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Introdu
tion

The subje
t of this thesis is the type theory of 
ategori
al universes su
h as Heyting pretoposes and

elementary toposes. These 
ategories are 
onsidered universes, sin
e they provide models for 
lassi
al

and intuitionisti
 set theory. The reason to look for a type theory of su
h universes arises from the desire

to 
ompare them with Martin-L�of 's 
onstru
tive type theory, sin
e in all these frameworks intuitionisti


mathemati
s 
an be modelled.

Beginning in the seventies, Martin-L�of proposed his Constru
tive Type Theory as a set theory where

intuitionisti
 mathemati
s 
an be formalized. In this approa
h, \
onstru
tive" means predi
ative and

\
omputable"; indeed every proof within type theory 
orresponds to a program [NPS90℄. An example

of 
onstru
tive mathemati
s fully developed in this framework is formal topology [Sam87℄.

On the 
ategori
al side, in the sixties, Lawvere aimed at giving a purely 
ategori
al foundation of

mathemati
s. He wanted to axiomatize the 
ategory of sets, repla
ing set membership by 
omposition

of fun
tions. Together with Tierney, he produ
ed the notion of an elementary topos resembling the

stru
tural properties of a Grothendie
k topos, that is a 
ategory of set-valued sheaves on a site. The

axiomatization they gave made no relevant set-theoreti
 assumptions. So, while a Grothendie
k topos

is always an elementary topos, the 
onverse does not hold in general.

Following Lawvere, a topos 
an be thought as a generalized universe of sets. But the underlying

logi
 of this universe is intuitionisti
, not 
lassi
al in general. Indeed, the truth values of a topos form

a Heyting algebra, like the algebra of open sets of a topologi
al spa
e.

In the seventies, Mit
hell, Benabou, Joyal and others provided an expli
it des
ription of a formal

language apt to be interpreted in a topos. This language is typed, be
ause to ea
h term o

urring in

the formulas a type is assigned. The resulting logi
 seems to be many-sorted, taking the simple types

as sorts. The formulas are the terms of the spe
i�
 type 
orresponding to the subobje
t 
lassi�er. A

systemati
 exposition of this theory, as a higher order logi
, was given by Lambek and S
ott [LS86℄.

This internal language formalizes the ideas of a topos as a generalized set theory.

In order to model 
lassi
al set theory, Cole [Col73℄ and Mit
hell [Mit72℄ found that well-pointed

toposes with a natural numbers obje
t and axiom of 
hoi
e provide models for restri
ted Zermelo set

theory with the axiom of 
hoi
e, where the 
omprehension axiom is given only for formulas with bounded

quanti�ers.

More re
ently, Joyal and Moerdijk explored how to provide models for the full Zermelo-Fraenkel set

theory in a 
ategori
al setting [JM95℄. They found that, in order to model 
lassi
 and intuitionisti


Zermelo-Fraenkel set theory, it is suÆ
ient to take a Heyting pretopos with a natural numbers obje
t as

a 
ategori
al universe, and within this to single out a 
lass of \small" maps satisfying suitable axioms.

The notion of pretopos was introdu
ed by Grothendie
k: an elementary topos is a pretopos, but the

latter is a weaker notion. Makkay and Reyes found that pretoposes 
an be 
hara
terized with respe
t

to the logi
al 
ategories, whi
h are the ne
essary stru
tures to interpret the �rst order, many-sorted,


oherent logi
, see [MR77℄. A Heyting pretopos is obtained by enri
hing su
h a 
ategory with the

ne
essary stru
ture to interpret �rst order predi
ative intuitionisti
 logi
.

In order to 
ompare Martin-L�of's Constru
tive Type Theory with these 
ategori
al frameworks, one

possible dire
tion of resear
h is to �nd typed theories, whi
h 
orresponds pre
isely to toposes and to

Heyting pretoposes with a natural numbers obje
t. This dire
tion has been explored in the present

thesis.

The main issue is to pass from a many-sorted logi
 to a dependent type theory 
omplete with

respe
t to the 
lass of universes under 
onsideration. Indeed, in a many-sorted logi
 there is a synta
ti
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distin
tion between formulas and types. Moreover, the types are not dependent, sin
e they 
orrespond

to sorts. On the other hand, in a dependent type theory of Heyting pretoposes or of toposes, su
h as

those proposed in the thesis, the key point is that formulas 
orrespond to parti
ular dependent types.

These 
al
uli are formulated in a style whi
h is basi
ally that of Martin-L�of's type theory, so that a

more pre
ise 
omparison with Constru
tive Type Theory is possible.

Looking at the higher order logi
 of a topos, the main di�eren
e with respe
t to Constru
tive Type

Theory is that, in a topos, there is a power set 
onstru
tion, whi
h allows impredi
ative quanti�
ation.

Instead in Martin-L�of's type theory only predi
ative 
onstru
tions are allowed. Moreover, Martin-

L�of's type theory has a stronger existential quanti�er than the intuitionisti
 one, so that the axiom

of 
hoi
e is provable. On the 
ontrary, in a topos, the axiom of 
hoi
e is not always valid; in fa
t, it

implies the prin
iple of ex
luded middle, and thus the logi
 of the topos be
omes 
lassi
al, see [Joh77℄,

[MM92℄. Therefore, from a 
onstru
tive point of view, this di�eren
e seems to make the two frameworks

in
ompatible.

As a matter of fa
t, in the �rst 
hapter, we will prove that by extending intensional Martin-L�of's

type theory with an extensional power set, where subsets are propositional fun
tions, the prin
iple of

ex
luded middle is provable by the axiom of 
hoi
e, like in topos theory. This extension is made by

following the isomorphism \propositions as types".

On the other hand, the dependent type theory for toposes, presented in the fourth 
hapter of the

thesis, reveals that, in a topos, formulas 
orrespond to \mono" dependent types, i.e. types with at most

one proof, by following the isomorphism \propositions as mono 
losed types".

Therefore, it should be possible to extend Martin-L�of's type theory, without falling into 
lassi
al

logi
, with the powersets of a topos, by 
onsidering as subsets only mono propositional fun
tions.

Besides powersets, also e�e
tive quotients based on generi
 relations 
an not be added to Martin-

L�of's type theory in the presen
e of uniqueness of propositional equality proofs. Indeed, as explained

in the se
ond 
hapter, by using e�e
tive quotients on the �rst universe of small sets and on the se
ond

universe of large sets, we 
an prove the prin
iple of ex
luded middle for small sets. To do this, it is

suÆ
ient to adapt to this framework the already 
onsidered proof that the axiom of 
hoi
e implies the

prin
iple of ex
luded middle.

A proposal of e�e
tive quotients, whi
h are 
ompatible with the powerset of a topos without loosing


onstru
tivity, is given by the type theory of Heyting pretoposes, proposed in the third 
hapter of the

thesis. This dependent type theory, 
omplete with respe
t to Heyting pretoposes with a natural numbers

obje
t, 
orresponds to a �rst order extensional type theory with produ
t types restri
ted to mono types

and e�e
tive quotients restri
ted to mono equivalen
e relations.

The 
ategori
al semanti
s, used to interpret the typed 
al
uli of Heyting pretoposes and toposes, is

explained in the �fth 
hapter. This semanti
s 
ombines together the notion of model given by display

maps [HP89℄, [See84℄, with the tools provided by 
ontextual 
ategories to interpret substitution 
orre
tly

[Car86℄, emphasizing the 
ontext formation. In this way, the proofs of 
ompleteness, presented in the

sixth 
hapter, are restri
ted to parti
ular 
ontextual 
ategories.

In the seventh 
hapter, we show that also the internal language of a Heyting pretopos or a topos

is a dependent type theory, obtained by adding the dependent types spe
i�
 of the universe under


onsideration. Finally, another appli
ation of the type theory is the 
onstru
tion of the free Heyting

pretopos and the free topos generated by a 
ategory.

By the dependent typed 
al
uli of Heyting pretoposes and toposes, we are ready to get a type-

theoreti
al des
ription of the notion of small map and hen
e of the 
ategori
al models for intuitionisti


set theory, as in [JM95℄. On the other hand, we 
ould also investigate possible extensions of Martin-L�of's

type theory by the type 
onstru
tors of the dependent typed 
al
uli of Heyting pretoposes and toposes.

The results of the �rst 
hapter are 
ontained in [MV96℄, of the se
ond in [Mai97d℄, from the third to

sixth in [Mai97
℄ and [Mai97b℄, and �nally, most of the seventh 
hapter will be published in [Mai97a℄.
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Chapter 1

Extensional powersets in


onstru
tive type theory

Summary An extension of Martin-L�of's intensional set theory is proposed by means of a powerset P(S),

whose elements are the subsets of the set S, de�ned as propositional fun
tions.

Sin
e the equality among subsets has to be extensional, it turns out that su
h extension 
annot be 
onstru
-

tive: any link between the truth of a proposition and the possibility to exhibit one of its proof-element is lost.

This fa
t is not 
ompatible with the usual meaning of intuitionisti
 set theory. In fa
t, we will prove that this

extension is 
lassi
, i.e., for any proposition A, (A_:A) true holds, as a 
onsequen
e of the intuitionisti
 axiom

of 
hoi
e.

1.1 Introdu
tion

In [GR94℄ it is shown that the proof theoreti
 strength of Martin-L�of's Type Theory [Mar84, NPS90℄ with

restri
ted well-orders and the universe of the small types is that of a subsystem of se
ond order arithmeti


with �

1

2


omprehension and bar-indu
tion. Thus, it is natural to wonder whether it is possible to enfor
e

it to a theory with the strength of the full 
omprehension s
hema by adding a powerset 
onstru
tor; in

fa
t this extension is ne
essary in order to quantify over the subsets of a given set, sin
e in type theory

quanti�
ation is allowed only over a set.

In the literature, there are already examples of intuitionisti
 set theories with some kind of powerset


onstru
tor. For instan
e, one 
an think of a topos as a \generalized set theory" by asso
iating with

any topos its internal language (
f. [Bel88℄). The logi
 underlying su
h set theory is the intuitionisti


predi
ate 
al
ulus and so any topos 
an be thought of as an intuitionisti
 universe of sets.

Then the la
k of the rule of ex
luded middle seems to assure the 
onstru
tivity of any proof developed

within topos theory. The problem to adapt the topos theoreti
 approa
h to Martin-L�of's set theory is

due to the impredi
ativity of the former. Indeed, Martin-L�of's set theory is predi
ative and provides a

fully algorithmi
 way to 
onstru
t the elements of the sets and the proofs of the propositions on these

sets.

Another approa
h is the Cal
ulus of Constru
tion by Coquand and Huet [Coq90℄, where the power

of a set S 
an be identi�ed with the type of the fun
tions from S into Prop, if we follow the isomorphism

propositions as sets and 
onsider the notion of types as in [NPS90℄. But, in this 
ase the power of a set

is not itself a set and despite of this the quanti�
ation over Prop is allowed. Anyway, it 
an be proved

that the strong sum type, whi
h is present in Martin-L�of's type theory, 
annot 
onsistently be added to

the Cal
ulus of Constru
tions (see [Coq90℄) at the level of propositions, but only at the level of types

[Luo90℄.

Of 
ourse, there is no reason to expe
t that a se
ond order 
onstru
tion be
omes 
onstru
tive only

be
ause it is added to a theory whi
h is 
onstru
tive and predi
ative. And, indeed, we will prove that

even the weaker fragment iTT , whi
h 
ontains only the basi
 type 
onstru
tors and the intensional

6



1.2. ITT

P

= ITT + POWERSETS 7

equality, 
annot be extended with a powerset 
onstru
tor, whi
h is 
ompatible with the usual Martin-

L�of's semanti
al explanation of the 
onne
tives and whi
h is the 
olle
tion of all the subsets of a given

set. In fa
t, by using the so 
alled intuitionisti
 axiom of 
hoi
e, it is possible to prove that, for any

powerset 
onstru
tor whi
h satis�es some natural 
onditions, whi
h we will illustrate in the next se
tion,


lassi
al logi
 arises (see also [Hof95℄ page. 170, where a similar result is suggested for an extension of

the Cal
ulus of Constru
tion with Leibniz equality in the framework of setoids).

1.2 iTT

P

= iTT + powersets

In order to express the rules and the 
onditions that we are going to require on the powerset, it is


onvenient to re
all the main properties of judgements of the form A true (see [Mar84℄): A true holds

if and only if there exists a proof-element a su
h that a 2 A holds (for a formal proof see [Val95℄). In

parti
ular, the following rule is admissible

(True Introdu
tion)

a 2 A

A true

as well as all the rules of the intuitionisti
 predi
ative 
al
ulus with equality, where the judgement

A true stands for ` A (see [Mar84℄ for the de�nition of the embedding of the intuitionisti
 predi
ative


al
ulus within iTT ). Here, we only re
all the 
ase of the set of the intensional propositional equality

Id (see [NPS90℄, page. 61) whi
h plays a main role in this 
hapter (for sake of 
learness, supposing A

is a set and a; b 2 A, we will often write a =

A

b to mean Id(A; a; b)). The propositional equality is

the internalization of the de�nitional equality between elements of a set. Two obje
ts are de�nitional

equal if they evaluate to the same 
anoni
al form. There are two kinds of propositional equality: Id

is intensional (see the rules below) and Eq is extensional (see the rules in se
tion 3.2). Intensional

propositional equality is entailed by de�nitional equality, that is two obje
ts are propositionally equal if

they are de�nitionally equal, but the vi
e versa does not hold. On the 
ontrary, extensional propositional

equality is equivalent to de�nitional equality. The main di�eren
e is that in the presen
e of intensional

propositional equality, de�nitional equality and type 
he
king are de
idable, but no more in the presen
e

of extensional propositional equality.

The formation and introdu
tion rules of the set of the intensional propositional equality Id are the

following

A set a 2 A b 2 A

Id(A; a; b) set

A = C set a = 
 2 A b = d 2 A

Id(A; a; b) = Id(A; 
; d)

A set a 2 A

id(a) 2 Id(A; a; a)

A set a = b 2 A

id(a) = id(b) 2 Id(A; a; a)

whereas the elimination rule is


 2 Id(A; a; b)

[x : A℄

j

d(x) 2 C(x; x; id(x))

idpeel(
; d) 2 C(a; b; 
)

and it yields the admissibility of the following two rules on judgements of the form A true:


 2 Id(A; a; b)

[x : A℄

j

C(x; x; id(x)) true

C(a; b; 
) true

Id(A; a; b) true

[x : A℄

j

C(x; x) true

C(a; b) true

The rules for the set P(S) depend on the de�nition of what a subset is within iTT . Following

a long tradition, we identify a subset U of S with a propositional fun
tion on S, i.e. provided that

U(x) set [x : S℄, we put U � (x : S) U(x), and hen
e, we say that an element a 2 S is an element of U if

U(a) is inhabited, i.e. the judgement U(a) true holds (
f. [dB80℄ and [SV95℄ for a detailed dis
ussion of
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this topi
). We 
onsider a propositional fun
tion 
orresponding to U(x) set [x : S℄, sin
e in Martin-L�of's

intensional set theory propositions are identi�ed with sets and we use set for prop.

Thus, provided that we want to have an extensional equality between subsets, we are for
ed to


onsider equal two subsets U and V of S if and only if U(x)$ V (x) true [x : S℄, i.e. U and V have the

same elements.

Extensional equality on subsets, expressed at the level of the 
olle
tion (x : S) set is the 
ru
ial

point, where 
lassi
al logi
 breaks into the system.

Inspired by the previous explanations, here we propose the following formation and introdu
tion

rules for P(S):

Formation

S set

P(S) set

S = T

P(S) = P(T )

Introdu
tion

U set [x 2 S℄

f(x 2 S) Ug 2 P(S)

We should now formulate the next rules for the type P(S), i.e. the equality introdu
tion rule, the

elimination rule and the equality rule, but the aim of this 
hapter is to show that it is a
tually impossible

to formulate them, sin
e we would obtain a Heyting semanti
 for 
lassi
al logi
. Anyhow, it is 
lear

that whatever rules one 
an give for the type P(S), some 
onditions should be satis�ed to make P(S)

a suitable representation of the set of all the subsets of the set S. The use of 
onditions is a devi
e in

order to suppose to have type theoreti
al rules that make the 
onditions expressed by true-judgements

admissible. Sin
e in the presen
e of these 
onditions we get a negative result, we 
on
lude that su
h

rules do not exist.

The �rst 
ondition we require is the equality introdu
tion 
ondition.

Equality introdu
tion 
ondition

Let U $ V true [x 2 S℄. Then f(x 2 S) Ug = f(x 2 S) V g 2 P(S).

After the previous 
onsiderations on the equality between subsets, it is 
lear that this 
ondition must

be satis�ed, but, as noted by Peter A
zel after reading a preliminary version of this work, this should

not be a formal rule for the type P(S), sin
e the use of an extensional equality rule for powersets does

not �t with the idea of treating the judgemental equalities as de�nitional, whi
h is basi
 in iTT .

The elimination and the equality rules are even more problemati
, be
ause it is diÆ
ult to give a plain

appli
ation of the standard approa
h, whi
h allows to obtain the elimination rule out of the introdu
tion

rule (see [Mar71℄). In fa
t, the introdu
tion rule does not a
t over elements of a set but over elements

of the 
olle
tion ((x : S) set)

$

. Thus, if one wants to follow for P(S) the general pattern for a quotient

set, he 
ould look for a rule similar to the following:


 2 P(S)

[Y 2 (x 2 S) set℄

j

d(Y ) 2 C(fY g)

[Y; Z 2 (x 2 S) set; Y (x)$ Z(x) true [x 2 S℄℄

j

d(Y ) = d(Z) 2 C(fY g)

P(
; d) 2 C(
)

whi
h, however, requires the use of variables for propositional fun
tions.

Moreover, a standard equality rule should be something similar to the following

U set [x 2 S℄

[Y 2 (x 2 S) set℄

j

d(Y ) 2 C(fY g)

[Y; Z 2 (x 2 S) set; Y (x)$ Z(x) true [x 2 S℄℄

j

d(Y ) = d(Z) 2 C(fY g)

P(f(x 2 S) Ug; d) = d((x 2 S) U) 2 C(f(x 2 S) Ug)

These rules are the dire
t 
onsequen
e of the introdu
tion rule and the equality introdu
tion 
ondition

and they are already not 
ompletely within standard type theory. But, the real problem is that they

are not suÆ
ient to make P(S) the set of the subsets of S. For instan
e, there is no way to obtain a

set out of an element of P(S) and this does not �t with the introdu
tion rule. Thus, to deal with the
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set P(S), one should add some rules whi
h link its elements with the elements of the type set and with

those of the 
olle
tion set

$

, whose elements are propositions but whose equality is indu
ed by logi
al

equivalen
e, remembering that propositions are identi�ed with sets.

Here, we don't want to propose any parti
ular rule, sin
e we are going to show that there 
an be no

suitable rule, but we simply require that two 
onditions, whi
h should be a 
onsequen
e of su
h rules,

are satis�ed. The �rst 
ondition is the following:

Elimination 
ondition

Let 
 2 P(S) and a 2 S. Then there exists a set a"
.

This 
ondition is suggested by the elimination rule that we have 
onsidered. In fa
t, even if a formal

derivation 
annot be given until we do not add the suitable rules, a free use of the elimination rule with

C(z) � set

$

allows to obtain that P(
; (Y ) Y (a)) is an element of set

$

and hen
e, that it is a set that

we 
an identify with the set a"
. Of 
ourse, the above 
ondition is problemati
, be
ause it requires the

existen
e of a set but it gives no knowledge about it; in parti
ular, it is not 
lear if one has to ask for a

new set (whi
h are its 
anoni
al elements? whi
h are its introdu
tion and elimination rules?) or for an

old one (whi
h set should one 
hoose?).

Moreover, as a 
onsequen
e of the suggested equality rule, we require the following equality 
ondition

whi
h is just the �-equality for this kind of (se
ond order) appli
ation.

Equality 
ondition

Suppose U set [x 2 S℄ and a 2 S then a"f(x 2 S) Ug $ U [x := a℄ true

This 
ondition 
an be proved as above but using the equality rule; in fa
t, supposing U set [x 2 S℄

and a 2 S, the equality rule allows to obtain that a"f(x 2 S) Ug and U [x := a℄ are equal elements of

set

$

, whi
h yields our 
ondition. This 
ondition 
annot be justi�ed from a semanti
al point of view,

sin
e we have no way to re
over the proof element for its 
on
lusion; but, this is also the essential feature

whi
h allows us to develop our proof in the next se
tion, without furnishing basi
 type systems with


onstru
tors for 
lassi
al logi
.

It is worth noting that no form of �-equality, like for instan
e


 2 P(S)

f(x 2 S) x"
g = 
 2 P(S)

x 62 V F (
);

is required on P(S). Also for the other sets of type theory, no rule of �-equality is dire
tly required,

be
ause its validity 
an be proved at least within the extensional version of type theory eTT . This theory

is obtained from iTT by substituting the intensional equality proposition by the extensional equality

proposition Eq(A; a; b), whi
h allows to dedu
e a = b 2 A from a proof of Eq(A; a; b). The problem

with extensional equality is that it 
auses to miss the de
idability of the equality judgement and for this

reason is usually reje
ted in the present version of the theory. Here, we 
an also show that �-equality

is a 
onsequen
e in eTT of the suggested elimination rule for P(S). In fa
t, let us assume that Y is a

subset of S and that x 2 S, then Y (x) set and hen
e x"fY g $ Y (x) true holds be
ause of the equality


ondition. Then it yields f(x 2 S) x"fY gg = fY g 2 P(S) and hen
e Eq(P(S); f(x 2 S) x"fY gg; fY g);

thus, if 
 2 P(S), by using the elimination rule one obtains Eq(P(S); f(x 2 S) x"
g; 
) and it yields

f(x 2 S) x"
g = 
 2 P(S). Note that the last step is not allowed in iTT

P

.

1.3 iTT

P

is 
onsistent

It is well known that by adding to iTT just the 
olle
tion P(1l), whose elements are (the 
ode for)

the non-dependent sets, but using an equality between its elements indu
ed by the intensional equality

between sets, one obtains an in
onsistent extension of iTT [Ja
89℄. On the 
ontrary, we will prove

that any extension of iTT with a powerset as proposed in the previous se
tion, i.e. where the equality

between two elements of a powerset is indu
ed by the provability equivalen
e, is 
onsistent or at least

it is not in
onsistent be
ause of the rules we have proposed on the powerset and the 
onditions we have

required.
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The easiest way to prove this result is to prove �rst that iTT

P


an be embedded in the simpler

theory iTT




, whi
h 
ontains only the powerset 
 � P(1l) of all the subsets of the one element set 1l and

then to show that su
h a theory is 
onsistent.

Thus, we will have the following formation and introdu
tion rules


 set 
 = 


U set [x 2 1l℄

f(x 2 1l) Ug 2 


Moreover, we require that the introdu
tion equality 
ondition, i.e.

if U $ V true [x 2 1l℄ then f(x 2 1l) Ug = f(x 2 1l) V g 2 
,

holds, while the 
ondition on the set a"
 set [a 2 1l; 
 2 
℄ 
an be satis�ed by putting, for any 
 2 
,

a"
 � 
 =




>

1l

where >

1l

� f(x 2 1l) x =

1l

xg; here any referen
e to the element a disappeared in the de�niens, be
ause

all the elements in 1l are equal. Finally, we require that

if U set [x 2 1l℄ then f(x 2 1l) Ug =




>

1l

$ U true [x 2 1l℄

Now, any powerset 
an be de�ned by putting

P(S) � S ! 


sin
e, for any U set [x 2 S℄, one obtains an element in P(S) by putting

f(x 2 S) Ug � �((x 2 S) f(w 2 1l) Ug);

where we suppose that w does not appear free in U , whi
h is in fa
t an element in S ! 
. Moreover,

for any element 
 2 P(S), i.e. a fun
tion from S into 
, and any element a 2 S, one obtains a set by

putting

a"
 � (
(a) =




>

1l

)

whi
h satis�es the required 
ondition.

Thus, any proof of 
 2 ? in iTT

P

, i.e. any in
onsisten
y in iTT

P

, 
an be re
onstru
ted in this

simpler theory.

Therefore, it is suÆ
ient here to show that this new theory is 
onsistent. This will be done by de�ning

an interpretation I of this theory into Zermelo-Fraenkel set theory with the axiom of 
hoi
e, ZFC.

The basi
 idea is to interpret any non-dependent set A of iTT




into a set I(A) of ZFC and, provided

that

I(A

1

) is a set of ZFC,

I(A

2

) is a map from I(A

1

) into the 
olle
tion of all sets of ZFC,

. . . ,

I(A

n

) is a map from the disjoint union

℄

�

1

2I(A

1

);:::;�

n�2

2I(A

n�2

)(h�

1

;:::;�

n�3

i)

I(A

n�1

)(h�

1

; : : : ; �

n�2

i)

into the 
olle
tion of all sets of ZFC, then the dependent set of iTT




A(x

1

; : : : ; x

n

) set [x

1

2 A

1

; : : : ; x

n

2 A

n

(x

1

; : : : ; x

n�1

)℄;

i.e. the propositional fun
tion A 2 (x

1

2 A

1

) : : : (x

n

2 A

n

(x

1

; : : : ; x

n�1

)) set; is interpreted into a map

from the disjoint union

℄

�

1

2I(A

1

);:::;�

n�1

2I(A

n�1

)(h�

1

;:::;�

n�2

i)

I(A

n

)(h�

1

; : : : ; �

n�1

i)

into the 
olle
tion of all sets of ZFC.
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Sin
e the axiom of repla
ement allows to avoid the use of maps into the 
olle
tion of all sets, whi
h


an be substituted by indexed families of sets, all the interpretation 
an be explained within basi
 ZFC.

Anyway, we think that the approa
h used here is more perspi
uous and well suited for the interpretation

of a theory like iTT




, where propositional fun
tions have to be 
onsidered.

The interpretation I(a) of a 
losed term a 2 A, where A is a non-dependent set of iTT




, will be an

element of the set I(A), whereas the interpretation of a non-
losed term

a(x

1

; : : : ; x

n

) 2 A(x

1

; : : : ; x

n

) [x

1

2 A

1

; : : : ; x

n

2 A

n

(x

1

; : : : ; x

n�1

)℄;

i.e. the fun
tion-element a 2 (x

1

2 A

1

) : : : (x

n

2 A

n

(x

1

; : : : ; x

n�1

)) A(x

1

; : : : ; x

n

); is a fun
tion I(a)

whi
h, when applied to the element

� 2

℄

�

1

2I(A

1

);:::;�

n�1

2I(A

n�1

)(h�

1

;:::;�

n�2

i)

I(A

n

)(h�

1

; : : : ; �

n�1

i)

gives the element I(a)(�) of the set I(A)(�).

Now, for the basi
 sets we put: I(?) � ;, I(1l) � f;g and I(Bool) � f;; f;gg and there is an obvious

interpretation of their elements.

Moreover, the sets �(A;B) and �(A;B) are interpreted respe
tively in the disjoint union and the

indexed produ
t of the interpretation of B(x) indexed on the elements of the interpretation of A.

The disjoint sum set A+B is interpreted in the disjoint union of the interpretation of A and B and

the interpretation of the equality proposition a =

A

b is the 
hara
teristi
 fun
tion of the equality of the

interpretation of a and b.

Finally, the interpretation of the set 
 is the set f;; f;gg.

Moreover, the judgement A(x

1

; : : : ; x

n

) true [�℄ is interpreted in I(A)(
) 6= ; for every 
 2 I(�),

whi
h gives I(A) 6= ; when A is a non-dependent set of iTT




.

The interpretation of all the terms is straightforward; thus, here, we only illustrate the interpretation

of the elements of the set 
:

I(f(x 2 1l) U(x)g) �

�

; if I(U(�)) = ;

f;g if I(U(�)) 6= ;

After this de�nition, for any subset U of 1l, I(f(x 2 1l) Ug =




>

1l

$ U) 6= ; by the axiom of 
hoi
e and

hen
e the equality 
ondition is valid.

It is tedious, but straightforward, to 
he
k that all the rules of iTT




are valid a

ording to this inter-

pretation and hen
e that any proof of the judgement a 2 ? within iTT




, i.e. any form of in
onsisten
y,

would result in a proof that there is some element in ;, that is an in
onsisten
y in ZFC.

1.4 iTT

P

is 
lassi
al

We are going to prove that iTT

P

gives rise to 
lassi
al logi
, i.e., for any set A, the judgement A_:A true

holds. Even if iTT

P

is not a topos, the proof we show here is obtained by adapting to our framework

an analogous result stating that any topos whi
h satis�es the axiom of 
hoi
e is boolean. Among the

various proofs of this result (
f. for instan
e [LS86℄,[Bel88℄), whi
h goes ba
k to Dia
ones
u's work,

whi
h shows that by adding the axiom of 
hoi
e to IZF one obtains ZF [Dia75℄, we 
hoose to translate

the proof of Bell [Bel88℄, be
ause it is very well suited to work in iTT

P

, sin
e it is almost 
ompletely

developed within lo
al set theory instead that in topos theory, ex
ept for the use of a 
hoi
e rule.

In iTT

P

, the result is a 
onsequen
e of the strong elimination rule for disjoint union whi
h allows to

prove the so 
alled intuitionisti
 axiom of 
hoi
e, i.e.

((8x 2 A)(9y 2 B) C(x; y))! ((9f 2 A! B)(8x 2 A) C(x; f(x))) true

Let us re
all the proof [Mar84℄. Assume that h 2 (8x 2 A)(9y 2 B) C(x; y) and that x 2 A. Then

h(x) 2 (9y 2 B) C(x; y). Let �

1

(�) and �

2

(�) be the �rst and se
ond proje
tion respe
tively; then

the elimination rule for the set of the disjoint union allows to prove that �

1

(h(x)) 2 B and �

2

(h(x)) 2
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C(x; �

1

(h(x))). Hen
e, by putting f � �x:�

1

(h(x)), we obtain both f 2 A ! B and �

2

(h(x)) 2

C(x; f(x)) sin
e, by �-equality, f(x) � (�x:�

1

(h(x)))(x) = �

1

(h(x)). Finally, we 
on
lude by true

introdu
tion.

Sin
e in the following we will use mainly the powerset P(1l), we introdu
e some abbreviations besides


 � P(1l) and >

1l

� f(w 2 1l) w =

1l

wg that we have already used in se
tion 1.3; let us suppose that

U is a set and w 2 1l is a variable whi
h does not appear in U , then we put [U ℄ � f(w 2 1l) Ug and,

supposing p 2 
, we put p � �"p. Moreover, following a standard logi
al pra
ti
e, supposing A is a set,

we will simply write A to assert the judgement A true. It is 
onvenient to state here all the properties

of the intensional equality proposition Id that we need in the following. First, we re
all some well known

results: Id is an equivalen
e relation; moreover, if A and B are sets and a =

A


 and f =

A!B

g then

f(a) =

B

g(
) (for a proof see [NPS90℄, page 64).

On the other hand, the following properties of Id are spe
i�
 to the new set 
. They are similar to

the properties that the set Id enjoys when it is used on elements of the set U

0

, i.e. the universe of the

small sets. In fa
t, 
 resembles this set, but it di�ers also both be
ause of the 
onsidered equality and

be
ause a 
ode for ea
h set is present in 
, whereas only the 
odes for the small sets 
an be found in

U

0

.

Lemma 1.4.1 If p =




q then p$ q.

Proof. Let x 2 
; then x$ x and hen
e p$ q is a 
onsequen
e of p =




q by Id-elimination.

Lemma 1.4.2 :(true =

Bool

false).

Proof. Let x 2 Bool; then if x then [1l℄ else [?℄ 2 
. Now, suppose that true =

Bool

false, then

if true then [1l℄ else [?℄ =




if false then [1l℄ else [?℄, whi
h yields [1l℄ =




[?℄ by boole-equality and

transitivity.

Thus, by the previous lemma, [1l℄ $ [?℄ but [1l℄ $ 1l and [?℄ $ ? by the equality 
ondition; hen
e

? true and thus, by dis
harging the assumption true =

Bool

false, we obtain the result.

We will start, now, the proof of the main result of this se
tion. The tri
k to internalize the proof in

[Bel88℄ within iTT

P

is stated in the following lemma.

Lemma 1.4.3 For any set A, if A true then id(>

1l

) 2 [A℄ =




>

1l

and hen
e [A℄ =




>

1l

and if

[A℄ =




>

1l

then A true.

Proof. If A true then A $ w =

1l

w true [w 2 1l℄ and hen
e [A℄ = >

1l

2 
, whi
h implies

id(>

1l

) 2 [A℄ =




>

1l

and hen
e [A℄ =




>

1l

true by true introdu
tion; on the other hand, if [A℄ =




>

1l

then, by lemma 1.4.1, [A℄ $ >

1l

, but [A℄ $ A and � =

1l

� $ >

1l

, by the equality 
ondition, and

hen
e A true sin
e � =

1l

� true.

Indeed, after this lemma it is possible to obtain, for any proposition A, a logi
ally equivalent proposition,

i.e. [A℄ =




>

1l

, su
h that, if A true, the proof element id(>

1l

) of [A℄ =




>

1l

has no memory of the

proof element whi
h testi�es the truth of A. We will see that this property is essential in the proof of

the following theorems. We will use it immediately in the following proposition where, instead of the

proposition �

1

(w) _ �

2

(w) set [w : 
 � 
℄, we use [�

1

(w) _ �

2

(w)℄ =




>

1l

set [w : 
 � 
℄ in order

to avoid that the proof-term in the main statement depends on the truth of the �rst or of the se
ond

disjun
t.

We 
an now prove:

Proposition 1.4.4 In iTT

P

the following proposition

(8z 2 �(
�
; (w) [�

1

(w) _ �

2

(w)℄ =




>

1l

))

(9x 2 Bool) (x =

Bool

true ! �

1

(�

1

(z))) ^ (x =

Bool

false ! �

2

(�

1

(z)))

is true.
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Proof. Suppose z 2 �(
 � 
; (w) [�

1

(w) _ �

2

(w)℄ =




>

1l

) then �

1

(z) 2 
 � 
 and �

2

(z) is a proof

of [�

1

(�

1

(z)) _ �

2

(�

1

(z))℄ =




>

1l

. Thus, by lemma 1.4.3, �

1

(�

1

(z)) _ �

2

(�

1

(z)). The result 
an now

be proved by _-elimination. In fa
t, if �

1

(�

1

(z)) true then true =

Bool

true ! �

2

(�

1

(z)); moreover, by

lemma 1.4.2, :(true =

Bool

false) and hen
e true =

Bool

false! �

2

(�

1

(z)). Thus, we obtain that

(9x 2 Bool) (x =

Bool

true! �

1

(�

1

(z))) ^ (x =

Bool

false! �

2

(�

1

(z)))

On the other hand, by means of a similar proof, we rea
h the same 
on
lusion starting from the assump-

tion �

2

(�

1

(z)) true.

