the multiplication. The double category $\mathbb{S q}(\mathcal{C})$ is flat and a 2-cell through a given square exists iff the square commutes.
Definition 4 (Horizontally discrete, vertically discrete double categories). A double category is called horizontally discrete if its only horizontal morphisms are identities. If \mathcal{C} is a 1-category, there is a horizontally discrete double category denoted $\mathbb{V}(\mathcal{C})$ whose objects are those of \mathcal{C} and whose vertical arrows are the arrows of \mathcal{C}; all horizontally discrete double categories are essentially of this form for some \mathcal{C}.

Similarly, a vertically discrete category has no vertical morphisms other than the identities. $\mathbb{H}(\mathcal{C})$ denotes the vertically discrete double category associated to a 1-category \mathcal{C}.
Definition 5 (Horizontal, vertical duality). If \mathbb{D} is a double category, $\mathbb{D}^{\text {op }}$ refers to the horizontal dual of \mathbb{D}, whose horizontal morphisms and horizontal 2-cells between vertical arrows are reversed. $\mathbb{D}^{\text {co }}$ refers to the vertical dual of \mathbb{D}, whose vertical arrows reverse in direction.

If \mathbb{A} is a double category, the 1-category of objects and horizontal maps of \mathbb{A} is denoted \mathbb{A}_{O}, and the category of vertical arrows and 2-cells between them is denoted \mathbb{A}_{A}.

2 A "tensor product" of two double categories

A triple category \mathcal{E} is a data structure which starts with

- objects
- three classes of 1-cells, called "horizontal", "vertical" and "transversal", which can be composed with other 1-cells of the same class
- three classes of 2-cells, called "vertical", "horizontal" and "basic". A vertical cell is one with boundaries which are transversal and vertical. A horizontal cell is one with boundaries which are transversal and horizontal. A basic cell is one with boundaries which are horizontal and vertical arrows.
- a class of 3-cells, called "cubes."

A triple category \mathcal{E} has three distinct category structures on the same common class of objects given by the composition of 1-cells. I will refer to these category structures as $\mathcal{E}_{\mathbf{x}}, \mathcal{E}_{\mathbf{y}}, \mathcal{E}_{\mathbf{z}}$ respectively. It also has three underlying double category structures; $\mathcal{E}_{\mathbf{x y}}$ denotes the double category of horizontal and vertical morphisms, and so on.

2.1 The "tensor product"

Let \mathbb{J}, \mathbb{K} be two strict double categories.
This section defines a triple category which is a kind of "tensor product" of \mathbb{J} with \mathbb{K}.

