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The following is a list of corrections of all mistakes that have been to
our knowledge discovered in our book. The authors are grateful to all who
contributed to the list, most of all to D. Benson, M.Hébert, H.-E. Porst and
Jan Jürjens.

Page 3 lines 5-6 (as well as Exercise 1.f(1)): This is incorrect and to be
deleted.
Page 11 line -2: C should read ωT

Page 14 line 17: all should read: all finite
Page 16 lines -3 to -1: To verify (2), observe that since A is a set and
all categories are locally small, see 0.1, all split subobjects of objects of A
form a set, up to isomorphism. It is sufficient to verify that every finitely
presentable object K is a split subobject...
Page 21 line 16: 1.14(4) instead of 1.14(3)
Page 24 line 7 add: n ≥ 1
Page 18 line 3: instead of ”since .. contain A” the text should be: A is a
set because it the the union of the sets An, n ∈ N , where
A0 = A

⋃
{0} (for an initial object 0)

and
An+1 = the closure of An (under binary coproducts and coequalizers.)

Page 26 line -8: Amor instead Aobj
Page 30 line 1.33(7): the definition of m is to be corrected as follows:

m : hom(A1,−) + hom(A2,−)→ hom(A1 ×A2,−)

has components hom(Ai,−)→ hom(A1 × A2,−) corresponding to the pro-
jections.
Page 31 line 1.33(8): analogously to page 30,

mi : colimdhom(Did,−)→ hom(limdDid,−)
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The same correction on Page 40 line 13
Page 31 line 18 at the end: kt0 · f1 ·mi = kt0,t · f2 ·mi

Page 31 line 20: kt0 · f1 · mi = kt0,t · f2 · mi which implies, since Kt is
orthogonal to mi, that kt0,t · f1 = kt0,t · f2.
Page 33, line 3: The statement is incorrect: if the construction stops, the
object Xi0 is orthogonal. The converse implication is not true in general
(consider M = {m} in Set for an embedding m : 1 → 1 + 1: although 1
is orthogonal, the construction does not stop). However, if in the diagram
on p.32 one adds for every pair p, q : A′ → Xi the connecting morphism
m : A → A′ whose domain corresponds to f defined as p.m(= q.m), then
the resulting diagram makes the proposition true. This improved construc-
tion is used by Max Kelly in [Kelly 1980].
Pages 34-35: Theorem 1.39 is true for all uncountable cardinals λ, but the
proof presented in our book is wrong. A correct proof can be found in the
paper ”Uncountable orthogonality is a closure property” by M. Hébert and
J. Rosický, Bulletin of the London Mathematical Society 33 (2001), 685-
688. For λ = ω, the implication (ii) =⇒ (i) in Theorem 1.39 does not hold,
and a more technical description of ω-orthogonality classes has been pre-
sented in the paper ”More on injectivity in locally presentable categories”
by M. Hébert, J. Adámek and J. Rosický (Cahiers de Topologie et Geometrie
Diffèrentielle et Categorique 32(2001), 51-80). A counter-example to 1.39 is
also presented in that paper, which is a modification of example by Hugo
Volger, see Bibliography (Volger 1979). An independent counter-example
has been found by Jan Jürjens in ”On a Problem of Gabriel and Ulmer”,
Journal of Pure and Applied Algebra 158 (2001), 183-196.
Page 38 line 13: dA,a · Ff = dA′,Hf(a)

Page 38 In (ii) we need to add the argument why is ContλAop cocomplete.
From 1.33(8) we know that is it a λ-orthogonality class in SetA

op
, therefore,

it is locally λ-presentable by Theorem 1.39.
Page 39 lines 10-18: It is not true that the categories cλ-CAT and
lpλ-CAT are dually equivalent: the correct statement is that the correspond-
ing 2-categories are biequivalent. See J. Adámek and H.-E. Porst: Algebraic
theories of quasivarieties, Journal of Algebra 208 (1998), 379-398
Page 39 line 18: Contλ A instead of Contλ Aop, and F 7→ F ·H instead of
F 7→ F ·Hop

Page 40 line 13: see the correction of page 30
Page 57 line 15: obvious that idA does not factor through any kn
Page 62 Exercise 1.1: The diagrams of S1⊗S2 are {A1}×D2 and D1×{A2}
where Ai ranges through all objects of the underlying category of Si, and
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Di through all diagrams of Si, with

