
Native Type Theory
Christian Williams ! �

University of California, Riverside, US

Michael Stay ! �

Pyrofex Corporation, Utah, US

Abstract
We present a method to construct “native” type systems for a broad class of languages, in which
types are built from term constructors by predicate logic and dependent types. Many languages can
be modelled as structured λ-theories, and the internal language of their presheaf toposes provides
total specification the structure and behavior of programs. The construction is functorial, thereby
providing a shared framework of higher-order reasoning for most existing programming languages.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases Type Theory, Category Theory, Logic, Topos Theory, Concurrency

Related Version arxiv:2102.04672 (previous)

Acknowledgements We thank John Baez, Greg Meredith, and Mike Shulman for helpful dialogue.

1 Introduction

Type theory is growing as a guiding philosophy in the design of programming languages.
In practice, however, type systems are mostly heterogeneous, and there are not standard
ways to reason across languages. We present a simple way to enrich a language with its own
“internal logic”: we construct from a λ-theory its native type system, which provides total
specification of the structure and behavior of programs.

Categorical logic unifies languages: virtually any formalism, from a simple heap to the
calculus of constructions, can be modelled as a structured category [20]. By doing so, we
inherit a wealth of tools from category theory. In particular, we can generate expressive type
systems by composing two known ideas.

λtheory topos type systemP L

The first is the presheaf construction P [10, Ch. 8]; it preserves product, equality, and function
types. The second is the language of a topos L [20, Ch. 11]. The composite is 2-functorial,
so that translations between languages induce translations between type systems.

The type system is native in the sense that types are built only from term constructors,
predicate logic, and a form of dependent type theory. For example, the following predicate
on processes in a concurrent language (ex. 5) is effectively a compile-time firewall.

sole.in(α) := νX. (in(α, N → X) | P) ∧ ¬[in(¬[α], N → P) | P]
Can input on channels in type α and cannot input on ¬α, and continues as such.

Native type theory is intended to be a practical method to equip programming languages
with a shared system of higher-order reasoning. The authors believe that the potential
applications are significant and broad, and we advocate for community development.

1.1 Motivation and implementation
As software systems become increasingly complex, it is critical to develop adequate frameworks
for reasoning about code. By generating expressive type systems for programming languages,
native type theory can improve control, reasoning, and communication of systems.

mailto:cwill041@ucr.edu
https://orcid.org/0000-0001-5466-4708
mailto:stay@pyrofex.net
https://orcid.org/0000-0003-0191-7913

2 Native Type Theory

For example, web browsers use the dynamic, weakly-typed language of JavaScript.
Companies have recognized that correct and maintainable code requires static type checking.
Microsoft’s TypeScript [6], Facebook’s Flow [1], and Google’s Closure Compiler [2] are
multi-million dollar efforts to retrofit JavaScript with a strong, static type system; yet none
of these is sound. When presented as a structured λ-theory [5], JavaScript has a native type
system which is sound by construction.

We aim to implement native type theory as a development environment, based on a
library of formal semantics and translations, for programming in languages enriched by their
native type systems. One can then write code with higher-order logic and dependent types,
both to condition existing codebases and to expand software capability.

To this end, we plan to leverage progress in language specification. K Framework [4]
is a formal verification tool which is used to give complete semantics of many popular
languages, including JavaScript, C, Java, Python, Haskell, LLVM, Solidity, and more. These
specifications can be presented as structured λ-theories (§2), and input to native type theory.

The type system generated can then be used for many purposes, e.g. to query codebases.
The search engine Hoogle [3] queries Haskell libraries by function signature. This idea can
be expanded to many languages and strengthened by more expressive types. If φ : S → Prop
is a predicate on S-terms and ψ : T → Prop is one on T-terms, e.g. a security property, we
can form the type of programs S → T for which substituting φ entails ψ (§3.1, def. 13).

[φ,ψ] := {λx.c : S → T | ∀p : S. φ(p) ⇒ ψ(c[p/x])}

Of course, the full applications of native type systems require substantial development.
Most basic is the need for efficient type-checking, but this is well-studied [34]. For usability
we need to convert between existing types and native types, as well as libraries of native
types, so programmers can express useful ideas without overly complex formulae.

The larger endeavor, to create a framework for reasoning across many languages, calls for
developing a public library of both formal semantics and translations between languages.

1.2 Organization and contribution
Our goal is to demonstrate that composing two categorical ideas can be highly useful to
computer science. In the process we emphasize many ideas that may be “known” in theory
but are not widely known nor used in practice.

§2 Structured λ-theories. We define λ-theories with equality as cartesian closed
categories with pullbacks, and interpret the internal language as simply-typed λ-calculus
combined with the syntax of generalized algebraic theories [15].

Rewriting systems can be presented as internal categories; this motivates the 2-category
of structured λ-theories. In §A these are used to demonstrate a translation of λ-calculus
into π-calculus which respects their operational semantics. We define the ρπ-calculus, a
concurrent language with reflection, as our running example for native types.

§3 Logic in a presheaf topos. A λ-theory T embeds into a presheaf topos P(T), and
we develop its internal language. Predicates on the sorts of T form a λ-theory ωT which
refines the entire language; refined binding is then applied to condition program input (§5.2).

We show that the predicate and codomain fibrations of P(T) form a “cosmic” higher-order
dependent type theory (HDT), and this construction is 2-functorial.

Hence native type theory is the composite 2-functor

λThyop
= Topos HDTΣ.P L

C. Williams and M. Stay 3

This extends to structured λ-theories, i.e. the arrow 2-categories over this composite. Monads
and comonads are preserved by 2-functors, in particular Moggi’s notions of computation [31].

§4 Native type theory. The native type system of a λ-theory T is presented as the
internal language of the presheaf topos, LP(T). The system is an extension of higher-order
dependent type theory [20], as in the Calculus of Constructions [16]. We present the system
as generated by T, and give the rules for types and terms, as well as those for functoriality.

§5 Applications. We explore a few kinds of applications: conditioning term behavior,
with subgraphs of rewrite systems and modalities, and deriving behavioral equivalence;
conditioning program input with refined binding, and reasoning about contexts with predicate
homs; and translating types across programming paradigms.

The scope of applications is beyond what can be given here.
§A Appendix. We give an overview of related work, including the project origin.

2 Structured λ-theories

Simply-typed λ-calculus is the language of products and functions. It is regarded as the
foundation of computer science [12] and much of modern programming [18].

The syntax of a language can be modelled by a syntactic category, in which an object is
a sorted variable context, a morphism is a term constructor, and composition is substitution.
Simply-typed λ-calculus is the language of cartesian closed categories [22].

A particular λ-calculus or λ-theory is presented by sorts, constructors, and equations.
This is just like algebraic presentation, but with higher-order constructors. Good references
for the syntax and semantics of simply-typed λ-calculus are [17, Ch. 4] and [20, Ch. 2]. We
denote products S × T by S, T and functions [S, T] by [S → T].

