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Introduction

The subject of this thesis is the type theory of categorical universes such as Heyting pretoposes and
elementary toposes. These categories are considered universes, since they provide models for classical
and intuitionistic set theory. The reason to look for a type theory of such universes arises from the desire
to compare them with Martin-Lo6f ’s constructive type theory, since in all these frameworks intuitionistic
mathematics can be modelled.

Beginning in the seventies, Martin-L6f proposed his Constructive Type Theory as a set theory where
intuitionistic mathematics can be formalized. In this approach, “constructive” means predicative and
“computable”; indeed every proof within type theory corresponds to a program [NPS90]. An example
of constructive mathematics fully developed in this framework is formal topology [Sam87].

On the categorical side, in the sixties, Lawvere aimed at giving a purely categorical foundation of
mathematics. He wanted to axiomatize the category of sets, replacing set membership by composition
of functions. Together with Tierney, he produced the notion of an elementary topos resembling the
structural properties of a Grothendieck topos, that is a category of set-valued sheaves on a site. The
axiomatization they gave made no relevant set-theoretic assumptions. So, while a Grothendieck topos
is always an elementary topos, the converse does not hold in general.

Following Lawvere, a topos can be thought as a generalized universe of sets. But the underlying
logic of this universe is intuitionistic, not classical in general. Indeed, the truth values of a topos form
a Heyting algebra, like the algebra of open sets of a topological space.

In the seventies, Mitchell, Benabou, Joyal and others provided an explicit description of a formal
language apt to be interpreted in a topos. This language is typed, because to each term occurring in
the formulas a type is assigned. The resulting logic seems to be many-sorted, taking the simple types
as sorts. The formulas are the terms of the specific type corresponding to the subobject classifier. A
systematic exposition of this theory, as a higher order logic, was given by Lambek and Scott [LS86].
This internal language formalizes the ideas of a topos as a generalized set theory.

In order to model classical set theory, Cole [Col73] and Mitchell [Mit72] found that well-pointed
toposes with a natural numbers object and axiom of choice provide models for restricted Zermelo set
theory with the axiom of choice, where the comprehension axiom is given only for formulas with bounded
quantifiers.

More recently, Joyal and Moerdijk explored how to provide models for the full Zermelo-Fraenkel set
theory in a categorical setting [JM95]. They found that, in order to model classic and intuitionistic
Zermelo-Fraenkel set theory, it is sufficient to take a Heyting pretopos with a natural numbers object as
a categorical universe, and within this to single out a class of “small” maps satisfying suitable axioms.

The notion of pretopos was introduced by Grothendieck: an elementary topos is a pretopos, but the
latter is a weaker notion. Makkay and Reyes found that pretoposes can be characterized with respect
to the logical categories, which are the necessary structures to interpret the first order, many-sorted,
coherent logic, see [MRT77]. A Heyting pretopos is obtained by enriching such a category with the
necessary structure to interpret first order predicative intuitionistic logic.

In order to compare Martin-L6f’s Constructive Type Theory with these categorical frameworks, one
possible direction of research is to find typed theories, which corresponds precisely to toposes and to
Heyting pretoposes with a natural numbers object. This direction has been explored in the present
thesis.

The main issue is to pass from a many-sorted logic to a dependent type theory complete with
respect to the class of universes under consideration. Indeed, in a many-sorted logic there is a syntactic
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distinction between formulas and types. Moreover, the types are not dependent, since they correspond
to sorts. On the other hand, in a dependent type theory of Heyting pretoposes or of toposes, such as
those proposed in the thesis, the key point is that formulas correspond to particular dependent types.
These calculi are formulated in a style which is basically that of Martin-Lof’s type theory, so that a
more precise comparison with Constructive Type Theory is possible.

Looking at the higher order logic of a topos, the main difference with respect to Constructive Type
Theory is that, in a topos, there is a power set construction, which allows impredicative quantification.
Instead in Martin-Lof’s type theory only predicative constructions are allowed. Moreover, Martin-
L&f’s type theory has a stronger existential quantifier than the intuitionistic one, so that the axiom
of choice is provable. On the contrary, in a topos, the axiom of choice is not always valid; in fact, it
implies the principle of excluded middle, and thus the logic of the topos becomes classical, see [Joh77],
[MM92]. Therefore, from a constructive point of view, this difference seems to make the two frameworks
incompatible.

As a matter of fact, in the first chapter, we will prove that by extending intensional Martin-L&f’s
type theory with an extensional power set, where subsets are propositional functions, the principle of
excluded middle is provable by the axiom of choice, like in topos theory. This extension is made by
following the isomorphism “propositions as types”.

On the other hand, the dependent type theory for toposes, presented in the fourth chapter of the
thesis, reveals that, in a topos, formulas correspond to “mono” dependent types, i.e. types with at most
one proof, by following the isomorphism “propositions as mono closed types”.

Therefore, it should be possible to extend Martin-L6f’s type theory, without falling into classical
logic, with the powersets of a topos, by considering as subsets only mono propositional functions.

Besides powersets, also effective quotients based on generic relations can not be added to Martin-
Lof’s type theory in the presence of uniqueness of propositional equality proofs. Indeed, as explained
in the second chapter, by using effective quotients on the first universe of small sets and on the second
universe of large sets, we can prove the principle of excluded middle for small sets. To do this, it is
sufficient to adapt to this framework the already considered proof that the axiom of choice implies the
principle of excluded middle.

A proposal of effective quotients, which are compatible with the powerset of a topos without loosing
constructivity, is given by the type theory of Heyting pretoposes, proposed in the third chapter of the
thesis. This dependent type theory, complete with respect to Heyting pretoposes with a natural numbers
object, corresponds to a first order extensional type theory with product types restricted to mono types
and effective quotients restricted to mono equivalence relations.

The categorical semantics, used to interpret the typed calculi of Heyting pretoposes and toposes, is
explained in the fifth chapter. This semantics combines together the notion of model given by display
maps [HP89], [See84], with the tools provided by contextual categories to interpret substitution correctly
[Car86], emphasizing the context formation. In this way, the proofs of completeness, presented in the
sixth chapter, are restricted to particular contextual categories.

In the seventh chapter, we show that also the internal language of a Heyting pretopos or a topos
is a dependent type theory, obtained by adding the dependent types specific of the universe under
consideration. Finally, another application of the type theory is the construction of the free Heyting
pretopos and the free topos generated by a category.

By the dependent typed calculi of Heyting pretoposes and toposes, we are ready to get a type-
theoretical description of the notion of small map and hence of the categorical models for intuitionistic
set theory, as in [JM95]. On the other hand, we could also investigate possible extensions of Martin-Lof’s
type theory by the type constructors of the dependent typed calculi of Heyting pretoposes and toposes.

The results of the first chapter are contained in [MV96], of the second in [Mai97d], from the third to
sixth in [Mai97c] and [Mai97b], and finally, most of the seventh chapter will be published in [Mai97a].

Acknowledgements. My gratitude goes to Silvio Valentini, who first introduced me into this
research field, for his encouragement and interest in my work, to Pino Rosolini for his constant help,
to Ieke Moerdijk for making my visit at Utrecht extremely useful. Also, I wish to thank Peter Aczel,
Michael Makkay and Paul Taylor for helpful discussions and especially the referee, who undertook the
task of revising the first draft of this thesis in a short period of time, for the careful review and precious
suggestions. Finally, I wish to thank Giovanni Sambin, whose research motivated me to do this work.



Chapter 1

Extensional powersets in
constructive type theory

Summary An extension of Martin-Lof’s intensional set theory is proposed by means of a powerset P(S),
whose elements are the subsets of the set S, defined as propositional functions.

Since the equality among subsets has to be extensional, it turns out that such extension cannot be construc-
tive: any link between the truth of a proposition and the possibility to exhibit one of its proof-element is lost.
This fact is not compatible with the usual meaning of intuitionistic set theory. In fact, we will prove that this
extension is classic, i.e., for any proposition A, (AV —A) true holds, as a consequence of the intuitionistic axiom
of choice.

1.1 Introduction

In [GRY4] it is shown that the proof theoretic strength of Martin-Lot’s Type Theory [Mar84, NPS90] with
restricted well-orders and the universe of the small types is that of a subsystem of second order arithmetic
with A} comprehension and bar-induction. Thus, it is natural to wonder whether it is possible to enforce
it to a theory with the strength of the full comprehension schema by adding a powerset constructor; in
fact this extension is necessary in order to quantify over the subsets of a given set, since in type theory
quantification is allowed only over a set.

In the literature, there are already examples of intuitionistic set theories with some kind of powerset
constructor. For instance, one can think of a topos as a “generalized set theory” by associating with
any topos its internal language (cf. [Bel88]). The logic underlying such set theory is the intuitionistic
predicate calculus and so any topos can be thought of as an intuitionistic universe of sets.

Then the lack of the rule of excluded middle seems to assure the constructivity of any proof developed
within topos theory. The problem to adapt the topos theoretic approach to Martin-Lof’s set theory is
due to the impredicativity of the former. Indeed, Martin-Lof’s set theory is predicative and provides a
fully algorithmic way to construct the elements of the sets and the proofs of the propositions on these
sets.

Another approach is the Calculus of Construction by Coquand and Huet [Coq90], where the power
of a set S can be identified with the type of the functions from S into Prop, if we follow the isomorphism
propositions as sets and consider the notion of types as in [NPS90]. But, in this case the power of a set
is not itself a set and despite of this the quantification over Prop is allowed. Anyway, it can be proved
that the strong sum type, which is present in Martin-Lo6f’s type theory, cannot consistently be added to
the Calculus of Constructions (see [Coq90]) at the level of propositions, but only at the level of types
[Luo90].

Of course, there is no reason to expect that a second order construction becomes constructive only
because it is added to a theory which is constructive and predicative. And, indeed, we will prove that
even the weaker fragment ¢777, which contains only the basic type constructors and the intensional

6



1.2. ITTY = ITT + POWERSETS 7

equality, cannot be extended with a powerset constructor, which is compatible with the usual Martin-
Lof’s semantical explanation of the connectives and which is the collection of all the subsets of a given
set. In fact, by using the so called intuitionistic axiom of choice, it is possible to prove that, for any
powerset constructor which satisfies some natural conditions, which we will illustrate in the next section,
classical logic arises (see also [Hof95] page. 170, where a similar result is suggested for an extension of
the Calculus of Construction with Leibniz equality in the framework of setoids).

1.2 TTY =TT + powersets

In order to express the rules and the conditions that we are going to require on the powerset, it is
convenient to recall the main properties of judgements of the form A true (see [Mar84]): A true holds
if and only if there exists a proof-element a such that a € A holds (for a formal proof see [Val95]). In
particular, the following rule is admissible

ac A
A true

(True Introduction)

as well as all the rules of the intuitionistic predicative calculus with equality, where the judgement
A true stands for - A (see [Mar84] for the definition of the embedding of the intuitionistic predicative
calculus within ¢7'T"). Here, we only recall the case of the set of the intensional propositional equality
Id (see [NPS90], page. 61) which plays a main role in this chapter (for sake of clearness, supposing A
is a set and a,b € A, we will often write @ =4 b to mean Id(4,a,b)). The propositional equality is
the internalization of the definitional equality between elements of a set. Two objects are definitional
equal if they evaluate to the same canonical form. There are two kinds of propositional equality: Id
is intensional (see the rules below) and Eq is extensional (see the rules in section 3.2). Intensional
propositional equality is entailed by definitional equality, that is two objects are propositionally equal if
they are definitionally equal, but the vice versa does not hold. On the contrary, extensional propositional
equality is equivalent to definitional equality. The main difference is that in the presence of intensional
propositional equality, definitional equality and type checking are decidable, but no more in the presence
of extensional propositional equality.

The formation and introduction rules of the set of the intensional propositional equality Id are the

following
Aset aeA beA A=Cset a=ceA b=dec A

Id(A4,a,b) set Id(4,a,b) = Id(A,c,d)
Aset a€ A Aset a=be A
id(a) € Id(4,a,a) id(a) =id(b) € Id(4,a,a)

whereas the elimination rule is

[z : A]

|
celd(A,a,b) d(z) € Clx,x,id(z))

idpeel(c,d) € C(a, b, c)

and it yields the admissibility of the following two rules on judgements of the form A true:

[ : A] [z : A]

| |
c€ld(4,a,b) Clx,z,id(x)) true 1d(4,a,b) true C(x,x) true

C(a,b,c) true C(a,b) true

The rules for the set P(S) depend on the definition of what a subset is within iT7T. Following
a long tradition, we identify a subset U of S with a propositional function on S, i.e. provided that
U(z) set [z :S], weput U = (z : S) U(x), and hence, we say that an element a € S is an element of U if
U(a) is inhabited, i.e. the judgement U(a) true holds (cf. [dB80] and [SV95] for a detailed discussion of



8 CHAPTER 1. EXTENSIONAL POWERSETS IN CONSTRUCTIVE TYPE THEORY

this topic). We consider a propositional function corresponding to U(x) set [z : S], since in Martin-Lof’s
intensional set theory propositions are identified with sets and we use set for prop.

Thus, provided that we want to have an extensional equality between subsets, we are forced to
consider equal two subsets U and V of S if and only if U(z) « V(x) true [z : S],i.e. U and V have the
same elements.

Extensional equality on subsets, expressed at the level of the collection (z : S) set is the crucial
point, where classical logic breaks into the system.

Inspired by the previous explanations, here we propose the following formation and introduction
rules for P(S):

Formation

S set S
P(S) set P(S)

T
P(T)

Introduction
U set [x € S]

{(zxe S)U}eP(S)

We should now formulate the next rules for the type P(S), i.e. the equality introduction rule, the
elimination rule and the equality rule, but the aim of this chapter is to show that it is actually impossible
to formulate them, since we would obtain a Heyting semantic for classical logic. Anyhow, it is clear
that whatever rules one can give for the type P(S), some conditions should be satisfied to make P(S)
a suitable representation of the set of all the subsets of the set S. The use of conditions is a device in
order to suppose to have type theoretical rules that make the conditions expressed by true-judgements
admissible. Since in the presence of these conditions we get a negative result, we conclude that such
rules do not exist.

The first condition we require is the equality introduction condition.

Equality introduction condition

Let U & V true [z € S]. Then {(z € S) U} = {(z € S) V} € P(S).

After the previous considerations on the equality between subsets, it is clear that this condition must
be satisfied, but, as noted by Peter Aczel after reading a preliminary version of this work, this should
not be a formal rule for the type P(S), since the use of an extensional equality rule for powersets does
not fit with the idea of treating the judgemental equalities as definitional, which is basic in ¢77T.

The elimination and the equality rules are even more problematic, because it is difficult to give a plain
application of the standard approach, which allows to obtain the elimination rule out of the introduction
rule (see [Mar71]). In fact, the introduction rule does not act over elements of a set but over elements
of the collection ((x : S) set).,. Thus, if one wants to follow for P(S) the general pattern for a quotient
set, he could look for a rule similar to the following:

Y e(xel) set] [V,Z€ (zel) set,Y(z) « Z(x) true [z € S]]

| |
ceP(S) dY)eCHYY d(Y) = d(Z) € C({Y})

P(e,d) € C(c)

which, however, requires the use of variables for propositional functions.
Moreover, a standard equality rule should be something similar to the following

Ye(@eS)set] [Y,Ze(xel) set,Y(z) & Z(x) true [z € S]]

| |
UsetlzeS] dY)ecC{Y}) d(Y) = d(Z) € C({Y'})

PH{zeS)U}L,d) =d((xeS)U)eC{(xe S)U})

These rules are the direct consequence of the introduction rule and the equality introduction condition
and they are already not completely within standard type theory. But, the real problem is that they
are not sufficient to make P(S) the set of the subsets of S. For instance, there is no way to obtain a
set out of an element of P(S) and this does not fit with the introduction rule. Thus, to deal with the
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set P(S), one should add some rules which link its elements with the elements of the type set and with
those of the collection set.,, whose elements are propositions but whose equality is induced by logical
equivalence, remembering that propositions are identified with sets.

Here, we don’t want to propose any particular rule, since we are going to show that there can be no
suitable rule, but we simply require that two conditions, which should be a consequence of such rules,
are satisfied. The first condition is the following:

Elimination condition
Let ¢ € P(S) and a € S. Then there exists a set acc.

This condition is suggested by the elimination rule that we have considered. In fact, even if a formal
derivation cannot be given until we do not add the suitable rules, a free use of the elimination rule with
C(z) = set., allows to obtain that P(c,(Y) Y (a)) is an element of set., and hence, that it is a set that
we can identify with the set aec. Of course, the above condition is problematic, because it requires the
existence of a set but it gives no knowledge about it; in particular, it is not clear if one has to ask for a
new set (which are its canonical elements? which are its introduction and elimination rules?) or for an
old one (which set should one choose?).

Moreover, as a consequence of the suggested equality rule, we require the following equality condition
which is just the S-equality for this kind of (second order) application.

Equality condition
Suppose U set [z € S] and a € S then ae{(z € S) U} <> Ulz := a] true

This condition can be proved as above but using the equality rule; in fact, supposing U set [z € 5]
and a € S, the equality rule allows to obtain that ac{(xz € S) U} and Ulz := a] are equal elements of
set.,, which yields our condition. This condition cannot be justified from a semantical point of view,
since we have no way to recover the proof element for its conclusion; but, this is also the essential feature
which allows us to develop our proof in the next section, without furnishing basic type systems with
constructors for classical logic.

It is worth noting that no form of n-equality, like for instance

ceP(S)
{(x € S) zec} = c € P(S)

z g VE(c),

is required on P(S). Also for the other sets of type theory, no rule of n-equality is directly required,
because its validity can be proved at least within the extensional version of type theory eT'T. This theory
is obtained from ¢T'T by substituting the intensional equality proposition by the extensional equality
proposition Eq(A4,a,b), which allows to deduce a = b € A from a proof of Eq(A,a,b). The problem
with extensional equality is that it causes to miss the decidability of the equality judgement and for this
reason is usually rejected in the present version of the theory. Here, we can also show that n-equality
is a consequence in eT'T of the suggested elimination rule for P(S). In fact, let us assume that Y is a
subset of S and that x € S, then Y (x) set and hence ze{Y'} <+ Y (z) true holds because of the equality
condition. Then it yields {(z € S) ze{Y'}} = {Y'} € P(S) and hence Eq(P(S),{(z € S) ze{Y}},{Y});
thus, if ¢ € P(S), by using the elimination rule one obtains Eq(P(S), {(x € S) zec},c) and it yields
{(z € S) wec} = c € P(S). Note that the last step is not allowed in iTT*.

1.3 TT7? is consistent

It is well known that by adding to ¢TT just the collection P(1), whose elements are (the code for)
the non-dependent sets, but using an equality between its elements induced by the intensional equality
between sets, one obtains an inconsistent extension of i7" [Jac89]. On the contrary, we will prove
that any extension of ¢I'T with a powerset as proposed in the previous section, i.e. where the equality
between two elements of a powerset is induced by the provability equivalence, is consistent or at least
it is not inconsistent because of the rules we have proposed on the powerset and the conditions we have
required.
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The easiest way to prove this result is to prove first that 77" can be embedded in the simpler
theory i7'T*?, which contains only the powerset 2 = P(1) of all the subsets of the one element set 1 and
then to show that such a theory is consistent.

Thus, we will have the following formation and introduction rules

U set [z € 1]

Q g=q Uedleel]
set (zeD)U}ecq

Moreover, we require that the introduction equality condition, i.e.
if U Vitruezel] then {(zxe) U} ={(x 1)V} e,
holds, while the condition on the set acc set [a € 1, ¢ € 2] can be satisfied by putting, for any ¢ € Q,
aec=c=q Tq

where Tq = {(z € 1) x = z}; here any reference to the element a disappeared in the definiens, because
all the elements in 1 are equal. Finally, we require that

if Uset[rel] then {(z € 1) U} =q Ty < U true [z € 1]
Now, any powerset can be defined by putting
PS)Y=5—-Q
since, for any U set [x € S], one obtains an element in P(S) by putting
{(ze5) U =AMz e5) {(wel) U}),

where we suppose that w does not appear free in U, which is in fact an element in S — . Moreover,
for any element ¢ € P(S), i.e. a function from S into 2, and any element a € S, one obtains a set by
putting

agc = (c(a) =q Tq)

which satisfies the required condition.

Thus, any proof of ¢ € L in ¢TTF, i.e. any inconsistency in 77", can be reconstructed in this
simpler theory.

Therefore, it is sufficient here to show that this new theory is consistent. This will be done by defining
an interpretation Z of this theory into Zermelo-Fraenkel set theory with the axiom of choice, ZFC.

The basic idea is to interpret any non-dependent set A of iT'T* into a set Z(A) of ZFC and, provided
that

Z(A;) is a set of ZFC,

Z(Az) is a map from Z(A;) into the collection of all sets of ZFC,

e
Z(A,) is a map from the disjoint union

B Z(4n ), an2))

a1€Z(A1),,an—2€T(An—2)({@1,---,0n—3))
into the collection of all sets of ZFC, then the dependent set of {77
A(xy,...,xp) set [z € A1, ..., 2n € Ap(21,...,2n—1)],

i.e. the propositional function A € (1 € A1) ... (xn € Ap(x1,...,2,—1)) set, is interpreted into a map
from the disjoint union

H‘J I(An>(<al7 ) a’ﬂ*1>)

04161(141) ..... an_lEZ(An_1)(<a1,...,Oén_2>)

into the collection of all sets of ZFC.
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Since the axiom of replacement allows to avoid the use of maps into the collection of all sets, which
can be substituted by indexed families of sets, all the interpretation can be explained within basic ZFC.
Anyway, we think that the approach used here is more perspicuous and well suited for the interpretation
of a theory like iTT, where propositional functions have to be considered.

The interpretation Z(a) of a closed term a € A, where A is a non-dependent set of iTT*}, will be an
element of the set Z(A), whereas the interpretation of a non-closed term

a(xy,...,xy) € A(z1,...,2,) [21 € A1, ...,2n € Ap(21,. .., Tn_1)],

i.e. the function-element a € (1 € Ay)...(xn € Ap(z1,...,2n-1)) A(z1,...,2y), is a function Z(a)
which, when applied to the element

a € U Y{ag, .y ap_1))

Q1€L(A1)se 00 —1E€EL(Ap_ )((ah HQn—2))

gives the element Z(a)(a) of the set Z(A)(a).

Now, for the basic sets we put: Z(L) = 0, Z(1) = {0} and Z(Bool) = {0, {0} } and there is an obvious
interpretation of their elements.

Moreover, the sets £(A, B) and II(A, B) are interpreted respectively in the disjoint union and the
indexed product of the interpretation of B(z) indexed on the elements of the interpretation of A.

The disjoint sum set A + B is interpreted in the disjoint union of the interpretation of A and B and
the interpretation of the equality proposition a =4 b is the characteristic function of the equality of the
interpretation of a¢ and b.

Finally, the interpretation of the set 2 is the set {0, {0}}.

Moreover, the judgement A(z1,...,z,) true [[] is interpreted in Z(A)(y) # 0 for every v € Z(T),
which gives Z(A) # () when A is a non-dependent set of i77.

The interpretation of all the terms is straightforward; thus, here, we only illustrate the interpretation
of the elements of the set (2:

seenvn={ g TS

After this definition, for any subset U of 1, Z({(z € 1) U} =q T <> U) # 0 by the axiom of choice and
hence the equality condition is valid.

It is tedious, but straightforward, to check that all the rules of iTT* are valid according to this inter-
pretation and hence that any proof of the judgement a € L within ¢77T, i.e. any form of inconsistency,
would result in a proof that there is some element in @), that is an inconsistency in ZFC.

1.4 TT? is classical

We are going to prove that i7TF gives rise to classical logic, i.e., for any set A, the judgement AV—A true
holds. Even if ¢TT is not a topos, the proof we show here is obtained by adapting to our framework
an analogous result stating that any topos which satisfies the axiom of choice is boolean. Among the
various proofs of this result (cf. for instance [LS86],[Bel88]), which goes back to Diaconescu’s work,
which shows that by adding the axiom of choice to IZF one obtains ZF [Dia75], we choose to translate
the proof of Bell [Bel88], because it is very well suited to work in iTTF | since it is almost completely
developed within local set theory instead that in topos theory, except for the use of a choice rule.

In iTTF, the result is a consequence of the strong elimination rule for disjoint union which allows to
prove the so called intuitionistic axiom of choice, i.e.

(Ve € A)(Jy € B) C(x,y)) —» ((3f € A — B)(Vx € A) C(x, f(x))) true

Let us recall the proof [Mar84]. Assume that h € (Vz € A)(Jy € B) C(z,y) and that © € A. Then
h(z) € (Jy € B) C(x,y). Let m1(—) and m(—) be the first and second projection respectively; then
the elimination rule for the set of the disjoint union allows to prove that m (h(z)) € B and my(h(z)) €
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C(z, 71 (h(x))). Hence, by putting f
C(x, f(x)) since, by S-equality, f(x)
introduction.

Since in the following we will use mainly the powerset P (1), we introduce some abbreviations besides
Q=P() and Ty = {(w € 1) w = w} that we have already used in section 1.3; let us suppose that
U is a set and w € 1 is a variable which does not appear in U, then we put [U] = {(w € 1) U} and,
supposing p € ), we put p = xep. Moreover, following a standard logical practice, supposing A is a set,
we will simply write A to assert the judgement A true. It is convenient to state here all the properties
of the intensional equality proposition Id that we need in the following. First, we recall some well known
results: Id is an equivalence relation; moreover, if A and B are sets and a =4 ¢ and f =4_.p g then
f(a) =p g(c) (for a proof see [NPS90], page 64).

On the other hand, the following properties of Id are specific to the new set 2. They are similar to
the properties that the set Id enjoys when it is used on elements of the set Uy, i.e. the universe of the
small sets. In fact, 2 resembles this set, but it differs also both because of the considered equality and
because a code for each set is present in (), whereas only the codes for the small sets can be found in
Up.

Az.m1(h(z)), we obtain both f € A — B and m(h(z)) €
(Az.mi (h(x)))(xz) = m(h(z)). Finally, we conclude by true

Lemma 1.4.1 If p=q q thenp < 7.

Proof. Let z € ; then T <+ T and hence p < 7 is a consequence of p =q ¢ by Id-elimination.
]

Lemma 1.4.2 —(true =g false).

Proof. Let z € Bool; then if x then [1] else [L] € Q. Now, suppose that true =goo false, then
if true then [1] else [L] =q if false then [1] else [L], which yields [1] =q [L] by boole-equality and
transitivity. - L o

Thus, by the previous lemma, [1] <> [L] but [1] <+ 1 and [L] <> L by the equality condition; hence
L true and thus, by discharging the assumption true =g, false, we obtain the result.
]

We will start, now, the proof of the main result of this section. The trick to internalize the proof in
[Bel88] within ¢TT* is stated in the following lemma.

Lemma 1.4.3 For any set A, if A true then id(Tq) € [A] =q Tq and hence [A] =q Tq and if
[A] =q Tq then A true.

Proof. If A true then A <« w =q w true [w € 1] and hence [A] = T € €, which implies
id(Tq) € [A] = Ty and hence [A] =q T true by true introduction; on the other hand, if [A] =q Tq
then, by lemma 1.4.1, m > T_]l, but m < Aand *x =1 x & T_]l, by the equality condition, and
hence A true since x =1 * true.

