Poly: an abundant categorical setting for mode-dependent dynamics

David I. Spivak

ACT2020 2020 July 7

Outline

1 Introduction

- Broader aims
- Plan
- **2** Brief introduction to Poly
- **3** From Moore machines to mode-dependence
- 4 Conclusion

Since a young age, I thought that math could help me think about reality.

- This reality; my own life; what's really going on right now.
- I wanted to create math that would help me think and ask questions.

Since a young age, I thought that math could help me think about reality.

- This reality; my own life; what's really going on right now.
- I wanted to create math that would help me think and ask questions.

Is everything information, made meaningful by structured relationships?

- At some point I thought that everything is information.
- I studied how information is stored and communicated, e.g. databases.

Since a young age, I thought that math could help me think about reality.

- This reality; my own life; what's really going on right now.
- I wanted to create math that would help me think and ask questions.

Is everything information, made meaningful by structured relationships?

- At some point I thought that everything is information.
- I studied how information is stored and communicated, e.g. databases.

Is everything process, interactive transforming of each others' products?

- I noticed that process didn't seem to fit well into databases.
- I studied how complex processes are formed from simpler ones.

Since a young age, I thought that math could help me think about reality.

- This reality; my own life; what's really going on right now.
- I wanted to create math that would help me think and ask questions.

Is everything information, made meaningful by structured relationships?

- At some point I thought that everything is information.
- I studied how information is stored and communicated, e.g. databases.

Is everything process, interactive transforming of each others' products?

- I noticed that process didn't seem to fit well into databases.
- I studied how complex processes are formed from simpler ones.

Shocking plot twist:

- These two worlds converge in **Poly**.
- I only have time to talk about dynamics today.

Plan for today

Today's plan:

- Recall some basics of **Poly**;
- Discuss how **Poly** models dynamical systems;
- Conclude with a brief summary.

Outline

1 Introduction

2 Brief introduction to Poly
 Poly as a category
 Monoidal structures

3 From Moore machines to mode-dependence

4 Conclusion

Poly for experts

What I'll call the category **Poly** has many names.

- The free completely distributive category on one object;
- The full subcategory of [Set, Set] spanned by functors that preserve connected limits;
- The full subcategory of [Set, Set] spanned by coproducts of repr'bles;

Poly for experts

What I'll call the category **Poly** has many names.

- The free completely distributive category on one object;
- The full subcategory of [Set, Set] spanned by functors that preserve connected limits;
- The full subcategory of [Set, Set] spanned by coproducts of repr'bles;
- The "generalized lens category" associated to the canonical self-indexing Set/-: Set^{op} → Cat of Set;
- The category of containers (in the sense of Michael Abbott).

But let's make this easier.

Poly as a category

What is a polynomial?

The category of polynomials

Easiest description: Poly = "sums of representables functors $Set \rightarrow Set$ ".

- For any set S, let $y^{S} := \mathbf{Set}(S, -)$, the functor *represented* by S.
- Def: a polynomial is a sum $p = \sum_{i \in I} y^{p_i}$ of representable functors.
- Def: a morphism of polynomials is a natural transformation.
- In **Poly**, + is coproduct and \times is product.

Notation

We said that a polynomial is a sum of representable functors

$$p\cong\sum_{i\in I}y^{p_i}.$$

But note that $I \cong \sum_{i \in I} 1 = \sum_{i \in I} 1^{p_i} = p(1)$. So we can write

$$p \cong \sum_{i \in p(1)} y^{p_i}.$$

Bimorphic lenses are monomials

A bimorphic lens (Hedges) between set-pairs (S_1, T_1) and (S_2, T_2) is:

$$S_1 \xrightarrow{get} S_2$$

$$S_1 \times T_2 \xrightarrow{put} T_1$$
(1)

Let **Lens** denote the cat'y with set-pairs as objects and lenses as morphisms.

There is an equivalence of categories $Lens \cong Poly_{monomials}$.

• Send
$$(S, T) \mapsto Sy^T$$
.

• Note, $\operatorname{Poly}(S_1y^{T_1}, S_2y^{T_2}) \cong \prod_{s \in S_1} S_2 \times T_1^{T_2}$, elements are as in (1).

So we can think of **Poly** as a generalized lens category.