Γ, x:S ⊢ t : T
abstraction

Γ ⊢ λx.t : [S → T]
Γ ⊢ λx.t : [S → T], u : S

application
Γ ⊢ t[u/x] : T

▶ Definition 1. A λ-theory with equality is a cartesian closed category with pullbacks,
also known as a “properly cartesian closed category” [21]. The 2-category of λ-theories with
equality, finitely continuous closed functors, and cartesian natural transformations is λThy=.

The syntax of a λ-theory with equality can be derived from its subobject fibration having
fibered equality [20, Ch. 3]. We interpret the language as simply-typed λ-calculus combined
with the syntax of generalized algebraic theories [15], which provide indexed sorts.

Γ ⊢ x1 : S1, . . . , xn : Sn sort symbol
Γ, x⃗i : S⃗i ⊢ A(x1, . . . , xn) sort

Γ ⊢ s1 : S1, . . . , sn : Sn term symbol
Γ ⊢ f(s1, . . . , sn) : S

These are presented in the same way as λ-theories, plus constructors which may be
parameterized by equations, such as composition in the theory of categories. This is our
motivation: we represent behavior of terms using internal categories.

Henceforth, “λ-theory” means λ-theory with equality.

λ-theories with structure
What λ-theories do not explicitly represent is the process of computation. In practice,
computing consists not of equations but transitions. There are many ways to model the
behavior of languages [37], but the operational semantics of higher-order languages is still in
development [19]. We introduce a method of representing behavior internally.

4 Native Type Theory

A language with a rewrite system can be modelled by a λ-theory T equipped with
an internal category, which includes constructors and equations to specify the interaction
between rewrites and constructors, such as forming a congruence.

▶ Definition 2. Th.Cat

Hom : E → V, V ;abc : Hom(a, b), Hom(b, c) → Hom(a, c) (e1; e2); e3 = e1; (e2; e3)
ida : 1 → Hom(a, a) ida; e = e e; idb = e

Given e : Γ → E and a, b : Γ → V we denote e : Hom(a, b) by e(x⃗) : a(x⃗)⇝ b(x⃗).
Though composition is useful, we often want to reason about “basic rewrites” or single-

step computations. For most of the paper we will simply use an internal graph. It is easy to
combine both approaches, by distinguishing one sort for edges and one sort for morphisms.

To specify how basic rewrites interact with constructors, we can take the source map
s : E → S as a sort symbol S∗(x). Then S∗(v) are the rewrites with source v, i.e. the behaviors
of the term. This allows us to define operational semantics.

▶ Definition 3. A rewrite rule for a term constructor f :
∏

Si → S in λ-theory T(ES, {ESi})
is specified by an edge constructor

R(f)v⃗ :
∏

S∗
i (vi) → S∗(f(v⃗)) such that R(f)(⟨v1, e1⟩, . . . , ⟨vn, en⟩) : f(v⃗)⇝ g

where g :
∏

S∗
i (vi) → S. An operational semantics O is a set of basic rewrites {ri(x⃗) :

ai(x⃗)⇝ bi(x⃗) : ESi
} together with a family of pairs {(fij ,R(fij))}.

▶ Lemma 4. These operational semantics correspond to the class of GSOS rules [37] for
deterministic labelled transition systems. Nondeterministic systems can be derived using an
internal relation act↣ V, A, V.

By representing behavior internally, native type systems reason about both the structure
and behavior of programs. For example there is a predicate for “contexts λx.c : S → T such
that if a : S satisfies φ then for all e : c[a/x]⇝ b if ψ(b) then no step of e satisfies ϵ”.

▶ Example 5. ρπ-calculus Th.ρπ (polyadic)

0 : 1 → P −|− : P, P → P (P,−|−, 0) commutative monoid
@ : P → N outk : N, Pk → P run : P → E
∗ : N → P ink : N, [Nk → P] → P commk : N, Pk, [Nk → P] → E

run(p) : ∗(@p)⇝ p commk(n, q⃗i, λx⃗i.p) : out(n, q⃗i)|in(n, λx⃗i.p)⇝ p[@qi/xi]

Th.Cat + — parl : E, P → E parl(ρ, q) : s(ρ)|q ⇝ t(ρ)|q
parr : P, E → E parr(p, ρ) = parl(ρ, p) parl c. monoid action of P on E

The ρπ-calculus or reflective higher-order π-calculus [28] is a concurrent language suc-
ceeding the π-calculus [29]. It is the language of the blockchain platform RChain [7].

The ρπ-calculus has processes P and names N, which act as code and data respectively;
reference @ and execute ∗ transform one into the other. Terms are built up from the null
process 0 by parallel −|−, output out, and input in. The basic rule is communication comm:
an output and input process connect on a name and transfer a list of processes as data.

The ρπ-calculus is our running example. In the native type system of Th.ρπ (§3.1), a
predicate on names α : y(N) → Prop is called a namespace [27], and a predicate on processes
φ : y(P) → Prop is called a codespace.

C. Williams and M. Stay 5

Hence operational semantics can be specified by Th.Cat → T, and translations ought to
respect this structure. We generalize to define “structure” as any λ-theory morphism into T.

▶ Definition 6. A structured λ-theory is a λ-theory with equality T equipped with a
morphism τ : S → T in λThy=. The 2-category of structured λ-theories is the (strict) arrow
2-category [I, λThy=], where I is the interval category.

By distinguishing behavior as internal structure, we can ensure that translations induce
the proper homomorphisms of rewriting systems. In §A we exhibit a translation of the
name-passing λ-calculus into the π-calculus which respects their operational semantics.

While behavior is our primary example of structure, the concept is very general. Some
other examples are sorting, e.g. refining the ρπ-calculus with sorted channels to send and
receive certain kinds of data; embedding a language into a networked environment; or encoding
the programs of one language into another.

Because native type theory is functorial, the structure τ : S → T translates types of T
into types of S. For including behavior, this simply distinguishes the “behavioral” types; for
more complex structures, the translation may be highly expressive.

We note that the 2-category of structured λ-theories is naturally indexed over the 2-
category of λ-theories. Just as an arrow category [I, C] has co/domain op/fibrations over C,
an arrow 2-category is equipped with 2-op/fibrations [14].

▶ Proposition 7. The 2-category of structured λ-theories is 2-op/fibered over λ-theories, by
the domain and codomain 2-functors δ0, δ1 : [I, λThy=] → λThy=.

Because λThy= has pushouts and pullbacks, δ0 and δ1 are in fact bifibrations. However,
it is not locally cartesian closed [33]; though this may be true for complete CCCs.

The domain fiber λThy0(S) := δ∗
0(S) is the 2-category of S-structured λ-theories. The

codomain fiber λThy1(T) := δ∗
1(T) is the 2-category of structures on T.

From a structured λ-theory we derive a native type system, using the presheaf construction,
and demonstrate how it can be used to reason about the structure and behavior of terms.

3 The Logic of a Presheaf Topos

Topos theory [23] expands the domain of predicate logic and intuitionistic type theory [25]
beyond sets and functions. Most useful is the fact that every category embeds into a topos.
For any λ-theory, the internal language of its presheaf topos is its native type system.

