
Poly: an abundant categorical setting for
mode-dependent dynamics

David I. Spivak

ACT2020
2020 July 7

0 / 20

Introduction

Outline

1 Introduction
Broader aims
Plan

2 Brief introduction to Poly

3 From Moore machines to mode-dependence

4 Conclusion

0 / 20

Introduction Broader aims

A little personal history

Since a young age, I thought that math could help me think about reality.

This reality; my own life; what’s really going on right now.

I wanted to create math that would help me think and ask questions.

Is everything information, made meaningful by structured relationships?

At some point I thought that everything is information.

I studied how information is stored and communicated, e.g. databases.

Is everything process, interactive transforming of each others’ products?

I noticed that process didn’t seem to fit well into databases.

I studied how complex processes are formed from simpler ones.

Shocking plot twist:

These two worlds converge in Poly.

I only have time to talk about dynamics today.

1 / 20

Introduction Broader aims

A little personal history

Since a young age, I thought that math could help me think about reality.

This reality; my own life; what’s really going on right now.

I wanted to create math that would help me think and ask questions.

Is everything information, made meaningful by structured relationships?

At some point I thought that everything is information.

I studied how information is stored and communicated, e.g. databases.

Is everything process, interactive transforming of each others’ products?

I noticed that process didn’t seem to fit well into databases.

I studied how complex processes are formed from simpler ones.

Shocking plot twist:

These two worlds converge in Poly.

I only have time to talk about dynamics today.

1 / 20

Introduction Broader aims

A little personal history

Since a young age, I thought that math could help me think about reality.

This reality; my own life; what’s really going on right now.

I wanted to create math that would help me think and ask questions.

Is everything information, made meaningful by structured relationships?

At some point I thought that everything is information.

I studied how information is stored and communicated, e.g. databases.

Is everything process, interactive transforming of each others’ products?

I noticed that process didn’t seem to fit well into databases.

I studied how complex processes are formed from simpler ones.

Shocking plot twist:

These two worlds converge in Poly.

I only have time to talk about dynamics today.

1 / 20

Introduction Broader aims

A little personal history

Since a young age, I thought that math could help me think about reality.

This reality; my own life; what’s really going on right now.

I wanted to create math that would help me think and ask questions.

Is everything information, made meaningful by structured relationships?

At some point I thought that everything is information.

I studied how information is stored and communicated, e.g. databases.

Is everything process, interactive transforming of each others’ products?

I noticed that process didn’t seem to fit well into databases.

I studied how complex processes are formed from simpler ones.

Shocking plot twist:

These two worlds converge in Poly.

I only have time to talk about dynamics today.

1 / 20

Introduction Plan

Plan for today

Today’s plan:

Recall some basics of Poly;

Discuss how Poly models dynamical systems;

Conclude with a brief summary.

2 / 20

Brief introduction to Poly

Outline

1 Introduction

2 Brief introduction to Poly
Poly as a category
Monoidal structures

3 From Moore machines to mode-dependence

4 Conclusion

2 / 20

Brief introduction to Poly Poly as a category

Poly for experts

What I’ll call the category Poly has many names.

The free completely distributive category on one object;

The full subcategory of [Set,Set] spanned by functors that preserve
connected limits;

The full subcategory of [Set,Set] spanned by coproducts of repr’bles;

The “generalized lens category” associated to the canonical
self-indexing Set/− : Setop → Cat of Set;

The category of containers (in the sense of Michael Abbott).

But let’s make this easier.

3 / 20

Brief introduction to Poly Poly as a category

Poly for experts

What I’ll call the category Poly has many names.

The free completely distributive category on one object;

The full subcategory of [Set,Set] spanned by functors that preserve
connected limits;

The full subcategory of [Set,Set] spanned by coproducts of repr’bles;

The “generalized lens category” associated to the canonical
self-indexing Set/− : Setop → Cat of Set;

The category of containers (in the sense of Michael Abbott).

