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Background story

| am (supposedly, presently)
a theoretical neuroscientist,
interested in how neurons composed

together generate intelligent behaviour

How can we construct a system that plays the games that we study?



Heuristic definition of cybernetic system

“If it perceives and acts, then it is a cybernetic system”

Typically no access to external state
— must infer what’s going on,
and what should be done

Inference: on the basis of imperfect signals



Brain as archetypal cybernetic system

Pervasive cortical structure: And ‘hierarchically’ organized
bidirectional circuits — like a traced monoidal cat. !
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Can explain both of these features abstractly:

* perceiving and acting mean doing Bayesian inference

* which in turn means embodying a model of the world to be inverted
* the inverse of a composite channel is the composite of the inverses

* so we can invert each factor of the model locally
— ‘hierarchical’ structure

 and the ‘bidirectional’ structure is precisely the lens pattern



Plan: - aslower version of my ACT talk...

* Introduce: categorical probability, Bayesian inversion (very briefly)

Prove: Bayesian updates compose according to the lens pattern

Define: a class of statistical games using compositional game theory

Suggest: cybernetic systems are dynamical realisations of statistical games

Exemplify: variational autoencoders, cortical circuits

Conclude: towards interacting & nested systems ...



Basic setting: categorical probability

We work in a Markov or copy-delete category -  canonical example: /(D)
Objects: spaces X, Y sets X, Y
Y
] Morphisms: “stochastic channels” ie. functions from points to ‘beliefs’
. XY X —>DY 2 X xY — [0,1]

States: channels out of the monoidal unit  Je. probability distributions (formal convex sums)

I+ X X —[0,1] >owx | P(@) | |2)

so general channels are like ‘conditional’ probability distributions,
and we adopt the standard notation p(y|z) := p(z)(y)

Composition: given p: XY and q : Y-+ Z, “average over” Y — for example:

qop:X—)DZ::xHZ Zq zly) - ply|z) | |2)
z:Z




Joint states

X
W

P.(A, B) =

With two marginals given by discarding;:

X

N/

Pc(B|A) - Pr(A)




Bayesian inversion

P.(B|A) -Pr(A) = P (A|B) - Peer(B)

X

Y

N

N/

‘ X

C

N
¥

NB: The Bayesian inverse of a channel is always defined

with respect to some “prior” state !

Y

What is ¢ ?



An indexed category of state-dependent channels
Stat : K/(P)°? — V-Cat

a copy of JC/(P) over each object X in K/(P)
(these objects X supply the ‘priors’ on which the fibre channels depend)

channels in the base are roughly maps between priors
— they generate predictions
— intuition: change in prediction gives rise to change in inversion
— inversion goes the other way, hence: contravariant
— obtain: ‘base-change’ between fibres by precomposition

More formally ...



An indexed category of state-dependent channels
Stat : K/(P)°? — V-Cat

Stat(X)g = Meas
. Stat(X)(A4,B) := Meas(PX, Meas(A,PB))
X Stat(X) = : ida : PX — Meas(A, PA)
idg @ Stat(X)(A,A) =
p = 1na

Stat(X) is a category of stochastic channels with respect to states on X

Morphisms d' : PX — K{(P)(A, B) in Stat(X)

are generalized Bayesian inversions:

given a state ™ on X, obtain a
channel dI : A B with respect to



An indexed category of state-dependent channels
Stat : K/(P)°? — V-Cat

Stat(X)g = Meas
R B e
idg @ Stat(X)(A,A) = { ' ’
p = 1na
Stat(c) : Stat(X) — Stat(Y)
= tat(Y
¢ KUP)(Y, X) s Stat(X)o Stat(Y)o
di: PX — K{P)(A,B) N c*d" : PY — KU(P)(A, B)
T = dl p = dlep
Stat(X) is a category of stochastic channels with respect to states on X
Morphisms d' : PX — K¢(P)(A, B) in Stat(X) Given c : Y+ X in the base, can pull d' back
are generalized Bayesian inversions: along c, obtaining c*d' : PY — K{(P)(A, B)
given a state 7 on X, obtain a This takes p : PY to di.p : A=+ B defined
channel dI : A B with respect to by pushing p through ¢ then applying df.

But: given d e ¢, what is (d e ¢)1?



Given d e ¢, what is (d e ¢)1?

If Meas is Cartesian closed (e.g., quasi-Borel spaces), then

d' : PA — KU(P)(B, A) is equivalently PA x B — PA.

