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Geometrical Gel'fand Models, Tensor Quotients,
and Weil Representations

JORGE SOTO-ANDRADE

This is a report on some partial results on different methods of construc-
tion of ordinary representations of finite classical groups and related groups.
We are especially interested in elementary geometrical methods, which lead to
the construction of geometrical Gel’fand models and to the decomposition of
multiplicity-free natural (i.e., permutation) representations. We also consider,
however, “meta-geometrical” methods as the construction of “contractions” and
“tensor quotients” of representations of geometrical nature, which are closely
related to the construction of Weil representations and their generalizations.

1. Geometrical Gel’fand Models

1.1. Given a (finite) group G, we call a Gel' fand model for G any (complex)
representation (M, 7) of G which is isomorphic to the direct sum of all irreducible
representations of G.

The underlying philosophy [G-Z] is that such a remarkable representation
(M, 7) will have “special properties” and some “supplementary structure.” This
is well illustrated, in the case of compact Lie groups, by G = SO(3, R) for which
a (unitary) Gel'fand model is given by M = L2(S?%), r being the corresponding
natural representation. The decomposition of this representation involves the
classical Legendre polynomials (for a finite analogue see [SA 1)).

1.2. For finite (noncommutative) groups G there exists only exceptionally a G-
set X such that the associated natural (also called permutation) representation
(L%(X),7) is a Gel'fand model for G (here, as usual, we endow X with counting
measure).

One such an exceptional example is given by G = PSL(2,F3) and X = Fg—F3
endowed with the homographic (Mdbius) action of G. So X is a double covering
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of the finite analogue of Poincaré’s upper half plane, which may be realized, in
this case, as the set of vertices of the octahedron [Y].

More often, for classical groups G of low rank, for instance, we may expect
that the following holds.

PROPERTY 1. There are G-sets X;,...,X, such that each natural represen-
tation L(X;) (1 <1 < r) is multiplicity-free and the amalgamated sum over the
constants

M=L?X)® - L*X,
(1)9:9 @ (X+)

i3 a Gel' fand model for our group G. We say then that M 1s a geometric Gel' fand
model for G, of length r.

NOTATION. In what follows we will denote amalgamated sum over the con-
stants by @ instead of @.
C

A weaker version of Property I is

PROPERTY 1I. The Gel'fand model M of G 13 a generalized natural repre-
sentation.

We say in this case that M is a weakly geometric Gel fand model for G.
This means in fact that M is the difference of two natural representations of
G. In terms of characters, Property II states that the sum xas of all irreducible
characters of GG is a generalized permutation character.

REMARK. A given group G may admit geometrical Gel’fand models of dif-
ferent lengths (even in the simplest abelian noncyclic case of the Vierergruppe).
We will call length of G and denote by I(G) the minimum length of a geomet-
rical Gel’fand model for G (if G admits no geometrical Gel'fand model we put
I(G) = 00).

It is of interest to determine which classes of groups admit geometrical (or
weakly geometrical) Gel’fand models. We first give some positive results.

1.3 The case of the Heisenberg group H(n,k). Let k be the field F,. Recall
that the Heisenberg group H(n,k) in n degrees of freedom is defined as the set
k™ x k™ x k endowed with the multiplication

(@, 4;7)(z,w;8) = (2 + 2,y + wiT + 3 + (z,w))

for all z,y,2,w € k™, r,8 € k, where (, ) denotes the canonical scalar product
in k™.

PROPOSITION 1. The Heisenberg group H(n, k) admits a geometric Gel' fand
model M of length ¢ + 1, of the form

M= @ L*X),
tekU{oo}
where the H(n,k)-sets X; are defined as follows:
Xoo 18 the set k™ X k endowed with the (right) action

(z,7) - (¥,258) = (2 +y,7 + s+ (z,2))
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forallz,y,z € k™, r,s€k;
Xt (t € k) 13 the set k™ endowed with the right action

z-(y,2;8) =z +ty + 2,
forallz,y,z € k", s € k.

The proof is a straightforward verification. 0O

1.4. The case of PGL(2,F,): Generic spaces and geometrical Gel' fand models.
Since, in general, the one-dimensional representations of a group G are easily
obtained by decomposing the natural representation L2(G,p,) associated to its
abelianized group G, regarded as a G-set, we are led to the following.