Let T be a λ-theory. The category of presheaves is the functor category [Top,Set], which
we denote P(T). This defines a 2-functor to elementary toposes and geometric morphisms

P : λThyop
= → Topos P(F) = (∃F ⊣ F∗) : [Top,Set] → [Sop,Set].

where ∃F is left Kan extension and F∗ is precomposition by F : S → T.
A presheaf is a context-indexed set of data on the sorts of a theory. The canonical

example is a representable presheaf, of the form T(−, S), which indexes all terms of sort S.
The Yoneda embedding y : T → P(T) :: S 7→ T(−, S) preserves limits and internal homs.

A subobject classifier is an object Ω with a natural isomorphism c : [−,Ω] ≃ Sub(−).
We may denote Ω as Prop; this is its role in the type system: a predicate is a morphism
φ : A → Ω, and the comprehension of φ is the subobject c(φ) := {a : A | φ(a)}↣ A.

A topos is a λ-theory with equality with a subobject classifier. For presheaves, the hom
and subobject classifier are defined [P,Q](S) = P(T)(y(S) × P,Q) and Ω(S) = {φ↣ y(S)}.

6 Native Type Theory

The values of Ω can be understood as Ω(S) ≃ {sieves of sort S}. A sieve of sort S is a set
of terms of sort S that is closed under substitution. A simple example is a principal sieve
⟨f⟩ : Ω(T) generated by a term f : S → T, defined ⟨f⟩(R) := Σu:R → S.f ◦ u.

▶ Example 8. The ρπ-calculus (ex. 5) can express recursion without the replication operator
of the π-calculus. On a name n : 1 → N we define a context which replicates processes.

c(n) := in(n, λx.{out(n, ∗x) | ∗ x}) !(−)(n) := out(n, {c(n)|−}) | c(n).

One can check that !(p)(n) ⇝ !(p)(n) | p for any process p. The sieve ⟨!(−)(n)⟩ : Ω(P)
consists of processes which replicate on the name n by the above method.

For simpler formulae, we denote the values of a presheaf by AS := A(S), and the action
of u : R → S by − · u := A(u) : A(S) → A(R). For φ : A → Prop we denote φa

S := φ(S)(a);
more generally for any p : P → A we denote pa

S := p−1
S (a) as the fiber over a (§3.2).

3.1 The predicate fibration
There is a category over P(T) for which the fiber over each presheaf is the complete Heyting
algebra (CHA) of its predicates. Quantification gives change-of-base adjoints between fibers;
we show that moreover the domain is cartesian closed, complete and cocomplete. The
fibration encapsulates higher-order predicate logic.

We henceforth use ΩA to denote the complete Heyting algebra of predicates. The
predicate functor of P(T) is defined Ω(−) : P(T)op → CHA. For f : A → B, precomposition
of predicates corresponds to preimage of subobjects. This can be written as substitution
φ[f] := Ωf (φ), and understood as pattern-matching.

▶ Example 9. For a ρπ-calculus predicate φ : y(P) → Prop, substitution by in : N× [N, P] → P
is the basic query “inputting on what name-context pairs yield property φ?”

φ[y(in)]S = {S ⊢ (n, λx.p) : N, [N → P] | φ(in(n, λx.p))}

The complete Heyting algebra structure of ΩA: predicates are ordered by entailment,
meet and join are defined by pointwise intersection and union, ⊤ = A and ⊥ = (S 7→ ∅),
implication is defined (φ ⇒ ψ)a

S :=
∏

u:R→S φ
a·u
R ⇒ ψa·u

R , and negation is ¬(φ) := (φ ⇒ ⊥).
We can assemble the image of Ω(−) into one category with the Grothendieck construction.

▶ Definition 10. The category of predicates of P(T) is denoted ΩP(T): an object is a pair
⟨A : P(T) , φ : ΩA⟩, and a morphism is a pair ⟨f : A → B , φ ⇒ Ωf (ψ)⟩. The projection
πΩ : ΩP(T) → P(T) is the predicate fibration; the fiber over A is ΩA, and the fiber over
f : A → B is Ωf : ΩB → ΩA, known as a change-of-base functor.

A fibration is a functor with a well-behaved notion of preimage, used in type theory
for indexing; a reference is [20, Ch. 1]. The predicate fibration is highly structured; each
change-of-base functor has adjoints which give dependent sum and product.

▶ Proposition 11. πΩ : ΩP(T) → P(T) has indexed sums and products [20]: for each
f : A → B, the functor Ωf : ΩB → ΩA has left and right adjoints ∃f ⊣ Ωf ⊣ ∀f .

∃f (φ)b
S := Σ(a:AS).Σ(fS(a) = b).φ(a) ∀f (φ)b

S := Π(u:R → S).Π(fR(a) = b · u).φ(a)

The left adjoint ∃f is called direct image, because on subobjects it is composition by f ;
we call the right adjoint ∀f secure image. While Ωf is a morphism of complete Heyting
algebras, ∃f and ∀f are only morphisms of join and meet semilattices, respectively.

C. Williams and M. Stay 7

▶ Example 12. Let Th.Gph → T be a λ-theory with a graph, and φ : y(V) → Prop be a
predicate on terms. Then φ[y(s)] : y(E) → Prop are rewrites with φ(source), and ∃y(t)(φ[y(s)])
are the targets of these rewrites. Hence there is a step-forward F! : [y(V),Prop] → [y(V),Prop].

The secure step-forward is a more refined operation: F∗(φ) := ∀y(t)(φ[y(s)]) are terms u
for which (t⇝ u) ⇒ φ(t). For security protocols, this can filter agents by past behavior.

The change-of-base adjoints satisfy the Beck–Chevalley condition: this means that
quantification commutes with substitution, and implies that Ω(−) : P(T)op → CHA is a
first-order hyperdoctrine [24] and a higher-order fibration [20, section 5.3].

This concept leaves implicit additional structure: there is an internal hom of predicates.

▶ Proposition 13. ΩP(T) is cartesian closed, as is πΩ. Let φ : A → Prop, ψ : B → Prop,
and let ⟨π1, π2, ev⟩ : A × [A,B] → A × [A,B] × B. Then [φ,ψ] : [A,B] → Prop is defined
[φ,ψ] := ∀π2(φ[π1] ⇒ ψ[ev]).

The cartesian closed structure of ΩP(T) is significant, because the category of predicates
on T is itself a λ-theory, the refinement of the language. We explore applications in §5.2.

▶ Definition 14. The predicate theory of T, denoted ωT, is the pullback of the predicate
fibration along the embedding y : T → P(T); it is a λ-theory fibered over T.

Note. We emphasize the idea of having “lifted” the language by an abuse of notation:
for any operation f : S → T, we may denote ∃y(f) : [y(S),Prop] → [y(T),Prop] simply by f,
and ∀y(f) by f∗. Similarly, we may write y(S) as S, when the context is clear.