Thus, we 
an use the intuitionisti
 axiom of 
hoi
e to obtain:

Proposition 1.4.5 In iTT

P

the following proposition

(9f 2 �(
�
; (w) [�

1

(w) _ �

2

(w)℄ =




>

1l

)! Bool)

(8z 2 �(
�
; (w) [�

1

(w) _ �

2

(w)℄ =




>

1l

))

(f(z) =

Bool

true ! �

1

(�

1

(z))) ^ (f(z) =

Bool

false ! �

2

(�

1

(z)))

is true.

Suppose, now, that A is a set; then

hh[A℄;>

1l

i; id(>

1l

)i 2 �(
�
; (w) [�

1

(w) _ �

2

(w)℄ =




>

1l

)

In fa
t, h[A℄;>

1l

i 2 
�
. Moreover >

1l

true and hen
e �

1

(h[A℄;>

1l

i) _ �

2

(h[A℄;>

1l

i); thus, by lemma

1.4.3, id(>

1l

) 2 [�

1

(h[A℄;>

1l

i) _ �

2

(h[A℄;>

1l

i)℄ =




>

1l

.

Now, let f be the 
hoi
e fun
tion, i.e. use an 9-elimination rule on the judgement in the proposition

1.4.5; then f(hh[A℄;>

1l

i; id(>

1l

)i) =

Bool

true ! [A℄. But

(f(hh[A℄;>

1l

i; id(>

1l

)i) =

Bool

true) _ (f(hh[A℄;>

1l

i; id(>

1l

)i) =

Bool

false)

sin
e the set Bool is de
idable (for a proof see [NPS90℄, page. 177), and hen
e, by _-elimination and a

little of intuitionisti
 logi
, one obtains that

(1) [A℄ _ (f(hh[A℄;>

1l

i; id(>

1l

)i) =

Bool

false)

Analogously, one 
an prove that

(2)
[A℄
_ (f(hh>

1l

; [A℄i; id(>

1l

)i) =

Bool

true)

Thus, by using distributivity on the 
onjun
tion of (1) and (2), one �nally obtains

Proposition 1.4.6 For any set A in iTT

P

the following proposition

(9f 2 �(
�
; (w) [�

1

(w) _ �

2

(w)℄ =




>

1l

)! Bool)

[A℄ _ ((f(hh[A℄;>

1l

i; id(>

1l

)i) =

Bool

false) ^ (f(hh>

1l

; [A℄i; id(>

1l

)i) =

Bool

true))

is true.

Let us now assume [A℄ true; then, by equality 
ondition A true, from whi
h by equality introdu
tion


ondition, that is by extensionality on subsets, [A℄ = >

1l

2 
 and hen
e

hh[A℄;>

1l

i; id(>

1l

)i =

�(
�
;:::)

hh>

1l

;>

1l

i; id(>

1l

)i:

Thus f(hh[A℄;>

1l

i; id(>

1l

)i) =

Bool

f(hh>

1l

;>

1l

i; id(>

1l

)i), where f is obtained by an 9-elimination rule

on the judgement in the proposition 1.4.6. With the same assumption, also f(hh>

1l

; [A℄i; id(>

1l

)i) =

Bool

f(hh>

1l

;>

1l

i; id(>

1l

)i) 
an be proved in a similar way; hen
e

f(hh[A℄;>

1l

i; id(>

1l

)i) =

Bool

f(hh>

1l

; [A℄i; id(>

1l

)i)
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Then assuming both [A℄ true and

(f(hh[A℄;>

1l

i; id(>

1l

)i) =

Bool

false) ^ (f(hh>

1l

; [A℄i; id(>

1l

)i) =

Bool

true)

one 
an 
on
lude true =

Bool

false. But, by lemma 1.4.2, :(true =

Bool

false). Hen
e, under the assumption

(f(hh[A℄;>

1l

i; id(>

1l

)i) =

Bool

false) ^ (f(hh>

1l

; [A℄i; id(>

1l

)i) =

Bool

true);

the judgement :[A℄ true holds. Thus, by using proposition 1.4.6 and a little of intuitionisti
 logi
, we


an 
on
lude ([A℄ _ :[A℄) true whi
h, by the equality 
ondition, yields (A _ :A) true. Thus, provided

one 
an give for the powerset suitable rules whi
h allow our 
onditions to hold, i.e. whi
h really express

the meaning of the powerset, and that meanwhile allow to keep the usual meaning for the judgement

C true, i.e. C true holds if and only if there exists a proof element for the set C, then we would have a

proof element for the set A _ :A, whi
h is expe
ted to fail.

1.5 Con
lusion

To help the reader who knows the proof in [Bel88℄, it may be useful to explain the di�eren
es between

the original proof and that presented in the previous se
tion. Our proof is not the plain appli
ation of

Bell's result to iTT

P

, sin
e iTT

P

is not a topos. It is possible to obtain a topos out of the extensional

theory eTT

P

, obtained by adding a powerset 
onstru
tor to eTT , if one adds to it also the rule of

�-equality for powersets, as in the end of se
tion 1.2. But, it is not ne
essary to be within a topos to

re
onstru
t Dia
ones
u's result and a weaker theory is suÆ
ient. It is also possible to get the same result,

by repla
ing the equality introdu
tion 
ondition with a weaker rule, stating: if U $ V true [x 2 S℄ then

there is a proof-term 
(U; V )) 2 f(x 2 S) Ug =

P(S)

f(x 2 S) V g.

This fa
t suggests that it is not possible to extend Martin-L�of's type theory, where proof-elements


an be provided for any provable set, to an intuitionisti
 theory of sets fully equipped with powersets, like

topos theory, following the isomorphism \propositions as sets" and preserving the 
onstru
tive meaning

of the 
onne
tives: one has to 
hoose between predi
ativity and expressive power.



Chapter 2

E�e
tive quotients in 
onstru
tive

type theory

Summary We extend Martin-L�of's Constru
tive Set Theory with e�e
tive quotient sets and the uniqueness

of propositional equality proofs. We prove that in the presen
e of at least two universes U

0

and U

1

, to whi
h

the 
odes of quotient sets are added, the prin
iple of ex
luded middle holds for small sets. The key point is

e�e
tiveness 
ondition, that allows us to re
over information on the equivalen
e relation, from the equality on

the quotient set.

2.1 Introdu
tion

Within the framework of Martin-L�of's set theory, in order to generate some formal topologies the quotient

sets are also desirable [NV97℄. But, some 
are is ne
essary in extending Martin-L�of's set theory by

quotient sets, if we want to keep 
onstru
tivity.

Here, we 
onsider to extend the intensional version of Martin-L�of's type theory with the quotient

sets as formulated in [Hof95℄ and with the addition of e�e
tiveness 
ondition and the uniqueness of

propositional equality proofs. We show that with the presen
e of at least two universes U

0

and U

1

, to

whi
h the 
odes of quotient sets are added, then the prin
iple of ex
luded middle holds for small sets.

Pre
isely, in this extension we 
an reprodu
e the proof that the axiom of 
hoi
e implies the prin
iple of

ex
luded middle, at least for small sets. The key point to do this proof is the appli
ation of the equality

rule of quotient sets 
ombined together with the e�e
tiveness 
ondition on the quotients of the �rst two

universes under equiprovability.

Of 
ourse, an analogous proof 
an be reprodu
ed in the extensional version of Martin-L�of's type

theory with the quotient sets as given in Nuprl [Con86℄ and always with the addition of e�e
tiveness


ondition. We know that the e�e
tiveness 
ondition is surely derivable for de
idable equivalen
e relations,

but the general e�e
tiveness 
ondition is problemati
, be
ause it restores information that has been

forgotten in the introdu
tion rule for equality of equivalen
e 
lasses.

The interest in e�e
tiveness 
ondition arises from mathemati
al pra
ti
e of quotient sets. In order

to keep e�e
tiveness for quotient sets, an alternative strategy 
ould be to let only quotient sets based

on equivalen
e relations, whi
h are proof-irrelevant, as it is in the type theory of Heyting pretoposes

proposed in this thesis.

2.2 Extension of iTT with quotient sets

We extend the intensional Martin-L�of 
onstru
tive set theory by quotient sets and uniqueness of proofs

for the intensional propositional equality as in [Hof95℄ (page 111), with the following inferen
e rules. We


all this extension iTT

Q

.

15
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Intensional Quotient set

R(x; y) set [x 2 A; y 2 A℄




1

2 R(x; x)[x 2 A℄; 


2

2 R(y; x)[x 2 A; y 2 A; z 2 R(x; y)℄




3

2 R(x; z)[x 2 A; y 2 A; z 2 A;w 2 R(x; y); w

0

2 R(y; z)℄

A=R set

I-int.quotient

a 2 A

[a℄ 2 A=R

We spe
ify also the equality between terms of A=R

eq -int.quotient

a 2 A b 2 A d 2 R(a; b)

Qax(d) 2 Id(A=R; [a℄; [b℄)

E-int.quotient

s 2 A=R l(x) 2 L([x℄)[x 2 A℄

h 2 Id(L([y℄); sub(Qax(d); l(x)); l(y)) [x 2 A; y 2 A; d 2 R(x; y)℄

Q(l; s) 2 L(s)

where sub is de�ned as in [NPS90℄ page.64 for substitution with equal elements;

C-int.quotient

a 2 A l(x) 2 L([x℄)[x 2 A℄

h 2 Id(L([y℄); sub(Qax(d); l(x)); l(y)) [x 2 A; y 2 A; d 2 R(x; y)℄

Q(l; [a℄) = l(a) 2 L([a℄)

We also want to make equivalen
e relations e�e
tive:

E�e
tiveness 
ondition

a 2 A b 2 A Id(A=R; [a℄; [b℄) true

R(a; b) true

Moreover, we add the axiom of uniqueness of propositional equality proofs:

Id-Uni I

a 2 A p 2 Id(A; a; a)

iduni(a; p) 2 Id(Id(A; a; a); p; id(a))

The 
orresponding 
onversion rule is the following:

Id-Uni 
onv

a 2 A

iduni(a; id(a)) = id(id(a)) 2 Id(Id(A; a; a); id(a); id(a))

By Id-Uni and the elimination rule of propositional equality on the proposition

�

w2Id(A;x;y)

Id(Id(A; x; y); w; z) [x 2 A; y 2 A; z 2 Id(A; x; y)℄

Strei
her proved that under the 
ontext x 2 A; y 2 A; z 2 Id(A; x; y); w 2 Id(A; x; y) this proof-term

idpeel(z; �w 2 Id(A; x; x):iduni(x;w))(w)

is of type

Id(Id(A; x; y); w; z) [x 2 A; y 2 A; z 2 Id(A; x; y); w 2 Id(A; x; y)℄

that is the uniqueness of proofs of propositional equality type, 
alled UIP (see [Hof95℄ page.81).

Remark 2.2.1 The uniqueness of proofs of propositional equality type is de�nable by pattern-mat
hing,

but it is not derivable in the intensional version of Martin-L�of's type theory, as showed by M. Hofmann

and T. Strei
her (see [Hof95℄ ). In our proof of the prin
iple of ex
luded middle for small sets, the use

of this prin
iple seems 
ru
ial.
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Remark 2.2.2 Note that in order to do the proof of ex
luded middle for small sets, we never make use

of the elimination rule for the quotient set and of the 
onversion rule Id-Uni 
onv.

Moreover, we 
onsider the �rst universe U

0

, whose elements are 
alled small sets, and the se
ond universe

U

1

, whose elements are 
alled large sets, as in [Mar84℄ and [NPS90℄.

We have to add to the rules for these universes the following introdu
tion rule for the 
odes of quotient

sets for i = 0; 1:

UQ-I

a 2 U

i

r(x; y) 2 U

i

[x 2 T

i

(a); y 2 T

i

(a)℄




1

2 T

i

(r(x; x)) [x 2 T

i

(a)℄; 


2

2 T

i

(r(y; x)) [x 2 T

i

(a); y 2 T

i

(a); z 2 T

i

(r(x; y))℄




3

2 T

i

(r(x; z)) [x 2 T

i

(a); y 2 T

i

(a); z 2 T

i

(a); w 2 T

i

(r(x; y)); w

0

2 T

i

(r(y; z))℄

a

^

=r 2 U

i

with the following 
onversion rule:

T

i

(a

^

=r) = T

i

(a)=T

i

(r(x; y))

About the properties of judgements of the form A true (see [Mar84℄) we refer to the se
tion 1.2.

This extension of iTT is 
onsistent, be
ause there exists an interpretation in 
lassi
al set theory

(ZFC) plus two strongly ina

essible 
ardinals, by interpreting the quotient sets in 
lassi
al quotient sets

and the �rst two universes respe
tively in the set of small sets and in the set of large sets.

2.3 Small sets are 
lassi
al

We are going to prove that for small sets in iTT

Q

the prin
iple of ex
luded middle holds, i.e. for any

element of the �rst universe a 2 U

0

, the judgement T

0

(a) _ :T

0

(a) true holds. By quotienting the two

universes under the relation of equiprovability among their elements, we simulate the powersets. The

proof we show here is obtained by adapting to our framework the analogous result of se
tion 1.4, that

the axiom of 
hoi
e implies the prin
iple of ex
luded middle in the presen
e of extensional powersets.

Therefore, also in iTT

Q

the result is a 
onsequen
e of the strong elimination rule for disjoint union

whi
h allows to prove the so 
alled intuitionisti
 axiom of 
hoi
e as in se
tion 1.4, i.e.

((8x 2 A)(9y 2 B) C(x; y))! ((9f 2 A! B)(8x 2 A) C(x; f(x))) true

In order to re
over the proof of the prin
iple of ex
luded middle from the axiom of 
hoi
e, we quotient

the �rst two universes under the equivalen
e relation of equiprovability, i.e.

T

0

(x)$ T

0

(y) [x 2 U

0

; y 2 U

0

℄ T

1

(x)$ T

1

(y) [x 2 U

1

; y 2 U

1

℄

Then we use the following abbreviations for i = 0; 1




i

� U

i

= T

i

(x)$ T

i

(y)

Sin
e there is a 
ode of U

0

in U

1




U

0

2 U

1

then there is inside U

1

the 
ode for 


o







0

�




U

0

^

= x$̂y

Indeed, we 
an derive







0

2 


1

and T

1

(







0

) = 


0

Note that we do not distinguish the 
odes of U

0

and U

1

, with t

0

and t

1

as in [Dyb97℄, in order to make

formulas more readable.



18 CHAPTER 2. EFFECTIVE QUOTIENTS IN CONSTRUCTIVE TYPE THEORY

The reason to use the �rst two universes is due to the possibility of deriving

^

Id(

^




o

; z; [

b

>℄) 2 U

1

[z 2 


0

℄

where > is the terminal type (see the rule in se
tion 3.2). We use the abbreviation a =

A

b for Id(A; a; b),

when it is not 
oded in a universe.

Following a standard logi
al pra
ti
e, supposing A is a proposition, we will simply write A to assert

the judgement A true.

We re
all that, in the presen
e of U

0

, we 
an derive

:(true =

Bool

false)

We will start now the proof of the main result of this se
tion. One of the key points to internalize the

proof in [Bel88℄ within iTT

Q

is stated in the following lemma.

Lemma 2.3.1 For any set a 2 U

i

, [a℄ =




i

[

b

>℄ i� T

i

(a) true for i = 0; 1.

Proof. From [a℄ =




i

[

b

>℄ true by e�e
tiveness of quotient sets we get T

i

(a) $ T

i

(

b

>) true, but

T

i

(

b

>) = > so T

i

(a) true. On the other hand, from T

i

(a) true, we get T

i

(a) $ T

i

(

b

>) and by the

equality rule on the quotient set we 
on
lude [a℄ =




i

[

b

>℄.

Now we 
onsider the following abbreviations: for z 2 


0

E(z) � Id(


0

; z; [

b

>℄)

We 
an now prove:

Proposition 2.3.2 In iTT

Q

the following proposition

(8z 2 �(


0

�


0

; (w) [

\

E(�

1

(w))

^

_

\

E(�

2

(w))℄ =




1

[

b

>℄)

(9x 2 Bool) (x =

Bool

true ! E(�

1

(�

1

(z))) ^

(x =

Bool

false ! E(�

2

(�

1

(z)))

is true.

Proof. Suppose z 2 �(


0

�


0

; (w) [

\

E(�

1

(w))

^

_

\

E(�

2

(w))℄ =




1

[

b

>℄. Then �

1

(z) 2 


0

�


0

and �

2

(z)

is a proof of [

\

E(�

1

(�

1

(z)))

^

_

\

E(�

2

(�

1

(z)))℄ =




1

[

b

>℄. Thus, by lemma 2.3.1 and by the 
onversion rules

for U

1

, E(�

1

(�

1

(z))) _ E(�

2

(�

1

(z))) . The result 
an now be proved as in the proposition 1.4.4.

Thus, we 
an use the intuitionisti
 axiom of 
hoi
e to obtain:

Proposition 2.3.3 In iTT

Q

the following proposition

(9f 2 �(


0

�


0

; (w) [

\

E(�

1

(w))

^

_

\

E(�

2

(w))℄ =




1

[

b

>℄)! Bool)

(8z 2 �(


0

�


0

; (w) [

\

E(�

1

(w))

^

_

\

E(�

2

(w))℄ =




1

[

b

>℄)

(f(z) =

Bool

true ! E(�

1

(�

1

(z))) ^ (f(z) =

Bool

false ! E(�

2

(�

1

(z)))

is true.

Suppose, now, that a 2 U

0

is a small set; then

hh[a℄; [

b

>℄i;Qax(h�y:?; �y

0

:inr(id([

b

>℄))i)i

is of type

�(


0

�


0

; (w) [

\

E(�

1

(w))

^

_

\

E(�

2

(w))℄ =




1

[

b

>℄)
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where ? 2 >. In fa
t, h[a℄; [

b

>℄i 2 


0

�


0

and

h�y:?; �y

0

:inr(id([

b

>℄))i 2 Id(


0

; [a℄; [

b

>℄) _ Id(


0

; [

b

>℄; [

b

>℄)$ >

from whi
h, sin
e

Id(


0

; [a℄; [

b

>℄) _ Id(


0

; [

b

>℄; [

b

>℄)$ > = T

1

(

\

E([a℄)

^

_

\

E([

b

>℄))$ T

1

(

b

>)

by the equality rule on the quotient set we get

Qax(h�y:?; �y

0

:inr(id([

b

>℄))i) 2 [

\

E([a℄)

^

_

\

E([

b

>℄)℄ =




1

[

b

>℄

Analogously,

hh[

b

>℄; [a℄i;Qax(h�y:?; �y

0

:inl(id([

b

>℄))i)i

is of type

�(


0

�


0

; (w) [

\

E(�

1

(w))

^

_

\

E(�

2

(w))℄ =




1

[

b

>℄)

sin
e h[

b

>℄; [a℄i 2 


0

�


0

and

h�y:?; �y

0

:inl(id([

b

>℄))i 2 Id(


0

; [

b

>℄; [

b

>℄) _ Id(


0

; [a℄; [

b

>℄)$ >

Let us put for w 2 


0

q

1

(w) � Qax(h�y:?; �y

0

:inr(id([

b

>℄))i)

and

q

2

(w) � Qax(h�y:?; �y

0

:inl(id([

b

>℄))i)

Now, let f be the 
hoi
e fun
tion, i.e. use an 9-elimination rule on the judgement in the proposition

2.3.3; then as in the proof of proposition 1.4.6 f(hh[a℄; [

b

>℄i; q

1

([a℄)i) =

Bool

true ! E([a℄). But

(f(hh[a℄; [

b

>℄i; q

1

([a℄)i) =

Bool

true) _ (f(hh[a℄; [

b

>℄i; q

1

([a℄)i) =

Bool

false)

sin
e the set Bool is de
idable (for a proof see [NPS90℄, page. 177), and hen
e, by _-elimination, lemma

2.3.1 and a little of intuitionisti
 logi
, one obtains that

(1) T

0

(a) _ (f(hh[a℄; [

b

>℄i; q

1

([a℄)i) =

Bool

false)

and in an analogous way

(2) T

0

(a) _ (f(hh[

b

>℄; [a℄i; q

2

([a℄)i) =

Bool

true)

Thus, by using distributivity on the 
onjun
tion of (1) and (2), one �nally obtains

Proposition 2.3.4 For any small set a 2 U

0

in iTT

Q

the following proposition

(9f 2 �(


0

�


0

; (w) [

\

E(�

1

(w))

^

_

\

E(�

2

(w))℄ =




1

[

b

>℄)! Bool)

T

0

(a) _ (f(hh[a℄; [

b

>℄i; q

1

([a℄)i) =

Bool

false) ^ f(hh[a℄; [

b

>℄i; q

2

([a℄)i) =

Bool

true))

is true.

Let us now assume T

0

(a) true; then, by lemma 2.3.1, [a℄ =




0

[

b

>℄ true and hen
e

hh[a℄; [

b

>℄i; q

1

([a℄)i =

�(


0

�


0

;:::)

hh[

b

>℄; [

b

>℄i; q

1

([

b

>℄)i

by the elimination rule of the intensional propositional equality with respe
t to the proposition

hhx; [

b

>℄i; q

1

(x)i =

�(


0

�


0

;:::)

hhy; [

b

>℄i; q

1

(y)i [x 2 


0

; y 2 


0

℄



20 CHAPTER 2. EFFECTIVE QUOTIENTS IN CONSTRUCTIVE TYPE THEORY

where q

1

(x) � Qax(h�y:?; �y

0

:inr(id([

b

>℄))i) [x 2 


0

℄ and q

2

(y) � Qax(h�y:?; �y

0

:inl(id([

b

>℄))i) [y 2 


0

℄.

Thus, f(hh[a℄; [

b

>℄i; q

1

([a℄)i) =

Bool

f(hh[

b

>℄; [

b

>℄i; q

1

([

b

>℄)i), where f is obtained by an 9-elimination rule

on the judgement in the proposition 2.3.4. With the same assumption, also

f(hh[

b

>℄; [a℄i; q

2

([a℄)i) =

Bool

f(hh[

b

>℄; [

b

>℄i; q

2

([

b

>℄)i)


an be proved in a similar way; hen
e, sin
e by uniqueness of propositional equality proofs UIP we get

a proof-term of

q

1

([

b

>℄) =

[

\

E([

b

>℄)

^

_

\

E([

b

>℄)℄=




1

[

b

>℄

q

2

([

b

>℄)

we 
on
lude by the elimination rule of propositional equality

hh[

b

>℄; [

b

>℄i; q

1

([

b

>℄)i =

�(


0

�


0

;:::)

hh[

b

>℄; [

b

>℄i; q

2

([

b

>℄)i

and therefore

f(hh[a℄; [

b

>℄i; q

1

([a℄)i) =

Bool

f(hh[

b

>℄; [a℄i; q

2

([a℄)i)

Then assuming both T

0

(a) true and

(f(hh[a℄; [

b

>℄i; q

1

([a℄)i) =

Bool

false) ^ (f(hh[

b

>℄; [a℄i; q

2

([a℄)i) =

Bool

true) true

one 
an 
on
lude true =

Bool

false. But we know that :(true =

Bool

false) 
an be derived. Hen
e, under

the assumption

(f(hh[a℄; [

b

>℄i; q

1

([a℄)i) =

Bool

false) ^ (f(hh[

b

>℄; [a℄i; q

2

([a℄)i) =

Bool

true);

the judgement :T

0

(a) true holds. So, by using proposition 2.3.4 and a little of intuitionisti
 logi
, we


an 
on
lude (T

0

(a) _ :T

0

(a)) true that is

�

a2U

0

T

0

(a) _ :T

0

(a) true

In 
on
lusion the key points to reprodu
e the proof of the prin
iple of ex
luded middle on small sets are

the following:

� we use the axiom of 
hoi
e, by quantifying on

�(


0

�


0

; (w) [

\

E(�

1

(w))

^

_

\

E(�

2

(w))℄ =




1

[

b

>℄)

instead of �(


0

�


0

; (w) E(�

1

(w))_ E(�

2

(w))) in order to forget the proof-term of the disjun
tion;

� we exhibit the proof-term q

1

by means of the equality rule on the quotient set in order to get

hh[a℄; [

b

>℄i; q

1

([a℄)i 2 �(


0

�


0

; (w) [

\

E(�

1

(w))

^

_

\

E(�

2

(w))℄ =




1

[

b

>℄)

in order to prove under the assumption [a℄ =




0

[

b

>℄ true for a 2 U

0

hh[a℄; [

b

>℄i; q

1

([a℄)i =

�(


0

�


0

;:::)

hh[

b

>℄; [

b

>℄i; q

1

([

b

>℄)i

� we need the uniqueness of propositional equality proofs in order to prove

hh[

b

>℄; [

b

>℄i; q

1

([

b

>℄)i =

�(


0

�


0

;:::)

hh[

b

>℄; [

b

>℄i; q

2

([

b

>℄)i

Thus, provided one 
an give suitable rules, whi
h allow quotient sets and our e�e
tiveness 
ondition to

hold, and that meanwhile allow us to keep the usual meaning for the judgement C true, i.e. C true

holds if and only if there exists a proof element for the proposition C, then we would have a proof

element for the proposition �

a2U

0

T

0

(a) _ :T

0

(a), whi
h is expe
ted to fail for small sets, a

ording to

an intuitionisti
 explanation of 
onne
tives.
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2.4 Extensional quotient sets in extensional type theory

The proof that e�e
tiveness of quotient sets yields 
lassi
al logi
 for small sets 
an also be done for the

extensional version of Martin-L�of's Constru
tive Set Theory, eTT , with the rules for quotient sets, as

in Nuprl [Con86℄, to whi
h we add the e�e
tiveness 
ondition and the introdu
tion and 
onversion rules

of the 
odes for quotient sets into the �rst two universes.

About the properties of judgements of the form A true, we only re
all the 
ase of the set of the

extensional propositional equality Eq (see [NPS90℄). The formation and introdu
tion rules are the

following

A set a 2 A b 2 A

Eq(A; a; b) set

A = C set a = 
 2 A b = d 2 A

Eq(A; a; b) = Eq(C; 
; d)

A set a 2 A

eq

A

(a) 2 Eq(A; a; a)

A set a = b 2 A

eq

A

(a) = eq

A

(b) 2 Eq(A; a; a)

whereas the elimination rule is

d 2 Eq(A; a; b)

a = b 2 A

and it yields the admissibility of the following rule on judgements of the form A true:

Eq(A; a; b) true

a = b 2 A

In the following, we re
all the rules for quotient sets in the extensional type theory:

Quotient set

R(x; y) set [x 2 A; y 2 A℄




1

2 R(x; x)[x 2 A℄; 


2

2 R(y; x)[x 2 A; y 2 A; z 2 R(x; y)℄




3

2 R(x; z)[x 2 A; y 2 A; z 2 A;w 2 R(x; y); w

0

2 R(y; z)℄

A=R set

I-quotient

a 2 A

[a℄ 2 A=R

We spe
ify also the equality between terms of A=R

eq-quotient

a 2 A b 2 A d 2 R(a; b)

[a℄ = [b℄ 2 A=R

E-quotient

s 2 A=R l(x) 2 L([x℄)[x 2 A℄ l(x) = l(y) 2 L([x℄)[x 2 A; y 2 A; d 2 R(x; y)℄

Q(l; s) 2 L(s)

C-quotient

a 2 A l(x) 2 L([x℄)[x 2 A℄ l(x) = l(y) 2 L([x℄)[x 2 A; y 2 A; d 2 R(x; y)℄

Q(l; [a℄) = l(a) 2 L([a℄)

We also want to make equivalen
e relations e�e
tive:

E�e
tiveness 
ondition

a 2 A b 2 A [a℄ = [b℄ 2 A=R

R(a; b) true

We also add the 
odes of quotient sets in the introdu
tion rules for the �rst two universes and their


orresponding 
onversion rules, as in se
tion 2.2. Moreover, like for the intensional propositional equality

set, the introdu
tion of equality on quotient sets yields the admissibility of the following rule:

a 2 A b 2 A R(a; b) true

[a℄ = [b℄ 2 A=R
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This extension of eTT , 
alled eTT

Q

, is 
onsistent, be
ause there exists an interpretation in 
lassi
al

set theory (ZFC) with two strongly ina

essible 
ardinals, by interpreting the quotient sets in 
lassi
al

quotient sets and the �rst two universes respe
tively in the set of small sets and in the set of large sets.

In the presen
e of extensional propositional equality type, the rule for intensional quotient sets

be
ome equivalent to those of extensional quotient sets and the same holds with respe
t to e�e
tiveness


onditions. So, we 
an reprodu
e in eTT

Q

the proof of the previous se
tion, and we 
on
lude

�

a2U

0

T

0

(a) _ :T

0

(a) true

whi
h is expe
ted to fail for small sets.



Chapter 3

The type theory of Heyting

pretoposes

Summary We present a type theory, based on dependent types and proof-terms, whi
h is valid and 
omplete

with respe
t to the 
lass of Heyting pretoposes with a natural numbers obje
t. The type theory of Heyting

pretoposes turns out to be extensional in the presen
e of the extensional propositional equality type and of the

extensional quotient type. Subobje
ts are 
hara
terized as \mono" types.

3.1 Introdu
tion

An elementary topos 
an be viewed as a generalized universe of sets to develop mathemati
s. From a

logi
al point of view, topos theory 
orresponds to an intuitionisti
 higher order logi
 with typed variables

[LS86℄. Suitable toposes provide models for restri
ted Zermelo set theory [MM92℄. Re
ently, Joyal and

Moerdijk built a model of the whole intuitionisti
 set theory by using the notion of small map and by

taking a Heyting pretopos with a natural numbers obje
t as the 
ategori
al universe [JM95℄. The sear
h

for a type theory of Heyting pretoposes with a natural numbers obje
t arises from the purpose of giving

a pure type-theoreti
 des
ription of the models for intuitionisti
 set theory in [JM95℄, after analyzing

the notion of \Small map" from a type-theoreti
 point of view. From now on, we shall refer to a Heyting

pretopos with a natural numbers obje
t as H-pretopos.

With respe
t to a topos, a Heyting pretopos la
ks exponentials and the subobje
t 
lassi�er. Indeed, a

pretopos is a 
ategory equipped with �nite limits, stable �nite disjoint sums and stable e�e
tive quotients

of equivalen
e relations. A Heyting pretopos is a pretopos, where the pullba
k fun
tor on subobje
ts

has a right adjoint.

Makkay and Reyes found that pretoposes 
an be 
hara
terized with respe
t to the logi
al 
ategories,

whi
h are the ne
essary stru
tures to interpret the many-sorted 
oherent logi
 [MR77℄. Here, we want

to �nd a type theory 
omplete with respe
t to H-pretoposes, where there is no synta
ti
 distin
tion

between formulas and sorts.

The type theory of H-pretoposes, 
alled HP , is a 
al
ulus of dependent types, with a formation rule

for every type and introdu
tion, elimination and 
onversion rules for terms of the same type a

ording

to the style of Martin-L�of's type theory. In order to interpret the dependen
ies, we use the fa
t that

any H-pretopos is lo
ally a H-pretopos, i.e. for every obje
t A 2 ObP of the H-pretopos P , P=A is a

H-pretopos.

The main diÆ
ulty in �nding a type theory of H-pretoposes is exa
tly to des
ribe the relation between

the 
odomain �bration of a H-pretopos and the �bration of its subobje
ts. Indeed, we have to express

the fa
t that the subobje
ts form a Heyting algebra and are suÆ
iently 
omplete to interpret quanti�ers.

It is possible to 
hara
terize proof-theoreti
ally the subobje
ts as \mono" types: we say that a

dependent type B(x)[x 2 A℄ is mono, when

y = z 2 B(x) [x 2 A; y 2 B(x); z 2 B(x)℄

23
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is derivable. Indeed, in the 
ategori
al semanti
s (see 
hapter 5) the interpretation of a mono type will

turn out to be in 
orresponden
e with a monomorphism.

The mono dependent type is the 
ru
ial 
on
ept for the proof-theoreti
al 
hara
terization of the right

adjoint to the \pullba
k fun
tor" on subobje
ts. As a matter of fa
t, in order to represent this right

adjoint, we introdu
e a dependent produ
t type restri
ted to a mono type, 
alled the forall type.

Moreover, we 
onsider the indexed sum type instead of the simple produ
t type, sin
e for its inter-

pretation it is suÆ
ient to have pullba
ks. In the synta
ti
 H-pretopos, by the indexed sum types we

establish a 
orresponden
e between subobje
ts and mono dependent types.

In 
on
lusion, in the type theory of H-pretoposes there are the following types: the terminal type, the

indexed sum type, the extensional equality type 
orresponding to �nite limits, the quotient type based

only on mono equivalen
e relations 
orresponding to the quotient of an equivalen
e relation, the disjoint

sum type together with the false type 
orresponding to �nite disjoint 
oprodu
ts and �nally, the forall

type 
orresponding to the right adjoint on subobje
ts. The presen
e of the extensional propositional

equality is 
ru
ial in order to prove that the synta
ti
 
ategory of 
losed types and suitable terms of HP

is an H-pretopos.

To prove the 
ompleteness theorem of HP with respe
t to the 
lass of H-pretoposes, we need to add

two axioms, whi
h do not follow the s
hema of all the other rules: e�e
tiveness for quotients of mono

equivalen
e relations and disjointness of sums.

3.2 The type theory HP

We start with the des
ription of the dependent type theory HP , valid and 
omplete with respe
t to

H-pretoposes, as we will see in the next 
hapters. This typed system is equipped with types, whi
h

should be thought of as sets or data types, and with typed terms whi
h represent proofs of the types to

whi
h they belong. In the following we present the formation rules for types and the introdu
tion and

elimination rules for terms. In the style of Martin-L�of's type theory, we have four kinds of judgements

[NPS90℄:

A type A = B a 2 A a = b 2 A

that is the type judgement, the equality between types, the term judgement and the equality between

terms of the same type. The 
ontexts of these judgements are teles
opi
 [dB91℄, sin
e types are allowed

to depend on variables of other types. The 
ontexts are generated by the following rules

1C) ; 
ont 2C)

� 
ont A type [�℄

�; x 2 A 
ont

(x 2 A 62 �)

plus the rules of equality between 
ontexts [Str91℄, [Pit95℄. In the following, we present the inferen
e

rules to 
onstru
t type judgements and term judgements with their equality judgements by re
ursion.

One should also add all the inferen
e rules that express re
exivity, symmetry and transitivity of the

equality between types and terms and the set equality rule


onv)

a 2 A [�℄ A = B [�℄

a 2 B [�℄

Moreover, by the following rule we assume typed variables

var)

�; x 2 A;� 
ont

x 2 A [�; x 2 A;�℄

We 
an derive then the stru
tural rules of weakening, substitution and of a suitable ex
hange.

Now, we give the formation rules for types spe
i�
 to HP and then the introdu
tion, elimination and


onversion rules of its terms.

We adopt the usual de�nitions of bound and free o

urren
es of variables and we identify two terms

under �-
onversion.

