Active Inference and Compositional Cybernetics

Toby St Clere Smithe University of Oxford

MIT Categories Seminar 13 August 2020

work in

progress !

Background story

I am (supposedly, presently) a theoretical neuroscientist, interested in how neurons composed together generate intelligent behaviour

How can we construct a system that plays the games that we study?

Heuristic definition of cybernetic system

"If it perceives and acts, then it is a cybernetic system"

Typically no access to external state → must **infer what's going on**, and **what should be done**

Inference: on the basis of imperfect signals

Brain as archetypal cybernetic system

Pervasive cortical structure: *bidirectional circuits*

And 'hierarchically' organized – like a traced monoidal cat. !

Bastos *et al* (2012) Van Essen & Maunsell (1983)

Can explain both of these features abstractly:

- perceiving and acting mean doing Bayesian inference
- which in turn means embodying a model of the world to be inverted
- the inverse of a composite channel is the composite of the inverses
- so we can invert each factor of the model locally \rightarrow 'hierarchical' structure
- and the 'bidirectional' structure is precisely the *lens* pattern

Plan: – a slower version of my ACT talk...

- Introduce: categorical probability, Bayesian inversion (very briefly)
- <u>Prove</u>: Bayesian updates compose according to the *lens* pattern
- Define: a class of *statistical games* using compositional game theory
- Suggest: cybernetic systems are dynamical realisations of statistical games
- Exemplify: variational autoencoders, cortical circuits
- Conclude: towards interacting & nested systems ...

Basic setting: categorical probability

 $\vert x$

States: channels out of the monoidal unit *ie.* probability distributions (formal convex sums) $X \to [0,1]$ $\sum_{x:X} |p(x)| |x\rangle$ $I \rightarrow X$

so general channels are like 'conditional' probability distributions, and we adopt the standard notation $p(y|x) := p(x)(y)$

Composition: given $p: X \rightarrow Y$ and $q: Y \rightarrow Z$, "average over" Y – for example:

$$
q \bullet p : X \to \mathcal{D}Z := x \mapsto \sum_{z:Z} \left| \sum_{y:Y} q(z|y) \cdot p(y|x) \right| |z\rangle
$$

Joint states

With two *marginals* given by discarding:

Bayesian inversion

NB: The Bayesian inverse of a channel is always defined *with respect to* some "prior" state !

What is c^{\dagger} ?

An indexed category of state-dependent channels

Stat : $\mathcal{K}\ell(\mathcal{P})^{op} \rightarrow \mathbf{V}\text{-}\mathbf{Cat}$

a copy of $K\ell(\mathcal{P})$ over each object X in $K\ell(\mathcal{P})$

(these objects X supply the 'priors' on which the fibre channels depend)

channels in the base are roughly maps between priors

- they generate predictions
- intuition: change in prediction gives rise to change in inversion
- inversion goes the other way, hence: contravariant
- obtain: 'base-change' between fibres by precomposition

More formally …

An indexed category of state-dependent channels

Stat : $\mathcal{K}\ell(\mathcal{P})^{op} \rightarrow \mathbf{V}\text{-}\mathbf{Cat}$

$$
X \mapsto \operatorname{\mathsf{Stat}}(X) := \left(\begin{matrix} \operatorname{\mathsf{Stat}}(X)_0 & := & \operatorname{\mathsf{Meas}}_0 \\ \operatorname{\mathsf{Stat}}(X)(A,B) & := & \operatorname{\mathsf{Meas}}(\mathcal{P} X, \operatorname{\mathsf{Meas}}(A, \mathcal{P} B)) \\ \operatorname{\mathsf{id}}_A & : & \operatorname{\mathsf{Stat}}(X)(A,A) & := & \left\{ \begin{matrix} \operatorname{\mathsf{id}}_A : \mathcal{P} X \to \operatorname{\mathsf{Meas}}(A, \mathcal{P} A) \\ \rho & \mapsto & \eta_A \end{matrix} \right\}
$$

Stat(X) is a category of stochastic channels with respect to states on X

Morphisms $d^{\dagger}: \mathcal{P}X \to \mathcal{K}\ell(\mathcal{P})(A, B)$ in Stat (X) are generalized Bayesian inversions:

given a state π on X, obtain a channel $d^{\dagger}_{\pi}: A \rightarrow B$ with respect to π

