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In the recent past people have looked at non-standard models of
algebraic theories. Today I wish to look at models of algebraic theories
in non-standard categories. I am by no means the first to do so.

I began with a simple question: What is an algebra in the standard
category, that is, the category of sets ? My answer must be formulated
in category predicates — objects and maps, but no elements. When so
formulated it can be applied to an arbitrary category.

Let us start with a special case and formulate the axioms for a group.
A group is a set A together with three maps: m: Ax 4 > A, n: A -4,
¢: A - A such that

1) associativity:

Ixm mx1

AxAx A S AxA S A = AxAxd 53 AxA4" A,

2) identity constant:

1xe 7 1
AXxA - AXxA—- A=A4-—+ A4,
3) inverses
ixn m e
AXA - AXA—> A =4—- A
(1 denotes the identity map).

We are not finished. The map e is supposed to be a constant map.
That is, we must adjoin the equation e(z) = e(y). If we understand
pi(x,, ;) = x;, then

?Jl [ 2)2 €
4) AXA>A—-> A =AxA—> A A.

Now if we know what 4x 4 and the two maps p,, p, mean in an
arbitrary category we should know what we mean by a group in an

* Presented to the Conference on General Algebra, held in Warsaw, Septem-
ber 7-11, 1964.
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arbitrary category. The categorical definition of product can be found
in many places starting with Eilenberg-MacLane [1]. It can also be found
in Abelian Categories, a book I feel obliged to mention for a number of
reasons, among which is the fact that publisher gave me an advance ().

For a number of well-known categories the groups therein have
well-known names:

GROUPS THEREIN

CATEGORY j
- — E—
Topological Spaces Topological Groups
Algebraic Manifolds Algebraic Groups

Topological Spaces and Homo- | H-Spaces

Differential Manifolds ' Lie Groups
topy Classes of Maps [

One of the chief virtues of a group in a category .7 is that for an
arbitrary object Be.o/ the set of maps from B to A4, which T denote by
(B, A), is a group in the category of sets. To wit:

d (B,m)
(B, 4)x (B, A) = (B, Ax 4) — (B, 4)

is its multiplication, where d is the one-to-one correspondence that
arises from the definition of product, and (B, m) is the function obtained
by composing with m. If B is held fixed, (B, —) is a product preserving
functor and perforce preserves all the axiomatic equations. If we hold 4
fixed, (—, 4) becomes a contravariant functor with values in the category
of groups and homomorphisms. It is an example of what we shall call
a representable algebra valued functor.

I think that the first deep theorem about functors was the Eilen-
berg-MacLane discovery [2] of the K (w,n) spaces. They showed that
the n-th cohomology functor with coefficients in a group = is naturally
equivalent to the functor (—, K (=, n)) where K (x,n) is a group in the
category of spaces and homotopy classes of maps.

Now let us generalize. Let T be an equational algebraic theory.
There are a number of ways of formalizing that notion. I pick the most
primitive: T' is an indexed family of operator symbols {f;} together with
a family of non-negative integers {v;} indexed over the same set, together
with a family of equations relating the f’s each of which looks in the
equation as if it were a function on v; arguments.

Given a theory T and a category 7 we shall say that a T-algebra
in o/ is an object A e/ together with a T-structure, that is for each f;eT
there is assigned a map f;: I1,, A > A and the collection is such that

(*) For related problems see the dedication in that book, [4], p. minus 3. (Note
of the Hditors.)
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the equations of 7, when interpreted as below, are true. To interpret
an equation it suffices to interpret an n-ary expression in the f’s as a
map in «7. The interpretation of the expressions follows from the recur-
sive rules:

0) The interpretation of f; is f;.

1) If g is an w-ary expression, and g(z,, @, ..., @,) = #;, then we
interpret g as p;: /[, A —~ A, the j-th projection.

2) IE #lmny «ony B} = LilBa (@5 v Tn)y ooy hoy(@ry ..oy @) and if we
have already interpreted the h’s as maps 4;: [T, 4 > A, then we interpret
¢ as the composition

th f“i
A = II,A - A.

I shall apologize for this primitive notion oft heory and the attendant
cumbersome notion of T-structure. I am in a quandry. The elegant
definition is that used by Lawvere in his dissertation [6], in which
theories are categories of a particular kind, and the algebras in ./ are
particular kinds of functors from the theory into .7 (and the homo-
morphisms between the algebras are just natural transformations between
the functors). 1 reject his formulation for expository reasons peculiar
to our times — the language of categories is still too new. (Lawvere’s
definitions and some of his remarkable theorems are described in his
announcement [7].)

Contravariant representable functors. If A e/ has a T-structure, then
for every Be./, (B, A) is a T-algebra (in the category of sets) and the
functor (—, A) may be interpreted as a T-algebra valued functor. In
particular, a map B — B’e.o/ induces a homomorphism (B’, 4) —» (B, A4).