Four interacting monoidal structures

We've seen two monoidal structures on **Poly** $(+, \times)$; there are two more.

Dirichlet product \otimes ; unit is y.

• Let $p = \sum_{i \in p(1)} y^{p_i}$ and $q = \sum_{j \in q(1)} y^{q_j}$; compare:

$$p imes q \cong \sum_{i \in p(1)} \sum_{j \in q(1)} y^{p_i + q_j}$$
 and $p \otimes q \cong \sum_{i \in p(1)} \sum_{j \in q(1)} y^{p_i q_j}.$

Four interacting monoidal structures

We've seen two monoidal structures on **Poly** $(+, \times)$; there are two more.

Dirichlet product \otimes ; unit is y.

Let
$$p = \sum_{i \in p(1)} y^{p_i}$$
 and $q = \sum_{j \in q(1)} y^{q_j}$; compare:

$$p imes q \cong \sum_{i \in p(1)} \sum_{j \in q(1)} y^{p_i + q_j}$$
 and $p \otimes q \cong \sum_{i \in p(1)} \sum_{j \in q(1)} y^{p_i q_j}$.

• Composition product \circ ; unit is y.

- Just compose the functors; it's usual polynomial composition.
- This monoidal structure is non-symmetric, $p \circ q \not\cong q \circ p$.
- It is a very interesting monoidal structure, as we'll see.

Composition monoidal structure (Poly, \circ , y)

Let $p, q, \in \mathbf{Poly}$ be polynomials. The formula for $p \circ q$ is

$$p \circ q \cong \sum_{i \in p(1)} \prod_{d \in p_i} \sum_{j \in q(1)} \prod_{e \in q_j} y.$$

Later we'll think about $p^{\circ n}$:

$$p^{\circ n} \cong \sum_{i_1 \in p(1)} \prod_{d_1 \in p_{i_1}} \sum_{i_2 \in p(1)} \prod_{d_2 \in p_{i_2}} \cdots \sum_{i_n \in p(1)} \prod_{d_n \in p_{i_n}} y$$

It's a length-*n* strategy: a choice of i_1 , and for every d_1 , a choice of i_2 , etc.

Outline

1 Introduction

2 Brief introduction to Poly

3 From Moore machines to mode-dependence

- Interacting Moore machines
- Mode-dependence
- Behavior via comonoids

4 Conclusion

Moore machines

Definition

Given sets A, B, an (A, B)-Moore machine consists of:

- a set *S*, elements of which are called *states*,
- a function $r: S \rightarrow B$, called *readout*, and
- a function $u: S \times A \rightarrow S$, called *update*.

It is *initialized* if it is equipped also with

• an element $s_0 \in S$, called the *initial state*.

We refer to A as the *input set*, B as the *output set*, and (A, B) as the *interface* of the Moore machine.

Moore machines

Definition

Given sets A, B, an (A, B)-Moore machine consists of:

- a set *S*, elements of which are called *states*,
- a function $r: S \rightarrow B$, called *readout*, and
- a function $u: S \times A \rightarrow S$, called *update*.

It is *initialized* if it is equipped also with

• an element $s_0 \in S$, called the *initial state*.

We refer to A as the *input set*, B as the *output set*, and (A, B) as the *interface* of the Moore machine.

Dynamics: an (A, B)-Moore machine (S, r, u, s_0) is a "stream transducer":

• Given a list/stream $[a_0, a_1, \ldots]$ of A's...

• let
$$s_{n+1} \coloneqq u(s_n, a_n)$$
 and $b_n \coloneqq r(s_n)$

• We thus have obtained a list/stream $[b_0, b_1, \ldots]$ of *B*'s.

Moore machines as lenses

We can see Moore machines in terms of lenses / polynomials.

- An uninitialized Moore machine $r: S \rightarrow B$ and $u: S \times A \rightarrow S$ is:
 - A lens $(S, S) \rightarrow (B, A)$, i.e....
 - A map of polynomials $Sy^S \to By^A$.
- An initialized Moore machine also has a map $1 \rightarrow S$, so it is:
 - A composable pair of lenses $(1,1) \rightarrow (S,S) \rightarrow (B,A)$, i.e....
 - a composable pair of polynomial maps $y \to Sy^S \to By^A$.

