1 Quantale of Intervals

Definition 1.1 (Quantale). A **quantale** is a set V equipped with a partial order $\subseteq \subseteq V \times V$, a binary operation $\oplus : V \times V \to V$, and a unit $k \in V$ satisfying the following properties:

- (V, \sqsubseteq) is a **complete lattice**, namely, any subset $S \subseteq V$ has a supremum and an infimum, denoted by $\bigcup S$ and $\bigcap S$ respectively. In particular, V has a least element or bottom (the supremum of the emptyset), denoted by \bot , and a greatest element or top (the infimum of the emptyset), denoted by \top .
- (V, \oplus, k) is a **monoid**, namely, for any $x, y, z \in V$, $x \oplus (y \oplus z) = (x \oplus y) \oplus z$, and $x \oplus k = x = k \oplus x$.
- \oplus is **join-continuous**, namely, for any $x \in V$ and $S \subseteq V$, $x \oplus \bigsqcup S = \bigcup \{x + s \mid s \in S\}$.

Example 1.2 (Extended reals). The real numbers \mathbb{R} equipped with the usual order \leq and addition $+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ almost form a quantale. Indeed, \leq is a partial order, and + is associative, has unit 0, and preserves supremum (i.e. it is join-continuous), but \mathbb{R} is not a complete lattice since there is no bottom nor top. One can fix this by adding positive and negative infinities to obtain the **extended reals** $[-\infty,\infty] = \mathbb{R} \cup \{-\infty,\infty\}$. The order \leq is extended in the obvious way: $-\infty \leq x \leq \infty$ for all $x \in [-\infty,\infty]$. To extend addition, one must take care of ensuring join-continuity. Thus, for any $x \in [-\infty,\infty]$,

$$x + -\infty = x + | |\emptyset = | | \{x + s \mid s \in \emptyset\} = | |\emptyset = -\infty$$

and moreover, for any finite $x \in \mathbb{R}$,

$$x + \infty = x + \bigsqcup \mathbb{R} = \bigsqcup \{x + s \mid s \in \mathbb{R}\} = \bigsqcup \mathbb{R} = \infty.$$

The remaining undefined addition is $\infty + \infty$, which must be ∞ by join-continuity:

$$\begin{split} \infty + \infty &= \bigsqcup \mathbb{R} + \bigsqcup \mathbb{R} \\ &= \bigsqcup \left\{ \bigsqcup \mathbb{R} + s \mid s \in \mathbb{R} \right\} \\ &= \bigsqcup \left\{ \bigsqcup \left\{ r + s \mid r \in \mathbb{R} \right\} \mid s \in \mathbb{R} \right\} \\ &= \bigsqcup \left\{ \bigsqcup \mathbb{R} \mid s \in S \right\} \\ &= \bigsqcup \left\{ \infty \right\} = \infty. \end{split}$$

We can summarize the definition of addition in the quantale of extended reals in the following table (as in [1]) where we write \oplus for addition in the quantale and + for addition of reals (even if we will use + for both in the sequel).

\oplus	$-\infty$	r	∞
$-\infty$	$-\infty$	$-\infty$	$-\infty$
S	$-\infty$	r+s	8
∞	$-\infty$	∞	8

Note that reversing the order \leq does not give a quantale $([-\infty,\infty],\geq,\oplus,0)$ when \oplus is defined as above because \oplus is not meet-continuous:

$$-\infty \oplus \bigcap \varnothing = -\infty \oplus \infty = -\infty \neq \infty = \bigcap \varnothing = \bigcap \{-\infty + s \mid s \in \varnothing\}.$$

For later, we can define an operation \bullet on $[-\infty,\infty]$ that extends + and is meet-continuous, so that $([-\infty,\infty],\geq,\bullet,0)$ is a quantale, which we will write $[\infty,-\infty]$. We summarize the definition of \bullet in the table below.