Let & be the category of sets and T the category of T-algebras
and homomorphisms in % (in other words, the ordinary notion of the
category of T-algebras). We shall say that (—, 4): .7 > 7T is a contra-
variant representable functor, represented by the T-algebra Ae.s/, or
more compactly, by 4 eo/", where o7 is the category of T-algebras and
homomorphisms in .

In the language of [4], let «7 be a complete category and F : .7 —» &T
a contravariant functor. F is representable if and only if it has an adjoint
on the right. I shall indicate the proof in a latter section. But for the
moment, allow me to translate the above assertion together with the
content of the Special Adjoint Functor Theorem of [4]:

THEOREM 1. Let T, and T, be equational algebraic theories and F :
ST ST a contravariant functor. F is representable if and only if

1) For every set {B;} in STt there is a natural isomorphism F()'B))
— [[F(B;) (where > means free sum and [] means product).
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2) Let f: A — A'e™ be an onto homomorphism, K — {{a,, a,> |f(a;)
= f(ay)}, and p;: K — A be defined by p;(a;, a;) = a,.

Then F(f): F(A') —~ F(A) is one-lo-one and the image of F(f) is
{weF(4)|F(p))a = F(p,)a}.

In fact, there are not too many familiar examples of contravariant
representable functors. It will be the covariant case that is of most
interest. But as an example of the power of such a theorem let me indicate
how it can be used to construct injective modules, a task first performed
by Rheinhold Baer using nothing but his own ingenuity and the ordinal
numbers.

Injective algebras and cogenerators. Given a theory 7" and an algebra
AesT, A is injective if for every BesT and subalgebra B’ < B and
homomorphism f: B — A there is an extensiomn f: B - A such that
fIB" = f. In the case that T is the theory of left modules over a ring R,
this definition specializes to the usual.

A is a cogenerator if for every Be%T and pair of distinet x,yeB
there exists a homomorphism f: B —> A such that f(x) + f(y), unless B
has a single element in which case we require (B, 4) # @. Note that if
A is a cogenerator, then we obtain a one-to-one map B I/ A for
sufficiently large I (in particular for I = (B, 4)). If 7 contains an
injective cogenerator, then every T-algebra may be embedded in an
injective algebra because products of injectives are easily seen to be
injective.

The subject becomes a subject about functors once we make the
following two observations:

A is injective if and only if (—, A) carvies one-to-one maps vnto onto
maps.

A is a cogenerator if and only if (—, A) is a one-to-one functor.

Now let T, be the theory of left £ modules, T, the theory of abelian
groups. For ) the group of rationals, Z = ¢ the group of integers, it is
the case that @/Z is a divisable group and hence by Zorn’s lemma, an
injective object in 72, Moreover @/Z is a cogenerator in "2, Consider
the functor 71 #*: which forgets the module structure and
remembers only the underlying group structure. Such a functor is called
forgetful. 1t is a covariant functor that preserves the hypotheses of two
conditions in Theorem 1. Consider the functor (—,Q/Z): " — 9T,
Being representable, it carries the hypotheses of the two conditions
into their conclusions. Hence the composition 71 - #T2 satisfies the
two conditions and is representable, say by A e#T1. But the two functors
we are composing are both one-to-one and hence 4 is a cogenerator.
The forgetful functor carries one-to-one maps into one-to-one maps
and (—, @/Z) carries them into onto maps, hence A is injective.
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Constant maps and zero-ary operations. I have so far tried to
ignore one problem: what is a 0’ary operation on Ades/. We can
of course define 0’ary operations by using unary operations and
by adjoining the revelant equation, namely that which will become
interpreted as

< P ! Dy !
1) AxA—-+ A4 =4x4—> A4 A.
That equation is equivalent to
2) For all g,: B> A, ¢g,: B—> Aes/

91

: f g9 f
B3 A—>A=B2 A 4.

Statement 2) seems best to generalize the notion of constant function
to the notion of constant operator in a category.

We are faced, however, with the anomaly that this solution to the
problem of 0’ary operations makes the empty set a model (in sets) of
every algebraic theory. To find the alternate solution we apply what
by now has become a standard method. Whatever a generalized 0’ary
operation on A is, it should induce an ordinary 0’ary operation on (B, 4).
Hence by fiat we declare that a 0’ary operation on A4 is a collection
{fpe(B, A)}p.s such that for every B — B'e</, the induced map
(B', A) — (B, A) carries fp into fz (and hence will be a homomorphism).
Stated another way the diagram

-

Y
Br /_/

B

A

=
///

Bl
commutes regardless of the choice of B — B’
Now f, will be a constant map as just defined and furthermore

B f—g A=B->A4A f; A for arbitrary choice of B - A. But there is an
extensional difference between our two definitions: whereas a generalized
0’ary operation determines a constant map which in turn determines
the 0’ary operation the converse is false.