- The objects of $\mathbb{J} \otimes \mathbb{K}$ are all pairs (j, k) where j is an object in \mathbb{J} and $k \in \mathbb{K}$.
- For its transversal 1-cells, a transversal morphism $(j, k) \rightarrow\left(j^{\prime}, k^{\prime}\right)$ is defined to be a pair of horizontal morphisms $g: j^{\prime} \rightarrow j, f: k \rightarrow k^{\prime}$; thus the transversal category $(\mathbb{J} \otimes \mathbb{K})_{\mathbf{z}}$ is just $\mathbb{J}_{O}^{\mathrm{op}} \times \mathbb{K}_{O}$.
- For its horizontal 1-cells, a horizontal morphism $(j, k) \rightarrow\left(j^{\prime}, k^{\prime}\right)$ exists only if $j=j^{\prime}$, and is of the form $\left(1_{j}, w\right)$ where $w: k \rightarrow k^{\prime}$ is a vertical arrow of \mathbb{K}.
- For its vertical 1-cells, a vertical morphism $(j, k) \rightarrow\left(j^{\prime}, k^{\prime}\right)$ exists only if $k=k^{\prime}$ and is of the form $\left(v, 1_{k}\right)$ where $v: j \rightarrow j^{\prime}$ is a vertical arrow of \mathbb{J}.
- For the horizontal 2-cells, the 2-cells of the double category $(\mathbb{J} \otimes \mathbb{K})_{\mathbf{x z}}$, if $f: j^{\prime} \rightarrow j$ is a horizontal morphism in \mathbb{J}, and $\alpha: w \rightarrow w^{\prime}$ is a 2-cell between vertical arrows w, w^{\prime} in \mathbb{K}, then (f, α) is a 2 -cell from the horizontal arrow $\left(1_{j}, w\right)$ to the horizontal arrow $\left(1_{j^{\prime}}, w^{\prime}\right)$, lying over the transversal 1-cells $(f, \operatorname{dom} \alpha)$ and $(f, \operatorname{cod} \alpha)$.
- for the vertical 2-cells, the 2-cells of the double category $(\mathbb{J} \otimes \mathbb{K})_{\mathbf{y z}}$, if $g: k \rightarrow k^{\prime}$ is a horizontal arrow in \mathbb{K}, and if $\beta: v^{\prime} \rightarrow v$ is a 2 -cell between vertical arrows v^{\prime}, v in \mathbb{J}, then (β, g) is a 2 -cell from the vertical 1-cell $\left(v, 1_{k}\right) \rightarrow\left(v^{\prime}, 1_{k^{\prime}}\right)$ lying over the transversal 1-cells ($\left.\operatorname{dom}(\beta), g\right)$ and $(\operatorname{cod} \beta, g)$.
- for the basic 2 -cells, the 2-cells of the double category $(\mathbb{J} \times \mathbb{K})_{\mathbf{x y}}$, for every vertical arrow $v: j \rightarrow j^{\prime}$ in \mathbb{J} and every vertical arrow $w: k \rightarrow k^{\prime}$ in \mathbb{K}, we have a single 2 -cell through the square bounded by $\left(1_{j}, w\right)$ and $\left(1_{j^{\prime}}, w\right)$ on top and bottom and $\left(v, 1_{k}\right)$ and $\left(v, 1_{k^{\prime}}\right)$ on left and right. We will refer to this 2 -cell as (v, w) for short.
- for the cubes, a transversal cube from $(v, w) \rightarrow\left(v^{\prime}, w^{\prime}\right)$ is exactly a pair $\beta: v^{\prime} \rightarrow v$ in $\mathbb{J}_{A}, \alpha: w \rightarrow w^{\prime}$ in \mathbb{K}_{A}. The category of cubes under transversal composition can be identified with $\mathbb{J}_{A}^{\mathrm{op}} \times \mathbb{K}_{A}$.

We will omit checking the details here as they are straightforward.
Proposition 1. The tensor product defines a functor $\mathbf{D b l} \times \mathbf{D b l} \rightarrow$ Trpl.
In particular, if $U: \mathbb{J} \rightarrow \mathbb{S q}(\mathcal{C})$ and $V: \mathbb{K} \rightarrow \mathbb{S q}(\mathcal{C})$ are given, there is a triple functor $U \otimes V: \mathbb{J} \otimes \mathbb{K} \rightarrow \mathbb{S q}(\mathcal{C}) \otimes \mathbb{S q}(\mathcal{C})$.

3 A Triple Category of Lifting Structures

Notation: For \mathcal{C} a category, I denote by $\operatorname{dis}(\mathcal{C})$ the discrete category on the objects of \mathcal{C}.

I now define the triple category of lifting data $\operatorname{Lift}(\mathcal{C})$ associated to a 1 -category \mathcal{C}, addressing the above structures cumulatively.