DEFINITION 1. A G-set X 18 called a generic space for G iff

(i) every irreducible representation m of G with dim 7 > 1 appears ezactly once
in the natural representation L?(X) of G;

(ii) L2(X) contains no one-dimensional representation of G besides the unit
representation.

THEOREM 1. Let K denote the unique quadratic extension of our finite field
k. Then a generic space for G = PGL(2, k) s the projective line P1(K), endowed
with the restriction to G of the usual projective action of PGL(2, K). In other
words, a geometric Gel' fand model M for G s given by

M = L*(K — k)®L*(P1(k))BL? (K /(k*)?),

where G acts homographically on K — k, by the usual projective action on Py(k),
and by the determinant mod squares on k> /(k*)2.

PROOF. The G-orbits in P;1(K) correspond to K —k and P;(K). The decom-

position of L2(P;(k)) gives the unit representation 1 and the Steinberg represen-
tation St@ associated to the character 1 of k. The representation L2(K — k)
is clearly multiplicity-free, since we have a symmetric invariant A (a “hyperbolic
pseudo-distance”) which classifies G-orbits in (K — k) x (K — k), to wit
(1) A(z,w) = N(z — w)/N(z — ) (z,we K — k).
With the help of the character table of G or GL(2,k) (see [PS] or [SA 2]),
one easily checks that L2(K — k) contains every irreducible representation of
G with the exception of the Steinberg representation Stg‘n and the nontrivial
one-dimensional representation 7r§1) = € odet in case ¢ is odd (where £ then
denotes the nontrivial character of £* of square 1). Finally, the abelianized group
k> /(k*)? of G, nontrivial only if ¢ is odd, affords the missing representation
g€ odet in that case. O

REMARKS. (i) The G-space K — k may be understood as a double covering
of the finite analogue of Poincaré’s upper half plane, which is obtained as the
quotient of K — k by the action of the Galois group.

(ii) We have

L*(K - k)®L2(Py(k)) ~ St{? @ St{?

~ Res Stng),
PGL(2,K) |G
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where we denote by Stglkl) the Steinberg representation of PGL(2, k), associated
to the character 1 of k>, for a finite field k.

1.5. The case of G = PGL(2,k): Spherical functions.

1.5.1. We now turn to a brief description of the corresponding spherical
functions for G. We concentrate on the generic orbit X = K — k and we assume
that ¢ is odd. We then have K = k() with 82 = to, where to is a fixed nonsquare
in k*. We write z = R(z) + 6I(z) with R(z),I(z) € k, for all z € K. We choose
@ as origin in X and put

Cr={z€eX|A(2,0)=r} (rekuU{oo}, r#1)

(recall that we define A(z,Z) = oo and that A(z,w) # 1 for all z,w € X). We
then have |C,| = ¢+ 1 for r # 0, oo and |Cp| = |Co| = 1. As usual, we give the
spherical functions as functions on the range (k — {1}) U {00} of the classifying
invariant A.

THEOREM 1 [GaZ]. The spherical functions of X = K —k associated to the
principal series of G are the functions ¢, (a € (k™)) given by

(2) ¢2(0) =1,
(3) $a(00) = a(-1),
1
(4) ba(r) = +1 2 a(I(z)).

We have ¢ = po-1 (a € (K*)) and

(i) ¢1 generates the unit representation,

(ii) ¢e generates the Steinberg representation St'9 associated to the “sign char-
acter” € of k™ which takes the value 1 on squares and —1 on nonsquares.

(iii) For o # a~! the spherical function ¢, generates the generic principal series

representation rigth) of G.

The easiest way to prove Theorem 2 is to notice that the space X = K —k may
be endowed with the group structure of the one-dimensional affine group k> x k*
by the bijection z — (I(z), R(z)). Since this group structure is compatible with
the action of G, its one-dimensional characters, i.e., the mappings z — a(I(z))
(z € K—k), for a € (k*)", will afford spherical functions by averaging on circles,
as in (4). This approach is due to [GaZ]. Of course one can also check directly
that ¢, ’s define characters of the corresponding commuting algebra. O

REMARK. Formula (4) is in fact the finite analogue of Harish-Chandra’s
description of all spherical functions in the real case. In the finite case, however,
the spherical functions corresponding to cuspidal representations of G cannot be
obtained in this way. We describe them below.