σ({A1} ×D2) = {idA1} × σ2(D2)

and
σ(D1 × {A2}) = σ1(D1)× {idA2}

The proof of Proposition 1.53 must be corrected analogously.
Page 65: for 1.s see the correction of page 39.
Page 69 2.3(2): Scott domains should read: CPOs
Page 71: Proposition 2.6 is true, but the proof we present is wrong. A
correct proof can be found in the book Makkai and Pare (1989), see their
Proposition 2.2.1.
Page 85 line -1: λ′ ≤ λ
Page 87: reference in (ii) should be 1.55(1)
Page 87 line -6: 1.55(1) instead of 1.55(2)
Page 88 line -7: bi : Bi −→ B (i ≤ j)
Page 88 line -4: bi · fi · f̄i instead of fj · f̄j · bi,j
Page 88 line -1 to Page 89 line 1: bi · fi · f̄i · fi = bi · fi (instead of the
equations there)
Page 98 line -5: left-hand side: d∗j0,j0′ instead of d∗j,j0′ ; right-hand side:
d∗j0,j0′ instead of D∗(j0 → j0′)
Page 99 line 14 to 15: CL ↓ F instead of F ↓ CL
Page 101 line -11: equivalent instead of isomorphic
Page 109 lines 17-18: ...whose Kan extension F ∗ : SetB → Set has, due
to C, the property that G is naturally isomorphic to the domain restriction
F ∗/A. And F ∗ preserves λ-small limits of hom-functors since G does (due
to L).
Page 125: Delete 2.b(2)
Page 145 line 14: For infinite λ > card Σ
Page 150 line -12: This functor is an embedding. In fact, since T is fini-
tary, it is easy to verify that G is one-to-one. Moreover, given an algebra
k : TK → K, then every element x of TK corresponds to an operation
symbol k′ in Σ such that k(x) is the result of k′ in the algebra G(K, k).
From this it follows easily that G is full.
Page 152 line -10: (s(x) = s(y)) ∧ (t(x) = t(y))⇒ x = y
Page 154 line -8: change reference to example 3.21(1)
Page 155 in 3.24: The third sentence of the proof (”It is easy...projective.”)
is incorrect. The theorem is valid, in fact, it can be strengthened as follows.
It suffices to assume the existence of a set B of finitely presentable regular
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projectives such that any object is a regular quotient of a coproduct of ob-
jects from B (i.e., B is a regular generator). A correct proof of the stronger
theorem is as follows:
Conversely, let K to a cocomplete category with a regular generator B of
finitely presentable regular projectives. It is easy to see that a finite co-
product of regular projectives is a regular projective. Hence B can be as-
sumed to be closed under finite coproducts in K and, consequently, Bop
can be regarded as an FP sketch. Following Remark 3.17, the category
V = ModFP (Bop) of all finite-product preserving functors Bop → Set is
equivalent to a variety.
Let E : K → V be the codomain-restriction of the canonical functor
(cf. 1.25). Following 1.26 and 1.27, E is a faithful right adjoint preserv-
ing directed colimits. Since all objects in B are regular projectives, E also
preserves regular epimorphisms. We will prove that E preserves coproducts
of objects from B. Since E preserves directed colimits, it suffices to work
with finite coproducts. We now simply follow the argument in H.Schubert,
Kategorien, Akademie-Verlag, Berlin 1970 (see 10.3.5 there):
Let

B1
i1 //B1 +B2

oo i2 B2

be a coproduct in B, and

EB1
l1 //EB1 + EB2

oo l2 EB2

be a coproduct in V. Let

f : EB1 + EB2 −→ E(B1 +B2)

be the induced morphism. By the argument from the implication (i)⇒ (ii)
in the proof of 1.46, we get a morphism g : E(B1 + B2) −→ EB1 + EB2

satisfying g.E ik = lk, k = 1, 2. We have g · f = idEB1+EB2 and, since E is
full on B, f · g = idE(B1+B2). Therefore E(B1 +B2) ∼= EB1 + EB2.
Next we prove that E is full. Consider a morphism f : EK −→ EK ′ in V.
There exists a regular epimorphism p :

∐
j∈J Bj −→ K where wi : Bi −→∐

j∈J Bj is a coproduct of objects from B. There are hj : Pj −→ K ′ such that

f . Ep . Ewj = Ehj

for any j ∈ J . Since E preserves coproducts of B-objects, we get h :∐
j∈J Bj −→ K ′ with f · Ep = Eh.

Let
L

u //
v
//
∐
j∈J

Bj
p //K
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be a kernel pair. Then

EL
Eu //
Ev

//E
∐
j∈J

Bj
Ep //EK

is a kernel pair. Since

Eh · Eu = f · Ep · Eu = f · Ep · Ev = Eh · Ev,

we get hu = hv and, therefore, we obtain a morphism t : K −→ K ′ with
t · p = h. Hence Et · Ep = Eh = f · Ep, thus f = Et.