An indexed category of state-dependent channels

Stat : $\mathcal{K}\ell(\mathcal{P})^{op} \rightarrow \mathbf{V}\text{-}\mathbf{Cat}$

$$
X \mapsto \operatorname{\mathsf{Stat}}(X) := \left(\begin{matrix} \operatorname{\mathsf{Stat}}(X)_0 & := & \operatorname{\mathsf{Meas}}_0 \\ \operatorname{\mathsf{Stat}}(X)(A,B) & := & \operatorname{\mathsf{Meas}}(\mathcal{P} X, \operatorname{\mathsf{Meas}}(A, \mathcal{P} B)) \\ \operatorname{\mathsf{id}}_A & : & \operatorname{\mathsf{Stat}}(X)(A,A) & := & \left\{ \begin{matrix} \operatorname{\mathsf{id}}_A : \mathcal{P} X \to \operatorname{\mathsf{Meas}}(A, \mathcal{P} A) \\ \rho & \mapsto & \eta_A \end{matrix} \right\} \right)
$$

$$
c: \mathcal{K}\ell(\mathcal{P})(Y,X) \mapsto \begin{pmatrix} \text{Stat}(c) : & \text{Stat}(X) & \rightarrow & \text{Stat}(Y) \\ & \text{Stat}(X)_0 & = & \text{Stat}(Y)_0 \\ & \left(d^\dagger : \begin{array}{ccc} \mathcal{P}X & \rightarrow & \mathcal{K}\ell(\mathcal{P})(A,B) \\ & \pi & \mapsto & d^\dagger_\pi \end{array} \right) & \mapsto & \left(\begin{array}{ccc} c^*d^\dagger : \mathcal{P}Y \rightarrow \mathcal{K}\ell(\mathcal{P})(A,B) \\ \rho & \mapsto & d^\dagger_{c \bullet \rho} \end{array} \right) \end{pmatrix}
$$

Stat(X) is a category of stochastic channels with respect to states on X

Morphisms $d^{\dagger}: \mathcal{P}X \to \mathcal{K}\ell(\mathcal{P})(A, B)$ in Stat (X) are generalized Bayesian inversions:

given a state π on X, obtain a channel $d^{\dagger}_{\pi}: A \rightarrow B$ with respect to π Given $c: Y \rightarrow X$ in the base, can pull d^{\dagger} back along c, obtaining $c^*d^{\dagger} : \mathcal{P}Y \to \mathcal{K}\ell(\mathcal{P})(A, B)$

This takes $\rho: \mathcal{P}Y$ to $d_{c \bullet \rho}^{\dagger}: A \rightarrow B$ defined by pushing ρ through c then applying d^{\dagger} .

But: given $d \bullet c$, what is $(d \bullet c)^{\dagger}$?

Given $d \bullet c$, what is $(d \bullet c)^{\dagger}$?

If Meas is Cartesian closed (e.g., quasi-Borel spaces), then $d^{\dagger}: \mathcal{P} A \to \mathcal{K}\ell(\mathcal{P})(B, A)$ is equivalently $\mathcal{P} A \times B \to \mathcal{P} A$.

Paired with a map $d : B \rightarrow A$, this looks like a **simple lens**: classically, a pair of type $\text{Set}(A, B) \times \text{Set}(A \times B, A)$.

Here, we have $\mathcal{K}\ell(\mathcal{P})(A, B) \times \textbf{Meas}(\mathcal{P}A \times B, \mathcal{P}A)$.

But this is just a hom-set in the Grothendieck construction of the pointwise opposite of Stat!

Let's check this ... and then see how these things compose.

Grothendieck lenses

Definition (\mathbf{GrLens}_{F}). Let $F: C^{op} \to \mathbf{Cat}$. Objects $(\mathbf{GrLens}_F)_0$: pairs (C, X) of objects C in C and X in $F(C)$. Hom-sets $\mathbf{GrLens}_{F}((C, X), (C', X'))$: dependent sums

$$
\mathbf{GrLens}_{F}\big((C,X),(C',X')\big)=\sum_{f\,:\,\mathcal{C}(C,C')}F(C)\big(F(f)(X'),X\big)
$$

so $(C, X) \rightarrow (C', X')$ is a pair (f, f^{\dagger}) of $f : \mathcal{C}(C, C')$ and $f^{\dagger} : F(C)(F(f)(X'), X)$.