1.5.2. We first introduce some notation. Let U be the group of elements
of norm 1 in the quadratic extension K of the finite field k. We define the
epimorphism U: K* — U by

() Uz)=2F(z)""  (:€ KX),
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where F' denotes the Frobenius automorphism. We still denote by ¢ the “sign
character” of k™ extended to k by the convention £(0) = 0. On the other hand,
we denote by wg the “sign character” of U, equal to 1 on squares and to —1 on
nonsquares of U.

THEOREM 3. The spherical functions of X associated to the cuspidal repre-
sentations of G are the functions ¢, (w € U, w # w™!) given by

©) 6,(0) =1,
) 6u(00) = —(-1),

1 1+7
® )= T (2 (u-125) ) st

forr € k> —{1}.
We have ¢, = ¢,-1 for all w and the spherical function ¢, generates the

cuspidal irreductble representation ﬂ&q_l) of G.

PROOF. Note that X ~ G/H, where H is the subgroup of G consisting of
all classes [m;] (z € K*), with m,(w) = 2w (w € K). Therefore the spherical
functions of X (w.r.t. the origin §) may be obtained as H-spherical averages

9) ox(z) = H|™' ) x(hgs)  (z€X),
he€H
where g, € G is such that g; - § = z and x is an irreducible character of G.
Taking for x a cuspidal character x,, (w € U, w # w™!) and noting that
A(z,0) =1—4I(z)N(I(z) + 1+ R(z)t5'0)~?
for all z € X, x # —6, one obtains from (9)

)= L X ).
€KX

ZEKX

N(z)=(1-1)N(2)

Since

(D) - 4(1 - )N (@) = () 2520 ) (¥ a)

and (N (z)) = wo(U(z)) for all z € K*, formula (8) follows. O

1.6. Comments.

(i) The generalization of Theorem 1 doesn’t seem to be straightforward. For
G = PGL(n, k) the best candidate to generalize X = K — k would be G/H with
H = PGO(Q), for a nondegenerate quadratic form @ on " of minimum Witt
index. However, already for n = 3 and n = 4 there appear small multiplicities
(up to 4) for the principal series of G, although cuspidal representations appear
with multiplicity 1, for all nondegenerate Q).

(ii) Nongeometrical Gel’fand models have been constructed recently in [K] for
GL(n, k), by extending the construction of Gel’fand-Graev representations.
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(iii) PSL(2,F7) is a first example of a classical group which admits a weakly
geometrical Gel'fand model, but no geometrical Gel'fand model (see [Y] for de-
tails).

(iv) The analogue of Property II is proved in [P-SA] for generalized p-adic
rigid motion groups. These groups consist of all (affine) isometries of the nth
order “pseudo-distance”

D(z,w) = N(z —w) (z,w € K),

where K is now an abelian extension of degree n of the base field k£ and NV is the
corresponding norm map. The case of a finite base field k is dealt with in the
forthcoming thesis [Y].

2. Contraction and tensor quotients

2.1. Construction of representations by contraction. Let G be a finite group
and € = (E, B,p,n¥,n?) a complex G-vector bundle, where, as usual, E denotes
the total space, B the base, p the projection from E onto B, and n% (resp. n?)
the action of G on E (resp. B). We will often write just n for nZ and % to
simplify notation. We then have

p(ng(v)) =me(p(v))  (9€G, veE).

We denote by E} the fiber p~1(b) over b € B.
To obtain a linear representation of G from &, by contraction over a base point
bp € B, one needs a flat (G—) equivariant connection on &, in the following sense.
DEFINITION 2. An equivariant connection on the complex G-vector bundle
¢ = (E,B,p,n) is a family of linear isomorphisms I = {0 }a becp Such that
(i) each p,q 8 a linear 1somorphism from the fiber E, onto the fiber Ey and
every Ya,a 18 the identity;
(ii) we have
Tng(b),ng(a) © Mg = Mg © Vb,a>
foralla,be B, g €G,
(iii) we have
Ye,b © Vo,a = Kr(c,b,a)Ve,as
for all a,b,c € B, for a suitable function ur: B x B x B — C* called the
multiplier of T'.
We say that the connection I' 1s flat +ff its multiplier ur 1s the constant func-
tion 1.
In fact, an easy calculation shows that given an equivariant connection I" on
€ we can contract £ to a projective representation of G:

PROPOSITION 2. Let us fiz a base point b € B and suppose an equivariant
connection I' 18 given on the G-complex vector bundle € with base B. A projective
representation (V,0) of G, with multiplier

,u'd(g, h) = Mur (b, ng(b)a ngh(b)) (gv h € G)
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may be constructed as follows. Let V = Ey and define o by

04(v) = Yo,n, (b) (Mg(v)) (geG, veV).
We call (V,0) the representation of G obtained by contraction of £ over b ac-
cordingto". O

2.2. Ezxample: Geometric construction of small Weil representations for
SL(2, k). The classical “atomic” Weil representation of SL(2, k) (for a finite field
k of odd order q) in L?(k) may be constructed geometrically by the contraction
procedure.