Paired with a map d : B+ A, this looks like a simple lens:
classically, a pair of type Set(A, B) x Set(A x B, A).

Here, we have K/(P)(A, B) x Meas(PA x B,PA).

But this is just a hom-set in the Grothendieck construction
of the pointwise opposite of Stat!

Let’s check this ... and then see how these things compose.



Grothendieck

lenses Definition (GrLenspg). Let F': C°° — Cat.

Objects (GrLensy): pairs (C, X) of objects C in C and X in F/(C).
Hom-sets GrLensr ((C, X), (C’, X')): dependent sums

GrLensy((C,X),(C', X)) = > F(O)(F(f)(X'),X)
f:c(C,C)

so (C,X) + (C',X")isapair (f, f1) of f: C(C,C") and fT: F(C)(F(f)(X"), X).

Identities: id(¢ x) = (idc,idx)

Composmon suppose ( f, fT) (C,X) -+ (C",X")and (g,g") : (C",X") = (D,Y).
Then (g,9") o (f, f1) = (g o £, F(f)(g")) : (C, X) :

When F' = Stat : K{(P)°P — Cat: GrLenss..((X, A), (Y,B)) = K{(P)(X,Y) x Meas(PX,K{(P)(B, A))

Given (c,c') : (X, A) + (Y, B) and (d,d") : (Y, B) + (Z,C),

(d,d") o (c, cT) = ((dec),(ctocdl)) : (X,A) = (Z,0) So we seek to show
where (d e c) : KI(P)(X, Z) and (de C)T ~ C ° diﬂr
where (¢ o ¢*d") : Meas(PX, K{(P)(C, A)) takes 7 : PX tocl e dler.

But first ...



An optical interlude

Optics are the contemporary home of compositional game theory

Plus, if our lenses are optics, then they acquire suggestive formal depictions:

\

\
./
y

N

______________________________________________________________________________________

And, indeed, Bayesian lenses are optics ...



An optical interlude

Proposition. Opticx@((X, A), (Y, B)) ~ GrLensStat((X, A), (Y, B))

M:C
Proof:  Optic, . ((X,A).(V,B)) = / C(X, N x V) x C(M © B, A)

~

(X,V)xC(X,M)xC(M® B, A)

o

~

/
~ /M:C (X.¥) x C(%,01) = ¢ (V(AL(D), B), A)
/ ,\

o

=,
9]

C(X,Y) x M(X)xV (M(I),C(B,A))

~ GrLenss. ((X,_ A), (Y, B))

(And we can define ‘mixed’ Bayesian optics, too!)
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Does Bayesian inversion commute with lens composition?

Yes! Lemma (Bayesian updates compose optically). (de c)jT ~ C;fr ° dlm
Suppose:
X Y Y VA X

and and

(These relations just define the relevant Bayesian inversions.)



Proof:

Lemma (Bayesian updates compose optically). (dec)l ~cl edl,_

‘X
K

diﬂ.ﬂ\fj

C

\/

Z

~~
N
~

112

Z X ‘ Z

f
N

N
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So (dec)l and cl e dler are both Bayesian inversions for d e ¢ with respect to .

But Bayesian inversions are almost-equal. Hence (d e ¢)l ~ ¢! o dlor

]



Back to cybernetics

We will see: inference problems are games over Bayesian lenses

Recall: cybernetic system trying to estimate external state,
given complex “generative model”

“In the wild”: system will try to improve its estimation

Note: all interactions of a cybernetic system are
mediated through an interface (~ boundary)

— this is all the system has access to

Context := representation of boundary behaviour

First: yet another graphical calculus ...



(Cartesian) lenses are optics

Optic

Lens
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Elements of ObJECtS, gl‘aphlca"y after Roman (arXiv:2004.04526)
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“inflate the tubes”



Contexts: closed environments “with a hole in them”

Optic: Context:

S
)
&

&)
G

®
C

When monoidal units are j ﬁ/® ®‘\
terminal, this simplifies to: w O——B) @



Open system in context is closed
<® X ®;
I (L} D
j@ (&) B B
q —Rr——Rr——R)— D

|_>

<<¢,<¢,<¢,<D

Now: primer on open games ...