Identities: $\mathsf{id}_{(C,X)} = (\mathsf{id}_{C}, \mathsf{id}_{X})$ Composition: suppose (f, f^{\dagger}) : (C, X) \rightarrow (C', X') and (g, g^{\dagger}) : (C', X') \rightarrow (D, Y) . Then $(g, g^{\dagger}) \circ (f, f^{\dagger}) = (g \bullet f, F(f)(g^{\dagger})) : (C, X) \rightarrow (D, Y).$

When $F =$ Stat: $\mathcal{K}\ell(\mathcal{P})$ op \to Cat: GrLens_{Stat} $((X, A), (Y, B)) \cong \mathcal{K}\ell(\mathcal{P})(X, Y) \times \text{Meas}(\mathcal{P}X, \mathcal{K}\ell(\mathcal{P})(B, A))$

Given
$$
(c, c^{\dagger}) : (X, A) \rightarrow (Y, B)
$$
 and $(d, d^{\dagger}) : (Y, B) \rightarrow (Z, C)$,
\n $(d, d^{\dagger}) \circ (c, c^{\dagger}) = ((d \bullet c), (c^{\dagger} \circ c^* d^{\dagger})) : (X, A) \rightarrow (Z, C)$
\nwhere $(d \bullet c) : \mathcal{K}\ell(\mathcal{P})(X, Z)$ and
\nwhere $(c^{\dagger} \circ c^* d^{\dagger}) : \text{Meas}(\mathcal{P}X, \mathcal{K}\ell(\mathcal{P})(C, A))$ takes $\pi : \mathcal{P}X$ to $c^{\dagger}_{\pi} \bullet d^{\dagger}_{c \bullet \pi}$.
\n $(d \bullet c)^{\dagger}_{\pi} \simeq c^{\dagger}_{\pi} \bullet d^{\dagger}_{c \bullet \pi}$

But first ...

An optical interlude

Optics are the contemporary home of compositional game theory

Plus, if our lenses are *optics*, then they acquire suggestive formal depictions:

And, indeed, Bayesian lenses *are* optics ...

An optical interlude

Proposition. Optic<sub>$$
\times
$$
, \odot</sub> $((\hat{X}, \check{A}), (\hat{Y}, \check{B})) \cong$ GrLens_{Stat} $((X, A), (Y, B))$
\n*Proof:* Optic _{\times , \odot} $((\hat{X}, \check{A}), (\hat{Y}, \check{B})) = \int^{\hat{M} : \hat{C}} \hat{C}(\hat{X}, \hat{M} \times \hat{Y}) \times \check{C}(\hat{M} \odot \check{B}, \check{A})$
\n $\odot : \hat{C} \rightarrow \mathbf{V}\text{-Cat}(\check{C}, \check{C})$
\n $\hat{M} \mapsto (\overset{\hat{M} \odot -}{} \circ \check{C} \rightarrow \check{C} \rightarrow \mathbf{V}(\hat{M}(I), P))$
\nOptic _{\times , \odot} $((\hat{X}, \check{A}), (\hat{Y}, \check{B})) \cong \int^{\hat{M} : \check{C}} \hat{C}(\hat{X}, \hat{Y}) \times \hat{C}(\hat{X}, \hat{M}) \times \check{C}(\hat{M} \odot \check{B}, \check{A})$
\n $\cong \int^{\hat{M} : \check{C}} \hat{C}(\hat{X}, \hat{Y}) \times \hat{C}(\hat{X}, \hat{M}) \times \check{C}(\mathbf{V}(\hat{M}(I), \check{B}), \check{A})$
\n $\cong \int^{\hat{M} : \check{C}} \hat{C}(X, Y) \times \hat{M}(X) \times \mathbf{V}(\hat{M}(I), C(B, A))$
\n \cong GrLens_{stat} $((X, A), (Y, B))$

(And we can define 'mixed' Bayesian optics, too!)

Does Bayesian inversion commute with lens composition?

Does Bayesian inversion commute with lens composition?

<u>Yes!</u> **Lemma** *(Bayesian updates compose optically).* $(d \cdot c)^{\dagger}_{\pi} \simeq c^{\dagger}_{\pi} \cdot d^{\dagger}_{c \cdot \pi}$

Suppose:

(These relations just define the relevant Bayesian inversions.)