To this end, define ¢ = (E, B, p,n) as follows. The base B is the set of all lines
I through the origin in k2. Fix a nontrivial character 3 of the additive group &+
of the field k. For each [ € B let H; be the space of all complex functions f on
k? such that

fe+y)=v@EAy)flz) (z€k? yel),
where we identify the exterior product z A y to the determinant of z and y. The
total space E is then the disjoint union of all H; (I € B) and p is the canonical
projection sending every f € H; onto [. The group G = SL(2, k) obviously acts
on £ since it preserves determinants, by

(g f)(z) = f(g7'(z)) (9€G, fEE, z€k?)
and
ng()=g(l) (9€G, l€B).
Now an equivariant connection I' = {~y ;}; rep is defined on B by ~;; = Id
(l € B) and

(10) (waf(@)=q"2 Y w(-zAY)f(z+)

ylell
for all I,I' € B, z € k2, f € H; (where q = |k|). Its nontrivial multiplier ur takes
the value 1 on all triples ({,’,1") such that |{l,’,1"”}| < 2 and it is given by

(11) ﬂ,r(l,ll,l”) — q—1/2 Z ¢(:c" /\:Eo)
z’'el’
when |{l,1’,1"}| = 3, where z° (resp. z'’) stands for the component of z’ € I in
I (resp. I") with respect to the decomposition k2 =1 & I".
Notice that since any triple of distinct lines (I,1’,1"”) is equivalent modulo G
to the triple (Ioo,!t,l0), where

lo=k(1,0), loo=k(0,1), I =k(1,¢),

we have
(LU, 1) = pr(lo, b loo) = ¢'/2 Y ¥(ts%),
s€k

and we find the classical quadratic Gauss sum associated to v as the multiplier
of the connection T'.

An easy computation gives then the following explicit form of the projec-
tive representation o of G obtained by contracting £ over [y according to the
connection I'.
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THEOREM 4 [C-SA]. By sending each f in the space Hy, of o to the func-
tion f': s — f(0,8) on k, one defines an isomorphism from (H,,,0) to the
representation (L2(k),0') of G, where o' is given on the generators

h(a)=<g agl), u(b)=((1) 11)) “’=(_01 (1)>

of G by the formulas

(i) (@) /)(8) = F'(as),

(ii) o7,y f)(8) = 9(bs?) f'(s),

(iii) (00, f)(8) = a2 X e ¥(2rs) f'(r)
for f' € L%(k), a € k>, b,s€k*. O

2.4. Tensor diision of representations. Tensor division of a representation
(W, 1) of G by another representation (U, p) of G may be approached as a special
case of “contraction.” The idea is that if we had W = U ® V, as representations
of G, for some representation (V,o) of G, replacing U ®V by Homc(U*, V), one
gets immediately a trivial G-bundle £ with base any G-stable set B in U* and
fiber W,- = W/N,- over u* € B, where

Ny- ={® €W | ®(u*) =0},

endowed with the obvious flat connection. Conversely contraction may be some-
times looked on as “generalized tensor division.”

More precisely, to succeed in tensor dividing (W,7) by the contragredient
(U*, p) of (U, p) we will need the following ingredients:

(i) a G-stable set (for instance a G-orbit) B in U;

(ii) for every u € B, a subspace N, of W so that

Tg(Nu) = Ny, (u)

forall g€ G, u € B.

Let ¢ = (E, B,p,n%,nP) be defined as follows. Its total space E is the disjoint
union of all quotients W, = W/N,, (u € B), the projection p sends each W,
onto {u}, the action n? is the restriction of p to B, and the action n¥ is given
by

nf(w + Ny) = Tg(w) + Npg(u) € ng(u)

forallge G,ue B, and w+ N, e W,.