▶ Example 15. As an example of contexts which ensure implications across substitution,
we can construct the “magic wand” of separation logic [26]. Let Th be the theory of a
commutative monoid (H,∪, e), plus constructors for the elements of a heap. If we define
(φ–∗ψ) := [φ,ψ][λx.x ∪ −], then (φ–∗ψ)(h1) means that φ(h2) ⇒ ψ(h1 ∪ h2).

There is a more expressive way to form hom predicates, which provides predicate binding.

▶ Proposition 16. Let A,B : P(T), and let LA,B : [[A,B],Prop] → [[A,Prop], [B,Prop]]
be curried evaluation. There is a right adjoint which we call reification. The predicate
RA,B(F), denoted χ.F , determines f : [A,B] whose images are contained in those of F :

[χ.F]fS = Πχ:[A → Prop]. ∃f (y(S) × χ) ⇒ F (χ).

Using reification, separation logic can be generalized from pairs of predicates to functions of
predicates. We are not aware if this has been studied.

In addition, the category of predicates has all limits and colimits, by a result of [36].
These can be used to form modalities, inductive and coinductive types, and more.

▶ Proposition 17. ΩP(T) is complete and cocomplete, and πΩ preserves limits and colimits.
They are computed pointwise; letting π, ι represent the cone and cocone:

limi⟨Ai, φi⟩ = ⟨limi(Ai), limi(Ωπiφi)⟩ colimi⟨Ai, φi⟩ = ⟨colimi(Ai), colimi(Σιi
φi)⟩.

To summarize the rich structure present, we allude to a term from category theory: a
cosmos is a monoidal closed category which is complete and cocomplete [35].

▶ Proposition 18. The predicate fibration πΩ : ΩP(T) → P(T) is a higher-order fibration
which is cosmic: cartesian closed, complete and cocomplete.

8 Native Type Theory

3.2 The codomain fibration
Predicates φ : A → Prop correspond to subobjects c(φ)↣ A. More generally, any p : P → A

can be understood as a dependent type. Like subsets to indexed sets, this expands the fibers
over A from truth values to sets, and the fibers over P(T) from posets to categories.

▶ Proposition 19. Let CCT be the category of co/complete toposes and logical functors.
There is a functor ∆ : P(T)op → CCT that maps A to P(T)/A and f : A → B to pullback.

We can denote pullback by substitution, p[f]aS := ∆f (p)a
S = p

fS(a)
S . Dependent sum Σf

and dependent product Πf are given by the same formulae as those for predicates, and these
satisfy the Beck-Chevalley condition. The Grothendieck construction of ∆ determines a
category over P(T).

▶ Definition 20. The category of dependent types of P(T), denoted ∆P(T), is equivalent to
the arrow category of P(T). The codomain fibration is the projection π∆ : ∆P(T) → P(T).

▶ Proposition 21. The codomain fibration π∆ is a closed comprehension category [20, Sec
10.5] which is cosmic, i.e. cartesian closed, complete and cocomplete.

The two fibrations are connected by an adjunction c ⊣ i : π∆ ⇆ πΩ: comprehension
interprets a predicate as a dependent type, and factorization takes a dependent type to its
image predicate. This fibered adjunction is a higher-order dependent type theory [20, Sec.
11.6]. These form a sub-2-category of adjunctions in the 2-category of fibrations.

Geometric morphisms of toposes preserve pullbacks, inducing morphisms of predicate
and codomain fibrations. But they are not locally cartesian closed, nor do they preserve the
subobject classifier; it is future work to consider theory translations which induce locally
connected morphisms of presheaf toposes [21, C 3.3].

We denote by HDTΣ the 2-category of higher-order dependent type theories and maps of
adjunctions of fibrations.

▶ Theorem 22. The construction which sends a topos to its internal language L(E) =
⟨πΩE, π∆E, iE, cE⟩, consisting of the predicate and codomain fibrations connected by the image-
comprehension adjunction, defines a 2-functor L : Topos → HDTΣ.

We note that 2-functors preserve monads and comonads, so the native types construction
LP : λThyop

= → HDTΣ extends to λ-theories equipped with “notions of computation” [31].

4 Native Type Theory

We present the native type system LP(T) of a λ-theory with equality T (§2). As y : T →
P(T) is full and faithful, LP(T) is a conservative extension of T.

The system is higher-order dependent type theory [20, Sec. 11.5] “parameterized” by T.
We do not present Equality and Quotient types. We encode Subtyping, Hom, and Inductive
types, which we use in applications.

The type system has predicates x:Γ ⊢ φ : Prop and types x:Γ ⊢ A : Type, interpreted as
φ : Γ → Ω and p : A → Γ. A term judgement is of the form x:Γ, a:A ⊢ N : B[M], interpreted
as a morphism ⟨M,N⟩ : (A → Γ) → (B → ∆) in the total category of the codomain fibration.

For details on the semantic interpretation of the type system, in particular handling
coherence when interpreting substitution as pullback, see Awodey’s natural models [11].

We present the type system as generated from the λ-theory T, so a programmer can start
in the ordinary language and use the ambient logical structure as needed.

C. Williams and M. Stay 9

Y Representables are given in the type system as axioms.

JS : TK
TSyS : Type

JS1 ⊢ f : S2K TOx:yS2 ⊢ yf : Type
JS1 ⊢ f = g : S2K TEx:yS2 ⊢ yf = yg

The type yS indexes all terms of sort S. Because the Yoneda embedding preserves limits
and internal hom, we have y(S1, S2) = (yS1, yS2) and y[S → T] = [yS → yT].

Σ Dependent Pair is an indexed sum generalizing existential quantification.

Γ ⊢ A : Type Γ, x:A ⊢ B : Type
ΣFΓ ⊢ Σx:A.B : Type

Γ ⊢ a : A Γ ⊢ u : B[a/x]
ΣI

Γ ⊢ ⟨a, u⟩ : Σx:A.B

Γ, z:Σx:A.B ⊢ C : Type Γ, a:A, u:B ⊢ Q : C[⟨a, u⟩/z]
ΣE

Γ, z : Σx:A.B ⊢ (z as ⟨a, u⟩ in Q) : C
⟨M,N⟩ as ⟨a, u⟩ in Q = Q[M/a,N/u] (Σβ)
P as ⟨a, u⟩ in Q[⟨a, u⟩/z] = Q[P/z] (Ση)

Π Dependent Function is an indexed product generalizing universal quantification.

Γ ⊢ A : Type Γ, x:A ⊢ B : Type
ΠFΓ ⊢ Πx:A.B : Type

Γ, x:A ⊢ t : B
ΠIΓ ⊢ λx:A.t : Πx:A.B

Γ ⊢ f : Πx:A.B Γ ⊢ u : B ΠE
Γ ⊢ f(u) : B[u/x]

(λx:A.t)(a) = t(a) (Πβ)
f = λx:A.f (Πη)

We derive existential ∃ from Σ and universal ∀ from Π by image factorization. The rest
of predicate logic ⊥,⊤,∨,∧,⇒,¬ is also encoded in terms of Σ and Π.

{} Comprehension converts a predicate to the type of its satisfying terms. The rules
which convert a type to its image predicate can be derived from Σ and Equality.