]

Indeed, after this lemma it is possible to obtain, for any proposition A, a logically equivalent proposition,
i.e. [A] =q Ty, such that, if A true, the proof element id(Tq) of [A] =q Ty has no memory of the
proof element which testifies the truth of A. We will see that this property is essential in the proof of
the following theorems. We will use it immediately in the following proposition where, instead of the
proposition 71 (w) V m(w) set [w: Q x Q, we use [11(w) V m(w)] =q Tq set [w: Q x Q] in order
to avoid that the proof-term in the main statement depends on the truth of the first or of the second
disjunct.
We can now prove:

Proposition 1.4.4 In iTT" the following proposition

(Vz € B(Q x Q, (w) [m(w) V m(w)] =q Tq))
(3z € Bool) (x =gooi true — w1 (7m1(2))) A (x =pool false — w2 (71(2)))

s true.
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Proof. Suppose z € 3(Q x Q, (w) [m1(w) V m(w)] =q Tq) then m1(2) € Q x Q and 72(z) is a proof
of [m(m1(2)) V m2(m1(2))] =a Tq. Thus, by lemma 1.4.3, 71 (71(2)) V ma(m1(z)). The result can now
be proved by V-elimination. In fact, if m;(71(2)) true then true =pgoo true — m(m1(2)); moreover, by
lemma 1.4.2, —(true =pool false) and hence true =g, false = m2(71(2)). Thus, we obtain that

(3z € Bool) (z =pool true = m1(71(2))) A (T =Bool false = m2(7m1(2)))

On the other hand, by means of a similar proof, we reach the same conclusion starting from the assump-
tion ma(m1(2)) true.
|

Thus, we can use the intuitionistic axiom of choice to obtain:

Proposition 1.4.5 In iTT" the following proposition

Af € Z(Qx Q, (w) [m(w) V m(w)] =q Tq) — Bool)
(Vz € B(Q x Q, (w) [m(w) V m(w)] =q Tq))
(f(2) =Bool true — m1(m1(2))) A (f(2) =Bool false — ma(m1(2)))

18 true.

Suppose, now, that A is a set; then

(([A], Tg),id(Tq)) € 2(2x Q, (w) [mi(w) V m2(w)] =a Tq)

In fact, ([A], Tq) € Q x Q. Moreover Ty true and hence m (([4], Tq)) V m2(([4], Tq)); thus, by lemma

1.4.3, Id(T]l) S [7T1(<[A],T]1>) \Y 7T2(<[A],T]l>)] =Q T]l'
Now, let f be the choice function, i.e. use an 3-elimination rule on the judgement in the proposition
1.4.5; then f({([A], Tq),id(Tq))) =Bool true — [A]. But

(F (AL T2, 1d(T 1)) =goo true) V. (F((([A], T1),id(T 1)) =sool false)

since the set Bool is decidable (for a proof see [NPS90], page. 177), and hence, by V-elimination and a
little of intuitionistic logic, one obtains that

(1) [A] v (f(([AL T1),id(T1))) =sool false)
Analogously, one can prove that

(2) Al vV (f(((T1,[A4]),id(Tq))) =sool true)
Thus, by using distributivity on the conjunction of (1) and (2), one finally obtains

Proposition 1.4.6 For any set A in iTT" the following proposition

(3f €S x O, (w) [11(w) V m(w)] =g Tq) = Bool)
[A] vV (F((([A], T, id(T 1)) =sooi false) A (f({{Tq,[A]),id(Tq))) =sool true))

s true.

Let us now assume [A] true; then, by equality condition A true, from which by equality introduction
condition, that is by extensionality on subsets, [A] = Ty € Q and hence

(([AL T1),1d(T ) =s@xa,...) (T, T id(Tq))-

Thus f({({[A], T1),id(T 1)) =oot f({{Tq, Tq),id(Tq))), where f is obtained by an 3-elimination rule
on the judgement in the proposition 1.4.6. With the same assumption, also f({(T g, [A]),id(T 7)) =Bool
J({({Tq, Tq),id(Tq))) can be proved in a similar way; hence

FUCAL T ), id(T ) =goor S (T, [A]), id(Tq)))
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Then assuming both [A] true and

(F(CAL T2, 1d(T ) =soa false) A (F({{T 1, [A},id(T 1)) =goor true)

one can conclude true =g, false. But, by lemma 1.4.2, =(true =po0 false). Hence, under the assumption

(F((([A], T2, 1d(T 1)) =sool false) A (f({{Tq,[A]),id(T1))) =sool true),

the judgement —[A] true holds. Thus, by using proposition 1.4.6 and a little of intuitionistic logic, we
can conclude ([A] V —[A]) true which, by the equality condition, yields (A v —A) true. Thus, provided
one can give for the powerset suitable rules which allow our conditions to hold, i.e. which really express
the meaning of the powerset, and that meanwhile allow to keep the usual meaning for the judgement
C true, i.e. C true holds if and only if there exists a proof element for the set C', then we would have a

proof element for the set A V —A, which is expected to fail.

1.5 Conclusion

To help the reader who knows the proof in [Bel88], it may be useful to explain the differences between
the original proof and that presented in the previous section. Our proof is not the plain application of
Bell’s result to sTTF, since sTT¥ is not a topos. It is possible to obtain a topos out of the extensional
theory eT'TY, obtained by adding a powerset constructor to eI'T, if one adds to it also the rule of
n-equality for powersets, as in the end of section 1.2. But, it is not necessary to be within a topos to
reconstruct Diaconescu’s result and a weaker theory is sufficient. It is also possible to get the same result,
by replacing the equality introduction condition with a weaker rule, stating: if U < V true [z € S] then
there is a proof-term c(U,V)) € {(z € S) U} =ps) {(z € S) V'}.

This fact suggests that it is not possible to extend Martin-Lo6f’s type theory, where proof-elements
can be provided for any provable set, to an intuitionistic theory of sets fully equipped with powersets, like
topos theory, following the isomorphism “propositions as sets” and preserving the constructive meaning
of the connectives: one has to choose between predicativity and expressive power.



Chapter 2

Effective quotients in constructive
type theory

Summary We extend Martin-Lof’s Constructive Set Theory with effective quotient sets and the uniqueness
of propositional equality proofs. We prove that in the presence of at least two universes Uy and Ui, to which
the codes of quotient sets are added, the principle of excluded middle holds for small sets. The key point is
effectiveness condition, that allows us to recover information on the equivalence relation, from the equality on
the quotient set.

2.1 Introduction

Within the framework of Martin-Lof’s set theory, in order to generate some formal topologies the quotient
sets are also desirable [NV97]. But, some care is necessary in extending Martin-Lof’s set theory by
quotient sets, if we want to keep constructivity.

Here, we consider to extend the intensional version of Martin-Lof’s type theory with the quotient
sets as formulated in [Hof95] and with the addition of effectiveness condition and the uniqueness of
propositional equality proofs. We show that with the presence of at least two universes Uy and Uy, to
which the codes of quotient sets are added, then the principle of excluded middle holds for small sets.
Precisely, in this extension we can reproduce the proof that the axiom of choice implies the principle of
excluded middle, at least for small sets. The key point to do this proof is the application of the equality
rule of quotient sets combined together with the effectiveness condition on the quotients of the first two
universes under equiprovability.

Of course, an analogous proof can be reproduced in the extensional version of Martin-Lof’s type
theory with the quotient sets as given in Nuprl [Con86] and always with the addition of effectiveness
condition. We know that the effectiveness condition is surely derivable for decidable equivalence relations,
but the general effectiveness condition is problematic, because it restores information that has been
forgotten in the introduction rule for equality of equivalence classes.

The interest in effectiveness condition arises from mathematical practice of quotient sets. In order
to keep effectiveness for quotient sets, an alternative strategy could be to let only quotient sets based
on equivalence relations, which are proof-irrelevant, as it is in the type theory of Heyting pretoposes
proposed in this thesis.

2.2 Extension of 7T with quotient sets
We extend the intensional Martin-Lof constructive set theory by quotient sets and uniqueness of proofs

for the intensional propositional equality as in [Hof95] (page 111), with the following inference rules. We
call this extension iT7T<.

15
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Intensional Quotient set

R(x,y) set [t € A,y € A]

¢1 € R(x,x)[z € 4], e € R(y,x)[x € A,y € A,z € R(z,y)]
cs € R(z,z)[re A,ye A,z € A,w € R(z,y),w € R(y, 2)]
A/R set
I-int.quotient
ac A
[a] € A/R

We specify also the equality between terms of A/R
eq -int.quotient
a€A beA de R(a,d)

an(d) S |d(A/R7 [a]7 [b])

E-int.quotient
s€ A/R l(z) € L([z])[z € A]
h € 1d(L([y]), sub(Qax(d),l(x)),l(y)) [x € A,y € A,d € R(x,y)]
Q(l,s) € L(s)

where sub is defined as in [NPS90] page.64 for substitution with equal elements;
C-int.quotient

a€A l(z)e L([z])[z € A]
h € 1d(L([y]), sub(Qax(d),l(x)),l(y)) [xr € A,y € A,d € R(x,y)]
Q(, [a]) = la) € L([a])

We also want to make equivalence relations effective:
Effectiveness condition

acA be A Id(A/R,]a],[b]) true
R(a,b) true

Moreover, we add the axiom of uniqueness of propositional equality proofs:
Id-Uni 1

acA peld(4,a,a)
iduni(a, p) € ld(1d(4, a,a), p,id(a))
The corresponding conversion rule is the following:
Id-Uni conv

ac A
iduni(a,id(a)) = id(id(a)) € Id(Id(4, a, a),id(a),id(a))

By Id-Uni and the elimination rule of propositional equality on the proposition

HwGId(A7z7y)|d(|d(Aa Z, y)v w, Z) [J,‘ € Av Y€ Aa z e Id(Aa Z, y)]
Streicher proved that under the context x € A,y € A,z € Id(A,x,y),w € ld(A, z,y) this proof-term
idpeel(z, A\w € Id(A, z, z).iduni(z, w))(w)

is of type
Id(Id(A, z,9),w, 2) [z € A,y € A,z € ld(A, z,y),w € Id(A, z,y)]

that is the uniqueness of proofs of propositional equality type, called UIP (see [Hof95] page.81).

Remark 2.2.1 The uniqueness of proofs of propositional equality type is definable by pattern-matching,
but it is not derivable in the intensional version of Martin-Lo6f’s type theory, as showed by M. Hofmann
and T. Streicher (see [Hof95] ). In our proof of the principle of excluded middle for small sets, the use
of this principle seems crucial.
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Remark 2.2.2 Note that in order to do the proof of excluded middle for small sets, we never make use
of the elimination rule for the quotient set and of the conversion rule Id-Uni conv.

Moreover, we consider the first universe Uy, whose elements are called small sets, and the second universe
U1, whose elements are called large sets, as in [Mar84] and [NPS90].

We have to add to the rules for these universes the following introduction rule for the codes of quotient
sets for i = 0, 1:

UQ-I

a €U r(x,y) € U [z € Ti(a),y € Ti(a)]
c1 € Ti(r(z,x)) [ € Ti(a)], ¢2 € Ti(r(y, ) [x € Ti(a),y € Ti(a),z € Ti(r(z,y))]
c3 € Ti(r(x, 2)) [z € Ti(a),y € Ti(a), z € Ty(a),w € Ty(r(z,y)),w' € Ti(r(y,2))]

a]r el;

with the following conversion rule:

Ti(a/r) = Ty(a) /Ti(r(z, y))

About the properties of judgements of the form A ¢rue (see [Mar84]) we refer to the section 1.2.

This extension of iT'T is consistent, because there exists an interpretation in classical set theory
(ZFC) plus two strongly inaccessible cardinals, by interpreting the quotient sets in classical quotient sets
and the first two universes respectively in the set of small sets and in the set of large sets.

2.3 Small sets are classical

We are going to prove that for small sets in 477% the principle of excluded middle holds, i.e. for any
element of the first universe a € Uy, the judgement To(a) V —Tp(a) true holds. By quotienting the two
universes under the relation of equiprovability among their elements, we simulate the powersets. The
proof we show here is obtained by adapting to our framework the analogous result of section 1.4, that
the axiom of choice implies the principle of excluded middle in the presence of extensional powersets.

Therefore, also in 47T the result is a consequence of the strong elimination rule for disjoint union
which allows to prove the so called intuitionistic aziom of choice as in section 1.4, i.e.

(Vz € A)(3y € B) C(z,y)) = ((3f € A— B)(Vz € A) C(z, f(x))) true

In order to recover the proof of the principle of excluded middle from the axiom of choice, we quotient
the first two universes under the equivalence relation of equiprovability, i.e.

T()(J,‘) <~ To(y) [.1‘ € Uy,y € Uo] Tl(l‘) <~ Tl(y) [.1‘ e U,y € Ul]
Then we use the following abbreviations for ¢ = 0,1
Qi = U/ Ti(z) < Tiy)

Since there is a code of Uy in U; .
Uy el
then there is inside U; the code for Q, P
Qo =Uy/ 25y
Indeed, we can derive . .
Qo ey and T (Qo) =

Note that we do not distinguish the codes of Uy and Uy, with ¢y and ¢; as in [Dyb97], in order to make
formulas more readable.
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The reason to use the first two universes is due to the possibility of deriving
1d(Q0, 2, [T]) € Uy [z € Qo

where T is the terminal type (see the rule in section 3.2). We use the abbreviation a =4 b for Id(A4, a, b),
when it is not coded in a universe.

Following a standard logical practice, supposing A is a proposition, we will simply write A to assert
the judgement A true.

We recall that, in the presence of Uy, we can derive

—(true =poo false)

We will start now the proof of the main result of this section. One of the key points to internalize the
proof in [Bel88] within iTT? is stated in the following lemma.

Lemma 2.3.1 For any set a € U;, [a] =q, ["T'] iff Ti(a) true fori=0,1.

~

Proof. From [a] =q, [T] true by effectiveness of quotient sets we get T;(a) <
T;(T) = T so Ti(a) true. On the other hand, from Tj(a) true, we get T;(a) ¢
equality rule on the quotient set we conclude [a] =g, [T].

T,("T') true, but
T;(T) and by the

Now we consider the following abbreviations: for z € £
B(z) = 1d(,2,[T))
We can now prove:

Proposition 2.3.2 In iTT? the following proposition

(Vz € £(Q x o, (w) [E(m1 (w)V E(m(w))] =o, [T])
(3z € Bool) (x =gooi true — E(m1(m1(2)))
(x =Bool false — E(ma(m1(2)))

18 true.

Proof. Suppose z € £(Qp x Qp, (w) [E(7r/1(\w))\7 E(/ﬂ'g(\’w))] =q, [T] Then m(2) € Qo X Qo and my(2)
is a proof of [E(m1(71(2)))V E(ma(m1(2)))] =a, ["T'] Thus, by lemma 2.3.1 and by the conversion rules

for Uy, E(m1(m1(z))) V E(m2(m(2))) . The result can now be proved as in the proposition 1.4.4.
"

Thus, we can use the intuitionistic axiom of choice to obtain:

Proposition 2.3.3 In iTT° the following proposition

—

(3f € 2(Qp x o, (w) [E@v E(m(w))] =a, [T]) - Bool)
(V2 € 3(Qo x Qo, (w) [E(m (w))V E(me(w))] =a, [T])
(f(2) =Booi true = E(m1(m1(2))) N (f(2) =Bool false — E(ma(m1(2)))

18 true.
Suppose, now, that a € Up is a small set; then
(([a], [T1), Qax({Ay*, Ay"inr(id([T]))))

is of type
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where x € T. In fact, ([a], ["T']) € Qo x o and
Oy, Ay inr(id([T])) € 1d(Q, [a], [T]) V Id(Q0, [T],[T]) & T

from which, since

——

(0, [a], [T]) V 1d(Q, [T],[T]) & T = Ty(E([a))V E([T])) ¢ T1(T)

by the equality rule on the quotient set we get

Qax((hyx, - inr(id((T]))) € [E(a)¥ B(T])] =o, [T]
Analogously, R R
([T] [a]), Qax((Ay *, Ay".inl(id([T])))))
is of type

—

(0 x Qo, (w) [E(m (w))V E(ra(w)] =g, [T])
since ([T], [a]) € Qo x Qo and

(g%, Ay inl(id([T]))) € 1d(Qo, [T, [T]) V 1d(Q, [a], [T]) ¢ T

Let us put for w € Qg R
q1(w) = Qax({Ay.*x, Ay".inr(id([T]))))

and R
d2(w) = Qax({Ay.x, A\y".inl(id([T]))))

Now, let f be the choice function, i.e. use an 3-elimination rule on the judgement in the proposition
2.3.3; then as in the proof of proposition 1.4.6 f({{[a],[T]),q1([a])}) =Bool true — E([a]). But

~ ~

(f({(lal, [T1); a1([a]))) =soar true) Vv (f((([al,[T]),qr([a]))) =sool false)

since the set Bool is decidable (for a proof see [NPS90], page. 177), and hence, by V-elimination, lemma
2.3.1 and a little of intuitionistic logic, one obtains that

~

(1) Tola) v (f(((al, [T]),a1([a])}) =soa false)

and in an analogous way

(2) To(a) vV (F(({[T] la]), az([a]))) =sool true)

Thus, by using distributivity on the conjunction of (1) and (2), one finally obtains

Proposition 2.3.4 For any small set a € Uy in iTT? the following proposition

(3f € B( x o, () [E(m (w))V E{m(w))] =a, [T]) - Bool)
To(a) v (£(({{al, [T]), a1 ([a]))) =soor false) A F(({[a][T]), a2([a]))) =sool true))

18 true.

~

Let us now assume Ty(a) true; then, by lemma 2.3.1, [a] =q, [T] true and hence

~ A~ A~ ~

{([a], [T]), a1 ([a])) =x(00xa0,...) {[TLITD, ar([T])

by the elimination rule of the intensional propositional equality with respect to the proposition

(z, [T]),a1(2)) =s(00xa0,..) (U [T, a1 (®)) [z € o,y € Q)
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where q(z) = an((/\y *, Ay’ |nr(|d([ ])A)>) Lac € Qo]Aand gz2(y) = Qax({A\y.x, Ay’.inl(id(["T'])))) [y € Qo).
Thus, f({{[a], [T]) a1 ([a]))) =sool FUT],[T]),q1([T]))), where f is obtained by an J-elimination rule
on the judgement in the proposition 2.3.4. With the same assumption, also

~

FUUTY [a), a2 ([a]))) =soot FUTL TN, a2 ([T]))

can be proved in a similar way; hence, since by uniqueness of propositional equality proofs UIP we get
a proof-term of

a(M)=-—=_— T

[E([TDV E(T])]=a, [T]

we conclude by the elimination rule of propositional equality

(TLITY, au([TD) =s(00x90...) (TLITD, a2([T]))

—4

and therefore R R
f(lal, [T]), ax([a]))) =soor f({[T], [a]), az([al)})
Then assuming both Ty(a) true and

~ ~

(f({([al, [T]), a1([a]))) =sool false) A (f({{[T],[a]), a2([al)}) =Bool true) true

one can conclude true =goo false. But we know that —(true =g false) can be derived. Hence, under
the assumption

(F(({la], [TD, a1 ([a]))) =sool false) A (F((([T]; [a]), a2([a]))) =gool true),

the judgement —Ty(a) true holds. So, by using proposition 2.3.4 and a little of intuitionistic logic, we
can conclude (Tp(a) V —Tp(a)) true that is

HaEUo TO(a) v _‘TO(a) true

In conclusion the key points to reproduce the proof of the principle of excluded middle on small sets are
the following;:
e we use the axiom of choice, by quantifying on
(Qo x Qo, (w) [E(m (w))V E(ma(w)] =a, [T])
instead of £(Qo x Qo, (w) E(m (w))V E(ma(w))) in order to forget the proof-term of the disjunction;

e we exhibit the proof-term q; by means of the equality rule on the quotient set in order to get

——

(([al, [TD,a([a])) € =(Qo x Qo, (w) [E(m (w))V E(rz(w))] =a, [T])

in order to prove under the assumption [a] =q, ["T—] true for a € Uy
({[a). [T a1 (a])) =s(g0 ...y ((TL LT an (7))

e we need the uniqueness of propositional equality proofs in order to prove

A~ A~ ~ A~ A~ ~

(7LD a([TD) =s0xao,.. ([TLITD, a2([T])

Thus, provided one can give suitable rules, which allow quotient sets and our effectiveness condition to
hold, and that meanwhile allow us to keep the usual meaning for the judgement C' true, i.e. C true
holds if and only if there exists a proof element for the proposition C, then we would have a proof
element for the proposition I,cy,To(a) V —Tp(a), which is expected to fail for small sets, according to
an intuitionistic explanation of connectives.
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2.4 Extensional quotient sets in extensional type theory

The proof that effectiveness of quotient sets yields classical logic for small sets can also be done for the
extensional version of Martin-Lof’s Constructive Set Theory, e1'T, with the rules for quotient sets, as
in Nuprl [Con86], to which we add the effectiveness condition and the introduction and conversion rules
of the codes for quotient sets into the first two universes.

About the properties of judgements of the form A true, we only recall the case of the set of the
extensional propositional equality Eq (see [NPS90]). The formation and introduction rules are the

following
Aset aecA beA A=Cset a=ce€cA b=dec A

Eq(4,a,b) set Eq(4,a,b) = Eq(C,c,d)
Aset a€ A Aset a=be A
eqy(a) € Eq(4,a,q) equ(a) =equ(b) € Eq(4,a,a)
whereas the elimination rule is
d € Eq(4,a,b)
a=be A

and it yields the admissibility of the following rule on judgements of the form A true:

Eq(A4,a,b) true
a=beA

In the following, we recall the rules for quotient sets in the extensional type theory:
Quotient set

R(z,y) set [vr € A,y € A]

¢ € R(z,x)[z € A], co € R(y,x)[z € A,y € A,z € R(z,y)]
3 € R(x,z)[r € A,y € A,z € A,w € R(z,y),w € R(y,2)]
A/R set
I-quotient
a€ A
[a] € A/R

We specify also the equality between terms of A/R
eq-quotient
acA beA de R(a,b)

[a] = [b] € A/R

E-quotient

s€ A/R I(z) € L([z])[x € A] l(z) =1(y) € L([z])[z € A,y € A,d € R(z,y)]
Q(l,s) € L(s)

C-quotient

L([z])[x € A,y € A,d € R(z,y)]
L([a])

a€A l(z) e L(a))[z € 4] l(z)=1y)
QU [a]) = U(a)

We also want to make equivalence relations effective:
Effectiveness condition

€
S

ac€A bed [a=[b)€ A/R
R(a,b) true
We also add the codes of quotient sets in the introduction rules for the first two universes and their

corresponding conversion rules, as in section 2.2. Moreover, like for the intensional propositional equality
set, the introduction of equality on quotient sets yields the admissibility of the following rule:

acA beA R(a,b)true
[a] =[b] € A/R
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This extension of eI'T, called ¢I'T?, is consistent, because there exists an interpretation in classical
set theory (ZFC) with two strongly inaccessible cardinals, by interpreting the quotient sets in classical
quotient sets and the first two universes respectively in the set of small sets and in the set of large sets.
In the presence of extensional propositional equality type, the rule for intensional quotient sets
become equivalent to those of extensional quotient sets and the same holds with respect to effectiveness
conditions. So, we can reproduce in eT'T'9 the proof of the previous section, and we conclude

Mucv,To(a) vV —To(a) true

which is expected to fail for small sets.



Chapter 3

The type theory of Heyting
pretoposes

Summary We present a type theory, based on dependent types and proof-terms, which is valid and complete
with respect to the class of Heyting pretoposes with a natural numbers object. The type theory of Heyting
pretoposes turns out to be extensional in the presence of the extensional propositional equality type and of the
extensional quotient type. Subobjects are characterized as “mono” types.

3.1 Introduction

An elementary topos can be viewed as a generalized universe of sets to develop mathematics. From a
logical point of view, topos theory corresponds to an intuitionistic higher order logic with typed variables
[LS86]. Suitable toposes provide models for restricted Zermelo set theory [MM92]. Recently, Joyal and
Moerdijk built a model of the whole intuitionistic set theory by using the notion of small map and by
taking a Heyting pretopos with a natural numbers object as the categorical universe [JM95]. The search
for a type theory of Heyting pretoposes with a natural numbers object arises from the purpose of giving
a pure type-theoretic description of the models for intuitionistic set theory in [JM95], after analyzing
the notion of “Small map” from a type-theoretic point of view. From now on, we shall refer to a Heyting
pretopos with a natural numbers object as H-pretopos.

With respect to a topos, a Heyting pretopos lacks exponentials and the subobject classifier. Indeed, a
pretopos is a category equipped with finite limits, stable finite disjoint sums and stable effective quotients
of equivalence relations. A Heyting pretopos is a pretopos, where the pullback functor on subobjects
has a right adjoint.

Makkay and Reyes found that pretoposes can be characterized with respect to the logical categories,
which are the necessary structures to interpret the many-sorted coherent logic [MR77]. Here, we want
to find a type theory complete with respect to H-pretoposes, where there is no syntactic distinction
between formulas and sorts.

The type theory of H-pretoposes, called H P, is a calculus of dependent types, with a formation rule
for every type and introduction, elimination and conversion rules for terms of the same type according
to the style of Martin-Lof’s type theory. In order to interpret the dependencies, we use the fact that
any H-pretopos is locally a H-pretopos, i.e. for every object A € ObP of the H-pretopos P, P/A is a
H-pretopos.

The main difficulty in finding a type theory of H-pretoposes is exactly to describe the relation between
the codomain fibration of a H-pretopos and the fibration of its subobjects. Indeed, we have to express
the fact that the subobjects form a Heyting algebra and are sufficiently complete to interpret quantifiers.

It is possible to characterize proof-theoretically the subobjects as “mono” types: we say that a
dependent type B(z)[z € A] is mono, when

y=z€ B(z) [zr € A,y € B(z),z € B(x)]

23
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is derivable. Indeed, in the categorical semantics (see chapter 5) the interpretation of a mono type will
turn out to be in correspondence with a monomorphism.

The mono dependent type is the crucial concept for the proof-theoretical characterization of the right
adjoint to the “pullback functor” on subobjects. As a matter of fact, in order to represent this right
adjoint, we introduce a dependent product type restricted to a mono type, called the forall type.

Moreover, we consider the indexed sum type instead of the simple product type, since for its inter-
pretation it is sufficient to have pullbacks. In the syntactic H-pretopos, by the indexed sum types we
establish a correspondence between subobjects and mono dependent types.

In conclusion, in the type theory of H-pretoposes there are the following types: the terminal type, the
indexed sum type, the extensional equality type corresponding to finite limits, the quotient type based
only on mono equivalence relations corresponding to the quotient of an equivalence relation, the disjoint
sum type together with the false type corresponding to finite disjoint coproducts and finally, the forall
type corresponding to the right adjoint on subobjects. The presence of the extensional propositional
equality is crucial in order to prove that the syntactic category of closed types and suitable terms of H P
is an H-pretopos.

To prove the completeness theorem of H P with respect to the class of H-pretoposes, we need to add
two axioms, which do not follow the schema of all the other rules: effectiveness for quotients of mono
equivalence relations and disjointness of sums.

3.2 The type theory HP

We start with the description of the dependent type theory H P, valid and complete with respect to
H-pretoposes, as we will see in the next chapters. This typed system is equipped with types, which
should be thought of as sets or data types, and with typed terms which represent proofs of the types to
which they belong. In the following we present the formation rules for types and the introduction and
elimination rules for terms. In the style of Martin-Lof’s type theory, we have four kinds of judgements
[NPS90]:
Atype A=B a€A a=b€eA

that is the type judgement, the equality between types, the term judgement and the equality between

terms of the same type. The contexts of these judgements are telescopic [dB91], since types are allowed
to depend on variables of other types. The contexts are generated by the following rules

' cont  Atype [I]

1€) 0 cont 20) Fze A cont

(xeAgl)

plus the rules of equality between contexts [Str91], [Pit95]. In the following, we present the inference
rules to construct type judgements and term judgements with their equality judgements by recursion.
One should also add all the inference rules that express reflexivity, symmetry and transitivity of the
equality between types and terms and the set equality rule

ac Al A=B]I]
a € B [I]

conv)

Moreover, by the following rule we assume typed variables

I'ze A,A cont
re Al xe A A]

var)

We can derive then the structural rules of weakening, substitution and of a suitable exchange.