Lemma *(Bayesian updates compose optically).* $(d \cdot c)^{\dagger}_{\pi} \simeq c^{\dagger}_{\pi} \cdot d^{\dagger}_{c \cdot \pi}$

Proof:

So $(d \bullet c)^{\dagger}_{\pi}$ and $c^{\dagger}_{\pi} \bullet d^{\dagger}_{c \bullet \pi}$ are both Bayesian inversions for $d \bullet c$ with respect to π . But Bayesian inversions are almost-equal. Hence $(d \bullet c)^{\dagger}_{\pi} \simeq c^{\dagger}_{\pi} \bullet d^{\dagger}_{c \bullet \pi}$

Back to cybernetics

We will see: *inference problems are games over Bayesian lenses*

Recall: cybernetic system trying to estimate external state, given complex "generative model"

"In the wild": system will try to *improve* its estimation

Note: all interactions of a cybernetic system are mediated through an interface $($ boundary $)$ – this is all the system has access to

Context := representation of boundary behaviour

First: yet another graphical calculus …

(Cartesian) lenses are optics

Elements of objects, graphically after Román (arXiv:2004.04526)

Contexts: closed environments "with a hole in them"

When monoidal units are terminal, this simplifies to:

Open system in context is closed

Now: primer on open games ...

A game $G : (X, A) \xrightarrow{\Sigma} (Y, B)$ constitutes :

 $H \circ G : (X, A) \xrightarrow{\Sigma} (Y, B) \xrightarrow{\mathrm{T}} (Z, C)$

Now we can start to construct some "atomic" cybernetic systems !

Maximum likelihood game $(I, I) \rightarrow (X, X)$

Aim

find state π that 'best explains' the data observed through k

Bayesian inference game $(Z, Z) \rightarrow (X, X)$

Fix a channel $c:Z\rightarrow X$

find state-dependent channel $c': Z \odot X \rightarrow Z$ Aim: closest to exact inversion of c (in the context)

Proposition: Bayesian inference games are closed under composition *Proof*: Bayesian updates compose optically

Autoencoder game

$$
(Z, Z) \to (X, X)
$$

"Generative" models: $\Gamma \hookrightarrow \mathcal{K}\ell(\mathcal{P})(Z,X)$
"Recognition" models: $P \hookrightarrow \mathcal{K}\ell(\mathcal{P})(X,Z)$ Fix:

Aim:

find pair (c, c') such that $c \bullet \pi$ maximizes the likelihood of data from k , and c' best approximates the exact inverse of c in the context

– this objective captures many such models in the ML literature (Knoblauch *et al*, 2019)

"Active inference" game

Example: can embed the 'goal' of maximizing utility in a POMDP here, and thereby construct a "Bayesian agent" that learns to play stochastic games – *no time for the details today ..!*

(Aim: embed category of "Bayesian games" of Hedges *et al* into category of cybernetic systems...)

Optimization games

$$
\mathbf{MLE:}
$$
\n
$$
B(\langle \mathbf{l} | k \rangle) = \langle \rho | \mathbf{l} \rangle_{\sigma} \mapsto \left\{ \langle \pi | \mathbf{l} \rangle_{\tau} \middle| \pi \in \underset{\pi: \mathbf{l} \to X}{\arg \max} \mathbb{E} \left[\pi \right] \right\}
$$
\n
$$
\mathbf{Inference:}
$$
\n
$$
B(\langle \pi | k \rangle) = \langle d | d' \rangle_{\sigma} \mapsto \left\{ \langle c | c' \rangle_{\tau} \middle| c' \in \underset{c': \mathbf{Meas}(\mathcal{P}Z, \mathcal{K}\ell(\mathcal{P})(X,Z))}{\arg \min} \mathbb{E} \left[D_{KL} (c'_{\pi}(x), c_{\pi}^{\dagger}(x)) \right] \right\}
$$
\n
$$
= \langle d | d' \rangle_{\sigma} \mapsto \left\{ \langle c | c' \rangle_{\tau} \middle| c' \in \underset{c': \mathbf{Meas}(\mathcal{P}Z, \mathcal{K}\ell(\mathcal{P})(X,Z))}{\arg \min} \mathbb{E} \left[\mathbb{E} \left[-\log p_{c}(x|z) \right] + D_{KL}(c'_{\pi}(x), \pi) \right] \right\}
$$
\n
$$
\mathbf{Autoencoder:}
$$
\n
$$
B(\langle \pi | k \rangle) = \langle d | d' \rangle_{\sigma} \mapsto \left\{ \langle c | c' \rangle_{\tau} \middle| (c, c') \in \underset{c \in \Gamma, \text{meas}(\mathcal{P}Z, \mathcal{P})}{\arg \min} \mathbb{E} \left[\mathbb{E} \left[\mathbb{E} \left[-\log p_{c}(x|z) \right] + D(c'_{\pi}(x), \pi) \right] \right\}
$$

