Poly: an abundant categorical setting for mode-dependent dynamics

David I. Spivak

ACT2020 2020 July 7

Outline

1 [Introduction](#page-1-0)

- [Broader aims](#page-2-0)
- **[Plan](#page-6-0)**
- 2 [Brief introduction to Poly](#page-7-0)
- **3** [From Moore machines to mode-dependence](#page-17-0)
- **4 [Conclusion](#page-35-0)**

Since a young age, I thought that math could help me think about reality.

- **This reality; my own life; what's really going on right now.**
- I wanted to create math that would help me think and ask questions.

Since a young age, I thought that math could help me think about reality.

- **This reality: my own life; what's really going on right now.**
- I wanted to create math that would help me think and ask questions.

Is everything information, made meaningful by structured relationships?

- At some point I thought that everything is information.
- I studied how information is stored and communicated, e.g. databases.

Since a young age, I thought that math could help me think about reality.

- **This reality; my own life; what's really going on right now.**
- I wanted to create math that would help me think and ask questions.

Is everything information, made meaningful by structured relationships?

- At some point I thought that everything is information.
- I studied how information is stored and communicated, e.g. databases.

Is everything *process*, interactive transforming of each others' products?

- I noticed that process didn't seem to fit well into databases.
- I studied how complex processes are formed from simpler ones.

Since a young age, I thought that math could help me think about reality.

- **This reality; my own life; what's really going on right now.**
- I wanted to create math that would help me think and ask questions.

Is everything information, made meaningful by structured relationships?

- At some point I thought that everything is information.
- I studied how information is stored and communicated, e.g. databases.

Is everything *process*, interactive transforming of each others' products?

- I noticed that process didn't seem to fit well into databases.
- I studied how complex processes are formed from simpler ones.

Shocking plot twist:

- \blacksquare These two worlds converge in **Poly**.
- \blacksquare I only have time to talk about dynamics today.

Plan for today

Today's plan:

- Recall some basics of $Poly;$
- Discuss how Poly models dynamical systems;
- Conclude with a brief summary.

Outline

1 [Introduction](#page-1-0)

2 [Brief introduction to Poly](#page-7-0) **Poly** [as a category](#page-8-0) **[Monoidal structures](#page-14-0)**

3 [From Moore machines to mode-dependence](#page-17-0)

4 [Conclusion](#page-35-0)

Poly for experts

What I'll call the category **Poly** has many names.

- \blacksquare The free completely distributive category on one object;
- **The full subcategory of [Set, Set] spanned by functors that preserve** connected limits;
- \blacksquare The full subcategory of $[Set, Set]$ spanned by coproducts of repr'bles;

Poly for experts

What I'll call the category **Poly** has many names.

- \blacksquare The free completely distributive category on one object;
- \blacksquare The full subcategory of $[Set, Set]$ spanned by functors that preserve connected limits;
- **The full subcategory of [Set, Set] spanned by coproducts of repr'bles;**
- The "generalized lens category" associated to the canonical self-indexing $\mathsf{Set}/-$: $\mathsf{Set}^{\mathsf{op}} \to \mathsf{Cat}$ of Set ;
- The category of containers (in the sense of Michael Abbott).

But let's make this easier.

What is a polynomial?

The category of polynomials

Easiest description: $Poly =$ "sums of representables functors $Set \rightarrow Set$ ".

- For any set S , let $y^{\mathcal{S}} \coloneqq \mathsf{Set}(S,-)$, the functor *represented* by $S.$
- Def: a polynomial is a sum $p = \sum_{i \in I} y^{p_i}$ of representable functors.
- Def: a morphism of polynomials is a natural transformation.
- In Poly, $+$ is coproduct and \times is product.

Notation

We said that a polynomial is a sum of representable functors

$$
p \cong \sum_{i \in I} y^{p_i}.
$$

But note that $I \cong \sum_{i \in I} 1 = \sum_{i \in I} 1^{p_i} = p(1).$ So we can write

$$
\rho \cong \sum_{i \in p(1)} y^{p_i}.
$$

Bimorphic lenses are monomials

A bimorphic lens (Hedges) between set-pairs (S_1, T_1) and (S_2, T_2) is:

$$
S_1 \xrightarrow{get} S_2
$$

$$
S_1 \times T_2 \xrightarrow{put} T_1
$$
 (1)

Let Lens denote the cat'y with set-pairs as objects and lenses as morphisms.