Γ, x:A ⊢ φ : Prop
cF

Γ ⊢ {x:A | φ} : Type
Γ, x:A ⊢ φ : Prop Γ ⊢ M : A Γ ⊢ φ[M/x]

cI
Γ ⊢ i(M) : {x:A | φ}

Γ ⊢ N : {x:A | φ}
cE

Γ ⊢ o(N) : A
o(i(M)) = M (cβ)
i(o(N)) = N (cη)

Γ1, x:A, Γ2, φ ⊢ ψ
c◦

E
Γ1, a : {x:A | φ}, Γ2[o(a)/x] ⊢ ψ[o(a)/x]

⊆ Subtyping of predicates is defined (φ ⊆ ψ) := ∀a:A. φ(a) ⇒ ψ(a).
→ Hom type (def. 13) of A1 ⊢ B1 : Type and A2 ⊢ B2 : Type is defined Πx:A1.B1[π] ⇒ B2[ev].
R Reification (def. 16) χ.F : [A,B] → Prop is defined Πφ:[A → Prop].φ ⇒ F(φ[−]).
µ Inductive type of F : [A,Prop] → [A,Prop]: the least and greatest fixed points are defined

µφ.F(φ) := ∃φ:[A,Prop]. (φ ⊆ F(φ)) ⇒ φ and νφ.F(φ) := ∀φ:[A,Prop]. (F(φ) ⊆ φ) ⇒ φ.
These are used to form data structures and modalities; we can generalize to W-types [30].

These rules constitute the native type system LP(T), abridged for a first presentation.
By functoriality, translations of λ-theories induce translations of native type systems.

F Translation is given by precomposing types and “whiskering” terms.

JF : T1 → T2K Γ ⊢ A : Type2 FTyΓ ◦ F ⊢ A ◦ F : Type1

JF : T1 → T2K x:Γ, y:A ⊢ N : B[M]
FTm

x:(Γ ◦ F), y:(A ◦ F) ⊢ N · F : (B ◦ F)[M · F]

We include rules that F∗ : P(T2) → P(T1) is a functor which preserves substitution,
dependent pair, and limits and colimits. To further research we leave the question of
the rules for the colax preservation of Π and Prop, and the rules for the two covariant
functors ∃F,∀F : P(T1) → P(T2) given by left and right Kan extension.

10 Native Type Theory

As a small demonstration, suppose we have a program f : S → T, and we want to construct
the predicate which checks whether a term of sort T has been processed by f. The type is
formed and terms are introduced as follows.

yT ⊢ yf : Type yT, yf ⊢ yS : Type
yT ⊢ ⟨f⟩ := Σg:yf.yS : Type

yT ⊢ g : yf yT, x:yf ⊢ u : yS[g/x]
yT ⊢ ⟨g, u⟩ : ⟨f⟩.

This is the principal sieve ⟨f⟩ (ex. 8), which determines terms of the form g = f ◦ u for some
u : R → S. We can then write protocols based on this precondition in the native type system.

5 Applications

Native type systems are highly expressive and versatile. We demonstrate a few small examples.
Notation is simplified by identifying sorts and constructors of T with their image in P(T).

5.1 Rewrite subsystems, modalities, and behavioral equivalence
In section §2 we motivated structured λ-theories by demonstrating that an internal category
Th.Cat → T can be used to represent the operational semantics of T. We now apply this idea,
with a subtle change: for morphisms to be lists of basic rewrites, we do not want composition.
Instead we simply use a graph G := ⟨s, t⟩ : E → V, V and implicitly consider the free category,
i.e. we use pullbacks to construct lists of edges.

Let Th.Gph → T be a λ-theory with internal graph G. Then yG : P(T) is the (dependent)
type of rewrites over terms. The fiber over each pair is the set of rewrites between terms.

S, a:V, b:V ⊢ G(a, b) : Type G(a, b) = {S ⊢ e : a⇝ b}

This object is the space of all computations in language T. The native type system can be
used to construct predicates which specify subgraphs of computations.

▶ Example 23. Let Th.Gph → Th.ρπ be the structured λ-theory of the ρπ-calculus (ex. 5),
without composition of rewrites. In the presheaf topos P(Th.ρπ), suppose we have a name
predicate α : N → Prop, a process predicate φ : P → Prop, and F : [N → Prop] → [P → Prop].
Then comm(α,φ, χ.F) : [E,Prop] determines the communications

comm(a, p, λx.c) : out(a, p) | in(a, λx.c)⇝ c[@p/x]

on channels in namespace α, sending data in codespace φ, and continuing in contexts
λx.c : [N, P] such that χ(@p) ⇒ F (χ)(c[@p/x]). Then Σe:G.comm(α,φ, χ.F) is the graph of
these computations. This can be used to condition protocols or identify parts of a network.

We can express temporal modalities to reason about past and future behavior. Applying
the “step” operators of ex. 12 to a predicate φ : V → Prop on terms, B!(φ) are terms which
possibly rewrite to φ, and B∗(φ) are terms which necessarily rewrite to φ. By iterating, we
can form each kind of modality.

B◦
! (φ) := ∃n:N.Bn

! (φ) can become φ B•
! (φ) := ∀n:N.Bn

! (φ) always can become φ
B◦

∗(φ) := ∃n:N.Bn
∗ (φ) will become φ B•

∗(φ) := ∀n:N.Bn
∗ (φ) always will become φ

Similarly for F, we can condition past behavior. Moreover, these operators and modalities
can be restricted to subgraphs.

C. Williams and M. Stay 11

▶ Example 24. We can use the always modality to express constant system requirements,
such as the capacity to receive and process input on certain channels, or the guarantee to
only communicate on certain channels.

live(α) := B•
∗(in(α, [N → P]) | P)) safe(α) := B•

∗(¬[in(¬[α], [N → P]) | P])

By checking that a program in(n, λx.c) : in(N, χ.safe), we ensure that the program will
remain secure on the channel it receives.

Our rewrite graphs are deterministic, because each edge specifies all data in the term
vertices. In operational semantics, rewrites are “silent reductions” which occur in a closed
system, while more generally transitions allow for interaction with the environment. This
can be expressed using substitution as pattern-matching, to construct a nondeterministic
labelled transition system in which to derive behavioral equivalence.

▶ Example 25. Processes in the ρπ-calculus interact by parallel composition −|−. The
basic actions are input and output. To construct the transition system of these observable
behaviors, we first define the interaction contexts.

obs := [λx.x] ∨ [λx.(in(N, N → P) | x)] ∨ [λx.(out(N, P) | x)] : [P → P] → Prop

We can then define the labelled transition system act : P, [P → P], P → Prop as

p:P, λx.c:[P → P], q:P ⊢ act(p, λx.c, q) := G(ev[p, obs(λx.c)], q)

the predicate which is usually written as p λx.c−−−→ q we define to be ∃e : G. e : c[p/x]⇝ q. We
can now construct new modalities relative to this observational graph, denoted with (−)act.