Remark 3.2.1 In the following, the 
ontext 
ommon to all judgements involved in a rule will be omitted.

The typed variable appearing in a 
ontext is meant to be added to the impli
it 
ontext as the last one.
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Terminal type

Tr) > type I-Tr) ? 2 > C-Tr)

t 2 >

t = ? 2 >

False type

Fs) ? type E-Fs)

a 2 ? A type

r

o

(a) 2 A

Indexed Sum type

�)

C(x) type [x 2 B℄

�

x2B

C(x) type

I-�)

b 2 B 
 2 C(b)

hb; 
i 2 �

x2B

C(x)

E-�)

d 2 �

x2B

C(x) m(x; y) 2M(hx; yi) [x 2 B; y 2 C(x)℄

split(d;m) 2M(d)

C-�)

b 2 B 
 2 C(b) m(x; y) 2M(hx; yi) [x 2 B; y 2 C(x)℄

split(hb; 
i;m) = m(b; 
) 2M(hb; 
i)

Equality type

Eq)

C type 
 2 C d 2 C

Eq(C; 
; d) type

I-Eq)


 2 C

eq

C

(
) 2 Eq(C; 
; 
)

E-Eq)

p 2 Eq(C; 
; d)


 = d 2 C

C-Eq)

p 2 Eq(C; 
; d)

p = eq

C

2 Eq(C; 
; d)

Disjoint Sum type

+)

C type D type

C +D type

I

1

-+)


 2 C

inl(
) 2 C +D

I

2

-+)

d 2 D

inr(d) 2 C +D

E-+)

w 2 C +D a

C

(x) 2 A(inl(x)) [x 2 C℄ a

D

(y) 2 A(inr(y)) [y 2 D℄

D(w; a

C

; a

D

) 2 A(w)

C

1

-+)


 2 C a

C

(x) 2 A(inl(x)) [x 2 C℄ a

D

(y) 2 A(inr(y)) [y 2 D℄

D(inl(
); a

C

; a

D

) = a

C

(
) 2 A(inl(
))

C

2

-+)

d 2 D a

C

(x) 2 A(inl(x)) [x 2 C℄ a

D

(y) 2 A(inr(y)) [y 2 D℄

D(inr(d); a

C

; a

D

) = a

D

(d) 2 A(inr(d))

Disjointness


 2 C d 2 D inl(
) = inr(d) 2 C +D

m(
; d) 2 ?

Forall type

8)

C(x) type[x 2 B℄ y = z 2 C(x) [x 2 B; y 2 C(x); z 2 C(x)℄

8

x2B

C(x) type

I-8)


 2 C(x)[x 2 B℄ y = z 2 C(x) [x 2 B; y 2 C(x); z 2 C(x)℄

�x

B

:
 2 8

x2B

C(x)

E-8)

b 2 B f 2 8

x2B

C(x)

Ap(f; b) 2 C(b)

�C-8)

b 2 B 
 2 C(x)[x 2 B℄ y = z 2 C(x) [x 2 B; y 2 C(x); z 2 C(x)℄

Ap(�x

B

:
; b) = 
(b) 2 C(b)

�C-8)

f 2 8

x2B

C(x)

�x

B

:Ap(f; x) = f 2 8

x2B

C(x)

Quotient type

Q)

R(x; y) type [x 2 A; y 2 A℄; z = w 2 R(x; y)[x 2 A; y 2 A; z 2 R(x; y); w 2 R(x; y)℄




1

2 R(x; x)[x 2 A℄; 


2

2 R(y; x)[x 2 A; y 2 A; z 2 R(x; y)℄




3

2 R(x; z)[x 2 A; y 2 A; z 2 A;w 2 R(x; y); w

0

2 R(y; z)℄

A=R type
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I-Q)

a 2 A

[a℄ 2 A=R

eq-Q)

a 2 A b 2 A d 2 R(a; b)

[a℄ = [b℄ 2 A=R

E-Q)

p 2 A=R l(x) 2 L([x℄) [x 2 A℄ l(x) = l(y) 2 L([x℄) [x 2 A; y 2 A; d 2 R(x; y)℄

Q(l; p) 2 L(p)

C-Q)

a 2 A l(x) 2 L([x℄) [x 2 A℄ l(x) = l(y) 2 L([x℄) [x 2 A; y 2 A; d 2 R(x; y)℄

Q(l; [a℄) = l(a) 2 L([a℄)

E�e
tiveness

a 2 A b 2 A [a℄ = [b℄ 2 A=R

f(a; b) 2 R(a; b)

Natural Numbers type

nat) N type I

1

-nat) 0 2 N I

2

-nat)

n 2 N

s(n) 2 N

E-nat)

n 2 N a 2 L(0) l(x; y) 2 L(s(x)) [x 2 N; y 2 L(x)℄

Re
(a; l; n) 2 L(n)

C

1

-nat)

a 2 L(0) l(x; y) 2 L(s(x)) [x 2 N; y 2 L(x)℄

Re
(a; l; 0) = a 2 L(0)

C

2

-nat)

n 2 N a 2 L(0) l(x; y) 2 L(s(x)) [x 2 N; y 2 L(x)℄

Re
(a; l; s(n)) = l(n;Re
(a; l; n)) 2 L(s(n))

Thus, we have �nished with the presentation of our 
al
ulus. In the �C-8 rule the variable x does not

appear in f , sin
e we 
an abstra
t only on the last variable of the 
ontext by the introdu
tion rule of

the forall type. From now on we shall often omit the word type in the type judgements.

Note that the disjointness axiom is not derivable from the other rules. Indeed, we 
an obtain a model for

the 
al
ulus, whi
h falsi�es disjointness by using a domain with only one element (see [Smi88℄), where

the quotient type A=R is interpreted as A.

A
tually, from now on, we will refer to an equivalent formulation of the 
al
ulus HP , where the

elimination and 
onversion rules for the indexed sum type are repla
ed by the following rules:

E

1

-�)

d 2 �

x2B

C(x)

�

B

1

(d) 2 B

E

2

-�)

d 2 �

x2B

C(x)

�

C(�

1

(d))

2

(d) 2 C(�

1

(d))

�

1

C-�)

b 2 B 
 2 C(b)

�

B

1

(hb; 
i) = b 2 B

�

2

C-�)

b 2 B 
 2 C(b)

�

C(b)

2

(hb; 
i) = 
 2 C(b)

�C-�)

d 2 �

x2B

C(x)

h�

B

1

(d); �

C(�

1

(d))

2

(d)i = d 2 �

x2B

C(x)

Every type for whi
h we 
an prove

B(x) type [x 2 A℄

y = z 2 B(x) [x 2 A; y 2 B(x); z 2 B(x)℄

is 
alled a mono type, that is a proof-irrelevant type.

In parti
ular, the forall type is mono.

In the following, given a judgement b(x) 2 B(x)[x 2 A℄ by the expression

(x)b(x)

we mean the equivalen
e 
lass of b(x) 2 B(x)[x 2 A℄ under the following relation:

b(x) 2 B(x)[x 2 A℄ � b(y) 2 B(y)[y 2 A℄
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Moreover, we write b for (x)b(x). A
tually, in order to have su
h expressions we should pass to the type

theory with higher ariety [NPS90℄, with the warning that what it is a type here, it is a set in [NPS90℄.

By adding the so 
alled fun
tion type, given b(x) 2 B(x)[x 2 A℄ we have the abstra
tion, that is (x)b 2

(x 2 A)B(x), the appli
ation, the �-
onversion and the �-
onversion, that is (x)b(x) = b 2 (x 2 A)B(x).

Note that the E-quotient and C-quotient rules of the quotient type are derivable, by using the indexed

sum type, from the following restri
ted elimination rule of the quotient type for types not depending on

A=R,

E

s

-quotient

M type m(x) 2M [x 2 A℄ m(x) = m(y) 2M [x 2 A; y 2 A; d 2 R(x; y)℄

Q

s

(m; z) 2M [z 2 A=R℄

together with the following two 
onversion rules, also derivable in HP : one is the �-
onversion

�

s

C-quotient

a 2 A m(x) 2M [x 2 A℄ m(x) = m(y) 2M [x 2 A; y 2 A; d 2 R(x; y)℄

Q

s

(m; [a℄) = m(a) 2M

and the other one is the �-
onversion stating the uniqueness of Q

s

:

�

s

C-quotient

t(z) 2M [z 2 A=R℄

Q

s

((x)t([x℄); z) = t(z) 2M [z 2 A=R℄

Indeed, given the judgements l(x) 2 L([x℄)[x 2 A℄ and l(x) = l(y) 2 L([x℄) [x 2 A; y 2 A; d 2 R(x; y)℄,

we use the E

s

-quotient rule on h[x℄; l(x)i 2 �

z2A=R

L(z) [x 2 A℄. So, by the se
ond proje
tion of the

indexed sum type, we 
an de�ne Q(l; p) 2 L(p) for p 2 A=R, whi
h turns out to be well de�ned by �

s

and �

s


onversion rules. Indeed, given the following two judgements

l(x) 2 L([x℄) [x 2 A℄ l(x) = l(y) 2 L([x℄) [x 2 A; y 2 A; d 2 R(x; y)℄

we get

h[x℄; l(x)i 2 �

z2A=R

L(z) [x 2 A℄

and

h[x℄; l(x)i = h[y℄; l(y)i 2 �

z2A=R

L(z) [x 2 A; y 2 A; d 2 R(x; y)℄

Hen
e, by E

s

-quotient rule

Q

s

((x)h[x℄; l(x)i; z) 2 �

z2A=R

L(z) [z 2 A=R℄

and we de�ne

Q(l; z) � �

2

(Q

s

((x)h[x℄; l(x)i; z))

where

�

2

(Q

s

((x)h[x℄; l(x)i; z)) 2 L(�

1

(Q

s

((x)h[x℄; l(x)i; z))) [z 2 A=R℄

Q(l; z) is well de�ned, be
ause by �

s

C-quotient rule

�

1

(Q

s

( (x)h[x℄; l(x)i; z) = Q

s

( (x

0

)�

1

(Q

s

((x)h[x℄; l(x)i; [x

0

℄); z) 2 A=R

but we derive

�

1

(Q

s

( (x)h[x℄; l(x)i; [x

0

℄) = [x

0

℄ 2 A=R [x

0

2 A℄

hen
e

Q

s

( (x

0

)�

1

(Q

s

( (x)h[x℄; l(x)i; [x

0

℄ ); z) = Q

s

((x

0

)[x

0

℄; z) 2 A=R [z 2 A=R℄

and again by �

s

C-quotient rule

Q

s

( (x

0

)[x

0

℄; z) = z 2 A=R [z 2 A=R℄
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so we 
on
lude

�

1

(Q

s

((x)h[x℄; l(x)i; z) = z 2 A=R [z 2 A=R℄

Also, the E-Nat rule and the 
onversion rules of the natural numbers type are derivable, by using the

indexed sum type, from the following restri
ted elimination rule of the natural numbers type for types

not depending on N

E

s

-Nat

L type a 2 L l(y) 2 L [y 2 L℄

Re


s

(a; l; n) 2 L [n 2 N ℄

together with the following three 
onversion rules, also derivable in HP : two are the �-
onversions

�

s

C

1

-Nat

a 2 L l(y) 2 L [y 2 L℄

Re


s

(a; l; 0) = a 2 L

�

s

C

2

-Nat

a 2 L l(y) 2 L [y 2 L℄

Re


s

(a; l; s(n)) = l(Re


s

(a; l; n)) 2 L [n 2 N ℄

and the other one is the �-
onversion stating the uniqueness of Re


s

:

�

s

C-Nat

a 2 L l(y) 2 L [y 2 L℄ t(n) 2 L [n 2 N ℄

t(0) = a 2 L t(s(n)) = l(t(n)) 2 L

Re


s

(a; l; n) = t(n) 2 L [n 2 N ℄

Indeed, given the judgements a 2 L(0) and l(x; y) 2 L(s(x)) [x 2 N; y 2 L(x)℄, we use the E

s

-Nat

elimination rule on h0; ai 2 �

n2N

L(n) and hs(�

1

(z)); l(�

1

(z); �

2

(z))i 2 �

n2N

L(n) [z 2 �

n2N

L(n)℄. So,

by the se
ond proje
tion of the indexed sum type, we 
an de�ne the re
ursion term, whi
h turns out to

be well de�ned by �

s

and �

s


onversion rules.

Indeed, given the following two judgements

a 2 L(0) and l(x; y) 2 L(s(x)) [x 2 N; y 2 L(x)℄

we get

h0; ai 2 �

n2N

L(n)

and

hs(�

1

(z)); l(�

1

(z); �

2

(z))i 2 �

n2N

L(n) [z 2 �

n2N

L(n)℄

hen
e, by E

s

-Nat rule we obtain

Re


s

(h0; ai; (z)hs(�

1

(z)); l(�

1

(z); �

2

(z))i; n) 2 �

n2N

L(n)

and we de�ne

Re
(a; l; n) � �

2

(Re


s

(h0; ai; (z)hs(�

1

(z)); l(�

1

(z); �

2

(z))i ; n))

where

�

2

(Re


s

(h0; ai; hs(�

1

(z)); l(�

1

(z); �

2

(z))i ; n))

2 L(�

1

(Re


s

(h0; ai; (z)hs(�

1

(z)); l(�

1

(z); �

2

(z))i ; n)))

Re
(a; l; n) is well de�ned be
ause by �

s

C-Nat rule we 
an derive

�

1

(Re


s

(h0; ai; (z)hs(�

1

(z)); l(�

1

(z); �

2

(z))i ; n)) = n 2 N [n 2 N ℄

Indeed, by �

s

C

1

-Nat rule on the zero

�

1

(Re


s

(h0; ai; hs(�

1

(z)); l(�

1

(z); �

2

(z))i ; 0)) = �

1

(h0; ai) = 0

and by �

s

sC

2

-Nat rule on the su

essor

�

1

(Re


s

(h0; ai; hs(�

1

(z)); l(�

1

(z); �

2

(z))i ; s(n))) = �

1

(hs(u); l(u;w)i)
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where

u = �

1

(Re


s

(h0; ai; hs(�

1

(z)); l(�

1

(z); �

2

(z))i ; n)))

w = �

2

(Re


s

(h0; ai; hs(�

1

(z)); l(�

1

(z); �

2

(z))i ; n)))

and then

�

1

(Re


s

(h0; ai; hs(�

2

(z)); l(�

1

(z); �

2

(z))i ; s(n))) =

s(�

1

(Re


s

(h0; ai; hs(�

1

(z)); l(�

1

(z); �

2

(z))i ; n)))

So, by �

s

C-Nat rule we obtain

�

1

(Re


s

(h0; ai; hs(�

1

(z)); l(�

1

(z); �

2

(z))i ; n)) = Re


s

(0; s(n); n)

and again by �

s

C-Nat rule

Re


s

(0; s(n); n) = n 2 N

Finally, we 
on
lude

�

1

(Re


s

(h0; ai; hs(�

1

(z)); l(�

1

(z); �

2

(z))i ; n)) = n 2 N [n 2 N ℄

Remark 3.2.2 Note that the extensional propositional equality type is 
ru
ial to derive the 
onversion

rules stating the uniqueness of the elimination 
onstants for the quotient type and the natural numbers

type.

3.2.1 The signature of the 
al
ulus HP .

In order to give a more rigorous presentation of the type theoryHP , we assigne to it a signature Sg(HP ),

as in [Pit95℄. We write the signature in the typed lambda 
al
ulus with � and � equalities based on the

following types, that we 
all sorts, to avoid 
onfusion with the types of T :

� TY PES, TERMS are ground sorts;

� �! � is a sort, provided that � and � are sorts.

Therefore, the signature 
onsists of a 
olle
tions of meta-
onstants, given by type-valued fun
tion sym-

bols

C : �! TY PES

and term-valued fun
tion symbols

s : �! TERMS

where � is a sort.

Remark 3.2.3 We 
ould also des
ribe the type-valued fun
tion symbol as in [NPS90℄, where a unique

ground sort O is 
onsidered.

Def. 3.2.4 We 
all raw types the expressions of sort TY PES and raw terms the expressions of sort

TERMS, whi
h are built up from the fun
tion symbols of the signature and a �xed 
ountably number

of variables V ar = fx

1

; x

2

; : : :g of sort TERMS.

We give the de�nition of Sg(HP ) in 
orresponden
e with the type formation rules and the terms

introdu
ed in the introdu
tion, elimination, 
onversion rules and in the axioms of HP . Noti
e that in

giving the signature, we 
onsider a variant of the formulation of the type theory HP , where in the 
ase

of elimination rule for the quotient type and the natural numbers type we have restri
ted elimination

rules with the 
orresponding 
onversion rules.

1. With respe
t to the terminal type

> : TY PES

? : TERMS
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2. With respe
t to the false type we de�ne

? : TY PES

r

o

: TERMS ! TERMS

3. With respe
t to the equality type we de�ne

Eq : TY PES ! TERMS ! TERMS ! TY PES

eq : TY PES ! TERMS ! TERMS

and we put eq

X

(x) � eq(X; x).

4. With respe
t to the indexed sum type, we de�ne

� : TY PES ! (TERMS ! TY PES)! TY PES

and we put �

x2X

Y (x) � �(X;Y ),

h i : TY PES ! (TERMS ! TY PES)! TERMS ! TERMS ! TERMS

and we put hx; yi

X;Y

� h i(X;Y; x; y),

�

1

: TY PES ! (TERMS ! TY PES)! TERMS ! TERMS

�

2

: TY PES ! (TERMS ! TY PES)! TERMS ! TERMS

and we put �

1

X

(x) � �

1

(X;Y; x) and �

2

Y

(x) � �

2

(X;Y; x).

5. With respe
t to the disjoint sum type we de�ne

+ : TY PES ! TY PES ! TY PES

and we put X + Y � +(X;Y ),

inl : TY PES ! TY PES ! TERMS ! TERMS

inr : TY PES ! TY PES ! TERMS ! TERMS

and we put inl

X;Y

(x) � inl(X;Y; x) and inr

X;Y

(x) � inr(X;Y; x),

D : TY PES ! TY PES ! (TERMS ! TY PES)!

! TERMS ! (TERMS ! TERMS)! (TERMS ! TERMS)! TERMS

and we put D

X;Y;Z

(x; y; z) � D(X;Y; Z; x; y; z),

m

?

: TY PES ! TY PES ! TERMS ! TERMS ! TERMS

and we put m

?;X;Y

(x; y) � m

?

(X;Y; x; y).

6. With respe
t to the forall type we de�ne

8 : TY PES ! (TERMS ! TY PES)! TY PES

and we put 8

x2X

Y (x) � 8(X;Y ),

� : TY PES ! (TERMS ! TY PES)! (TERMS ! TERMS)! TERMS

and we put �(X;Y; y) � �

X;Y

x

X

:y(x),

Ap : TY PES ! (TERMS ! TY PES)! TERMS ! TERMS ! TERMS

and we put Ap

X;Y

(x; y) � Ap(X;Y; x; y).
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7. With respe
t to the quotient type we de�ne

= : TY PES ! (TERMS ! TERMS ! TY PES)! TY PES

and we put X=Y � =(X;Y ),

[ ℄ : TY PES ! (TERMS ! TERMS ! TY PES)! TERMS ! TERMS

and we put [x℄

X=Y

� [ ℄(X;Y; x),

Q

s

: TY PES ! (TERMS ! TERMS ! TY PES)! TY PES !

! (TERMS ! TERMS)! TERMS ! TERMS

and we put Q

s

X;Y;Z

(x; y) � Q

s

(X;Y; Z; x; y), where Q

s


orresponds to the signature introdu
ed in

the restri
ted elimination rule E

s

-quotient,

f : TY PES ! (TERMS ! TERMS ! TY PES)! TERMS ! TERMS ! TERMS

and we put f

X;Y

(x; y) � f(X;Y; x; y).

8. With respe
t to the natural numbers type we de�ne

N : TY PES

0

N

: TERMS

s

N

: TERMS ! TERMS

Re


s

: TY PES ! TERMS ! (TERMS ! TERMS)! TERMS ! TERMS

and we put Re


s

X

(x; y; z) � Re


s

(X; x; y; z), where Re


s


orresponds to the signature introdu
ed

in the restri
ted elimination rule E

s

-Nat.

3.3 The synta
ti
 H-pretopos

We re
all the 
ategori
al de�nition of a Heyting pretopos [MR77℄, [JM95℄.

Def. 3.3.1 A pretopos is a 
ategory equipped with �nite limits, stable �nite disjoint sums and stable

e�e
tive quotients of equivalen
e relations. A Heyting pretopos is a pretopos where the pullba
k fun
tor

on subobje
ts has a right adjoint.

We re
all that with a H-pretopos we mean a Heyting pretopos with a natural numbers obje
t (see the

appendix in [JM95℄).

Now, we show how to build a H-pretopos with the type theory in order to prove the 
ompleteness

theorem w.r.t. H-pretopoi. We de�ne the synta
ti
 
ategory P

T

as follows.

Def. 3.3.2 The obje
ts of P

T

are the 
losed types of HP , A;B;C : : : and the morphisms between two

types, A and B, are the expressions (x)b(x) (see [NPS90℄) 
orresponding to

b(x) 2 B[x 2 A℄

where the type B does not depend on A. The 
omposition in P

T

is de�ned by substitution, that

is given (x)b(x) 2 P

T

(A;B) and (y)
(y) 2 P

T

(B;C) their 
omposition is (x)
(b(x)). We state that

(x)b(x) 2 P (A;B) and (x)b

0

(x) 2 P (A;B) are equal i� we 
an derive

b(x) = b

0

(x) 2 B[x 2 A℄

The identity is (x)x 2 P (A;A) obtained by x 2 A[x 2 A℄.

In this se
tion we are going to prove that
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Proposition 3.3.3 The 
ategory P

T

is a H-pretopos.

First of all we prove that P

T

has finite limits:

The terminal obje
t is > and from any obje
t A the morphism towards > is

(x)? 2 P

T

(A;>)

whi
h is unique by the 
onversion rule for >.

Given 
 2 P

T

(A;C) and d 2 P

T

(B;C) the pullba
k is given by

�

x2A

�

y2B

Eq(C; 
(x); d(y))

where the �rst proje
tion to A is

(z)�

A

1

(z) 2 P

T

(�

x2A

�

y2B

Eq(C; 
(x); d(y)); A)

and the se
ond proje
tion to B is

(z)�

B

1

(�

A

2

(z)) 2 P

T

(�

x2A

�

y2B

Eq(C; 
(x); d(y)); B)

From now on, we simply write a =

A

b to mean Eq(A; a; b) and often we will simply write eq

C

, instead

of eq

C

(
).

3.3.1 The disjoint 
oprodu
t

The 
oprodu
t of A and B is de�ned by A+B, where the inje
tions are

(x) inl(x) 2 P

T

(A;A+B) and (y) inr(y) 2 P

T

(B;A +B)

Given 
 2 P

T

(A;C) and d 2 P

T

(B;C) the mediating morphism 
� d from A+B to C is (w)D(w; 
; d).

Coprodu
ts are disjoint by the rule of disjointness. Moreover, 
oprodu
ts are stable under pullba
k. For

this purpose, we prove that

Lemma 3.3.4 A+B is isomorphi
 in P

T

to

�

w2A+B

(�

x2A

inl(x) =

A+B

w) + (�

y2B

inr(y) =

A+B

w)

Proof.

We put the following abbreviations

A+

P

B � �

w2A+B

(�

x2A

inl(x) =

A+B

w) + (�

y2B

inr(y) =

A+B

w)

and for any w 2 A+B

~

A(w) � �

x2A

inl(x) =

A+B

w

~

B(w) � �

y2B

inr(y) =

A+B

w

where the inje
tions of

~

A(w)+

~

B(w) are inl

P

(z) 2

~

A(w)+

~

B(w) [z 2

~

A(w)℄ and inr

P

(z) 2

~

A(w)+

~

B(w) [z 2

~

B(w)℄. We 
onsider (z)�

1

(z) 2 P

T

(A+

P

B;A+B) and we de�ne its inverse Æ as

(w)hw;D(w; d

1

; d

2

)i 2 P

T

(A+B;A+

P

B)

where d

1


orresponds to

inl

P

(hx; eq

A+B

i) 2

~

A(inl(x)) +

~

B(inl(x)) [x 2 A℄

and d

2


orresponds to

inr

P

(hy; eq

A+B

i)

~

A(inr(y)) +

~

B(inr(y)) [y 2 B℄
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We 
an easily see that �

1

is the inverse morphism of Æ. Indeed, �

1

� Æ = id follows from the elimination

rule for the disjoint sum type. In order to prove that Æ � �

1

= id, that is to �nd a proof of

h�

1

(z);D(�

1

(z); d

1

; d

2

)i = z 2 A+

P

B [z 2 A+

P

B℄

it is suÆ
ient to derive a proof of

�

2

(z) = D(�

1

(z); d

1

; d

2

) 2

~

A(�

1

(z)) +

~

B(�

1

(z)) [z 2 A+

P

B℄

So, we show how by the elimination rule for the disjoint sum type we derive a proof of

D(�

1

(z); d

1

; d

2

) =

A+

P

B

z

2

[z 2 A+

P

B; z

2

2

~

A(�

1

(z)) +

~

B(�

1

(z))℄

Indeed, suppose z 2 A +

P

B and w

1

2

~

A(�

1

(z)), from whi
h we get inl(�

A

1

(w

1

)) = �

1

(z) 2 A + B and

then

D(�

1

(z); d

1

; d

2

) = D(inl(�

A

1

(w

1

)); d

1

; d

2

) = inl

P

(h�

A

1

(w

1

); eq

A+B

i) = inl

P

(w

1

)

that is we get a proof of D(�

1

(z); d

1

; d

2

) =

A+

P

B

inl

P

(w

1

) [z 2 A+

P

B;w

1

2

~

A(�

1

(z))℄. Analogously, we

derive a proof of D(�

1

(z); d

1

; d

2

) =

A+

P

B

inr

P

(w

2

) [z 2 A+

P

B;w

2

2

~

B(�

1

(z))℄. So, given z 2 A+

P

B,

by elimination rule with respe
t to

~

A(�

1

(z)) +

~

B(�

1

(z)) we get a proof of

D(�

1

(z); d

1

; d

2

) =

A+

P

B

z

2

[z 2 A+

P

B; z

2

2

~

A(�

1

(z)) +

~

B(�

1

(z))℄

Now, suppose z 2 A+

P

B, sin
e �

2

(z) 2

~

A(�

1

(z)) +

~

B(�

1

(z)) by substitution and by elimination of the

extensional equality type we 
on
lude

�

2

(z) = D(�

1

(z); d

1

; d

2

) 2

~

A(�

1

(z)) +

~

B(�

1

(z))

Proposition 3.3.5 In P

T


oprodu
ts are stable under pullba
ks.

Proof.

Given the following pullba
ks

P

1

�

1

1

��

�

1

2 //
A

a

��
D

m //
C

P

2

�

2

1

��

�

2

2 //
B

b

��
D

m //
C

P

�

P

1

��

�

P

2 //
A+B

a�b

��
D

m //
C

we have to show that in P

T

=D

�

1

1

� �

2

1

' �

P

1

For this purpose we de�ne


 : P

1

+ P

2

! P

as 
 � (w)D(w; d

1

; d

2

) where d

1


orresponds to

h�

1

(w

1

); hinl(�

1

(�

2

(w

1

))); eq

C

ii 2 P [w

1

2 P

1

℄

and d

2


orresponds to

h�

1

(w

2

); hinr(�

1

(�

2

(w

2

))); eq

C

ii 2 P [w

2

2 P

2

℄

We 
an noti
e that �

P

1

� 
 = �

1

1

� �

2

1

and that �

P

2

� 
 = (inl � �

1

2

)� (inr � �

2

2

).

Moreover, we want to de�ne




�1

: P ! P

1

+ P

2

First of all, we 
onsider that, given w 2 P , we get �

1

(�

2

(w)) 2 A+B, hen
e, by Æ de�ned in the above

lemma we dedu
e

�

2

(Æ(�

1

(�

2

(w)))) 2

~

A(�

1

(�

2

(w))) +

~

B(�

1

(�

2

(w)))
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Now, we use the elimination rule with respe
t to

~

A(�

1

(�

2

(w))) +

~

B(�

1

(�

2

(w))) and we de�ne




�1

� (w)D(�

2

(Æ(�

1

(�

2

(w)))); d

0

1

; d

0

2

)

where d

0

1


orresponds to

inl(h�

1

(w); h�

1

(x

0

); eq

C

ii) 2 P

1

+ P

2

[w 2 P; x

0

2

~

A(�

1

(�

2

(w)))℄

Indeed, from w 2 P and x

0

2

~

A(�

1

(�

2

(w))) we get

m(�

1

(w)) = (a� b)(�

1

(�

2

(w))) and �

1

(�

2

(w)) = inl(�

1

(x

0

))

therefore m(�

1

(w)) = a(�

1

(x

0

)). In an analogous way, we de�ne d

0

2

as

inr(h�

1

(w); h�

1

(y

0

); eq

C

ii) 2 P

1

+ P

2

[w 2 P; y

0

2

~

B(�

1

(�

2

(w)))℄

We 
an prove that 


�1

is the inverse morphism of 
 by the elimination rule of the disjoint sum type.

3.3.2 The quotient of an equivalen
e relation

Given an equivalen
e relation

R

// g

//
A�A

in the synta
ti
 
ategory P

T

, we 
onsider the following mono type:

R(x; x

0

) � �

y2R

g(y) =

A�A

hx; x

0

i[x 2 A; x

0

2 A℄

It is easy to 
he
k that the 
ategori
al de�nition of equivalen
e relation implies thatR(x; x

0

)[x 2 A; x

0

2 A℄

is an equivalen
e relation from the type-theoreti
al point of view. Let A=R be the quotient with

respe
t to R(x; x

0

)[x 2 A; x

0

2 A℄. We 
an prove that (z)[z℄ 2 P

T

(A;A=R) is the 
oequalizer of

�

2

� g 2 P

T

(R;A) and �

2

� g 2 P

T

(R;A), by the elimination and 
onversion rules of the quotient type.

The uniqueness property of the 
oequalizer follows from the �

s

C-quotient rule.

In P

T

the 
ategori
al equivalen
e relations are e�e
tive, by the rule of e�e
tiveness and by the fa
t that

equivalen
e relations are moni
. Moreover, we prove stability of quotients for equivalen
e relations.

Proposition 3.3.6 In P

T

equivalen
e relations are stable e�e
tive.

Proof.

In the following we write �

A�D

i

for the i'th proje
tion from the vertex of the pullba
k of unspe
i�ed

arrows A! �  D. We will omit to label the proje
tions, when their domains and 
odomains are 
lear

from the 
ontext.

Given m 2 P

T

(D;A=R) let us 
onsider the following pullba
ks:

P

�

D�A

2 //

�

D�A

1

��

A

(z)[z℄

��
D

m //
A=R

Q

�

D�R

1

��

�

D�R

2 //
R

�

1

�g

��
�

2

�g

��
A

(z)[z℄

��
D

m //
A=R

where

P � �

w2D

�

x2A

Eq(A=R;m(w); [x℄) and Q � �

w2D

�

y2R

Eq(A=R;m(w); [(�

1

� g)(y)℄)
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Moreover, let us 
onsider these two pullba
ks:

Q

(�

D�A

2

)

�

(�

1

�g)

��

�

D�R

2 //
R

�

1

�g

��
P

�

D�A

2

//
A

Q

(�

D�A

2

)

�

(�

2

�g)

��

�

D�R

2 //
R

�

2

�g

��
P

�

D�A

2

//
A

where

(�

D�A

2

)

�

(�

1

� g) � (w)h�

1

(w); h�

1

(g(�

1

(�

2

(w)))); eqii

and

(�

D�A

2

)

�

(�

2

� g) � (w)h�

1

(w); h�

2

(g(�

1

(�

2

(w)))); eqii

We must show that in P=P

T

�

D�A

1

' 
oeq((�

A

2

)

�

(�

1

� g); (�

A

2

)

�

(�

2

� g))

We re
all that the obje
ts of the 
ategory P=P

T

are the morphisms b : P ! B of P , and the morphisms

of P=P

T

from b : P ! B to b

0

: P ! B

0

are the morphisms t : B ! B

0

of P su
h that t � b = b

0

. We 
an

observe that the pullba
k given by the e�e
tiveness

R

�

1

�g

��

�

2

�g

//
A

(z)[z℄

��
A

(z)[z℄

//
A=R

D

m

==zzzzzzzz


an be 
ompleted in a 
ube of pullba
ks, therefore

Q

(�

A

2

)

�

(�

1

�g)

��

(�

A

2

)

�

(�

2

�g)

//
P

�

D�A

1

��
P

�

D�A

1

//
D

is a pullba
k and hen
e h�

�

2

(�

1

� g); �

�

2

(�

2

� g)i is an equivalen
e relation as kernel pair of �

D�A

1

.

Hen
e, let us 
onsider the 
oequalizer of �

�

2

(�

1

� g) and �

�

2

(�

2

� g)

[�℄ : P ! P=m

�

(R)

where P=m

�

(R) is the quotient type 
on
erning the equivalen
e relation h�

�

2

(�

1

� g); �

�

2

(�

2

� g)i.

Sin
e �

D�A

1

� �

�

2

(�

1

� g) = �

D�A

1

� �

�

2

(�

2

� g) and [�℄ is the 
oequalizer of �

�

2

(�

1

� g) and �

�

2

(�

2

� g), there

exists a map

Q

P

: P=m

�

(R)! D

su
h that Q

P

� [�℄ = �

D�A

1

. In order to prove that Q

P

is an isomorphism, we need the following lemma:

Lemma 3.3.7 The arrow Q

P

is a monomorphism.

Proof.

We show that we 
an derive in HP

8z 2 P=m

�

(R) 8z

0

2 P=m

�

(R) (Q

P

(z) =

D

Q

P

(z

0

)! z =

P=m

�

(R)

z

0

)
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In order to �nd a proof-term of this type, we use the elimination rule for the quotient type. Suppose we

have a proof of

Q

P

([w℄) =

D

Q

P

([w

0

℄) [w 2 P;w

0

2 P ℄

then given w 2 P and w

0

2 P , by the elimination rule of the equality type and by de�nition of

Q

P

, we dedu
e Q

P

([w℄) = �

D�A

1

(w), from whi
h we get �

D�A

1

(w) = �

D�A

1

(w

0

) 2 D. But, sin
e

w 2 P and w

0

2 P , we also get m(�

D�A

1

(w)) = [�

1

(�

2

(w))℄ and m(�

D�A

1

(w

0

)) = [�

1

(�

2

(w

0

))℄, from

whi
h we �nally have [�

1

(�

2

(w))℄ = [�

1

(�

2

(w

0

))℄. By e�e
tiveness we derive f(�

1

(�

2

(w)); �

1

(�

2

(w

0

))) 2

R(�

1

(�

2

(w)); �

1

(�

2

(w

0

))).