If, moreover, B spans U and £ admits a flat equivariant connection I', we
will say that the representation (V,0) of G obtained by contraction of £ over
a chosen base point uy € B according to I' is a generalized tensor quotient of
(W,7) by (U, p). Of course this “quotient” will depend strongly on the choice of
the connection I'.

Clearly, under the above hypothesis, we have a natural intertwining operator
¢ from (W,7) to the representation (V 2, [p,0]) (where [p,0]y(f) =040 fop;?,
forg e G, f: B — V), given by

[B(w)](u) = Yuo,u(w + Nu).
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Under a suitable supplementary hypothesis one can prove that ¢ induces an
isomorphism from (W, 7) onto the representation (Homg (U, v),[o,7]) of G. For
instance, we have the following:

PROPOSITION 3. With the above notation and hypothesis, we suppose fur-
thermore that
(i) there exists a base By of U, with ug € By C B, such that

[ Nu={0} and (| N |+N, =W,
u€Bo u'€Bo—{u}

for all u € By;

(ii) the mapping u — Yyuy u(w+ Ny) from B toV =W /N, 18 linear for every
weW.

Then the mapping ®, which sends each w € W to the unique linear extension
fw to all of U of the section u — vy, u(w + Ny) (u € B), s an isomorphism
from the representation (W, ) to the representation (Homc(U,V),[p,0]). O

This proposition is used in [C-SA] to construct the principal series represen-
tations 78t (a € (), @ # a~1) of G' = SL(2,k) as tensor quotients of
the induced representations Indrtg+ a, where T is the split torus of all diagonal
matrices in G'.

2.4. Weil representations of G = GL(2,k) as generalized tensor quotients.
The construction in 2.2 can easily be extended to afford the Weil representations
of G associated to nondegenerate quadratic planes (which give by decomposition
all the irreducible representations of G [SA 2] or, more generally, the Weil repre-
sentations of G associated to nondegenerate quadratic spaces of even dimension.

To this end, let M be an even-dimensional vector space over the finite field
k = F, (¢ odd) and B a nondegenerate symmetric bilinear form on M. The
base B of our G-vector bundle ¢ will be, as before, the set of all lines [ through
the origin of k2. To each [ € B, described as the locus of all z = (z1,72) € k?
such that rz; + sz = 0 for suitable r,s € k, we associate the subspace M; of
M? = M & M consisting of all z = (z1,72) € M? such that rz; + sz2 = 0. Call
= the set of all nontrivial characters 1 of k*. The fiber E; over | € B will be
the space of all functions f: M2 x £ — C such that

f(z+y,9) =¢(A(z,9)) f(z,¥)

for all z € M2, ¢y € E, and y € M, where A = Ag denotes the alternating form
on M? defined by
A(z,y) = B(z1,y2) — B(22,41)
for all z = (z1,22), y = (y1,¥2) in M2,
The group G acts on the total space E (disjoint union of the fibers E}) by

(12) MEN@v) = £ (971 (@), 92

forall g€ G, f € E, z € M2, ¢ € E, where we put ¢?*(s) = (¢(ts) for s,t € kt.
As before n2(l) = ¢(I) for g€ G, l € B.
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With this set up we have the following.

THEOREM 5. The G-vector bundle £ admits a flat equivariant connection
T'={w,.hrep given by v, =1d (Il € B) and

(13) (w1 f)(@w) = es|M|2 3 w(-A(z,9)f(z +)

yEMy
foralll,l' € B,1 £, f € M}, z € M?%, ¢ € B, where {g stands for the sign of B
(equal to 1 f B 18 an orthogonal sum of hyperbolic planes and to —1 otherwise).
Moreover, the representation (V, o) obtained by contracting € over lyp = k(1,0)

according to T’ is the Weil representation of G associated to the quadratic space
(E,B) in the sense of [SA 2, Chapter 1].

PROOF. To check that the multiplier ur of I' is 1 reduces, after an easy
calculation, to checking that

(14) > WA@Y AY) =esIMY? (pEeB),

y’GM,:

where, as before, y” (resp. y°) denotes the component of y' in M;. (resp. M;)
according to the decomposition M? = M;» & M; (for |{l,!',1"}| = 3). But
since (,1',1") is equivalent to (I, lt,lo) modulo G, we obtain as in 2.2 that the
left-hand side of (14) is equal to

> (tB(y1,31)),

y1EM

from which (13) follows immediately. Finally, by realizing V as L%(M), as in
2.2, comparison with Chapter I of [SA 2] completes the proof. O

REMARKS. (i) This construction is in fact the finite analogue of the differential
geometric construction of Blattner-Kostant-Souriau-Sternberg in the real case
(see [L-V]).