From this relation, many kinds of behavioral equivalence can be written explicitly as
types. For example, bisimulation is the inductive type Bisim := µφ.S(φ) for

S(φ)(p, q) := ∀y:P. ∀λx.c:[P, P]. act(p, λx.c, y) ⇒ ∃z:P. act(q, λx.c, z) ∧ φ(y, z) ∧
∀z:P. ∀λx.c:[P, P]. act(q, λx.c, z) ⇒ ∃y:P. act(p, λx.c, y) ∧ φ(y, z)

By constructing bisimilarity as a native type, we can reason up to behavioral equivalence.

5.2 Refined binding and reasoning about contexts
Hom types provide refined binding, i.e. using predicates to condition what can be substituted
into a context. To formalize this idea, we need to restrict rewrite rules to require that a term
satisfies the predicate which the context binds.

▶ Example 26. In the ρπ-calculus, an input process in(n, λx.c) receives whatever is sent on
the name n. We can refine input to receive only data which satisfies a predicate.

Consider the predicate theory (def. 14) of the ρπ-calculus. For each namespace α, define

commα : N, α[@], [α → P] → E commα(n, p, λx.c) : outα(n, p)|inα(n, λx.c)⇝ c[@p/x]

where α[@] is the preimage of α under @ : P → N. This extends to polyadic communication.
The refinement of the ρπ-calculus is defined to be the subtheory ρπω ⊂ ωTh.ρπ

in which the only rewrite constructors are commα for each namespace. In this theory,
inα : N, [α → P] → P constructs processes which only receive data on α.

The namespace α : N → Prop could be a predicate on structured data, a set of trusted
addresses, or the implementations of an algorithm. Then in(n, λx:α.p) can be understood as
a query for α. In the refined language, we can search by both structure and behavior.

The notion of refinement generalizes to any λ-theory with rewrites which have distinguished
“substitution sort pairs”, like those for the output process and the input bound name.

12 Native Type Theory

A common question in software is “what contexts ensure this implication?” For example,
“where can this protocol be executed without security leaks?” Hom types provide this
expressive power for reasoning contextually in codebases.

By composing the hom type with modalities, we can extend contextual reasoning over
term behavior. In particular, φ▷ ψ := [φ,B◦

∗(ψ)] are contexts for which substituting φ can
eventually lead to some condition, desired or otherwise.

▶ Example 27. An arrow can be used to detect security leaks: given a trusted channel a : N
and an untrusted n : N, then the following program will not preserve safety on a.

λp.(p | out(a, in(n, λx.c))) : safe(a)▷ ¬[safe](a)

We can also detect if a program may not remain single-threaded: if s.thr := ¬[0] ∧
¬[¬[0] | ¬[0]], then λp.out(a, (p | q)) : s.thr ▷act ¬[s.thr], where ▷act is the arrow relative to
the observational transition system (ex. 25).

In this way, the process of finding bugs can be automated as a form of type-checking.
The query time depends only on the system complexity and the efficiency of the type checker.
Moreover, with subtyping this reasoning expands to collections of programs.

5.3 Translating across language paradigms

The native types construction is functorial, allowing us to reason across translations. We
sketch a simple example of the benefits of relating across programming paradigms.

▶ Example 28 (Translations). In the appendix §A, we give a translation τ : Th.Nλ → Th.π
from the name-passing λ-calculus into the π-calculus. This induces a functor P(τ) : P(Th.π) →
P(Th.Nλ), which in turn induces a translation of the native type systems.

A π-calculus predicate φ : P → Prop contains processes which may involve highly
nondeterministic interaction between agents in a network. In the translation, it is mapped
to a λ-calculus predicate P(τ)(φ) : T → Prop by preimage; this has the effect of restricting φ
to its “functional” processes.

Because λ-terms have no side-effects and execute deterministically, restricting to functional
terms allows significant optimization in network computing; e.g. agents trying to reach
consensus about side effects. Similar to how a compiler can optimize a tail call in a functional
language, a compiler could recognize that a π-term can be implemented functionally and run
the consensus protocol on not the details of the execution but only the result.

These are a few small examples, which hardly scratch the surface of native type theory.
Native types are practical because they are basic: they are made by logic from the languages
we already use. We encourage the reader to explore what native types can do for you.

6 Conclusion

Native type theory is a functorial way to generate expressive type systems for a broad class
of languages. We have presented the construction and given directions for application.

The authors believe that integrating native type systems in software is a viable way to
provide a shared framework of higher-order reasoning in everyday computing. Most of the
tools necessary for implementation already exist.

C. Williams and M. Stay 13

References
1 Flow: A static type checker for javascript. URL: https://flow.org/.
2 Google closure compiler. URL: https://developers.google.com/closure/compiler.
3 Hoogle. URL: https://hoogle.haskell.org/.
4 K framework. URL: http://www.kframework.org/.
5 Kjs: A complete formal semantics of javascript. URL: https://github.com/kframework/

javascript-semantics.
6 Microsoft typescript. URL: https://www.typescriptlang.org/.
7 Rchain. URL: https://www.rchain.coop/.
8 A spatial logic model checker. URL: http://ctp.di.fct.unl.pt/SLMC/.
9 Samson Abramsky. Domain theory in logical form. Annals of Pure and Applied Logic,

51(1-2):1–77, mar 1991. URL: https://doi.org/10.1016%2F0168-0072%2891%2990065-t,
doi:10.1016/0168-0072(91)90065-t.

10 Steve Awodey. Category Theory. Oxford University Press, Inc., USA, 2nd edition, 2010.
11 Steve Awodey. Natural models of homotopy type theory. Mathematical Structures in Computer

Science, 28(2):241–286, nov 2016. doi:10.1017/s0960129516000268.
12 H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Elsevier, 1984.
13 Gérard Boudol. The π-calculus in direct style. In Proceedings of the 24th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages - POPL '97. ACM Press, 1997.
URL: https://doi.org/10.1145%2F263699.263726, doi:10.1145/263699.263726.

14 Mitchell Buckley. Fibred 2-categories and bicategories. Journal of Pure and Applied Algebra,
218(6):1034–1074, jun 2014. URL: https://doi.org/10.1016%2Fj.jpaa.2013.11.002, doi:
10.1016/j.jpaa.2013.11.002.

15 John Cartmell. Generalised algebraic theories and contextual categories. Annals of Pure and
Applied Logic, 32:209–243, 1986. URL: https://www.sciencedirect.com/science/article/
pii/0168007286900539, doi:https://doi.org/10.1016/0168-0072(86)90053-9.

16 Thierry Coquand and Gérard Huet. The calculus of constructions. Information and Com-
putation, 76(2-3):95–120, feb 1988. URL: https://doi.org/10.1016%2F0890-5401%2888%
2990005-3, doi:10.1016/0890-5401(88)90005-3.

17 Roy L. Crole. Categories for Types. Cambridge University Press, 1994. doi:10.1017/
CBO9781139172707.

18 Robert Harper. Practical Foundations for Programming Languages. Cambridge University
Press, 2 edition, 2016. doi:10.1017/CBO9781316576892.