The $\operatorname{Lift}(\mathcal{C})$ will be constructed in a very similar way to $\mathbb{S q}(\mathcal{C}) \otimes \mathbb{S q}(\mathcal{C})$ so that it is equipped with a projection triple functor $\Pi: \operatorname{Lift}(\mathcal{C}) \rightarrow \mathbb{S q}(\mathcal{C}) \otimes \mathbb{S q}(\mathcal{C})$. In fact, $\operatorname{Lift}(\mathcal{C})$ will agree with $\mathbb{S q}(\mathcal{C}) \otimes \mathbb{S q}(\mathcal{C})$ on all but the the bullet points from section 2.1, except for the last 2. So $\operatorname{Lift}(\mathcal{C})$ and $\mathbb{S q}(\mathcal{C}) \otimes \mathbb{S q}(\mathcal{C})$ have the same set of objects, and they have identical horizontal, vertical and transversal 1-categories; they also have $\operatorname{Lift}(\mathcal{C})_{\mathbf{x z}}=\mathbb{S q}(\mathcal{C}) \otimes \mathbb{S q}(\mathcal{C})_{\mathbf{x z}}$ and $\operatorname{Lift}(\mathcal{C})_{\mathbf{y z}}=\mathbb{S q}(\mathcal{C}) \otimes$ $\mathbb{S q}(\mathcal{C})_{\mathbf{y z}}$. However, the categories $\operatorname{Lift}(\mathcal{C})_{\mathbf{x y}}$ and $\mathbb{S q}(\mathcal{C}) \otimes \mathbb{S q}(\mathcal{C})_{\mathbf{x y}}$ (and thus a fortiori the cubes) will disagree in general.

3.1 Objects and 1-cells of $\operatorname{Lift}(\mathcal{C})$

To begin with, $\operatorname{Lift}(\mathcal{C})$ is a class of objects, together with three 1-category structures on that common class of objects.

- The objects or 0 -cells of $\operatorname{Lift}(\mathcal{C})$ are ordered pairs of objects (a, b) of \mathcal{C}.
- For its transversal 1-cells, a transversal morphism $(a, b) \rightarrow\left(a^{\prime}, b^{\prime}\right)$ is defined to be a pair $g: a^{\prime} \rightarrow a, f: b \rightarrow b^{\prime}$; thus the transversal category $\operatorname{Lift}(\mathcal{C})_{\mathbf{z}}$ is just $\mathcal{C}^{\text {op }} \times \mathcal{C}$.
- for its horizontal 1-cells, $\operatorname{Lift}(\mathcal{C})_{\mathbf{x}}$ is the product $\operatorname{dis}(\mathcal{C}) \times \mathcal{C}$; thus a morphism $(a, b) \rightarrow\left(a^{\prime}, b^{\prime}\right)$ exists only if $a=a^{\prime}$, and in this case a morphism consists of a pair $\left(1_{a}, f\right)$ where $f \in \operatorname{Hom}_{\mathcal{C}}\left(b, b^{\prime}\right)$.
- for its vertical 1-cells, $\operatorname{Lift}(\mathcal{C})_{\mathbf{y}}$ is the product $\mathcal{C} \times \operatorname{dis}(\mathcal{C})$; a morphism $(a, b) \rightarrow\left(a^{\prime}, b^{\prime}\right)$ exists only if $b=b^{\prime}$, and in this case, a morphism is exactly a pair $\left(g, 1_{b}\right)$ where $g \in \operatorname{Hom}_{\mathcal{C}}\left(a, a^{\prime}\right)$.

3.2 Horizontal and Vertical double categories in $\operatorname{Lift}(\mathcal{C})$

We address these separately as they are easier.

- The double category $\operatorname{Lift}_{\mathbf{x z}}(\mathcal{C})$ is flat; if we regard $\operatorname{dis}(\mathcal{C})$ as a subcategory of $\mathcal{C}^{\text {op }}$ then there exists a (unique) 2 -cell through a square iff the square commutes in $\mathcal{C}^{\mathrm{op}} \times \mathcal{C}$. This double category can be identified with $\mathbb{H}(\mathcal{C})^{\mathrm{op}} \times$
$\mathbb{S q}(\mathcal{C})$ (where the horizontal 1-cells of $\mathbb{H}(\mathcal{C})^{\mathrm{op}} \times \mathbb{S q}(\mathcal{C})$ are identified with transversal 1-cells in $\operatorname{Lift}_{\mathbf{x z}}$, and the vertical 1-cells of $\mathbb{H}(\mathcal{C})^{\mathrm{op}} \times \mathbb{S q}(\mathcal{C})$ are identified with the horizontal 1-cells of Lift $_{\text {xz }}$.
- The double category $\operatorname{Lift}_{\mathbf{y z}}(\mathcal{C})$ is flat; if we regard $\operatorname{dis}(\mathcal{C})$ as a subcategory of \mathcal{C} then there exists a (unique) 2 -cell through a square iff the square commutes in $\mathcal{C} \times \mathcal{C}$. This double category can be identified with $\mathbb{S q}(\mathcal{C})^{\mathrm{op}} \times$ $\mathbb{H}(\mathcal{C})$, where the \mathbf{y}-axis is matched to the "vertical" direction and the \mathbf{z}-axis is matched to the "horizontal" direction. (Note the distinction between $\mathbb{S q}\left(\mathcal{C}^{\text {op }}\right)$ and $\mathbb{S q}(\mathcal{C})^{\text {op }}$; we only want to dualize the horizontal direction.)