Now, we give the formation rules for types specific to HP and then the introduction, elimination and
conversion rules of its terms.

We adopt the usual definitions of bound and free occurrences of variables and we identify two terms
under a-conversion.

Remark 3.2.1 In the following, the context common to all judgements involved in a rule will be omitted.
The typed variable appearing in a context is meant to be added to the implicit context as the last one.
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Terminal type

teT
Tr) Tt I-T) T C-Tr) ————
r) T type r) x€ r) P———
False type
a€l Atype
Fs) Lt E-Fs) ——
) ype ) ro(a) € A
Indexed Sum type
) C(z) type [z € B] L) beB ceC(b)
Y.eC(x) type (b,c) € BpepC(x)

)
d € XeepC(x) m(z,y) € M({z,y)) [x € B,y € C(x)]
split(d,m) € M (d)
beB ceCd) m(z,y) € M{z,y)) [z € B,y € C(x)]
split((b, c),m) = m(b,c) € M({b,c))

E-%)

C-Y)
Equality type
Ctype ceC deC I-Eq) ceC
Eq(C, ¢, d) type eqc(c) € Eq(C, ¢, c)
p € Eq(C, ¢, d) p € Eq(C, ¢, d)
c=deC p=eqc € Eq(C,¢,d)

Eq)

E-Eq) C-Eq)

Disjoint Sum type

C type D type celC de D

C + D type L) inlc) e C+D L) inr(d) e C+D

weC+D ac(z) € A(inl(z)) [z € C] ap(y) € A(inr(y)) [y € D]

D(w,ac,ap) € A(w)

ceC ac(z) € A(inl(z)) [t € C] ap(y) € A(inr(y)) [y € D]
D(inl(¢),ac,ap) = ac(c) € A(inl(c))

deD ac(x) € A(inl(z)) [z € C] aply) € A(inr(y)) [y € D]
D(inr(d),ac,ap) = ap(d) € A(inr(d))

+)

E-+)

Cl-+)

Co-+)

Disjointness
ceC deD inl(c)=inr(d) e C+ D

m(c,d) € L

Forall type
C(z) type[r € B] y=z€ C(z) [zr € B,y € C(x),z € C(x)]

VoepC(2) type
ceC(x)reB] y=z€C(x) [z € B,y Cx),z € C(x)]
ArB.c € Ve pC(x)
be B feVepC(z)
Ap(f,b) € C(b)
beB cel(x)xreB] y=2€C(z) [z € B,yeC(z),z € C(x)]

v)

1Y)

E-Y)

pC-v)

Ap(AzB.c,b) = c(b) € C(b)

f € vwEBC(x)
AzB . Ap(f,z) = f € VuepC(2)

nC-v)

Quotient type

R(x,y) type [t € A,y € A], z=w € R(z,y)[zx € A,y € A,z € R(z,y),w € R(x,y)]

a1 € R(z,z)[z € A], cz € R(y,z)[xr € A,y € A,z € R(z,y)]
3 € R(z,z)[xre A,ye A,z € A,w € R(z,y),w € R(y, 2)]

Q) A/R type

25
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ac A acA beA de R(a,b)
Q) tream 9 [a] = [b] € A/R
B-Q) peA/R l(z) € L([z]) [ € A] l(z) =U(y) € L([z]) [x € A,y € A,d € R(z,y)]
Q(l,p) € L(p
c-Q) ac€A lz) e L([z]) [r€ A] Uz)=Uy) € L(jz]) [x € A,y € A,d € R(z,y)]
Q(l; [a]) = I(a) € L([a]
Effectiveness

Natural Numbers type

neN

nat) N type Il—nat) 0eN Ig—nat) m

ne€N a€ L) l(z,y) € L(s(x)) [x € N,y € L(z)]
Rec(a,l,n) € L(n)

a € L(0) I(z,y) € L(s(z)) [x € N,y € L(z)]
Rec(a,1,0) = a € L(0)

ne€N a€L0) I(z,y) € L(s(x)) [t € N,y € L(z)]
Rec(a,l,s(n)) = l(n,Rec(a,l,n)) € L(s(n))

Thus, we have finished with the presentation of our calculus. In the pC-V rule the variable z does not
appear in f, since we can abstract only on the last variable of the context by the introduction rule of
the forall type. From now on we shall often omit the word type in the type judgements.
Note that the disjointness axiom is not derivable from the other rules. Indeed, we can obtain a model for
the calculus, which falsifies disjointness by using a domain with only one element (see [Smi88]), where
the quotient type A/R is interpreted as A.

Actually, from now on, we will refer to an equivalent formulation of the calculus H P, where the
elimination and conversion rules for the indexed sum type are replaced by the following rules:

E-nat)

Cl—nat)

Cs-nat)

d c EweBC(ZU)
mP(d) € B

d € EngC(SL'>
w5 "D (@) € C(m (d))

E1-3) E2-3)

beB ceC(b)
7B ((b,c)) =be B

beB ceC(b)
7P (b, e)) = c € C(b)
de X, epC(z)
(wl (d), 75 ™D (d)) = d € Ty pC(x)

p1C-X) B2C-X)

nC-X)

Every type for which we can prove

B(z) type [z € A]
y=2z€ B(z) [x € A,y € B(z),z € B(z)]

is called a mono type, that is a proof-irrelevant type.
In particular, the forall type is mono.
In the following, given a judgement b(z) € B(x)[z € A] by the expression

(z)b(z)
we mean the equivalence class of b(z) € B(z)[z € A] under the following relation:

b(x) € B(x)[x € Al ~b(y) € B(y)ly € A
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Moreover, we write b for (x)b(x). Actually, in order to have such expressions we should pass to the type
theory with higher ariety [NPS90], with the warning that what it is a type here, it is a set in [NPS90].
By adding the so called function type, given b(z) € B(z)[x € A] we have the abstraction, that is (z)b €
(z € A)B(x), the application, the S-conversion and the 5n-conversion, that is (z)b(z) = b € (x € A)B(x).
Note that the E-quotient and C-quotient rules of the quotient type are derivable, by using the indexed
sum type, from the following restricted elimination rule of the quotient type for types not depending on
A/R,
E;-quotient

M type m(z) e M [z € Al m(z)=m(y) e M [z € A,y € A,d € R(z,y)]
Qs(m,z) € M [z € A/R]

together with the following two conversion rules, also derivable in H P: one is the S-conversion
BsC-quotient

a€A m()EM[wEA] m(z) =m(y) e M [x € A,y € A,d € R(x,y)]
Qs(m, [a]) = m(a) € M

and the other one is the n-conversion stating the uniqueness of Qs:
11sC-quotient

t(z) € M [z € A/R]
Qs((2)t([2]), 2) = t(2) € M [z € A/R]
Indeed, given the judgements (z) € L([z])[x € A] and I(z) = l(y) € L([z]) [xr € A,y € A,d € R(z,y)],
we use the Eg-quotient rule on ([z],I(z)) € X.ca/rL(2) [x € A]. So, by the second projection of the

indexed sum type, we can define Q(l,p) € L(p) for p € A/R, which turns out to be well defined by f
and 77 conversion rules. Indeed, given the following two judgements

l(z) € L([z]) [z € A] U(x) =1(y) € L([z]) [x € A,y € A,d € R(z,y)]

we get
([z], 1(z)) € T:ca/rL(z) [x € A]
and
([2],1(=)) = (W], 1(y)) € T:ca/rL(z) [v € A,y € A,d € R(z,y)]

Hence, by Es-quotient rule
Qs((@)([z], l(2)), 2) € Xsea/rl(2) [z € A/R]

and we define
Q(l, 2) = m2(Qs((2)([z], I(2)), 2))
where

™2 (Qs((z){[z],[(2)), 2)) € L(m (Qs((z){[z],[(x)), 2))) [z € A/R]

Q(l, z) is well defined, because by 7,C-quotient rule

m(Qs( (2)([x], 1(x)), 2) = Qs( (2")m(Qs((2)([2],1(2)), [2]), 2) € A/R

but we derive

m(Qs( (2)([x], 1(x)), [2']) = [¢'] € A/R [2" € A]

hence

Qs( (") (Qs( (2)([z], 1(@)), 2] ), 2) = Qs((2")[2'], 2) € A/R [2 € A/R]
and again by 7,C-quotient rule

Qs( (2')[7], 2) =2 € A/R [z € A/R]
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so we conclude

™1 (Qs((z)([z],[(x)),2) = z € A/R [z € A/R]

Also, the E-Nat rule and the conversion rules of the natural numbers type are derivable, by using the
indexed sum type, from the following restricted elimination rule of the natural numbers type for types
not depending on N
E,-Nat
Litype a€ L Il(y) € L[ye L]
Recs(a,l,n) € L [n € N]

together with the following three conversion rules, also derivable in H P: two are the J-conversions
,63 Cl-Nat

ac€L l(y)eLyelL]
Recs(a,l,0) =a € L

,BSCZ-Nat
ac€L l(y)eLyelL]

Recs(a,l,s(n)) = l(Recs(a,l,n)) € L [n € N]

and the other one is the r-conversion stating the uniqueness of Rec:
15C-Nat

a€lL lly) e L [yelL] t(n) € L [n € N]
t(0)=a€L t(s(n))=1I(tn)) el
Recs(a,l,n) =t(n) € L [n € N|

Indeed, given the judgements a € L(0) and I(z,y) € L(s(z)) [x € N,y € L(z)], we use the E;-Nat
elimination rule on (0,a) € Y,enL(n) and (s(m1(2)),l(m1(2), m2(2))) € TpenL(n) [z € EpnenL(n)]. So,
by the second projection of the indexed sum type, we can define the recursion term, which turns out to
be well defined by 55 and 7, conversion rules.

Indeed, given the following two judgements

a € L(0) and I(z,y) € L(s(z)) [z € N,y € L(z)]

we get
(070’> € EnENL(n>

and
(s(m1(2)), l(m1(2),m2(2))) € EnenL(n) [z € TnenL(n)]

hence, by Es-Nat rule we obtain
Rec, (0, a), (2)(s(m1(2)), l(m1(2), m2(2))), n) € TnenL(n)

and we define
Rec(a,l,n) = ma(Recs ((0,a), (2)(s(m1(2)),U(m1(2), m2(2))) ,n))

where

m2(Rec; ({0, a), (s(m1(2)),U(m1(2),m2(2))) ,n))
€ L(m (Recs((0,a), (2){s(m1(2)), U(mi(2),m2(2))) ;1))

Rec(a,l,n) is well defined because by 1n;C-Nat rule we can derive
71 (Recs((0,a), (2){s(m1(2)),l(m1(2),7m2(2))) ,n)) =n € N [n € N]
Indeed, by 8;C;-Nat rule on the zero
m1(Rec, ({0, a), ((m1(2)), 1(m (2), m2(2))) ,0)) = 71 ({0, @) = 0
and by BssCs>-Nat rule on the successor

m1(Rec, (0, a), (s(m (=), [(m1(2), m2(2))) ,s(m)) = m ({s(u), 1(u, w)))
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where

u = (Rec,((0,a), (s(mi(2)),(mi(2), m2(2))) ,n))
w = ma(Recs((0,a), (s(m1(2)),l(m1(2),m2(2))) ,n)))
and then )

So, by 1sC-Nat rule we obtain
m1(Recy((0,a), (s(m1(2)), 1(m1(2), m2(2))) ,n)) = Rec,(0,5(n), )

and again by 7,C-Nat rule

Finally, we conclude
7m1(Recs ({0, a), (s(m1(2)),l(m1(2),m2(2))) ,n)) =n € N [n € N]

Remark 3.2.2 Note that the extensional propositional equality type is crucial to derive the conversion
rules stating the uniqueness of the elimination constants for the quotient type and the natural numbers

type.

3.2.1 The signature of the calculus HP.

In order to give a more rigorous presentation of the type theory H P, we assigne to it a signature Sg(H P),
as in [Pit95]. We write the signature in the typed lambda calculus with 8 and n equalities based on the
following types, that we call sorts, to avoid confusion with the types of T

e TYPES, TERMS are ground sorts;
e a — [ is a sort, provided that « and [ are sorts.

Therefore, the signature consists of a collections of meta-constants, given by type-valued function sym-
bols
C:a—-TYPES

and term-valued function symbols
s:a—TERMS

where « is a sort.

Remark 3.2.3 We could also describe the type-valued function symbol as in [NPS90], where a unique
ground sort O is considered.

Def. 3.2.4 We call raw types the expressions of sort TY PES and raw terms the expressions of sort
TERMS, which are built up from the function symbols of the signature and a fixed countably number
of variables Var = {x1,x,...} of sort TERMS.

We give the definition of Sg(H P) in correspondence with the type formation rules and the terms
introduced in the introduction, elimination, conversion rules and in the axioms of HP. Notice that in
giving the signature, we consider a variant of the formulation of the type theory H P, where in the case
of elimination rule for the quotient type and the natural numbers type we have restricted elimination
rules with the corresponding conversion rules.

1. With respect to the terminal type
T:TYPES

*: TERMS
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2. With respect to the false type we define
1:TYPES
to : TERMS - TERMS
3. With respect to the equality type we define
Eq:TYPES - TERMS - TERMS — TYPES
eq:TYPES - TERMS - TERMS
and we put eqy(z) = eq(X, z).
4. With respect to the indexed sum type, we define
Y:TYPES - (TERMS - TYPES) - TYPES
and we put X,exY (z) = L(X,Y),
():TYPES - (TERMS - TYPES) - TERMS - TERMS — TERMS
and we put (z,y)xy = ( )(X,Y,z,y),
m :TYPES - (TERMS - TYPES) - TERMS — TERMS
7w : TYPES — (TERMS - TYPES) - TERMS — TERMS
and we put m X (z) = m (X, Y, 2) and mY (z) = m(X,Y, z).
5. With respect to the disjoint sum type we define
+:TYPES - TYPES - TYPES
and we put X +Y = +(X,Y),
inl : TYPES - TYPES - TERMS - TERMS
int : TYPES - TYPES - TERMS - TERMS
and we put inlx y(z) =inl(X,Y,z) and inrx y(z) = inr(X, Y, z),
D:TYPES - TYPES - (TERMS - TYPES) —

—-TERMS - (TERMS - TERMS) - (TERMS - TERMS) - TERMS
and we pUt DX7Y7Z($7Z/,Z> = D(X7 Y7 Z,ZIZ’,y,Z),

m, :TYPES - TYPES - TERMS - TERMS - TERMS
and we put m; xy(z,y) =m (X,Y,z,y).
6. With respect to the forall type we define
V:TYPES - (TERMS - TYPES) - TYPES

and we put V,exY (z) = V(X,Y),

AN:TYPES - (TERMS - TYPES) - (TERMS —- TERMS) - TERMS
and we put A(X,Y,y) = Ax yz*.y(z),

Ap:TYPES - (TERMS - TYPES) - TERMS - TERMS - TERMS

and we put Apy y(7,y) = Ap(X, Y, z,y).
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7. With respect to the quotient type we define
/:TYPES - (TERMS - TERMS - TYPES) - TYPES
and we put X/Y = /(X,Y),
[1:TYPES - (TERMS - TERMS - TYPES) - TERMS — TERMS
and we put [z]x,y = [](X,Y, ),
Qs:TYPES - (TERMS —- TERMS — TYPES) - TYPES —

— (TERMS - TERMS) - TERMS - TERMS

and we put Qsx,y,z(z,y) = Qs(X,Y, Z, x,y), where Qs corresponds to the signature introduced in
the restricted elimination rule Es-quotient,

f:TYPES - (TERMS - TERMS - TYPES) - TERMS - TERMS —- TERMS
and we put fx y(z,y) =f(X,Y, z,y).
8. With respect to the natural numbers type we define
N:TYPES

On :TERMS
sy : TERMS - TERMS
Recs : TYPES - TERMS — (TERMS - TERMS) - TERMS — TERMS

and we put Rec, x(z,y,2) = Recys(X,z,y, z), where Rec, corresponds to the signature introduced
in the restricted elimination rule E,-Nat.

3.3 The syntactic H-pretopos

We recall the categorical definition of a Heyting pretopos [MR77], [JM95].

Def. 3.3.1 A pretopos is a category equipped with finite limits, stable finite disjoint sums and stable
effective quotients of equivalence relations. A Heyting pretopos is a pretopos where the pullback functor
on subobjects has a right adjoint.

We recall that with a H-pretopos we mean a Heyting pretopos with a natural numbers object (see the
appendix in [JM95]).

Now, we show how to build a H-pretopos with the type theory in order to prove the completeness
theorem w.r.t. H-pretopoi. We define the syntactic category Pr as follows.

Def. 3.3.2 The objects of Pr are the closed types of HP, A, B,C ... and the morphisms between two
types, A and B, are the expressions (z)b(z) (see [NPS90]) corresponding to

b(z) € Blz € A]
where the type B does not depend on A. The composition in Pp is defined by substitution, that
is given (z)b(x) € Pr(A,B) and (y)c(y) € Pr(B,C) their composition is (z)c(b(z)). We state that
(x)b(z) € P(A, B) and (z)b'(x) € P(A, B) are equal iff we can derive
b(z) =V (x) € Blx € A
The identity is ()x € P(A, A) obtained by z € A[z € A].

In this section we are going to prove that



32 CHAPTER 3. THE TYPE THEORY OF HEYTING PRETOPOSES

Proposition 3.3.3 The category Pr is a H-pretopos.

First of all we prove that Py has finite limits.
The terminal object is T and from any object A the morphism towards T is

(x)x € Pr(A,T)

which is unique by the conversion rule for T.
Given ¢ € Pr(A,C) and d € Pr(B,C) the pullback is given by

YeeaXyepEq(C, c(z),d(y))
where the first projection to A is
(2)mi'(2) € Pr(ZeeaZyenEq(C, ¢(z), d(y)), A)
and the second projection to B is
()7 (13 (2)) € Pr(SecaZyenEq(C,e(x), d(y)), B)

From now on, we simply write a =4 b to mean Eq(A4, a,b) and often we will simply write eq., instead
of eqp(c).

3.3.1 The disjoint coproduct
The coproduct of A and B is defined by A + B, where the injections are
(z) inl(z) € Pr(A,A+ B) and (y)inr(y) € Pr(B,A+ B)

Given ¢ € Pr(A,C) and d € Pr(B, () the mediating morphism c¢® d from A+ B to C is (w)D(w, ¢, d).
Coproducts are disjoint by the rule of disjointness. Moreover, coproducts are stable under pullback. For
this purpose, we prove that

Lemma 3.3.4 A + B is isomorphic in Py to
TwearB(Zeea inl(z) =a1p w) + (Zyep inr(y) =a+p w)

Proof.
We put the following abbreviations

A+4+p B =ZpcarB(Esca inl(z) =4y w) + (Zyep inr(y) =a+p w)

and for any w € A+ B

A(w) = Spea inl(z) =445 w B(w) = Xyep inr(y) =a+B w

where the injections of A(w)+B(w) areinl”’ (2) € A(w)+B(w) [z € A(w)] andinr”(z) € A(w)+B(w) [z €
B(w)]. We consider (z)m(z) € Pr(A +p B, A+ B) and we define its inverse J as

(w){(w,D(w,dy,ds)) € Pr(A+ B,A+p B)
where d; corresponds to
inl” ((z,eq,4, ) € A(inl(z)) + B(inl(z)) [z € A]

and dy corresponds to 3 }
inr” ((y, eq.4, ) A(inr(y)) + B(inr(y)) [y € B]
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We can easily see that m; is the inverse morphism of §. Indeed, 7y - & = id follows from the elimination
rule for the disjoint sum type. In order to prove that § - m; = id, that is to find a proof of

(m1(2),D(m1(2),d1,d2)) =z € A+p B [z € A+p B]
it is sufficient to derive a proof of
T (2) = D(m1(2),dy,dy) € A(m1(2)) + B(m1(2)) [z € A +p B]
So, we show how by the elimination rule for the disjoint sum type we derive a proof of
D(m1(2),d1,do) =atpp 22 [2 € A+p B, 29 € A(m1(2)) + B(m1(2))]

Indeed, suppose z € A +p B and w; € A(m(z)), from which we get inl(z{*(w;)) = 71 (2) € A + B and
then

D(Wl(z)7dl7d2> = D(inl(ﬂf(wO):dl:d?) = inlp(<ﬂf(w1>7qu+B>) = in|P(’LU1)

that is we get a proof of D(my (2),dy,ds) =a4 .5 inl (w)) [z € A+p B,w; € A(m1(2))]. Analogously, we
derive a proof of D(m1(2),d1,d2) =44, 8 inr?’(ws) [z € A +p B,wy € B(m1(2))]. So, given z € A +p B,
by elimination rule with respect to A(m (2)) + B(m1(2)) we get a proof of

D(m1(2),d1,do) =atp,p 22 [2 € A+p B, 29 € A(m1(2)) + B(m1(2))]

Now, suppose z € A +p B, since m(z) € A(m(2)) + B(m1(2)) by substitution and by elimination of the
extensional equality type we conclude

m2(2) = D(mi(2),d1, dy) € A(mi(2)) + B(mi(2))
|
Proposition 3.3.5 In Pr coproducts are stable under pullbacks.

Proof.
Given the following pullbacks

7'I'1 7TP

P —2=4 P2—>B P—>A+B
S A () R
D—"2>¢C D—=(C D——"—=(C

we have to show that in Pr/D
7T% S5} Wf >~ ﬂ'f
For this purpose we define
v Pl + P2 — P

as v = (w)D(w,dy,ds) where d; corresponds to

(m1(wy), (inl(7m1 (m2(w1))), eq¢)) € P w1 € P

and dy corresponds to
(m1(wa), (inr(my (m2(w2))), eqc)) € P w2 € Py

We can notice that 7¥" -y = 71 @ 7% and that 7" -y = (inl - 73) @ (inr - 73).

Moreover, we want to define
L'Po P+ P

First of all, we consider that, given w € P, we get 71 (m2(w)) € A + B, hence, by ¢ defined in the above
lemma we deduce

3 (8(m (2 (w)))) € A(my(m2(w))) + B(m (2 (w)))
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Now, we use the elimination rule with respect to A(m1 (m(w))) + B(m (72 (w))) and we define
77! = (W)D(m2(8(mi (12 (w)))), i, dy)
where d} corresponds to
inl((m1 (w), (m1(z'), eqc))) € P+ P2 [w € P,a’ € A(my (m2(w)))]
Indeed, from w € P and 2’ € A(m; (m9(w))) we get
m(my (w)) = (a & b)(m (m2(w))) and m (73 (w)) = inl(m (z'))
therefore m(m (w)) = a(m1(2')). In an analogous way, we define dj, as

inr((my (w), (m1(y'),eq¢))) € PL+ Py [w € Py € B(m (mz(w)))]

We can prove that !

is the inverse morphism of v by the elimination rule of the disjoint sum type.

3.3.2 The quotient of an equivalence relation

Given an equivalence relation
g
R——Ax A

in the syntactic category Pr, we consider the following mono type:
R(z,2') = Zyerg(y) =axa (z,2')z € A, 2" € A

It is easy to check that the categorical definition of equivalence relation implies that R(z,2')[z € 4, 2" € A]
is an equivalence relation from the type-theoretical point of view. Let A/R be the quotient with
respect to R(z,z')[x € A,z' € A]l. We can prove that (z)[z] € Pr(4,A/R) is the coequalizer of
w2 - g € Pr(R,A) and w3 - g € Py(R, A), by the elimination and conversion rules of the quotient type.
The uniqueness property of the coequalizer follows from the 7,C-quotient rule.

In Pp the categorical equivalence relations are effective, by the rule of effectiveness and by the fact that
equivalence relations are monic. Moreover, we prove stability of quotients for equivalence relations.

Proposition 3.3.6 In Pr equivalence relations are stable effective.

Proof.

In the following we write waD for the i’th projection from the vertex of the pullback of unspecified
arrows A — - < D. We will omit to label the projections, when their domains and codomains are clear
from the context.

Given m € Pr(D, A/R) let us consider the following pullbacks:

Jp
Q R
f|
P4 Lo n
ﬂlDXAl l(z)[z] l(z)m
D—"~A/R D—"e A/R

where

P =XYuepTreaba(4/R,m(w),[2]) and Q= ZuenZyerEa(4/R, m(w), [(r1 - 9)(y)])



3.3. THE SYNTACTIC H-PRETOPOS 35

Moreover, let us consider these two pullbacks:

7T2DXR 7_‘_2D><R
— —~ R

-

Q R Q
(ﬂf“)*(my)l l”l'g (ﬂf“)*(ﬂw)l
P A P

TYY a4
where
(73" (71 - ) = (w){m (w), (T (g(m1 (2 (w)))), eq))
and

(" 4)* (w2 - 9)

We must show that in P/Pr

(w) (w1 (w), (m2(g(m1 (m2(w)))), eq))

%4 = coeq((m3)* (w1 - 9), (w5')* (w2 - 9))

We recall that the objects of the category P/Pr are the morphisms b: P — B of P, and the morphisms
of P/Py from b: P — B tob': P — B' are the morphisms ¢ : B — B’ of P such that ¢-b=1b'. We can
observe that the pullback given by the effectiveness

R—s 4
m-gj l(z)[z]
JECEP

is a pullback and hence (73 (m - g), 75 (72 - g)) is an equivalence relation as kernel pair of 77*4.

Hence, let us consider the coequalizer of 73 (my - ¢) and 73 (72 - g)
[-]: P = P/m*(R)

where P/m*(R) is the quotient type concerning the equivalence relation (73 (7 - g), 73 (72 - 9))-

Since >4 . 75 (m) - g) = aP*A w3 (m - g) and [~] is the coequalizer of 73 (7 - g) and 73 (7 - g), there
exists a map

QY : P/m*(R) = D
such that QF -[-] = 7T1D><A. In order to prove that Q¥ is an isomorphism, we need the following lemma:

Lemma 3.3.7 The arrow QF is a monomorphism.

Proof.
We show that we can derive in HP

Vz € P/m*(R) Vz' € P/m*(R) (Q¥(2) =p QY (¢') = = =pP/m*(R) Z)



36 CHAPTER 3. THE TYPE THEORY OF HEYTING PRETOPOSES

In order to find a proof-term of this type, we use the elimination rule for the quotient type. Suppose we
have a proof of

Q" ([w]) =p Q7 (W) w € Pw' € P]
then given w € P and w' € P, by the elimination rule of the equality type and by definition of
QF, we deduce QP ([w]) = #P*A(w), from which we get 7P*4(w) = ﬂjDXA(w’) € D. But, since
w € P and w' € P, we also get m(xP*4(w)) = [m1(ma(w))] and m(xP**(w')) = [my (m(w'))], from
which we finally have [m) (s (w))] = [m1 (72 (w'))]. By effectiveness we derive f(m (m2(w)), 71 (me(w'))) €

R(my (w2 (w)), m1 (w2 (w'))).
So we get

mi(my(w)) = (w1 - g)(m (F(m1 (m2(w)), w1 (2 (w")))))
m(ma(w')) = (m - g) (o (F(m1 (w2 (w), m1 (w2 (w')))))

from which we conclude [w] = [w'] € P/m*(R). In this way, we have derived a proof of Q¥ ([w]) =
QY ([W']) = [w] =p/m=(r) [W'] [w € P,w' € PJ, since the proof-terms of this type are compatible with
respect to m*(R), from which by the elimination rule of the quotient type and by the introduction rule
for the forall type we conclude.

m (of lemma 3.3.7)

Therefore, we can define the inverse morphism of Q.