All of the form:
$$
\varphi_G : \text{ctx} \times \Sigma \to \mathbb{R}
$$

$$
B(\langle \pi | k \rangle) = \langle d | d' \rangle_{\sigma} \mapsto \left\{ \langle c | c' \rangle_{\tau} \Big| (c, c') \in \arg \max \varphi_G(\langle \pi | k \rangle, \tau) \right\}
$$

But how to "get better"?..

$$
\textbf{Note:}\qquad \varphi_G^\sharp:\text{ctx}\to\Sigma\to\mathbb{R}
$$

Given a context, obtain a "fitness landscape" or "potential field" over the strategy space

Can we categorify best-response relations, to make them *proof-relevant* ?

Then: strategic deviation (improvement) witnessed by trajectory / process

Can we characterize this process compositionally?

Don't we act on "story snippets"?

Old idea: dynamical systems "realizing" morphisms

$$
\begin{aligned} \mathbf{Dyn}_{\mathcal{C}}(A, B) &= \sum_{S:C} \mathbf{Comon}(\mathcal{C})(S, B) \times \mathcal{C}(S \otimes A, S) \\ f: A \xrightarrow{S} B &= (S, f^{out} : S \to B, f^{upd} : S \otimes A \to S) \\ \text{id}_A: A \xrightarrow{A} A &= (A, \text{id}_A : A \to A, \pi_2 : A \otimes A \to A) \end{aligned}
$$

Composition: "wire" outputs to inputs, using lenses

Idea being: maps in C are 'really' dynamical systems that, given a constant input trajectory, relax instantaneously to the corresponding output

Old idea: dynamical systems "realizing" morphisms

But composition here isn't unital! And those hom-sets are not sets!

Instead: work in topos β of sheaves on the interval domain (..?)

References: Schultz *et al* (2019). Dynamical Systems and Sheaves. Schultz & Spivak (2017). Temporal Type Theory.

Instead: work in topos β of sheaves on the interval domain (..?)

References: Schultz *et al* (2019). Dynamical Systems and Sheaves. Schultz & Spivak (2017). Temporal Type Theory.

Instead: work in topos β of sheaves on the interval domain (..?)

Let \tilde{V} be the wide subcategory of smooth maps in the base V of enrichment of $\mathcal C$ Write \tilde{C} similarly

Our sheaves (objects of \mathcal{B}) will be functors $\mathbf{Int}^{\text{op}} \to \tilde{\mathbf{V}}$ We can embed \tilde{V} into β as follows. Define:

$$
F: \tilde{\mathbf{V}} \to \mathcal{B}
$$

$$
X \mapsto F(X) := F(X)((0, l)) = \{x : (0, l) \to X \mid x \text{ smooth}\}
$$

$$
(f: X \to Y) \mapsto F(f) := F(f)(x) = f \circ x
$$

(This is right adjoint to the functor taking $A : \mathcal{B} \mapsto A((0,0)) : \tilde{\mathbf{V}}$.)

NB: Dynamical systems are spans of **Int** sheaves.
So can define the 'instantaneous realisation' like
$$
X \longleftarrow X \xrightarrow{F(f)} Y
$$

Crudely ...

A dynamical realization for $f: V(X, Y)$ is a family of B morphisms $\phi_{\kappa} : \mathcal{B}(F(X), F(Y))$ indexed by $\kappa : \mathbb{R}$ such that as $\kappa \to \infty$, ϕ_{κ} and $F(f)$ are equal on constant trajectories:

$$
*\xrightarrow{x} F(X) \xrightarrow{\overline{F(f)}} F(Y)
$$

(We think of κ as a timescale parameter.)

A dynamical realization $\tilde{\mathcal{C}}_{\kappa}$ of a V-category C in B is a (functorial) choice of such families for each morphism in \mathcal{C} .