We omit verification of the basic properties of a double category here as they are trivial.

3.3 The Basic double category $\operatorname{Lift}_{\mathrm{xy}}(\mathcal{C})$

We already have the objects and horizontal and vertical cells, so it suffices to define the 2-cells and horizontal and vertical composition of 2-cells. Unlike $\operatorname{Lift}_{\mathbf{x z}}(\mathcal{C})$ and $\operatorname{Lift}_{\mathbf{y z}}(\mathcal{C})$, the double category $\operatorname{Lift}_{\mathbf{x y}}(\mathcal{C})$ is not flat in general. Given a square of horizontal and vertical arrows in $\operatorname{Lift}_{\mathbf{x y}}(\mathcal{C})$, if the square does not commute in $\mathcal{C} \times \mathcal{C}$, there are no 2 -cells.

If the square does commute, then there are objects $a, a^{\prime}, b, b^{\prime}$ and morphisms $f: a \rightarrow a^{\prime}, g: b \rightarrow b^{\prime}$ in \mathcal{C} such that the commutative square is of the form $\left(f, 1_{b^{\prime}}\right) \circ\left(1_{a}, g\right)=\left(1_{a^{\prime}}, g\right) \circ\left(f, 1_{b}\right)$.

There exists a 2 -cell only if the square commutes in $\mathcal{C} \times \mathcal{C}$. In this case, a 2 -cell is precisely a lifting structure on f, g.

The vertical composition of 2-cells is precisely the left composition of lifting functions defined in 1 . A pair of vertically composable basic squares in $\operatorname{Lift}_{\mathbf{x y}}(\mathcal{C})$ is equivalent to a list of objects $a_{0}, a_{1}, a_{2} b_{0}, b_{1}$ in \mathcal{C}, and $v_{0}: a_{0} \rightarrow a_{1}, v_{1}$: $a_{1} \rightarrow a_{2}, w=: b_{0} \rightarrow b_{1}$ morphisms between them, and lifting functions $\rho \in$ $\operatorname{Lift}\left(v_{0}, w\right), \pi \in \operatorname{Lift}(v, w)$ be 2-cells. Their left-composite as lifting functions is again a 2 -cell in the square framed by $v_{1} \circ v_{0}$ and w.

The horizontal composition of 2-cells is precisely the right composition of lifting functions 2 .

The double category axioms are easy to verify.
In what follows, given $f: a_{0} \rightarrow a_{1}, g: b_{0} \rightarrow b_{1}$, we will identify an element of $\operatorname{Lift}(f, g)$ with a 2 -cell in $\operatorname{Lift}_{\mathbf{x y}}(\mathcal{C})$ with vertical domain $\left(1_{a_{0}}, g\right)$, vertical codomain $\left(1_{a_{1}}, g\right)$, horizontal domain $\left(f, 1_{b_{0}}\right)$, and horizontal codomain $\left(f, 1_{b_{1}}\right)$; these 1-cells will not be spelled out explicitly when we refer to a 2 -cell $\rho \in$ $\operatorname{Lift}(f, g)$, instead we will simply say "the square framed by f and $g . "$