In order to do that, by the elimination rule for the quotient type A/R we want to derive a proof-term of

Vz e A/RVA € D (z =a/r m(d)) = (Swep/mr) Q" (w) =p d)
This type is well formed, since Q¥ is a monomorphism by the previous lemma.
Given d € D and x € A, supposed [z] = m(d), then (d, (z,eq,,z)) € P and we derive

<[<d7 <m7qu/R>>]7qu> € EwEP/m*(’R)Qp(w) =pd

since Q' ([{(d, (x,eq4,=))]) = m ((d, (z,eq,4,%))) = d.
So we get

q([x],d) € [&] =a/r m(d) = Swep/m-(r)Q" (w) =p d

where q([z], d) = XwE.(([(d, (z,eq,/%))], eap)-
Now by the elimination rule for the quotient type A/R we get

Q(z,q([z],d) € 2 =A/R m(d) = EwEP/m*(’R)QP(w) =pd

and we conclude by the introduction rule for the forall type.
For short, we call f = Az.Md.Q(z, ¢([z],d)) and finally, we define

T:D— P/m*(R)

as follows: for every d € D T(d) = m1(Ap(Ap(Ap(f,m(d)),d),eq4,x)). Now, it is easy to show that
QF - T = id and since Q¥ is a mono, Q¥ turns out to be an isomorphism. In conclusion, 7 is a
coequalizer of (74')* (7 - g) and (74')* (72 - g).

m (of proposition 3.3.6)

3.3.3 The natural numbers object

The syntactic H-pretopos is equipped with a natural numbers object. The natural numbers object is
the closed type IV. Given a closed type Y the zero map is

(z){z,0) € Pr(Y,Y x N)



3.3. THE SYNTACTIC H-PRETOPOS 37

and the successor map corresponds to s(n) [n € N]. We put id x s = (w)(m2(w),s(m2(w))). Given the
morphisms (id, f) € Pr(Y,Y x B) and g € Pr(Y x B, B), we can prove that there exists an unique
morphism ¢ € Py (Y x N, B) such that the following diagram commutes in all its parts:

y 0y NSy o N

<k o

YxB——>B

By hypothesis we get
fyeBlyeY] and g((y,w)) € ByeY,we B
By the elimination rule of the natural numbers type we derive
Recs(f(y),9,2) € By €Y,z € N]

So, we put t = (z)Recy(f(m1(2)), g, m2(x)), which is the required morphism to make the diagram commute
by the conversion rules for the natural numbers type.

3.3.4 About subobjects

In order to show that the subobjects of any object of Pp form a Heyting algebra and are sufficiently
complete to interpret quantifiers, we need to prove that each pullback functor on subobjects has a right
adjoint. For this purpose, we show that the pullback functor on subobjects is isomorphic to the functor
Prop(—) : P#¥ — Cat defined in the following.

Def. 3.3.8 For any object A € ObPy, the objects of the category Prop(A) are the equivalence classes
of mono types depending on A, B(x) [z € A], under the relation of equiprovability, and the morphisms
are the terms f € B(x) — C(x) where B(z) — C(x) = Vp(,)(C(z)), since C(z) is mono. The identity
is Ay.y € B(xz) — B(z). The composition of f € B(z) — C(z) and g € C'(z) — D(z), supposing that
C(z) is equivalent to C'(z) and in particular s € C(z) — C'(x), is given by Ay.Ap(g, Ap(s, Ap(f,y))) €
B(z) — D(x).

Therefore, we can define the above functor Prop(—) : P;¥ — Cat:

Def. 3.3.9 For any object A € ObPr, Prop(A) is the above defined category and given a morphism
m € Pr(D, A) we define Prop(m) as the following functor: for any B(z) [z € A]

Prop(m)(B(z) [z € A]) = B(m(z)) [z € D]
and for every t € B(z) — C(x), given z € D, we define
Prop(m)(t) = Aw € B(m(z)).Ap(t[z := m(z)],w)
which is a term of type B(m(z)) — C(m(z)).

We can easily notice that Prop(—) is a well defined functor.

We also consider the functor Sub(—) : P7* — Cat, defined as follows. For every A € ObPr, we associate
the poset category Sub(A), whose objects are the subobjects on A of Pr and the morphism, necessarily
unique, between subobjects is induced by the morphisms of Pr/A, from any monomorphism representing
the domain subobject to any monomorphism representing the codomain subobject. For every ¢t : A — B,
Sub(t) is the restriction of pullback functor on subobjects.

Proposition 3.3.10 The functor Sub(—) : P7¥ — Cat is naturally isomorphic to the functor Prop(—) :
P — Cat
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Proof.
For any A € ObPr we define the functor

Y1(A) : Sub(A) — Prop(A)

in this manner: given a mono B> 4, ¥ (A)(t) is the equivalence class of Tyent(y) =a z [z € A,
which is a mono type. Indeed, we can notice that a morphism ¢ of Pr is a mono if and only if
TyenBt(y) =4 = [z € A] is a mono type. Note that ¢n (A)(t) is well-defined on subobjects.

. m
Given B,——— , B’ we define

N

A

1 (A)(m) = Aw.(m(m (w)),eq.4)

of type Zyept(y) =4 ¢ = T,ept'(z) =a z [x € A]. Tt is easy to see that ¢1(A4) is a functor and that
(¥1(A))acopp, is a natural transformation, that is for every m(y) € A [y € D] in Pr the following
diagram commutes

Sub(A) RISy Prop(A)

m* l lProp(m)
Sub(D) i) Prop(D)

Moreover, we define
Yo (A) : Prop(A) — Sub(A)

in this manner: for every mono type B(z) [z € A] we put ¢2(A4)(B(z) [x € A]) = m1, where m €
Pr(ZscaB(z),A) is the expression that corresponds to the judgement m(w) € A [w € Y, eaB(z)].
Note that 7 is a monomorphism, since B(z) [z € A] is a mono type.

For every s € B'(z) — B(z) we define

P2(A)(5) = (w)(m(w), Ap(s, m2(w)))

. . id .
such that the following diagram commutes Y.caB'(z) e EyeaB(x) . It is easy to see that 1;(A)

1 1
A
is the inverse functor of 11 (4) and that (2(A)) acopp, is a natural transformation.
]
Now we prove that

Proposition 3.3.11 For every morphism m(y) € A [y € D] in Py, there exists the right adjoint of m*.

Sub(A) I Sub(D)
Vm

Proof. By the previous proposition, it is enough to show that Prop(m) has a right adjoint. For every
mono type B(y) [y € D] we put

Vi (B(y) [y € D]) = Vyep(z =a m(y)) = B(y) [ € 4]

whose value at a mono type is indeed a mono type. It is well-defined on subobjects, since it preserves
equiprovability. Moreover, we define a bijection

¥
Prop(D)(Prop(m)(C(z)), B(y)) ; Prop(A)(C(2),Ym(B(y)))
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as follows: for any ¢ € C(m(y)) — B(y) [y € D] we put for any € A
P1(t) = Az. Ay w.Ap(t, 2)
and for any s € C(z) = Vi, (B(y)) [z € A] and any y € D we put

Pa(s) = Az.Ap(Ap(Ap(s[z :=m(y)], 2),y),eq4)

It is easy to see that i, and - are inverse to each other and that they are natural on the first variable.
This is sufficient to assure that the pullback functor on subobjects has a right adjoint.
]

Remark 3.3.12 Note that the extensional propositional equality type is crucial to get a H-pretopos
out of the category Pr, if we consider terms as morphisms and the definitional equality as the equality
of morphisms. Indeed, we need the extensional equality type to get equalizers. We also use it to
prove stability of the various categorical properties and existence of right adjoints to pullback functors
on subobjects. Moreover, we need it to prove uniqueness of the universal properties of the various
categorical constructors.



Chapter 4

The type theory of elementary
toposes

Summary We propose a type theory, based on dependent types and proof-terms, which is valid and complete
with respect to the class of elementary toposes. This theory is obtained from the first order fragment of Martin-
Lo6f’s Constructive Type Theory by adding the type corresponding to the subobject classifier. This is the type
of closed mono types, whose equality is given by equiprovability. Indeed, this type can be seen as the quotient
of the intensional type of propositions under the equivalence relation of equiprovability.

4.1 Introduction

The axiomatization of a Grothendieck topos, free of set-theoretic assumptions, led Lawvere and Tierney
to produce the categorical notion of elementary topos. According to Lawvere, an elementary topos
can be thought as a generalized universe of sets. The formalization of this idea is expressed by the so
called Mitchell-Benabou language, associated with any topos. But, in this language there is a syntactic
distinction between the objects of the topos corresponding to types and the subobjects corresponding
to formulas, which are terms of the subobject classifier. Moreover, there are no constructors to turn
formulas into types.

Here, for toposes we propose the type theory 7;, where the formulas correspond to particular depen-
dent types, as we have already seen in the type theory of Heyting pretoposes. This type theory, which is
complete with respect to elementary toposes, is obtained by extending the first order fragment of Martin-
Lof’s Constructive Type Theory, with the Omega type corresponding to the subobject classifier. In this
theory subobjects are represented by dependent types with at most one proof, already called mono types
in chapter 3. So, the novelty of this type theory for elementary toposes is that it consists only of de-
pendent types equipped with terms corresponding to their proofs, where the isomorphism “propositions
as closed mono types” holds. The mono type is the crucial concept for the proof-theoretical characteri-
zation of the subobject classifier of the topos, since in the categorical semantics the interpretation of a
mono type turns out to be in correspondence with a monomorphism.

With this type theory, we can build a syntactic topos, whose objects are closed types and whose
morphisms are terms. In contrast, in the syntactic topos built up from the Mitchell-Benabou language
as in [L.S86],[Bel88], the objects are closed terms of powersets and the morphisms are functional relations.

Also, with this type theory, we could compare Martin-L&f’s Constructive Type Theory with topos
theory, since in both frameworks intuitionistic mathematics can be developed.

4.2 The type theory 7;

The type theory for toposes is obtained by enlarging with the Omega type the first order fragment of
the extensional version of Martin-Lof’s Intuitionistic Type Theory [Mar84]. This first order fragment

40
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contains the terminal type, indexed sum types, extensional equality types, product types and we call it
MLy.
Therefore, in the style of Martin-Lo6f’s type theory we have four kinds of judgements [NPS90]:

Atype A=B a€A a=beA

that is the type judgement, the equality between types, the term judgement and the equality between
terms of the same type. The contexts of these judgements are telescopic [dB91], since types are allowed
to depend on variables of other types. The contexts are generated by the following rules

I' cont  Atype [
xe A cont

1C) B cont 20) (re AgD)

plus the rules of equality between contexts [Str91], [Pit95]. In the following, we present the inference
rules to construct type judgements and term judgements with their equality judgements by recursion.
One should also add all the inference rules that express reflexivity, symmetry and transitivity of the
equality between types and terms and the set equality rule

ac Al A=B][I]
a € B[l

conw)

for all the four kinds of judgements [NPS90]. Moreover, by the following rule we assume typed variables

I'ze A,A cont
re Al xe A A]

var)

The structural rules of weakening, substitution and of a suitable exchange can be derived.
We adopt the usual definitions of bound and free occurrences of variables and we identify two terms
under a-conversion.

Remark 4.2.1 In the following, the context common to all judgements involved in a rule will be omitted.
The typed variable appearing in a context is meant to be added to the implicit context as the last one.

Now, we show the inference rules of 7; corresponding to the first order fragment ML, of the exten-
sional version of Martin-Lof’s type theory as in [Mar84].
Terminal type
F-ter) T type
I-ter) xe€ T C-ter) _teT
t=xe€T

Indexed Sum type
C(z) typelx € B

YeepC(w) type
beB ceC(b)
(b,c) € TyepC(2)

d e Y,enC(x) d e Y,epC(x)

m(d) € B mo(d) € C(m(d))

beB ceC(b) be B ceC(b)
m({b,c)) =be B ma({b,c)) = c € C(b)

F-3)

I-3)

E;-Y) Ey-Y)

p1C-X) B2C-X)

de EngC(iL')
(m1(d), m2(d)) = d € XpepC(x)

1nC-X)

Equality type

Ctype ceC deC ceC

F-E I-E
D TTEqCed) type YV (@ € EaCed)
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p € Eq(Cc,d) p € Eq(C,c,d)

E-Ba) = —iec CEY o € EaCad)
Product type
C(z) type [z € B]
F-II
) HzEBC(x) type

c € C(z)[x € B] be B fellepC(x)

) ree ,epC(x) E-1T) Ap(f,b) € C(b)
e beB ceC(x)[z € B] nC-1) f el epCl(z)

Ap(AzB.c,b) = c(b) € C(b) AzB Ap(f,z) = f € UpepC(x)

The novelty of the type theory for toposes is the Omega type, corresponding to the subobject
classifier, where propositions correspond to closed mono types, that is closed types with at most one
proof.

We recall that a dependent type B type [['] is mono, if we can derive

y=z€ B[,y € B,z € B

The mono types are called proof-irrelevant in the literature, as for example in [Hof95]. In the Omega
type there are the codes of the mono types up to equiprovability.
Here, we present the rules that the Omega type should satisfy to represent the subobject classifier.

Formation
Q type
Introduction
Btype y=z€ By€ B,z € B]
{B} e
Equality
B type y=z€Bye B,z € B]
C type y=zeClyeC,ze (]
feEB«C
(BI={C}en
Elimination
q €N qgeN ceT(q) deT(q)
T(q) type c=deT(q)

[-conversion
Btype y=z€ B[y€ B,z € B]

(rg,rg"y €T({B}) < B

n-conversion

qgeN
{T(@}=qe
From these rules we derive
B type y=z€ B [,y € B,z € B
C type y=z€C[l'h,yeC,ze(C

(B} ={C} e
(rc-rgl,r3~r51> eB«C

where rc - rg' = Az.ro(rg! (z) and B < C = ,epC.
We use the notation {B} for the subset induced by B. Note that, for every ¢ € 2, we can find a proof
of

T(q) < Eq(Q,¢,{T})
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So, finally, we propose the following inference rules for the Omega type, as a refinement of the previous
ones, where we put T'(q) = Eq(2,¢,{T}):

The Omega type

Formation
F-Q) Q type
Introduction
Q) Bitype y=z€ Bly€ B,z € B
{B} €Q
Equality
B type y=z€ Blye B,ze€ B
C type y=z€e€ClyeC,ze(]
Q) feB«C
= {B}=1{C}en
f-conversion
Bt = B B B
5C-) ype y=z¢ [y € B,z € B]
(rBa 52 > € Eq(Q7 {B}7 {T}> < B
7-conversion
Q
nC-9) 1<

{Eq(Q2,¢,{T}}=q€Q

In conclusion, we call T; the type theory consisting of the rules of MLy, together with the rules for the
Omega type defined above.

By these rules of 7;, when d € Q, we do not introduce a new type T(d), of which we do not know the
proofs. But, anyway, we introduce a link between the proofs of the equality type Eq(Q, {B},{T}) and
the type B, which restores some information that has been forgotten.

Indeed, in the introduction rule of equality on the Omega type we forget the proof of equiprovability,
that we want to restore in the 8-conversion rule. This fact will be very clear in the next section, where
we show that the Omega type is the quotient under equiprovability of the type of mono types. The
possibility to restore the information forgotten in the introduction rule of equality on the Omega type
is given by effectiveness of the quotient type. This is possible, since equiprovability between mono types
is a mono equivalence relation.

Remark 4.2.2 Note that in 7; we derive that if B is a mono type
r5' = A\z.eq € B — Eq(Q,{B},{T})

Indeed, since, given z € B, we get
Mv.x, A\x.2) € B+ T

from which we obtain
{B}={T}e

and we conclude by the introduction rule for the extensional equality type.

So, from now on, we consider a variant of 7; where the S-conversion of the Omega type is the following
f-conversion
Bitype y=z€ Bly€ B,z € B

pC-2) rp € Eq(Q,{B},{T}) = B

With 7;, we see that the impredicativity of toposes is restricted to mono types, but the Omega type is
not necessarily itself a mono type.
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4.2.1 The signature of the calculus 7;.

We give the definition of the signature for the calculus 7Ty, in correspondence with the type formation
rules and the terms introduced in the introduction, elimination, conversion rules (see 3.2.1 for a definition
of signature). Notice that in giving the signature, we consider the variant of the formulation of the type
theory 7, with the restricted 8 conversion rule for the Omega type.

1. With respect to the terminal type we define
T:TYPES
*: TERMS
2. With respect to the equality type we define
Eq:TYPES - TERMS - TERMS — TYPES
eq: TYPES - TERMS — TERMS
and we put eqy (z) = eq(X, ).
3. With respect to the indexed sum type, we define
Y:TYPES - (TERMS - TYPES) - TYPES
and we put X,exY (z) = Z(X,Y),
():TYPES - (TERMS - TYPES) - TERMS - TERMS — TERMS
and we put (z,y)xy = ( )(X,Y,z,y),
m : TYPES — (TERMS - TYPES) - TERMS — TERMS
7o : TYPES — (TERMS - TYPES) - TERMS — TERMS
and we put m ¥ (z) = m (X, Y, z) and mY (z) = me(X, Y, 7).
4. With respect to the product type, we define
II:TYPES - (TERMS - TYPES) - TYPES
and we put II,cxY(z) = II(X,Y),
AN:TYPES - (TERMS - TYPES) - (TERMS —- TERMS) - TERMS
and we put A(X,Y,y) = Ax yz*.y(z),
Ap:TYPES —» (TERMS - TYPES) - TERMS - TERMS —- TERMS
and we put Apy y (7,y) = Ap(X, Y, ,y).
5. With respect to the Omega type we define
Q:TYPES

{ Yo :TYPES —» TERMS

and we put {X}o = { }o(X),
r: TYPES - TERMS

and we put rx = r(X).
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4.3 A calculus with intensional Omega and restricted quotients.

The rules of 7¢ can be derived inside an extension of MLy with extensional effective quotients restricted
to mono equivalence relations, as in the type theory of Heyting pretoposes (see chapter 3), and with
the intensional Omega type, which is the intensional type of propositions. This intensional Omega type
resembles the type Prop of the Calculus of Constructions, but, here, propositions are only closed mono
types. The Omega type is called intensional, since the equality on it is given by the equality of mono
types, with the warning that the coding and decoding between propositions and mono types enjoy 3
and n-conversions. The name of this extension of MLg is 7.

Here, we propose the following rules for the intensional type of propositions:

The intensional Omega type

Formation '
Q* type

Introduction

Btype y=z€ B[y€ B,z € B]

¢(B) € Q¥

Equality

Btype y=z€ B[y€ B,z € B]

Ctype y=2z€ClyeC,ze ]

B=C

c(B) =¢(C) € Q¥
Elimination ) )
pe peQN ceD(p) de D(p)
D(p) type c=de D(p)

f-conversion
Btype y=z€ B[y€ B,z € B]
D(c(B)) = B

7-conversion '
pe
c(D(p)) =pe ¥
The rules for the quotient types based only proof-irrelevant relations with the effectiveness axiom are

the following ones:
Quotient type

Formation

R(x,y) type [t € A,y € A], z=w € R(z,y)[z € A,y € A,z € R(z,y),w € R(x,y)]

a1 € R(z,x)[z € A], co € R(y,x)[z € A,y € A,z € R(z,y)]
3 € Rz, z)[re A,ye A,z € A,w € R(z,y),w € R(y,z)]
A/R type

I-quotient
ac€A A/R type

[a] € A/R

eq-quotient

a€A beA de R(a,b)
[a] =[b] € A/R

E-quotient

s€ A/R I(z) € L([z])[z € A] I(z) =I(y)
Q(l,s) e L

€ L([z])[x € A,y € A, d € R(z,y)]
(s)
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C-quotient

a€d Ix) € L(l]lx € 4] () = I(y) € L(lx])[z € A,y € A,d € R(a, )]
Q. al) = i(a) € L([a])

Effectiveness
acA beA [a=[b)€ A/R

f(a,b) € R(a,b)

Therefore we can prove:
Proposition 4.3.1 In T, we can derive the rules of the Omega type.
Proof. In T, we define the Omega type as follows:

Q=9 &

where <= D(x) ++ D(y) [z € Q%,y € Q] is a mono equivalence relation.
Moreover, for every closed mono type B we define

{B} = [¢(B)]

and for every ¢ € Q¢/ < we abbreviate T(q) = Eq(Q¢/ <, q,[c(T)]).
Now, we show that the S-conversion for the Omega type holds. Precisely, we define

rg = Az.ma(f(c(B),c(T)))(x)
since, given z € Eq(Q2, [c(B)], [c(T)]), by the elimination rule for the extensional equality type we get
[e(B)] = [e(T)] € @
and by effectiveness we conclude that
f(c(B),¢(T)) € D(c(B)) < D(c(T))

that is f(¢(B),c(T)) € B+ T.
Now, we show that the 7-conversion for the Omega type holds by the elimination rule of the quotient
type. Indeed, we claim that, for every p € Q°, we get a proof of

Eq(2,{T ([P}, [P])

from which, since the proof-term assigns equal values to equiprovable elements of (¢, by the elimination
rule of the quotient type we get a proof of

Eq(,{T(9)},q) [qg € ]

Therefore, we conclude that the n-conversion holds by the elimination rule of the extensional equality
type. Now, suppose p € Q¢ since {T'([p])} = [c(Eq(Q, [p], [c(T)]))], by definition of equality w.r.t. Q and
by effectiveness we prove that

{T(pD} =l € Q

is derivable if and only if there is a proof of

D(c(Ea(€, [p) [«(T)])) < D(p)

that is, by S-conversion w.r.t. Q¢ if and only if there is a proof of Eq(Q, [p], [¢(T)]) > D(p). So now, we
derive a proof of Eq(Q, [p], [¢(T)]) ¢» D(p). Indeed, given z € Eq(Q, [p], [¢(T)]), by the elimination rule
of the extensional equality type, we get [p] = [¢(T)]. By effectiveness we obtain f(p,e(T)) € D(p) +
D(c(T)), that is by B-conversion w.r.t. Q¢ f(p,c(T)) € D(p) ++ T. We conclude 7 (f(p,c(T)))(x) €
D(p) and finally we get

Az.ma(f(p, ¢(T)))(*) € Eq(, [p], [c(T)]) = D(p)



4.4. THE SYNTACTIC TOPOS 47

Moreover, given z € D(p), we get
(Mw.x, \x.z) € D(p) & T

from which, as T = D(¢(T)), we obtain [p] = [¢(T)]. Therefore, we derive that eqq, € Eq(£, [p], [¢(T)])-
Finally, we conclude
Az.eqq € D(p) = Eq(€, [p], [c(T)])

By introduction rule of the equality type, we get a proof of Eq(2, {T'([p])}, [p]), as we claimed.

]

The calculus 7, is consistent, because it can be interpreted in the topos of natural numbers, where the
interpretation of the intensional 2* coincides with that of 2. Note that in the topos of natural numbers
the monomorphisms on every object form a set.

4.4 The syntactic topos

We recall the categorical definition of a topos [MR77], [MM92].
Def. 4.4.1 A topos is a category equipped with finite limits, exponentials and a subobject classifier.

Here, we show how to build up a topos with the type theory, in order to prove the completeness theorem
with respect to the class of toposes. We define the syntactic category St as follows.

Def. 4.4.2 The objects of St are the closed types of 7;, A, B,C ... and the morphisms from the type
A to the type B, are the expressions (x)b(z) (see [NPS90]) corresponding to

b(z) € B [z € A]

where the type B does not depend on A. The composition in Sy is defined by substitution, that
is, given (z)b(z) € Sr(A4, B) and (y)c(y) € Sr(B,C), their composition is (z)c(b(z)). We state that
(2)b(x) € P(A, B) and (x)b'(x) € P(A, B) are equal iff we can derive

b(z) =V (x) € Blx € A
The identity is (z)x € P(A, A) obtained by © € A [z € A].
Along this section we are going to prove that
Proposition 4.4.3 The category St is a topos.

Proof. First of all we prove that St has finite limits.
The terminal object is T and from any object A the morphism to T is

(x)x € ST(A,T)

which is unique by the conversion rule for T.
Given c € Sp(A4,C) and d € Sp(B, C) the pullback is given by

YoeaXyepEq(C, c(z),d(y))
where the first projection to A is
()71 (2) € S1(ZreaZyenEq(C,c(x), d(y)), A)
and the second projection to B is
()77 (73 (2)) € Sr(ZreaZyenEa(C, (@), d(y)), B)

The right adjoint to the pullback functor is descrived as in [See84]. For every morphism m : D — A of
Sr, for every object b: B — D of St/D, we put

Vin(b) =71 : BpeaClz) — A
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where for x € A
C(z) =Vyep(z =a m(y)) = X:epb(2) =p y

In the syntactic category St, the subobject classifier is ().
The true map is
{TreQzeT]

Moreover, given a monomorphism B>t 4 its characteristic map is
{Zyent(y) =a 2} € Q [z € A

It is easy to prove that the pullback of the characteristic map with the True map is isomorphic to .

B—— ~ ——=>Y,caX.eT({Zyent(y)=aa}=o{T})
X /
A

By the equality on @ and the n-C conversion rule of €, the characteristic map is unique.
Indeed, for every q(z) € Q[x € A] such that

B—— ~—=>Y.caXe7(e(@)=0{T})
X /
A
by n-C conversion rule of 2 and by the equality on

q(z) = {Eq(,q(z),{TH} = {EyeBt(y) =a v}
| |

Remark 4.4.4 As we said in 3.3.12, the extensional propositional equality type is crucial to get a topos
out of the category St, if we consider terms as morphisms and the definitional equality as the equality
of morphisms. Indeed, we need the extensional equality type to get equalizers. We also use it to prove
existence of right adjoints to pullback functors and in the universal property of the subobject classifier.

Remark 4.4.5 In a topos, it is known that the image functor from the codomain fibration to the
subobject fibration is first order logical if and only is the internal axiom of choice holds (see [Joh77]
page 145, and [See83] page 528). We say that this functor is first order logical, if it translates the
interpretation of connectives of the first order type theory MLy, as it is given in a locally cartesian
closed category in [Law69], [Law70], [See84] through the codomain fibration, into the interpretation of
first order many-sorted predicative logic, as it is given through the fibration of subobjects, for example,
in [MM92]. Note that, in this case, the provability of a predicate seen as a type in the first order
type theory MLy, namely that there is morphism from the terminal object of the fiber in which the
predicate is interpreted, entails the provability of the predicate interpreted as a subobject, namely its
image is the identity. The converse, i.e. the provability in the subobject fibration entails the provability
in the codomain fibration, is valid, if the external axiom of choice holds (that is every epimorphism
has got a retraction). In other words, suppose to translate a type A into a mono type, for example by
quotienting it under the terminal type A/T (this is not a problem, since in a topos there are effective
quotients [MM92]). Then, the logic of first order predicative types, following propositions as types,
can be translated into the logic of mono types such that the logic of types and mono types become
equivalent, if and only if there is a choice operator (that is we should have a proof-term ¢ € A/T — A).
But, in the presence of external axiom of choice, we get a boolean topos, that is we fall into the classical
logic. Therefore, such a choice operator with a Heyting semantics of connectives can not be added to
the type theory of toposes. In other words, if we refuse to fall into classical logic the natural translation
of connectives from types to mono types does not preserve provability in both directions.