NB: I haven't proved this totally makes sense yet !..

Dynamical games

A topos is a category of 'variable sets', so anything we can do in V lifts to its dynamical realization in β .

In particular, we can lift our lenses, and hence define "dynamical games" whose plays are defined on trajectories - more like in reality.

Note: A span $A \leftarrow S \rightarrow B$ in B is a dynamical system with input space A, state space S and output space B .

> When the system is given by an ordinary differential equation, a choice of s_0 : S gives rise to a morphism $A \rightarrow B$ mapping input to output trajectories.

So we can think of a strategy for a dynamical game as a choice of initialized dynamical system for the play and coplay morphisms.

NB: Can iterate to give a hierarchy of 'nested' systems with a hierarchy of timescales – how else to choose the meta-strategy for choosing the strategy?

Open cybernetic systems

An **open cybernetic system** G constitutes

- a ('static') optimization game
- along with a dynamical realization on the domain of definition
- s.t. the fitness function factors through some optimization objective

$$
\varphi_G : \mathsf{ctx} \to \Sigma \xrightarrow{\varphi_{(\pi,k)}} \mathbb{R} \qquad \qquad e.g. \quad \varphi_{(\pi,k)}(c,c') = - \mathop{\mathbb{E}}_{x \sim k \bullet c \bullet \pi} \left[D_{KL}(c'_{\pi}(x), c^{\dagger}_{\pi}(x)) \right]
$$

 \bullet subject to a coherence condition – roughly, that

letting the state space of the closed system be S

we can project from the state space to the optimization space proj : $S \to \Sigma$

then: \exists fixed point $\zeta^* \in S$ such that $proj(\zeta^*) \in \arg \max \varphi_{(\pi,k)}$

(and this coincides with requisite "equality on constant trajectories")

Conjecture. Open cybernetic systems form a category (i.e., fixed point of composite realisation satisfies the cybernetic condition)

Time for some examples ...

Variational autoencoders constitute a category of cybernetic systems

Recall the best-response objective: (here, using Kullback-Leibler divergence)

 $\mathop{\arg\min}_{c\in\Gamma,}\quad \varphi_{(\pi,k)}(c,c')=\mathop{\mathbb{E}}_{x\sim k\bullet c\bullet\pi}\mathop{\mathbb{E}}_{z\sim c'_\pi(x)}\left[\log p_{c'_\pi(x)}(z|x)-\log p_c(x|z)-\log p_\pi(z)\right]$ $c' \in \mathbf{Meas}(\mathcal{P}Z, P)$

Define parameterized channels:

$$
\begin{array}{ll}\n\text{``generic''} & \text{``recognition''} \\
\mathbb{R}^n \cong \Gamma \hookrightarrow \mathbf{Meas}(Z, \mathcal{P}X) & \mathbb{R}^m \cong \mathcal{P} \hookrightarrow \mathbf{Meas}(X, \mathcal{P}Z) \\
\vartheta : \mathbb{R}^n \mapsto \gamma^{(\vartheta)} : Z \to \mathcal{P}X & \psi : \mathbb{R}^m \mapsto \rho^{(\psi)}_\pi : X \to \mathcal{P}Z\n\end{array}
$$

Assume no dependence on "action": $k = \kappa \bullet !$

so
$$
\varphi_{(\pi,k)}(\vartheta,\psi) = \mathop{\mathbb{E}}_{x \sim \kappa} \mathop{\mathbb{E}}_{z \sim \rho_{\pi}^{(\psi)}(x)} \left[\log p_{\rho_{\pi}^{(\psi)}(x)}(z|x) - \log p_{\gamma^{(\vartheta)}}(x|z) - \log p_{\pi}(z) \right]
$$

Then, dynamics realizes gradient descent on the objective...

(but what about those expectations..?)