So we get

�

1

(�

2

(w)) = (�

1

� g)(�

1

(f(�

1

(�

2

(w)); �

1

(�

2

(w

0

)))))

�

1

(�

2

(w

0

)) = (�

2

� g)(�

1

(f(�

1

(�

2

(w)); �

1

(�

2

(w

0

)))))

from whi
h we 
on
lude [w℄ = [w

0

℄ 2 P=m

�

(R). In this way, we have derived a proof of Q

P

([w℄) =

Q

P

([w

0

℄) ! [w℄ =

P=m

�

(R)

[w

0

℄ [w 2 P;w

0

2 P ℄, sin
e the proof-terms of this type are 
ompatible with

respe
t to m

�

(R), from whi
h by the elimination rule of the quotient type and by the introdu
tion rule

for the forall type we 
on
lude.

(of lemma 3.3.7)

Therefore, we 
an de�ne the inverse morphism of Q

P

.

In order to do that, by the elimination rule for the quotient type A=R we want to derive a proof-term of

8z 2 A=R 8d 2 D (z =

A=R

m(d))! (�

w2P=m

�

(R)

Q

P

(w) =

D

d)

This type is well formed, sin
e Q

P

is a monomorphism by the previous lemma.

Given d 2 D and x 2 A, supposed [x℄ = m(d), then hd; hx; eq

A=R

ii 2 P and we derive

h[hd; hx; eq

A=R

ii℄; eq

D

i 2 �

w2P=m

�

(R)

Q

P

(w) =

D

d

sin
e Q

P

([hd; hx; eq

A=R

ii℄) = �

1

(hd; hx; eq

A=R

ii) = d.

So we get

q([x℄; d) 2 [x℄ =

A=R

m(d)! �

w2P=m

�

(R)

Q

P

(w) =

D

d

where q([x℄; d) � �w

Eq

:h[hd; hx; eq

A=R

ii℄; eq

D

i.

Now by the elimination rule for the quotient type A=R we get

Q(z; q([x℄; d)) 2 z =

A=R

m(d)! �

w2P=m

�

(R)

Q

P

(w) =

D

d

and we 
on
lude by the introdu
tion rule for the forall type.

For short, we 
all f � �z:�d:Q(z; q([x℄; d)) and �nally, we de�ne

T : D ! P=m

�

(R)

as follows: for every d 2 D T (d) � �

1

(Ap(Ap(Ap(f;m(d)); d); eq

A=R

)). Now, it is easy to show that

Q

P

� T = id and sin
e Q

P

is a mono, Q

P

turns out to be an isomorphism. In 
on
lusion, �

D

1

is a


oequalizer of (�

A

2

)

�

(�

1

� g) and (�

A

2

)

�

(�

2

� g).

(of proposition 3.3.6)

3.3.3 The natural numbers obje
t

The synta
ti
 H-pretopos is equipped with a natural numbers obje
t. The natural numbers obje
t is

the 
losed type N . Given a 
losed type Y the zero map is

(x)hx; 0i 2 P

T

(Y; Y �N)
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and the su

essor map 
orresponds to s(n) [n 2 N ℄. We put id � s � (w)h�

2

(w); s(�

2

(w))i. Given the

morphisms hid; fi 2 P

T

(Y; Y � B) and g 2 P

T

(Y � B;B), we 
an prove that there exists an unique

morphism t 2 P

T

(Y �N;B) su
h that the following diagram 
ommutes in all its parts:

Y

hid;0i

//

hid;fi ##F
FF

FF
FF

FF
Y �N

id�s

//

h�

1

;ti

��

Y �N

t

��
Y �B

g

//
B

By hypothesis we get

f(y) 2 B [y 2 Y ℄ and g(hy; wi) 2 B [y 2 Y;w 2 B℄

By the elimination rule of the natural numbers type we derive

Re


s

(f(y); g; z) 2 B [y 2 Y; z 2 N ℄

So, we put t � (x)Re


s

(f(�

1

(x)); g; �

2

(x)); whi
h is the required morphism to make the diagram 
ommute

by the 
onversion rules for the natural numbers type.

3.3.4 About subobje
ts

In order to show that the subobje
ts of any obje
t of P

T

form a Heyting algebra and are suÆ
iently


omplete to interpret quanti�ers, we need to prove that ea
h pullba
k fun
tor on subobje
ts has a right

adjoint. For this purpose, we show that the pullba
k fun
tor on subobje
ts is isomorphi
 to the fun
tor

Prop(�) : P

op

T

! Cat de�ned in the following.

Def. 3.3.8 For any obje
t A 2 ObP

T

, the obje
ts of the 
ategory Prop(A) are the equivalen
e 
lasses

of mono types depending on A, B(x) [x 2 A℄, under the relation of equiprovability, and the morphisms

are the terms f 2 B(x) ! C(x) where B(x) ! C(x) � 8

B(x)

(C(x)), sin
e C(x) is mono. The identity

is �y:y 2 B(x) ! B(x). The 
omposition of f 2 B(x) ! C(x) and g 2 C

0

(x) ! D(x), supposing that

C(x) is equivalent to C

0

(x) and in parti
ular s 2 C(x) ! C

0

(x), is given by �y:Ap(g;Ap(s;Ap(f; y))) 2

B(x)! D(x).

Therefore, we 
an de�ne the above fun
tor Prop(�) : P

op

T

! Cat:

Def. 3.3.9 For any obje
t A 2 ObP

T

, Prop(A) is the above de�ned 
ategory and given a morphism

m 2 P

T

(D;A) we de�ne Prop(m) as the following fun
tor: for any B(x) [x 2 A℄

Prop(m)(B(x) [x 2 A℄) � B(m(z)) [z 2 D℄

and for every t 2 B(x)! C(x), given z 2 D, we de�ne

Prop(m)(t) � �w 2 B(m(z)):Ap(t[x := m(z)℄; w)

whi
h is a term of type B(m(z))! C(m(z)).

We 
an easily noti
e that Prop(�) is a well de�ned fun
tor.

We also 
onsider the fun
tor Sub(�) : P

op

T

! Cat, de�ned as follows. For every A 2 ObP

T

, we asso
iate

the poset 
ategory Sub(A), whose obje
ts are the subobje
ts on A of P

T

and the morphism, ne
essarily

unique, between subobje
ts is indu
ed by the morphisms of P

T

=A, from any monomorphism representing

the domain subobje
t to any monomorphism representing the 
odomain subobje
t. For every t : A! B,

Sub(t) is the restri
tion of pullba
k fun
tor on subobje
ts.

Proposition 3.3.10 The fun
tor Sub(�) : P

op

T

! Cat is naturally isomorphi
 to the fun
tor Prop(�) :

P

op

T

! Cat
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Proof.

For any A 2 ObP

T

we de�ne the fun
tor

 

1

(A) : Sub(A)! Prop(A)

in this manner: given a mono
B

// t //
A
,  

1

(A)(t) is the equivalen
e 
lass of �

y2B

t(y) =

A

x [x 2 A℄,

whi
h is a mono type. Indeed, we 
an noti
e that a morphism t of P

T

is a mono if and only if

�

y2B

t(y) =

A

x [x 2 A℄ is a mono type. Note that  

1

(A)(t) is well-de�ned on subobje
ts.

Given
B

m //
!!

t

!!B
BB

B B

0

||

t

0||yyy
yy

A

we de�ne

 

1

(A)(m) � �w:hm(�

1

(w)); eq

A

i

of type �

y2B

t(y) =

A

x ! �

z2B

0

t

0

(z) =

A

x [x 2 A℄. It is easy to see that  

1

(A) is a fun
tor and that

( 

1

(A))

A2ObP

T

is a natural transformation, that is for every m(y) 2 A [y 2 D℄ in P

T

the following

diagram 
ommutes

Sub(A)

 

1

(A)

//

m

�

��

Prop(A)

Prop(m)

��
Sub(D)

 

1

(D)

//
Prop(D)

Moreover, we de�ne

 

2

(A) : Prop(A)! Sub(A)

in this manner: for every mono type B(x) [x 2 A℄ we put  

2

(A)(B(x) [x 2 A℄) � �

1

, where �

1

2

P

T

(�

x2A

B(x); A) is the expression that 
orresponds to the judgement �

1

(w) 2 A [w 2 �

x2A

B(x)℄.

Note that �

1

is a monomorphism, sin
e B(x) [x 2 A℄ is a mono type.

For every s 2 B

0

(x)! B(x) we de�ne

 

2

(A)(s) � (w)h�

1

(w);Ap(s; �

2

(w))i

su
h that the following diagram 
ommutes

�

x2A

B

0

(x)

id�s

//
&&
�

1 &&MMMMMM
�

x2A

B(x)

xx
�

1xxrrrrrr

A

. It is easy to see that  

2

(A)

is the inverse fun
tor of  

1

(A) and that ( 

2

(A))

A2ObP

T

is a natural transformation.

Now we prove that

Proposition 3.3.11 For every morphism m(y) 2 A [y 2 D℄ in P

T

, there exists the right adjoint of m

�

.

Sub(A)

m

�

//
Sub(D)

8

m

?oo

Proof. By the previous proposition, it is enough to show that Prop(m) has a right adjoint. For every

mono type B(y) [y 2 D℄ we put

8

m

(B(y) [y 2 D℄) � 8

y2D

(x =

A

m(y))! B(y) [x 2 A℄

whose value at a mono type is indeed a mono type. It is well-de�ned on subobje
ts, sin
e it preserves

equiprovability. Moreover, we de�ne a bije
tion

Prop(D)(Prop(m)(C(x)); B(y))

 

1 //
Prop(A)(C(x);8

m

(B(y)))

 

2

oo
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as follows: for any t 2 C(m(y))! B(y) [y 2 D℄ we put for any x 2 A

 

1

(t) � �z:�y:�w:Ap(t; z)

and for any s 2 C(x)! 8

m

(B(y)) [x 2 A℄ and any y 2 D we put

 

2

(s) � �z:Ap(Ap(Ap(s[x := m(y)℄; z); y); eq

A

)

It is easy to see that  

1

and  

2

are inverse to ea
h other and that they are natural on the �rst variable.

This is suÆ
ient to assure that the pullba
k fun
tor on subobje
ts has a right adjoint.

Remark 3.3.12 Note that the extensional propositional equality type is 
ru
ial to get a H-pretopos

out of the 
ategory P

T

, if we 
onsider terms as morphisms and the de�nitional equality as the equality

of morphisms. Indeed, we need the extensional equality type to get equalizers. We also use it to

prove stability of the various 
ategori
al properties and existen
e of right adjoints to pullba
k fun
tors

on subobje
ts. Moreover, we need it to prove uniqueness of the universal properties of the various


ategori
al 
onstru
tors.



Chapter 4

The type theory of elementary

toposes

Summary We propose a type theory, based on dependent types and proof-terms, whi
h is valid and 
omplete

with respe
t to the 
lass of elementary toposes. This theory is obtained from the �rst order fragment of Martin-

L�of's Constru
tive Type Theory by adding the type 
orresponding to the subobje
t 
lassi�er. This is the type

of 
losed mono types, whose equality is given by equiprovability. Indeed, this type 
an be seen as the quotient

of the intensional type of propositions under the equivalen
e relation of equiprovability.

4.1 Introdu
tion

The axiomatization of a Grothendie
k topos, free of set-theoreti
 assumptions, led Lawvere and Tierney

to produ
e the 
ategori
al notion of elementary topos. A

ording to Lawvere, an elementary topos


an be thought as a generalized universe of sets. The formalization of this idea is expressed by the so


alled Mit
hell-Benabou language, asso
iated with any topos. But, in this language there is a synta
ti


distin
tion between the obje
ts of the topos 
orresponding to types and the subobje
ts 
orresponding

to formulas, whi
h are terms of the subobje
t 
lassi�er. Moreover, there are no 
onstru
tors to turn

formulas into types.

Here, for toposes we propose the type theory T

t

, where the formulas 
orrespond to parti
ular depen-

dent types, as we have already seen in the type theory of Heyting pretoposes. This type theory, whi
h is


omplete with respe
t to elementary toposes, is obtained by extending the �rst order fragment of Martin-

L�of's Constru
tive Type Theory, with the Omega type 
orresponding to the subobje
t 
lassi�er. In this

theory subobje
ts are represented by dependent types with at most one proof, already 
alled mono types

in 
hapter 3. So, the novelty of this type theory for elementary toposes is that it 
onsists only of de-

pendent types equipped with terms 
orresponding to their proofs, where the isomorphism \propositions

as 
losed mono types" holds. The mono type is the 
ru
ial 
on
ept for the proof-theoreti
al 
hara
teri-

zation of the subobje
t 
lassi�er of the topos, sin
e in the 
ategori
al semanti
s the interpretation of a

mono type turns out to be in 
orresponden
e with a monomorphism.

With this type theory, we 
an build a synta
ti
 topos, whose obje
ts are 
losed types and whose

morphisms are terms. In 
ontrast, in the synta
ti
 topos built up from the Mit
hell-Benabou language

as in [LS86℄,[Bel88℄, the obje
ts are 
losed terms of powersets and the morphisms are fun
tional relations.

Also, with this type theory, we 
ould 
ompare Martin-L�of's Constru
tive Type Theory with topos

theory, sin
e in both frameworks intuitionisti
 mathemati
s 
an be developed.

4.2 The type theory T

t

The type theory for toposes is obtained by enlarging with the Omega type the �rst order fragment of

the extensional version of Martin-L�of's Intuitionisti
 Type Theory [Mar84℄. This �rst order fragment

40
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ontains the terminal type, indexed sum types, extensional equality types, produ
t types and we 
all it

ML

0

.

Therefore, in the style of Martin-L�of's type theory we have four kinds of judgements [NPS90℄:

A type A = B a 2 A a = b 2 A

that is the type judgement, the equality between types, the term judgement and the equality between

terms of the same type. The 
ontexts of these judgements are teles
opi
 [dB91℄, sin
e types are allowed

to depend on variables of other types. The 
ontexts are generated by the following rules

1C) ; 
ont 2C)

� 
ont A type [�℄

�; x 2 A 
ont

(x 2 A 62 �)

plus the rules of equality between 
ontexts [Str91℄, [Pit95℄. In the following, we present the inferen
e

rules to 
onstru
t type judgements and term judgements with their equality judgements by re
ursion.

One should also add all the inferen
e rules that express re
exivity, symmetry and transitivity of the

equality between types and terms and the set equality rule


onv)

a 2 A [�℄ A = B [�℄

a 2 B [�℄

for all the four kinds of judgements [NPS90℄. Moreover, by the following rule we assume typed variables

var)

�; x 2 A;� 
ont

x 2 A [�; x 2 A;�℄

The stru
tural rules of weakening, substitution and of a suitable ex
hange 
an be derived.

We adopt the usual de�nitions of bound and free o

urren
es of variables and we identify two terms

under �-
onversion.

Remark 4.2.1 In the following, the 
ontext 
ommon to all judgements involved in a rule will be omitted.

The typed variable appearing in a 
ontext is meant to be added to the impli
it 
ontext as the last one.

Now, we show the inferen
e rules of T

t


orresponding to the �rst order fragment ML

o

of the exten-

sional version of Martin-L�of's type theory as in [Mar84℄.

Terminal type

F-ter) > type

I-ter) ? 2 > C-ter)

t 2 >

t = ? 2 >

Indexed Sum type

F-�)

C(x) type[x 2 B℄

�

x2B

C(x) type

I-�)

b 2 B 
 2 C(b)

hb; 
i 2 �

x2B

C(x)

E

1

-�)

d 2 �

x2B

C(x)

�

1

(d) 2 B

E

2

-�)

d 2 �

x2B

C(x)

�

2

(d) 2 C(�

1

(d))

�

1

C-�)

b 2 B 
 2 C(b)

�

1

(hb; 
i) = b 2 B

�

2

C-�)

b 2 B 
 2 C(b)

�

2

(hb; 
i) = 
 2 C(b)

�C-�)

d 2 �

x2B

C(x)

h�

1

(d); �

2

(d)i = d 2 �

x2B

C(x)

Equality type

F-Eq)

C type 
 2 C d 2 C

Eq(C; 
; d) type

I-Eq)


 2 C

eq

C

(
) 2 Eq(C; 
; d)
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E-Eq)

p 2 Eq(C; 
; d)


 = d 2 C

C-Eq)

p 2 Eq(C; 
; d)

p = eq

C

(
) 2 Eq(C; 
; d)

Produ
t type

F-�)

C(x) type [x 2 B℄

�

x2B

C(x) type

I-�)


 2 C(x)[x 2 B℄

�x

B

:
 2 �

x2B

C(x)

E-�)

b 2 B f 2 �

x2B

C(x)

Ap(f; b) 2 C(b)

�C-�)

b 2 B 
 2 C(x)[x 2 B℄

Ap(�x

B

:
; b) = 
(b) 2 C(b)

�C-�)

f 2 �

x2B

C(x)

�x

B

:Ap(f; x) = f 2 �

x2B

C(x)

The novelty of the type theory for toposes is the Omega type, 
orresponding to the subobje
t


lassi�er, where propositions 
orrespond to 
losed mono types, that is 
losed types with at most one

proof.

We re
all that a dependent type B type [�℄ is mono, if we 
an derive

y = z 2 B [�; y 2 B; z 2 B℄

The mono types are 
alled proof-irrelevant in the literature, as for example in [Hof95℄. In the Omega

type there are the 
odes of the mono types up to equiprovability.

Here, we present the rules that the Omega type should satisfy to represent the subobje
t 
lassi�er.

Formation


 type

Introdu
tion

B type y = z 2 B [y 2 B; z 2 B℄

fBg 2 


Equality

B type y = z 2 B [y 2 B; z 2 B℄

C type y = z 2 C [y 2 C; z 2 C℄

f 2 B $ C

fBg = fCg 2 


Elimination

q 2 


T (q) type

q 2 
 
 2 T (q) d 2 T (q)


 = d 2 T (q)

�-
onversion

B type y = z 2 B [y 2 B; z 2 B℄

hr

B

; r

�1

B

i 2 T (fBg)$ B

�-
onversion

q 2 


fT (q)g = q 2 


From these rules we derive

B type y = z 2 B [�

n

; y 2 B; z 2 B℄

C type y = z 2 C [�

n

; y 2 C; z 2 C℄

fBg = fCg 2 


hr

C

� r

�1

B

; r

B

� r

�1

C

i 2 B $ C

where r

C

� r

�1

B

� �x:r

C

(r

�1

B

(x)) and B $ C � �

x2B

C.

We use the notation fBg for the subset indu
ed by B. Note that, for every q 2 
, we 
an �nd a proof

of

T (q)$ Eq(
; q; f>g)
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So, �nally, we propose the following inferen
e rules for the Omega type, as a re�nement of the previous

ones, where we put T (q) � Eq(
; q; f>g):

The Omega type

Formation

F-
) 
 type

Introdu
tion

I-
)

B type y = z 2 B [y 2 B; z 2 B℄

fBg 2 


Equality

eq-
)

B type y = z 2 B [y 2 B; z 2 B℄

C type y = z 2 C [y 2 C; z 2 C℄

f 2 B $ C

fBg = fCg 2 


�-
onversion

�C-
)

B type y = z 2 B [y 2 B; z 2 B℄

hr

B

; r

�1

B

i 2 Eq(
; fBg; f>g)$ B

�-
onversion

�C-
)

q 2 


fEq(
; q; f>g)g = q 2 


In 
on
lusion, we 
all T

t

the type theory 
onsisting of the rules of ML

0

, together with the rules for the

Omega type de�ned above.

By these rules of T

t

, when d 2 
, we do not introdu
e a new type T (d), of whi
h we do not know the

proofs. But, anyway, we introdu
e a link between the proofs of the equality type Eq(
; fBg; f>g) and

the type B, whi
h restores some information that has been forgotten.

Indeed, in the introdu
tion rule of equality on the Omega type we forget the proof of equiprovability,

that we want to restore in the �-
onversion rule. This fa
t will be very 
lear in the next se
tion, where

we show that the Omega type is the quotient under equiprovability of the type of mono types. The

possibility to restore the information forgotten in the introdu
tion rule of equality on the Omega type

is given by e�e
tiveness of the quotient type. This is possible, sin
e equiprovability between mono types

is a mono equivalen
e relation.

Remark 4.2.2 Note that in T

t

we derive that if B is a mono type

r

�1

B

= �z:eq 2 B ! Eq(
; fBg; f>g)

Indeed, sin
e, given z 2 B, we get

h�w:�; �x:zi 2 B $ >

from whi
h we obtain

fBg = f>g 2 


and we 
on
lude by the introdu
tion rule for the extensional equality type.

So, from now on, we 
onsider a variant of T

t

where the �-
onversion of the Omega type is the following

�-
onversion

�C-
)

B type y = z 2 B [y 2 B; z 2 B℄

r

B

2 Eq(
; fBg; f>g)! B

With T

t

, we see that the impredi
ativity of toposes is restri
ted to mono types, but the Omega type is

not ne
essarily itself a mono type.
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4.2.1 The signature of the 
al
ulus T

t

.

We give the de�nition of the signature for the 
al
ulus T

t

, in 
orresponden
e with the type formation

rules and the terms introdu
ed in the introdu
tion, elimination, 
onversion rules (see 3.2.1 for a de�nition

of signature). Noti
e that in giving the signature, we 
onsider the variant of the formulation of the type

theory T

t

, with the restri
ted � 
onversion rule for the Omega type.

1. With respe
t to the terminal type we de�ne

> : TY PES

? : TERMS

2. With respe
t to the equality type we de�ne

Eq : TY PES ! TERMS ! TERMS ! TY PES

eq : TY PES ! TERMS ! TERMS

and we put eq

X

(x) � eq(X; x).

3. With respe
t to the indexed sum type, we de�ne

� : TY PES ! (TERMS ! TY PES)! TY PES

and we put �

x2X

Y (x) � �(X;Y ),

h i : TY PES ! (TERMS ! TY PES)! TERMS ! TERMS ! TERMS

and we put hx; yi

X;Y

� h i(X;Y; x; y),

�

1

: TY PES ! (TERMS ! TY PES)! TERMS ! TERMS

�

2

: TY PES ! (TERMS ! TY PES)! TERMS ! TERMS

and we put �

1

X

(x) � �

1

(X;Y; x) and �

2

Y

(x) � �

2

(X;Y; x).

4. With respe
t to the produ
t type, we de�ne

� : TY PES ! (TERMS ! TY PES)! TY PES

and we put �

x2X

Y (x) � �(X;Y ),

� : TY PES ! (TERMS ! TY PES)! (TERMS ! TERMS)! TERMS

and we put �(X;Y; y) � �

X;Y

x

X

:y(x),

Ap : TY PES ! (TERMS ! TY PES)! TERMS ! TERMS ! TERMS

and we put Ap

X;Y

(x; y) � Ap(X;Y; x; y).

5. With respe
t to the Omega type we de�ne


 : TY PES

f g




: TY PES ! TERMS

and we put fXg




� f g




(X),

r : TY PES ! TERMS

and we put r

X

� r(X).
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4.3 A 
al
ulus with intensional Omega and restri
ted quotients.

The rules of T

t


an be derived inside an extension of ML

0

with extensional e�e
tive quotients restri
ted

to mono equivalen
e relations, as in the type theory of Heyting pretoposes (see 
hapter 3), and with

the intensional Omega type, whi
h is the intensional type of propositions. This intensional Omega type

resembles the type Prop of the Cal
ulus of Constru
tions, but, here, propositions are only 
losed mono

types. The Omega type is 
alled intensional, sin
e the equality on it is given by the equality of mono

types, with the warning that the 
oding and de
oding between propositions and mono types enjoy �

and �-
onversions. The name of this extension of ML

0

is T

q

.

Here, we propose the following rules for the intensional type of propositions:

The intensional Omega type

Formation




i

type

Introdu
tion

B type y = z 2 B [y 2 B; z 2 B℄


(B) 2 


i

Equality

B type y = z 2 B [y 2 B; z 2 B℄

C type y = z 2 C [y 2 C; z 2 C℄

B = C


(B) = 
(C) 2 


i

Elimination

p 2 


i

D(p) type

p 2 


i


 2 D(p) d 2 D(p)


 = d 2 D(p)

�-
onversion

B type y = z 2 B [y 2 B; z 2 B℄

D(
(B)) = B

�-
onversion

p 2 


i


(D(p)) = p 2 


i

The rules for the quotient types based only proof-irrelevant relations with the e�e
tiveness axiom are

the following ones:

Quotient type

Formation

R(x; y) type [x 2 A; y 2 A℄; z = w 2 R(x; y)[x 2 A; y 2 A; z 2 R(x; y); w 2 R(x; y)℄




1

2 R(x; x)[x 2 A℄; 


2

2 R(y; x)[x 2 A; y 2 A; z 2 R(x; y)℄




3

2 R(x; z)[x 2 A; y 2 A; z 2 A;w 2 R(x; y); w

0

2 R(y; z)℄

A=R type

I-quotient

a 2 A A=R type

[a℄ 2 A=R

eq-quotient

a 2 A b 2 A d 2 R(a; b)

[a℄ = [b℄ 2 A=R

E-quotient

s 2 A=R l(x) 2 L([x℄)[x 2 A℄ l(x) = l(y) 2 L([x℄)[x 2 A; y 2 A; d 2 R(x; y)℄

Q(l; s) 2 L(s)
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C-quotient

a 2 A l(x) 2 L([x℄)[x 2 A℄ l(x) = l(y) 2 L([x℄)[x 2 A; y 2 A; d 2 R(x; y)℄

Q(l; [a℄) = l(a) 2 L([a℄)

E�e
tiveness

a 2 A b 2 A [a℄ = [b℄ 2 A=R

f(a; b) 2 R(a; b)

Therefore we 
an prove:

Proposition 4.3.1 In T

q

we 
an derive the rules of the Omega type.

Proof. In T

q

we de�ne the Omega type as follows:


 � 


i

=$

where $� D(x)$ D(y) [x 2 


i

; y 2 


i

℄ is a mono equivalen
e relation.

Moreover, for every 
losed mono type B we de�ne

fBg � [
(B)℄

and for every q 2 


i

=$ we abbreviate T (q) � Eq(


i

=$; q; [
(>)℄).

Now, we show that the �-
onversion for the Omega type holds. Pre
isely, we de�ne

r

B

� �z:�

2

(f(
(B); 
(>)))(�)

sin
e, given z 2 Eq(
; [
(B)℄; [
(>)℄), by the elimination rule for the extensional equality type we get

[
(B)℄ = [
(>)℄ 2 


and by e�e
tiveness we 
on
lude that

f(
(B); 
(>)) 2 D(
(B))$ D(
(>))

that is f(
(B); 
(>)) 2 B $ >.

Now, we show that the �-
onversion for the Omega type holds by the elimination rule of the quotient

type. Indeed, we 
laim that, for every p 2 


i

, we get a proof of

Eq(
; fT ([p℄)g; [p℄)

from whi
h, sin
e the proof-term assigns equal values to equiprovable elements of 


i

, by the elimination

rule of the quotient type we get a proof of

Eq(
; fT (q)g; q) [q 2 
℄

Therefore, we 
on
lude that the �-
onversion holds by the elimination rule of the extensional equality

type. Now, suppose p 2 


i

, sin
e fT ([p℄)g � [
(Eq(
; [p℄; [
(>)℄))℄, by de�nition of equality w.r.t. 
 and

by e�e
tiveness we prove that

fT ([p℄)g = [p℄ 2 


is derivable if and only if there is a proof of

D(
(Eq(
; [p℄; [
(>)℄)))$ D(p)

that is, by �-
onversion w.r.t. 


i

, if and only if there is a proof of Eq(
; [p℄; [
(>)℄)$ D(p). So now, we

derive a proof of Eq(
; [p℄; [
(>)℄) $ D(p). Indeed, given z 2 Eq(
; [p℄; [
(>)℄), by the elimination rule

of the extensional equality type, we get [p℄ = [
(>)℄. By e�e
tiveness we obtain f(p; 
(>)) 2 D(p) $

D(
(>)), that is by �-
onversion w.r.t. 


i

, f(p; 
(>)) 2 D(p) $ >. We 
on
lude �

2

(f(p; 
(>)))(�) 2

D(p) and �nally we get

�z:�

2

(f(p; 
(>)))(�) 2 Eq(
; [p℄; [
(>)℄)! D(p)



4.4. THE SYNTACTIC TOPOS 47

Moreover, given z 2 D(p), we get

h�w:�; �x:zi 2 D(p)$ >

from whi
h, as > = D(
(>)), we obtain [p℄ = [
(>)℄. Therefore, we derive that eq




2 Eq(
; [p℄; [
(>)℄).

Finally, we 
on
lude

�z:eq




2 D(p)! Eq(
; [p℄; [
(>)℄)

By introdu
tion rule of the equality type, we get a proof of Eq(
; fT ([p℄)g; [p℄), as we 
laimed.

The 
al
ulus T

q

is 
onsistent, be
ause it 
an be interpreted in the topos of natural numbers, where the

interpretation of the intensional 


i


oin
ides with that of 
. Note that in the topos of natural numbers

the monomorphisms on every obje
t form a set.

4.4 The synta
ti
 topos

We re
all the 
ategori
al de�nition of a topos [MR77℄, [MM92℄.

Def. 4.4.1 A topos is a 
ategory equipped with �nite limits, exponentials and a subobje
t 
lassi�er.

Here, we show how to build up a topos with the type theory, in order to prove the 
ompleteness theorem

with respe
t to the 
lass of toposes. We de�ne the synta
ti
 
ategory S

T

as follows.

Def. 4.4.2 The obje
ts of S

T

are the 
losed types of T

t

, A;B;C : : : and the morphisms from the type

A to the type B, are the expressions (x)b(x) (see [NPS90℄) 
orresponding to

b(x) 2 B [x 2 A℄

where the type B does not depend on A. The 
omposition in S

T

is de�ned by substitution, that

is, given (x)b(x) 2 S

T

(A;B) and (y)
(y) 2 S

T

(B;C), their 
omposition is (x)
(b(x)). We state that

(x)b(x) 2 P (A;B) and (x)b

0

(x) 2 P (A;B) are equal i� we 
an derive

b(x) = b

0

(x) 2 B[x 2 A℄

The identity is (x)x 2 P (A;A) obtained by x 2 A [x 2 A℄.

Along this se
tion we are going to prove that

Proposition 4.4.3 The 
ategory S

T

is a topos.

Proof. First of all we prove that S

T

has �nite limits.

The terminal obje
t is > and from any obje
t A the morphism to > is

(x)? 2 S

T

(A;>)

whi
h is unique by the 
onversion rule for >.

Given 
 2 S

T

(A;C) and d 2 S

T

(B;C) the pullba
k is given by

�

x2A

�

y2B

Eq(C; 
(x); d(y))

where the �rst proje
tion to A is

(z)�

A

1

(z) 2 S

T

(�

x2A

�

y2B

Eq(C; 
(x); d(y)); A)

and the se
ond proje
tion to B is

(z)�

B

1

(�

A

2

(z)) 2 S

T

(�

x2A

�

y2B

Eq(C; 
(x); d(y)); B)

The right adjoint to the pullba
k fun
tor is des
rived as in [See84℄. For every morphism m : D ! A of

S

T

, for every obje
t b : B ! D of S

T

=D, we put

8

m

(b) � �

1

: �

x2A

C(x)! A
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where for x 2 A

C(x) � 8

y2D

(x =

A

m(y))! �

z2B

b(z) =

D

y

In the synta
ti
 
ategory S

T

, the subobje
t 
lassi�er is 
.

The true map is

f>g 2 
 [x 2 >℄

Moreover, given a monomorphism
B

// t //
A

its 
hara
teristi
 map is

f�

y2B

t(y) =

A

xg 2 
 [x 2 A℄

It is easy to prove that the pullba
k of the 
hara
teristi
 map with the True map is isomorphi
 to t.

B

��

t ��?
??

??
'

//
�

x2A

�

z2>

(f�

y2B

t(y)=

A

xg=




f>g)

tt

�

1

ttiiiiiiiiiiiiii

A

By the equality on 
 and the �-C 
onversion rule of 
, the 
hara
teristi
 map is unique.

Indeed, for every q(x) 2 
[x 2 A℄ su
h that

B

��

t ��?
??

??
'

//
�

x2A

�

z2>

(q(x)=




f>g)

vv

�

1

vvmmmmmmmmmmm

A

by �-C 
onversion rule of 
 and by the equality on 


q(x) = fEq(
; q(x); f>g)g = f�

y2B

t(y) =

A

xg

Remark 4.4.4 As we said in 3.3.12, the extensional propositional equality type is 
ru
ial to get a topos

out of the 
ategory S

T

, if we 
onsider terms as morphisms and the de�nitional equality as the equality

of morphisms. Indeed, we need the extensional equality type to get equalizers. We also use it to prove

existen
e of right adjoints to pullba
k fun
tors and in the universal property of the subobje
t 
lassi�er.

Remark 4.4.5 In a topos, it is known that the image fun
tor from the 
odomain �bration to the

subobje
t �bration is �rst order logi
al if and only is the internal axiom of 
hoi
e holds (see [Joh77℄

page 145, and [See83℄ page 528). We say that this fun
tor is �rst order logi
al, if it translates the

interpretation of 
onne
tives of the �rst order type theory ML

0

, as it is given in a lo
ally 
artesian


losed 
ategory in [Law69℄, [Law70℄, [See84℄ through the 
odomain �bration, into the interpretation of

�rst order many-sorted predi
ative logi
, as it is given through the �bration of subobje
ts, for example,

in [MM92℄. Note that, in this 
ase, the provability of a predi
ate seen as a type in the �rst order

type theory ML

0

, namely that there is morphism from the terminal obje
t of the �ber in whi
h the

predi
ate is interpreted, entails the provability of the predi
ate interpreted as a subobje
t, namely its

image is the identity. The 
onverse, i.e. the provability in the subobje
t �bration entails the provability

in the 
odomain �bration, is valid, if the external axiom of 
hoi
e holds (that is every epimorphism

has got a retra
tion). In other words, suppose to translate a type A into a mono type, for example by

quotienting it under the terminal type A=> (this is not a problem, sin
e in a topos there are e�e
tive

quotients [MM92℄). Then, the logi
 of �rst order predi
ative types, following propositions as types,


an be translated into the logi
 of mono types su
h that the logi
 of types and mono types be
ome

equivalent, if and only if there is a 
hoi
e operator (that is we should have a proof-term 
 2 A=> ! A).

But, in the presen
e of external axiom of 
hoi
e, we get a boolean topos, that is we fall into the 
lassi
al

logi
. Therefore, su
h a 
hoi
e operator with a Heyting semanti
s of 
onne
tives 
an not be added to

the type theory of toposes. In other words, if we refuse to fall into 
lassi
al logi
 the natural translation

of 
onne
tives from types to mono types does not preserve provability in both dire
tions.



Chapter 5

The semanti
s in a 
ategori
al

universe

Summary We des
ribe the 
ategori
al semanti
s of the dependent type theories for H-pretoposes and for

toposes. We show how to build a model out of a H-pretopos for the type theory HP and out of a topos for

the type theory T

t

. After de�ning a partial interpretation of ea
h 
al
ulus, we prove the validity theorem with

respe
t to the 
orresponding 
lass of universes.