19 André Hirschowitz, Tom Hirschowitz, and Ambroise Lafont. Modules over monads and
operational semantics, 2020. arXiv:2012.06530.

20 B. Jacobs. Categorical Logic and Type Theory. Elsevier, Amsterdam, 1998. doi:10.1016/
s0049-237x(98)x8028-6.

21 Peter T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium: 2 Volume Set.
Oxford University Press UK, 2002.

22 J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic. Cambridge
University Press, USA, 1986.

23 Saunders Mac Lane and Ieke Moerdijk. Sheaves in Geometry and Logic. Springer
New York, 1994. URL: https://doi.org/10.1007%2F978-1-4612-0927-0, doi:10.1007/
978-1-4612-0927-0.

24 F. William Lawvere. Adjointness in foundations. dialectica, 23(3-4):281–296, dec
1969. URL: https://doi.org/10.1111%2Fj.1746-8361.1969.tb01194.x, doi:10.1111/j.
1746-8361.1969.tb01194.x.

25 Per Martin-Löf. An intuitionistic theory of types. In Twenty Five Years of Constructive
Type Theory. Oxford University Press, oct 1998. URL: https://doi.org/10.1093%2Foso%
2F9780198501275.003.0010, doi:10.1093/oso/9780198501275.003.0010.

https://flow.org/
https://developers.google.com/closure/compiler
https://hoogle.haskell.org/
http://www.kframework.org/
https://github.com/kframework/javascript-semantics
https://github.com/kframework/javascript-semantics
https://www.typescriptlang.org/
https://www.rchain.coop/
http://ctp.di.fct.unl.pt/SLMC/
https://doi.org/10.1016%2F0168-0072%2891%2990065-t
https://doi.org/10.1016/0168-0072(91)90065-t
https://doi.org/10.1017/s0960129516000268
https://doi.org/10.1145%2F263699.263726
https://doi.org/10.1145/263699.263726
https://doi.org/10.1016%2Fj.jpaa.2013.11.002
https://doi.org/10.1016/j.jpaa.2013.11.002
https://doi.org/10.1016/j.jpaa.2013.11.002
https://www.sciencedirect.com/science/article/pii/0168007286900539
https://www.sciencedirect.com/science/article/pii/0168007286900539
https://doi.org/https://doi.org/10.1016/0168-0072(86)90053-9
https://doi.org/10.1016%2F0890-5401%2888%2990005-3
https://doi.org/10.1016%2F0890-5401%2888%2990005-3
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1017/CBO9781139172707
https://doi.org/10.1017/CBO9781139172707
https://doi.org/10.1017/CBO9781316576892
http://arxiv.org/abs/2012.06530
https://doi.org/10.1016/s0049-237x(98)x8028-6
https://doi.org/10.1016/s0049-237x(98)x8028-6
https://doi.org/10.1007%2F978-1-4612-0927-0
https://doi.org/10.1007/978-1-4612-0927-0
https://doi.org/10.1007/978-1-4612-0927-0
https://doi.org/10.1111%2Fj.1746-8361.1969.tb01194.x
https://doi.org/10.1111/j.1746-8361.1969.tb01194.x
https://doi.org/10.1111/j.1746-8361.1969.tb01194.x
https://doi.org/10.1093%2Foso%2F9780198501275.003.0010
https://doi.org/10.1093%2Foso%2F9780198501275.003.0010
https://doi.org/10.1093/oso/9780198501275.003.0010

14 Native Type Theory

26 Paul-André Melliès and Noam Zeilberger. Functors are type refinement systems. ACM SIG-
PLAN Notices, 50(1):3–16, may 2015. URL: https://doi.org/10.1145%2F2775051.2676970,
doi:10.1145/2775051.2676970.

27 L. G. Meredith and Matthias Radestock. Namespace logic: A logic for a reflective higher-order
calculus. In Trustworthy Global Computing, pages 353–369. Springer Berlin Heidelberg, 2005.
URL: https://doi.org/10.1007%2F11580850_19, doi:10.1007/11580850_19.

28 L.G. Meredith and Matthias Radestock. A reflective higher-order calculus. Electronic Notes
in Theoretical Computer Science, 141(5):49–67, dec 2005. URL: https://doi.org/10.1016%
2Fj.entcs.2005.05.016, doi:10.1016/j.entcs.2005.05.016.

29 Robin Milner. The polyadic π-calculus: a tutorial. In Logic and Algebra of Specifica-
tion, pages 203–246. Springer Berlin Heidelberg, 1993. URL: https://doi.org/10.1007%
2F978-3-642-58041-3_6, doi:10.1007/978-3-642-58041-3_6.

30 Ieke Moerdijk and Erik Palmgren. Wellfounded trees in categories. Annals of Pure and
Applied Logic, 104(1-3):189–218, jul 2000. URL: https://doi.org/10.1016%2Fs0168-0072%
2800%2900012-9, doi:10.1016/s0168-0072(00)00012-9.

31 Eugenio Moggi. Notions of computation and monads. Information and Computation, 93(1):55–
92, jul 1991. URL: https://doi.org/10.1016%2F0890-5401%2891%2990052-4, doi:10.1016/
0890-5401(91)90052-4.

32 Davide Sangiorgi. Communicating and mobile systems: the π-calculus,. Science of Computer
Programming, 38(1-3):151–153, aug 2000. URL: https://doi.org/10.1016%2Fs0167-6423%
2800%2900008-3, doi:10.1016/s0167-6423(00)00008-3.

33 Mike Shulman. exponentials of cartesian closed categories. http://ncatlab.org/nlab/show/
cartesian%20closed%20category#exponentials_of_cartesian_closed_categories.

34 Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and Théo Winterhalter.
Coq coq correct! verification of type checking and erasure for coq, in coq. Proc. ACM Program.
Lang., 4(POPL), December 2019. doi:10.1145/3371076.

35 Ross Street. Elementary cosmoi i. In Gregory M. Kelly, editor, Category Seminar, pages
134–180, Berlin, Heidelberg, 1974. Springer Berlin Heidelberg.

36 Andrzej Tarlecki, Rod M. Burstall, and Joseph A. Goguen. Some fundamental algebraic
tools for the semantics of computation: Part 3. indexed categories. Theoretical Computer
Science, 91(2):239 – 264, 1991. URL: http://www.sciencedirect.com/science/article/
pii/030439759190085G, doi:https://doi.org/10.1016/0304-3975(91)90085-G.

37 D. Turi and G. Plotkin. Towards a mathematical operational semantics. In Proceedings of
Twelfth Annual IEEE Symposium on Logic in Computer Science. IEEE Comput. Soc. URL:
https://doi.org/10.1109%2Flics.1997.614955, doi:10.1109/lics.1997.614955.

A Appendix

Origin and related work
The present work began with Greg Meredith seeking a method to generate logics for concurrent
languages, motivated by Abramsky’s Domain Theory in Logical Form [9]. In 2005 Meredith
developed Namespace Logic [27], an expressive logic for data and code in the ρ-calculus, just
as Cardelli was developing Spatial-Behavioral logic [8] for the π-calculus.