If (B, A) O for all Bes/, then there is a one-to-one correspondence
between the constant maps on A and the 0’ary operations on A.

If (B, A) = O some Bes/, then there are no 0’ary operations on A.

Tensor products of algebraic theories. Let T, and T, be theories, % the
category of sets and consider (#T1)*: which may be described as the
category of T,-algebras in the category of T;-algebras. Such an algebra
is a set A with a T,-structure and a T,-structure and such that each
T, operation is a T,-homomorphism. That is, given f,eT,, g,,¢T, and
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— e = SN - . e

a set of points in 4 {z;};=y"2y» we obtain the equation

(b) fn(gm(‘l’n: ey @rwy )y ey G (o rs < ey ‘E"nf’nn))

= O (fn(mlh trey ‘I"unl)y N (wlumj ceey Ty, )) .

The set of such equations is symmetric in f and ¢g. All the T-oper-
ators are T,-homomorphisms: (#71)"2 iy equivalent to (97271,

We can do better. There is a theory T such that T is equivalent
to (#THYT2. We shall call such theory the tensor product of the two
theories and denote it by T,®T,.

The operators of T,®T, are obtained by taking the union, in the
disjoint sense, of the operations from T, and 7',. The equations of T,®1T,
are obtained by adjoining to the equations from T, and 7T, all the equations
of the form (b), one for each pair of operators from T, and T,. This
construction is universal: for every category .oz, o#T1®T2 jg equivalent
to (2T1)T2, ‘

The tensor operation on theories is commutative and associative.

With mild restriction on 7', and 7', it turns out that 7,7, collapses
to a rather simple type of theory,

PropositioN. If both T, and T, have constants, then T,RT, has a
unique constant.

Proof. If fis a T,-constant, g a T,-constant, then the tensor equation
yields f¢ = gf and hence f = g.

Prorosrrion. If both T, and T, have binary operators each with a
two-sided neutral constant (just as in the Jénsson-Tarski theorem [6]),
then T @T, is the theory of modules over a half-ring (o ring without
subtraction).

Proof. Let 4 be the hypothesized operation coming from T;.

The two constants are one, so if we eall it 0, then 2+ 0 — » — 0 z.
The tensor equation gives ' '

(wt)+ (4+2) = (Wt y)+ (@+2).
1 2 1 2 1 2

If we let * =9y = 0, then w+2 = wt2.
1 2
Erasing the subscripts: (w+»)+ (y+2) = (w-+y)+ (2--2), which
equation implies the associativity and commutativity of + (let & = 0,
then let w = 2z = 0).
Every operation is a sum of unary operations, becanse every opera-
tion must be a - homomorphism and hence

@y ooy @p) = fla03,0,...,0)4F(0,2:,0,...,0)+ ... +f(0,...,0,z,).



ALGEBRA VALUED FUNCTORS 95

The set of unary expressions together with - generate the theory.
Let U be the set of unary expressions. It is closed under -+ and composition
and becomes a half-ring with 0 and 1.

A T,®T,-algebra is a commutative semi-group with 0, on which U7
operates, q. e. d.

And if T, and T, started out being the theories of modules over
rings R, and FR,, respectively, then T ,®T, is the theory of modules
over R,@ R, and E,® I, may be identified as the ring of unary expres-
sions in T'®T,.

The mnext propositions may be interpreted as saying that the
theories of modules over half-rings form an ideal in the class of theories.

ProrosirioN. If T, is the theory of modules over a half-ring R, then
Jor any Ty, there is a half-ring R’ such that T,QT, is the theory of modules
over R'.

Proof. Let 4 be the additive operator from T,.

Every expression in T,®T, is a homomorphism with respect to -+,
and as in the proof of the last proposition, every expression is a sum of
unary expressions. Hence the set of unary expressions is a half-ring and
its modules are the models of T,DT,, q. e. d.

Some other examples of tensor products of theories:

If T, is the theory of modules over R and T, is the theory with a
single unary operator X and no equations, then T,®7T', is the theory of
modules over the polynomial ring R[X].

If T, is as above and T, is the “discrete” theory with unary oper-
ators Xy, ..., X, and no equations, then T,®T, is the theory of modules
over R[X,, ..., X,,] where it is understood that the X’s do not commute.

It T, is as above and T, is the commutative discrete theory, that
which has unary operators X, ..., X, and the equations {X;X; = X;X,},
then T \®T, is the theory of modules over R[X,,..., X,,], where now
the X’s do commute.

The last T,, the commutative discrete theory, is the n-fold tensor
product of the simplest non-empty discrete theory.

In general, if T' is as above and T, is any theory all of whose oper-
ators are unary, then T,®T, is the theory of modules over the R-algebra
generated by the operators of T, reduced by the equations of T',. This
condition on T, is equivalent to saying that there is a semi-group ¥,
and that ¥",-algebras are sets on which 7°, operates. T,®T, is the semi-
group algebra R[¥7,].