Depicting Moore machine interfaces

Here's how we depict interfaces (A, B) for Moore machines:

If, e.g. $A = A_1 \times A_2$ and $B = B_1 \times B_2 \times B_3$, we will instead draw:

$$\begin{array}{c} A_1 \\ A_2 \end{array} - \begin{array}{c} B_1 \\ B_2 \\ B_3 \end{array}$$

Depicting Moore machine interfaces

Here's how we depict interfaces (A, B) for Moore machines:

If, e.g. $A = A_1 \times A_2$ and $B = B_1 \times B_2 \times B_3$, we will instead draw:

$$\begin{array}{c} A_1 \\ A_2 \\ - \end{array} \begin{array}{c} B_1 \\ B_2 \\ B_3 \end{array}$$

In **Poly** these two interfaces are denoted By^A and $B_1B_2B_3y^{A_1A_2}$.

Wiring diagrams

Here's a picture of a wiring diagram:

It includes three interfaces: Controller, Plant, and System.

Controller =
$$By^{C}$$
 Plant = Cy^{AB} System = Cy^{A}

Wiring diagrams

Here's a picture of a wiring diagram:

It includes three interfaces: Controller, Plant, and System.

Controller =
$$By^{C}$$
 Plant = Cy^{AB} System = Cy^{A}

The wiring diagram represents a lens Controller \otimes Plant \rightarrow System.

$$By^{C} \otimes Cy^{AB} \longrightarrow Cy^{A}$$

Moore machines and wiring diagrams as lenses

To summarize what we've said so far:

- A wiring diagram (WD) is a lens, e.g. By^C ⊗ Cy^{AB} → Cy^A.
 Each Moore machine is a lens, e.g. Sy^S → By^C and Ty^T → Cy^{AB}.

Moore machines and wiring diagrams as lenses

To summarize what we've said so far:

A wiring diagram (WD) is a lens, e.g. By^C ⊗ Cy^{AB} → Cy^A.
 Each Moore machine is a lens, e.g. Sy^S → By^C and Ty^T → Cy^{AB}.

We can tensor the Moore machines and compose to obtain $STy^{ST} \rightarrow Cy^A$.

- So a wiring diagram is a formula for combining Moore machines.
- The whole story is lenses, through and through.

Poly and mode-dependent dynamics

All of the above on Moore machines and WDs took place in Polymonomial.

- An arbitrary polynomial *p* is a sum of monomials.
- A Moore machine is a map $Sy^S \to By^A$.
- Generalized Moore machine: a map $Sy^S \rightarrow p$ with $p \in \mathbf{Poly}$ arbitrary.
- We can think of this as *mode-dependence*:
 - The position—and hence directions—depends on the state.
 - Roughly, the input-output type can change based on state.

Poly and mode-dependent dynamics

All of the above on Moore machines and WDs took place in Polymonomial.

- An arbitrary polynomial *p* is a sum of monomials.
- A Moore machine is a map $Sy^S \to By^A$.
- Generalized Moore machine: a map $Sy^S \rightarrow p$ with $p \in \mathbf{Poly}$ arbitrary.
- We can think of this as *mode-dependence*:
 - The position—and hence directions—depends on the state.
 - Roughly, the input-output type can change based on state.

I'll discuss mode dependence for wiring diagrams by example.

Example

This whole picture represents one morphism in Poly.

- Let's suppose the company chooses who it wires to; this is its mode.
- Then both suppliers have interface wy.
- Company interface is $2y^{w}$: two modes, each of which is *w*-input.
- The outer box is just y, i.e. a closed system.

So the picture represents a map $wy \otimes wy \otimes 2y^w \to y$.

- That's a map $2w^2y^w \rightarrow y$.
- Equivalently, it's a function $2w^2 \rightarrow w$. Take it to be evaluation.
- In other words, the company's choice determines which w it receives.

Comonoids in (Poly, \circ , y)

For Moore machines—usual or generalized—what makes $Sy^S \rightarrow p$ tick?

- We wrote some recursive formula for the "stream transducer".
- But it turns out that what we were seeing is really about comonoids.
- Comonoid: $k \in \mathbf{Poly}$, $\delta: k \to k \circ k$, $\epsilon: k \to y$, usual laws.
- A comonoid in (**Poly**, \circ , y) could be called a *polynomial comonad*.
- Sy^{S} has the structure of a comonad, the "store comonad".