There is an equivalence of categories Lens \cong Poly $_{monomials}$.

■ Send
$$
(S, T) \mapsto Sy^T
$$
.

Note, $\text{Poly}(S_1y^{T_1}, S_2y^{T_2}) \cong \prod_{s \in S_1} S_2 \times T_1^{T_2}$, elements are as in [\(1\)](#page-13-0).

So we can think of **Poly** as a generalized lens category.

Four interacting monoidal structures

We've seen two monoidal structures on **Poly** $(+, \times)$; there are two more.

■ Dirichlet product \otimes ; unit is y.

Let
$$
p = \sum_{i \in p(1)} y^{p_i}
$$
 and $q = \sum_{j \in q(1)} y^{q_j}$; compare:

$$
p \times q \cong \sum_{i \in p(1)} \sum_{j \in q(1)} y^{p_i + q_j} \quad \text{and} \quad p \otimes q \cong \sum_{i \in p(1)} \sum_{j \in q(1)} y^{p_i q_j}.
$$

Four interacting monoidal structures

We've seen two monoidal structures on **Poly** $(+, \times)$; there are two more.

■ Dirichlet product \otimes ; unit is y.

Let
$$
p = \sum_{i \in p(1)} y^{p_i}
$$
 and $q = \sum_{j \in q(1)} y^{q_j}$; compare:

$$
\rho \times q \cong \sum_{i \in \rho(1)} \sum_{j \in q(1)} y^{p_i + q_j} \quad \text{and} \quad \rho \otimes q \cong \sum_{i \in \rho(1)} \sum_{j \in q(1)} y^{p_i q_j}.
$$

■ Composition product \circ ; unit is y .

- **Just compose the functors**; it's usual polynomial composition.
- **■** This monoidal structure is non-symmetric, $p \circ q \not\cong q \circ p$.
- If it is a very interesting monoidal structure, as we'll see.

Composition monoidal structure (Poly, \circ , y)

Let p, $q \in \text{Poly}$ be polynomials. The formula for $p \circ q$ is

$$
p \circ q \cong \sum_{i \in p(1)} \prod_{d \in p_i} \sum_{j \in q(1)} \prod_{e \in q_j} y.
$$

Later we'll think about $p^{\circ n}$:

$$
\rho^{\circ n}\cong\sum_{i_1\in\rho(1)}\prod_{d_1\in\rho_{i_1}}\sum_{i_2\in\rho(1)}\prod_{d_2\in\rho_{i_2}}\cdots\sum_{i_n\in\rho(1)}\prod_{d_n\in\rho_{i_n}}y
$$

It's a length-n strategy: a choice of $i₁$, and for every $d₁$, a choice of $i₂$, etc.

Outline

11 [Introduction](#page-1-0)

2 [Brief introduction to Poly](#page-7-0)

3 [From Moore machines to mode-dependence](#page-17-0)

- **[Interacting Moore machines](#page-18-0)**
- **[Mode-dependence](#page-27-0)**
- **[Behavior via comonoids](#page-30-0)**

[Conclusion](#page-35-0)

Moore machines

Definition

Given sets A, B , an (A, B) -Moore machine consists of:

- \blacksquare a set S, elements of which are called states,
- **a** a function $r: S \rightarrow B$, called *readout*, and
- **a** a function $u: S \times A \rightarrow S$, called *update*.

It is *initialized* if it is equipped also with

n an element $s_0 \in S$, called the *initial state*.

We refer to A as the *input set*, B as the *output set*, and (A, B) as the interface of the Moore machine.

Moore machines

Definition

Given sets A, B , an (A, B) -Moore machine consists of:

- \blacksquare a set S, elements of which are called states,
- **a** a function $r: S \rightarrow B$, called *readout*, and
- **a** a function $u: S \times A \rightarrow S$, called *update*.

It is *initialized* if it is equipped also with

n an element $s_0 \in S$, called the *initial state*.