Intuiting a general method, Meredith later began collaboration with Stay, who explored
approaches in category theory. In 2018 they brought in Williams and after extensive discussion
of the vision, it became clear that categorical logic offered a powerful method of generating
type systems for λ-theories, including most concurrent languages.

Native type theory is an entire world to explore, both in theory and practice. Yet there
are desiderata for a comprehensive logic for concurrency which may not be addressed by the
language of toposes, and the project continues to expand.

https://doi.org/10.1145%2F2775051.2676970
https://doi.org/10.1145/2775051.2676970
https://doi.org/10.1007%2F11580850_19
https://doi.org/10.1007/11580850_19
https://doi.org/10.1016%2Fj.entcs.2005.05.016
https://doi.org/10.1016%2Fj.entcs.2005.05.016
https://doi.org/10.1016/j.entcs.2005.05.016
https://doi.org/10.1007%2F978-3-642-58041-3_6
https://doi.org/10.1007%2F978-3-642-58041-3_6
https://doi.org/10.1007/978-3-642-58041-3_6
https://doi.org/10.1016%2Fs0168-0072%2800%2900012-9
https://doi.org/10.1016%2Fs0168-0072%2800%2900012-9
https://doi.org/10.1016/s0168-0072(00)00012-9
https://doi.org/10.1016%2F0890-5401%2891%2990052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016%2Fs0167-6423%2800%2900008-3
https://doi.org/10.1016%2Fs0167-6423%2800%2900008-3
https://doi.org/10.1016/s0167-6423(00)00008-3
http://ncatlab.org/nlab/show/cartesian%20closed%20category#exponentials_of_cartesian_closed_categories
http://ncatlab.org/nlab/show/cartesian%20closed%20category#exponentials_of_cartesian_closed_categories
https://doi.org/10.1145/3371076
http://www.sciencedirect.com/science/article/pii/030439759190085G
http://www.sciencedirect.com/science/article/pii/030439759190085G
https://doi.org/https://doi.org/10.1016/0304-3975(91)90085-G
https://doi.org/10.1109%2Flics.1997.614955
https://doi.org/10.1109/lics.1997.614955

C. Williams and M. Stay 15

Translation of structured λ-theories
The translation of the name-passing λ-calculus into the π-calculus.

▶ Example 29. Name-passing λ-calculus [13]

V variables T terms E rewrites of terms (+Th.Cat)

lam : [V → T] → T var : V → T C : V, T, T → T
app : T, V → T def : T, [V → T] → T

β : [V → T], V → E β(Q, y) : app(lam(Q), y)⇝ Q(y)
ϕ : V, T, T → E ϕ(x,Q) : C(x,Q, var(x))⇝ Q

appe : E, V → E appe(ρ,N) : app(s(ρ), N)⇝ app(t(ρ), N)
defe : T, [V → E] → E defe(M,λx.ρ) : def(M,λx.s(ρ))⇝ def(M,λx.t(ρ))

def(Q,λx.R) = def(Q,λx.C(x,Q,R))
C(x,Q, def(R, λy.S)) = def(R, λy.C(x,Q, S))
C(x,Q, app(R, y)) = app(C(x,Q,R), y)

The name-passing λ-calculus uses references to avoid copying large data structures. It is
a restriction of the λ-calculus in that terms may only be applied to variables; while it is an
enrichment in that it introduces an environment def that records binding. There is also a
carrier C, which serves to transport the recorded binding from its declaration to its use.

The usual β reduction splits into two reductions. The first, denoted β, replaces variables
in a term with other variables. The second, denoted ϕ (for “fetch”), replaces a variable in
head position with the term to which it is bound in the environment.

The edge constructors appe and defe describe the propagation of reduction contexts into
the term: reductions may only occur in the head position of an application or under a def.

▶ Example 30. Polyadic asynchronous π-calculus [32]

N names P processes E rewrites between processes (+Th.Cat)

0 : 1 → P ink : N, [Nk → P] → P
−|− : P, P → P outk : N, Nk → P

! : P → P ν : [N → P] → P syntactic sugar: νx.p means ν(λx.p)

commk : N, Nk, [Nk → P] → E commk(n, a⃗i, λy⃗i.Q) : outk(n; a⃗i)|ink(n, λy⃗i.Q)⇝ Q[ai/yi]
parl : E, P → E parl(⟨p, e⟩, q) : p|q ⇝ t(e)|q
νe : [N → E] → E νex.ρ : νx.s(ρ)⇝ νx.t(ρ)

!Q = !Q|Q
(P, |, 0) commutative monoid
νx.νy.Q = νy.νx.Q

νx.0 = 0
Q|νx.R = νx.(Q|R) “scope extrusion”

The π-calculus [29] models concurrent processes which compute via communication, or
the exchange of “names”. It is like the ρ-calculus of this paper, without reflection and with
two added constructors. The replication operator ! makes infinitely many copies of a process.
The ν operator introduces a new scope in which a fresh name has been made available to the
contained process. Scopes can expand via scope extrusion to absorb other processes running
in parallel with the scope.

16 Native Type Theory

▶ Proposition 31. There is a translation J−K : Th.Nλ → Th.π, given below.

sorts
JVK = N
JTK = [N → P]
JHomVK = HomP

constructors
JvarK : N → [N → P]
Jvar(x)K = λu.out1(x, u)

JlamK : [N → [N → P]] → [N → P]
Jlam(λx.Q)K = λu.in2(u, λx.JQK)

JappK : [N → P], N → [N → P]
Japp(Q, x)K = λu.νv.(JQK(v)|out2(v;x, u))

JdefK : [N → P], [N → [N → P]] → [N → P]
Jdef(Q,λx.R)K = λu.νx.(JRK(u)|!in1(x, JQK)))

JCK : N, [N → P], [N → P] → [N → P]
JC(x,Q,R)K = λu.(JRK(u)|in1(x, JQK))

The translation preserves equations and rewrites; we give the computation for β-reduction.

rewrites
JβK : [N → [N → P]], N → E

Jβ(Q, x)K : Japp(lam(Q), x)K
= λu.νv.(Jlam(Q)K(v)|out2(v;x, u)) JappK
= λu.νv.(Jlam(λy.Q(y))K(v)|out2(v;x, u)) extensionality
= λu.νv.(in2(v, λy.JQ(y)K|out2(v;x, u)) JlamK
⇝ λu.νv.JQ(x)K(u) comm2
= λu.(JQ(x)K(u)|νv.0) scope extrusion
= λu.(JQ(x)K(u)|0)
= λu.JQ(x)K(u)
= JQ(x)K extensionality

	1 Introduction
	1.1 Motivation and implementation
	1.2 Organization and contribution

	2 Structured -theories
	3 The Logic of a Presheaf Topos
	3.1 The predicate fibration
	3.2 The codomain fibration

	4 Native Type Theory
	5 Applications
	5.1 Rewrite subsystems, modalities, and behavioral equivalence
	5.2 Refined binding and reasoning about contexts
	5.3 Translating across language paradigms

	6 Conclusion
	A A