5.1 Introdu
tion

Our notion of model for the type theories of universes, des
ribed in the previous 
hapters, 
ombines the

notion of model given by display maps [HP89℄, [See84℄ together with the tools provided by 
ontextual


ategories to interpret substitution 
orre
tly [Car86℄. We shall emphasize 
ontext formation. Indeed, the

judgement B [�℄, asserting that B is a dependent type under the 
ontext �, is interpreted as a suitable

sequen
e of morphisms of P to the terminal obje
t. Moreover, the judgement b 2 B[�℄, asserting that b

is a term of type B under the 
ontext �, is interpreted as a se
tion of the last morphism of the sequen
e

representing the dependent type B. Sin
e we want to express substitution by means of pullba
k, whi
h is

determined up to isomorphisms, we use �bred fun
tors, as in [Hof94℄, to interpret substitution 
orre
tly.

But in our semanti
s, a type judgement 
orresponds to a sequen
e of �bred fun
tors, whi
h represents the

type under a 
ontext with all its possible substitutions, and a term judgement 
orresponds to a natural

transformation, whi
h also represents the term under a 
ontext with all its possible substitutions.

Our models for the two type theories 
orrespond to parti
ular 
ontextual 
ategories, where the


ategory of 
ontexts is equivalent to the universe under 
onsideration. Indeed, our model is a 
ategori
al

universe, with a 
hoi
e of its stru
ture, where the interpretation of judgements is de�ned by taking the

reindexing fun
tor of the split �bration equivalent to the 
odomain �bration of the 
ategori
al universe.

It is worthwhile to say that is enough to 
onsider a split �bration of the 
odomain �bration in order to

obtain a 
orre
t interpretation not only of substitution, but also of the other 
onstru
tors.

In the appendix, we outline the des
ription of the 
ontextual 
ategories with attributes, suitable to

model the type theories of H-pretoposes and of toposes.

5.2 The 
ategori
al semanti
s

Sin
e we intend to model a type theory, we shall assume that, with a universe, a given 
hoi
e of its


ategori
al 
onstru
tors is made. More pre
isely, with a H-pretopos P , we �x 
hoi
es of

� �nite limits: 1 is the terminal obje
t and for every obje
t A of P the unique morphism to the

terminal obje
t is !

A

: A ! 1; for every t : D ! A and f : B ! A the following diagram
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is a pullba
k

D

�

t

�

(f)

//

f

�

(t)

��

D

t

��
B

f

//
A

, so that for every f : A ! B, we 
an de�ne the pullba
k fun
tor

f

�

: P=B ! P=A, whi
h asso
iates f

�

(t) to every t : D ! A and to every morphism b : t ! s of

P=B the unique morphism hf

�

(t);

B

b � t

�

(f)i to the pullba
k of s along f ; sin
e we have de�ned

pullba
k, the produ
t of A and B is the vertex of the pullba
k of !

A

and !

B

and the two proje
tions

are �

1

A

� !

A

�

(!

B

) : A � B ! A and �

2

B

� !

B

�

(!

A

) : A � B ! B, and �nally the equalizer of

a : A! B and b : A! B is (ha; bi)

�

(hid

B

; id

B

i) : E ! A, where ha; bi is the unique morphism to

the produ
t B �B su
h that �

1

B

� ha; bi = a and �

2

B

� ha; bi = b;

� �nite 
oprodu
ts: O is the initial obje
t and, for every obje
t A of P , the unique morphism from

the initial obje
t is ?

A

: O ! A; for every obje
ts A and B in P , A�B is the 
oprodu
t together

with the inje
tions �

1

: A ! A � B and �

2

: B ! A � B and given a : A ! C and b : B ! C

a� b : A�B ! C is the unique morphism su
h that a� b � �

1

= a and a� b � �

2

= b;

� quotients of equivalen
e relations: for every equivalen
e relation � : R! A�A there is a quotient


 = 
oeq(�

1

� �; �

2

� �), where �

i

for i = 1; 2 are the two proje
tions of the pullba
k of !

A

: A ! 1

along itself;

� right adjoints on subobje
ts of the spe
i�ed pullba
k fun
tors: for every morphism f : A! B the

fun
tor 8

f

(�) : Mon(A) ! Mon(B) is the right adjoint to the restri
ted pullba
k fun
tor f

�

:

Mon(B)!Mon(A), whereMon(A) is the sub
ategory of P=A, whose obje
ts are monomorphism;

� a natural numbers obje
t N with the zero map o : 1! N and the su

essor map s : N ! N .

With a topos P , we �x 
hoi
es of

� �nite limits (as in the 
ase of a H-pretopos);

� exponentials: for every obje
t A in P , the fun
tor A! � : P ! P is the right adjoint of the fun
tor

��A : P ! P , whi
h asso
iates B �A to every obje
t B of P , and hf � �

1

; �

2

i : B �A! C �A

to every morphism f : B ! C of P ;

� a subobje
t 
lassi�er P(1) with a map True : 1 ! P(1) su
h that for every monomorphism

X

// � //
A

there is a unique 
hara
teristi
 map 
h(r) : A ! P(1) su
h that 
h(r)

�

(True) is iso-

morphi
 to r in P=A.

An essential feature for the interpretation of a dependent type theory is the lo
al property of the

universe under 
onsideration. Indeed, for every obje
t A of the H-pretopos (topos) P , the 
omma


ategory P=A is an H-pretopos (topos, respe
tively).

The proof for the topos 
an be found in [MM92℄ or [Joh77℄. The lo
al property of a H-pretopos is

derived from the fa
t that the forgetful fun
tor U : P=A! P 
reates limits and for every f : A! B the

pullba
k fun
tor f

�

: P=B ! P=A preserves 
oprodu
ts and quotients. Note that given an equivalen
e

relation in P=D

R

�

//

r

  A
A A�

D

A

a��

1

yysss

D

h�

1

� �; �

2

� �i : R ! A � A is also an equivalen
e relation in P , where �

i

: A �

D

A ! A for i : 1; 2 are

the proje
tions of the pullba
k of a : A! D along itself in P .

In a H-pretopos also Be
k-Chevalley 
onditions for right adjoints are satis�ed. It is easy to see that

for every obje
t A of the H-pretopos P , a natural numbers obje
t in P=A is �

1

: A�N ! A, where N

is a natural obje
t of P .

The reason to require the lo
al property of the stru
ture of a universe is that 
onstru
ting a type,

depending on a 
ontext �, from other types 
orresponds to a 
ategori
al property of P=A, where A is

determined by �. Moreover, sin
e substitution 
orresponds to pullba
k, the various 
ategori
al properties

must be stable under pullba
k.
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Remark 5.2.1 From now on, we shall mean with the 
ategori
al universe P a H-pretopos, when we

refer to the type theory HP for H-pretoposes, and a topos, when we refer to the type theory T

t

for

toposes. Indeed, the 
ategori
al semanti
s for the two type theories is the same with regard to the

interpretation of type and term judgements. One di�ers from the other only for the stru
ture suitable

to interpret some parti
ular type and term 
onstru
tors.

The idea is to interpret a dependent type as a sequen
e of morphisms of a given universe P , ending

with the terminal obje
t 1, whereas the terms are se
tions of the last morphism of the type to whi
h

they belong. Thus, we 
onsider the algebrai
 development of the �bration 
od of P : it is the 
ategory

Pgr(P).

Def. 5.2.2 The obje
ts of the 
ategory Pgr(P) are �nite sequen
es a

1

; a

2

; :::; a

n

of morphisms of P

A

n

a

n //
A

2

a

2 //
A

1

a

1 //
1

and a morphism from a

1

; a

2

; :::; a

n

to b

1

; b

2

; :::; b

m

is a morphism b of P su
h that b

n

� b = a

n

A

n

b //
a

n

$$JJ
J B

n

b

n

zzttt
1

A

1

!

A

1

oo
A

n�1

a

n�1

oo

provided m = n and a

i

= b

i

for i = 1; :::; n� 1.

Remark 5.2.3 We re
all that given a 
ategory P we 
an de�ne the 
ategory P

!

, whose obje
ts are

the morphisms of P

X

���
A

and the morphisms are pairs of morphisms of P , f : X ! Y and u : A ! B su
h that the following

diagram 
ommutes:

X

�

��

f

//
Y

 

��
A

u

//
B

Besides, given a universe P the following fun
tors are �brations (see [Ben85℄, [Ja
91℄ for the de�nition):

� 
od

P

: P

!

�! P de�ned by:

 

X

���
A

!

7! A

and

(f; u) 7! u

� dom

P

: P

!

�! P de�ned by:

 

X

���
A

!

7! X

and

(f; u) 7! f

Remark 5.2.4 We would like to interpret substitution by means of pullba
k, using the reindexing

pseudofun
tor, with respe
t to the �bration 
od

P

, F : P

OP

�! Cat de�ned as follows: F asso
iates

to every A 2 ObP the 
ategory P=A and to every morphism f : B ! A of P the pullba
k pseudo-

fun
tor f

�

: P=A ! P=B. But, in general, for an arbitrary 
hoi
e of pullba
ks, F would not be a

fun
tor: for instan
e, even F (id) may not be an identity. Therefore, if substitution were interpreted
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by F then it would not be well de�ned. The solution is to repla
e F by an equivalent pseudofun
-

tor S : P

OP

�! Cat, whi
h is in fa
t a fun
tor [Ben85℄, [Ja
91℄. S is de�ned as follows. For ev-

ery obje
t A in P , S(A) � Fib(P=A;P

!

), where Fib(P=A;P

!

) is the 
ategory of �bred fun
tors

� : P=A ! P

!

, from the �bration dom

P

to the �bration 
od

P

(they send 
artesian morphisms of

dom

P

to 
artesian morphisms of 
od

P

). A �bred fun
tor � : P=A ! P

!

asso
iates to every triangle

C

t //

b

0   A
AA

A B

b

~~}}
}}

A

a pullba
k diagram

C

0

q(t;�(b))

//

�(b�t)

��

B

0

�(b)

��
C

t

//
B

. The morphisms of Fib(P=A;P

!

) are natural

transformations � su
h that for every b : B ! A the se
ond member of �(b) is the identity (re
all that

�(b) is a morphism of P

!

), that is the triangle

�

1

(b)

//

�(b)

  @
@@

@

�(b)

~~~~
~~

B


ommutes. Moreover, for a morphism

f : B ! A of P , the fun
tor S(f) : Fib(P=A;P

!

) ! Fib(P=B;P

!

) asso
iates to every �bred fun
tor

� a �bred fun
tor �[f ℄. �[f ℄ is de�ned as follows: for every t : C ! B, �[f ℄(t) � �(f � t). Besides, for

every natural transformation �, S(f)(�) � �[f ℄, where �[f ℄(t) � �(f � t) for every t : C ! B. S is the

reindexing fun
tor with respe
t to the �bration p

G(S)

: Fib(P=�;P

!

)! P , whi
h is the Grothendie
k


onstru
tion on the fun
tor S de�ned as follows. The obje
t of Fib(P=�;P

!

) are (A; �) su
h that

� 2 ObFib(P=A;P

!

) and the morphisms from (A; �) to (B; �) are (f; �), where f 2 P(A;B) and

� : � ! S(f)(�) is a morphism of Fib(P=A;P

!

). The �bration G(S) is a proje
tion: p

G(S)

(A; �) = A

for every (A; �) 2 ObFib(P=�;P

!

) and p

G(S)

((f; �)) = f for every (f; �) 2 MorF ib(P=�;P

!

). Note

that the pseudofun
tor F : P

OP

�! Cat is equivalent to the fun
tor S in the appropriate 2-
ategory of

pseudofun
tors, and also the 
odomain �bration 
od

P

is equivalent to p

G(S)

. The fun
tors establishing

su
h an equivalen
e 
an be des
ribed as follows. We de�ne a fun
tor

(�)(id) : Fib(P=A;P

!

)! P=A

whi
h asso
iates to every � 2 ObFib(P=A;P

!

) its evaluation �(id) on the identity of the obje
t A, and

for every �; � 2 ObFib(P=A;P

!

) the morphism part

(�)(id)

�;�

: S(A)(�; �) ! P=A(�(id); �(id))

asso
iates to every � 2 S(A)(�; �) the morphism
D

�(id)

//

�(id)

  A
AA

A B

�(id)

~~}}
}}

A

. Moreover, we de�ne the fun
tor

d

(�) : P=A! Fib(P=A;P

!

)

establishing the equivalen
e with (�)(id). The obje
t part of (�)(id) asso
iates to every obje
t b : B ! A

of P=A the �bred fun
tor

b

b, de�ned as

b

b(t) � t

�

(b) for every t : D ! A and extended to morphisms by

the universal property of pullba
k. For every a : C ! A and b : B ! A, the morphism part of (�)(id)

d

(�)

ba;

b

b

: P=A(a; b)! S(A)(ba;

b

b)

asso
iates to every
C

g

//

a   A
AA

A B

b

~~}}
}}

A

the natural transformation g : ba !

b

b de�ned in this way: for every

t : D ! A, we put g(t) � hba(t);

B

g � a

�

(t)i), where hba(t);

B

g � a

�

(t)i is the unique morphism to the

pullba
k of b along t indu
ed by ba(t) and g � a

�

(t).

We use �bred fun
tors to interpret the dependent types with all its possible substitutions, as in

[Hof94℄. Moreover, we use natural transformations to represent terms with all its possible substitutions.

We 
all preinterpretation an assignment of �bred fun
tors to type judgements and of natural transfor-

mations to term judgements. To this purpose, we 
onsider the 
ategory Pgf(P), where the judgements

of the type theories HP and T

t

are preinterpreted. We put I(�) = A if � 2 [P=A;P

!

℄.
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Def. 5.2.5 The obje
ts of the 
ategory Pgf(P) are �nite sequen
es �

1

; �

2

; :::; �

n

of �bred fun
tors su
h

that �

1

(id

A

1

); �

2

(id

A

2

); :::; �

n

(id

A

n

) is an obje
t of Pgr(P), where A

i

= I(�

i

) for i = 1; :::; n. The

morphisms of Pgf(P) from �

1

; �

2

; :::; �

m

to �

1

; �

2

; :::; �

n

are de�ned only if m = n and �

i

= �

i

for

i = 1; :::; n � 1, and they are natural transformations from the fun
tor �

n

to �

n

su
h that, if A

n

=

I(�

n

) = I(�

n

), then for every b : B ! A

n

the se
ond member of �(b) is the identity (re
all that �(b) is a

morphism of P

!

), that is the triangle

�

1

(b)

//

�

n

(b)

  @
@@

@

�

n

(b)

~~~~
~~

B


ommutes.

In the following, we simply write �

i

instead of �

i

(id

A

i

). Moreover, sin
e the se
ond member of �(b) is

always the identity, we 
onfuse �(b) with the �rst member �

1

(b).

Besides, noti
e that by naturality any 
omponent �(b) of a morphism � of Pgf(P) is determined

by the properties of pullba
k from �(id

A

n

). Indeed, if we 
onsider
B

b //

b

!!B
BB

B A

n

id

||yy
yy

A

n

, we get that �(b)

is equal to h�

n

(b);

B

�(id

A

n

) � q(b; �

n

(id))i, from �

n

(b) to �

n

(b), and it is the unique morphism to the

pullba
k of �

n

(id) along b, a

ording to the fun
torial 
hoi
e of pullba
ks of � , indu
ed by �

n

(b) and

�(id

A

n

) � q(b; �

n

(id)) . We 
on
lude that � � (�)(id)

�;�

�1

(�(id)).

Finally, for every A 2 ObP , we de�ne the �bred fun
tor i

A

: P=A! P

!

asso
iating to every triangle

C

t //

b

0   A
AA

A B

b

~~}}
}}

A

the following pullba
k diagram
C

t //

id ��

B

id��
C

t

//
B

.

5.3 The interpretation and validity

Given a universe P , before de�ning the interpretation, we de�ne a preinterpretation

~

I

P

j

: T �! Pgf(P)

on the type and term judgements derivable in the type theory T . With T we shall mean the type theory

HP or T

t

.

~

I

P

j

will turn out to be de�ned as a restri
tion of an a priori partial interpretation

~

I

P

from

the pseudo-judgements of T , whi
h are expressions in the form of a judgement with the signature of T .

The preinterpretation says how to interpret a dipendent type and a typed term after any possible

substitution. The interpretation of type and term judgements 
orresponds to evaluate their preinterpre-

tations on the identi
al substitution.

Moreover, we de�ne a valuation V : Pgf(P) �! Pgr(P) in this manner: for every obje
t of Pgf(P)

�

1

; �

2

; :::; �

n

V(�

1

; �

2

; :::; �

n

) = �

1

(id

A

1

); �

2

(id

A

2

); :::; �

n

(id

A

n

)

where A

i

= I(�

i

) for i = 1; :::; n, and for every morphism � of Pgf(P) between �

1

; �

2

; :::; �

n

and

�

1

; �

2

; :::; �

n

V(�) = �(id

A

n

)

Finally, the interpretation I

P

: T �! Pgr(P) is de�ned as I

P

� V �

~

I

P

j

T

I

P //

~

I

P

j

$$H
HHHH Pgr(P)

Pgf(P)

V

88qqqqq

So, a type judgement of HP or T

t

will be preinterpreted as a sequen
e of �bred fun
tors, sin
e a �bred

fun
tor is used to represent the dependent type with all the possible substitutions in its free variables

[Hof94℄, and it will turn out to be interpreted as an obje
t of Pgr(P), by the evaluation of the �bred

fun
tors on the identi
al substitution. Pre
isely, a type judgement with empty 
ontext, that is a 
losed

type, will be simply interpreted as a sequen
e of only one arrow to the terminal obje
t 1 of P : for

example, every judgement of HP or T

t

A [ ℄
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will be preinterpreted as a �bred fun
tor

�

1

: P=1! P

!

and interpreted as

A

�

!

A

� //
1

sin
e �

1

(id

1

) =!

A

�

with A

�

= dom(�

1

(id

1

)).

More generally, a dependent type judgement of HP or T

t

B(x

1

; :::; x

n

) [x

1

2 A

1

; :::; x

n

2 A

n�1

(x

1

; :::; x

n�1

)℄

will be preinterpreted as the obje
t of Pgf(P)

�

1

; �

2

; :::; �

n

; �

and hen
e interpreted as

1

A

�1

�

1

(id)

oo
A

�n

�

n

(id)

oo
B

�

�(id)

oo

In the following, for short, we write �

n

� x

1

2 A

1

; :::; x

n

2 A

n

(x

1

; :::; x

n�1

).

The equality between types will be preinterpreted as equality between obje
ts of Pgf(P) and hen
e

interpreted as the equality between obje
ts of Pgr(P).

The typed term judgements will be interpreted as morphisms of Pgr(P):

given the type judgement B(x

1

; :::; x

n

) [�

n

℄ interpreted as

1

A

�1

�

1

(id)

oo
A

�n

�

n

(id)

oo
B

�

�(id)

oo
the term judge-

ment

b 2 B(x

1

; :::; x

n

) [�

n

℄

will be preinterpreted as a natural transformation b

I

from �

1

; �

2

; :::; �

n

; i

A

�n

to �

1

; �

2

; :::; �

n

; �, and it

will be interpreted as b

I

(id), that is a se
tion of �(id)

A

�n

b(id)

//
id

$$H
HH

HH
B

�

�(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

The equality between terms will be preinterpreted as equality between natural transformations and hen
e

interpreted as the equality between morphisms of Pgr(S). From now on, for short, we simply write b

I

to mean b

I

(id).

Essentially, we de�ne the preinterpretation

~

I

P

: pseudo(T ) �! Pgf(P)

as an a priori partial fun
tion from the pseudo-judgements of T , pseudo(T ), about dependent types and

terms, by indu
tion on their 
omplexity (see, for example, [Pit95℄, [Str91℄). Indeed, later we will show

that the preinterpretation is well de�ned on the type and term judgements derivable in the theory, by

indu
tion on the derivation. But, we will prove this in the validity theorem, be
ause for our purpose

we also need the validity of the judgements about equality between types and terms. With regard to

this, see, for example, the elimination rule for the extensional propositional equality type, the formation

rule for the forall type in the type theory HP and the introdu
tion rule for the Omega type in the type

theory T

t

.

Remark 5.3.1 As already said, a 
ompli
ation of these dependent type theories is that by the depen-

den
y of types from terms, we have to 
onsider the equality between types and between terms. Indeed,

the proofs that some types or terms are well formed depend on these equality judgements. So, we give

a partial interpretation.
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Another diÆ
ulty is that in the presen
e of the set equality rule 
onv), an interpretation de�ned

by indu
tion on the derivations must be 
he
ked to be well-de�ned su
h that the interpretation of a

judgement does not depend on the derivation, if the derivation is not unique.

We think that this 
ould be done by avoiding all the weakening, substitution and set equality rules

in the formulation of the 
al
ulus. But our formulations of the dependent type theories do not let us to

prove the set equality rule 
onv).

5.3.1 The partial interpretation

We de�ne pseudo(T ) as the pseudo-judgements of a type theory T , 
onsisting of expressions of these

four kinds

A(x) type [�℄ A(x) = B(x) [�℄

a(x) 2 A(x) [�℄ a(x) = b(x) 2 A(x) [�℄

where x � x

1

; : : : ; x

n

and

� � � [ ℄ or � � x

1

2 A

1

; :::; x

n

2 A

n

(x

1

; :::; x

n�1

) is a list of distin
t typed variables, and

A

i

(x

1

; :::; x

i�1

) for i = 1; : : : ; n is a raw type, that may depend on variables, previously listed;

we 
all this list a pseudo-
ontext;

� A(x) is a raw type, whose variables o

ur in the pseudo-
ontext �;

� a(x) is a raw term, whose variables o

ur in the pseudo-
ontext �.

Remark 5.3.2 We will omit to write the type in the signature of a term. Indeed, we assume that

whenever a new symbol is introdu
ed in the introdu
tion, elimination and 
onversion rules of the type

theory about a term judgement a 2 A type [�℄, the types that should be appear in the signature of the

term a are determined by A and by the types of the premisses.

We de�ne an a priori partial preinterpretation

~

I

P

: pseudo(T ) �! Pgf(P) of the pseudo-judgements

of the type theory HP and T

t

A type [�℄ a 2 A [�℄

by indu
tion on the 
omplexity of pseudo-judgements.

The 
omplexity of pseudo-judgements is de�ned by re
ursion, as in [Str91℄. We assume to know the


omplexity of raw types and raw terms. We de�ne the depth of a 
ontext. The depth of the empty 
ontext

is 0. The depth of a pseudo-
ontext �; x 2 A is the 
omplexity of the pseudo-judgement A type [�℄. The


omplexity of a pseudo-judgement A type [�℄ is the sum of the 
omplexity of the type-valued fun
tion

symbol A with the depth of the pseudo-
ontext �. The 
omplexity of a pseudo-judgement a 2 A [�℄ is

the sum of the 
omplexity of the term-valued fun
tion symbol a with the 
omplexity of A type [�℄.

Moreover, we preinterpret the pseudo-
ontexts:

� for the empty 
ontext

~

I

P

([ ℄) � 1

� for a generi
 pseudo-
ontext

~

I

P

(�; x 2 A) �

~

I

P

(A type [�℄)

As for the judgements, we de�ne the partial preinterpretation of the pseudo-judgements of equality:

�

~

I

P

(A = B [�℄) is preinterpreted as

~

I

P

(A type [�℄) =

~

I

P

(B type [�℄)

provided that

~

I

P

(A type [�℄) and

~

I

P

(B type [�℄) are de�ned;
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�

~

I

P

(a = b 2 A [�℄) is preinterpreted as

~

I

P

(a 2 A [�℄) =

~

I

P

(b 2 A [�℄)

provided that

~

I

P

(a 2 A [�℄) and

~

I

P

(b 2 A [�℄) are de�ned.

Remark 5.3.3 Note that it is suÆ
ient to spe
ify only the interpretation of a term, sin
e the preinter-

pretation of a term is the 
orresponding natural transformation of Pgf(P) determined by its evaluation

on the identity.

The interpretation of the type theory HP

Now, given a H-pretopos P , we pro
eed to de�ne the partial preinterpretation

~

I

P

from the pseudo-

judgements of the type theory HP into Pgf(P), and therefore, a partial interpretation into Pgr(P),

by indu
tion on the 
omplexity of the pseudo-judgements. In the indu
tive hypothesis, we will refer

to the interpretation of a pseudo-judgement, assuming that also the preinterpretation is given. The

interpretation of the assumption of variable is the following:

provided that the pseudo-judgement

C(x

1

; :::; x

n

; x) [�

n

; x 2 B(x

1

; :::; x

n

)℄

is interpreted as

!

A

�1

; �

2

(id); :::; �

n

(id); �(id); 
(id)

and the pseudo-judgement

B(x

1

; :::; x

n

)[x

1

2 A

1

; :::; x

n

2 A

n

(x

1

; :::; x

n�1

); x 2 B(x

1

; :::; x

n

); y 2 C(x

1

; :::; x

n

; x)℄

as

!

A

�1

; �

2

(id); :::; �

n

(id); �(id); 
(id); �(
(id) � �(id))

then

x 2 B(x

1

; :::; x

n

)[x

1

2 A

1

; :::; x

n

2 A

n

(x

1

; :::; x

n�1

); x 2 B(x

1

; :::; x

n

); y 2 C(x

1

; :::; x

n

; x)℄

is interpreted as

C

�

x

I

//

id

!!C
CC

CC
C

C

�

�B

2

�

�(
(id)��(id))zzvv
vv

vv
v

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo
B

�

�(id)

oo
C

�


(id)

oo

where x

I

(id) = 
(id)

�

(4

B

�

) and 4

B

�

� hid

B

�

; id

B

�

i. In order to interpret the inferen
e rule about

the assumption of variable, when the 
ontext � is made of more than one typed variable, we repeat the

semanti
 operation of weakening, interpreted as in the lemmas of weakening (we refer to se
tion 5.3.2

for its interpretation).

Now, we go on by de�ning the interpretation on the signature given by the formation, introdu
tion and

elimination rules for types and terms.

Remark 5.3.4 Note that we will write

b

A for the �bred fun
tor

b

!

A

: P=1! P

!

.

1. The Terminal type pseudo-judgement

> [ ℄

is interpreted as

1

1

�

!

1

�oo

where 1

�

� dom((id

1

)

�

(id

1

)), and we re
all that the preinterpretation

b

1 : P=1 ! P

!

is the

fun
tor de�ned in the following manner: for every
D

!

D //
1

we put

b

1(!

D

) = (!

D

)

�

(id

1

) and on the

morphisms it is de�ned through the pullba
k. Hen
e we get

b

1(id

1

) =!

1

�

.
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Moreover, if the pseudo-
ontext �

n

is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo

we interpret

> [�

n

℄

as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
A

�n

�1

�

b

1(!

A

�n

)

oo

and we interpret

? 2 > [�

n

℄

as

A

�n

?

I

(id)

//
id

$$H
HH

HH
A

�n

�1

�

b

1
(!

A

�n

)

xxqqqqq

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

where ?

I

(id) � hid

A

�n

; (!

1�

)

�1

�!

A

�n

i.

2. If the pseudo-
ontext �

n

is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo

the False type pseudo-judgement

? [�

n

℄

is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
A

�n

�0

�

b

0
(!

A

�n

)

oo

where 0 is the initial obje
t of P and 0

�

� dom((id

1

)

�

(!

0

)) and the preinterpretation

b

0 : P=1 !

P

!

is the fun
tor de�ned in the following manner: for every
D

!

D //
1

we put

b

0(!

D

) = (!

D

)

�

(!

0

).

Therefore

b

0(id

1

) =!

0

�

. On the morphisms it is de�ned through the pullba
k.

The signature introdu
ed in the elimination rule of the false type is interpreted in the following

manner:

provided that the pseudo-judgements a 2 ? [�

n

℄ and A [�

n

℄ are interpreted as

A

�n

a

I

//
id

$$H
HH

HH
A

�n

�0

�

b

0
(!

A

�n

)

xxqqqqq

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
A

�

�(id)

oo

we interpret

r

o

(a) 2 A [�

n

℄

as

A

�n

?

A

�

�(a

I

(id))

//
id

$$H
HH

HH
A

�

�(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

where ?

A

�

is the unique morphism from A

�n

� 0

�

to A

�n

, be
ause 0 is a stri
t initial obje
t and

then

b

0(!

D

) is an initial obje
t in P=D.
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3. The Indexed Sum type.

Provided that the pseudo-judgement C(y) [�

n

; y 2 B℄ is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
B

�

�(id)

oo
C

�


(id)

oo

we interpret

�

y2B

C(y) [�

n

℄

as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
C

�

�

�

(
)(id)

oo

where �

�

(
) : P=A

�n

! P

!

is the fun
tor de�ned in the following manner: for every
D

t //
A

�n

we put �

�

(
)(t) = �(t) � 
(q(t; �(id))) and on the morphisms it is de�ned through the pullba
k. It

is well de�ned, sin
e the 
orresponding Be
k-Chevalley 
onditions hold in any H-pretopos.

The pair term is interpreted in the following manner:

provided that the pseudo-judgements b 2 B [�

n

℄ and 
 2 C(b) [�

n

℄ are interpreted as

A

�n

b

I

//
id

$$H
HH

HH
B

�

�(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

A

�n




I

//
id

$$H
HH

HH
A

�n

�C

�


(b

I

)

xxqqqqq

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

we interpret

hb; 
i 2 �

y2B

C(y) [�

n

℄

as

B

�

hb;
i

I

//
id

##G
GGG

C

�

�

�

(
)(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

where hb; 
i

I

(id) = q(b

I

(id); 
(id)) � (


I

(id)).

The �rst proje
tion of the indexed sum type is interpreted in this manner:

provided that the pseudo-judgement d 2 �

y2B

C(y) [�

n

℄ is interpreted as

A

�n

d

I

//
id

$$H
HH

HH
C

�

�

�

(
)(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

we interpret

�

1

(d) 2 B [�

n

℄

as

A

�n

(�

1

(d))

I

//
id

$$H
HH

HH
B

�

�(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

where (�

1

(d))

I

(id) � 
(id) � (d

I

(id)).

The se
ond proje
tion of the indexed sum type is interpreted in this manner:

provided that the pseudo-judgement d 2 �

y2B

C(y) [�

n

℄ is interpreted as

A

�n

d

I

//
id

$$H
HH

HH
C

�

�

�

(
)(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo
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we interpret

�

2

(d) 2 C(�

1

(d)) [�

n

℄

as

A

�n

(�

2

(d))

I

//
id

$$H
HH

HH
A

�n

�C

�


(
(id)�d

I

)

xxqqqqq

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

where (�

2

(d))

I

(id) � hid; d

I

(id)i is the unique morphism to the pullba
k between 
(id) and 
(id) �

(d

I

(id)).

4. The Equality type.

Provided that the pseudo-judgements 
 2 C [�

n

℄ and d 2 C [�

n

℄ are interpreted as

A

�n




I

//
id

$$H
HH

HH
C

�


(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

A

�n

d

I

//
id

$$H
HH

HH
C

�


(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

we interpret

Eq(C; 
; d) [�

n

℄

as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
E

�

Eq(


I

;d

I

)(id)

oo

where Eq(


I

; d

I

) : P=A

�n

! P

!

is the fun
tor de�ned in the following manner: for every

D

t //
A

�n

we put Eq(


I

; d

I

)(t) = (h


I

(t); d

I

(t)i)

�

(4

D�C

�

) with 4

D�C

�

� hid

D�C

�

; id

D�C

�

i.

It is well de�ned sin
e ea
h pullba
k fun
tor preserves equalizers, as it has a left adjoint. On the

morphisms it is de�ned through the pullba
k.

The signature introdu
ed in the introdu
tion rule of the equality type is interpreted in the following

manner:

provided that the pseudo-judgement 
 2 C [�

n

℄ is interpreted as

A

�n




I

//
id

$$H
HH

HH
C

�


(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

we interpret

eq

C

(
) 2 Eq(C; 
; 
) [�

n

℄

as

A

�n

4

C

(A

�n

)

//
id

$$H
HH

HH
E

�

Eq(


I

;


I

)(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

where 4

C

(A

�n

) � hid

A

�n

;

C




I

(id)i is the unique morphism to the pullba
k that de�nes the equal-

izer Eq(


I

; 


I

)(id) indu
ed by id

A

�n

and 


I

(id).

Therefore, eq

C

(
)

I

�

\

4

C

(A

�n

).

5. The Disjoint Sum type.

Provided that the pseudo-judgements C [�

n

℄ and D [�

n

℄ are interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
C

�


(id)

oo
1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
D

�

Æ(id)

oo



60 CHAPTER 5. THE SEMANTICS IN A CATEGORICAL UNIVERSE

we interpret

C +D [�

n

℄

as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
C

�

�D

�


�Æ(id)

oo

where 
 � Æ : P=A

�n

! P

!

is the fun
tor de�ned in the following manner: for every
D

t //
A

�n

we put 
 � Æ(t) = 
(t) � Æ(t) and on the morphisms it is de�ned through the pullba
k. It is well

de�ned, sin
e 
oprodu
ts are stable under pullba
k.

The �rst and se
ond inje
tions of the introdu
tion rules of the disjoint sum type are interpreted

in this manner:

provided that the pseudo-judgements 
 2 C [�

n

℄ and d 2 D [�

n

℄ are interpreted as

A

�n




I

//
id

$$H
HH

HH
C

�


(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

A

�n

d

I

//
id

$$H
HH

HH
D

�

Æ(id)

{{www
ww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

we interpret

inl(
) 2 C +D [�

n

℄ and inr(d) 2 C +D [�

n

℄

as

A

�n

�

1

(


I

)

//
id

$$H
HH

HH
C

�

�D

�


�Æ(id)

xxrrrrr

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

A

�n

�

2

(d

I

)

//
id

$$H
HH

HH
C

�

�D

�


�Æ(id)

xxrrrrr

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

where (inl(
))

I

(id) � �

1

� (


I

(id)), (inr(d))

I

(id) � �

2

� (d

I

(id)) and �

1

, �

2

are the inje
tions of the


oprodu
t C

�

�D

�

.

The signature introdu
ed in the elimination rule for the disjoint sum type is interpreted in this

manner:

provided that the pseudo-judgements a

C

2 A(inl(y)) [�

n

; y 2 C℄ and a

D

2 A(inr(z)) [�

n

; z 2 D℄

are interpreted as

C

�

a

I

C //
id

##G
GGG

A

�

�C

�

�(�

1

)

yysssss

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo
C

�


(id)

oo

D

�

a

I

D //
id

##G
GG

GG
A

�

�D

�

�(�

2

)

yysssss

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo
D

�

Æ(id)

oo

we interpret

D(w; a

C

; a

D

) 2 A(w) [�

n

; w 2 C +D℄

as

C

�

�D

�

D

I

//
id

''OOOOOO
A

�

�(id)

yysssss

1

A

�1

!