We refer to A as the *input set*, B as the *output set*, and (A, B) as the interface of the Moore machine.

Dynamics: an (A, B) -Moore machine (S, r, u, s_0) is a "stream transducer":

- Given a list/stream $[a_0, a_1, \ldots]$ of A's...
- let $s_{n+1} := u(s_n, a_n)$ and $b_n := r(s_n)$.
- We thus have obtained a list/stream $[b_0, b_1, \ldots]$ of B 's.

Moore machines as lenses

We can see Moore machines in terms of lenses / polynomials.

- An uninitialized Moore machine $r: S \rightarrow B$ and $u: S \times A \rightarrow S$ is:
	- A lens $(S, S) \rightarrow (B, A)$, i.e....
	- A map of polynomials $S\mathcal{y}^{\mathcal{S}}\rightarrow\mathcal{B}\mathcal{y}^{\mathcal{A}}$.
- An initialized Moore machine also has a map $1 \rightarrow S$, so it is:
	- A composable pair of lenses $(1,1) \rightarrow (S, S) \rightarrow (B, A)$, i.e....

a composable pair of polynomial maps $y\rightarrow Sy^S\rightarrow By^A.$

Depicting Moore machine interfaces

Here's how we depict interfaces (A, B) for Moore machines:

$$
A - \begin{array}{|c|c|} \hline \quad & B \\ \hline \quad & C \end{array}
$$

If, e.g. $A = A_1 \times A_2$ and $B = B_1 \times B_2 \times B_3$, we will instead draw:

$$
\begin{array}{c}\nA_1 \\
A_2 \\
\end{array}
$$

Depicting Moore machine interfaces

Here's how we depict interfaces (A, B) for Moore machines:

A B

If, e.g. $A = A_1 \times A_2$ and $B = B_1 \times B_2 \times B_3$, we will instead draw:

$$
\begin{array}{c}\nA_1 \\
A_2\n\end{array}\n\begin{array}{ccc}\n & B_1 \\
 & B_2 \\
 & B_3\n\end{array}
$$

In ${\sf Poly}$ these two interfaces are denoted $By^{\mathcal{A}}$ and $B_1B_2B_3y^{A_1A_2}.$

Wiring diagrams

Here's a picture of a wiring diagram:

It includes three interfaces: Controller, Plant, and System.

$$
Controller = By^C \qquad \text{Plant} = Cy^{AB} \qquad \text{System} = Cy^A
$$

Wiring diagrams

Here's a picture of a wiring diagram:

It includes three interfaces: Controller, Plant, and System.

$$
Controller = By^C \qquad \text{Plant} = Cy^{AB} \qquad \text{System} = Cy^A
$$

The wiring diagram represents a lens Controller \otimes Plant \rightarrow System.

$$
By^C \otimes Cy^{AB} \longrightarrow Cy^A
$$

Moore machines and wiring diagrams as lenses

To summarize what we've said so far:

A wiring diagram (WD) is a lens, e.g. $By^\mathsf{C} \otimes \mathsf{C}y^{AB} \longrightarrow \mathsf{C}y^A$. Each Moore machine is a lens, e.g. ${Sy}^{\mathcal{S}} \to {By}^{\mathcal{C}}$ and ${Ty}^{\mathcal{T}} \to {Cy}^{AB}.$

Moore machines and wiring diagrams as lenses

To summarize what we've said so far:

A wiring diagram (WD) is a lens, e.g. $By^\mathsf{C} \otimes \mathsf{C}y^{AB} \longrightarrow \mathsf{C}y^A$. Each Moore machine is a lens, e.g. ${Sy}^{\mathcal{S}} \to {By}^{\mathcal{C}}$ and ${Ty}^{\mathcal{T}} \to {Cy}^{AB}.$

We can tensor the Moore machines and compose to obtain ${ST}{y}^{\textstyle{S T}} \to {C}{y}^{\textstyle{A}}$.

- So a wiring diagram is a formula for combining Moore machines.
- The whole story is lenses, through and through.

Poly and mode-dependent dynamics

All of the above on Moore machines and WDs took place in $\text{Poly}_{monomial}$.