3.4 Cubes

The cubes of the triple category are again "flat", they exist (uniquely) if their boundary satisfies a coherence condition. Suppose we are given morphisms $a: a_{0} \rightarrow a_{1}, b: b_{0} \rightarrow b_{1}, s: s_{0} \rightarrow s_{1}, t: t_{0} \rightarrow t_{1}$; and suppose we are given a 2 cell $\rho \in \operatorname{Lift}(a, b)$ lying over the square in the xy plane framed by f, g. Similarly,
suppose we are given $\pi \in \operatorname{Lift}(s, t)$ lying over the square in the xy plane framed by s, t. Last, suppose we are given $r_{0}: s_{0} \rightarrow a_{0}, r_{1}: s_{1} \rightarrow a_{1}, q_{0}: b_{0} \rightarrow t_{0}, q_{1}:$ $b_{1} \rightarrow t_{1}$, such that $a \circ r_{0}=r_{1} \circ s$ and $t \circ q_{0}=q_{1} \circ b$; in the formalism of double categories, this gives us that

- $\left(r, q_{0}\right)$ is a 2 -cell in $\operatorname{Lift}_{\mathbf{y z}}(\mathcal{C}) \cong \mathbb{S q}(\mathcal{C})^{\text {op }} \times \mathbb{H}(\mathcal{C})$ from $\left(a, b_{0}\right)$ to $\left(s, t_{0}\right)$;
- $\left(r, t_{1}\right)$ is a morphism in $\operatorname{Lift}_{\mathbf{y z}}$ from $\left(a, b_{1}\right)$ to $\left(s, t_{1}\right)$;
- $\left(r_{0}, q\right)$ is a 2 -cell in $\operatorname{Lift}_{\mathbf{x z}}(\mathcal{C})$ from $\left(a_{0}, t\right)$ to $\left(s_{0}, t\right)$
- $\left(r_{1}, q\right)$ is a 2 -cell in $\operatorname{Lift}_{\mathbf{x z}}(\mathcal{C})$ from $\left(a_{1}, t\right)$ to $\left(s_{1}, t\right)$
and in sum, given (ρ, π, r, q), we have have a cube boundary.
Then this cube is inhabited by a (unique) filler iff for all $h: s_{0} \rightarrow t_{0}$ and $k: s_{1} \rightarrow t_{1}$ with $t \circ h=k \circ s$, we have

$$
\begin{equation*}
r_{1} \circ \pi(h, k) \circ q_{0}=\rho\left(r_{0} \circ h \circ q_{0}, r_{1} \circ k \circ q_{1}\right) \tag{3}
\end{equation*}
$$

We will omit the checking of coherence conditions here. The fact that composition in each direction is well-defined is elementary to check; for the various coherence conditions, these are all trivially satisfied because the cube inhabiting the boundary is unique.

This concludes our argument that we have constructed a triple category.
There is an obvious triple functor $\Pi: \operatorname{Lift}(\mathcal{C}) \rightarrow \mathbb{S q}(\mathcal{C}) \otimes \mathbb{S q}(\mathcal{C})$ which collapses all 2-cells in $\operatorname{Lift}(\mathcal{C})_{\mathbf{x y}}$ down to the unique one, and similarly on cubes.

4 Applications

Proposition 2. Let $U: \mathbb{J} \rightarrow \mathbb{S q}(\mathcal{C}), V: \mathbb{J} \rightarrow \mathbb{S q}(\mathcal{C})$ be double functors. Then a lifting structure on (U, V) in the sense of Section of 6.1 "Algebraic weak factorization systems I: Accessible awfs" of is exactly equivalent to a lift of $U \otimes V: \mathbb{J} \otimes \mathbb{K} \rightarrow \mathbb{S q}(\mathcal{C}) \otimes \mathbb{S q}(\mathcal{C})$ along $\Pi: \operatorname{Lift}(\mathcal{C}) \rightarrow \mathbb{S q}(\mathcal{C}) \otimes \mathbb{S q}(\mathcal{C})$.