But let’s make this easier.

3 / 20

Brief introduction to Poly Poly as a category

What is a polynomial?

Algebraic Bundle Corolla forest

y2 + 3y + 2

•

•
•

•

•

•

•

•

•

• •
π • • • • • •

4 / 20

Brief introduction to Poly Poly as a category

The category of polynomials

Easiest description: Poly = “sums of representables functors Set→ Set”.

For any set S , let yS := Set(S ,−), the functor represented by S .

Def: a polynomial is a sum p =
∑

i∈I y
pi of representable functors.

Def: a morphism of polynomials is a natural transformation.

In Poly, + is coproduct and × is product.

5 / 20

Brief introduction to Poly Poly as a category

Notation

We said that a polynomial is a sum of representable functors

p ∼=
∑
i∈I

ypi .

But note that I ∼=
∑

i∈I 1 =
∑

i∈I 1pi = p(1). So we can write

p ∼=
∑

i∈p(1)

ypi .

6 / 20

Brief introduction to Poly Poly as a category

Bimorphic lenses are monomials

A bimorphic lens (Hedges) between set-pairs (S1,T1) and (S2,T2) is:

S1
get−−→ S2

S1 × T2
put−−→ T1

(1)

Let Lens denote the cat’y with set-pairs as objects and lenses as morphisms.

There is an equivalence of categories Lens ∼= Polymonomials .

Send (S ,T) 7→ SyT .

Note, Poly(S1y
T1 ,S2y

T2) ∼=
∏

s∈S1 S2 × TT2
1 , elements are as in (1).

So we can think of Poly as a generalized lens category.

7 / 20

Brief introduction to Poly Monoidal structures

Four interacting monoidal structures

We’ve seen two monoidal structures on Poly (+,×); there are two more.

Dirichlet product ⊗; unit is y.

Let p =
∑

i∈p(1) y
pi and q =

∑
j∈q(1) y

qj ; compare:

p × q ∼=
∑

i∈p(1)

∑
j∈q(1)

ypi+qj and p ⊗ q ∼=
∑

i∈p(1)

∑
j∈q(1)

ypiqj .

Composition product ◦; unit is y.

Just compose the functors; it’s usual polynomial composition.

This monoidal structure is non-symmetric, p ◦ q 6∼= q ◦ p.

It is a very interesting monoidal structure, as we’ll see.

8 / 20

Brief introduction to Poly Monoidal structures

Four interacting monoidal structures

We’ve seen two monoidal structures on Poly (+,×); there are two more.

Dirichlet product ⊗; unit is y.

Let p =
∑

i∈p(1) y
pi and q =

∑
j∈q(1) y

qj ; compare:

p × q ∼=
∑

i∈p(1)

∑
j∈q(1)

ypi+qj and p ⊗ q ∼=
∑

i∈p(1)

∑
j∈q(1)

ypiqj .

Composition product ◦; unit is y.

Just compose the functors; it’s usual polynomial composition.

This monoidal structure is non-symmetric, p ◦ q 6∼= q ◦ p.

It is a very interesting monoidal structure, as we’ll see.

8 / 20

Brief introduction to Poly Monoidal structures

Composition monoidal structure (Poly, ◦, y)

Let p, q,∈ Poly be polynomials. The formula for p ◦ q is

p ◦ q ∼=
∑

i∈p(1)

∏
d∈pi

∑
j∈q(1)

∏
e∈qj

y.

Later we’ll think about p◦n:

p◦n ∼=
∑

i1∈p(1)

∏
d1∈pi1

∑
i2∈p(1)

∏
d2∈pi2

· · ·
∑

in∈p(1)

∏
dn∈pin

y

It’s a length-n strategy: a choice of i1, and for every d1, a choice of i2, etc.