A game G : (X, A) (Y, B) constitutes :

(observations) (actions)
prior beliefs predicted outcomes

X)——R——)

strategy Z play> optics of

set correct type
@——T——B

belief updates actual outcomes
(coutility) (utility)

relation
<} @ b est f{or relator!)
of strategies
context of response E ) E :
correct type 7

(B) ) ie. {¥ x5 — 2}

Y
o)
v

P
C
A
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Best response, demystified Q

suppose context <7T | k> c

®)

B

Current strategy

L
reont (T | k)) = >
S

(but how do agents
learn to deviate? ... )

AN

O

Better strategies

C
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Now we can start to construct some
“atomic” cybernetic systems !



Maximum likelihood game (I,7) — (X, X)

Aim find state 7 that ‘best explains’ the data observed through k
Play Q C——X)

U [ Nes{mlhesp C

Context

(k) <

<} > (x) 5 |||
X

F——®
Best response

BUK)) = (p] 1), {<7r .

12110

12110

m € argmax E |r7]
n:le X kem

=B

PX

X——

KE(P) (X, X)

}



Bayesian inference game (Z,7) — (X, X)
Fix a channel c: Z++ X

find state-dependent channel ¢ : Z® X — Z

Aim: . . .
closest to exact inversion of ¢ (in the context)
@————X O——F—
B((m | k)
=(d|d), — < (c|) | € arg min E |Dkr (C;(x),cjr(a;))]
¢’:Meas(PZ, KL(P)(X,Z)) Tr~kecer |
=(d|d), — < (c|) | € arg min E E [—logp.(z|z)] + DKL(C;T<ZC),7T)]
¢/:Meas(PZ, K¢(P)(X,Z)) x~kecen | z~cl (z)

Proposition: Bayesian inference games are closed under composition

Proof- Bayesian updates compose optically



Autoencoder game (Z,7) — (X, X)

Fiy. “Generative” models: T' — K4(P)(Z, X)
— “Recognition” models: P < IC{(P)(X, Z)

find pair (¢, ¢’) such that ¢ ¢ 1 maximizes the likelihood of data from £,

.

1m: . . .
and ¢’ best approximates the exact inverse of c in the context

>

@ Q@ <>©>@

®

O——C— @D——¢
B({m | k)) =
@\ d), { Celd),|(ed)e agmin  E | E[-logpe(ale) +D<c;<x>,w>]}
cer, x~kecem | z~c! (x
c'eMeas(PZ,P)

— this objective captures many such models in the ML literature (Knoblauch et al, 2019)



“Active inference” game

Si-i—l




sense data

&

©
®
©)
®
)
ﬁ
&

actions

Example: can embed the ‘goal’ of maximizing utility in a POMDP here,
and thereby construct a “Bayesian agent” that learns to play
stochastic games — no time for the details today ..!

(Aim: embed category of “Bayesian games” of Hedges et al into category of cybernetic systems...)



Optimization games

MLE:
B = (o], = { (1), |7 € argmax £ [}
m: e X kem
Inference: _
B({m | k) =(d|d), — 4 {(c|) | € arg min E |Dkr (c;(x),ci(x))]
¢’:Meas(PZ, KI(P)(X,Z)) T~kecer |
=(d|d), — ¢ {c|) | € arg min E E [~logp.(z|z)] + DKL(C;.(w),W)]
¢’:Meas(PZ, K¢(P)(X,2)) t~kecer | z~c) ()
Autoencoder:
B({m | k) =(d|d), { (c|cy_|(c,c) €  argmin IEE [ E( | [— log pe(x|2)] + D(C;.(:E),’]T)] }
cel, rr~kecem | z~c! (x

c'eMeas(PZ,P)

All of the form: pg:ctx x X — R
B((m | k)) =(d|d"), — { (c|c)_|(e,d) € argmaxgpg( (| k) ,7')}

But how to “get better™?.



Given a context, obtain a “fitness landscape”

. g ) R
Note: PG X = L — or “potential field” over the strategy space

Can we categorify best-response relations, to make them proof-relevant ?

Then: strategic deviation (improvement) witnessed by trajectory / process

Can we characterize this process compositionally?

Don’t we act on “story snippets”?



Old idea: dynamical systems “realizing” morphisms

Dyn,(A, B) ZComon (S, B) xC(S® A,S)

FiAS B = (S, 8= B, f'rl: S ® AesS)

ida: AS A = (Aida: A— A AR A A)

Composition: “wire” outputs to inputs, using lenses

Idea being: maps in C are ‘really’ dynamical systems that,
given a constant input trajectory,
relax instantaneously to the corresponding output



Old idea: dynamical systems “realizing” morphisms

position: “wire” outputs to inputs, using lenses

But composition here isn’t unital!
And those hom-sets are not sets!