It Ty is the theory of sets with a semi-group ¥°; acting on them,
then T,®7T; corresponds to ¥ ,x¥",. The associativity and commuta-
tivity of tensor products thus vyields that R[¥L,]QR'[#,] ~ R R’
[72X Y75 ].
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Co-algebras. Let T be an algebraic theory. A T-co-algebra in o7 may
be defined as a T-algebra in 7%, the dual category. It is useful however,
to translate back to .7: a T-co-algebra in 7 is an object 4 e.s7 together
with a T-co-structure, that is a collection of maps {f;: 4 - 2y, A}; such
that for every equation ¢(w;,...,a,) = h(xy,...,@,) in T when co-
interpreted in ./ holds. The co-interpretation of an n-ary expression
gy, ..., x,) 18 given by the recursive rules.

0) The co-interpretation of f;eT is f;: 4 - X, A.

1) If g(xyy...,2,) =a;, then §=u;: 4 - 2,4, where u; is the
canonical injection appearing in the definition of X.

2) Ifg(@yy ..., x) :fi(h‘l(wl’ covs @p)y o (@, .o wn)_i ooy by (@5 o0y @)
and if we have already interpreted the h;’s as maps h;: 4 — 2, A, then
we interpret ¢ as the composition

/ i Sﬁi
A—- 2,42 A.

Let us specialize to a very special case. Let 7' be the theory for
groups and  the category of spaces with base points and homotopy
classes of maps. # is an abstract category. It is, if you will, a quotient
of the concrete category of spaces and continuous maps, obtained via
the homotopy congruence relation. The sum of two spaces A and B
in # is constructed as the “wedge sum” Av B, by taking the disjoint
union of 4 and B and then identifying their base points. If A4 is a T-co-
algebra, or as usually said in this context, a co-group, then its “co-multi-
plication” is a map A4 — Av 4. The best known co-groups are the spheres.
If 8" is the m-sphere, note that if the equator 8" ' < 8" is collapsed to
a point, the result is homeomorphic to S"vS". This collapsing is the
co-multiplication S — 8“vS§". The constant map is the map which
sends everything to the base point. The associativity equation does not
hold in the category of continuous maps but it does hold in #.

If A is T-co-algebra in .7, then for any Be./, (A, B) acquires
a T-structure — not a co-structure. Hence the co-multiplication on
spheres makes (8", B) into a group. And, of course, it is the usual multi-
plication on the usual homotopy groups.

- The canonical co-structure on free algebras. Let T be an algebraic
theory and let F' be the free algebra generated by zeF in 7. F has a
canonical T-co-structure in #*. (Note that F need not have a T-structure
in #T.) First observe that X,F is the free algebra on n generators
{@yy ..., @,}. The canonical co-interpretation of f;e7T is defined to be
the map f,: F — 2y, F which sends x into the expression fi(zy, ..., 2,)
eX, F. If g is any n-ary expression in 7', then the co-interpretation of
¢ turns out to be the map ¢g: F — 2, F which sends 2 into g(x, ..., )
e2, F and the equations of T hold for the canonical co-interpretations.
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The T-co-structure on F makes the set of maps (¥, B) into an algebra.
Of course the set-valued functor (F, —) is naturally equivalent to the
forgetful functor #T — & (it forgets the structure). When we view
(£'y —) as an algebra valued functor, it is naturally equivalent to the iden-
tity functor #* — #7. The canonical co-structure we have described on I
is characterized by this last fact: it is the only co-structure (up to isomor-
phism) which makes (F, —) naturally equivalent to the identity functor.

Let 1': o —~ # be a contravariant functor which carries finite sums
into products. 7' will then carry any T-co-algebra in .o into a T-algebra
in #. If </ is an algebraic category, then 7T (F), for F the free algebra
In «7, carries a natural T-structure in %. In other words, T(F)e#T.
Referring back to theorem 1, if 7 is a functor satisfying the two condi-
tions of that theorem, then perforce it carries finite sums into finite
products and T (F)esT1QT:, '

Now if 7' is representable, then 7T'(F) is isomorphic to (#, 4) as a
T,-algebra, and (¥, A) is isomorphic to 4. Hence if we wish to find the
representor of 17" we need only evaluate 7 on the free algebra Fes#T1
and obtain the T,®T,-algebra T(F)esSTi®T2, In the construction of
injective modules we start with the free algebra in the category of right
R modules, namely, R itself. R is simultaneously a left-R module (there’s
the co-structure). We consider the set of maps (R, Q/Z), where R is
momentarily considered to be just an abelian group. But the left
R-module structure on R makes (B, Q|Z) into a right R-module. Such
is an injective cogenerator. (This fact was first observed by Eckmann
and Schopf [3]).