Chapter 5

The semantics in a categorical
universe

Summary We describe the categorical semantics of the dependent type theories for H-pretoposes and for
toposes. We show how to build a model out of a H-pretopos for the type theory HP and out of a topos for
the type theory T:;. After defining a partial interpretation of each calculus, we prove the validity theorem with
respect to the corresponding class of universes.

5.1 Introduction

Our notion of model for the type theories of universes, described in the previous chapters, combines the
notion of model given by display maps [HP89], [See84] together with the tools provided by contextual
categories to interpret substitution correctly [Car86]. We shall emphasize context formation. Indeed, the
judgement B [I'], asserting that B is a dependent type under the context I', is interpreted as a suitable
sequence of morphisms of P to the terminal object. Moreover, the judgement b € B[I'], asserting that b
is a term of type B under the context I', is interpreted as a section of the last morphism of the sequence
representing the dependent type B. Since we want to express substitution by means of pullback, which is
determined up to isomorphisms, we use fibred functors, as in [Hof94], to interpret substitution correctly.
But in our semantics, a type judgement corresponds to a sequence of fibred functors, which represents the
type under a context with all its possible substitutions, and a term judgement corresponds to a natural
transformation, which also represents the term under a context with all its possible substitutions.

Our models for the two type theories correspond to particular contextual categories, where the
category of contexts is equivalent to the universe under consideration. Indeed, our model is a categorical
universe, with a choice of its structure, where the interpretation of judgements is defined by taking the
reindexing functor of the split fibration equivalent to the codomain fibration of the categorical universe.
It is worthwhile to say that is enough to consider a split fibration of the codomain fibration in order to
obtain a correct interpretation not only of substitution, but also of the other constructors.

In the appendix, we outline the description of the contextual categories with attributes, suitable to
model the type theories of H-pretoposes and of toposes.

5.2 The categorical semantics

Since we intend to model a type theory, we shall assume that, with a universe, a given choice of its
categorical constructors is made. More precisely, with a H-pretopos P, we fix choices of

e finite limits: 1 is the terminal object and for every object A of P the unique morphism to the
terminal object is 1y : A — 1; for every t : D — A and f : B — A the following diagram

49
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*

is a pullback Ds ﬁ;) D , so that for every f : A — B, we can define the pullback functor

ey |

B—=A

f*:P/B — P/A, which associates f*(t) to every t : D — A and to every morphism b: ¢ — s of
P /B the unique morphism (f*(t),p b - t*(f)) to the pullback of s along f; since we have defined
pullback, the product of A and B is the vertex of the pullback of !4 and !5 and the two projections
are 14 = 14*('8) : Ax B — A and m® = !5*(I4) : A x B — B, and finally the equalizer of
a:A— Bandb: A— Bis ({(a,b)*((idp,idp)) : E — A, where (a, b) is the unique morphism to
the product B x B such that 717 - (a,b) = a and 72 - (a,b) = b;

e finite coproducts: O is the initial object and, for every object A of P, the unique morphism from
the initial object is 74 : O — A; for every objects A and B in P, A ® B is the coproduct together
with the injections ¢; : A > A@Bandey: B> A®dBandgivena: A — Candb: B — C
a®b: A® B — C is the unique morphism such that a®b-¢; =aand a ® b- e = b;

e quotients of equivalence relations: for every equivalence relation p : R — A x A there is a quotient
¢ = coeq(my - p, 72 - p), where 7; for i = 1,2 are the two projections of the pullback of 14 : A — 1
along itself;

e right adjoints on subobjects of the specified pullback functors: for every morphism f: A — B the
functor V¢(—) : Mon(A) = Mon(B) is the right adjoint to the restricted pullback functor f* :
Mon(B) — Mon(A), where Mon(A) is the subcategory of P /A, whose objects are monomorphism;

e a natural numbers object N with the zero map o: 1 — A and the successor map s : N — N.
With a topos P, we fix choices of
e finite limits (as in the case of a H-pretopos);

e exponentials: for every object A in P, the functor A — — : P — P is the right adjoint of the functor
—x A : P — P, which associates B x A to every object B of P, and (f -m,m): BxA—>Cx A
to every morphism f : B — C of P;

e a subobject classifier P(1) with a map True : 1 — P(1) such that for every monomorphism

2> 4 there is a unique characteristic map ch(r) : A — P(1) such that ch(r)*(True) is iso-
morphic to r in P/A.

An essential feature for the interpretation of a dependent type theory is the local property of the
universe under consideration. Indeed, for every object A of the H-pretopos (topos) P, the comma
category P /A is an H-pretopos (topos, respectively).

The proof for the topos can be found in [MM92] or [Joh77]. The local property of a H-pretopos is
derived from the fact that the forgetful functor U : P/A — P creates limits and for every f : A — B the
pullback functor f*:P/B — P /A preserves coproducts and quotients. Note that given an equivalence
relation in P/D

R ﬁp AXDA

T\D /'/a"m

(my - p,m2-p) : R — A x A is also an equivalence relation in P, where 7; : A xp A — A fori:1,2 are
the projections of the pullback of a : A — D along itself in P.

In a H-pretopos also Beck-Chevalley conditions for right adjoints are satisfied. It is easy to see that
for every object A of the H-pretopos P, a natural numbers object in P/Ais 71 : A x N — A, where N/
is a natural object of P.

The reason to require the local property of the structure of a universe is that constructing a type,
depending on a context I', from other types corresponds to a categorical property of P/A, where A is
determined by I'. Moreover, since substitution corresponds to pullback, the various categorical properties
must be stable under pullback.
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Remark 5.2.1 From now on, we shall mean with the categorical universe P a H-pretopos, when we
refer to the type theory HP for H-pretoposes, and a topos, when we refer to the type theory 7; for
toposes. Indeed, the categorical semantics for the two type theories is the same with regard to the
interpretation of type and term judgements. One differs from the other only for the structure suitable
to interpret some particular type and term constructors.

The idea is to interpret a dependent type as a sequence of morphisms of a given universe P, ending
with the terminal object 1, whereas the terms are sections of the last morphism of the type to which
they belong. Thus, we consider the algebraic development of the fibration cod of P: it is the category
Pgr(P).

Def. 5.2.2 The objects of the category Pgr(P) are finite sequences ay,az, ..., an of morphisms of P

a2 a1
Ay —= e Ay —> A — 1

\ e
1< Ay < A,_1 bn
Aq An—1

provided m =n and a; =b; fori=1,...n— 1.

Remark 5.2.3 We recall that given a category P we can define the category P, whose objects are
the morphisms of P

X

Yo
A

and the morphisms are pairs of morphisms of P, f : X — Y and u : A — B such that the following
diagram commutes:

X Y

of v

A B

Besides, given a universe P the following functors are fibrations (see [Ben85], [Jac91] for the definition):

f
—

—_—
u

e codp : P77 — P defined by:

and
(fiuw) = w
e domp : P77 —> P defined by:
X
( Ve > = X
A
and
(f,u) = f

Remark 5.2.4 We would like to interpret substitution by means of pullback, using the reindexing
pseudofunctor, with respect to the fibration codp, F : POY — Cat defined as follows: F associates
to every A € ObP the category P/A and to every morphism f : B — A of P the pullback pseudo-
functor f* : P/A — P/B. But, in general, for an arbitrary choice of pullbacks, F would not be a
functor: for instance, even F'(id) may not be an identity. Therefore, if substitution were interpreted
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by F then it would not be well defined. The solution is to replace F' by an equivalent pseudofunc-
tor S : POP — Cat, which is in fact a functor [Ben85], [Jac91]. S is defined as follows. For ev-
ery object A in P, S(A) = Fib(P/A,P7), where Fib(P/A,P7) is the category of fibred functors
o: P/A — P, from the fibration domp to the fibration codp (they send cartesian morphisms of
domp to cartesian morphisms of codp). A fibred functor o : P/A — P associates to every triangle

,o(b . .
B a pullback diagram O’qul)B’ . The morphisms of Fib(P/A,P~") are natural

t
b\A/b cr(b»t)l l(r(b)

C%t B

C

transformations p such that for every b: B — A the second member of p(b) is the identity (recall that
p1(b)

U(;\ B 4(5)

f: B — Aof P, the functor S(f) : Fib(P/A,P~) — Fib(P/B,P~) associates to every fibred functor
o a fibred functor o[f]. o[f] is defined as follows: for every ¢t : C' — B, o[f](t) = o(f - t). Besides, for
every natural transformation p, S(f)(p) = p[f], where p[f](t) = p(f - t) for every t : C — B. S is the
reindexing functor with respect to the fibration pg(s) : Fib(P/—,P~) — P, which is the Grothendieck
construction on the functor S defined as follows. The object of Fib(P/—,P~) are (A,0) such that
o € ObFib(P/A,P7) and the morphisms from (A,0) to (B,7) are (f,p), where f € P(A,B) and
p:o — S(f)(r) is a morphism of Fib(P/A,P~). The fibration G(S) is a projection: pg(s)(4,0) = A
for every (A4,0) € ObFib(P/—,P~) and pg(s)((f,p)) = f for every (f,p) € MorFib(P/—,P~). Note
that the pseudofunctor F : POY —s Cat is equivalent to the functor S in the appropriate 2-category of
pseudofunctors, and also the codomain fibration codp is equivalent to pg(sy. The functors establishing
such an equivalence can be described as follows. We define a functor

(—)(id) : Fib(PJA,P7) - P/A

p(b) is a morphism of P7), that is the triangle commutes. Moreover, for a morphism

which associates to every o € ObF'ib(P /A, P) its evaluation o(id) on the identity of the object A, and
for every o,7 € ObFib(P/A,P~") the morphism part

(—)@d)g,r : S(A)(o,7) = P/A(0(id), T(id))

id
associates to every p € S(A)(o,7) the morphism b ) B . Moreover, we define the functor

a(id;\ M /T(id)

—

(=):PJ/A— Fib(P/A,P7)
establishing the equivalence with (—)(id). The object part of (—)(id) associates to every object b: B — A
of P/A the fibred functor b, defined as b(t) = t*(b) for every t : D — A and extended to morphisms by
the universal property of pullback. For every a : C — A and b: B — A, the morphism part of (—)(id)

—

(—)ag : P/A(a,b) —» S(A)(@,b)

associates to every ¢ — - B the natural transformation g:a— b defined in this way: for every
a b
A
t: D — A, weput g(t) = (a(t),sg - a*(t))), where {a(t),p g - a*(t)) is the unique morphism to the
pullback of b along ¢ induced by a(t) and g - a*(¢).

We use fibred functors to interpret the dependent types with all its possible substitutions, as in
[Hof94]. Moreover, we use natural transformations to represent terms with all its possible substitutions.
We call preinterpretation an assignment of fibred functors to type judgements and of natural transfor-
mations to term judgements. To this purpose, we consider the category Pgf(P), where the judgements
of the type theories HP and T; are preinterpreted. We put I(o) = A if 0 € [P/A, P7].
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Def. 5.2.5 The objects of the category Pgf(P) are finite sequences 01,0, ..., 0 of fibred functors such
that o1(ida,),02(ida,), ...,on(ida,) is an object of Pgr(P), where A; = I(o;) fori = 1,...,n. The
morphisms of Pgf(P) from 01,02,...,04 to 11,72, ...,7, are defined only if m = n and o; = 7; for
i =1,...,n — 1, and they are natural transformations from the functor o, to 7, such that, if A, =
I(oy,) = I(7,), then for every b: B — A,, the second member of p(b) is the identity (recall that p(b) is a

b
morphism of P~ ), that is the triangle L()> commutes.

™ B -
In the following, we simply write o; instead of o;(id,). Moreover, since the second member of p(b) is
always the identity, we confuse p(b) with the first member p; (b).

Besides, notice that by naturality any component p(b) of a morphism p of Pgf(P) is determined

by the properties of pullback from p(idas,). Indeed, if we consider B b o, , we get that p(b)

N

is equal to (o, (D), p(ida,) - q(b,o,(id))), from o,(b) to 7,(b), and it is the unique morphism to the
pullback of 7,(id) along b, according to the functorial choice of pullbacks of 7, induced by o,,(b) and
p(ida,) - q(b, o, (id)) . We conclude that p = (=)(id),.. " (p(id)).

Finally, for every A € ObP, we define the fibred functor i4 : P/A — P~ associating to every triangle

oc—L1 =5 the following pullback diagram ¢ LB

SN A ah
A C_t>B

5.3 The interpretation and validity

Given a universe P, before defining the interpretation, we define a preinterpretation fp‘ T — Pgf(P)
on the type and term judgements derivable in the type theory 7. With 7 we shall mean the type theory
HP or 7;. Ip| will turn out to be defined as a restriction of an a priori partial interpretation Zp from
the pseudo-judgements of 7, which are expressions in the form of a judgement with the signature of 7.

The preinterpretation says how to interpret a dipendent type and a typed term after any possible
substitution. The interpretation of type and term judgements corresponds to evaluate their preinterpre-
tations on the identical substitution.
Moreover, we define a valuation V : Pgf(P) — Pgr(P) in this manner: for every object of Pgf(P)
01,02,...,0p

V(Ul 1025 00y Un) =01 (idA1)7 02 (idA2>7 e Un(idAn)

where A; = I(o;) for i = 1,...,n, and for every morphism p of Pgf(P) between 01,09, ...,0, and
T1,72y ..y Tn

V(p) = plida,)
Finally, the interpretation Zp : T — Pgr(P) is defined as Zp =V ~I~7>‘

Ip
\ Pgr(P)
21 pyr(p)

So, a type judgement of HP or 7; will be preinterpreted as a sequence of fibred functors, since a fibred
functor is used to represent the dependent type with all the possible substitutions in its free variables
[Hof94], and it will turn out to be interpreted as an object of Pgr(P), by the evaluation of the fibred
functors on the identical substitution. Precisely, a type judgement with empty context, that is a closed
type, will be simply interpreted as a sequence of only one arrow to the terminal object 1 of P: for

example, every judgement of HP or T;
Al
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will be preinterpreted as a fibred functor
a;:P/1— P~

and interpreted as

lag

Ay — 1
since aj (idy) =la,, with Ay, = dom(a; (idy)).
More generally, a dependent type judgement of HP or T;

B(ZIZ’l, ,ZEn) [Z’l S Al, ey Ty € Anfl(.flll, ...,SL’n,1>]
will be preinterpreted as the object of Pgf(P)
Oél,OQ,..-,Oén,ﬂ

and hence interpreted as
jeatd) - exlid) Bl
In the following, for short, we write I'), = x1 € Ay, ...,z € Ap(®1, ..y Tp—1).
The equality between types will be preinterpreted as equality between objects of Pgf(P) and hence
interpreted as the equality between objects of Pgr(P).
The typed term judgements will be interpreted as morphisms of Pgr(P):

. . . a1 (id) an(id)  B(id) .
given the type judgement B(z1,...,z,) [[',] interpreted as 1 <— Ay - <— As, =<— By the term judge-

ment
be B(xy,....,tpn) [I'n]

will be preinterpreted as a natural transformation b’ from ay, s, ..., an, 4y, t0 @1, Q2, ..., ap, 3, and it
will be interpreted as b’ (id), that is a section of 3(id)

b(id
Asn # By

id
<>A2 4@

1 <— AEl ........... - n
lag, o (id)

The equality between terms will be preinterpreted as equality between natural transformations and hence
interpreted as the equality between morphisms of Pgr(S). From now on, for short, we simply write b
to mean b? (id).

Essentially, we define the preinterpretation

Tp : pseudo(T) — Pgf(P)

as an a priori partial function from the pseudo-judgements of T, pseudo(T ), about dependent types and
terms, by induction on their complexity (see, for example, [Pit95], [Str91]). Indeed, later we will show
that the preinterpretation is well defined on the type and term judgements derivable in the theory, by
induction on the derivation. But, we will prove this in the validity theorem, because for our purpose
we also need the validity of the judgements about equality between types and terms. With regard to
this, see, for example, the elimination rule for the extensional propositional equality type, the formation
rule for the forall type in the type theory H P and the introduction rule for the Omega type in the type
theory 7.

Remark 5.3.1 As already said, a complication of these dependent type theories is that by the depen-
dency of types from terms, we have to consider the equality between types and between terms. Indeed,
the proofs that some types or terms are well formed depend on these equality judgements. So, we give
a partial interpretation.
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Another difficulty is that in the presence of the set equality rule conv), an interpretation defined
by induction on the derivations must be checked to be well-defined such that the interpretation of a
judgement does not depend on the derivation, if the derivation is not unique.

We think that this could be done by avoiding all the weakening, substitution and set equality rules
in the formulation of the calculus. But our formulations of the dependent type theories do not let us to
prove the set equality rule conv).

5.3.1 The partial interpretation

We define pseudo(T) as the pseudo-judgements of a type theory 7, consisting of expressions of these
four kinds

A(z) type [I1  A(z) = B(z) [T]
a(z) € A(z) [T a(z) =b(z) € A(z) [I]

where z = z1,...,z, and
el'=[]or T =ax € Ap,...,zpy € Ap(x1,..., 1) is a list of distinct typed variables, and
Ai(zy,...,xi—q) for ¢ = 1,...,n is a raw type, that may depend on variables, previously listed;

we call this list a pseudo-context;
e A(z) is a raw type, whose variables occur in the pseudo-context T

e a(x) is a raw term, whose variables occur in the pseudo-context I

Remark 5.3.2 We will omit to write the type in the signature of a term. Indeed, we assume that
whenever a new symbol is introduced in the introduction, elimination and conversion rules of the type
theory about a term judgement a € A type [I'], the types that should be appear in the signature of the
term a are determined by A and by the types of the premisses.

We define an a priori partial preinterpretation Zp : pseudo(T) — Pgf(P) of the pseudo-judgements
of the type theory HP and 7T
A type [T a€ Al

by induction on the complexity of pseudo-judgements.

The complexity of pseudo-judgements is defined by recursion, as in [Str91]. We assume to know the
complexity of raw types and raw terms. We define the depth of a context. The depth of the empty context
is 0. The depth of a pseudo-context ',z € A is the complexity of the pseudo-judgement A type [I']. The
complexity of a pseudo-judgement A type [['] is the sum of the complexity of the type-valued function
symbol A with the depth of the pseudo-context I'. The complexity of a pseudo-judgement a € A [['] is
the sum of the complexity of the term-valued function symbol a with the complexity of A type [I].
Moreover, we preinterpret the pseudo-contexts:

e for the empty context

e for a generic pseudo-context
Ip(T,x € A) = Zp(A type [I'])

As for the judgements, we define the partial preinterpretation of the pseudo-judgements of equality:
e Ip(A = B [I) is preinterpreted as
Ip(A type [I]) = Zp(B type [L])

provided that Zp(A type [T]) and Zp (B type [[]) are defined;
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e Ip(a =bc A|[l)) is preinterpreted as
Trlac A[T) =Tp(be A [T)
provided that Zp(a € A [[']) and Zp (b € A [I]) are defined.

Remark 5.3.3 Note that it is sufficient to specify only the interpretation of a term, since the preinter-
pretation of a term is the corresponding natural transformation of Pgf(P) determined by its evaluation
on the identity.

The interpretation of the type theory HP

Now, given a H-pretopos P, we proceed to define the partial preinterpretation Zp from the pseudo-
judgements of the type theory HP into Pgf(P), and therefore, a partial interpretation into Pgr(P),
by induction on the complexity of the pseudo-judgements. In the inductive hypothesis, we will refer
to the interpretation of a pseudo-judgement, assuming that also the preinterpretation is given. The
interpretation of the assumption of variable is the following;:

provided that the pseudo-judgement

C(z1, .y xn, ) [Tnyx € Bz, ..., )]
is interpreted as
!Aal ) (2 (Zd>7 <y Qi (Zd>7 B(Zd>7 V(Zd)
and the pseudo-judgement
B(zy,...,xn)[z1 € A1, oy T € Ap(Z1,.y@p1),2 € B(x1, ..., Tpn),y € Cx1, oo, Ty )]

!Aal ) 2 (Zd>7 ey O (Zd>7 B(Zd>7 V(Zd% B(V(Zd) . ﬂ(ld))
then

x € B(xy,...,xn)[x1 € A1, .o, Tpn € Ap(21, .oy p1),2 € B(x1, .0y Tp ),y € CT1,.eey Ty )]

is interpreted as

Oy ——2 > Oy xBY

\ ;B/(v (id)-B(id)
ld)

where 2! (id) = v(id)*(Ap,) and Ap, = (idp,,,idp,). In order to interpret the inference rule about
the assumption of variable, when the context A is made of more than one typed variable, we repeat the
semantic operation of weakening, interpreted as in the lemmas of weakening (we refer to section 5.3.2
for its interpretation).

Now, we go on by defining the interpretation on the signature given by the formation, introduction and
elimination rules for types and terms.

] <~— AEl ........... - AZn -
lag, ay (id) B(zd)

Remark 5.3.4 Note that we will write A for the fibred functor [ : P/1 — P~.

1. The Terminal type pseudo-judgement
Tl

is interpreted as

51

1<—1y
where 1y, = dom((idy)*(idy)), and we recall that the preinterpretation 1 : P/1 — P~ is the

functor defined in the following manner: for every D B1 owe put 1(1p) = (Ip)*(idy) and on the
morphisms it is defined through the pullback. Hence we get T(idl) =l,.
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Moreover, if the pseudo-context I';; is interpreted as

1 <—— Asyq e <~ Asn,
we interpret
T[]

as

! o (id 1('ag,)

LB 2l )
and we interpret
*€ T [[y]

as

where +/ (id) = (idas, , (l12) ™ L ag,)-

. If the pseudo-context I';, is interpreted as

! n(id
1 & Asyq o (l ) Sn
the False type pseudo-judgement,
L[]
is interpreted as
! n id o(!
Qmy el W) e

where 0 is the initial object of P and Oy = dom((idy)*(o)) and the preinterpretation 0 : P/1 —

P~ is the functor defined in the following manner: for every D 21 owe put 0(!'p) = (!n)*(lo).
Therefore 0(id;) =lo,. On the morphisms it is defined through the pullback.

The signature introduced in the elimination rule of the false type is interpreted in the following
manner:

provided that the pseudo-judgements a € L [[';] and A [I',] are interpreted as

1 la an (id)  a(id)
Mg O A oy g LEy el eld)
\lﬁ /
0!
1<— Asq e <— As, 0('142”)
Asq ay (id)

we interpret

as

where 7 4, is the unique morphism from As, x Oz to Ax,, because 0 is a strict initial object and
then 0(!p) is an initial object in P/D.
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3. The Indexed Sum type.

Provided that the pseudo-judgement C(y) [I'y,y € B] is interpreted as

La an(id)  Bid)  y(id)
1<—21A21 ........... Asn By, Cs;

we interpret
EyEBC(y) [Fn]

as

where ¥g(v) : P/As, — P is the functor defined in the following manner: for every bD L 4,
we put Xg(y)(t) = B(t)-v(¢(t, 5(id))) and on the morphisms it is defined through the pullback. It
is well defined, since the corresponding Beck-Chevalley conditions hold in any H-pretopos.

The pair term is interpreted in the following manner:
provided that the pseudo-judgements b € B [I',] and ¢ € C(b) [[',,] are interpreted as

bl ol
Ay, ——> By, Asn - o Axn xCy
id id
\ L N
1] <~— AEI ........... sn 1] <~— AEI ........... < A n
“As an(’d) lag, an (id)

we interpret
(b,c) € EyepCly) [I'n]
as
<b )

Bz; - >OE

L g e g, ZE O
where (b, (id) = q(b! (id), y(id)) - (¢! (id)).
The first projection of the indexed sum type is interpreted in this manner:

provided that the pseudo-judgement d € £,cpC(y) [I's] is interpreted as

1
Azn —d > CE

id
N Am/ () (i)

A ...........
! El =t an(id)
we interpret
T (d) € B [Fn]
as
d I
. (;rl( )) B
1
\ /B(’Ld)
1 <— Asq oo <~ As,
Asy ap (id)

where (m1(d))! (id) = ~(id) - (d*(id)).
The second projection of the indexed sum type is interpreted in this manner:

provided that the pseudo-judgement d € £,cpC(y) [I's] is interpreted as

1
Azn —d > CE

id
<>Am‘{5 () (i)

TAs o (id)
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we interpret
m2(d) € O(mi(d)) [I']
as

(m2(d))!
AEn —_—> Azn XCE

(v(id)-dT)
where (m2(d))!(id) = (id, d! (id)) is the unique morphism to the pullback between v(id) and ~(id) -
(d! (id)).

The Equality type.
Provided that the pseudo-judgements ¢ € C [I'y] and d € C [I',,] are interpreted as

! I
Asn iy Cxs Asn d;) Cs,
! K2
<—\ 4“) \ A/v(id)
1T =— Ay oo . ey
lag, o (id) Thgy an(zd)
we interpret
(C,e,d) [T]
as
'a an (id) Eq CI7dI id
1 =21 Agy o o )Azn( )(E)E

where Eq(c!,d') : P/As, — P~ is the functor defined in the following manner: for every

D -+ Ay, we put Eq(ch,d))(t) = ((c'(t),d (#)))" (Apxcy) With Apxes, = (idpxcy,idpxoy)-
It is well defined since each pullback functor preserves equalizers, as it has a left adjoint. On the
morphisms it is defined through the pullback.

The signature introduced in the introduction rule of the equality type is interpreted in the following
manner:

provided that the pseudo-judgement ¢ € C [[',,] is interpreted as

I
Agn — > CE

X S

1 <— AEl ........... Sn
agy O‘n(ld)

we interpret

as
Ac(Asn)
Asn Es
id
oI
] <— Asgyq oo - A Eq(c ,c")(id)

where Ac(Ax,) = (ida,,, o ¢! (id)) is the unique morphism to the pullback that defines the equal-
izer Eq(c!,c!)(id) induced by id4,, and c(id).

Therefore, eqe(c)! = Ac(Asy).

The Disjoint Sum type.

Provided that the pseudo-judgements C [I',;] and D [I',] are interpreted as

la an(td)  ~(id) la an (id (id)
=1 oplid) D 2my opld) o)
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we interpret

C+ D [Iy]
as
! n(id 5(id
L <2E A anlid)  y@sd)

where 7 @ 6 : P/Asy, — P is the functor defined in the following manner: for every b £ s,
we put v @ §(t) = v(t) ® 6(¢) and on the morphisms it is defined through the pullback. It is well
defined, since coproducts are stable under pullback.

The first and second injections of the introduction rules of the disjoint sum type are interpreted
in this manner:

provided that the pseudo-judgements ¢ € C [I',] and d € D [[',,] are interpreted as

I 1

Ay, — > Cx Ay, — Dy,
id id
\ /'y(id) \ /6(id)
1 <— Asq oo -~ As, 1 =<— Asxq oo <~ Asn
Ay oy (id) lagy oy (id)

we interpret
inlc) e C+D '] and inr(d) € C+ D [I'y]

as
er(ch) e2(d”)
Asn d4> Cs®Dx Asn d4> Cs®Dx
1 K2
N s (id) N %(id)
1] <~— AEI ........... S AEn 1] <~— AEI ........... - AEn
“As o (id) ‘Asy o (id)

where (inl(c))! (id) = €, - (c!(id)), (inr(d))!(id) = €5 - (d'(id)) and €, €, are the injections of the
coproduct Cy; & Dy;.