Instead: work in topos B of sheaves on the interval domain (..?)

A
T
m

-
[
Y

Int

References: Schultz et al (2019). Dynamical Systems and Sheaves.

Schultz & Spivak (2017). Temporal Type Theory.



Instead: work in topos B of sheaves on the interval domain (..?)

a section of an
Int-sheaf

rT
.
[ ]

References: Schultz et al (2019). Dynamical Systems and Sheaves.

Schultz & Spivak (2017). Temporal Type Theory.



Instead: work in topos B of sheaves on the interval domain (..?)

Let V be the wide subcategory of smooth maps in the base V of enrichment of C

Write C similarly
Our sheaves (objects of B) will be functors Int °° — \Y%

We can embed V into B as follows. Define:
F: V=B
X— F(X):= F(X)((0,1)) ={x:(0,]) = X | x smooth}
(f:X YY) F(f) = F(f)@)=foa

(This is right adjoint to the functor taking A : B — A((0,0)) : V.)

NB: Dynamical systems are spans of Int sheaves.

. ‘. . . 5 1. F
So can define the ‘instantaneous realisation’ like X « X (f)>

Y




Crudely ...

A dynamical realization for f : V(X,Y) is
a family of B morphisms ¢,, : B(F(X), F(Y)) indexed by x : R
such that as Kk — 00, ¢, and F'(f) are equal on constant trajectories:

E(f)
¢ T P(X) —= F(Y)
Pk
(We think of k as a timescale parameter.)

A dynamical realization C,. of a V-category C in B is
a (functorial) choice of such families for each morphism in C.

NB: | haven’t proved this totally makes sense yet !..



Dynamical games

A topos is a category of ‘variable sets’, so anything we
can do in V lifts to its dynamical realization in B.

In particular, we can lift our lenses, and hence define “dynamical games”
whose plays are defined on trajectories — more like in reality.

Note: A span A <— S — B in Bis a dynamical system
with input space A, state space S and output space B.

When the system is given by an ordinary differential equation,
a choice of sq : S gives rise to a morphism A — B
mapping input to output trajectories.

So we can think of a strategy for a dynamical game as a choice of
initialized dynamical system for the play and coplay morphisms.

NB: Can iterate to give a hierarchy of ‘nested’ systems with a hierarchy of timescales
— how else to choose the meta-strategy for choosing the strategy?



Open cybernetic systems

An open cybernetic system G constitutes
* a (‘static’) optimization game
* along with a dynamical realization on the domain of definition
* s.t. the fitness function factors through some optimization objective

AN eg P, )=~ E |Dgr(c(z),ck(z))

r~kecem

VG Cctx = X

* subject to a coherence condition — roughly, that

letting the state space of the closed system be .S
we can project from the state space to the optimization space proj: S — X

then: 3 fixed point (* € S such that proj(¢*) € arg max ¢, x)
(and this coincides with requisite “equality on constant trajectories”)
Conjecture. Open cybernetic systems form a category

(i.e., fixed point of composite realisation satisfies the cybernetic condition)
Time for some examples ...



Variational autoencoders constitute a category of cybernetic systems

Recall the best-response objective: (here, using Kullback-Leibler divergence)
argmin @ p)(c, )= E E [logpcgr(x) (z|z) — log pe(x|2) — log px (z)]
cel, x~kecem z~c! (x)

c'eMeas(PZ,P)

Define parameterized channels:

“generative” “recognition”
R" =T — Meas(Z,PX) R™ =2 P — Meas(X,PZ)
ﬁ:R”Hyw):Z%PX ?ﬂIRmey):X%PZ
Assume no dependence on “action”: k=re!

so  P(m,k) (29, w) = xIE,{ %)( ) {logppgrw)(x) (Z|£L‘) T logpfy(ﬂ) ($|Z) o long(Z)}
zopy (x

Then, dynamics realizes gradient descent on the objective...

(but what about those expectations..?)