Theories for autonomous categories. Tf T is the theory of groups, then
the only co-groups in %7 are the free groups. If T is the theory of
abelian groups, then for every AT there is a unique 7T-co-structure
on A, namely that for which the co-multiplication % : 4 —~ AD A is such
that m(x) = (@, ) (A+A4~AxA in &T). For A,BesT, (A, B)
acquires a group structure by either the group structure on B or the
co-group structure on A; they are the same. Note that B has a unique
T-structure in . That is (¥T)T = ¥F, TQT = T.

In general, if T is a theory such that there exists a functor Hom (4, B)
with values in T for A4, Be#T such that the underlying set of °
Hom (4, B) is the set of maps from 4 to B, then each Be%7 has a cano-
nical T-structure in ¥7 (we have an embedding ST - #TOT) and
each Ae¥T has a ecanonical T-co-structure in <T. We can conclude
that T must be such that each T-operator is a T-homomorphism. As
in my examination of T,®T,, we can prove that such a T has at most
one constant, and that if it has a binary operation with zero, then T
is the theory of modules over a commutative half-ring.

Colloquium Mathematicum XIV 7
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Linton, in his Columbia dissertation [8] calls a category autonomous
if it has a forgetful functor F: .« - & and a functor Hom : /"X — &
such that #(Hom(A, B)) ~ (4, B). Hence we have just identified those
theories T such that 7T is autonomous.

Let # be an arbitrary category with finite products. What is the
largest algebraic theory T such that we can factor Hom : A A > S
through the forgetful functor 7 > % ? T may be constructed as the
algebraic theory of the identity functor [e(«/, ).

T is necessarily such that &% is autonomous. If .« is the category
of left R-modules, T will be the theory of modules over the center of R.
In general, if .« = %, then T is the subtheory of 1" generated by those
expressions in 7T*¢ which are 7" homomorphism.

Co- constant maps and 0’ary co-operations. If f is a unary operation
in T, then the co-interpretation of the equmation f(z) = fly) is

7 Uy i Uy
A> A > A+ A =4 A—> A+ 4

which is equivalent to A —]; ASB—4 —; A —]; B for all ¢,he(4d, B),
all B.

We shall call such a map a co-constant operation.

If f is a 0’ary operation in 7, then its co-interpretation is a choice

{fze(A, B)}p.s such that A {-E B+B=A E B’ for all B > B'es.

If (A, B) # 0 all Bes, then the co-constant operations on A and the
0’ary operations on A are in one-to-one correspondence.

If (A, B) = O some Best, then there are no O’ary operations on A.

Now for the free-algebra Fe#T, (F, B) is empty only if B is empty,
hence only if T has no @’ary operations. Otherwise, if 7' does have
0’ary operations, then the 0’ary co-operations on F correspond to
the coconstant operations and they in turn correspond to the 0’ary
operations in 7.

In general, all co-constant operations on Aes/ must be maps all
of whose values are algebraic constants. And conversely, any A — A
the image of which is in the atomic subalgebra of A4 is a co-constant
operation.

Covariant representable functors. We shall say that a covariant functor
T: o 5T is representable if there exists a T-co-algebra A e/ such
that 7' is naturally equivalent to the functor (4, —). If T is the empty
theory, this definition coincides with the standard: ¥ = . and (4, —)
is the usual set valued functor.

1 shall momentarily use the language of [4] to state and sketch the
proof of a theorem which will be later translated back into the language
of general algebra.
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THEOREM 2. Let o/ be a complete category, T an equational algebraic
theory, and T : o7 — T a covariant functor. T is representable if and only
if T has a left-adjoint.

Proof. I shall not here construct the left-adjoint of a representable
functor. The latter sections on tensor products of algebras strongly
suggest the construction for general , and indeed, contains the
construetion for the case that .o is an algebraic category.

Suppose that 1':. - %" does have a left-adjoint §: 9T - o,
Let F Dbe the free algebra on one generator in %", The adjointness of T
and S says that the set-valued functors (F,T(—)) and (8(F), —) are
naturally equivalent. The canonical T-co-structure on F induces a T-co-
structure on S(#) (left adjoints always preserve sums), and if we view
(F,T(—)) and (S(F), —) as T-algebra valued functors, the natural
equivalence is still an equivalence (it is a homomorphism of algebras
because of its naturality on the first variable). Of course, as we have
already remarked (F, —) is naturally equivalent to the identity functor,
hence 7'(—) is naturally equivalent to (S (F), —), q. e. d.

COROLLARY. Let </ be a complete category, T an equational algebraic
theory, and T : of - 3’5" a contravariant functor. T has an adjoint on the
right if and only if T is representable.

Proof. Just replace ./ with .o7*,

For the proof of Theorem 1 use the Special Adjoint Funetor
Theorem of [4] together with the observations that first, an algebraic
category always has a generator (the free algebra) and second, the two
conditions of theorem 1 are equivalent to the statement that T carries
right-roots into left-roots, . e. d. .