The signature introduced in the elimination rule for the disjoint sum type is interpreted in this
manner:

provided that the pseudo-judgements ac € A(inl(y)) [I'y,y € C] and ap € A(inr(2)) I'y,z € D]
are interpreted as

I I
a a
CE%AEXCE Dg %AEXDE
(3 (3
\ A{(a) \ ‘{(62)
1=<— Asq oo < As, <= Cxg 1 <— Asq e <— As, <=— Ds
D an (i) y(id) Ty, o (id)8(id)

we interpret
D(w,ac,ap) € A(w) [I'n,w € C + D]

as
1
Cs®Dsx % Asx

xd
a(id)
-
Lagy Y®6(id)
where D! (id) = (g(e1, a(id)) - al.(id)) & (q(e2, a(id)) - al, (id)). We prove that D! (id) is a section of
a(id). Indeed, we get a(id) - (D! (id) - e1) = a(id) - (¢(e1, a(id)) - al.(id)) = (e1 - aler)) - al. (id) = 1,
by the definitions of D! and « and by the hypothesis on al,, and, hence, analogously a(id)- (D! (id)-
€2) = €. Since €; @ €5 = id, we conclude that D’ (id) is a section of a(id).

Now, we interpret the signature introduced in the axiom of Disjointness

id,t
m(c, d) el [Fn] as Asin # Axn X0x

N 47
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provided that e;(c!(id)) = es(d’(id)), where (id,t) is the unique morphism to the pullback of
o and !4, and ¢t is defined as follows. Since the coproduct is disjoint, the unique morphisms
p1: O = Cy; and ps : O — Dy, are the projections of a pullback square between ¢; and ey (though
this is not the specified one from the structure of P). So, by the hypothesis €; (¢! (id)) = e2(d! (id)),
there exists a unique ¢ : Ay, — 0 such that p; -t = ¢!(id) and ps - t = d(id).

The Forall type.
Provided that the pseudo-judgement C(y) [I',,,y € B] is interpreted as

La on (id) — B(id) 2)
L <l Asyy o Asn By s

and y(id) is a monomorphism, we interpret

VyesC(y) (L]

as

! ; i
YAy ap (id) Vgy(id)
1] <" Asiq e Sn ¥3(Cs)

where Vv : P/Asy, — P~ is the functor defined in the following manner: for every D L Asn,
we put Vgy(t) = Vg)y(q(t, B(id))). On the morphisms it is defined through the pullback. It is
well defined, since y(id) is a monomorphism and on the morphism part Vzy(—) sends a morphism
of P/As, to a pullback square by the corresponding Beck-Chevalley conditions.

The abstraction of the forall type is interpreted in the following manner:

provided that the pseudo-judgement ¢ € C(y) [I'y,,y € B] is interpreted as

By —M /'
(id)

By Y
fam Qn (ld) B(Ul)

we interpret
MyP.c € VyepCl(y) [Tn]

as
F.of
Asp VyeBCs
Xd /
A4 id
1 ~— AEI ........... - AEn B’Y(Z )
As1 o (id)

where (AyP.c)!(id) = (c!(id)) and 1 is the bijection
¥ :P[Bs(idpy, ), Y(id)) = P[Asn(idas,, Vs(ia) (1(id)))

since P/By(idpy., ), id) = P/Bs(Blid)* (ida, ), /(i) = P/Asa(idas, Va0 (1(id))), where
the latter isomorphism is obtained by the bijection of the adjunction 8(id)* 4 Vg.
The application of the forall type is interpreted in the following manner:

provided that the pseudo-judgements b € B [I'y] and f € V,epC(y) [I's] are interpreted as

I

Agn % Bz Az;n _—> V,BCE
B(id) Vs 7y(id)
1 Ay o Asi, 1< Asiq oo -~ As,
Yag, an(zd YAg, ay, (id)

we interpret

Ap(f,b) € C(b) [I'n]



62

CHAPTER 5. THE SEMANTICS IN A CATEGORICAL UNIVERSE

as

I
(Ap(£,0)) Agn xCs

\/bf

where (Ap(f,b))! (id) = (id,p,, v~ (f!(id)) - b* (id)) is the morphism to the pullback of v(id) along
b!(id) and ¢! is the inverse of 1.

. The Quotient type.

Suppose that the pseudo-judgement
R(z,y) type [z € A,y € A]
is interpreted as

'a an (id a(id) w1 p(id
1<i‘421 .............. ( )Azn (i) Assx Asy (id) Rx

where p(id) is an equivalence relation in P /Ay, and
A [Iy]

is interpreted as
1 <_21A21 ........ ?ZL_(’QE” _ AE
with 1 = a(a(id)) and w2 = g(a(id), a(id)).

Since p(id) is an equivalence relation in P/As,, there exists the coequalizer ¢ : Ay — As /Ry of
71 - p(id) and ms - p(id) and we get Q(a(id)) such that the following triangle diagram commutes

my P(ld)
Ry —__ As /Rs.
wa- p(zd
a(id) %zd))

Therefore, we interpret

A/R ]

as
n ld) Qoz ZCQ
~— A

where Q(a) : P/As, — P~ is the functor defined in the following manner: for every D £ As,
we put Q(a)(t) = Q(a(t)), where Q(a(t)) is the unique morphism such that a(t) = Q(«a(t)) - c(t)
and c(t) is the quotient of the equivalence relation p(q(g(t, a(id)), 7). @ () is well defined because
the quotient is stable under pullbacks. On the morphisms it is defined through the pullback.

The signature of the introduction rule of the quotient type is interpreted in the following manner:

provided that the pseudo-judgement a € A [I',,] is interpreted as

I
Azn % AE

Xd /azd)

1] <— Agq oo sn
lay an(’d)

we interpret

[a] € A/R [[']
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as

Ag, — D) R

d
N B n%)(id)

*Axy o (id)

Now, we interpret the signature introduced in the restricted elimination rule, Es;-quotient.

Suppose that the pseudo-judgement m(x) € M [['y,z € A] is interpreted as

I
As — ™ o AsxMs

id
(EAZ Catiay

'asy a(id)

and that m!(id) - (71 - p(id)) = m!(id) - (72 - p(id)). Therefore, as ¢ is the coequalizer of 7y - p(id)
and 7 - p(id), there exists a morphism ¢ in P/As, such that q-c¢ = q(a(id), u(id)) - m!(id).
Since by hypothesis u(id) - (g(a(id), u(id)) - m!(id)) = a(id), we also have that by uniqueness
u(id) - g = Q(a(id)).

We finally define the interpretation of Qs(m,z) € M [I',,,z € A/R] as

(id,q)

AE/RE %AE/REXME

id G
/Rs

1] <— Asyq oo <~ A, = Ay

Xn
Tag, an(id) ~ Q(a(id))

Now, we interpret the signature introduced in the axiom of Effectiveness.
Suppose that the pseudo-context I';, is interpreted as

tagy o (id)
] <~—— AEI .............. - sn

We interpret
f(a,b) € R(a,b) [T'y]

as

id,t
Asn % Rx

id
o~ AZn‘p/«a%b’»
cAsy Oln(id)
provided that ¢ - af(id) = c- b’ (id), where t is defined as follows. Since the quotient is effective

in P/As,, then there exists a morphism ¢ : Ay, — Ry such that (m - p(id)) - t = a!(id) and
(w2 - p(id)) - t = bl (id).

8. The Natural Numbers type.
Suppose that the pseudo-context I';, is interpreted as

fasy ay (id)
] <~—— AEI .............. - sn
then we interpret
N [[y]
as
la n(id) JV(!AER)



64

CHAPTER 5. THE SEMANTICS IN A CATEGORICAL UNIVERSE

where A is a natural numbers object of P and we recall that A : P /1 — P~ is the functor defined

in the following manner: for every b L1 we put N'(1p) = (!p)*(!x) and on the morphisms it is
defined through the pullback.

Moreover, under the same assumption about I',,, the zero

0e N [[,)
is interpreted as
(id,0-lay,,)
Asn Asn XN
X /
/V(!A)jn)
] <~— AEI ................. S AEn
"agy ap (id)
where 0: 1 — A is the zero map in the H-pretopos P;
and the successor
s(z) € N [I'y,z € N]
is interpreted as
<7;d7§'7T2>
Asn XN Asin XN XN
A A Asn N
1 < A o _ n _~ n
as ¥ an (id) ¥ JV(!AEH)E )

where s : N — N is the successor map in the H-pretopos P, § = id;(s) considering s € P/1(Ixr, Inr),
71 = N(lag, xar) and m = q(lay, , N (id)) and finally (id, s - 72) is the unique morphism to the
pullback of 14, xa and N(1y),

Now, we interpret the signature introduced in the weaker elimination rule E,-Nat.

Provided that the pseudo-judgements a € L [I'y] and I(y) € L [I'y,,y € L] are interpreted as

ol 1
Asp - e o Ls Ly ——— > L XLsx
id
\ /'d \ /
£(id)
1 ~— AEI ........... 1] ~— AEI ........ - A n
famy O‘n(ld) Yagy o (id) (ld)

where 7 = £(£(id)), then we interpret
Recs(a,l,n) € L [I'y,n € N

as

<ld7A§;n >
Asip XN % (Ag;n XN)XLE

1 Asq e n A n N
DY T
where r is the unique morphism that makes the following diagram commute by the property of
natural numbers object in P/Ax,

(id,0-'ag, ) (m1,5-m2)
Aspy ——> Asn XN ——— Axy XN

ST

with m = N (14, ) and 7¥ = g(£(id), £(id)).
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5.3.2 The validity of the type theory HP

In order to prove the validity theorem we need to know how the rules for weakening and substitution
are interpreted.
Weakening and substitution of variables in types and terms are expressed by pullback:

Lemma 5.3.5 The weakening of a variable in type and term judgements is interpreted as follows:
given the pseudo-judgements

B(w1,..my) [Tn]  and  D(x1,...z;) [I]

lag, an(id)  B(id) lag, aj(id)  6(id)
1 <— Agq e <— Ay, <— By 1 <—"Aygq e eAz}j<—Dz

then the pseudo-judgement
B(z1,...,2n) Tj,y € Dyxjp1 € Ajr1,..., 20 € Ay
is interpreted as

a 5(id)  ajpalty) anltn=t)  Blta)
1JA21 ........... Azj&DzéﬁzxAzj_‘_l ........... <— DsxAs, <— DxXxByxy,

where t; = 6(id) and if n > j+ 1, t; = q(ti—1, ;(id)) fori=j+1,...,n
and given the pseudo-judgement

be B(x1,...,xy) ] and D(z1,...,z;) [Iy]

where n > j, interpreted as

b! (id) 'a aj(id)  6(id)
Ay, —— > By, 1 <2t Ay e <Ay, = Dy
id
N »ﬁm
1 <— Asq oo <~ As,
Ax o (id)

then
be B(J,‘l, ,J,‘n) [Fj,y € D,J,‘j_H € Aj+1,. Lo, Ty € An]

is interpreted as

b (tn)
Dz;XAz;n DE XBE
K /
B(tn)
1 <— Asyq oo A):J <—— Dy oo <~——— Dy xAsn
As 4 an(tn—1)

Lemma 5.3.6 The substitution of variables in type and term judgements is interpreted as follows:
given the pseudo-judgements

B(z1,....,zn) Tn] and a; € Aj [T'j4]

where n > j, interpreted as

'a o (id)  B(id a; (id)
1 <2"4g <_( in L—)Bz Az —————> Ay;
- id
~ ‘{j(id)
1< AEl ............. %'Azj_l
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then the pseudo-judgement
B(xy,... 5,075,250, 2)[Di1, 25 € Ajyy, ... 2, € Al

where if n > j+ 1, A% = Ajrilz/ajl[ei/vi)izjtr,..j4k—1 for k=1,...n—j,
is interpreted as

!
faxy aj+1(45) an(dn-1) Ban)
1< Agq e AE].71 - IEJ'-H ........... - A)En - B;:

where ¢; = ajl.(id) and ifn>j+1, ¢ =q(gi—1,a:(id)) fori=j+1,...,n
and given o pseudo-term judgement

be B(l‘l, ,J,‘n) [Fn] and aj S Aj [Fj—l]

where n > j, interpreted as

b1 (id) aj (id)
Az;n d% Bz; Az;jfl _— Az;j
i id
N /B(z’d) ~ o (id)
1 <— Axy e <—— Asn 1< Agq e <~ Asj
A1 arn (id) 'asy aj_1(id)
then the pseudo-judgement
blzj/ajllzi/ilizj,..n € Blxr, ... 25,05, 1, x,,) [Djo, 2l € Al a, € A
is interpreted as
b (gn)

! !
A — > B
En =

id
\ /6(%)

1 'e Asyy oo Asj_1 <— A’E]._*_1 ........... <~ AL,
A aj+1(g;) n (gn—1)

The proofs can be done by induction on the signature of the judgements. For the assumption of variable,
the lemma of weakening holds by definition and the lemma of substitution holds because terms are
interpreted as sections. In the case of constant type, like T or IV, we use the inductive hypothesis,
since the preinterpretation of a context is reduced to that of a type pseudo-judgement. The definition
of partial preinterpretation of type and term judgements assures that all these lemmas for weakening
and substitution hold for the other type and term constructors.

Now, we are ready to prove the validity theorem:

Theorem 5.3.7 (Validity) Given a H-pretopos P, if A type [I',,] is derivable in HP then Ip (A type [[')])
is well defined. If a € A [I'y)] is derivable then Ip(a € A [I'y,)]) is well defined.

Suppose that A type [I'y] and B type [I'y] are derivable in HP, if A = B [I'y] is derivable in HP then
Zp(A type [Tn]) = Ip(B type [I'n]).

Suppose that a € A [I',,)] and b€ A [T'),] are derivable in HP, if a =b € A [['})] is derivable in HP, then
Ip(ac AL, =Zp(be AL,]).

Proof. The proof can be done by induction on the derivation of the judgement.

Remark 5.3.8 A judgement is valid, if its interpretation is well-defined and hence, in particular an
equality judgement for types or terms is valid, if the interpretations of the corresponding type or term
judgements are equal. We say that an inference rule holds or is valid, if it preserves the validity of
judgements.

Surely, the set rule conv) preserves validity of the judgements. Hence, we proceed by proving the
validity of the formation, introduction and elimination and conversion rules for the various types with
their terms. The lemma of weakening and substitution are crucial for the dependent types, whose rules
refer to substitution or weakening such as, for example, the forall type.
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1. The formation, introduction and elimination and conversion rules for the Terminal type hold
because for every object D in P, 1(Ip) is a terminal object in P/D.

2. The formation and elimination rules of the False type are valid.

3. The formation, introduction and elimination rules of the Indexed Sum type are valid. Moreover,
the 8 and 7 conversion rules for the indexed sum type hold by the properties of pullback. Indeed,
the B1-C conversion rule for the indexed sum type

beB ceC(b)
m({b,c)) =b€ B

holds because (id) - (q(b’ (id),y(id)) - ¢! (id)) = b! (id) - v(b! (id)) - ¢! (id), from which as ¢ (id) is a
section of v(b! (id)) we get v(id) - (¢(b' (id),y(id)) - ¢! (id) = b (id).
The 85-C conversion rule for the indexed sum type

beB ceC(b)
w2 ((b,c)) = c € C(b)

holds because (id, (b’ (id),y(id)) - ¢! (id)) = ¢! (id), since ¢! (id) is a section of v(b!(id)). Finally,
the n-C conversion rule for the indexed sum type
d c EweBC(ZU)
(m1(d), m2(d)) = d € ZeepC(2)

holds since q(y(id) - d! (id), y(id)) - (id, d* (id)) = d! (id).

4. The formation, introduction rules of the Equality type hold.

The E-equality elimination rule
p € Eq(C,¢,d)
c=deC
holds because for every t : D — A, p!(t) is a section of Eq(c!,d?)(t), which is the equalizer of
c!(t) and d!(t), so we conclude that ¢! (t) = d”(t). Moreover, the C-equality conversion rule

p € Eq(C,c,d)
p= eqC € Eq(Ca c, d)

holds, because the equalizer is a monomorphism.

5. The formation, introduction and elimination rules of the Disjoint Sum type hold.
The C; conversion rule for the disjoint sum type

ac(z) € A(inl(z)) [z € C] aply) € A(inr(y)) [y € D]
D(inl(z),ac,ap) = at(z) € A(inl(z)) [z € C]

holds since D(inl(z), ac,ap)! (id) = (id ,cyeps (q(e1,a(id)) - al (id) ® q(e2, a(id)) - al,(id))) - €1)
and by uniqueness of the morphism to a pullback D(inl(z), ac, ap)! (id) = al (id).

The Cy conversion rule for the disjoint sum type holds for an analogous reason.

The axiom of Disjointness is valid, since by hypothesis € (¢! (id)) = es(d! (id)).

6. The formation rule of the Forall type hold. Indeed, given C(y) [,y € B] interpreted as

lag, anlid) Bld) )
Xn P =

from the validity of the judgement expressing that C(y) is a mono type, v(id) is a monomorphism
as follows. In fact, the interpretations of z € C [I',,,y € B,z € C,w € C] and w € C [[',,,y €
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B,z € C,w € (] are isomorphic with the same isomorphism respectively to the first projection
and to the second projection of the product y(id) x v(id). Therefore, by the interpretation of
z=w € C [I'y,y € B,z € C,w € (], we get that the two projections of v(id), that are y(v(id))
and ¢(y(id),v(id)), are equal and we conclude that v(id) is a monomorphism.

The introduction and elimination rules of the Forall type hold by the lemma of substitution.

The 8-C conversion rule
beB[l[,)) ceCl'y,yeBly=z€e€C[l,,zeB,yeC,ze (]
Ap(AzB.c,b) = ¢(b) € C [I))]

holds since (id, g, ¥~ (¥(c! (id))) - bL (id)) = ¢! (b! (id)).

The 7-C conversion rule

f € vJcEBC(w)
AzAAp(f,x) = f € VeenC(2)

holds because

(Az.Ap(f,2))! (id) = Y((id,py x By ¥ ((id, 4y, ' (id) - B(id))) - Apy))

= w(@d:BE X By (id7Bz: wil(fl(ld)) ’ Q(ﬂ(ld)7ﬂ( ))> ABZ)>) ﬂ’( l(f[(Zd») = f[(ld)7

since Y1 ((id, A, f1(id) - B(id))) = (id,p, v~ (f1(id)) - ¢(B(id), B(id))) by Beck-Chevalley condi-
tions for the bijections of the adjunction and the lemma of weakening.

. The formation rule of the Quotient type holds.

Indeed, given the following judgements (we omit I',, in the context)

R(z,y) type [v € A,y € A], z2=w € R(z,y) [vr € A,y € A,z € R(z,y),w € R(z,y)],
¢ € R(z,z)[z € 4], ¢y € R(y,x)[x € A,y € A,z € R(x,y)],
3 € R(z,z)[x € A,y A,z € A,w € R(z,y),w € R(y,z)]

suppose that R(z,y) type [,z € A,y € A] is interpreted as

'a an (id) a(id)-my p(id)
1 <21 Agy e Asp Anx As Rs

with 1 = a(a(id)) and w2 = g(a(id), a(id)).

From the case of the forall type, we already know that a mono type is interpreted as a monomor-
phism and here we can prove that p(id) turns out to be an equivalence relation in P/Ay,,.
Indeed, for reflexivity, since ¢; € R(x,z)[r € A], there exists a section ¢! of p(Aay) and ¢(Aag, p(id))-
cl is the required morphism that factorizes A a5, through p(id) in P/Asy,.

For symmetry, from ¢y € R(y,z)[z € A,y € A,z € R(x,y)] we get a section ¢} of p(s-p(id)), where
s is the exchange morphism (s, 71) in P/Ayy,. Therefore, s - p(id) = p(id) - (¢(s - p(id), p(id)) - cb),
satisfies the categorical condition for symmetry.

For transitivity, from ¢z € R(z,z)[z € A,y € A,z € A,w € R(z,y),w" € R(y, z)] we get a section
ek of p({m1,m3) - p(1) x p(2)), where we call 71 = m; - a(a(id) - 72), T2 = 72 - ala(id) - m2) and 73 =
7o - q(me, ) and we also abbreviate p(1) = p((m1, m2)), p(2) = p({2, 73)) and p(3) = p({771,73)),
and finally p(1) x p(2) = p(1) - p({(2,73) - p(1)). Let us consider the following pullback

%

lﬂz p(id)

ﬁ
m1-p(id)

where p1 = q((m2, 73) - p(1), p(id)) and p2 = q((m1, ™), p(id)) - p((m2,73) - p(1)).
Therefore, we conclude that

=
N<—"
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(m1 - p(id)) - p2 =

=m - (1, 72) - p(1) X p(2)
=m - (71, 73) - p(1) x p(2)

= (m1 - p(id)) - ({1, 73) - p(1) X p(2), p(id)) - c3
and analogously
(r2 - plid)) - pr =
=Ty - (2, 7m3) - p(1)
= my - (1, 73) - p(1)
= (m2 - p(id)) - q((m1,73) - p(1) % p(2), p(id)) - c3

hence, (m1 - p(id) - p2, w2 - p(id) - p1) factorizes through p(id), that is the categorical condition for
transitivity holds.

The equality rule for the quotient type holds. Indeed, suppose that a € A [I'y] and b € A [I',] are
interpreted as

I bI

Agp ——> Ay Agn ———> As

id id
N /a(id) \ /azd)

1 <— Asq e <~ Asn 1 <— Asq oo Sn
TAs o (id) FAs O‘n(ld)
and d € R(a,b) [I'}] is interpreted as
dI
Apn — >R

Then we get that (71 -p(id)) - (q({a?,b), p(id))-d') = o (id) and (7y-p(id))- (g({a?,b), p(id))-d') =
b!(id). We conclude that ¢ al(id) = c- b’ (id), that gives the validity of

[a] = [b] € A/R [I'y]

The elimination rule for the quotient type holds, since given m(z) € M [[,,,z € A] interpreted as

I
AE 4> AEXME

\ m/m (id))

lasy oz(zd)

and given m(z) = m(y) € M [['y,z € A,y € A,d € R(z,y)] interpreted as the equality between
morphisms, we get that

(id, m (id) - (4 - p(id))) = (id,m (id) - (z2 - plid)))
(we recall that m; = a(a(id)) and 72 = q(a(id), a(id))). From this, we obtain m! (id)- (7 - p(id)) =
m! (id) - (w2 - p(id)).
The p5sC-quotient conversion rule

acA m)yeM[zeA m)=m(y) e M [reAye A de R(z,y)]

holds since

(Qs(m, [a]))! (id) = (id Ax /Ry (id Azn q)-c-
= (id, o, (q(a(id), p(id)) - m* (id)) - a' (id)) =
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The 1;C-quotient conversion rule

t(z) € M [z € A/R)]
=t(z) € M [z € A/R]

holds since

Qs((z)t([z]), 2)L (id) = (id ,ay, q), where q-c = q(Q(a)(id), u(id)) - (t! (id) - ¢). So by uniqueness of
the morphism from a coequalizer we get ¢ = ¢(Q(a)(id), u(id)) -t! (id) and then (id, 4., q) = t!(id).

The axiom of Effectiveness holds

acA beA [al=[]€A/R
f(a,b) € R(a,b)

since, by validity of the hypothesis, ¢ - a (id) = ¢ - b! (id).

8. The formation, introduction and elimination rule for the Natural Numbers type hold, since A’ ('p)
is a natural numbers object of P/D.
The conversion rules for the natural numbers type follow from the properties of the natural numbers

object. The ;C;-Nat conversion rule for the natural numbers type

acL l(y)eLyelL]
Recs(a,l,0) =a€ L

holds since

Recs(a,l,0)! (id) = (id ,a,, 7 - ((id, 0-14y,))) = al(id) by definition of the natural numbers object
Agn X ./\/ in P/Azn

The §5C2-Nat conversion rule for the natural numbers type

acL I(y)eL[ye L]
Recs(a,l,s(n)) = l(Recs(a,l,n)) € L [n € N]

holds since

Recs (a1, 5(n))! (id) = (id ,az, xn" (idsas, ) - N (laz,), Lag,)) - (id ;5 - 7)) =
= (id ,ay, 7 (T ,5-m2)) = {(id ,a,, (7% - 1L(id)) - 1) =

= (id , a5, (1§ - U(id)) - (a(m1, £(id)) - (id, a5, 7)) = U(Recy(a,1,n))! (id)

where we recall that m = A(14,, ) and 73 = q(la,,, N (id)).
The s C-Nat conversion rule for the natural numbers type also holds by uniqueness of the morphism
that makes the diagram of the natural numbers object commute w.r.t. I7.

The interpretation of the type theory 7;

Now, given a topos S, we proceed to define the partial preinterpretation fé from the pseudo-judgements
of T; into Pgf(S), and hence a partial interpretation into Pgr(S), by induction on the complexity
of pseudo-judgements. In the inductive hypothesis, we will refer to the interpretation of a pseudo-
judgement, assuming that also the preinterpretation is given.

We assume all the definitions, already given in the introduction of this section about the categorical
semantics in a universe, replacing P with the topos S.

The interpretation of the assumption of variable and the pseudo-judgements with the signature intro-
duced in the formation, introduction, elimination and conversion rules for the Terminal type, the Indezed
Sum type, the Equality type are the same as for the type theory H P of H-pretoposes. It remains to in-
terpret the signature introduced in the formation, introduction, elimination and conversion rules for the
Product type and the Omega type.
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. The Product type.

Provided that the pseudo-judgement C(y) [I',,,y € B] is interpreted as

'a an(id) — B(id) 20
1 <l Asgyy oo Asn Bz O

we interpret

as

'a oy, (id 5 (id)
1 <l Asyq oo <—()Azn <ﬁ_ 1 (Cs)

where IIgy : S/As, — S is the functor defined in the following manner: for every D L Asn,
we put Lgy(t) = lguv(q(t, B(id))). On the morphisms it is defined through the pullback. It is
well defined, since the corresponding Beck-Chevalley conditions hold.

The abstraction of the product type is interpreted as follows:

provided that the pseudo-judgement ¢ € C(y) [T,y € B] is interpreted as

I
324 >CE

\ i
< A By
famy On (ld) B(Zd)
we interpret
MyP e € MyepC(y) [Tn)
as

(Ay®.¢)!
Agp —— 7> IIyepCs

\ ‘H/m(id)

where (AyP.c)!(id) = (c!(id)) and and 1 is the bijection
¥ : §/Bs(idpy, ), (id)) = S/Asn(idas, L) (1(id)))

since S/Bx(idpy, ), v(id)) =~ S/Bs(B(id)*(iday, ), (id)) =~ S/As,(iday, , Uguq) (v(id))), where
the latter isomorphism is obtained by the bijection of the adjunction B(id)* 4 Ilg.
The application of the product type is interpreted in the following manner:

provided that the pseudo-judgements b € B [I';] and f € I,egC(y) [I's] are interpreted as

I

Ay, ——————> By, Asn 4> IzCxs
B(id) Mgy (id)
1 <—— Asyy oo <~ As, 1 < Asay oo
lag, ap (id) las, an(zd)
we interpret
Ap(f,b) € C(b) [I'n]
as
Ap(f,b)!
As (Ap(f,b)) Ay xCs
%
7(67)
] <~— AEl .............. [ S AEn
"agy ap (id)

where (Ap(f,b))!(id) = (id,p,, v~ (f!(id)) - b'(id)) is the morphism to the pullback of v(id) along
b!(id) and ¢! is the inverse of 1.
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2. The Omega type.
Provided that the pseudo-context I'y, is interpreted as

1 5. =1 AEI .............. sn
we interpret
Q type ']
as
lag, an(id)  Q'(lag,)
1 < Asyq weomeeeeen <~——Ax, =— A5, xP(1)

where, for every D € ObP, we put Q! (!p) =!,(!p(1)) and P(1) is the subobject classifier.