A

�1

oo
C

�

�D

�


�Æ(id)

oo

where D

I

(id) � (q(�

1

; �(id)) �a

I

C

(id))� (q(�

2

; �(id)) �a

I

D

(id)). We prove that D

I

(id) is a se
tion of

�(id). Indeed, we get �(id) � (D

I

(id) � �

1

) = �(id) � (q(�

1

; �(id)) �a

I

C

(id)) = (�

1

��(�

1

)) �a

I

C

(id) = �

1

,

by the de�nitions of D

I

and � and by the hypothesis on a

I

C

, and, hen
e, analogously �(id)�(D

I

(id)�

�

2

) = �

2

. Sin
e �

1

� �

2

= id, we 
on
lude that D

I

(id) is a se
tion of �(id).

Now, we interpret the signature introdu
ed in the axiom of Disjointness

m(
; d) 2 ? [�

n

℄ as

A

�n

hid;ti

//
id

$$H
HH

HH
A

�n

�0

�

b

0(!

A

�n

)

xxqqqqq

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo
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provided that �

1

(


I

(id)) = �

2

(d

I

(id)), where hid; ti is the unique morphism to the pullba
k of

!

0

and !

A

�n

and t is de�ned as follows. Sin
e the 
oprodu
t is disjoint, the unique morphisms

p

1

: O ! C

�

and p

2

: O ! D

�

are the proje
tions of a pullba
k square between �

1

and �

2

(though

this is not the spe
i�ed one from the stru
ture of P). So, by the hypothesis �

1

(


I

(id)) = �

2

(d

I

(id)),

there exists a unique t : A

�n

! 0 su
h that p

1

� t = 


I

(id) and p

2

� t = d

I

(id).

6. The Forall type.

Provided that the pseudo-judgement C(y) [�

n

; y 2 B℄ is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
B

�

�(id)

oo
C

�

oo
(id)

oo

and 
(id) is a monomorphism, we interpret

8

y2B

C(y) [�

n

℄

as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
8

�

(C

�

)

oo
8

�


(id)

oo

where 8

�


 : P=A

�n

! P

!

is the fun
tor de�ned in the following manner: for every

D

t //
A

�n

we put 8

�


(t) = 8

�(t)


(q(t; �(id))). On the morphisms it is de�ned through the pullba
k. It is

well de�ned, sin
e 
(id) is a monomorphism and on the morphism part 8

�


(�) sends a morphism

of P=A

�n

to a pullba
k square by the 
orresponding Be
k-Chevalley 
onditions.

The abstra
tion of the forall type is interpreted in the following manner:

provided that the pseudo-judgement 
 2 C(y) [�

n

; y 2 B℄ is interpreted as

B

�




I

//
id

##G
GGG

C

�||


(id)

||yy
yy

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo
B

�

�(id)

oo

we interpret

�y

B

:
 2 8

y2B

C(y) [�

n

℄

as

A

�n

(�y

B

:
)

I

//
id

##H
HH

HH
8

y2B

C

�

yy

8

�


(id)

yyrrrrr

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

where (�y

B

:
)

I

(id) �  (


I

(id)) and  is the bije
tion

 : P=B

�

(id

B

�n

); 
(id))! P=A

�n

(id

A

�n

;8

�(id)

(
(id)))

sin
e P=B

�

(id

B

�n

); 
(id)) ' P=B

�

(�(id)

�

(id

A

�n

); 
(id)) ' P=A

�n

(id

A

�n

;8

�(id)

(
(id))), where

the latter isomorphism is obtained by the bije
tion of the adjun
tion �(id)

�

a 8

�

.

The appli
ation of the forall type is interpreted in the following manner:

provided that the pseudo-judgements b 2 B [�

n

℄ and f 2 8

y2B

C(y) [�

n

℄ are interpreted as

A

�n

b

I

//
id

##G
GG

GG
GG

B

�

�(id)||xxx
xx

x

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

A

�n

f

I

//
id

##G
GG

GG
GG

8

�

C

�

{{

8

�


(id){{vv
vv

vv
v

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

we interpret

Ap(f; b) 2 C(b) [�

n

℄
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as

A

�n

(Ap(f;b))

I

//
id

##G
GG

GG
GG

A

�n

�C

�


(b

I

)

yysssssss

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

where (Ap(f; b))

I

(id) � hid;

B

�

 

�1

(f

I

(id)) � b

I

(id)i is the morphism to the pullba
k of 
(id) along

b

I

(id) and  

�1

is the inverse of  .

7. The Quotient type.

Suppose that the pseudo-judgement

R(x; y) type [x 2 A; y 2 A℄

is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
A

�

�A

�

�(id)��

1

oo
R

�

oo�(id)

oo

where �(id) is an equivalen
e relation in P=A

�n

and

A [�

n

℄

is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
A

�

�(id)

oo

with �

1

� �(�(id)) and �

2

� q(�(id); �(id)).

Sin
e �(id) is an equivalen
e relation in P=A

�n

, there exists the 
oequalizer 
 : A

�

! A

�

=R

�

of

�

1

� �(id) and �

2

� �(id) and we get Q(�(id)) su
h that the following triangle diagram 
ommutes

R

�

�

2

��(id)

//

�

1

��(id)

//
A

�


 //

�(id)

!!D
DD

DD
DD

D
A

�

=R

�

Q(�(id))

zzvv
vvv

vv
vv

A

�n

Therefore, we interpret

A=R [�

n

℄

as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
A

�

=R

�

Q(�)(id)

oo

where Q(�) : P=A

�n

! P

!

is the fun
tor de�ned in the following manner: for every
D

t //
A

�n

we put Q(�)(t) � Q(�(t)), where Q(�(t)) is the unique morphism su
h that �(t) = Q(�(t)) � 
(t)

and 
(t) is the quotient of the equivalen
e relation �(q(q(t; �(id)); �

1

). Q(�) is well de�ned be
ause

the quotient is stable under pullba
ks. On the morphisms it is de�ned through the pullba
k.

The signature of the introdu
tion rule of the quotient type is interpreted in the following manner:

provided that the pseudo-judgement a 2 A [�

n

℄ is interpreted as

A

�n

a

I

//
id

$$H
HH

HH
A

�

�(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

we interpret

[a℄ 2 A=R [�

n

℄
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as

A

�n


�(a

I

(id))

//
id

##H
HH

HH
A

�

=R

�

Q(�)(id)

yysss
ss

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

Now, we interpret the signature introdu
ed in the restri
ted elimination rule, E

s

-quotient.

Suppose that the pseudo-judgement m(x) 2M [�

n

; x 2 A℄ is interpreted as

A

�

m

I

//
id

""E
EE

E
A

�

�M

�

�(�(id))

yysssss

1

A

�1

!

A

�1

oo
A

�

�(id)

oo

and that m

I

(id) � (�

1

� �(id)) = m

I

(id) � (�

2

� �(id)). Therefore, as 
 is the 
oequalizer of �

1

� �(id)

and �

2

� �(id), there exists a morphism q in P=A

�n

su
h that q � 
 = q(�(id); �(id)) � m

I

(id).

Sin
e by hypothesis �(id) � (q(�(id); �(id)) � m

I

(id)) = �(id), we also have that by uniqueness

�(id) � q = Q(�(id)).

We �nally de�ne the interpretation of Q

s

(m; z) 2M [�

n

; z 2 A=R℄ as

A

�

=R

�

hid;qi

//

id

&&MMMMM
A

�

=R

�

�M

�

�(Q(�)(id))

vvnnnnnn

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo
A

�

=R

�

Q(�(id))

oo

Now, we interpret the signature introdu
ed in the axiom of E�e
tiveness.

Suppose that the pseudo-
ontext �

n

is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo

We interpret

f(a; b) 2 R(a; b) [�

n

℄

as

A

�n

hid;ti

//
id

$$H
HH

HH
R

�

�(ha

I

;b

I

i)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

provided that 
 � a

I

(id) = 
 � b

I

(id), where t is de�ned as follows. Sin
e the quotient is e�e
tive

in P=A

�n

, then there exists a morphism t : A

�n

! R

�

su
h that (�

1

� �(id)) � t = a

I

(id) and

(�

2

� �(id)) � t = b

I

(id).

8. The Natural Numbers type.

Suppose that the pseudo-
ontext �

n

is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo

then we interpret

N [�

n

℄

as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
A

�n

�N

b

N (!

A

�n

)

oo
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where N is a natural numbers obje
t of P and we re
all that

b

N : P=1! P

!

is the fun
tor de�ned

in the following manner: for every
D

!

D //
1

we put

b

N (!

D

) = (!

D

)

�

(!

N

) and on the morphisms it is

de�ned through the pullba
k.

Moreover, under the same assumption about �

n

, the zero

0 2 N [�

n

℄

is interpreted as

A

�n

hid;o�!

A

�n

i

//

id

""F
FF

FFFF
F

A

�n

�N

b

N (!

A

�n

)zzuuuuuuuuu

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

where o : 1! N is the zero map in the H-pretopos P ;

and the su

essor

s(x) 2 N [�

n

; x 2 N ℄

is interpreted as

A

�n

�N

id

''OOOOOO

hid;�s��

2

i

//
A

�n

�N�N

��

1

vvmmmmmmm

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo
A

�n

�N

b

N
(!

A

�n

)

oo

where s : N ! N is the su

essor map in the H-pretopos P , �s � id

�

1

(s) 
onsidering s 2 P=1(!

N

; !

N

),

��

1

�

b

N (!

A

�n

�N

) and �

2

� q(!

A

�n

;

b

N (id)) and �nally hid; �s � �

2

i is the unique morphism to the

pullba
k of !

A

�n

�N

and

b

N (!

1

),

Now, we interpret the signature introdu
ed in the weaker elimination rule E

s

-Nat.

Provided that the pseudo-judgements a 2 L [�

n

℄ and l(y) 2 L [�

n

; y 2 L℄ are interpreted as

A

�n

a

I

//
id

$$H
HH

HH
L

�

�(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

L

�

l

I

//
id

##G
GGG

L

�

�L

�

�

L

1

yysssss

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo
L

�

�(id)

oo

where �

L

1

� �(�(id)), then we interpret

Re


s

(a; l; n) 2 L [�

n

; n 2 N ℄

as

A

�n

�N

hid;

A

�n

ri

//
id

''OOOOOO
(A

�n

�N )�L

�

�(�

1

)

vvlllllll

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo
A

�n

�N

b

N
(!

A

�n

)

oo

where r is the unique morphism that makes the following diagram 
ommute by the property of

natural numbers obje
t in P=A

�n

A

�n

hid;0�!

A

�n

i

//

a

I

$$H
HHHH

HH
HHH

H
A

�n

�N

h�

1

;�s��

2

i

//

r

��

A

�n

�N

r

��
L

�

�

L

2

�l

I

//
L

�

with �

1

�

b

N (!

A

�n

) and �

L

2

� q(�(id); �(id)).
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5.3.2 The validity of the type theory HP

In order to prove the validity theorem we need to know how the rules for weakening and substitution

are interpreted.

Weakening and substitution of variables in types and terms are expressed by pullba
k:

Lemma 5.3.5 The weakening of a variable in type and term judgements is interpreted as follows:

given the pseudo-judgements

B(x

1

; :::; x

n

) [�

n

℄ and D(x

1

; :::; x

j

) [�

j

℄

where n � j, interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
B

�

�(id)

oo
1

A

�1

!

A

�1oo
A

�j

�

j

(id)

oo
D

�

Æ(id)

oo

then the pseudo-judgement

B(x

1

; :::; x

n

) [�

j

; y 2 D; x

j+1

2 A

j+1

; : : : ; x

n

2 A

n

℄

is interpreted as

1

A

�1

!

A

�1oo
A

�j

D

�

Æ(id)

oo
D

�

�A

�j+1

�

j+1

(t

j

)

oo
D

�

�A

�n

�

n

(t

n�1

)

oo
D

�

�B

�

�(t

n

)

oo

where t

j

� Æ(id) and if n � j + 1, t

i

� q(t

i�1

; �

i

(id)) for i = j + 1; : : : ; n

and given the pseudo-judgement

b 2 B(x

1

; :::; x

n

) [�

n

℄ and D(x

1

; :::; x

j

) [�

j

℄

where n � j, interpreted as

A

�n

b

I

(id)

//
id

$$H
HH

HH
B

�

�(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

1

A

�1

!

A

�1oo
A

�j

�

j

(id)

oo
D

�

Æ(id)

oo

then

b 2 B(x

1

; :::; x

n

) [�

j

; y 2 D; x

j+1

2 A

j+1

; : : : ; x

n

2 A

n

℄

is interpreted as

D

�

�A

�n

b

I

(t

n

)

//
id

''NNNNNNNN
D

�

�B

�

�(t

n

)xxpppppppp

1

A

�1

!

A

�1

oo
A

�j

D

�

�(id)

oo
D

�

�A

�n

�

n

(t

n�1

)

oo

Lemma 5.3.6 The substitution of variables in type and term judgements is interpreted as follows:

given the pseudo-judgements

B(x

1

; :::; x

n

) [�

n

℄ and a

j

2 A

j

[�

j�1

℄

where n � j, interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
B

�

�(id)

oo
A

�j�1

a

I

j

(id)

//
id

%%L
LLLL

A

�j

�

j

(id)

zzttt
tt

1

A

�1

!

A

�1

oo
A

�j�1

�

j�1

(id)

oo
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then the pseudo-judgement

B(x

1

; : : : ; x

j

; a

j

; x

0

j+1

; : : : ; x

0

n

)[�

j�1

; x

0

j+1

2 A

0

j+1

; : : : ; x

0

n

2 A

0

n

℄

where if n � j + 1, A

0

j+k

� A

j+k

[x

j

=a

j

℄[x

i

=x

0

i

℄

i=j+1;:::;j+k�1

for k = 1; : : : n� j,

is interpreted as

1

A

�1

!

A

�1oo
A

�j�1

A

0

�j+1

�

j+1

(q

j

)

oo
A

0

�n

�

n

(q

n�1

)

oo
B

0

�

�(q

n

)

oo

where q

j

� a

I

j

(id) and if n � j + 1, q

i

� q(q

i�1

; �

i

(id)) for i = j + 1; : : : ; n

and given a pseudo-term judgement

b 2 B(x

1

; :::; x

n

) [�

n

℄ and a

j

2 A

j

[�

j�1

℄

where n � j, interpreted as

A

�n

b

I

(id)

//
id

$$H
HH

HH
B

�

�(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

A

�j�1

a

I

j

(id)

//
id

%%L
LLLL

A

�j

�

j

(id)

zzttt
tt

1

A

�1

!

A

�1

oo
A

�j�1

�

j�1

(id)

oo

then the pseudo-judgement

b[x

j

=a

j

℄[x

i

=x

0

i

℄

i=j;:::;n

2 B(x

1

; : : : ; x

j

; a

j

; x

0

j+1

; : : : ; x

0

n

) [�

j�1

; x

0

j+1

2 A

0

j+1

; : : : ; x

0

n

2 A

0

n

℄

is interpreted as

A

0

�n

b

I

(q

n

)

//
id

##F
FF

FF
B

0

�

�(q

n

)

||zz
zz

1

A

�1

!

A

�1

oo
A

�j�1

A

0

�j+1

�

j+1

(q

j

)

oo
A

0

�n

�

n

(q

n�1

)

oo

The proofs 
an be done by indu
tion on the signature of the judgements. For the assumption of variable,

the lemma of weakening holds by de�nition and the lemma of substitution holds be
ause terms are

interpreted as se
tions. In the 
ase of 
onstant type, like > or N , we use the indu
tive hypothesis,

sin
e the preinterpretation of a 
ontext is redu
ed to that of a type pseudo-judgement. The de�nition

of partial preinterpretation of type and term judgements assures that all these lemmas for weakening

and substitution hold for the other type and term 
onstru
tors.

Now, we are ready to prove the validity theorem:

Theorem 5.3.7 (Validity) Given a H-pretopos P, if A type [�

n

℄ is derivable in HP then I

P

(A type [�

n

℄)

is well de�ned. If a 2 A [�

n

℄ is derivable then I

P

(a 2 A [�

n

℄) is well de�ned.

Suppose that A type [�

n

℄ and B type [�

n

℄ are derivable in HP , if A = B [�

n

℄ is derivable in HP then

I

P

(A type [�

n

℄) = I

P

(B type [�

n

℄).

Suppose that a 2 A [�

n

℄ and b 2 A [�

n

℄ are derivable in HP , if a = b 2 A [�

n

℄ is derivable in HP , then

I

P

(a 2 A [�

n

℄) = I

P

(b 2 A [�

n

℄).

Proof. The proof 
an be done by indu
tion on the derivation of the judgement.

Remark 5.3.8 A judgement is valid, if its interpretation is well-de�ned and hen
e, in parti
ular an

equality judgement for types or terms is valid, if the interpretations of the 
orresponding type or term

judgements are equal. We say that an inferen
e rule holds or is valid, if it preserves the validity of

judgements.

Surely, the set rule 
onv) preserves validity of the judgements. Hen
e, we pro
eed by proving the

validity of the formation, introdu
tion and elimination and 
onversion rules for the various types with

their terms. The lemma of weakening and substitution are 
ru
ial for the dependent types, whose rules

refer to substitution or weakening su
h as, for example, the forall type.
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1. The formation, introdu
tion and elimination and 
onversion rules for the Terminal type hold

be
ause for every obje
t D in P ,

b

1(!

D

) is a terminal obje
t in P=D.

2. The formation and elimination rules of the False type are valid.

3. The formation, introdu
tion and elimination rules of the Indexed Sum type are valid. Moreover,

the � and � 
onversion rules for the indexed sum type hold by the properties of pullba
k. Indeed,

the �

1

-C 
onversion rule for the indexed sum type

b 2 B 
 2 C(b)

�

1

(hb; 
i) = b 2 B

holds be
ause 
(id) � (q(b

I

(id); 
(id)) � 


I

(id)) = b

I

(id) � 
(b

I

(id)) � 


I

(id), from whi
h as 


I

(id) is a

se
tion of 
(b

I

(id)) we get 
(id) � (q(b

I

(id); 
(id)) � 


I

(id) = b

I

(id).

The �

2

-C 
onversion rule for the indexed sum type

b 2 B 
 2 C(b)

�

2

(hb; 
i) = 
 2 C(b)

holds be
ause hid; q(b

I

(id); 
(id)) � 


I

(id)i = 


I

(id), sin
e 


I

(id) is a se
tion of 
(b

I

(id)). Finally,

the �-C 
onversion rule for the indexed sum type

d 2 �

x2B

C(x)

h�

1

(d); �

2

(d)i = d 2 �

x2B

C(x)

holds sin
e q(
(id) � d

I

(id); 
(id)) � hid; d

I

(id)i = d

I

(id).

4. The formation, introdu
tion rules of the Equality type hold.

The E-equality elimination rule

p 2 Eq(C; 
; d)


 = d 2 C

holds be
ause for every t : D ! A

n

, p

I

(t) is a se
tion of Eq(


I

; d

I

)(t), whi
h is the equalizer of




I

(t) and d

I

(t), so we 
on
lude that 


I

(t) = d

I

(t): Moreover, the C-equality 
onversion rule

p 2 Eq(C; 
; d)

p = eq

C

2 Eq(C; 
; d)

holds, be
ause the equalizer is a monomorphism.

5. The formation, introdu
tion and elimination rules of the Disjoint Sum type hold.

The C

1


onversion rule for the disjoint sum type

a

C

(x) 2 A(inl(x)) [x 2 C℄ a

D

(y) 2 A(inr(y)) [y 2 D℄

D(inl(x); a

C

; a

D

) = a

I

C

(x) 2 A(inl(x)) [x 2 C℄

holds sin
e D(inl(x); a

C

; a

D

)

I

(id) = hid ;

C

�

�D

�

(q(�

1

; �(id)) � a

I

C

(id) � q(�

2

; �(id)) � a

I

D

(id))) � �

1

i

and by uniqueness of the morphism to a pullba
k D(inl(x); a

C

; a

D

)

I

(id) = a

I

C

(id).

The C

2


onversion rule for the disjoint sum type holds for an analogous reason.

The axiom of Disjointness is valid, sin
e by hypothesis �

1

(


I

(id)) = �

2

(d

I

(id)).

6. The formation rule of the Forall type hold. Indeed, given C(y) [�

n

; y 2 B℄ interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
B

�

�(id)

oo
C

�

oo
(id)

oo

from the validity of the judgement expressing that C(y) is a mono type, 
(id) is a monomorphism

as follows. In fa
t, the interpretations of z 2 C [�

n

; y 2 B; z 2 C;w 2 C℄ and w 2 C [�

n

; y 2
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B; z 2 C;w 2 C℄ are isomorphi
 with the same isomorphism respe
tively to the �rst proje
tion

and to the se
ond proje
tion of the produ
t 
(id) � 
(id). Therefore, by the interpretation of

z = w 2 C [�

n

; y 2 B; z 2 C;w 2 C℄, we get that the two proje
tions of 
(id), that are 
(
(id))

and q(
(id); 
(id)), are equal and we 
on
lude that 
(id) is a monomorphism.

The introdu
tion and elimination rules of the Forall type hold by the lemma of substitution.

The �-C 
onversion rule

b 2 B [�

n

℄ 
 2 C [�

n

; y 2 B℄ y = z 2 C [�

n

; x 2 B; y 2 C; z 2 C℄

Ap(�x

B

:
; b) = 
(b) 2 C [�

n

℄

holds sin
e hid;

B

�n

 

�1

( (


I

(id))) � b

I

(id)i = 


I

(b

I

(id)).

The �-C 
onversion rule

f 2 8

x2B

C(x)

�x

A

:Ap(f; x) = f 2 8

x2B

C(x)

holds be
ause

(�x

A

:Ap(f; x))

I

(id) =  (hid;

B

�

�B

�

 

�1

(hid;

A

�n

f

I

(id) � �(id)i) � 4

B

�

i)

=  (hid;

B

�

�B

�

hid;

B

�

 

�1

(f

I

(id)) � q(�(id); �(id))i � 4

B

�

)i) =  ( 

�1

(f

I

(id))) = f

I

(id),

sin
e  

�1

(hid;

A

�n

f

I

(id) � �(id)i) = hid;

B

�

 

�1

(f

I

(id)) � q(�(id); �(id))) by Be
k-Chevalley 
ondi-

tions for the bije
tions of the adjun
tion and the lemma of weakening.

7. The formation rule of the Quotient type holds.

Indeed, given the following judgements (we omit �

n

in the 
ontext)

R(x; y) type [x 2 A; y 2 A℄; z = w 2 R(x; y) [x 2 A; y 2 A; z 2 R(x; y); w 2 R(x; y)℄;




1

2 R(x; x)[x 2 A℄; 


2

2 R(y; x)[x 2 A; y 2 A; z 2 R(x; y)℄;




3

2 R(x; z)[x 2 A; y 2 A; z 2 A;w 2 R(x; y); w

0

2 R(y; z)℄

suppose that R(x; y) type [�

n

; x 2 A; y 2 A℄ is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
A

�

�A

�

�(id)��

1

oo
R

�

oo�(id)

oo

with �

1

� �(�(id)) and �

2

� q(�(id); �(id)).

From the 
ase of the forall type, we already know that a mono type is interpreted as a monomor-

phism and here we 
an prove that �(id) turns out to be an equivalen
e relation in P=A

�n

.

Indeed, for re
exivity, sin
e 


1

2 R(x; x)[x 2 A℄, there exists a se
tion 


I

1

of �(4

A

�

) and q(4

A

�

; �(id))�




I

1

is the required morphism that fa
torizes 4

A

�

through �(id) in P=A

�n

.

For symmetry, from 


2

2 R(y; x)[x 2 A; y 2 A; z 2 R(x; y)℄ we get a se
tion 


I

2

of �(s ��(id)), where

s is the ex
hange morphism h�

2

; �

1

i in P=A

�n

. Therefore, s � �(id) = �(id) � (q(s � �(id); �(id)) � 


I

2

),

satis�es the 
ategori
al 
ondition for symmetry.

For transitivity, from 


3

2 R(x; z)[x 2 A; y 2 A; z 2 A;w 2 R(x; y); w

0

2 R(y; z)℄ we get a se
tion




I

3

of �(h ��

1

; ��

3

i � �(1)� �(2)), where we 
all ��

1

� �

1

��(�(id) � �

2

), ��

2

� �

2

��(�(id) � �

2

) and ��

3

�

�

2

� q(�

2

; �

1

) and we also abbreviate �(1) � �(h ��

1

; ��

2

i), �(2) � �(h ��

2

; ��

3

i) and �(3) � �(h ��

1

; ��

3

i),

and �nally �(1)� �(2) � �(1) � �(h ��

2

; ��

3

i � �(1)). Let us 
onsider the following pullba
k

P

p

2 //

p

1

��

R

�

2

��(id)

��
R

�

1

��(id)

//
A

where p

1

� q(h ��

2

; ��

3

i � �(1); �(id)) and p

2

� q(h ��

1

; ��

2

i; �(id)) � �(h ��

2

; ��

3

i � �(1)).

Therefore, we 
on
lude that
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(�

1

� �(id)) � p

2

=

= �

1

� h ��

1

; ��

2

i � �(1)� �(2)

= �

1

� h ��

1

; ��

3

i � �(1)� �(2)

= (�

1

� �(id)) � q(h ��

1

; ��

3

i � �(1)� �(2); �(id)) � 


3

and analogously

(�

2

� �(id)) � p

1

=

= �

2

� h ��

2

; ��

3

i � �(1)� �(2)

= �

2

� h ��

1

; ��

3

i � �(1)� �(2)

= (�

2

� �(id)) � q(h ��

1

; ��

3

i � �(1)� �(2); �(id)) � 


3

hen
e, h�

1

� �(id) � p

2

; �

2

� �(id) � p

1

i fa
torizes through �(id), that is the 
ategori
al 
ondition for

transitivity holds.

The equality rule for the quotient type holds. Indeed, suppose that a 2 A [�

n

℄ and b 2 A [�

n

℄ are

interpreted as

A

�n

a

I

//
id

$$H
HH

HH
A

�

�(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

A

�n

b

I

//
id

$$H
HH

HH
A

�

�(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

and d 2 R(a; b) [�

n

℄ is interpreted as

A

�n

d

I

//
id

$$H
HH

HH
R

�(ha

I

;b

I

i)

||yy
yy

y

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

Then we get that (�

1

��(id))�(q(ha

I

; b

I

i; �(id))�d

I

) = a

I

(id) and (�

2

��(id))�(q(ha

I

; b

I

i; �(id))�d

I

) =

b

I

(id). We 
on
lude that 
 � a

I

(id) = 
 � b

I

(id), that gives the validity of

[a℄ = [b℄ 2 A=R [�

n

℄

The elimination rule for the quotient type holds, sin
e given m(x) 2M [�

n

; x 2 A℄ interpreted as

A

�

m

I

//
id

""E
EE

E
A

�

�M

�

�(�(id))

yysssss

1

A

�1

!

A

�1

oo
A

�

�(id)

oo

and given m(x) = m(y) 2 M [�

n

; x 2 A; y 2 A; d 2 R(x; y)℄ interpreted as the equality between

morphisms, we get that

hid;m

I

(id) � (�

1

� �(id))i = hid;m

I

(id) � (�

2

� �(id))i

(we re
all that �

1

� �(�(id)) and �

2

� q(�(id); �(id))). From this, we obtain m

I

(id) �(�

1

��(id)) =

m

I

(id) � (�

2

� �(id)).

The �

s

C-quotient 
onversion rule

a 2 A m(x) 2M [x 2 A℄ m(x) = m(y) 2M [x 2 A; y 2 A; d 2 R(x; y)℄

Q

s

(m; [a℄) = m(a) 2M

holds sin
e

(Q

s

(m; [a℄))

I

(id) = hid ;

A

�

=R

�

hid ;

A

�n

qi � 
 � (a

I

(id))i = hid ;

A

�n

q � (
 � a

I

(id))i =

= hid;

A

�n

(q(�(id); �(id)) �m

I

(id)) � a

I

(id)i = hid ;

A

�

m

I

(id) � a

I

(id)i = m(a)

I

(id).
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The �

s

C-quotient 
onversion rule

t(z) 2M [z 2 A=R℄

Q

s

((x)t([x℄); z) = t(z) 2M [z 2 A=R℄

holds sin
e

Q

s

((x)t([x℄); z)

I

(id) = hid ;

A

�n

qi, where q � 
 = q(Q(�)(id); �(id)) � (t

I

(id) � 
). So by uniqueness of

the morphism from a 
oequalizer we get q = q(Q(�)(id); �(id)) �t

I

(id) and then hid;

A

�n

qi = t

I

(id):

The axiom of E�e
tiveness holds

a 2 A b 2 A [a℄ = [b℄ 2 A=R

f(a; b) 2 R(a; b)

sin
e, by validity of the hypothesis, 
 � a

I

(id) = 
 � b

I

(id).

8. The formation, introdu
tion and elimination rule for the Natural Numbers type hold, sin
e

b

N (!

D

)

is a natural numbers obje
t of P=D.

The 
onversion rules for the natural numbers type follow from the properties of the natural numbers

obje
t. The �

s

C

1

-Nat 
onversion rule for the natural numbers type

a 2 L l(y) 2 L [y 2 L℄

Re


s

(a; l; 0) = a 2 L

holds sin
e

Re


s

(a; l; 0)

I

(id) = hid ;

A

�n

r � (hid; o�!

A

�n

i)i = a

I

(id) by de�nition of the natural numbers obje
t

A

�n

�N in P=A

�n

.

The �

s

C

2

-Nat 
onversion rule for the natural numbers type

a 2 L l(y) 2 L [y 2 L℄

Re


s

(a; l; s(n)) = l(Re


s

(a; l; n)) 2 L [n 2 N ℄

holds sin
e

Re


s

(a; l; s(n))

I

(id) = hid ;

A

�n

�N

(hid;

A

�n

ri � q(

b

N (!

A

�n

); !

A

�n

)) � hid ; �s � �

2

ii =

= hid ;

A

�n

r � h�

1

; �s � �

2

ii = hid ;

A

�n

(�

L

2

� l

I

(id)) � ri =

= hid ;

A

�n

(�

L

2

� l

I

(id)) � (q(�

1

; �(id)) � hid;

A

�n

ri) = l(Re


s

(a; l; n))

I

(id)

where we re
all that �

1

�

b

N (!

A

�n

) and �

2

� q(!

A

�n

;

b

N (id)).

The �

s

C-Nat 
onversion rule for the natural numbers type also holds by uniqueness of the morphism

that makes the diagram of the natural numbers obje
t 
ommute w.r.t. l

I

.

The interpretation of the type theory T

t

Now, given a topos S, we pro
eed to de�ne the partial preinterpretation

f

I

S

from the pseudo-judgements

of T

t

into Pgf(S), and hen
e a partial interpretation into Pgr(S), by indu
tion on the 
omplexity

of pseudo-judgements. In the indu
tive hypothesis, we will refer to the interpretation of a pseudo-

judgement, assuming that also the preinterpretation is given.

We assume all the de�nitions, already given in the introdu
tion of this se
tion about the 
ategori
al

semanti
s in a universe, repla
ing P with the topos S.

The interpretation of the assumption of variable and the pseudo-judgements with the signature intro-

du
ed in the formation, introdu
tion, elimination and 
onversion rules for the Terminal type, the Indexed

Sum type, the Equality type are the same as for the type theory HP of H-pretoposes. It remains to in-

terpret the signature introdu
ed in the formation, introdu
tion, elimination and 
onversion rules for the

Produ
t type and the Omega type.
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1. The Produ
t type.

Provided that the pseudo-judgement C(y) [�

n

; y 2 B℄ is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
B

�

�(id)

oo
C

�


(id)

oo

we interpret

�

y2B

C(y) [�

n

℄

as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
�

�

(C

�

)

�

�


(id)

oo

where �

�


 : S=A

�n

! S

!

is the fun
tor de�ned in the following manner: for every

D

t //
A

�n

we put �

�


(t) = �

�(t)


(q(t; �(id))). On the morphisms it is de�ned through the pullba
k. It is

well de�ned, sin
e the 
orresponding Be
k-Chevalley 
onditions hold.

The abstra
tion of the produ
t type is interpreted as follows:

provided that the pseudo-judgement 
 2 C(y) [�

n

; y 2 B℄ is interpreted as

B

�




I

//
id

##G
GGG

C

�


(id)

||yy
yy

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo
B

�

�(id)

oo

we interpret

�y

B

:
 2 �

y2B

C(y) [�

n

℄

as

A

�n

(�y

B

:
)

I

//
id

##H
HH

HH
�

y2B

C

�

�

�


(id)

xxrrrrr

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

where (�y

B

:
)

I

(id) �  (


I

(id)) and and  is the bije
tion

 : S=B

�

(id

B

�n

); 
(id))! S=A

�n

(id

A

�n

;�

�(id)

(
(id)))

sin
e S=B

�

(id

B

�n

); 
(id)) ' S=B

�

(�(id)

�

(id

A

�n

); 
(id)) ' S=A

�n

(id

A

�n

;�

�(id)

(
(id))), where

the latter isomorphism is obtained by the bije
tion of the adjun
tion �(id)

�

a �

�

.

The appli
ation of the produ
t type is interpreted in the following manner:

provided that the pseudo-judgements b 2 B [�

n

℄ and f 2 �

y2B

C(y) [�

n

℄ are interpreted as

A

�n

b

I

//
id

##G
GG

GG
GG

B

�

�(id)||xx
xx

xx

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

A

�n

f

I

//
id

##G
GG

GG
GG

�

�

C

�

�

�


(id)zzvv
vv

vv
v

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

we interpret

Ap(f; b) 2 C(b) [�

n

℄

as

A

�n

(Ap(f;b))

I

//
id

##G
GG

GG
GG

A

�n

�C

�


(b

I

)

yysssssss

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

where (Ap(f; b))

I

(id) � hid;

B

�

 

�1

(f

I

(id)) � b

I

(id)i is the morphism to the pullba
k of 
(id) along

b

I

(id) and  

�1

is the inverse of  .
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2. The Omega type.

Provided that the pseudo-
ontext �

n

is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo

we interpret


 type [�

n

℄

as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
A

�n

�P(1)




I

(!

A

�n

)

oo

where, for every D 2 ObP , we put 


I

(!

D

) �!

�

D

(!

P(1)

) and P(1) is the subobje
t 
lassi�er.

Morever, in the introdu
tion rule for the Omega type, provided that the pseudo-judgementB type [�

n

℄

is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
B

�

oo�(id)

oo

where �(id) is a monomorphism, we interpret

fBg 2 
 [�

n

℄

as

A

�n

fBg

I

//
id

##H
HH

HH
A

�n

�P(1)




I

(!

A

�n

)

xxppp
pp

p

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

where fBg

I

(id) � 
h(�(id)), that is the 
hara
teristi
 morphism of the monomorphism �(id) with

respe
t to A

�n

�P(1).