	•	$-\infty$	r	∞
Ī	$-\infty$	$-\infty$	$-\infty$	8
	S	$-\infty$	r+s	8
	∞	8	∞	8

Another quantale of extended reals that has often been studied, and sometimes called the Lawvere quantale, is the nonegative extended reals with the revered order: $([0, \infty], \ge, \oplus, 0)$.

Example 1.3 (Quantale of intervals). Given two elements $a \sqsubseteq b$ inside a quantale V, we can define the (closed) **interval** [a,b] as the subset containing all elements above a and below b:

$$[a,b] := \{x \in V \mid a \sqsubseteq x \sqsubseteq b\}.$$

Let Interval(V) be the set of intervals in V plus the empty subset. We will try to construct a natural quantale structure on this set.

First, the most natural order of subsets is inclusion $[a, b] \subseteq [a', b']$. It turns out this can be defined in terms of the order in V (we abuse \sqsubseteq to denote the orders in V and Interval(V) and similarly for \oplus):

$$[a,b] \sqsubseteq [a',b'] \iff [a,b] \subseteq [a',b'] \iff a \supseteq a' \text{ and } b \sqsubseteq b'.$$

Thus, as a partial order, Interval(V) is essentially a suborder of $V^{op} \times V$, where $-^{op}$ reverses the order. Only the emptyset is not represented as an element of $V^{op} \times V$, but it can be convenient to identify any pair (a,b) where $a \supseteq b$ and $a \neq b$ as the emptyset. In particular, we find that Interval(V) is a complete lattice by applying supremums and infimums coordinatewise, making sure to take the order reversal into account. Explicitly,

$$\bigsqcup_{i}[a_{i},b_{i}]=[\sqcap_{i}a_{i},\sqcup_{i}b_{i}] \qquad \prod_{i}[a_{i},b_{i}]=[\sqcup_{i}a_{i},\sqcap_{i}b_{i}].$$

One can quickly check this by hand. Alternatively, one can see Interval(V) as a suborder of the powerset of V which is a complete lattice with supremum (resp. infimum) being union (resp. intersection), then recognize the intervals above as the smallest interval containing the union of $[a_i, b_i]$ (resp. the biggest interval contained in the intersection of $[a_i, b_i]$).

Next, we would like to define \oplus on intervals and naturally, we want to let

$$[a,b] \oplus [a',b'] := [a \oplus a',b \oplus b'].$$

This yields a monoid with unit [k, k] (recall k is the unit of V). Unfortunately, \oplus is not join-continuous over intervals, unless \oplus is meet-continuous over V:

$$[a,b] \oplus \bigsqcup_{i} [a_{i},b_{i}] = [a,b] \oplus [\sqcap_{i}a_{i},\sqcup_{i}b_{i}] = [a \oplus \sqcap_{i}a_{i},b \oplus \sqcup_{i}b_{i}]$$

$$\neq [\sqcap_{i}a \oplus a_{i},\sqcup_{i}b \oplus b_{i}] = \bigsqcup_{i} ([a,b] \oplus [a_{i},b_{i}]).$$

If there is a binary operation \bullet on V is meet-continuous, and hence makes $(V, \supseteq$, \bullet , k) a quantale, then we can define the addition of intervals by apply \oplus to the upper bounds and \bullet to the lower bounds:

$$[a,b]\oplus [a',b']:=[a \bullet a',b\oplus b'].$$

Redoing the derivation above, we find that this operation is join-continuous over the quantale because \bullet is meet-continuous. It is also associative with unit [k, k].

In conclusion, we can always define a complete lattice of (closed) intervals inside a quantale, but we need to be careful to make it into a quantale (it is not always possible). We can consider a concrete example of quantale of intervals over the extended reals which is essentially a subquantale of $[\infty, -\infty] \times [-\infty, \infty]$.

References

[1] Giorgio Bacci, Radu Mardare, Prakash Panangaden, and Gordon D. Plotkin. Polynomial lawvere logic. *CoRR*, abs/2402.03543, 2024. URL: https://doi.org/10.48550/arXiv.2402.03543, arXiv:2402.03543, doi:10.48550/ARXIV.2402.03543.