Comonoids in (Poly, \circ , y)

For Moore machines—usual or generalized—what makes $Sy^S \rightarrow p$ tick?

- We wrote some recursive formula for the "stream transducer".
- But it turns out that what we were seeing is really about comonoids.
- Comonoid: $k \in \mathbf{Poly}$, $\delta: k \to k \circ k$, $\epsilon: k \to y$, usual laws.
- A comonoid in (**Poly**, \circ , y) could be called a *polynomial comonad*.
- Sy^S has the structure of a comonad, the "store comonad".

How does it work?

Cofree comonoids and terminal coalgebras

The forgetful functor $Comon(Poly) \rightarrow Poly$ has a right adjoint, Cofree.

- Let $\mathscr{K} = (k, \delta, \epsilon)$ be a comonoid in (**Poly**, \circ, y).
- Given poly'l map $k \to p$, get a comonoid map $\mathscr{K} \to \text{Cofree}(p)$.
- The formula for cofree comonoid on *p* in general is the limit:

$$1 \longleftarrow y \cdot p(1) \leftarrow y \cdot p(y \cdot p(1)) \leftarrow y \cdot p(y \cdot p(y \cdot p(1))) \leftarrow \cdots$$

• Substituting 1 for y we get the usual formula for terminal coalgebra. $1 \leftarrow p(1) \leftarrow p(p(1)) \leftarrow p(p(p(1))) \leftarrow \cdots$

Cofree comonoids and terminal coalgebras

The forgetful functor $Comon(Poly) \rightarrow Poly$ has a right adjoint, Cofree.

- Let $\mathscr{K} = (k, \delta, \epsilon)$ be a comonoid in (**Poly**, \circ, y).
- Given poly'l map $k \to p$, get a comonoid map $\mathscr{K} \to \text{Cofree}(p)$.
- The formula for cofree comonoid on *p* in general is the limit:

$$1 \longleftarrow y \cdot p(1) \leftarrow y \cdot p(y \cdot p(1)) \leftarrow y \cdot p(y \cdot p(y \cdot p(1))) \leftarrow \cdots$$

• Substituting 1 for y we get the usual formula for terminal coalgebra. $1 \leftarrow p(1) \leftarrow p(p(1)) \leftarrow p(p(p(1))) \leftarrow \cdots$

Example:

In the case p = By^A, we have Cofree(p) ≅ B^{List(A)}y^{List(A)}.
 So Sy^S → B^{List(A)}y^{List(A)} gives

$$S imes \operatorname{List}(A) o B$$
 and $S imes \operatorname{List}(A) o S$.

Given the initial state s_0 , we get back our stream transducer.

The amazing world of comonoids in Poly

Comonoids in **Poly** are amazing.

- Not only are they what make generalized Moore machines tick, but...
- Ahman-Uustalu showed that they're precisely categories!

 $Comon(Poly) \cong (Categories, Cofunctors)$

An easy fact is that their coalgebras correspond to copresheaves!

- Garner showed that bimodules between them correspond to parametric right adjoints between these copresheaf categories!
- All this stuff is relevant for databases and data migration.
- It's also just shockingly cool from a theoretical perspective.

Outline

- **1** Introduction
- **2** Brief introduction to Poly
- **3** From Moore machines to mode-dependence
- 4 Conclusion

Summary

The category **Poly** is exceptionally rich.

- Four interacting monoidal structures, two closures, etc, etc.
- Comonoids \mathscr{C} in (**Poly**, \circ , y) are categories.
- Discrete left *C*-comodules are co-presheaves.
- Bimodules are parametric right adjoints.

Summary

The category **Poly** is exceptionally rich.

- Four interacting monoidal structures, two closures, etc, etc.
- Comonoids \mathscr{C} in (**Poly**, \circ , y) are categories.
- Discrete left *C*-comodules are co-presheaves.
- Bimodules are parametric right adjoints.

Poly can be used in several different applications.

- Containers in functional programming.
- Generalized lenses (as polynomials generalize monomials).
- Mode-dependent dynamical systems and wiring diagrams.
- Databases and data migration.

Poly provides an expressive notation and calculus for dynamics and data.

Thanks; comments and questions welcome!