Now, we interpret the signature introdu
ed in the �-
onversion rule for the Omega type.

Provided that the pseudo-judgement B type [�

n

℄ is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
B

�

oo�(id)

oo

and �(id) is a monomorphism then, we interpret

r

B

(z) 22 B[�

n

; w 2 Eq(
; fBg; f>g)[�

n

℄

as

E

�

r

B

(z)

I

//
id

##G
GGG

E

�

�B

zz

�(e)

zztttt

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo
E

�

oo
e

oo

where e � Eq(fBg

I

; f>g

I

)(id) and r

B

(z)

I

(id) � hid; �

B

�

i, and �

B

�

is the isomorphism in C=A

�n

from the equalizer of fBg

I

(id) and True�!

B

�

to the monomorphism �(id).

5.3.3 The validity of the type theory T

t

In order to prove the validity theorem, we need to know how the rules of weakening and substitution are

interpreted. The lemmas about the interpretation of the rules of weakening and substitution and their

proofs are the same as for the type theory HP (see se
tion 5.3.2).
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Theorem 5.3.9 (Validity) Given a topos S, if A type [�

n

℄ is derivable in T

t

then I

S

(A type [�

n

℄) is

well de�ned. If a 2 A [�

n

℄ is derivable in T

t

, then I

S

(a 2 A [�

n

℄) is well de�ned.

Suppose that A type [�

n

℄ and B type [�

n

℄ are derivable in T

t

, if A = B [�

n

℄ is derivable in T

t

then

I

S

(A type [�

n

℄) = I

S

(B type [�

n

℄).

Suppose that a 2 A [�

n

℄ and b 2 A [�

n

℄ are derivable in T

t

, if a = b 2 A [�

n

℄ is derivable in T

t

then

I

S

(a 2 A [�

n

℄) = I

S

(b 2 A [�

n

℄).

Proof. The proof 
an be done by indu
tion on the derivation of the judgement.

We adopt the same de�nition of validity of an inferen
e rule, as in the proof of the validity theorem for

the type theory HP . Surely, the set rule preserves validity of the judgements. For the validity of the

formation, introdu
tion, elimination and 
onversion rules for the Terminal type, the Indexed Sum type,

the Equality type and also the Produ
t type we refer to the same proof of the type theory HP in se
tion

5.3.2. It remains to prove the validity of formation, introdu
tion, elimination and 
onversion rules for

the Omega type. The formation rule for the Omega type is valid, sin
e the subobje
t 
lassi�er is stable

under pullba
ks (see the appendix A).

The introdu
tion rule for the Omega type is valid, be
ause, provided that the pseudo-judgementB type [�

n

℄

is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
B

�

oo�(id)

oo

then �(id) turns out to be a monomorphism by the validity of the judgement in the hypothesis of the

introdu
tion rule

y = z 2 B [�

n

; y 2 B; z 2 B℄

as we have already seen in the 
ase of the interpretation of the forall type in the type theory HP in

se
tion 5.3.2. Therefore

fBg 2 
 [�

n

℄

turns out to be well interpreted as

A

�n

fBg

I

//
id

##H
HH

HH
A

�n

�P(1)




I

(!

A

�n

)

xxppp
pp

p

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

where fBg

I

(id) � 
h(�(id)), that is the 
hara
teristi
 morphism of the monomorphism �(id) with

respe
t to A

�n

�P(1).

We 
an show that the equality rule on 
 is valid. Indeed, given

B type y = z 2 B [�

n

; y 2 B; z 2 B℄

C type y = z 2 C [�

n

; y 2 C; z 2 C℄

interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
B

�

oo�(id)

oo
1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
C

�

oo
(id)

oo

and given f 2 B $ C [�

n

℄, by validity of the rules for the produ
t type, �(id) and 
(id) turn out to

be isomorphi
, sin
e they are monomorphisms. Hen
e, by the property of subobje
t 
lassi�er, we get

fBg

I

(id) = fCg

I

(id).

Moreover, for the same reason as the introdu
tion rule, the �-
onversion rule for the Omega type is

valid.

Finally, we show that the �C 
onversion rule holds. Given q 2 
 [�

n

℄ interpreted as

A

�n

q

I

//
id

##H
HH

HH
A

�n

�P(1)




I

(!

A

�n

)

xxppp
pp

p

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo
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we get that

fEq(
; q; f>g)g = q 2 


is satis�ed. Indeed, fEq(
; q;>)g

I

(id) is the 
hara
teristi
 map of the equalizer between q

I

(id) and the

True map pulled ba
k by a suitable ! morphism. This equalizer is isomorphi
 to the pullba
k of the

True map along q(!

A

�n

;


I

(id)) � q

I

(id), so that we get fEq(
; q; f>g)g

I

(id) = q

I

(id).

5.4 Appendix A: about the subobje
t 
lassi�er

We show that the subobje
t 
lassi�er is stable under pullba
ks. Consider the pullba
k of !

D

and !

P(1)

,

then the pullba
k of the true map along

D�P(1)

�

2 //
P(1)

in the following diagram

B

��
t

��

//
D

��

��

//
1

��
true

��
A

hm;si

//

m

##G
GG

GG
GG

GG
D�P(1)

�

1

��

�

2 //
P(1)

��
D

//
1

Note that in S=D for every monomorphism
B

m�t   A
AA

AA
A
// t //

A

m

��
D

, there exists in S its 
hara
teristi
 morphism

A

s //
P(1)

and hm; si turns out to be its 
hara
teristi
 morphism in S=D by properties of 
omposition

of pullba
ks.

5.5 Appendix B: our semanti
s as 
ategory with attributes

As we have seen in this 
hapter, our notion of model for the type theories HP and T

t


onsists of a


ategori
al universe, namely respe
tively a H-pretopos and a topos, with a �xed 
hoi
e of its stru
-

ture, where the interpretation is given by the reindexing fun
tor of the split �bration equivalent to the


odomain �bration. The fa
t that these interpretations provide models for the theories is assured by

the theorems of validity of HP and T

t

with respe
t to their 
orresponding 
ategori
al universes. We

des
ribe the notion of model for the type theory of Heyting pretoposes and that for the type theory of

toposes, in terms of 
ontextual 
ategory with attributes.

5.5.1 The 
ontextual 
ategory with attributes for HP

The 
ontextual 
ategory with attributes for the type theory HP is a 
ontextual 
ategory C as in [Pit95℄

with attributes to interpret the various type 
onstru
tors.

Def. 5.5.1 A 
ontextual 
ategory C is a 
ategory possessing a terminal obje
t, 1, and equipped with the

following stru
ture:

� for ea
h obje
t X in C, a 
olle
tion of Type

C

(X), whose elements will be 
alled X-indexed types

in C;

� for ea
h obje
t X in C, operations assuming to ea
h X-indexed type A an obje
t X / A, 
alled

the total obje
t of A, together with a morphism

�

A

: X / A! X


alled the proje
t morphism of A;
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� for ea
h morphism f : Y ! X in C, an operation assigning to ea
h X-indexed type A, a Y -indexed

type f

�

A, 
alled the pullba
k of A along X , together with a morphism f / A : Y / f

�

A! X / A,

making the following diagram a pullba
k in C

Y/f

�

A

f/A

//

�

f

�

A

��

X/A

�

A

��
Y

f

//
X

and su
h that the following stri
tness 
onditions hold:

id

X

�

A = A id

X

/ A = id

X/A

g

�

(f

�

A) = (f � g)

�

A (f / A) � (g / f

�

A) = (f � g) / A

for every f : Y ! X and g : Z ! Y morphism in C.

For ea
h obje
t X , the global se
tions of an X-indexed type A are the morphisms in C

a : X ! X / A su
h that �

A

� a = id

X

and for ea
h morphism f : Y ! X , using the universal property of pullba
k, we get the unique morphism

f

�

a : Y ! Y / f

�

A

su
h that �

f

�

A

� f

�

a = id

Y

and (f / A) � f

�

a = a � f .

Remark 5.5.2 We 
an endow the 
olle
tion Type

C

(X) with the 
ategory stru
ture, by de�ning a

morphism of Type

C

(X) from the indexed type A to B as a morphism in C=X from �

A

to �

B

.

Def. 5.5.3 For ea
h morphism f : Y ! X in C we de�ne the pullba
k fun
tor along f

f

�

: Type

C

(X)! Type

C

(Y )

su
h that

f

�

(
A

g

//
B
) =

f

�

A

h�

f

�

A

;g�(f/A)i

//
f

�

B

Remark 5.5.4 The attributes, that we are going to de�ne for the various 
onstru
tors of HP and T

t

are not ne
essarily the minimal attributes to model ea
h type 
onstru
tor with its terms, 
onsidered

separately from the others.

Def. 5.5.5 A 
ategory with attributes supports the false type, if for ea
h obje
t X in C there is an

indexed type

O

X

2 Type

C

(X)

satisfying:

� Universal Property. For every C 2 Type

C

(X / O

X

), there is a unique global se
tion

~r

o

C

: id

X/O

X

! �

C

� Stri
tness Property. For ea
h morphism f : Y ! X in C

f

�

O

X

= O

Y

Note that in the universal property we 
ould have simply required a global se
tion ~r

o

C

, stable under

pullba
k, sin
e in the presen
e of extensional propositional equality type uniqueness follows.
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Def. 5.5.6 A 
ategory with attributes supports disjoint sum types, if for ea
h obje
t X in C and for

every A 2 Type

C

(X), B 2 Type

C

(X), there is an indexed type

A�B 2 Type

C

(X)

and there are two morphisms in Type

C

(X)

�

A

: A! A�B

�

B

: B ! A�B

satisfying:

� Universal Property. For every C 2 Type

C

(X / A+B), for every global se
tions a : id

X/A

! �

�

�

A

C

and b : id

X/B

! �

�

�

B

C

, there is a unique global se
tion a� b : id

A�B

! �

C

su
h that

�

�

A

(a� b) = a �

�

B

(a� b) = b

� Stri
tness Property. For ea
h morphism f : Y ! X in C

f

�

(A�B) = f

�

A� f

�

B

f

�

(�

A

) = �

f

�

A

� Disjointness. For every global se
tions a : id

X

! �

A

and b : id

X

! �

B

su
h that �

A

� a = �

B

� b,

there exists a unique global se
tion m : id

X

! �

0

, where 0

X

2 Type

C

(X) is the indexed type


orresponding to the attribute supporting the false type.

Note that in the universal property we 
ould have simply required a global se
tion a � b, stable under

pullba
k.

Remark 5.5.7 In the presen
e of indexed sum type in HP , we 
ould only de�ne the attribute to

interpret a restri
ted elimination rule for the disjoint sum type, where the type in 
onsideration does

not depend on the disjoint sum, by adding the suitable 
onversion rules, among whi
h that stating the

uniqueness of the term introdu
ed in the restri
ted elimination rule, as in the 
ase of the quotient type

and of the natural numbers type (see se
tion 5.3.1).

Def. 5.5.8 A 
ategory with attributes supports extensional equality types, if for ea
h obje
t X in C,

A 2 Type

C

(X) and for every global se
tions a : id

X

! �

A

and b : id

X

! �

A

in C=X , there is an indexed

type

f

Eq(A; a; b) 2 Type

C

(X)

su
h that the following 
onditions are satis�ed:

� its proje
tion

X/

f

Eq(A;a;b)

//
�

g

Eq

//
X

is the equalizer of a and b in C=X .

� Stri
tness Property. For ea
h morphism f : Y ! X in C

f

�

(

f

Eq(A; a; b)) =

f

Eq(f

�

A; f

�

(a); f

�

(b))

Therefore, for every global se
tions a : id

X

! �

A

, we de�ne eeq

A

(a) as the isomorphism su
h that

�

f

Eq(A;a;a)

� eeq

A

(a) = id

X

:

Note that we 
ould have also de�ned this attribute, by simply saying that there is a type

f

Eq(A; a; b),

stable under pullba
k, su
h that, whenever there is a global se
tion towards it, then a = b and that there

is a global se
tion eeq

A

(a) : id

X

! �

f

Eq(A;a;a)

, stable under pullba
k su
h that, for every global se
tion

p : id

X

! �

f

Eq
(A;a;b)

, we get p = eeq

A

(a).
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Def. 5.5.9 A 
ategory with attributes supports forall types, if for ea
h obje
t X in C, A 2 Type

C

(X)

and B 2 Type

C

(X / A) su
h that its proje
tion

X/A/B

//�B //
X/A

is a mono in C, there is an indexed type

8(A;B) 2 Type

C

(X)

whose proje
tion

X/8(A;B)

//
�

8(A;B)

//
X

is a mono in C, and there is a morphism in Type

C

(X / A)

ap

A;B

: �

A

�

8(A;B)! B

satisfying:

� Adjointness Property. �

8(A;B)

: X / 8(A;B)! X is the value of the right adjoint to the pullba
k

fun
tor at �

B

with 
ounit ap

A;B

. In other words, for ea
h morphism f : Y ! X in C, and

g : �

�

A

(f)! �

B

in C=X / A, there is a unique morphism in C=X

 (g) : f ! �

8(A;B)

satisfying ap

A;B

� �

�

A

( (g)) = g;

� Stri
tness Property. For ea
h morphism f : Y ! X in C

f

�

8(A;B) = 8(f

�

A; (f / A)

�

B)

(f / A)

�

(ap

A;B

) = ap

f

�

A;(f/A)

�

B

Remark 5.5.10 In the adjointness property, we 
ould restri
t the requirement of having  (g), when g

is a global se
tion of B.

Def. 5.5.11 A 
ategory with attributes supports e�e
tive quotient types, with an elimination rule for

types not depending on the quotient type, if for ea
h obje
t X in C, A 2 Type

C

(X) and R 2 Type

C

(X /

A / �

�

A

A) su
h that its proje
tion

X/A/�

�

A

A/R

//�R //
X/A/�

�

A

A

is a mono and h�

�

�

A

A

� �

R

; (�

A

/ A) � �

R

i is an equivalen
e relation in C=X , there is an indexed type

A=R 2 Type

C

(X)

and there is a morphism in Type

C

(X)

f

[�℄

A=R

: �

A

! �

A=R

satisfying:

� Universal Property. For ea
h C 2 Type

C

(X) and ea
h morphism

�

A

d //
�

C

su
h that d � �

�

�

A

A

�

�

R

= d � (�

A

/ A) � �

R

, there exists a unique morphism

Q(d) : �

A=R

! �

C

su
h that Q(d) �

f

[�℄

A=R

= d.
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� Stri
tness Property. For ea
h morphism f : Y ! X in C

f

�

A=R = f

�

A=((f / A) / �

�

A

A)

�

R

f

�

(

f

[�℄

A=R

) =

f

[�℄

f

�

A=((f/A)/�

�

A

A)

�

R

� E�e
tiveness. For every global se
tions a : id

X

! �

A

and b : id

X

! �

A

in C=X su
h that

f

[�℄

A=R

� a =

f

[�℄

A=R

� b

there exists a unique morphism

^

f(a; b) : id

X

! �

ha;bi

�

R

su
h that (�

R

� ha; bi / R) �

^

f(a; b) = ha; bi,

where ha; bi is the morphism indu
ed by a and b towards the pullba
k of �

A

along �

A

.

As for the 
ategory with attributes supporting the terminal type, indexed sum types, the natural numbers

type we refer to [Hof95℄.

5.5.2 The 
ontextual 
ategory with attributes for T

t

We des
ribe the notion of model for the type theory of elementary toposes, in terms of 
ontextual


ategory with attributes. We refer to the de�nition of 
ontextual 
ategory of the se
tion 5.5.1.

Def. 5.5.12 A 
ategory with attributes supports produ
t types, if for ea
h obje
t X in C, A 2 Type

C

(X)

and B 2 Type

C

(X / A), there is an indexed type

�(A;B) 2 Type

C

(X)

and a morphism in Type

C

(X / A)

ap

A;B

: �

�

A

�(A;B)! B

satisfying:

� Adjointness Property. �

�(A;B)

: X / �(A;B) ! X is the value of the right adjoint to the pullba
k

fun
tor at �

B

: X / A / B ! X / A with 
ounit ap

A;B

. In other words, for ea
h morphism

f : Y ! X in C, and g : �

�

A

(f)! �

B

in C=X / A, there is a unique morphism in C=X


ur(g) : f ! �

�(A;B)

satisfying ap

A;B

� �

�

A

(
ur(g)) = g;

� Stri
tness Property. For ea
h morphism f : Y ! X in C

f

�

�(A;B) = �(f

�

A; (f / A)

�

B)

(f / A)

�

(ap

A;B

) = ap

f

�

A;(f/A)

�

B

Remark 5.5.13 In the adjointness property, we 
ould restri
t the requirement of having 
ur(g), when

g is a global se
tion of B (see [Hof95℄).

Def. 5.5.14 A 
ategory with attributes supports the Omega type, if for ea
h obje
t X in C, there is a

type P(1)

X

2 Type

C

(X) and a global se
tion

true

X

: id

X

! �

P(1)

X

su
h that for ea
h A 2 Type

C

(X), whose proje
tion

X/A

//�A //
X

is a mono in C, there is a unique global se
tion


h(A) : id

X

! �

P(1)

X

in C=X satisfying the following 
onditions:
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� Universal Property. The following diagram is a pullba
k in C=X

X/A

//

�

A

��

X

true

X

��
X


h(A)

//
X/P(1)

X

� Stri
tness Property. For ea
h morphism f : Y ! X

f

�

(P(1)

X

) = P(1)

Y

f

�

(
h(A)) = 
h(f

�

A)

where f

�

(
h(A)) is de�ned as the unique morphism in C=Y towards the pullba
k of �

A

along f ,

indu
ed by id

Y

and 
h(A) � f .

Note that the proje
tion of A is isomorphi
 to the equalizer of 
h(A) and true

X

. Let us 
all

� : eq(
h(A); true

X

)! �

A

this isomorphism.

For every A 2 Type

C

(X) su
h that its proje
tion is a mono, ~r

A


ur(hid

eq(::)

; �i) in C=X . By the way,

we re
all that every morphism of C, whose domain is X , be
omes a global se
tion of C=X by taking its

graph.

In this de�nition we assume that the attribute for the extensional equality type is de�ned as in 5.5.1.

About the attributes for the terminal type and the indexed sum type we also refer to se
tion 5.5.1.

5.5.3 Our model out of a universe as a 
ategory with attributes

Now, we see how our notion of model for the type theories HP and T

t

, des
ribed in this 
hapter,


orresponds to a parti
ular 
ontextual 
ategory. This 
ontextual 
ategory is given by the reindexing

fun
tor of the split �bration equivalent to the 
odomain �bration, as in the remark 5.2.4, and it is

des
ribed in the following. Given a H-pretopos or a topos P , we 
onsider, as C, the 
ategory of 
ontexts

Cont(P) de�ned as follows:

Def. 5.5.15 The obje
ts of the 
ategory Cont(P) are �nite sequen
es a

1

; a

2

; :::; a

n

of morphisms of P

A

n

a

n //
A

2

a

2 //
A

1

a

1 //
1

and a morphism from a

1

; a

2

; :::; a

n

to b

1

; b

2

; :::; b

m

is simply a morphism b of P

A

n

b //

a

n

$$JJ
J

B

n

b

n

zzttt
A

n�1

a

n�1

&&LL
L

B

n�1

b

n�1

xxrrr
A

n�2

B

n�2

1

provided that m = n and a

i

= b

i

for i = 1; :::; n� 1.

Moreover, for ea
h obje
t of Cont(P)

A

n

a

n //
A

2

a

2 //
A

1

a

1 //
1

we de�ne

Type

C

(a

1

; a

2

; :::; a

n

) � Fib(P=A

n

;P

!

)

Therefore, Cont(P) is equivalent to P and to Type

C

(1) (see the remark 5.2.4). In the 
ase of the model

for the type theory HP , the 
ategory P is required to be a H-pretopos and the attributes are de�ned

similarly to the interpretation for the type theory HP in se
tion 5.3.1.

In the 
ase of the model for the type theory T

t

, the 
ategory P is required to be a topos and the attributes

are de�ned as in the interpretation for the type theory T

t

in se
tion 5.3.2.
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Remark 5.5.16 The 
lass of 
ontextual 
ategories with attributes for the type theory HP ( T

t

), 
ap-

tured by our semanti
s, is smaller than the 
lass of 
ontextual 
ategories with attributes for the HP

(T

t

) 
al
uli. Indeed, not for any 
ontextual 
ategory C, we have that C is equivalent to Type

C

(1). By

the way, from a 
ontextual 
ategory for the type theory HP (T

t

) we should get a H-pretopos ( a topos)

out of the 
ategory Type

C

(1), as shown in the se
tions 3.3 and 4.4.



Chapter 6

The 
ompleteness theorems

Summary We prove the 
ompleteness theorem for the type theory HP with respe
t to H-pretoposes and the


ompleteness theorem for the type theory T

t

with respe
t to toposes.

6.1 The proof of 
ompleteness

Completeness theorems for the type theories HP and T

t

are proved with respe
t to a parti
ular 
lass of


ontextual 
ategories, namely those related to the split �bration equivalent to the 
odomain �bration.

We know that the 
ompleteness theorem with respe
t to general 
ontextual 
ategories with attributes

is quite straightforward (see, for example, [Pit95℄, [Str91℄). Indeed, the interpretation in the synta
ti



ontextual 
ategory is faithful, sin
e it turns out to 
orrespond to an identity modulo provable equality

between types and between terms. But, sin
e our models are parti
ular 
ontextual 
ategories with

attributes, and the interpretation of the indexed sum type is the 
omposition of �bred fun
tors, the

interpretation in the synta
ti
 
ategory is no more exa
tly an identity modulo provable equality. Anyway,

this interpretation is isomorphi
 to a 
anoni
al 
omprehension stru
ture, whi
h does not require new

data or 
hoi
es, useful to prove 
ompleteness.

Having seen the validity of the type theory HP with respe
t to Pgr(P) for every H-pretopos P , we

prove the 
ompleteness theorem w.r.t. the 
lass of H-pretoposes with a �xed 
hoi
e of their stru
ture.

In a similar way, having seen the validity of the type theory T

t

with respe
t to Pgr(S) for every topos

S, we prove the 
ompleteness theorem w.r.t. the 
lass of toposes with a �xed 
hoi
e of their stru
ture.

For this purpose, given a H-pretopos or a topos P , we de�ne the following 
ategory P

!

n

whose obje
ts

are the obje
ts of Pgr(P) and whose morphisms between �

1

; �

2

; :::; �

n

and �

1

; �

2

; :::; �

n

are sequen
es

of morphisms of P �

1

; :::; �

n

su
h that all the following squares 
ommute

A

n

�

n //

�

n

��

B

n

�

n��
A

n�1

�

n�1

��

�

n�1

//
B

n�1

�

n�1

��

A

2

�

2

��

�

2 //
B

2

�

2��
A

1

�

1

��

�

1 //
B

1

�

1��
1

id

1 //
1

The proof of the 
ompleteness theorem with respe
t to a 
lass of universes is based on the investigation of

the interpretation I

P

T

in the synta
ti
 H-pretopos P

T

and on the investigation of the interpretation I

S

T

in the synta
ti
 topos S

T

. These interpretations do not resemble the identity interpretation. Anyway, we

81
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will prove that there is a kind of isomorphism between the interpretation I

P

T

and another interpretation

of judgements of HP , whi
h we 
all J

P

T

. Analogously, there is also a kind of isomorphism between the

interpretation I

S

T

and another interpretation of judgements of T

t

, whi
h we 
all J

S

T

. The interpretations

J

P

T

and J

S

T

resemble the identity interpretation modulo the equality and are faithful.

6.1.1 The 
ompleteness with respe
t to H-pretoposes

We prove the 
ompleteness theorem of the type theory HP with respe
t to H-pretoposes. In order to

do this, we take the synta
ti
 H-pretopos P

T

, and we de�ne the interpretation

J

P

T

: HP ! Pgr(P

T

)

by indu
tion on the number of assumptions in the 
ontext in this manner:

J

P

T

(B type [x

1

2 A

1

; :::; x

n

2 A

n

(x

1

; :::; x

n�1

)℄) is

�

z

n

2

g

A

n

B

�

B

1

((QQQQQQ

�

z

n�1

2

^

A

n�1

A

n

�

n

1

''OOOOOO

�

z2>

A

1

�

1

1

$$I
IIII

>

where

f

A

n

is the domain of the last morphism of J

P

T

(A

n

type[x

1

2 A

1

; :::; x

n�1

2 A

n�1

(x

1

; :::; x

n�2

)℄)

and

B � B[x

1

:= �

1

2

� �

2

1

� � ��

n

1

(z

n

)℄ : : : [x

n�1

:= �

n�1

2

(�

n

1

(z

n

))℄[x

n

:= �

n

2

(z

n

)℄

with �

n

i

� �x:�

n

i

(x) for i = 1; 2, where �

n

1

(x) and �

n

2

(x) are the two proje
tions of �

z

n�1

2

^

A

n�1

A

n

and

�

B

1

and �

B

2

are the two proje
tions of �

z

n

2

f

A

n

B. For i = 1; : : : ; n A

i

is de�ned in the same manner as

B, where

f

A

1

� �

z2>

A

1

and A

1

� A

1

.

If b 2 B [�

n

℄ is a judgement of HP , we put

b � b [x

1

:= �

1

2

� �

2

1

� � ��

n

1

(z

n

)℄ : : : [x

n�1

:= �

n�1

2

(�

n

1

(z

n

))℄[x

n

:= �

n

2

(z

n

)℄

and we 
an derive

b 2 B [z

n

2

f

A

n

℄

From now on, we 
all B

I

= dom(I

P

T

(B type [�

n

℄)).

In order to prove the 
ompleteness theorem, we want to show that

Proposition 6.1.1 For every judgement

B type [�

n

℄

derivable in HP , (whi
h we suppose to be interpreted as �

1

(id); �

2

(id); :::; �

n

(id); �(id)) there is an

isomorphism of P

!

n

T

�

A

1

; :::; �

A

n

; �

B

between I

P

T

(B type [�

n

℄) and J

P

T

(B type [�

n

℄) su
h that for every judgement b 2 B [�

n

℄

�

B

� b

I

(id) = hid; bi � �

A

n

and for weakening, for every judgement with n � j

M type [�

j

℄
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(whi
h we suppose to be interpreted as �

1

(id); �

2

(id); :::; �

j

(id); �(id))

�

B

� t

n

= p

n

� id � �

M�B

where �

M�B

: (M � B)

I

! �

x2

f

M

B, t

i

is de�ned as in the lemma of weakening, p

j

� �

M

1

� id and if

n � j + 1, p

i

� p

i�1

� id for i = j + 1; : : : ; n,

and for substitution, for every a

j

2 A

j

[�

j�1

℄ with n � j

�

B

� q

n

= s

n

� id � �

B(a

n

)

where q

i

is de�ned as in the lemma of substitution, s

j

� hid; a

n

i � id and if n � j + 1, s

i

� s

i�1

� id

for i = j + 1; : : : ; n.

Proof. The de�nition of the isomorphisms is given by indu
tion on the derivation of type and term

judgements of HP . In general, given a type judgement

B type [x

1

2 A

1

; :::; x

n

2 A

n

(x

1

; :::; x

n�1

)℄

by indu
tive hypothesis we know that �

A

1

; :::; �

A

n

is the isomorphism between I

P

T

(A

n

type [x

1

2

A

1

; :::; x

n�1

2 A

n�1

(x

1

; :::; x

n�2

)℄) and J

P

T

(A

n

type [x

1

2 A

1

; :::; x

n�1

2 A

n�1

(x

1

; :::; x

n�2

)℄), so we

only de�ne the isomorphism �

B

: B

I

! �

z

n

2

f

A

n

B in order to prove that �

A

1

; :::; �

A

n

; �

B

is the isomor-

phism in P

!

n

T

between I

P

T

(B type [�

n

℄) and J

P

T

(B type [�

n

℄).

We 
an de�ne the isomorphisms by indu
tion on the derivation of type and term judgements, sin
e by

the validity theorem these are well de�ned. For the terms it is 
ru
ial that isomorphisms 
ommute with

the se
ond proje
tions of pullba
ks related to weakening and substitution.

For example, we show the indu
tive steps for the terminal type and for the indexed sum type.

1. Given the Terminal type judgement > [�

n

℄ we de�ne

�

A

n

�>

: >

I

! �

z

n

2

f

A

n

>

as �

A

n

�>

(z) = h�

A

n

(�

>

1

(z)); �

1

(�

>

2

(z))i for z 2 >

I

, sin
e by de�nition >

I

� �

z

n

2

f

A

n

�

y2>

? =

>

?.

We 
an easily prove that this isomorphism satis�es all the equations of the proposition.

2. Given the Indexed Sum type judgement �

y2B

C(x

1

; :::; x

n

; y)[�

n

℄ we de�ne

�

�

y2B

C

: (�

y2B

C)

I

! �

z

n

2

f

A

n

�

y2B

C

as �

�

y2B

C

� � � �

C

where

� : �

y2

e

B

C ! �

z

n

2

f

A

n

�

y2B

C

is de�ned in this manner: for every z 2 �

y2

e

B

C

�(z) = h�

B

1

(�

C

1

(z)); h�

B

2

(�

C

1

(z)); �

C

2

(z)ii

For short we write � for �

y2B

C.

We 
an easily prove that � is an isomorphism and in order to 
he
k the weakening equation

�

�

� t

n

= p

n

� id � �

M��

it is suÆ
ient to show that

p

n

� id � �

M�C

= �

C

� (p

n

� id)� id

Finally, in analogous way we 
an prove the substitution equations.

Given the pair term hb; 
i 2 �

y2B

C(x

1

; :::; x

n

; y)[�

n

℄ we want to prove that

�

�

y2B

C

� (hb; 
i)

I

= hid; hb; 
ii � �

A

n
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Indeed by indu
tive hypotheses on pullba
k proje
tions and on substitution

(� � �

C

)) � (q(b

I

; 
(id)) � 


I

) =

= � � (hid; bi � id � �

C(b)

) � 


I

=

= (� � hid; bi � id) � (hid; 
i � �

A

n

)

= hid; hb; 
ii � �

A

n

:

Given the �rst proje
tion �

1

(d) 2 B(x

1

; :::; x

n

)[�

n

℄ we want to prove that

�

B

� (�

1

(d))

I

= hid; �

1

(d)i � �

A

n

Indeed, by indu
tive hypotheses on type judgements and on d

I

�

B

� (
(id) � d

I

) =

�

�

y2B

C

1

� (�

C

� d

I

) =

= �

�

y2B

C

1

� (�

�1

� hid; di � �

A

n

)

= hid; �

1

(d)i � �

A

n

.

Given the se
ond proje
tion �

2

(d) 2 B(x

1

; :::; x

n

)[�

n

℄ we want to prove that

�

C(�

1

(d))

� (�

2

(d))

I

= hid; �

2

(d)i � �

A

n

We start to 
onsider �

�1

C(�

1

(d))

� (hid; �

2

(d)i � �

A

n

) and note that by indu
tion hypotheses


(�

1

(d)

I

) � �

�1

C(�

1

(d))

� (hid; �

2

(d)i � �

A

n

)) =

= (�

�1

A

n

� �

C(b)

1

) � (hid; �

2

(d)i � �

A

n

)) =

= id

and moreover, by indu
tion hypotheses on pullba
k proje
tions and on substitution

q(�

1

(d)

I

; 
(id)) � (�

�1

C(�

1

(d))

� (hid; �

2

(d)i � �

A

n

)) =

= (�

�1

C

� hid; �

1

(d)i � id) � (hid; �

2

(d)i � �

A

n

) =

= �

�1

C

� (�

�1

� hid; di) � �

A

n

) =

= d

I

.

Therefore, by uniqueness of a morphism to a pullba
k we 
on
lude that

�

2

(d)

I

= hid; d

I

i = �

�1

C(�

1

(d))

� (hid; �

2

(d)i � �

A

n

)

For all the other types, we 
an go on de�ning the isomorphisms that satisfy the various equations by

using their term 
onstru
tors and the indu
tive hypotheses. For the equality type and the forall type

the equations hold dire
tly by the indu
tive hypotheses, sin
e the last morphism is a mono.

Now we are ready to prove:

Theorem 6.1.2 (
ompleteness) Suppose that a 2 A [�

n

℄ and b 2 A [�

n

℄ are derivable in HP , if for

every H-pretopos P I

P

(a 2 A [�

n

℄) = I

P

(b 2 A [�

n

℄) then a = b 2 A [�

n

℄ is derivable in HP .

Suppose that A type [�

n

℄ and B type [�

n

℄ are derivable in HP , if for every H-pretopos P I

P

(A type [�

n

℄) =

I

P

(B type [�

n

℄) then A = B [�

n

℄ is derivable in HP .

Proof.

If I

P

T

(a 2 A [�

n

℄) = I

P

T

(b 2 A [�

n

℄) then by the above proposition

�

�1

B

� hid; ai � �

A

n

= a

I

= b

I

= �

�1

B

� hid; bi � �

A

n

from whi
h we 
on
lude a = b 2 A [�

n

℄. The proof for the judgements about equality between types


an be done by double indu
tion on the derivation, 
onsidering the interpretation I

P

T

in the synta
ti



ategory P

T

. When the equality type step o

urs in the indu
tion, we 
an 
on
lude by the 
ompleteness

for judgements about equality between terms.
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6.1.2 The 
ompleteness with respe
t to elementary toposes

We prove the 
ompleteness theorem of T

t

with respe
t to elementary toposes, in the same way as we have

done for HP . In order to do this, we 
onsider the synta
ti
 topos S

T

, and we de�ne the interpretation

J

S

T

: T

t

! Pgr(S

T

)

by indu
tion on the number of assumptions in the 
ontext in this manner:

J

S

T

(B type [x

1

2 A

1

; :::; x

n

2 A

n

(x

1

; :::; x

n�1

)℄) is

�

z

n

2

g

A

n

B

�

B

1

((QQQQQQ

�

z

n�1

2

^

A

n�1

A

n

�

n

1

''OOOOOO

�

z2>

A

1

�

1

1

$$I
IIII

>

where

f

A

n

is the domain of the last morphism of J

S

T

(A

n

type [x

1

2 A

1

; :::; x

n�1

2 A

n�1

(x

1

; :::; x

n�2

)℄)

and

B � B[x

1

:= �

1

2

� �

2

1

� � ��

n

1

(z

n

)℄ : : : [x

n�1

:= �

n�1

2

(�

n

1

(z

n

))℄[x

n

:= �

n

2

(z

n

)℄

with �

n

i

� �x:�

n

i

(x) for i = 1; 2, where �

n

1

(x) and �

n

2

(x) are the two proje
tions of �

z

n�1

2

^

A

n�1

A

n

and

�

B

1

and �

B

2

are the two proje
tions of �

z

n

2

f

A

n

B. For i = 1; : : : ; n A

i

is de�ned in the same manner as

B, where

f

A

1

� �

z2>

A

1

and A

1

� A

1

.