We have proved that K is equivalent to a full reflective subcategory of
V closed under directed colimits. Following Theorem 3.22, it remains to
prove that E(K) is epireflective in V. Any A in V can be presented by a
coequalizer

E
∐
j∈J

Bj
Eu //
Ev

//E
∐
i∈I

Ci
p //A

in V where Bj , Ci belong to B for i ∈ I and j ∈ J . Then a reflection
rA : A −→ EA∗ of A to E(K) is given by a coequalizer∐

j∈J
Bj

u //
v
//
∐
i∈I

Ci
q //A∗

in K via rA · p = Eq. Since Eq is a regular epimorphism in V and V is a
variety, rA is a regular epimorphism in V.
Page 157: Delete ”colimit of... is full” from lines 6 to 7. Insert: To prove
that H is full, let p : HK1 → HK2 be a homomorphism. The canonical
diagram of K1 w.r.t. B has the following compatible cocone:

to f : Ps → K1 assign (U∗p)s(f) : Ps → K2.

The compatibility, i.e., (U∗p)s(f) · h = (U∗p)s′(f · h) for all h : Ps′ → Ps,
follows from the commutation of p with the Σ-operation σ = σXs,h : s→ s′:
we have

(U∗p)s′(f · h) = [(U∗p)s · σHK1 ](f) = [σHK2(U∗p)s](f) = (U∗p)

Since B is dense, there exists a morphism q : K1 → K2 with (U∗p)s(f) = qf
for all f, thus (U∗p)s = (Uq)s = (U∗Hq), which proves p = Hq.
Page 159 line 16 Add:
(x0 ∨ x1 ∨ x2 ∨ ...) ∨ y1 ∨ y2 ∨ ... = x0 ∨ y1 ∨ x1 ∨ y2 ∨ x2 ∨ ...
Page 163 line 12: (s(x) = s(y)) ∧ (t(x) = t(y))⇒ x = y
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Page 163 line 18: Def (σ) = {s(x) = s(y), t(x) = t(y)}
Page 163 line -14: t(x) instead of t(s)
Pages 164 to 167: The proof of Theorem 3.36 is not correct. A correct
proof is presented in J.Adámek, M.Hébert and J.Rosický: ”On essentially
algebraic theories and their generalizations”, Algebra Universalis 41 (1999)
213-227.
Page 179 line -6: is weakly
Page 180: 4.10(3) is wrong
Page 184: In 4.15 the cone should be changed to the cone of all torsion
quotients of Z, i.e.:

Z //

''

��

{0}

Z2

Z3

...

Page 190 Example: (1) From ”Given ... ” on the text should be changed
as follows:
Given a strictly ordered poset (X,<), a multireflection is formed by all
canonical maps c : (X,<)→ (X/ ∼,@) where

1. ∼ is an equivalence relation on X such that the derived relation <∗ on
X/ ∼ (with M <∗ N iff m < n for some m ∈M,n ∈ N) is irreflexive

and

2. @ is a linear order extending <∗.

There is a missing arrow in the concrete example: the canonical arrow
w.r.t. the equivalence with classes {a} and {b, c}.
Page 192, Theorem 4.29: This theorem is wrong. See our Correction of
pages 34-35: Given a reflective subcategory A of a locally finitely presentable
category K closed under directed colimits, then ifA is not an ω-orthogonality
class, then it is not an ω-cone-orthogonality-class either. In fact, given a cone
to which all objects of A are orthogonal, then there exists a member of that
cone to which, again, all objects of A are orthogonal (this is an easy conse-
quence of the fact that A is closed under products of pairs in K). Thus, a
presentation of A as a cone-orthogonality class reduces to a presentation as
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an orthogonality class.
Page 195 line -6 and -3: SetA should read SetS

Page 197 line -6: regular epimorphisms instead of monomorphisms
Page 197 line -1 should read: projective w.r.t. every epimorphism with
kernel A iff Ext(G,A) = 0
Page 198 line 4: multicolimits
Page 201 lines -7 to -6: A has less then λ edges, i.e., card

⋃
σ∈Σrel

σA < λ
(instead of the equations there)
Page 207 in 5.8(3): the last axiom should be replaced by the following:
(∀x1, ..., x6)(comp(x1, x2, x3)∧comp(x2, x4, x6)∧comp(x3, x4, x5)⇒ comp(x1, x6, x5)),
and
(∀x1, ..., x6)(comp(x1, x2, x3)∧comp(x2, x4, x6)∧comp(x1, x6, x5)⇒ comp(x3, x4, x5))
Page 208 line 8: 2.46 should read 2.48
Page 210 line 15: idX : (X, ∅)→ (X,X ×X)
Page 213, second line under 5.17(3): of subsets of I such that the intersec-
tion of any finite subcollection is non-epmty, there exists...
Page 238 line 6: instead of ”positive-primitive” write ”conjunctions of
atomic formuals”
Page 264 line 8: accessible iff it satisfies
Page 297: Problem 9, this is a repetition of Problem 5
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