9 / 20

From Moore machines to mode-dependence

Outline

1 Introduction

2 Brief introduction to Poly

3 From Moore machines to mode-dependence
Interacting Moore machines
Mode-dependence
Behavior via comonoids

4 Conclusion

9 / 20

From Moore machines to mode-dependence Interacting Moore machines

Moore machines

Definition

Given sets A,B, an (A,B)-Moore machine consists of:

a set S , elements of which are called states,
a function r : S → B, called readout, and
a function u : S × A→ S , called update.

It is initialized if it is equipped also with

an element s0 ∈ S , called the initial state.

We refer to A as the input set, B as the output set, and (A,B) as the
interface of the Moore machine.

Dynamics: an (A,B)-Moore machine (S , r , u, s0) is a “stream transducer”:

Given a list/stream [a0, a1, . . .] of A’s...

let sn+1 := u(sn, an) and bn := r(sn).

We thus have obtained a list/stream [b0, b1, . . .] of B’s.

10 / 20

From Moore machines to mode-dependence Interacting Moore machines

Moore machines

Definition

Given sets A,B, an (A,B)-Moore machine consists of:

a set S , elements of which are called states,
a function r : S → B, called readout, and
a function u : S × A→ S , called update.

It is initialized if it is equipped also with

an element s0 ∈ S , called the initial state.

We refer to A as the input set, B as the output set, and (A,B) as the
interface of the Moore machine.

Dynamics: an (A,B)-Moore machine (S , r , u, s0) is a “stream transducer”:

Given a list/stream [a0, a1, . . .] of A’s...

let sn+1 := u(sn, an) and bn := r(sn).

We thus have obtained a list/stream [b0, b1, . . .] of B’s.

10 / 20

From Moore machines to mode-dependence Interacting Moore machines

Moore machines as lenses

We can see Moore machines in terms of lenses / polynomials.

An uninitialized Moore machine r : S → B and u : S × A→ S is:

A lens (S ,S)→ (B,A), i.e....

A map of polynomials SyS → ByA.

An initialized Moore machine also has a map 1→ S , so it is:

A composable pair of lenses (1, 1)→ (S , S)→ (B,A), i.e....

a composable pair of polynomial maps y→ SyS → ByA.

11 / 20

From Moore machines to mode-dependence Interacting Moore machines

Depicting Moore machine interfaces

Here’s how we depict interfaces (A,B) for Moore machines:

A B

If, e.g. A = A1 × A2 and B = B1 × B2 × B3, we will instead draw:

A1

A2

B1
B2
B3

In Poly these two interfaces are denoted ByA and B1B2B3y
A1A2 .

12 / 20

From Moore machines to mode-dependence Interacting Moore machines

Depicting Moore machine interfaces

Here’s how we depict interfaces (A,B) for Moore machines:

A B

If, e.g. A = A1 × A2 and B = B1 × B2 × B3, we will instead draw:

A1

A2

B1
B2
B3

In Poly these two interfaces are denoted ByA and B1B2B3y
A1A2 .

12 / 20

From Moore machines to mode-dependence Interacting Moore machines

Wiring diagrams

Here’s a picture of a wiring diagram:

Plant

Controller

A

B

C

C

System

It includes three interfaces: Controller, Plant, and System.

Controller = ByC Plant = CyAB System = CyA

The wiring diagram represents a lens Controller⊗ Plant→ System.

ByC ⊗ CyAB −→ CyA

13 / 20

From Moore machines to mode-dependence Interacting Moore machines

Wiring diagrams

Here’s a picture of a wiring diagram:

Plant

Controller

A

B

C

C

System

It includes three interfaces: Controller, Plant, and System.

Controller = ByC Plant = CyAB System = CyA

The wiring diagram represents a lens Controller⊗ Plant→ System.

ByC ⊗ CyAB −→ CyA

13 / 20

From Moore machines to mode-dependence Interacting Moore machines

Moore machines and wiring diagrams as lenses

Plant

Controller

A

B

C

System

To summarize what we’ve said so far:

A wiring diagram (WD) is a lens, e.g. ByC ⊗ CyAB −→ CyA.