(ii) Notice that the orthogonal similarity group I' = GO(B) of B acts naturally
on M? x E by((z1,z2),%) — ((z1h, z2h), %)™ ), where my, is the multiplier of
h € T'. From here we finally get an action of I' on V commuting with o, as we
should (see [SA 2|, Chapter I).

(iii) Let us introduce the space W = L?(M? x E) on which G acts linearly
by (12). The spaces E; (I € B) may be thought of as quotients of W via the
projections P, defined by

(Pf)(z,0) = D w(- )f(z +y)
yeM,
for all f € W, z € M2, ¢y € E. Identifying each | € B = P, (k) with the delta
function & € L?(Py(k)), we see that the Weil representations of G associated to
even-dimensional nondegenerate quadratic spaces (M,B) appear as generalized
tensor quotients of the natural representation (12) of G in L2(M? x E) by the
natural representation of G in L?(Py(k)).
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2.5. Problem: Construction of generalized Weil representations by contraction
or (generalized) tensor division. It would be interesting to recover by the above
procedures the “generalized Weil representation” of G = GL(3, k) associated
to the unique cubic extension K of k. This representation, call it (V,p), was
constructed in [SA 3] from Kirillov models. We recall briefly its definition.

Denote by N (resp. Tr) the norm (resp. trace) of K over k, call U the ker-
nel of N, and put E(z) = Tr(zz) for 2 € K, where 2z — Z is the Frobenius
automorphism. Let G2 = GL(2,k), put

1 s
uz(8) = (O 1) (s €k),
and, for z = (z1,z2) € k2 = k% — {0}, t € k%, put

B
a(z,t) = (0 by > if z; #0,

I T
_(tzz' 0N ..

a(z,t)—( 0 zz) if z; =0.

Moreover, introduce the following elements of G:

h(a,b) = (g 11)) (a € Gq, b€ k?),

1 0 O
W23 — 0 0 1 .
0 -1 0

Finally, fix a nontrivial character v of kt.
Then the space V consists of all functions f from K* x G2 to C such that

f(z,u2(8)a) = Y(sN(2)) f(z,a) (z€ K*, s€kt, a€Gy)

and

Z f(uz,a) =0.

uelU
The action p is given on a set of generators of G by

(pr f)(2,0) = f(T_lz,diag('r3, 1)a) (r € Z(G) = k%),
(onap) f)(2,0) = ¥((ab)2) f(z,a) (b EK?),
(Pr(a,0)f)(2,0) = f(ad')  (d' €Gy),
(Pus f) (2,0(z, 1))
=q7° ) Jo(a7 yi tN (21w — 112)(v127 22 + 2197 92) f(w, a(y, 1))

weKX*
yEk?
¥1#0
+q72 > Y(—tz7 'yy  E(w2Z) f(w,a(y,t))
weEKX
y€k2,y17#£0

N(z')y; 2 =—z1t7'N(2)
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if A 76 0, and
(Pwas f) (z,a(z,1) =72 Y ¥(z2Tr(wz™1)) f(2,a((tN(2)z5 2, y2), 1))
weEKX
y2€k*

ifzy =0,forall feV,z€ KX, z€ k2, t € k™. Here the Bessel function Jy is
defined by

=D (-3 (tek)
est

Jo(0) = —(g+1).
For each (1 € (K*)", 1 # (19, we have an irreducible component Vg of (V, p)
consisting of all f € V such that

f(wz, diag(N(2)~1,1)a) = Q(w) f(z, a) (z,w € K™, a € Gy).

In this way we obtain all cuspidal irreducible representations of G, with the only
nontrivial isomorphisms Vo >~ Ve =~ V3,2, arising from the natural action of the
Galois group I" of K over k; in fact, we have a perfect multiplicity-free matching
with the representations of the orthogonal similarity group GO(N) ~ K* x T
of the cubic norm N, as in the quadratic case.

We hope that obtaining this representation in a simpler way, by contraction
or (generalized) tensor division, will facilitate its extension to GL(n, k) and other
classical groups.
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