It will be a little more difficult to translate the covariant case into
general algebra. The special adjoint functor theorem can not be used
because an algebraic category need not have a co-generator (e. g. the
category of groups, abelian or not). We shall need the general adjoint
functor theorem. ,

The continuity conditions are easy to translate and will be stated
in the theorem below. The solution set condition needs analysis. It
turns out that it is easier to translate the conditions if we stipulate the
size of the representor. Let A #T! be a finitely generated T,-algebra
with a T,-co-structure. Let {B;} be a directed family of subalgebras of
Bes™M, that is, every finite subfamily in {B;} is bounded in {B,}. Note
that if we consider (4, B;) as a subset of (4, B), then

U(Aa Bi) = (Ay UBz)

This property of (4, —), namely that it preserves directed unions
is, in fact, equivalent with the property that A be finitely generated.
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THEOREM 3. A functor T : T FT2 is representable by a finitely
generated T,-algebra (with a T ,-co-structure) if and only if

1) T preserves products,

2) T preserves difference kernels: if fy, foe(B,0) FT1 and K =
{xeB|f,(x) = f(2)}, then T(K — B) is a one-to-one map and its image
is {weT(B)|(Tf)(x) = (Tf.) (@)}

3) T preserves directed wnions: if {Bi} is a direcled family of sub-
algebras of B, then \JT(B;) = T(U By).

Proof. In the language of [4] we wish to show that if BesT ig
generated through T' by Fes™, then B is finitely generated. Officially
we wish to show more according to 3,L in [4], but this is a typical case.

Consider the generating map ¥ — T(B). Let {B;} be the directed
family of finitely generated subalgebras of B.

\U B; = B and hence the map F — T'(B) must factor through some
T(B,). By the definition of the phrase “generated by F through 7' we
conclude that for some i, B; = B, and that B is finitely generated,
q. e. d.

The general result for covariant representable functors between
algebraic categories needs the following definition, where L is any
infinite cardinal number.

An L-directed family of subalgebras is a family such that every sub-
family of cardinality L or less is bounded within the family.

THREOREM 4. A functor T:%Tv— FT2 is representable by o T,
algebra with L or less generators if 1) T' preserves products, 2) difference
kernels, and 3) L-directed unions.

Lawvere functors. A Lawvere functor is a functor T: &#T1— &*2 which
preserves underlying sets. The easiest are those that “forget” some of
the structure, e. g., the functor that sends a ring to ‘its multiplicative
semi-group, or the functor that sends an R-module to its underlying
additive group. An example of a Lawvere functor which is not forgetful
is that which sends an associative algebra to a Lie-algebra by defining
[, y] = oy —yx.

A TLawvere functor trivially preserves products, difference kernels
and directed unions and hence by Theorem 3 it is representable.
Suppose Ae¥#T1 represents a Lawvere functor. Because there is
a natural equivalence between the sets B and (4, B) it must be the case
that A is the free algebra on one generator in #T1, Hence the Lawvere
functors from #T1 to T2 are in one-to-one correspondence with the
T,-co-structures that may be placed on the T, free algebra. And these
in turn are in one-to-one correspondence with the theory-maps Ty — T,
as described below.
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Consider a T,-co-structure on the free algebra Fe#71. For each
fieT'; there is assigned f; : F — 2 F'. Bur f; is determined by f;(z), for x
the generator of F, and f;(z) is ]ust an n-ary expression in T,. For each
operation in T, we will obtain a T,-expression of the same valence, and
for each equation in T, we will obtain a T,-equation if we replace the
operators with the corresponding expressions. Such is what we mean
by a theory-map T, —T,. Conversely any theory-map yields a T,-co-
structure on FesT1.

A familiar example is the case when we are given a ring homo-
morphism R, — R,. Such may be interpreted as a map between the
algebraic theories of their modules. The corresponding Lawvere functor
is the familiar change-of-rings functor.

When T, is a sub-theory of T,, perhaps fewer operators, perhaps
fewer equations, then the Lawvere functor 71 - 9Tz ig the forgetful
functor.

When T, is the theory of Lie-algebras, T, the theory of associative
algebras, and T, — T, the theory map that is constant on 0, +, — and
sends [x, y] into oy —yx, then the Lawvere functor 71 » T2 ig the
previously mentioned example.

Remark. Abandoning formal linguistic inhibitions we obtain a
contravariant functor from the category of algebraic theories and theory
maps to the category of categories. Lawvere in [8] calls this the
Semantics Functor. He identifies therein its adjoint which he calls the
Algebraic Structure Functor. Semantics is adjoint to Structure.