Each Moore machine is a lens, e.g. SyS → ByC and TyT → CyAB .

We can tensor the Moore machines and compose to obtain STyST → CyA.

So a wiring diagram is a formula for combining Moore machines.

The whole story is lenses, through and through.

14 / 20

From Moore machines to mode-dependence Interacting Moore machines

Moore machines and wiring diagrams as lenses

Plant

Controller

A

B

C

System

To summarize what we’ve said so far:

A wiring diagram (WD) is a lens, e.g. ByC ⊗ CyAB −→ CyA.

Each Moore machine is a lens, e.g. SyS → ByC and TyT → CyAB .

We can tensor the Moore machines and compose to obtain STyST → CyA.

So a wiring diagram is a formula for combining Moore machines.

The whole story is lenses, through and through.

14 / 20

From Moore machines to mode-dependence Mode-dependence

Poly and mode-dependent dynamics

All of the above on Moore machines and WDs took place in Polymonomial .

An arbitrary polynomial p is a sum of monomials.

A Moore machine is a map SyS → ByA.

Generalized Moore machine: a map SyS → p with p ∈ Poly arbitrary.

We can think of this as mode-dependence:

The position—and hence directions—depends on the state.

Roughly, the input-output type can change based on state.

(in state 1)A B (in state 2)
C

D

E
F
G

I’ll discuss mode dependence for wiring diagrams by example.

15 / 20

From Moore machines to mode-dependence Mode-dependence

Poly and mode-dependent dynamics

All of the above on Moore machines and WDs took place in Polymonomial .

An arbitrary polynomial p is a sum of monomials.

A Moore machine is a map SyS → ByA.

Generalized Moore machine: a map SyS → p with p ∈ Poly arbitrary.

We can think of this as mode-dependence:

The position—and hence directions—depends on the state.

Roughly, the input-output type can change based on state.

(in state 1)A B (in state 2)
C

D

E
F
G

I’ll discuss mode dependence for wiring diagrams by example.

15 / 20

From Moore machines to mode-dependence Mode-dependence

Example

Supplier 1

Supplier 2

Company

w

•

Supplier 1

Supplier 2

Company

w

•

Change
supplier!

This whole picture represents one morphism in Poly.

Let’s suppose the company chooses who it wires to; this is its mode.

Then both suppliers have interface wy.

Company interface is 2yw : two modes, each of which is w -input.

The outer box is just y, i.e. a closed system.

So the picture represents a map wy⊗ wy⊗ 2yw → y.

That’s a map 2w2yw → y.

Equivalently, it’s a function 2w2 → w . Take it to be evaluation.

In other words, the company’s choice determines which w it receives.
16 / 20

From Moore machines to mode-dependence Behavior via comonoids

Comonoids in (Poly, ◦, y)

For Moore machines—usual or generalized—what makes SyS → p tick?

We wrote some recursive formula for the “stream transducer”.

But it turns out that what we were seeing is really about comonoids.

Comonoid: k ∈ Poly, δ : k → k ◦ k , ε : k → y, usual laws.

A comonoid in (Poly, ◦, y) could be called a polynomial comonad.

SyS has the structure of a comonad, the “store comonad”.

How does it work?

17 / 20

From Moore machines to mode-dependence Behavior via comonoids

Comonoids in (Poly, ◦, y)

For Moore machines—usual or generalized—what makes SyS → p tick?

We wrote some recursive formula for the “stream transducer”.

But it turns out that what we were seeing is really about comonoids.

Comonoid: k ∈ Poly, δ : k → k ◦ k , ε : k → y, usual laws.

A comonoid in (Poly, ◦, y) could be called a polynomial comonad.

SyS has the structure of a comonad, the “store comonad”.

How does it work?