Morever, in the introduction rule for the Omega type, provided that the pseudo-judgement B type [['y]

is interpreted as
lag, o (id) B(id)
1 Asyy e ~—"Ay, ~——<By,

where §(id) is a monomorphism, we interpret
{B} € Q[I']

as

where {B}!(id) = ch(B(id)), that is the characteristic morphism of the monomorphism 3(id) with
respect to Ay, X P(1).

Now, we interpret the signature introduced in the S-conversion rule for the Omega type.

Provided that the pseudo-judgement B type [I',] is interpreted as

lag, o (id) B(id)
1 Asay oo <~—"As,, =— =By,

and B(id) is a monomorphism then, we interpret

rB(Z) €e B[Fnaw € Eq(ﬂv{B}v{T})[Fn]

as
r5(2)’
Ey, ———— > ExxB
\id
(e)
1<— Asq <— As, <<ZEFEs
Asi o (id) ¢

where e = Eq({B},{T})(id) and rp(2)!(id) = (id, pps), and ppy, is the isomorphism in C /Ay,
from the equalizer of {B}!(id) and True-!,, to the monomorphism 3(id).

5.3.3 The validity of the type theory 7;

In order to prove the validity theorem, we need to know how the rules of weakening and substitution are
interpreted. The lemmas about the interpretation of the rules of weakening and substitution and their
proofs are the same as for the type theory HP (see section 5.3.2).
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Theorem 5.3.9 (Validity) Given a topos S, if A type [I'y] is derivable in Ty then Zs(A type [Ty]) is
well defined. If a € A [T'y)] is derivable in T¢, then Zs(a € A [[',)]) is well defined.

Suppose that A type [[')] and B type [T',] are derivable in T, if A = B [I',] is derivable in T; then
Zs(A type [I'n]) = Zs(B type [I'n]).

Suppose that a € A [I',] and b € A [I',] are derivable in Ty, if a = b € A [I',)] is derivable in T; then
Is(a€e A,]) =Zs(be A [Ty)).

Proof. The proof can be done by induction on the derivation of the judgement.
We adopt the same definition of validity of an inference rule, as in the proof of the validity theorem for
the type theory HP. Surely, the set rule preserves validity of the judgements. For the validity of the
formation, introduction, elimination and conversion rules for the Terminal type, the Indexed Sum type,
the Equality type and also the Product type we refer to the same proof of the type theory H P in section
5.3.2. It remains to prove the validity of formation, introduction, elimination and conversion rules for
the Omega type. The formation rule for the Omega type is valid, since the subobject classifier is stable
under pullbacks (see the appendix A).
The introduction rule for the Omega type is valid, because, provided that the pseudo-judgement B type [[',]
is interpreted as

lag, o (id) B(id)

1] <=——"— Agq e <~— Ay, =—<Bsy,
then $(id) turns out to be a monomorphism by the validity of the judgement in the hypothesis of the
introduction rule
y=z€ B [['y,y€ B,z € B

as we have already seen in the case of the interpretation of the forall type in the type theory HP in

section 5.3.2. Therefore
{B} € Q[I})]

turns out to be well interpreted as

{B}'

Asy ——> A XP(1)
id
\ Q/(!AE )
-~ As, n

TAs o (id)

where {B}!(id) = ch(B(id)), that is the characteristic morphism of the monomorphism B(id) with
respect to Ay, X P(1).
We can show that the equality rule on 2 is valid. Indeed, given

Btype y=z€ B[I,,y€ B,z € B
Ctype y=zeCl,,yeC,ze(]

interpreted as

B DN B N . S
and given f € B < C [I',], by validity of the rules for the product type, 5(id) and y(id) turn out to
be isomorphic, since they are monomorphisms. Hence, by the property of subobject classifier, we get
{BY!(id) = {C}! (id).
Moreover, for the same reason as the introduction rule, the g-conversion rule for the Omega type is
valid.
Finally, we show that the nC conversion rule holds. Given g € Q2 [I',] interpreted as

¢
Asy —— > Axnp XP(1)

id
N



74 CHAPTER 5. THE SEMANTICS IN A CATEGORICAL UNIVERSE

we get that
{Eq(Q,q,{TH}=qe

is satisfied. Indeed, {Eq(Q,q, T)}! (id) is the characteristic map of the equalizer between ¢! (id) and the
True map pulled back by a suitable ! morphism. This equalizer is isomorphic to the pullback of the
True map along q(!a,,,, Q! (id)) - ¢! (id), so that we get {Eq(Q,q,{T})} (id) = ¢*(id).

]

5.4 Appendix A: about the subobject classifier

We show that the subobject classifier is stable under pullbacks. Consider the pullback of !p and !p(y),

then the pullback of the true map along DxP(1) - P(1) in the following diagram

B D 1
tI Itrue
A (m,s) T2 (

—— DxP(1) —— P(1)

ENR

D————>1
Note that in §/D for every monomorphism Bt A , there exists in § its characteristic morphism

I

D

4 —>P(1) and (m, s) turns out to be its characteristic morphism in S/D by properties of composition
of pullbacks.

5.5 Appendix B: our semantics as category with attributes

As we have seen in this chapter, our notion of model for the type theories HP and 7; consists of a
categorical universe, namely respectively a H-pretopos and a topos, with a fixed choice of its struc-
ture, where the interpretation is given by the reindexing functor of the split fibration equivalent to the
codomain fibration. The fact that these interpretations provide models for the theories is assured by
the theorems of validity of HP and 7T; with respect to their corresponding categorical universes. We
describe the notion of model for the type theory of Heyting pretoposes and that for the type theory of
toposes, in terms of contextual category with attributes.

5.5.1 The contextual category with attributes for H P

The contextual category with attributes for the type theory HP is a contextual category C as in [Pit95]
with attributes to interpret the various type constructors.

Def. 5.5.1 A contextual category C is a category possessing a terminal object, 1, and equipped with the
following structure:

e for each object X in C, a collection of T'ypec(X), whose elements will be called X -indexed types
in C;

e for each object X in C, operations assuming to each X-indexed type A an object X o A, called
the total object of A, together with a morphism

ma: X xA—>X

called the project morphism of A;
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e for each morphism f : Y — X in C, an operation assigning to each X-indexed type A4, a Y-indexed
type f*A, called the pullback of A along X, together with a morphism fox A:Y o« f*4A = X « A,
making the following diagram a pullback in C

foxA
YxffA —— XxA

ﬂ'f*Al lﬂA

Y ——> X

and such that the following strictness conditions hold:
idx*" A=A idxy x A =1idxxa
g(frA =094 (foxA) (g ffA)=(f-g)x A

forevery f:Y — X and ¢ : Z — Y morphism in C.

For each object X, the global sections of an X-indexed type A are the morphisms in C
a: X > XxA such that TA-a=1idx
and for each morphism f : Y — X using the universal property of pullback, we get the unique morphism
ffa:Y - Y x ffA

such that w4 - f*a =idy and (f x A) - f*fa=oa- f.

Remark 5.5.2 We can endow the collection Typec(X) with the category structure, by defining a
morphism of T'ypec(X) from the indexed type A to B as a morphism in C/X from 74 to 7p.

Def. 5.5.3 For each morphism f : Y — X in C we define the pullback functor along f
f*: Typec(X) = Typec(Y)
such that
*<7Tf*A7g'(f°(A)2<
—F—> f*B

ffla—LsB)= ra

Remark 5.5.4 The attributes, that we are going to define for the various constructors of HP and T;
are not necessarily the minimal attributes to model each type constructor with its terms, considered
separately from the others.

Def. 5.5.5 A category with attributes supports the false type, if for each object X in C there is an
indexed type
Ox € Typec(X)

satisfying:

e Universal Property. For every C € Typec(X « Ox), there is a unique global section
Toc tidxx0x — TC

e Strictness Property. For each morphism f:Y — X in C

f*O0x = Oy

Note that in the universal property we could have simply required a global section 7, stable under
pullback, since in the presence of extensional propositional equality type uniqueness follows.
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Def. 5.5.6 A category with attributes supports disjoint sum types, if for each object X in C and for
every A € Typec(X), B € Typec(X), there is an indexed type

A® B e Typec(X)
and there are two morphisms in Typec(X)
€ea:A— A B

ep: B — AeB
satisfying:

e Universal Property. For every C € Typec(X o« A+ B), for every global sections a : idxoa — Tex
and b:idxxB — Tex O there is a unique global section a ® b : tdagp — 7¢ such that

ehadb)=a epla®db) =b

e Strictness Property. For each morphism f:Y — X in C

f*(A®B) = f*Ao f*B
fr(ea) = ¢€pa

e Disjointness. For every global sections a : tdx — w4 and b : idx — 7p such that €4 -a =¢€p - b,
there exists a unique global section m : idx — mp, where 0x € Typec(X) is the indexed type
corresponding to the attribute supporting the false type.

Note that in the universal property we could have simply required a global section a & b, stable under
pullback.

Remark 5.5.7 In the presence of indexed sum type in HP, we could only define the attribute to
interpret a restricted elimination rule for the disjoint sum type, where the type in consideration does
not depend on the disjoint sum, by adding the suitable conversion rules, among which that stating the
uniqueness of the term introduced in the restricted elimination rule, as in the case of the quotient type
and of the natural numbers type (see section 5.3.1).

Def. 5.5.8 A category with attributes supports extensional equality types, if for each object X in C,
A € Typec(X) and for every global sections a : idx — m4 and b: idx — w4 in C/X, there is an indexed

type .
Eq(A,a,b) € Typec(X)

such that the following conditions are satisfied:
e its projection
e
Xocﬁ(A,a,b)>Eq—> X

is the equalizer of @ and bin C/X.

e Strictness Property. For each morphism f:Y — X in C
1" (Eq(A,a,0) = Bq(f*A, *(a), (b))

Therefore, for every global sections a : idx — w4, we define €g4(a) as the isomorphism such that
Tha( A €4ala) = idx.

Note that we could have also defined this attribute, by simply saying that there is a type ET](A, a,b),
stable under pullback, such that, whenever there is a global section towards it, then ¢ = b and that there
is a global section €g,(a) : idx — T Fa(Asa,a)’ stable under pullback such that, for every global section

piidx — T Ga(Aap) V€ get p = eqy(a).
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Def. 5.5.9 A category with attributes supports forall types, if for each object X in C, A € Typec(X)
and B € Typec(X o A) such that its projection

B
XxAxB>> XxA

is a mono in C, there is an indexed type
V(4,B) € Typec(X)

whose projection

TY(A,B)
XxV(A,B)>——= X

is a mono in C, and there is a morphism in T'ypec(X x A)
apa,B : WA*V(A,B) — B
satisfying:

e Adjointness Property. mya,p) : X o< V(A, B) — X is the value of the right adjoint to the pullback
functor at mp with counit aps g. In other words, for each morphism f : Y — X in C, and
g: 75 (f) = 7B in C/X x A, there is a unique morphism in C/X

¥(g) : [ = my(a,B)
satisfying apa,s - 74 (¥(9)) = g;
e Strictness Property. For each morphism f:Y — X in C

fY(A,B) = VY(f*A,(f < A)*B)
(f c A)*(apa,B) = apfea (fxA)B

Remark 5.5.10 In the adjointness property, we could restrict the requirement of having ¢ (g), when g
is a global section of B.

Def. 5.5.11 A category with attributes supports effective quotient types, with an elimination rule for
types not depending on the quotient type, if for each object X in C, A € Typec(X) and R € Typec(X
A x % A) such that its projection

XO(AO(?TZAO(R>L XxAxny A
is a mono and (mx5 4 - TR, (T4 o< A) - wR) is an equivalence relation in C/X, there is an indexed type
A/R € Typec(X)

and there is a morphism in Typec(X)

[=a/r ™A = Ta/R
satisfying:

e Universal Property. For each C € Typec(X) and each morphism 7a —9. xc such that d- Trs A°
7r=d (74 x A) - 7R, there exists a unique morphism

Q(d) : TA/R = TC

such that Q(d) - [t]A/R =d.
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e Strictness Property. For each morphism f:Y — X in C
fA/R = ]ﬁiA/((f x A) x 7y A)*R
F(=lar) = Hlpeajypxayonsayr
o Effectiveness. For every global sections a : idx — w4 and b :idx — w4 in C/X such that

[_]A/R ta= [_]A/R b

there exists a unique morphism f(a,b) : idx — 7(q,)~r such that (7g-(a,b) o< R) - f(a,b) = (a,b),
where (a, b) is the morphism induced by a and b towards the pullback of 74 along m4.

As for the category with attributes supporting the terminal type, indexed sum types, the natural numbers

type we refer to [Hof95].

5.5.2 The contextual category with attributes for 7;

We describe the notion of model for the type theory of elementary toposes, in terms of contextual
category with attributes. We refer to the definition of contextual category of the section 5.5.1.

Def. 5.5.12 A category with attributes supports product types, if for each object X in C, A € T'ypec(X)
and B € T'ypec(X x A), there is an indexed type

II(A, B) € Typec(X)

and a morphism in Typec(X o« A)
apa,p: m4ll(A,B) —» B

satisfying:

e Adjointness Property. ma,p) : X o II(A, B) — X is the value of the right adjoint to the pullback
functor at 7p : X « A x B - X o A with counit apa p. In other words, for each morphism
f:Y—=>XinC, and g: 7% (f) = 7np in C/X x A, there is a unique morphism in C/X

cur(g) : f = m(a,B)
satisfying apa p - 74 (cur(g)) = g;
e Strictness Property. For each morphism f:Y — X in C

fI(A,B) = I(f*A,(f < A)*B)
(f < A)*(apa,B) = apa(fxA)B

Remark 5.5.13 In the adjointness property, we could restrict the requirement of having cur(g), when
g is a global section of B (see [Hof95]).

Def. 5.5.14 A category with attributes supports the Omega type, if for each object X in C, there is a
type P(1)x € Typec(X) and a global section

truex :idx — TP(1)x
such that for each A € T'ypec(X), whose projection
XocA—2 > x
is a mono in C, there is a unique global section
ch(A) :idx — mp(1)x

in C/X satisfying the following conditions:
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o Universal Property. The following diagram is a pullback in C/X

XxA ——>X

ﬂAl ltruex

X — XxP(l)x
ch(A

e Strictness Property. For each morphism f:Y — X
fFPM)x) =Py
[T (ch(A)) = ch(f"A)

where f*(ch(A)) is defined as the unique morphism in C/Y towards the pullback of 74 along f,
induced by idy and ch(A) - f.

Note that the projection of A is isomorphic to the equalizer of ch(A) and truex. Let us call
peq(ch(A),truex) — wa

this isomorphism.

For every A € T'ypec(X) such that its projection is a mono, 14 cur({idey..),p)) in C/X. By the way,
we recall that every morphism of C, whose domain is X, becomes a global section of C/X by taking its
graph.

In this definition we assume that the attribute for the extensional equality type is defined as in 5.5.1.
About the attributes for the terminal type and the indexed sum type we also refer to section 5.5.1.

5.5.3 Our model out of a universe as a category with attributes

Now, we see how our notion of model for the type theories HP and 7, described in this chapter,
corresponds to a particular contextual category. This contextual category is given by the reindexing
functor of the split fibration equivalent to the codomain fibration, as in the remark 5.2.4, and it is
described in the following. Given a H-pretopos or a topos P, we consider, as C, the category of contexts
Cont(P) defined as follows:

Def. 5.5.15 The objects of the category Cont(P) are finite sequences ay,as, ..., an of morphisms of P

an, a2 ai
Ay —> o Ay — A —1

and a morphism from ay,az, ..., an to by, b, ..., by s simply a morphism b of P

provided that m =n and a; = b; fori=1,...n — 1.

Moreover, for each object of Cont(P)

we define

Typec(ai,as, ...,an) = Fib(P/A,, P™)
Therefore, Cont(P) is equivalent to P and to T'ypec(1) (see the remark 5.2.4). In the case of the model
for the type theory H P, the category P is required to be a H-pretopos and the attributes are defined
similarly to the interpretation for the type theory H P in section 5.3.1.
In the case of the model for the type theory 7;, the category P is required to be a topos and the attributes
are defined as in the interpretation for the type theory 7; in section 5.3.2.
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Remark 5.5.16 The class of contextual categories with attributes for the type theory HP ( T;), cap-
tured by our semantics, is smaller than the class of contextual categories with attributes for the HP
(T¢) calculi. Indeed, not for any contextual category C, we have that C is equivalent to Typec(1). By
the way, from a contextual category for the type theory HP (7T;) we should get a H-pretopos ( a topos)
out of the category T'ypec (1), as shown in the sections 3.3 and 4.4.



Chapter 6

The completeness theorems

Summary We prove the completeness theorem for the type theory H P with respect to H-pretoposes and the
completeness theorem for the type theory 7; with respect to toposes.

6.1 The proof of completeness

Completeness theorems for the type theories HP and 7T; are proved with respect to a particular class of
contextual categories, namely those related to the split fibration equivalent to the codomain fibration.

We know that the completeness theorem with respect to general contextual categories with attributes
is quite straightforward (see, for example, [Pit95], [Str91]). Indeed, the interpretation in the syntactic
contextual category is faithful, since it turns out to correspond to an identity modulo provable equality
between types and between terms. But, since our models are particular contextual categories with
attributes, and the interpretation of the indexed sum type is the composition of fibred functors, the
interpretation in the syntactic category is no more exactly an identity modulo provable equality. Anyway,
this interpretation is isomorphic to a canonical comprehension structure, which does not require new
data or choices, useful to prove completeness.

Having seen the validity of the type theory H P with respect to Pgr(P) for every H-pretopos P, we
prove the completeness theorem w.r.t. the class of H-pretoposes with a fixed choice of their structure.

In a similar way, having seen the validity of the type theory 7; with respect to Pgr(S) for every topos
S, we prove the completeness theorem w.r.t. the class of toposes with a fixed choice of their structure.
For this purpose, given a H-pretopos or a topos P, we define the following category P~ whose objects
are the objects of Pgr(P) and whose morphisms between ay,as, ..., a, and S1, fa, ..., B, are sequences
of morphisms of P ¢4, ..., ¢, such that all the following squares commute

Pn

A, — B,

an | o VB

An_1 —> Bp_1

\Lan_l ¢Bn—1

¢2

Az — > By

\L‘)@ 1 \L52

AlﬁBl

\Lal idy ¢51

1—1

The proof of the completeness theorem with respect to a class of universes is based on the investigation of
the interpretation Zp, in the syntactic H-pretopos Pr and on the investigation of the interpretation Zs,.
in the syntactic topos Sy. These interpretations do not resemble the identity interpretation. Anyway, we

81
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will prove that there is a kind of isomorphism between the interpretation Zp, and another interpretation
of judgements of H P, which we call Jp,.. Analogously, there is also a kind of isomorphism between the
interpretation Zs, and another interpretation of judgements of 7;, which we call Js,.. The interpretations
Jp, and Js, resemble the identity interpretation modulo the equality and are faithful.

6.1.1 The completeness with respect to H-pretoposes

We prove the completeness theorem of the type theory HP with respect to H-pretoposes. In order to
do this, we take the syntactic H-pretopos Pr, and we define the interpretation

JIpy : HP — Pgr(Pr)

by induction on the number of assumptions in the context in this manner:
jPT (B type [‘Z'l € A17 vy T € An(wla "'7'7;7171)]) is

B\ﬂf

Zn 1€A, 17 T n

X, ean

ZZETA_I&%

T

where A\; is the domain of the last morphism of Jp, (A4, type[z1 € A1, ...;xn_1 € Ap_1(z1, .., Tn—2)])
and

B =Bz, =7 7?1 (z0)] . [t = w8 @ (2)][2n i= 78 (20)]
with 77 = Az.7'(2) for ¢ = 1,2, where n{'(z) and 73 (z) are the two projections of X_ 7162\:14_” and
7P and 73 are the two projections of ¥_ = B. Fori =1,...,n A; is defined in the same manner as

B, where 4, = ¥.c74; and 4; = A;.
Ifbe B [I',] is a judgement of HP, we put

b=bxy i=my w7 (2)] [Ty = T (T (20) ][0 = T (20)]

and we can derive _ —
be B [Zn € An]

From now on, we call B! = dom(Zp, (B type [T,])).
In order to prove the completeness theorem, we want to show that

Proposition 6.1.1 For every judgement
B type [I']

derivable in HP, (which we suppose to be interpreted as ay(id),as(id),...,a,(id), 5(id)) there is an
isomorphism of Pr'™
¢A17 ey ¢An y ¢B
between Ip,. (B type [['}]) and Jp, (B type [['}]) such that for every judgement b € B [I',,]
¢p - V! (id) = (id,b) - ¢,
and for weakening, for every judgement with n > j

M type [[';]
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(which we suppose to be interpreted as a1 (id), as(id), ..., o (id), p(id))

¢B tn =pn Xid- Py

where ¢prxp : (M x B)l — Y, ciB, ti is defined as in the lemma of weakening, p; = M x id and if
n>j+1, pi=pi—1 xid fori=j5+1,...,n,
and for substitution, for every a; € A; [L'j_1] withn > j

OB - qn = Sp X id - ¢B(an)

where g; is defined as in the lemma of substitution, s; = (id,an) X id and if n > j+1, s; = s;-1 x id
fori=j5+1,....n.

Proof. The definition of the isomorphisms is given by induction on the derivation of type and term
judgements of HP. In general, given a type judgement

B type [x1 € A1, ...,z € Ap(T1, 0y Tp—1)]

by inductive hypothesis we know that ¢a,,...,¢4, is the isomorphism between Zp, (A4, type [z1 €
Al € Apoa(@, o Tp—2)]) and Jp, (A, type [z1 € A1, yon1 € Apoi (21, .0, Tp—2)]), SO we
only define the isomorphism ¢z : BY — EzneZQB in order to prove that ¢4,,...,¢4,,¢p is the isomor-
phism in P;’* between Zp, (B type [I'y]) and Jp, (B type [[y]).

We can define the isomorphisms by induction on the derivation of type and term judgements, since by
the validity theorem these are well defined. For the terms it is crucial that isomorphisms commute with
the second projections of pullbacks related to weakening and substitution.

For example, we show the inductive steps for the terminal type and for the indexed sum type.

1. Given the Terminal type judgement T ['y] we define

pa,x7:TI =% T

Zn €A,

as pa, x7(2) = (pa, (7] (2)),m (3 (2))) for z € T, since by definition T! =X _ i
We can easily prove that this isomorphism satisfies all the equations of the proposition.

EyeT * =T *.

2. Given the Indexed Sum type judgement X,cpC(z1, ..., Zn,y)[['n] we define
¢EyEBC : (EyEBC)I - E;neA‘; YyeC

as ¢x,cpc = (- ¢o where B
C:3,e5C = X, cqyenC

is defined in this manner: for every z € Eye 56

C(2) = (af' (a1 (2), (w2 (71 (2)), 75 (2)))

For short we write ¥ for ¥,cpC.

We can easily prove that ( is an isomorphism and in order to check the weakening equation
Oy -ty = pn X id - Pyxy
it is sufficient to show that
pn X id - Cuxe = (o -+ (pn X id) X id

Finally, in analogous way we can prove the substitution equations.

Given the pair term (b,c) € XyepC(21, ..., Tn,y)I'n] we want to prove that

¢Zy€BC ’ (<b7c>)1 = (id7 <b7 C>> : ¢An
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Indeed by inductive hypotheses on pullback projections and on substitution

(€ ¢c)) - (a(b",7(id)) - ') =
= (- ({id,b) x id - dc)) - ¢
= (¢ (id,b) x id) - ((id, ) - 4,

= <Zd7 < 7C>> ' ¢An'
Given the first projection m (d) € B(zy, ..., x,)[I'n] we want to prove that
o5 - (m(d)" = (id, 1 (d)) - a,
Indeed, by inductive hypotheses on type judgements and on d!
¢ - (1(id) -d') =
< (po - d!) =
(T id d) - pa)
<Zd m1(d) - da,-
Given the second projection w2 (d) € B(x1, ..., z,)[I'n] we want to prove that
Pe(m(ay) - (m2(d)" = (id, wo(d)) - Pa,
We start to consider Qﬁgé (@) - ((id, m2(d)) - ¢4, ) and note that by induction hypotheses
A (@) - 95ty - (G4 T2@) - 61,)) =
= (0a,-m ") (id,m2(d)) - 64,)) =
=1id
and moreover, by induction hypotheses on pullback projections and on substitution
a(m (@), 7)) - (951, o) (G4, T2@) - 9,)) =
= (65" - (id, m () x id) - ((id, m>(d)) - $a,) =
=g (¢ (id,d)) - ga,) =
=d.
Therefore, by uniqueness of a morphism to a pullback we conclude that

mo(d)! = {id, d) = 6t 0 - (i, 72(D) - 6,)

For all the other types, we can go on defining the isomorphisms that satisfy the various equations by
using their term constructors and the inductive hypotheses. For the equality type and the forall type
the equations hold directly by the inductive hypotheses, since the last morphism is a mono.

]

Now we are ready to prove:

Theorem 6.1.2 (completeness) Suppose that a € A [I'y)] and b € A [I'))] are derivable in HP, if for
every H-pretopos P Ip(a € A [['y]) =Zp(be A [[,]) thena =be€ A [['})] is derivable in HP.

Suppose that A type [I',,] and B type [I'},] are derivable in HP, if for every H-pretopos P Ip (A type [I',,]) =
Ip(B type [I'y]) then A= B [T'y] is derivable in HP.

Proof.
If Zp,(a € ATy]) =Zp, (b€ A [I'y]) then by the above proposition

o5 (id,a) ¢a, =a’ =b' =gy (id,b) - ¢a,
from which we conclude a = b € A [[',,]. The proof for the judgements about equality between types
can be done by double induction on the derivation, considering the interpretation Zp, in the syntactic
category Pr. When the equality type step occurs in the induction, we can conclude by the completeness

for judgements about equality between terms.
[
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6.1.2 The completeness with respect to elementary toposes

We prove the completeness theorem of 7; with respect to elementary toposes, in the same way as we have
done for HP. In order to do this, we consider the syntactic topos Sy, and we define the interpretation

Jsr : Te = Pgr(Sr)

by induction on the number of assumptions in the context in this manner:
Jsy (B type [x1 € Ay, ...y € Ap(1, ..., 2p-1)]) is

ZanA\nB\Tr{;

Fn—1€d, 17 n

EzerA_l\ﬂi
T

where ANn is the domain of the last morphism of Js, (A, type [z1 € A1, ...;@n—1 € Ap_1(21, ..., Tn_2)])
and

B=Br, =) -7? -1 (z0)] . [wn1 = w8 A (20)][Tn 2= 7 (20)]
with 7' = Aw.7'(z) for ¢ = 1,2, where 7{'(z) and 7} (x) are the two projections of ¥_ 7162\:14_” and
7P and 7& are the two projections of Y o B. Fori=1,...,n A; is defined in the same manner as
B, where :4V1 =Y.c7A; and A, = A,
If b€ B [I',] is a judgement of T;, we put

b=blz, :=my 7w (2)] [Ty =TT (20) ][0 = TR (20)]
and we can derive o .

be B [z, € 4]

From now on, we call B! = dom(Zs, (B type [[';]))-
In order to prove the completeness theorem we want to show that

Proposition 6.1.3 For every judgement
B type [I']

derivable in T, (which we suppose to be interpreted as aq(id), as(id), ..., o, (id), 5(id)) there is an iso-
morphism of S

¢A17 ey ¢An ) ¢B
from Zs,.(B type [I',]) to Js, (B type [['}]) such that for every judgement b € B [I'},]

¢p - b (id) = (id,b) - $a,
and about weakening for every judgement with n > j
M type [L'j]
(which we suppose to be interpreted as a1 (id), as(id), ..., o (id), p(id))
¢B - tn = pn X id- PrxB

where ¢arxp : (M x B)l — Ezeﬁﬁ, t; is defined as in the lemma of weakening, p; = @1 x id and if
n>j+1, m=m_ xid fori=j+1,...,n,
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and about substitution for every aj € A; [I'j_1] with n > j

OB - qn = Sp X id - ¢B(an)

where g; is defined as in the lemma of substitution, s; = (id,@n) X id and if n > j+1, s; = s;-1 x id
fori=j4+1,....,n.