Tensor products of algebras. Let T,, T, be algebraic theories. We
shall denote the category of T'-co-algebras in %72 by the notation ,, R,
Given Aeq, FT y Bep, ™ consider the composition

T ("l,-—) T (B’_) T
N A et B

By theorem 4 the composition is representable by a Tj-co-algebra
in 71, Let us call it B A ey L

(t) (B®4,0)~(B, (4, 0).

A little general functor theory [4] makes ® into a two variable
functor

I, TN > 1y P

and the isomorphisms (t) are natural in all three variables. In particular
—@4: 9T - FT1 iy the adjoint of (4, —): %1 #T2 which is
just a fancy way of saying that equation (t) holds and is natural in B
and (.
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A few examples: First are the classical usages of tensor product.
The tensor product of rings is not an example of my tensor product of
algebras, it is an example of the tensor product of theories. Tensor prod-
ucts of modules, however, are examples: Let T, be the theory of right
R,-modules ,T'; the theory of abelian groups. An object A eT2.VT1 is just
a left R-module: Be#*2 is a right R-module. B® ATt is a group.
In this case we have taken T; to be empty.

Let T, be the theory of right-R,-modules, 1y the theory of
right Rj-modules. Then A e, &' is a group with a right R, module
structure and a left R, module such that 7»,(xr;) = (r,x)r, for all
(ry, &y rspe By X AX R,. Similarly BeT35PT2 is a right R,-module, left
Rs-module and ry(axry) = (r3x)7,. B®AeT35PT1 is right R,-module and
a left R,-module.

The isomorphism (t) gives the universal mapping property of B® A.
A map B (4, C) is an R,-bilinear map.

Let T'; be the theory of rings with identity, 7', the theory of groups,
T: 9" — "2 the functor which sends a ring to its group of units.
T may easily be seen to verify the condition of theorem 3 and hence
is representable, say be AeTZSPTl. The isomorphism (t) identifies
B® Aes™, for Bes™, as the group ring of B. In this fashion we can
identify 4 :Z® A is the group ring of Z. But (Z®4,(C) ~(Z, (4, )
~(4,0) for all ¢ and hence Z®A — A. If we construct A4 as
Z[X,Y](XY 1, YX—1) or more conveniently as Z[X, X '] the Z
polynomials with positive and negative coefficients, then we can construct
its T',-co-structure as that given by the co-multiplication

W2 B[ XY - X, B Y- 8K, X% e B[ X, Xp X2, X3P—1]

where m(X) = (X, X,).

ProprositioN. Tensor products of algebras are associative. That is,
OCR(B®A) is naturally equivalent to (C @ B)® A.

Proof. Immediately from the definition of Bx A as that which
represents (B, (4, —)).

Characterization of functors given by tensoring. We now prove

THEOREM 5. A covariant functor T : T — T2 s naturally equi-
valent to — QR A 1 FT1 - T2 where Aep ™ if and only if

1) T preserves free sums,

2) I preserves difference co-kernels: If f: B -~ B is an onto map
in ST, K = {(x,, > e BX B|f(#;) = f(2)} and pi(xy, 35) = @;, then
T(B)—T(B") is onto and the congruence it defines on TB is gener-
ated by pairs {<y,, 3> T(R)XT(B)| there is zeT(K), T(p))(2) = w3}
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Proof. That tensor products enjoy the two properties is a formal
consequence of the adjointness relation (t), as described in [4]. For the
other direction we may rely on the Special Adjoint Functor Theorem,
q. e. d.

It we deseribe a construction, we would note that A as a T,-algebra
is T'(F), where I is the free algebra in %71, 4 acquires a T,-co-structure
from the canonical co-structure on F and the fact that 7' preserves sums.

The general functor approach indicates that we should be able to
define a more general tensor product #*® .o/ where o7 is an arbitrary
right complete category and ,«/ is the category of T-co-algebras in 7.
And indeed we can. Or could if so inclined.

Moreover we could define a “symbolic hom” functor (¥, «T)
contravariant on the first variaﬁle, covariant on the second. And the
isomorphism (t) would still hold.

Generators and relations for tensor products of algebras. The formal
properties of @ as described in Theorem 5 tell us that there is a scheme
for generators and relations. If we represent BeTa.S”Tl as a free algebra
2, F modulo a congruence I, then the difference co-kernel preservation
will yield a congruence on X, F®@A = X, A which defines BA. As
for the Ty-co-structure on B, it transfers to B®A simply by the sum-
preservation property of — @ A4.

We shall, however, directly argue the proof of the following theorem:

THEOREM 6. Let Bed™, Adep s BQRA is the T,-algebra gen-
erated by {bQ@a|beB, acA} subject to the relations

Type I: for each fieTy, beB, ay, ..., ayed

b®fi(a17 veey av,;) :.fi(b®a13 teey b®a‘ui);

Type 1L: for each g¢;eTy, by, ..., b, eB, aecA lot a, cevy Gy e be
such that the co-operator g;: A —~ A is such that g;(a) = h(a,,..., Ay,)
where h is a viexpression in T,:

gilbyy ...y by )@a = h(b,@ay, ..., by, @ ay,) .