- An arbitrary polynomial p is a sum of monomials.
- A Moore machine is a map $Sy^{\mathcal{S}}\rightarrow By^{\mathcal{A}}.$
- Generalized Moore machine: a map $\mathcal{S}y^{\mathcal{S}} \to p$ with $p \in \mathsf{Poly}$ arbitrary.
- We can think of this as *mode-dependence*:
	- The position—and hence directions—depends on the state.
	- Roughly, the input-output type can change based on state.

$$
A - \text{(in state 1)} \qquad B \qquad \qquad C - \text{(in state 2)} \qquad F - F \text{(in state 3)} \qquad F - F \text{(in state 4)} \qquad F - F \text{(in state 5)} \qquad F - F \text{(in state 6)} \qquad F - F \text{(in state 6)} \qquad F - F \text{(in state 7)} \qquad F - F \text{(in state 7)} \qquad F - F \text{(in state 8)} \qquad F - F \text{(in state 9)} \qquad F - F \text{(in state 1)} \qquad F - F \text{(in state 2)} \qquad F - F \text{(in state 3)} \qquad F - F \text{(in state 4)} \qquad F - F \text{(in state 5)} \qquad F - F \text{(in state 6)} \qquad F - F \text{(in state 6)} \qquad F - F \text{(in state 7)} \qquad F - F \text{(in state 7)} \qquad F - F \text{(in state 7)} \qquad F - F \text{(in state 8)} \qquad F - F \text{(in state 1)} \qquad F - F \text{(in state 2)} \qquad F - F \text{(in state 1)} \qquad F - F \text{(in state 1)} \qquad F - F \text{(in state 2)} \qquad F - F \text{(in state 1)} \
$$

Poly and mode-dependent dynamics

All of the above on Moore machines and WDs took place in $\text{Poly}_{monomial}$.

- An arbitrary polynomial p is a sum of monomials.
- A Moore machine is a map $Sy^{\mathcal{S}}\rightarrow By^{\mathcal{A}}.$
- Generalized Moore machine: a map $\mathcal{S}y^{\mathcal{S}} \to p$ with $p \in \mathsf{Poly}$ arbitrary.
- We can think of this as mode-dependence:
	- The position—and hence directions—depends on the state.
	- Roughly, the input-output type can change based on state.

$$
A - \left(\text{in state 1}\right) - B \qquad C - \left(\text{in state 2}\right) - \frac{E}{F}
$$

I'll discuss mode dependence for wiring diagrams by example.

Example

This whole picture represents one morphism in **Poly**.

- \blacksquare Let's suppose the company chooses who it wires to; this is its mode.
- **Then both suppliers have interface** wy **.**
- Company interface is $2y^w$: two modes, each of which is w-input.
- The outer box is just y , i.e. a closed system.

So the picture represents a map $wy \otimes wy \otimes 2y^w \rightarrow y$.

- That's a map 2 $w^2y^w \to y$.
- Equivalently, it's a function $2w^2 \to w$. Take it to be evaluation.
- In other words, the company's choice determines which w it receives.

Comonoids in $(Poly, \circ, y)$

For Moore machines—usual or generalized—what makes $\textit{Sy}^{\textit{S}}\rightarrow p$ tick?

- We wrote some recursive formula for the "stream transducer".
- But it turns out that what we were seeing is really about comonoids.
- **■** Comonoid: $k \in \text{Poly}$, $\delta: k \to k \circ k$, $\epsilon: k \to y$, usual laws.
- A comonoid in (Poly, \circ , y) could be called a *polynomial comonad*.
	- $Sy^{\mathcal{S}}$ has the structure of a comonad, the "store comonad".

Comonoids in $(Poly, \circ, y)$

For Moore machines—usual or generalized—what makes $\textit{Sy}^{\textit{S}}\rightarrow p$ tick?

- We wrote some recursive formula for the "stream transducer".
- But it turns out that what we were seeing is really about comonoids.
- **■** Comonoid: $k \in \text{Poly}$, $\delta: k \to k \circ k$, $\epsilon: k \to y$, usual laws.
- A comonoid in (Poly, \circ , y) could be called a *polynomial comonad*.
- $Sy^{\mathcal{S}}$ has the structure of a comonad, the "store comonad".