Assume:
e pW(2) = 2=g ), z,T) g deterministic, differentiable

™
r e~ op(x)

r L
So that:
P(r,k) (197 lb) = E E(x) [logppgﬂ’)(x) (g(@b, x, T)|$) - lngv(ﬁ) (xfg(@ba x, T)) - logpﬂ (9(% €, 7“))}

T~VYKR r~o g

Then:

Vzp@(ﬂ-,k) (197 ,(p) — VTﬁ E E ) |:1ng057¢)($) (9(% x, ’I”)|CC) - logpry(ﬁ) (x‘g(wa x, T’)) - 1ng71' (g(¢7 Ly T))i|

T~K reog(x

= [E E [vw Ingpﬁ)(x) (g(’(pa x, 7")|£E) - viﬁ lng,y(ﬂ) (x|g(¢, €T, T)) - viﬁ lngﬂ- (9(¢, €, T))}

T~K re~og(x)

Vop(rp(0,9) =Vy E K [10gpp;w>(x)(g(¢,x,r)|x)—logp7<ﬁ>(x\g(¢,x,r))—10gpﬂ(g(¢,xﬂ’))}

TR revog(x)

=E E |-Vylogp,w(z|g(¥,z,7))]

T~K re~og(x



Sketch of the dynamical system
Input m:PZ; x~k:PX

Update It +1) =0(t) = Epo () [V log oo (z]g (0, 2,7))]

G+ =90 = B [Valogneg, (o, 0l
— vlﬂ 1ng7(79) ($|g(¢, X, T)) - VQP 1ng7r (g(¢7 €Z, T))]

NB: trajectories over strategy space; fixed point at best response

Output x! ny(ﬁ)oﬂ' PX: 2 f\JIO</¢Y)( ) PZ

‘Theorem’: VAE games form a category of open cybernetic systems (by BUCO)

Corollary: “deep active inference” agents are cybernetic systems realizing active inference games



Friston’s “free energy framework” defines a category of cybernetic systems

argmin  Q(rp)(7.p) = E E [logp,, ) (z|z) —logp,(z|z) — log px(2)]
~eT, r~keyerm | z~pr(x)
pEMeas(PZ, P)

= E Hip.(z)]+ E [E(z,2)]

r~keyer

where E(z,z) = —log p,(x|2) — log pr(2)

This time the realisation won’t just be glorified functions, with dynamics on the parameters
— rather, we will have dynamics directly on the system’s beliefs (as well as param.s)

Key assumption: all spaces Euclidean, and all states Gaussian

So each v(z) : PX and p,(x) : PZ is determined by a pair of vectors
v(z) ( z)) RIXI « RIXI
,07(33) g (,LLp7T(,Qj)7 Zpﬂ (:L’)) IR|Z| % R\z,Z

We define dynamical systems directly on these vectors

2



Assume:

_ | .
k=~re! better: least action

(meanhs‘ no depe”lde”;ehond action — minimize time-integral of free-energy
on the timescale of the namics
y ) — 2" order ODEs

(so, neater in continuous time)
each p.(x) is ‘tightly peaked’
,071-< ) SNHY P so the fitness function’ here is really

(means: density function well approximated by something like an “open Lagrangian”

2"-order Taylor expansion around mean)

So that:
Vit O(w)(V:P) = B [V, Blbtp,., 7)]
Vit Bl ) = Vot (fp, ) 20 ey + 50 e . .
(since Gaussian)
where e, = & — p(1tp, ) and €x = p1, — i
Then:

Suppose [t : RIZl — RIXl is ‘neurally computable’.
Then so is the dynamical system p, (¢t +1) = p, (t) =V, E(u,.,x)

(being a composite of linear and ‘neural’ maps)



Sketch of the dynamical system

Input m:PL, x~k:PX

Update Poe(E+1) = pip, () + Vg (1) 27 Hey = B 7 len

Bidirectional,
hierarchical

__________________________________________________________________________

adjacent layers

e e’/ e ! o

Cortical communications = precision-weighted prediction errors local contexts .



Summary

1. Showed that Bayesian updates compose optically
2. Characterized inference problems as open games over Bayesian lenses
3. Cybernetic systems have dynamics governed by best-response objective

4. Example: abstract explanation for the gross structure of cortical circuits

5. Will have to come back to talk more about (inter)action!



On-going work and open problems

* Continuous dynamics:
more intricate formally, but neater conceptually
(nice links to classical mechanics!)

* “Truly dynamical” games:
— trajectories on the interfaces
— non-stationary contexts
(ie, dynamics in the base as well as the fibres)
— nested systems (as in evolution)

* Interacting cybernetic systems:
— players playing game-theoretic games?
— link with iterated games?
— reinforcement learning?



Thanks!
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