Proof. For the purposes of the proof I shall suppose that
B®@A is defined by the generators and relations in the theorem, and
I shall construct the isomorphisms ¢:(B®4,0) (B, (4, 0)) and
P (B, (Aa O)) = (B®As O)

Definition of ¢. Given a T,map F:B®A ~C, ¢oF must be
a T,-map from B to (4, C).

Given beB, ¢F'(b) must be a T,-map from 4 to C.

Given aed, (¢F (b))(a) must be an element in C.
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Define (pF (b))(a) = F(b®a).
First verification. ¢f'(b) is a T,-map. Use Type 1 relations.
Second verification. ¢F is a T,-map. Use Type II relations.

Definition of ». Given a T,-map G:B — (4,0), G must be
a T,-map from B® A to C.

Given beB,aed, yG(b®a) must be an element in C.

Define pG(b®a) = (G(b))(a) and extend to a homomorphism.

First verification. @ can indeed be extended to all of B®A.
One must show that the type I and II equations do not obstruct.

Second verification. G is a T,-map. Automatic because »@
was defined on the generators and extended.

Finally: ¢ and y are inverses of each other.

pp@ = G because

(ppG)(b)(a) = pG(b@a) = (G(D))(a)
and ypl’ = F because
(ppF)(b@a) = (¢F (b)) (a) = F(b@a).

COROLLARY. If B is a finitely generated T, -algebra and A is finitely
generated as a T,-algebra, then so is BRA.
If further, B and A are finitely related, then so is BRA.

Co-Lawvere functers. Given a theory-map T, — 7', we have seen
that the corresponding Lawvere functor Tt - T2 is represented by
the free algebra Fe%T! where F has a T,-co-structure induced by the
theory-map T, —T,. The Co-Lawvere functor —@F : 9T — Tt has
an even simpler construction then for general tensor products. Because
F is generated by a single element one can show that B®F is the
T,-algebra generated by {b|beB} subject to the relations,

falby,y oony by;) = Gi(byy ..., Z—),,i) where fieT,

and g¢; is the T -expression determined by the theory map 1', — T,.

If all the operators in T, have ancestors in T,, e. g. when T, can be
obtained from T, by throwing away some equations, then the Lawvere
functor #*1 - T2 ig just an inclusion and the co-Lawvere functor
T2 FT1 gends BesTt to B mod the congruence generated by the
additional equations.

If T, — T, is one-to-one, i. e. T, can be obtained from T'; by throwing
away some operators, then the Lawvere functor %1 — 972 is simply
a forgetful functor and the co-Lawvere functor is an inflationary
operation.
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Automorphisms on algebraic categories. Let 7: % - %7 and
S: T — 9T be functors such that 78 and 87 are naturally equivalent
to the identity functors. Because the hypotheses and conclusions of
the condition of Theorem 3 are all equivalent to categorically definable
statements and because the conditions are true for the identity functor,
they are true for 7' and S. Hence 7' and S are representable by
finitely generated algebras:

T ~(4,—), 8~(B,—), A,Beys".

1t follows that A®B and B®A are each isomorphic, as objects
in T, to the free algebra with its canonical co-structure, and the (t)
isomorphism says that 7 ~ —QB, 8~ —-QA.

If we consider the isomorphism classes of finitely generated objects
in % we obtain a semi-group under ® with neutral element #. The
group of units is isomorphic to the automorphism-class-group of 7,
defined in [4] as the group of natural equivalence classes of auto-
morphisms. We shall denote that group by A (7).

Let A(T) be the group of automorphisms of theory-maps of 7.
Let 77 (T) be the unary expressions of 7' considered as a semi-group and
let G(T) be the group of units in 7" (T). For feG(T) the map ¢ : T — T
defined by

P (g(;lfl — aﬁ,,)) =% lg (f(azl) 5 S § f(a;,,))

18 a theory map. We obtain map G(T) - A(T), and we call its image
TA(T), the group of inner-automorphisms on T.

PrOPOSITION. ¢ elA(T) if and only if the p-co-structure induced on F
is 1somorphic to the canonical co-structure.

Define SA (™) to be the automorphisms that leave the free algebra
unchanged (up to isomorphisms).

PropositioN. SA(ST) ~ A(T)/IA(T).

If 7 is an autonomous category, then SA(¥7T) is a normal sub-
group of A(ST). In general it is not. The index of S4 in A is as big as
the orbit of F, and it measures our inability to characterize the free
algebra using only category predicates.

Remark (added in proof). Lawvere has suggested that tensor
products of theories be called Kronecker products. Though the same
symbol @ be retained, such usage will indeed remove a source of con-
fusion (see p. 93).
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