Assume:

$$
z \sim \rho_{\pi}^{(\psi)}(x) \iff z = g(\psi, x, r) \qquad g \text{ deterministic, differentiable}
$$

$$
r \sim \sigma_{\pi}(x)
$$

$$
r \perp \psi
$$

So that:

$$
\varphi_{(\pi,k)}(\vartheta,\psi) = \mathop{\mathbb{E}}_{x \sim \kappa} \mathop{\mathbb{E}}_{r \sim \sigma_{\pi}(x)} \left[\log p_{\rho_{\pi}^{(\psi)}(x)} \left(g(\psi,x,r) | x \right) - \log p_{\gamma^{(\vartheta)}} \left(x | g(\psi,x,r) \right) - \log p_{\pi} \left(g(\psi,x,r) \right) \right]
$$

Then:

$$
\nabla_{\psi}\varphi_{(\pi,k)}(\vartheta,\psi) = \nabla_{\psi} \mathop{\mathbb{E}}_{x \sim \kappa} \mathop{\mathbb{E}}_{r \sim \sigma_{\pi}(x)} \left[\log p_{\rho_{\pi}^{(\psi)}(x)} \left(g(\psi,x,r) | x \right) - \log p_{\gamma^{(\vartheta)}}(x | g(\psi,x,r)) - \log p_{\pi} \left(g(\psi,x,r) \right) \right]
$$
\n
$$
= \mathop{\mathbb{E}}_{x \sim \kappa} \mathop{\mathbb{E}}_{r \sim \sigma_{\pi}(x)} \left[\nabla_{\psi} \log p_{\rho_{\pi}^{(\psi)}(x)} \left(g(\psi,x,r) | x \right) - \nabla_{\psi} \log p_{\gamma^{(\vartheta)}}(x | g(\psi,x,r)) - \nabla_{\psi} \log p_{\pi} \left(g(\psi,x,r) \right) \right]
$$

$$
\nabla_{\vartheta} \varphi_{(\pi,k)}(\vartheta,\psi) = \nabla_{\vartheta} \mathop{\mathbb{E}}_{x \sim \kappa} \mathop{\mathbb{E}}_{r \sim \sigma_{\pi}(x)} \left[\log p_{\rho_{\pi}^{(\psi)}(x)} \left(g(\psi, x, r) | x \right) - \log p_{\gamma^{(\vartheta)}}(x | g(\psi, x, r)) - \log p_{\pi} \left(g(\psi, x, r) \right) \right]
$$

=
$$
\mathop{\mathbb{E}}_{x \sim \kappa} \mathop{\mathbb{E}}_{r \sim \sigma_{\pi}(x)} \left[-\nabla_{\vartheta} \log p_{\gamma^{(\vartheta)}}(x | g(\psi, x, r)) \right]
$$

Sketch of the dynamical system

Input
$$
\pi: \mathcal{P}Z; \quad x \sim \kappa: \mathcal{P}X
$$

\nUpdate $\vartheta(t+1) = \vartheta(t) - \mathbb{E}_{r \sim \sigma_{\pi}(x)} [\nabla_{\vartheta} \log p_{\gamma(\vartheta)}(x|g(\psi, x, r))]$

\n $\psi(t+1) = \psi(t) - \mathbb{E}_{r \sim \sigma_{\pi}(x)} [\nabla_{\psi} \log p_{\rho_{\pi}(\psi)}(g(\psi, x, r)|x) - \nabla_{\psi} \log p_{\gamma(\vartheta)}(x|g(\psi, x, r)) - \nabla_{\psi} \log p_{\pi}(g(\psi, x, r))]$

\n**NB**: trajectories over strategy space; fixed point at best response

\nOutput $x' \sim \gamma^{(\vartheta)} \bullet \pi: \mathcal{P}X; \quad z' \sim \rho_{\pi}^{(\psi)}(x): \mathcal{P}Z$

'**Theorem**': VAE games form a category of open cybernetic systems (by BUCO)

Corollary: "*deep active inference*" agents are cybernetic systems realizing active inference games

Friston's "free energy framework" defines a category of cybernetic systems

$$
\arg\min_{\substack{\gamma \in \Gamma, \\ \rho \in \mathbf{Meas}(\mathcal{P}Z, \mathcal{P})}} \varphi_{(\pi, k)}(\gamma, \rho) = \mathop{\mathbb{E}}_{x \sim k \bullet \gamma \bullet \pi} \left[\mathop{\mathbb{E}}_{z \sim \rho_{\pi}(x)} \left[\log p_{\rho_{\pi}(x)}(z|x) - \log p_{\gamma}(x|z) - \log p_{\pi}(z) \right] \right]
$$
\n
$$
= \mathop{\mathbb{E}}_{x \sim k \bullet \gamma \bullet \pi} \left[\mathcal{H} \left[\rho_{\pi}(x) \right] + \mathop{\mathbb{E}}_{z \sim \rho_{\pi}(x)} \left[E(z, x) \right] \right]
$$
\nwhere $E(z, x) = -\log p_{\gamma}(x|z) - \log p_{\pi}(z)$