17 / 20

From Moore machines to mode-dependence Behavior via comonoids

Cofree comonoids and terminal coalgebras

The forgetful functor Comon(Poly)→ Poly has a right adjoint, Cofree.

Let K = (k , δ, ε) be a comonoid in (Poly, ◦, y).

Given poly’l map k → p, get a comonoid map K → Cofree(p).

The formula for cofree comonoid on p in general is the limit:

1←− y·p(1)← y·p(y·p(1))← y·p(y·p(y·p(1)))← · · ·

Substituting 1 for y we get the usual formula for terminal coalgebra.

1← p(1)← p(p(1))← p(p(p(1)))← · · ·

Example:

In the case p = ByA, we have Cofree(p) ∼= BList(A)yList(A).

So SyS → BList(A)yList(A) gives

S × List(A)→ B and S × List(A)→ S .

Given the initial state s0, we get back our stream transducer.

18 / 20

From Moore machines to mode-dependence Behavior via comonoids

Cofree comonoids and terminal coalgebras

The forgetful functor Comon(Poly)→ Poly has a right adjoint, Cofree.

Let K = (k , δ, ε) be a comonoid in (Poly, ◦, y).

Given poly’l map k → p, get a comonoid map K → Cofree(p).

The formula for cofree comonoid on p in general is the limit:

1←− y·p(1)← y·p(y·p(1))← y·p(y·p(y·p(1)))← · · ·

Substituting 1 for y we get the usual formula for terminal coalgebra.

1← p(1)← p(p(1))← p(p(p(1)))← · · ·

Example:

In the case p = ByA, we have Cofree(p) ∼= BList(A)yList(A).

So SyS → BList(A)yList(A) gives

S × List(A)→ B and S × List(A)→ S .

Given the initial state s0, we get back our stream transducer.

18 / 20

From Moore machines to mode-dependence Behavior via comonoids

The amazing world of comonoids in Poly

Comonoids in Poly are amazing.

Not only are they what make generalized Moore machines tick, but...

Ahman-Uustalu showed that they’re precisely categories!

Comon(Poly) ∼= (Categories,Cofunctors)

An easy fact is that their coalgebras correspond to copresheaves!

Garner showed that bimodules between them correspond to
parametric right adjoints between these copresheaf categories!

All this stuff is relevant for databases and data migration.

It’s also just shockingly cool from a theoretical perspective.

19 / 20

Conclusion

Outline

1 Introduction

2 Brief introduction to Poly

3 From Moore machines to mode-dependence

4 Conclusion

19 / 20

Conclusion

Summary

The category Poly is exceptionally rich.

Four interacting monoidal structures, two closures, etc, etc.

Comonoids C in (Poly, ◦, y) are categories.

Discrete left C -comodules are co-presheaves.

Bimodules are parametric right adjoints.

Poly can be used in several different applications.

Containers in functional programming.

Generalized lenses (as polynomials generalize monomials).

Mode-dependent dynamical systems and wiring diagrams.

Databases and data migration.

Poly provides an expressive notation and calculus for dynamics and data.

Thanks; comments and questions welcome!

20 / 20

Conclusion

Summary

The category Poly is exceptionally rich.

Four interacting monoidal structures, two closures, etc, etc.

Comonoids C in (Poly, ◦, y) are categories.

Discrete left C -comodules are co-presheaves.

Bimodules are parametric right adjoints.

Poly can be used in several different applications.

Containers in functional programming.

Generalized lenses (as polynomials generalize monomials).

Mode-dependent dynamical systems and wiring diagrams.

Databases and data migration.

Poly provides an expressive notation and calculus for dynamics and data.

Thanks; comments and questions welcome!

20 / 20

	Introduction
	Broader aims
	Plan

	Brief introduction to Poly
	Poly as a category
	Monoidal structures

	From Moore machines to mode-dependence
	Interacting Moore machines
	Mode-dependence
	Behavior via comonoids

	Conclusion