Proof. The definition of the isomorphisms is given by induction on the derivation of type and term
judgements of T;. In general, given a type judgement

B type [x1 € A1, ...,z € Ap(T1, 0y Tp—1)]

by inductive hypothesis we know that ¢4,, ..., ¢4, is an isomorphism from Zs,. (A, type [z1 € A1, ...,Tp_1 €
Ap—1(@1, o, Tp—2)]) to Tsr (An type [x1 € A1,y xn1 € Ap_1(21, ..., Tp—2)]), 50, we only define an iso-

morphism ¢p : B! — Ezneif B in order to prove that ¢a,,...,¢4,,¢p is an isomorphism in S’ from

Zs (B type [I'y]) to Ts, (B type ['n]).

We can define the isomorphisms by induction on the derivation of type judgement and term judgement,
since by the validity theorem these are well defined. For the terms it is crucial that isomorphisms
commute with the second projections of pullbacks related to weakening and substitution. See, for the
terminal type, the indexed sum type and the equality type the analogous proposition 6.1.1 for the type
theory HP. About the product type, the isomorphism is defined in a similar way as for the indexed
sum type, looking at the description of the right adjoint in section 4.4. About the Omega type, see the
terminal type.

]

Now, we are ready to prove:

Theorem 6.1.4 (completeness) Suppose that a € A [I'y] and b € A [I',] are derivable in Ty, if for
every topos S Is(a € A [Iy]) =Zs(be A [I,)]) thena=be€ A [I',] is derivable in T.

Suppose that A type [I'y] and B type [I'y] are derivable in Te, if for every topos S Ts(A type [I'y]) =
Zs(B type [I',]) then A = B [['}] is derivable in T;.

Proof.
If Zs,(a € A I'y]) = Zs, (b € A [I'})]), then by the above proposition

o5 - (id, @) - pa, = a' =b' = ¢35 - (id,b) - pa,

from which we conclude a = b € A [[,].

The proof for the judgements about equality between types can be done by double induction on the
derivation, considering the interpretation Zs, in the syntactic category Sr. When the equality type step
occurs in the induction, we can conclude by the completeness for judgements about equality between
terms.

]



Chapter 7

The internal type theory of a
universe

Summary We present the internal type theory of a Heyting pretopos with a natural numbers object and of
a topos. The resulting theories are based respectively on the initial type theories HP and T;. We prove that
there is a sort of equivalence between the type theories and the corresponding category of universes. By using
the type theory we also build the free Heyting pretopos and the free topos generated by a category.

7.1 The internal type theory of a Heyting pretopos

Given a H-pretopos P we want to describe its internal dependent type theory T'(P). The type theory
is based on the initial type theory HP for H-pretoposes (see section 3.2), augmented with the specific
type and term judgements of P. As in the non-dependent case, we give a dependent formulation of the
internal language of a universe saying what a type judgement is, what a term judgement is, in a clear
order, without considering before raw types and raw terms and then well-formed types and terms, as
it is usually done in the dependent case. Indeed, it is meaningless in a dependent theory to consider a
type or a term in isolation from the corresponding type or term judgement and its derivation. As in the
categorical semantics for the dependent typed calculi in section 5.2, the idea is to consider a dependent
type as a sequence of morphisms of P, ending with the terminal object 1, whereas the terms are sections
of the last morphism of the type to which they belong. Therefore, the type theory T'(P) is formulated in
the style of Martin-Lof’s type theory with the four kinds of judgements [NPS90] and telescopic contexts.
We assume all the inference rules about the formation of contexts, declarations of typed variables, about
reflexivity, symmetry and transitivity of the equality between types and terms [NPS90] and the set rule
conv) as in section 3.2. As in the semantics in section 5.2, a type judgement arises from a object of
Pgf(P), which represents a dependent type with all its possible substitutions. More precisely, a type
judgement corresponds to the evaluation of a finite sequence of fibred functors on the identity. Indeed,
for a sequence of fibred functors oy, as, ..., ay,, 5 of Pgf(P), we define

B w1, ey ) € 7Y, oy € (1, ooy Tpt)]
as the type judgement corresponding to

D, D) (i)
by thinking of the fibers of the morphism 3(id). This notation turns out to be very clear when we look at
the category of paths built on any syntactic H-pretopos. The equality between types corresponds to the
equality between objects of Pgf(P), which implies the equality between objects of Pgr(P). For short,
we use the abbreviation I',, = x; € o', ...,z € a;; (21, ..., 2n_1) in the contexts. On the other hand,
a term judgement arises from a morphism of Pgf(P), which is a natural transformation representing

87
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a term with all its possible substitutions. The evaluation of a natural transformation on the identical
substitution is a term judgement. Indeed, for a suitable morphism b of Pgf(P) from ay, @y, ..., ap, 04,
to a1, ag, ..., ay, B, the term judgement

be ﬂil(mly 71'71)[1—‘"]

b(id)

corresponds to a section of 3(id) A, —0—> B by choosing the identity as the terminal object
AN
1< Ag oo < A, B(id)
', on

in P/A,,. The equality between terms corresponds to the equality between morphisms of Pgf(P). So,
we add as axioms all the equality judgements that correspond to actual equations holding in Pgf(P).
In the following, to make formulas more readable in type judgements, we will write S[I'y] instead of
B7LIT,]. In the diagrams we will often write o; instead of o;(idy,) for fibred functors and b instead of
b(id) for natural transformations.

The rules for substitution of variables in a type and in a term and for weakening of a variable w.r.t
type and term judgements are the usual ones and they are defined as their interpretation in the semantics
in section 5.2. We only show how they work in these particular cases:

Y b
[T,y € B8] be BT, cTpTE A TR
YLn, Y n . .
sT - is id B
[b(id)][L] , An
v[b(id)]

ApXC —= A, ...

where we put y[b(id)](id) = v(b(id))

C % C A, L> B
c[b(id)] € y[b(id)][I'n] o
c[b(id)]

A, — A, xC

where we put ¢[b(id)](id) = c(b(id))

BT O[C.] . % 4. p—%a.
Wl BT s ® 515(id)]
Blln,y € 4] D><B—>D—§>An...

where we put 3[0(id)](id) = F(0(id))

AnL>B E—gAn
>,
? An
ot LEBTA] €[Ta] bE(id)]
beﬂ[meef] N

E
...... ‘gziEﬁﬁaMJ
4
where we put b[¢(id)](id) = (£(id))*(b(id)), that is the unique morphism of P/E from iy4, (£(id)) to
B(&(id)), obtained from b(id) by the properties of pullback.
The rule expressing the assumption of variable is the following:

B— A,...
B [Fn . ]34>A BxB
var —————2 — — is ,
x € B[y, x € ] id
________ N EB/BWM

B
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where l‘(ld) = AB = (idB,idB>.

Now, we show the formation rules for types and then the introduction, elimination and conversion
rules for their terms.

The proper types and terms of T (P) are described as follows. Proper type judgements arise from
objects of Pgr(P) and proper term judgements arise from morphisms of Pgr(P). For every object of
Pgr(P) a1,az,...,a,,t we consider the sequence obtained by making the pullback of a; along the
identity, then by making the pullback of a2 along the second projection p; of the previous pullback, and
so on, that is we obtain the following sequence of pullbacks:

t* (pn)
By — B

OV T
Asp = A,
prx—l(an)\b \Lan
A.2:2E>A.2
pi‘(az)\b - \LaQ
A — A,

!A1¢ idl ¢a1
1—>1

where p; is the second projection of the pullback of a; and p;—1, for ¢ = 1,...,n. Finally, we consider
the associate sequence of fibred functors

Ay, @lp1), @pe), o @nlpn_il, Hpnl

1

where 71\1 = a3, hence we introduce a new dependent type ¢t~ and finally we state that

t7 oy € Ay, .y €a)t] s By ipn] AE?[’J"”] .............. Ay =251

where the X subscript is used for the interpretation of the series of judgements of proper types introduced
by an object of Pgr(P).
Moreover, given a sequence of fibred functors aq, as, ..., ay,, 5 of Pgf(P), for every morphism ¢ of

Pgr(P) A, % B we introduce a new term ¢ and we state that
(2
! \ ;
LDy, R

An % B
c€ Blid)[z1 € Ay, ...,zy €] s \ /
id B(id)
An

where ¢(id) = c.
Finally, we add all the types and terms of the type theory HP, defined as for the interpretation in
section 5.3.1.

Remark 7.1.1 Our definition of internal language of a category follows [LS86], for instance, and it is
different from that in [Tay97].

7.2 The relation between the H P type theories and H-pretoposes
There is a sort of equivalence between the internal type theories of H-pretoposes described in section

7.1 and the category of H-pretoposes. As a consequence of this, we can state that the type theory T'(P)
is the internal language of the H-pretopos P. First of all, we define the following categories:
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1. Th(HP) whose objects are the type theories of H-pretoposes, whose initial type theory is HP
and whose morphisms are translations: they send types to types so as to preserve the type and
term constructors, closed terms to closed terms and variables to variables; we call Th(HP)* the
category whose objects are those of Th(H P), but whose morphisms are translations preserving
type and term constructors up to isomorphisms;

2. HPretop, whose objects are H-pretoposes with a fixed choice of H-pretopos structure and whose
morphisms are strict logical functors, that is functors preserving the H-pretopos structure w.r.t.
the fixed choices; we call H Pretop the category whose objects are those of H Pretop,, but whose
morphisms are functors preserving the H-pretopos structure up to isomorphisms.

Now, we define a functor from H-pretoposes to type theories
T : HPretop, — Th(HP)

that associates to every H-pretopos P the internal type theory T'(P) described in the previous section.
The functor T associates to every morphism F : P — D of H Pretop, the translation T(F) : T(P) —
T(D) defined as follows. Given a fibred functor o : P/A — P77, corresponding to a type judgement,
and a natural transformation ¢, corresponding to a term judgement, we define T'(F')(o) and T'(F)(c)
in the same way as we have defined the interp/re\tation of a type theory in section 5.3.1. If o = b for
any b : B — A of P, then we put F(o) = F(b), since the chosen pullbacks of P are sent into the
chosen pullbacks of D by F. If o is introduced by an inference rule of HP, then we simply define
F(o) such that F(o)(id) = F(o(id)), in order to make T'(F') be a translation. For example, we put
F(¥5(7)) = Xps)(F(7)). This definition of T'(F) is good, since the functor F' preserves the H-pretopos
structure w.r.t. the fixed choices used in the internal type theories of P and D.
Moreover, we define a functor from type theories to H-pretoposes

P :Th(HP) — HPretop,

that associates to every type theory 7 the category P(T), whose objects are closed types 4, B,C, ...
and whose morphisms are the expressions (z)b(z) corresponding to b(x) € B[z € A], where the type
B does not depend on A. We can prove that P(7) is a H-pretopos by fixing a choice of its structure
as in section 3.3. The functor P associates to every morphism of Th(HP) L : T — T' the functor
P(L) : P(T) — P(T") defined as follows. For every closed type A, we put P(L)(A) = L(A), which is
well defined since a translation sends closed types to closed types. For every morphism b(z) € Blzx € A]
of P(T) we put
P(L)(b(z) € Blx € A]) = L(b(z)) € L(B)[z € L(A4)]

Since L is a translation, then P(L) is a functor preserving the H-pretopos structure. In order to describe
the relation between type theories and H-pretoposes, we have to consider a type theory 7 as a category.
We think of T as the category whose objects correspond to those of Pgr(P(T)), but whose morphisms are
sequences of morphisms by which we built a series of commutative squares. More precisely, the objects
of T are the dependent types under a context B(z1,...,z,)[z1 € A1, ..., 2n € Ap]. The morphisms of 7
exist only from Bz € Ay, ...,z, € 4,] to B'[z] € A}, ...,2! € A!] and they are!

b € B'(d},...,a,)[z1 € A1,...,x, € A,y € B(x1, ..., 1))

such that a; € Aj[z1 € A1] and a] € Al(al,...,a]_,)[z1 € Ay, ...,z; € A;j]fori = 1,...,n. The composition
is the substitution and the identity is y € B(z1,...,xp)[z1 € A1, ..., € Ap,y € B]. Therefore, we can
consider equivalences of type theories. In the following we mean by I'D the identity functor.

Proposition 7.2.1 Let T : HPretop, — Th(HP) and P : Th(HP) — HPretop, be the functors
defined above. There are two natural transformations: n from ID to T - P, thought as functors from
Th(HP) to Th(HP)*, and € from P -T to ID, thought as functors from H Pretop, to HPretop, such
that for every type theory T and for every H-pretopos P, nr: T — T(P(T)) and ep : P(T(P)) — P are
equivalences.

1One could also consider the usual morphisms of contexts.
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Proof. In order to obtain the natural transformation 7, for every type theory 7 we define

nr T = T(P(T))

~

as follows. For any closed type nr(A[ ]) = A(id) : Ay, — 1. For dependent type judgements,
N7 (C(z,y)[z € A,y € B(z)]) is the type judgement of T(P(7)) corresponding to the sequence

250 By B2 A
where B = X,c4B(x) and ¢; = 71[pi—1] for ¢ = 2,3. This is the dependent type judgement arising from
the following sequence

K K
EzezweAB(w)c($)l—>EZEAB(w)1—> A . 1

in the internal type theory T(P(7)), as it is described in the previous section. For term judgements,
nr(ce Cle,y)lx € Ay € B(r)]) is

2,C id _
SecaB(@)y . Olp1td) S, ean@CO(2),

id q3(id)
A YeeaB(x
A\(ld) P qz(id) €A ( )2

where é = c[z/m1(2),y/m2(2)][z € ZzcaB(x)]. This is the term judgement arising from (z,¢é) in the
internal type theory T'(P(T)), as it is described in the section 7.1. We can obviously imagine how
17 is defined in the case of having a generic context of n types. We can see that n is a natural
transformation, since translations preserve indexed sum types and projections. nr is a translation up
to isomorphisms and it is an equivalence of categories since the functor is faithful, full and essentially
surjective. Indeed, we can define a natural transformation ! such that, given a type theory T, the

component " : T(P(T)) — T is defined as follows. Given a type judgement D D o T(P(T))

we define
07 (a(id), (id)) = B(id) " (z)[x € A]
where B(id)~!(z) = Z.epEq(A,B(id)(2),z), that is the fibers of 8(id). Given the term judgement

A———=n8 of T(P(T)), provided that c(id) is ¢(z) € B[z € A], n;" associates to it the term

judgement of T
(c(x),eq) € E.epbq(A, B(id)(2), x)[x € A]

We can see that 7+ is a natural transformation, since translations preserve indexed sum types, pro-
jections and equality types. We can prove that, for every type theory T, ny and 77}1 give rise to an
equivalence of categories (also see [See84]).

Moreover, we define a natural transformation e such that for every H-pretopos P the component

1

ep : P(T(P)) > P

o(id
is defined as follows. ep associates to every object A (—>)1 of P(T(P)) the object A and it associates

'b(id) AxB the morphism ¢(!4,(id)) - b(id) : A — B. We can easily prove that

\id /B!A)

1<—A

o(id)
ep is a functor preserving the H-pretopos structure up to isomorphisms?. We have that ep gives rise to

to the morphism 4

2This due to the fact that the split fibration selects a choice of structure different from the choice given with a H-
pretopos: see, for instance, the terminal object.



92 CHAPTER 7. THE INTERNAL TYPE THEORY OF A UNIVERSE

a natural transformation, since the functors preserve the H-pretopos structure w.r.t. the fixed choices.
Moreover, ep is an equivalence of categories, since it is faithful by uniqueness of morphisms towards
pullbacks, full because every section of a fibred functor has got a name in the language, and essentially
surjective. Indeed, we can define a natural transformation ¢! such that for every H-pretopos P the
component e, : P — P(T(P)) is defined as follows. For every object A of P, €' (A) is the closed

A(id
type corresponding to As (i>)1 . For every morphism b: A — B of P, egl(b) is the term corresponding

id, by (id _ ..
to Asx MQAE xBy where b/ = 7rB1 -b- 74 and where g and w4 are the second projections of the

d
\l ~
1 <— Ay 4(!142)
A(id)
pullbacks of !4 and !p along the identity. We conclude that for every H-pretopos P, ep and 67;1 give
rise to an equivalence of categories.

7.3 The internal type theory of a topos

Given a topos S we describe its internal dependent type theory L(S), exactly in the same way as for a
Heyting pretopos P in section 7.1. The type theory is based on the initial type theory 7; for toposes (see
section 4.2), augmented with the specific type and term judgements of S. Therefore, also the internal
type theory of a topos is formulated in the style of Martin-Lof’s type theory with the four kinds of
judgements [NPS90], where the contexts are telescopic. We assume all the inference rules about the
formation of contexts, declarations of typed variables, about reflexivity, symmetry and transitivity of
the equality between types and terms [NPS90] and the conv) rule. We only repeat how type and term
judgements are defined. For a sequence of fibred functors ay, as, ..., ay,, 8 of Pgf(S), we define

B @y, e )z € aTh, o € @y (T, ey T )]
as the type judgement corresponding to
B%)Af"ﬂ) PR
by thinking of the fibers of the morphism £(id). The equality between types corresponds to the equality
between objects of Pgf(S), which implies the equality between objects of Pgr(S). For short, we use the

abbreviation T',, = z; € aj',...,x, € a;,;*(21,...,%,_1) in the contexts. For a morphism b of Pgf(S)
from a1, a1, ...,ap,%t4, t0 a1, 2, ...,ay, 3, the term judgement

b S B_l(wla ,.Tn)[rn]

b(id)

corresponds to the section of 3(id) An ——> B by choosing the identity as the terminal
N\
1< Aq oo < A B(id)
!Al Qn

object in S/A,,.

The equality between terms corresponds to the equality between morphisms of Pgf(S).
For the formulation of the structural rules of weakening and substitution and of the type and term
judgements that are specific to S, we refer to section 7.1, where P should be replaced with S.

7.4 The relation between the 7; type theories and toposes

There is a sort of equivalence between the internal type theories of toposes described in the section 7.3
and the category of toposes. As a consequence of this, we can state that the type theory L(S) is the
internal language of the topos S.

First of all, we define the following categories:



7.5. THE FREE H-PRETOPOS 93

1. Th(T;) whose objects are the type theories of toposes, whose initial type theory is 7¢, and whose
morphisms are translations: they send types to types so as to preserve the type and term con-
structors, closed terms to closed terms and variables to variables; we call Th(7;)* the category
whose objects are those of Th(7T;), but whose morphisms are translations preserving type and term
constructors up to isomorphisms;

2. Top, whose objects are toposes with a fixed choice of topos structure and whose morphisms are
strict logical functors, that is functors preserving the topos structure w.r.t. the fixed choices;
we call Top the category whose objects are those of T'op,, but whose morphisms are functors
preserving the topos structure up to isomorphisms.

We define the functors
L:Top, = Th(T) S :Th(T:) = Top,

in the same way we have defined T' : H Pretop, — Th(HP) and P : Th(HP) — H Pretop,. In an
analogous way we can prove:

Proposition 7.4.1 Let L : Top, — Th(T;) and S : Th(T;) — Top, be the functors defined above. There
are two natural transformations: n from ID to L - S, thought as functors from Th(T;) to Th(T)*, and
€ from S - L to ID, thought as functors from Top, to Top, such that for every type theory T and for
every topos S, nr =T — L(S(T)) and es : S(L(S)) = S are equivalences.

Proof. The only difference with the proof for H-pretoposes is that here, we have to check that the
translations preserve the type and term constructors of 7; and that the functors preserve the topos
structure.

]

7.5 The free H-pretopos

The main idea is to generate a H-pretopos from a given category C by considering its objects as closed
types and its morphisms as terms with a free variable. We can prove the universal property by the
construction of the category of paths, which represents the dependent types in a categorical way.

Given a category C, we consider the dependent type theory T'(C) generated by the inference rules as
follows:

1. For every object A of ObC we introduce a new type A and we state the closed type judgement
Al
Given A € ObC and B € ObC we state A = B [ ], if they are the same object in ObC.

2. For every morphism b : A — B in C, we introduce a new term b(z) and we state b(z) € B [z € A],
where A and B are closed types.

Givenb: A — Band d: A — B in C, we state b(x) = d(z) € B [z € A], provided that b and d are
the same morphism in C.

Given b: A — B and a : D — A in C, we state about composition b(z)[z := a(y)] = (b- a)(y) €
B ly € D].

3. There are all the inference rules of the type theory HP. for H-pretoposes.

Therefore, T(C) is a type theory of H-pretoposes.
Now, we can prove:

Proposition 7.5.1 Let P : Th(HP) — H Pretop, be the functor described in section 3. The category
P(T(C)) is the free H-pretopos generated by the category C in P(Th(HP)).
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Proof. We know that P(7'(C)) is a H-pretopos from the definition of P. Given a functor G : C — P,
from the category C to the H-pretopos P, we claim that there exists a unique functor G : P(T'(C)) — P in

H Pretop, such that the diagram c¢ p(r(C)) commutes, where I : C — P(T'(C)) is the following

N

functor: for every object A € ObC we put I(A) = A [ ] and for every morphism b : A — B we put
I(b) = b(z) € Bz € A].

In order to define G on P(T(C)), we define an interpretation J : T'(C) — Pgr(P), by passing to
Pgf(P), with the warning that we have to normalize the interpretation. This is done by adding the
value of every fibred functor o € Fib(P/1,P~) on the empty context,® such that a type judgement will
be interpreted by a sequence of Pgr(P) like

al((b):a?(idAl): -~-:an(idAn71>

The interpretation is given in the same way as for the type theory H P in section 5.3.1, except for closed
types and terms, which are interpreted in fibred functors evaluated on (). The reason is that we want
to put G(A[ ]) = domJ(A[ ]) and G(b € Blz € A]) = q(J(A[]),T(B[])) - T (b € B[z € A]), but if we
adopt for J the semantics defined in section 5.3.1, then G would commute with G' up to isomorphisms.
So, for every object A of ObP, we extend the functor A by adding A(f) =!4 and for every object
B, q('p, A()) is the second projection of the pullback of !p and A(f)). For example, for the natural
numbers J (N[ ]) = N (@) =ly, instead of being interpreted as !y xx like in the semantics defined in
o(0
5.3.1. Moreover, J(0 € N[ ])is 1 O v where o) =oand 0o: 1 — N is the zero map in P.
LAY ()

Finally, given a proper type arising from an object A € ObC, we put J(A[]) = G/(Z)(@) and given a
proper term arising from a morphism b: A — B of C, we put J(b € B[z € A]) = (idg(a), G(b)) section

of E(?)(CT(X)([Z))) : G(A) x G(B) = G(A). By definition G preserves the H-pretopos structure and we
get G - I = G. Moreover, G is obviously unique for fixed choices of the H-pretopos structure, which are
required to interpret the type theory T'(C) into Pgr(P).

]

The free structure gives rise to a monad. It would be interesting to investigate if the category H Pretop,
is monadic on Cat and Graph. Or at least, if we prove that H Pretop, is essentially algebraic, as for
the categorical models of IT'T in [Obt89], we would get a representation theorem of H Pretop, into a
category of presheaves [AR94].

7.6 The free topos

As for the free H-pretopos, we generate a topos from a given category C by considering its objects as
closed types and its morphisms as terms with a free variable. We can prove the universal property by
the construction of the category of paths, which represents the dependent types in a categorical way.
To this purpose we consider the dependent type theory L(C) generated by the same inference rules as
in section 7.5, replacing in the last point the rules of the type theory H P, with the rules of the type
theory 7;.

Therefore, we can prove:

3In a rigorous way, we consider the free category P/17 with terminal object () generated from P/1. So a type and a
term with empty context are interpreted respectively as functor ¢! and natural transformation p' of [P/IT, P~] such
that o7 and p' restricted to P/1 are in Fib(P/1,P). We extend the fibred functors as described above. For example,

T
NT@®) =lx and N (15 — 0) = q(M@)\} with (!5, N T (0)) = (N T (0))*(!5). For short we still write o

ﬁT(@l lﬁﬁm

B———>1
'B

foro'.
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Proposition 7.6.1 Let S : Th(T;) — Top, be the functor described in the section 7.4. The category
S(L(C)) is the free H-pretopos generated by the category C in P(Th(Ty)).

Proof. We know that S(L(C)) is a topos from the definition of S.
Exactly, as for the free H-pretopos, given a functor G : C — &, from the category C to the topos
S, we claim that there exists a unique functor G : S(L(C)) — S in Top, such that the diagram

¢ —2L > S(L() commutes, where I : C — S(L(C)) is the following functor: for every object A € ObC
N G
we put I(A) = A [] and for every morphism b: A — B we put I(b) = b(z) € Blz € A].

In order to define G on S(L(C)), we define an interpretation J : L(C) — Pgr(S), by passing to
Pgf(S), with the warning that we have to normalize the interpretation. This is done in the same way as
for the free H-pretopos, except that we have the product type and the subobject classifier. We normalize
the interpretation of the subobject classifier as that of the natural numbers object.

]

By the free topos generated by an arbitrary category, we get a presentation of a monad on Cat, with
respect to which the category of toposes is monadic on Cat [DK83].

7.7 Some other free structures: the Lex and LCC™" categories

A similar correspondence to that one between type theories and H-pretoposes can be established for the
category Lex and LCC™T. The category Lex, whose objects are the categories with finite limits and
whose morphisms are functors strictly preserving finite limits, provides a valid and complete semantics
for the type theory with terminal type, extensional equality types and indexed sum types. In the same
way, the LCC™T category, whose objects are the locally cartesian closed categories with finite coproducts
and a natural numbers object and whose morphisms are functors strictly preserving the ITT structure,
provides a valid and complete semantics for the fragment of Martin-Lof’s type theory with extensional
equality and without universes and well-orders [Mar84]. These validity and completeness theorems can
be proved in a similar way to that for H-pretoposes and for toposes. We can easily notice that these
dependent type theories enable us to build the free structure for Lex and LCCT over Cat, in the same
way we proved for the category H Pretop, and Top,. The free structures give a presentation of two
monads, whose algebras correspond respectively to Lex and LCC™, since Lex and ITT are monadic
over Graph [Bur81] and admit an equational presentation.



Conclusions and further research

The type theories of Heyting pretoposes and of elementary toposes can be used to give translations of
categorical proofs from topos theory into type theory and vice versa.

These typed calculi make clear that topos and H-pretopos theory are governed by the isomorphism
propositions as mono types.

On the contrary, in Martin-L6f’s Constructive Type Theory logic is captured via the Curry-Howard
isomorphism proposition as types.

So, it seems more natural to consider a type theory, where the notion of Proposition is distinct from
the notion of Type or Set. After establishing the various isomorphisms between propositions and other
types, then we can analize the various frameworks to develop intuitionistic mathematics, like Topos
Theory presented as a type theory, Martin-Lof’s Constructive Type Theory and also the Calculus of
Constructions.

Moreover, since the type theories of Heyting pretoposes and of toposes are extensional, while Martin-
L&f’s Constructive Type Theory is intensional, it should be analyzed how much of such type theories
can be saved in a more intensional setting.

Another direction of application of the type theory of Heyting pretoposes with a natural numbers
object is to describe the notion of small maps via type theory and then to get a type-theoretic description
of the models for the whole intuitionistic set theory as in [JM93].
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