This time the realisation won't just be glorified functions, with dynamics on the parameters – rather, we will have dynamics directly on the system's beliefs (as well as param.s)

Key assumption: all spaces Euclidean, and all states Gaussian

So each $\gamma(z)$: $\mathcal{P}X$ and $\rho_{\pi}(x)$: $\mathcal{P}Z$ is determined by a pair of vectors $\gamma(z) \leftrightarrow (\mu_{\gamma}(z), \Sigma_{\gamma}(z)) : \mathbb{R}^{|X|} \times \mathbb{R}^{|X|^2}$ $\rho_{\pi}(x) \leftrightarrow (\mu_{\rho_{\pi}}(x), \Sigma_{\rho_{\pi}}(x)) : \mathbb{R}^{|Z|} \times \mathbb{R}^{|Z|^2}$

We define dynamical systems directly on these vectors

Assume:

 $k = \kappa \bullet !$

(means: no dependence on 'action' **on the timescale** of the dynamics)

each $\rho_{\pi}(x)$ is 'tightly peaked'

(means: density function well approximated by 2nd-order Taylor expansion around mean)

better: **least action**

 \rightarrow minimize time-integral of free-energy \rightarrow 2nd order ODEs

(so, neater in continuous time)

so the 'fitness function' here is really something like an "open Lagrangian"

So that:

$$
\nabla_{\mu_{\rho_{\pi}}} \varphi_{(\pi,k)}(\gamma, \rho) = \mathbb{E}_{x \sim \kappa} \left[\nabla_{\mu_{\rho_{\pi}}} E(\mu_{\rho_{\pi}}, x) \right]
$$

$$
\nabla_{\mu_{\rho_{\pi}}} E(\mu_{\rho_{\pi}}, x) = -\nabla_{z} \mu_{\gamma} (\mu_{\rho_{\pi}})^{T} \Sigma_{\gamma}^{-1} \epsilon_{\gamma} + \Sigma_{\pi}^{-1} \epsilon_{\pi}
$$

where $\epsilon_{\gamma} = x - \mu_{\gamma} (\mu_{\rho_{\pi}})$ and $\epsilon_{\pi} = \mu_{\rho_{\pi}} - \mu_{\pi}$ (sin

ce Gaussian)

Then:

Suppose $\mu_{\gamma}: \mathbb{R}^{|Z|} \to \mathbb{R}^{|X|}$ is 'neurally computable'. Then so is the dynamical system $\mu_{\rho_{\pi}}(t+1) = \mu_{\rho_{\pi}}(t) - \nabla_{\mu_{\rho_{\pi}}}E(\mu_{\rho_{\pi}},x)$ (being a composite of linear and 'neural' maps)

Sketch of the dynamical system

Input $\pi: {\mathcal P} Z ;\ \ x \sim \kappa: {\mathcal P} X$

Update

$$
\mu_{\rho_{\pi}}(t+1) = \mu_{\rho_{\pi}}(t) + \nabla_z \mu_{\gamma} (\mu_{\rho_{\pi}})^T \Sigma_{\gamma}^{-1} \epsilon_{\gamma} - \Sigma_{\pi}^{-1} \epsilon_{\pi}
$$

 $z' \sim \rho_{\pi}(x): \mathcal{P}Z$ **Output**

Summary

- 1. Showed that *Bayesian updates compose optically*
- 2. Characterized *inference problems* as *open games over Bayesian lenses*
- 3. *Cybernetic systems* have dynamics governed by best-response objective
- 4. Example: abstract explanation for the *gross structure of cortical circuits*
- 5. Will have to come back to talk more about *(inter)action* !

On-going work and open problems

- Continuous dynamics: more intricate formally, but neater conceptually (nice links to classical mechanics!)
- "Truly dynamical" games:
	- trajectories on the interfaces
	- non-stationary contexts
		- (ie, dynamics in the base as well as the fibres)
	- nested systems (as in evolution)
- Interacting cybernetic systems:
	- players playing game-theoretic games?
	- link with iterated games?
	- reinforcement learning?

Thanks!