How does it work?

Cofree comonoids and terminal coalgebras

The forgetful functor **Comon(Poly)** \rightarrow **Poly** has a right adjoint, Cofree.

- Let $\mathcal{K} = (k, \delta, \epsilon)$ be a comonoid in (Poly, \circ , y).
- Given poly'l map $k \to p$, get a comonoid map $\mathscr{K} \to \mathrm{Cofree}(p)$.
- \blacksquare The formula for cofree comonoid on p in general is the limit:

$$
1 \longleftarrow y \cdot p(1) \leftarrow y \cdot p(y \cdot p(1)) \leftarrow y \cdot p(y \cdot p(y \cdot p(1))) \leftarrow \cdots
$$

Substituting 1 for y we get the usual formula for terminal coalgebra. $1 \leftarrow p(1) \leftarrow p(p(1)) \leftarrow p(p(p(1))) \leftarrow \cdots$

Cofree comonoids and terminal coalgebras

The forgetful functor **Comon(Poly)** \rightarrow **Poly** has a right adjoint, Cofree.

- Let $\mathscr{K} = (k, \delta, \epsilon)$ be a comonoid in (Poly, \circ, y).
- Given poly'l map $k \to p$, get a comonoid map $\mathscr{K} \to \mathsf{Cofree}(p)$.
- \blacksquare The formula for cofree comonoid on p in general is the limit:

$$
1 \longleftarrow y \cdot p(1) \leftarrow y \cdot p(y \cdot p(1)) \leftarrow y \cdot p(y \cdot p(y \cdot p(1))) \leftarrow \cdots
$$

Substituting 1 for y we get the usual formula for terminal coalgebra. $1 \leftarrow p(1) \leftarrow p(p(1)) \leftarrow p(p(p(1))) \leftarrow \cdots$

Example:

In the case $p = By^A$, we have $\text{Cofree}(p) \cong B^{\text{List}(A)}y^{\text{List}(A)}$. So $\mathcal{S}y^{\mathcal{S}}\to B^{\mathsf{List}(A)}y^{\mathsf{List}(A)}$ gives

$$
S \times List(A) \rightarrow B
$$
 and $S \times List(A) \rightarrow S$.

Given the initial state s_0 , we get back our stream transducer.

The amazing world of comonoids in Poly

Comonoids in Poly are amazing.

- Not only are they what make generalized Moore machines tick, but...
- Ahman-Uustalu showed that they're precisely categories!

 $\mathsf{Comon}(\mathsf{Poly}) \cong (\mathsf{Categories}, \mathsf{Cofunctors})$

An easy fact is that their coalgebras correspond to copresheaves! Garner showed that bimodules between them correspond to parametric right adjoints between these copresheaf categories!

- All this stuff is relevant for databases and data migration.
- \blacksquare It's also just shockingly cool from a theoretical perspective.

Outline

- **1** [Introduction](#page-1-0)
- **2** [Brief introduction to Poly](#page-7-0)
- **3** [From Moore machines to mode-dependence](#page-17-0)
- 4 [Conclusion](#page-35-0)

Summary

The category **Poly** is exceptionally rich.

- Four interacting monoidal structures, two closures, etc, etc.
- Comonoids $\mathscr C$ in (Poly, \circ , y) are categories.
- Discrete left $\mathscr C$ -comodules are co-presheaves. $\mathcal{L}_{\mathcal{A}}$
- Bimodules are parametric right adjoints. $\mathcal{L}_{\mathcal{A}}$

Summary

The category **Poly** is exceptionally rich.

- **F** Four interacting monoidal structures, two closures, etc, etc.
- Comonoids $\mathscr C$ in (Poly, \circ, y) are categories.
- **Discrete left** $\mathscr C$ **-comodules are co-presheaves.**
- Bimodules are parametric right adjoints.

Poly can be used in several different applications.

- Containers in functional programming.
- Generalized lenses (as polynomials generalize monomials).
- Mode-dependent dynamical systems and wiring diagrams.
- Databases and data migration.

Polv provides an expressive notation and calculus for dynamics and data.

Thanks; comments and questions welcome!