If b 2 B [�

n

℄ is a judgement of T

t

, we put

b � b[x

1

:= �

1

2

� �

2

1

� � ��

n

1

(z

n

)℄ : : : [x

n�1

:= �

n�1

2

(�

n

1

(z

n

))℄[x

n

:= �

n

2

(z

n

)℄

and we 
an derive

b 2 B [z

n

2

f

A

n

℄

From now on, we 
all B

I

= dom(I

S

T

(B type [�

n

℄)).

In order to prove the 
ompleteness theorem we want to show that

Proposition 6.1.3 For every judgement

B type [�

n

℄

derivable in T

t

, (whi
h we suppose to be interpreted as �

1

(id); �

2

(id); :::; �

n

(id); �(id)) there is an iso-

morphism of S

!

n

T

�

A

1

; :::; �

A

n

; �

B

from I

S

T

(B type [�

n

℄) to J

S

T

(B type [�

n

℄) su
h that for every judgement b 2 B [�

n

℄

�

B

� b

I

(id) = hid; bi � �

A

n

and about weakening for every judgement with n � j

M type [�

j

℄

(whi
h we suppose to be interpreted as �

1

(id); �

2

(id); :::; �

j

(id); �(id))

�

B

� t

n

= p

n

� id � �

M�B

where �

M�B

: (M � B)

I

! �

x2

f

M

B, t

i

is de�ned as in the lemma of weakening, p

j

� �

M

1

� id and if

n � j + 1, �

i

� �

i�1

� id for i = j + 1; : : : ; n,
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and about substitution for every a

j

2 A

j

[�

j�1

℄ with n � j

�

B

� q

n

= s

n

� id � �

B(a

n

)

where q

i

is de�ned as in the lemma of substitution, s

j

� hid; a

n

i � id and if n � j + 1, s

i

� s

i�1

� id

for i = j + 1; : : : ; n.

Proof. The de�nition of the isomorphisms is given by indu
tion on the derivation of type and term

judgements of T

t

. In general, given a type judgement

B type [x

1

2 A

1

; :::; x

n

2 A

n

(x

1

; :::; x

n�1

)℄

by indu
tive hypothesis we know that �

A

1

; :::; �

A

n

is an isomorphism from I

S

T

(A

n

type [x

1

2 A

1

; :::; x

n�1

2

A

n�1

(x

1

; :::; x

n�2

)℄) to J

S

T

(A

n

type [x

1

2 A

1

; :::; x

n�1

2 A

n�1

(x

1

; :::; x

n�2

)℄), so, we only de�ne an iso-

morphism �

B

: B

I

! �

z

n

2

f

A

n

B in order to prove that �

A

1

; :::; �

A

n

; �

B

is an isomorphism in S

!

n

T

from

I

S

T

(B type [�

n

℄) to J

S

T

(B type [�

n

℄).

We 
an de�ne the isomorphisms by indu
tion on the derivation of type judgement and term judgement,

sin
e by the validity theorem these are well de�ned. For the terms it is 
ru
ial that isomorphisms


ommute with the se
ond proje
tions of pullba
ks related to weakening and substitution. See, for the

terminal type, the indexed sum type and the equality type the analogous proposition 6.1.1 for the type

theory HP . About the produ
t type, the isomorphism is de�ned in a similar way as for the indexed

sum type, looking at the des
ription of the right adjoint in se
tion 4.4. About the Omega type, see the

terminal type.

Now, we are ready to prove:

Theorem 6.1.4 (
ompleteness) Suppose that a 2 A [�

n

℄ and b 2 A [�

n

℄ are derivable in T

t

, if for

every topos S I

S

(a 2 A [�

n

℄) = I

S

(b 2 A [�

n

℄) then a = b 2 A [�

n

℄ is derivable in T

t

.

Suppose that A type [�

n

℄ and B type [�

n

℄ are derivable in T

t

, if for every topos S I

S

(A type [�

n

℄) =

I

S

(B type [�

n

℄) then A = B [�

n

℄ is derivable in T

t

.

Proof.

If I

S

T

(a 2 A [�

n

℄) = I

S

T

(b 2 A [�

n

℄), then by the above proposition

�

�1

B

� hid; ai � �

A

n

= a

I

= b

I

= �

�1

B

� hid; bi � �

A

n

from whi
h we 
on
lude a = b 2 A [�

n

℄.

The proof for the judgements about equality between types 
an be done by double indu
tion on the

derivation, 
onsidering the interpretation I

S

T

in the synta
ti
 
ategory S

T

. When the equality type step

o

urs in the indu
tion, we 
an 
on
lude by the 
ompleteness for judgements about equality between

terms.



Chapter 7

The internal type theory of a

universe

Summary We present the internal type theory of a Heyting pretopos with a natural numbers obje
t and of

a topos. The resulting theories are based respe
tively on the initial type theories HP and T

t

. We prove that

there is a sort of equivalen
e between the type theories and the 
orresponding 
ategory of universes. By using

the type theory we also build the free Heyting pretopos and the free topos generated by a 
ategory.

7.1 The internal type theory of a Heyting pretopos

Given a H-pretopos P we want to des
ribe its internal dependent type theory T (P). The type theory

is based on the initial type theory HP for H-pretoposes (see se
tion 3.2), augmented with the spe
i�


type and term judgements of P . As in the non-dependent 
ase, we give a dependent formulation of the

internal language of a universe saying what a type judgement is, what a term judgement is, in a 
lear

order, without 
onsidering before raw types and raw terms and then well-formed types and terms, as

it is usually done in the dependent 
ase. Indeed, it is meaningless in a dependent theory to 
onsider a

type or a term in isolation from the 
orresponding type or term judgement and its derivation. As in the


ategori
al semanti
s for the dependent typed 
al
uli in se
tion 5.2, the idea is to 
onsider a dependent

type as a sequen
e of morphisms of P , ending with the terminal obje
t 1, whereas the terms are se
tions

of the last morphism of the type to whi
h they belong. Therefore, the type theory T (P) is formulated in

the style of Martin-L�of's type theory with the four kinds of judgements [NPS90℄ and teles
opi
 
ontexts.

We assume all the inferen
e rules about the formation of 
ontexts, de
larations of typed variables, about

re
exivity, symmetry and transitivity of the equality between types and terms [NPS90℄ and the set rule


onv) as in se
tion 3.2. As in the semanti
s in se
tion 5.2, a type judgement arises from a obje
t of

Pgf(P), whi
h represents a dependent type with all its possible substitutions. More pre
isely, a type

judgement 
orresponds to the evaluation of a �nite sequen
e of �bred fun
tors on the identity. Indeed,

for a sequen
e of �bred fun
tors �

1

; �

2

; :::; �

n

; � of Pgf(P), we de�ne

�

�1

(x

1

; :::; x

n

)[x

1

2 �

�1

1

; :::; x

n

2 �

�1

n

(x

1

; :::; x

n�1

)℄

as the type judgement 
orresponding to

B

�(id)

//
A

n

�

n

(id)

//
A

1

�

1

(id)

//
1

by thinking of the �bers of the morphism �(id). This notation turns out to be very 
lear when we look at

the 
ategory of paths built on any synta
ti
 H-pretopos. The equality between types 
orresponds to the

equality between obje
ts of Pgf(P), whi
h implies the equality between obje
ts of Pgr(P). For short,

we use the abbreviation �

n

� x

1

2 �

�1

1

; :::; x

n

2 �

�1

n

(x

1

; :::; x

n�1

) in the 
ontexts. On the other hand,

a term judgement arises from a morphism of Pgf(P), whi
h is a natural transformation representing

87
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a term with all its possible substitutions. The evaluation of a natural transformation on the identi
al

substitution is a term judgement. Indeed, for a suitable morphism b of Pgf(P) from �

1

; �

1

; :::; �

n

; i

A

n

to �

1

; �

2

; :::; �

n

; �, the term judgement

b 2 �

�1

(x

1

; :::; x

n

)[�

n

℄


orresponds to a se
tion of �(id)

A

n

b(id)

//
id

##F
F B

�(id)

}}{{{
1

A

1

!

A

1

oo
A

n

�

n

oo

by 
hoosing the identity as the terminal obje
t

in P=A

n

. The equality between terms 
orresponds to the equality between morphisms of Pgf(P). So,

we add as axioms all the equality judgements that 
orrespond to a
tual equations holding in Pgf(P).

In the following, to make formulas more readable in type judgements, we will write �[�

n

℄ instead of

�

�1

[�

n

℄. In the diagrams we will often write �

i

instead of �

i

(id

A

i

) for �bred fun
tors and b instead of

b(id) for natural transformations.

The rules for substitution of variables in a type and in a term and for weakening of a variable w.r.t

type and term judgements are the usual ones and they are de�ned as their interpretation in the semanti
s

in se
tion 5.2. We only show how they work in these parti
ular 
ases:

sT


[�

n

; y 2 �℄ b 2 �[�

n

℄


[b(id)℄[�

n

℄

is

C




//
B

�

//
A

n

::: A

n

b //

id

##F
F B

�

}}{{{
A

n

A

n

�C


[b(id)℄

//
A

n

:::

where we put 
[b(id)℄(id) � 
(b(id))

st


 2 
[�

n

; y 2 �℄ b 2 �[�

n

℄


[b(id)℄ 2 
[b(id)℄[�

n

℄

is

C


 //
id

""D
DD

C




~~}}
A

n

B

�

oo

A

n

b //

id

##F
F B

�

}}{{{
A

n

A

n


[b(id)℄

//
A

n

�C

where we put 
[b(id)℄(id) � 
(b(id))

wT

�[�

n

℄ Æ[�

n

℄

�[�

n

; y 2 Æ℄

is

B

�

//
A

n

:::

D

Æ //
A

n

:::

D�B

�[Æ(id)℄

//
D

Æ //
A

n

:::

where we put �[Æ(id)℄(id) � �(Æ(id))

wt

b 2 �[�

n

℄ �[�

n

℄

b 2 �[�

n

; w 2 �℄

is

A

n

b //

id

##F
F B

�

}}{{{
A

n

E

�

//
A

n

:::

E

b[�(id)℄

//

id

!!C
CC

C E�B

�[�(id)℄

{{ww
ww

A

n

E

�

oo

where we put b[�(id)℄(id) � (�(id))

�

(b(id)), that is the unique morphism of P=E from i

A

n

(�(id)) to

�(�(id)), obtained from b(id) by the properties of pullba
k.

The rule expressing the assumption of variable is the following:

var

� [�

n

℄

x 2 �[�

n

; x 2 �℄

is

B

�

//
A

n

:::

B

4

//
id

!!C
CC

C B�B

�[�(id)℄

{{xx
xx

x

A

n

B

�

oo
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where x(id) � 4

B

� hid

B

; id

B

i.

Now, we show the formation rules for types and then the introdu
tion, elimination and 
onversion

rules for their terms.

The proper types and terms of T (P) are des
ribed as follows. Proper type judgements arise from

obje
ts of Pgr(P) and proper term judgements arise from morphisms of Pgr(P). For every obje
t of

Pgr(P) a

1

; a

2

; :::; a

n

; t we 
onsider the sequen
e obtained by making the pullba
k of a

1

along the

identity, then by making the pullba
k of a

2

along the se
ond proje
tion p

1

of the previous pullba
k, and

so on, that is we obtain the following sequen
e of pullba
ks:

B

�

p

�

n

(t) ��

t

�

(p

n

)

//
B

t��
A

�n

p

n //
p

�

n�1

(a

n

)

��

A

n

a

n

��

A

�2

p

�

1

(a

2

) ��

p

2 //
A

2

a

2��
A

1

!

A

1 ��

p

1 //
A

1

a

1��
1

id

1 //
1

where p

i

is the se
ond proje
tion of the pullba
k of a

i

and p

i�1

, for i = 1; : : : ; n: Finally, we 
onsider

the asso
iate sequen
e of �bred fun
tors




A

1

; ba

2

[p

1

℄; ba

3

[p

2

℄; :::;
a

n

[p

n�1

℄;

b

t[p

n

℄

where




A

1

� ba

1

, hen
e we introdu
e a new dependent type t

�1

and �nally we state that

t

�1

[x

1

2 A

1

; :::; x

n

2 a

�1

n

℄ is

B

�

b

t
[p

n

℄

//
A

�n


a

n

[p

n�1

℄

//
A

�1




A

1 //
1

where the � subs
ript is used for the interpretation of the series of judgements of proper types introdu
ed

by an obje
t of Pgr(P).

Moreover, given a sequen
e of �bred fun
tors �

1

; �

2

; :::; �

n

; � of Pgf(P), for every morphism 
 of

Pgr(P)

A

n


 //
id

""E
EE

E B

�(id)

}}||
||

1

A

1

!

A

1oo
A

n

we introdu
e a new term 
 and we state that


 2 �(id)[x

1

2 A

1

; :::; x

n

2 �

n

℄ is

A

n


(id)

//

id !!D
DD

DD
D B

�(id)~~||
||

||

A

n

where 
(id) � 
.

Finally, we add all the types and terms of the type theory HP , de�ned as for the interpretation in

se
tion 5.3.1.

Remark 7.1.1 Our de�nition of internal language of a 
ategory follows [LS86℄, for instan
e, and it is

di�erent from that in [Tay97℄.

7.2 The relation between the HP type theories and H-pretoposes

There is a sort of equivalen
e between the internal type theories of H-pretoposes des
ribed in se
tion

7.1 and the 
ategory of H-pretoposes. As a 
onsequen
e of this, we 
an state that the type theory T (P)

is the internal language of the H-pretopos P . First of all, we de�ne the following 
ategories:
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1. Th(HP ) whose obje
ts are the type theories of H-pretoposes, whose initial type theory is HP

and whose morphisms are translations: they send types to types so as to preserve the type and

term 
onstru
tors, 
losed terms to 
losed terms and variables to variables; we 
all Th(HP )

�

the


ategory whose obje
ts are those of Th(HP ), but whose morphisms are translations preserving

type and term 
onstru
tors up to isomorphisms;

2. HPretop

o

whose obje
ts are H-pretoposes with a �xed 
hoi
e of H-pretopos stru
ture and whose

morphisms are stri
t logi
al fun
tors, that is fun
tors preserving the H-pretopos stru
ture w.r.t.

the �xed 
hoi
es; we 
all HPretop the 
ategory whose obje
ts are those of HPretop

o

, but whose

morphisms are fun
tors preserving the H-pretopos stru
ture up to isomorphisms.

Now, we de�ne a fun
tor from H-pretoposes to type theories

T : HPretop

o

�! Th(HP )

that asso
iates to every H-pretopos P the internal type theory T (P) des
ribed in the previous se
tion.

The fun
tor T asso
iates to every morphism F : P ! D of HPretop

o

the translation T (F ) : T (P) !

T (D) de�ned as follows. Given a �bred fun
tor � : P=A ! P

!

, 
orresponding to a type judgement,

and a natural transformation 
, 
orresponding to a term judgement, we de�ne T (F )(�) and T (F )(
)

in the same way as we have de�ned the interpretation of a type theory in se
tion 5.3.1. If � =

b

b for

any b : B ! A of P , then we put F (�) =

d

F (b), sin
e the 
hosen pullba
ks of P are sent into the


hosen pullba
ks of D by F . If � is introdu
ed by an inferen
e rule of HP , then we simply de�ne

F (�) su
h that F (�)(id) = F (�(id)), in order to make T (F ) be a translation. For example, we put

F (�

�

(
)) � �

F (�)

(F (
)). This de�nition of T (F ) is good, sin
e the fun
tor F preserves the H-pretopos

stru
ture w.r.t. the �xed 
hoi
es used in the internal type theories of P and D.

Moreover, we de�ne a fun
tor from type theories to H-pretoposes

P : Th(HP ) �! HPretop

o

that asso
iates to every type theory T the 
ategory P (T ), whose obje
ts are 
losed types A;B;C; :::

and whose morphisms are the expressions (x)b(x) 
orresponding to b(x) 2 B[x 2 A℄, where the type

B does not depend on A. We 
an prove that P (T ) is a H-pretopos by �xing a 
hoi
e of its stru
ture

as in se
tion 3.3. The fun
tor P asso
iates to every morphism of Th(HP ) L : T ! T

0

the fun
tor

P (L) : P (T ) ! P (T

0

) de�ned as follows. For every 
losed type A, we put P (L)(A) � L(A), whi
h is

well de�ned sin
e a translation sends 
losed types to 
losed types. For every morphism b(x) 2 B[x 2 A℄

of P (T ) we put

P (L)(b(x) 2 B[x 2 A℄) � L(b(x)) 2 L(B)[x 2 L(A)℄

Sin
e L is a translation, then P (L) is a fun
tor preserving the H-pretopos stru
ture. In order to des
ribe

the relation between type theories and H-pretoposes, we have to 
onsider a type theory T as a 
ategory.

We think of T as the 
ategory whose obje
ts 
orrespond to those of Pgr(P (T )), but whose morphisms are

sequen
es of morphisms by whi
h we built a series of 
ommutative squares. More pre
isely, the obje
ts

of T are the dependent types under a 
ontext B(x

1

; :::; x

n

)[x

1

2 A

1

; :::; x

n

2 A

n

℄. The morphisms of T

exist only from B[x

1

2 A

1

; :::; x

n

2 A

n

℄ to B

0

[x

0

1

2 A

0

1

; :::; x

0

n

2 A

0

n

℄ and they are

1

b

0

2 B

0

(a

0

1

; :::; a

0

n

)[x

1

2 A

1

; :::; x

n

2 A

n

; y 2 B(x

1

; :::; x

n

)℄

su
h that a

1

2 A

0

1

[x

1

2 A

1

℄ and a

0

i

2 A

0

i

(a

0

1

; :::; a

0

i�1

)[x

1

2 A

1

; :::; x

i

2 A

i

℄ for i = 1; :::; n: The 
omposition

is the substitution and the identity is y 2 B(x

1

; :::; x

n

)[x

1

2 A

1

; :::; x

n

2 A

n

; y 2 B℄. Therefore, we 
an


onsider equivalen
es of type theories. In the following we mean by ID the identity fun
tor.

Proposition 7.2.1 Let T : HPretop

o

! Th(HP ) and P : Th(HP ) ! HPretop

o

be the fun
tors

de�ned above. There are two natural transformations: � from ID to T � P , thought as fun
tors from

Th(HP ) to Th(HP )

�

, and � from P � T to ID, thought as fun
tors from HPretop

o

to HPretop, su
h

that for every type theory T and for every H-pretopos P, �

T

: T ! T (P (T )) and �

P

: P (T (P))! P are

equivalen
es.

1

One 
ould also 
onsider the usual morphisms of 
ontexts.
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Proof. In order to obtain the natural transformation �, for every type theory T we de�ne

�

T

: T ! T (P (T ))

as follows. For any 
losed type �

T

(A[ ℄) �

b

A(id) : A

�

! 1. For dependent type judgements,

�

T

(C(x; y)[x 2 A; y 2 B(x)℄) is the type judgement of T (P (T )) 
orresponding to the sequen
e

�

z2

~

B

C(x)

�

q

3

(id)

//
�

x2A

B(x)

�

q

2

(id)

//
A

�

b

A
(id)

//
1

where

~

B � �

x2A

B(x) and q

i

�
�

1

[p

i�1

℄ for i = 2; 3. This is the dependent type judgement arising from

the following sequen
e

�

z2�

x2A

B(x)

C(x)

�

1 //
�

x2A

B(x)

�

1 //
A

� //
1

in the internal type theory T (P (T )), as it is des
ribed in the previous se
tion. For term judgements,

�

T

(
 2 C(x; y)[x 2 A; y 2 B(x)℄) is

�

x2A

B(x)

�

hz;~
i[p

2

℄(id)

//

id

''OOOOOOOOOOOO �

z2�

x2A

B(x)

C(z)

�

q

3

(id)

vvlllllllllllll

1

A

�

b

A
(id)

oo
�

x2A

B(x)

�

q

2

(id)

oo

where ~
 � 
[x=�

1

(z); y=�

2

(z)℄[z 2 �

x2A

B(x)℄. This is the term judgement arising from hz; ~
i in the

internal type theory T (P (T )), as it is des
ribed in the se
tion 7.1. We 
an obviously imagine how

�

T

is de�ned in the 
ase of having a generi
 
ontext of n types. We 
an see that � is a natural

transformation, sin
e translations preserve indexed sum types and proje
tions. �

T

is a translation up

to isomorphisms and it is an equivalen
e of 
ategories sin
e the fun
tor is faithful, full and essentially

surje
tive. Indeed, we 
an de�ne a natural transformation �

�1

su
h that, given a type theory T , the


omponent �

�1

T

: T (P (T ))! T is de�ned as follows. Given a type judgement
B

�(id)

//
A

�(id)

//
1

of T (P (T ))

we de�ne

�

�1

T

(�(id); �(id)) � �(id)

�1

(x)[x 2 A℄

where �(id)

�1

(x) � �

z2B

Eq(A; �(id)(z); x), that is the �bers of �(id). Given the term judgement

A


(id)

//
id

  A
AA

B

�(id)

~~}}
}

1

A

�(id)

oo

of T (P (T )), provided that 
(id) is 
(x) 2 B[x 2 A℄, �

�1

T

asso
iates to it the term

judgement of T

h
(x); eqi 2 �

z2B

Eq(A; �(id)(z); x)[x 2 A℄

We 
an see that �

�1

is a natural transformation, sin
e translations preserve indexed sum types, pro-

je
tions and equality types. We 
an prove that, for every type theory T , �

T

and �

�1

T

give rise to an

equivalen
e of 
ategories (also see [See84℄).

Moreover, we de�ne a natural transformation � su
h that for every H-pretopos P the 
omponent

�

P

: P (T (P))! P

is de�ned as follows. �

P

asso
iates to every obje
t
A

�(id)

//
1

of P (T (P)) the obje
t A and it asso
iates

to the morphism
A

b(id)

//
id

  @
@@

A�B

�(!

A

)

{{ww
ww

1
A

�(id)

oo

the morphism q(!

A

; �(id)) � b(id) : A ! B. We 
an easily prove that

�

P

is a fun
tor preserving the H-pretopos stru
ture up to isomorphisms

2

. We have that �

P

gives rise to

2

This due to the fa
t that the split �bration sele
ts a 
hoi
e of stru
ture di�erent from the 
hoi
e given with a H-

pretopos: see, for instan
e, the terminal obje
t.
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a natural transformation, sin
e the fun
tors preserve the H-pretopos stru
ture w.r.t. the �xed 
hoi
es.

Moreover, �

P

is an equivalen
e of 
ategories, sin
e it is faithful by uniqueness of morphisms towards

pullba
ks, full be
ause every se
tion of a �bred fun
tor has got a name in the language, and essentially

surje
tive. Indeed, we 
an de�ne a natural transformation �

�1

su
h that for every H-pretopos P the


omponent �

�1

P

: P ! P (T (P)) is de�ned as follows. For every obje
t A of P , �

�1

P

(A) is the 
losed

type 
orresponding to

A

�

b

A(id)

//
1

. For every morphism b : A! B of P , �

�1

P

(b) is the term 
orresponding

to

A

�

hid;b

0

i(id)

//
id

""F
FF

F
A

�

�B

�

b

B(!

A

�

)

yyrrr
rr

1

A

�

b

A(id)

oo

where b

0

= �

�1

B

� b � �

A

and where �

B

and �

A

are the se
ond proje
tions of the

pullba
ks of !

A

and !

B

along the identity. We 
on
lude that for every H-pretopos P , �

P

and �

�1

P

give

rise to an equivalen
e of 
ategories.

7.3 The internal type theory of a topos

Given a topos S we des
ribe its internal dependent type theory L(S), exa
tly in the same way as for a

Heyting pretopos P in se
tion 7.1. The type theory is based on the initial type theory T

t

for toposes (see

se
tion 4.2), augmented with the spe
i�
 type and term judgements of S. Therefore, also the internal

type theory of a topos is formulated in the style of Martin-L�of's type theory with the four kinds of

judgements [NPS90℄, where the 
ontexts are teles
opi
. We assume all the inferen
e rules about the

formation of 
ontexts, de
larations of typed variables, about re
exivity, symmetry and transitivity of

the equality between types and terms [NPS90℄ and the 
onv) rule. We only repeat how type and term

judgements are de�ned. For a sequen
e of �bred fun
tors �

1

; �

2

; :::; �

n

; � of Pgf(S), we de�ne

�

�1

(x

1

; :::; x

n

)[x

1

2 �

�1

1

; :::; x

n

2 �

�1

n

(x

1

; :::; x

n�1

)℄

as the type judgement 
orresponding to

B

�(id)

//
A

n

�

n

(id)

//
A

1

�

1

(id)

//
1

by thinking of the �bers of the morphism �(id). The equality between types 
orresponds to the equality

between obje
ts of Pgf(S), whi
h implies the equality between obje
ts of Pgr(S). For short, we use the

abbreviation �

n

� x

1

2 �

�1

1

; :::; x

n

2 �

�1

n

(x

1

; :::; x

n�1

) in the 
ontexts. For a morphism b of Pgf(S)

from �

1

; �

1

; :::; �

n

; i

A

n

to �

1

; �

2

; :::; �

n

; �, the term judgement

b 2 �

�1

(x

1

; :::; x

n

)[�

n

℄


orresponds to the se
tion of �(id)

A

n

b(id)

//
id

##F
F B

�(id)

}}{{{
1

A

1

!

A

1

oo
A

n

�

n

oo

by 
hoosing the identity as the terminal

obje
t in S=A

n

.

The equality between terms 
orresponds to the equality between morphisms of Pgf(S).

For the formulation of the stru
tural rules of weakening and substitution and of the type and term

judgements that are spe
i�
 to S, we refer to se
tion 7.1, where P should be repla
ed with S.

7.4 The relation between the T

t

type theories and toposes

There is a sort of equivalen
e between the internal type theories of toposes des
ribed in the se
tion 7.3

and the 
ategory of toposes. As a 
onsequen
e of this, we 
an state that the type theory L(S) is the

internal language of the topos S.

First of all, we de�ne the following 
ategories:
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1. Th(T

t

) whose obje
ts are the type theories of toposes, whose initial type theory is T

t

, and whose

morphisms are translations: they send types to types so as to preserve the type and term 
on-

stru
tors, 
losed terms to 
losed terms and variables to variables; we 
all Th(T

t

)

�

the 
ategory

whose obje
ts are those of Th(T

t

), but whose morphisms are translations preserving type and term


onstru
tors up to isomorphisms;

2. Top

o

whose obje
ts are toposes with a �xed 
hoi
e of topos stru
ture and whose morphisms are

stri
t logi
al fun
tors, that is fun
tors preserving the topos stru
ture w.r.t. the �xed 
hoi
es;

we 
all Top the 
ategory whose obje
ts are those of Top

o

, but whose morphisms are fun
tors

preserving the topos stru
ture up to isomorphisms.

We de�ne the fun
tors

L : Top

o

! Th(T

t

) S : Th(T

t

)! Top

o

in the same way we have de�ned T : HPretop

o

�! Th(HP ) and P : Th(HP ) �! HPretop

o

. In an

analogous way we 
an prove:

Proposition 7.4.1 Let L : Top

o

! Th(T

t

) and S : Th(T

t

)! Top

o

be the fun
tors de�ned above. There

are two natural transformations: � from ID to L � S, thought as fun
tors from Th(T

t

) to Th(T

t

)

�

, and

� from S � L to ID, thought as fun
tors from Top

o

to Top, su
h that for every type theory T and for

every topos S, �

T

: T ! L(S(T )) and �

S

: S(L(S))! S are equivalen
es.

Proof. The only di�eren
e with the proof for H-pretoposes is that here, we have to 
he
k that the

translations preserve the type and term 
onstru
tors of T

t

and that the fun
tors preserve the topos

stru
ture.

7.5 The free H-pretopos

The main idea is to generate a H-pretopos from a given 
ategory C by 
onsidering its obje
ts as 
losed

types and its morphisms as terms with a free variable. We 
an prove the universal property by the


onstru
tion of the 
ategory of paths, whi
h represents the dependent types in a 
ategori
al way.

Given a 
ategory C, we 
onsider the dependent type theory T (C) generated by the inferen
e rules as

follows:

1. For every obje
t A of ObC we introdu
e a new type A and we state the 
losed type judgement

A [ ℄.

Given A 2 ObC and B 2 ObC we state A = B [ ℄, if they are the same obje
t in ObC.

2. For every morphism b : A! B in C, we introdu
e a new term b(x) and we state b(x) 2 B [x 2 A℄,

where A and B are 
losed types.

Given b : A! B and d : A! B in C, we state b(x) = d(x) 2 B [x 2 A℄, provided that b and d are

the same morphism in C.

Given b : A ! B and a : D ! A in C, we state about 
omposition b(x)[x := a(y)℄ = (b � a)(y) 2

B [y 2 D℄.

3. There are all the inferen
e rules of the type theory HP . for H-pretoposes.

Therefore, T (C) is a type theory of H-pretoposes.

Now, we 
an prove:

Proposition 7.5.1 Let P : Th(HP ) �! HPretop

o

be the fun
tor des
ribed in se
tion 3. The 
ategory

P (T (C)) is the free H-pretopos generated by the 
ategory C in P (Th(HP )).
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Proof. We know that P (T (C)) is a H-pretopos from the de�nition of P . Given a fun
tor G : C ! P ,

from the 
ategory C to the H-pretopos P , we 
laim that there exists a unique fun
tor

~

G : P (T (C))! P in

HPretop

o

su
h that the diagram
C

I //

G

��>
>>

> P (T (C))

~

G

zzttttt

P


ommutes, where I : C ! P (T (C)) is the following

fun
tor: for every obje
t A 2 ObC we put I(A) � A [ ℄ and for every morphism b : A ! B we put

I(b) � b(x) 2 B[x 2 A℄.

In order to de�ne

~

G on P (T (C)), we de�ne an interpretation J : T (C) ! Pgr(P), by passing to

Pgf(P), with the warning that we have to normalize the interpretation. This is done by adding the

value of every �bred fun
tor � 2 Fib(P=1;P

!

) on the empty 
ontext,

3

su
h that a type judgement will

be interpreted by a sequen
e of Pgr(P) like

�

1

(;); �

2

(id

A

1

); :::; �

n

(id

A

n�1

)

The interpretation is given in the same way as for the type theory HP in se
tion 5.3.1, ex
ept for 
losed

types and terms, whi
h are interpreted in �bred fun
tors evaluated on ;. The reason is that we want

to put

~

G(A[ ℄) � domJ (A[ ℄) and

~

G(b 2 B[x 2 A℄) � q(J (A[ ℄);J (B[ ℄)) � J (b 2 B[x 2 A℄), but if we

adopt for J the semanti
s de�ned in se
tion 5.3.1, then

~

G would 
ommute with G up to isomorphisms.

So, for every obje
t A of ObP , we extend the fun
tor

b

A by adding

b

A(;) �!

A

and for every obje
t

B, q(!

B

;

b

A(;)) is the se
ond proje
tion of the pullba
k of !

B

and

b

A(;). For example, for the natural

numbers J (N [ ℄) �

b

N (;) =!

N

, instead of being interpreted as !

1�N

like in the semanti
s de�ned in

5.3.1. Moreover, J (0 2 N [ ℄) is

1

bo(;)

//

id

1

��>
>>

N

b

N (;)

~~}}
}

1

where bo(;) � o and o : 1 ! N is the zero map in P .

Finally, given a proper type arising from an obje
t A 2 ObC, we put J (A[ ℄) �

[

G(A)(;) and given a

proper term arising from a morphism b : A ! B of C, we put J (b 2 B[x 2 A℄) � hid

G(A)

; G(b)i se
tion

of

\

G(B)(

[

G(A)(;)) : G(A) �G(B) ! G(A). By de�nition

~

G preserves the H-pretopos stru
ture and we

get

~

G � I = G. Moreover,

~

G is obviously unique for �xed 
hoi
es of the H-pretopos stru
ture, whi
h are

required to interpret the type theory T (C) into Pgr(P).

The free stru
ture gives rise to a monad. It would be interesting to investigate if the 
ategory HPretop

o

is monadi
 on Cat and Graph. Or at least, if we prove that HPretop

o

is essentially algebrai
, as for

the 
ategori
al models of ITT in [Obt89℄, we would get a representation theorem of HPretop

o

into a


ategory of presheaves [AR94℄.

7.6 The free topos

As for the free H-pretopos, we generate a topos from a given 
ategory C by 
onsidering its obje
ts as


losed types and its morphisms as terms with a free variable. We 
an prove the universal property by

the 
onstru
tion of the 
ategory of paths, whi
h represents the dependent types in a 
ategori
al way.

To this purpose we 
onsider the dependent type theory L(C) generated by the same inferen
e rules as

in se
tion 7.5, repla
ing in the last point the rules of the type theory HP , with the rules of the type

theory T

t

.

Therefore, we 
an prove:

3

In a rigorous way, we 
onsider the free 
ategory P=1

>

with terminal obje
t ; generated from P=1. So a type and a

term with empty 
ontext are interpreted respe
tively as fun
tor �

>

and natural transformation �

>

of [P=1

>

;P

!

℄ su
h

that �

>

and �

>

restri
ted to P=1 are in Fib(P=1;P

!

). We extend the �bred fun
tors as des
ribed above. For example,

b

N

>

(;) �!

N

and

b

N

>

(!

B

! ;) �

q(!

B

;




N

>

(;))

//




N

>

(!

B

)

��

N




N

>

(;)

��
B

!

B

//
1

with q(!

B

;

b

N

>

(;)) � (

b

N

>

(;))

�

(!

B

). For short we still write �

for �

>

.
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Proposition 7.6.1 Let S : Th(T

t

) �! Top

o

be the fun
tor des
ribed in the se
tion 7.4. The 
ategory

S(L(C)) is the free H-pretopos generated by the 
ategory C in P (Th(T

t

)).

Proof. We know that S(L(C)) is a topos from the de�nition of S.

Exa
tly, as for the free H-pretopos, given a fun
tor G : C ! S, from the 
ategory C to the topos

S, we 
laim that there exists a unique fun
tor

~

G : S(L(C)) ! S in Top

o

su
h that the diagram

C

I //

G

��>
>>

> S(L(C))

~

G

zzuuuuu

S


ommutes, where I : C ! S(L(C)) is the following fun
tor: for every obje
t A 2 ObC

we put I(A) � A [ ℄ and for every morphism b : A! B we put I(b) � b(x) 2 B[x 2 A℄.

In order to de�ne

~

G on S(L(C)), we de�ne an interpretation J : L(C) ! Pgr(S), by passing to

Pgf(S), with the warning that we have to normalize the interpretation. This is done in the same way as

for the free H-pretopos, ex
ept that we have the produ
t type and the subobje
t 
lassi�er. We normalize

the interpretation of the subobje
t 
lassi�er as that of the natural numbers obje
t.

By the free topos generated by an arbitrary 
ategory, we get a presentation of a monad on Cat, with

respe
t to whi
h the 
ategory of toposes is monadi
 on Cat [DK83℄.

7.7 Some other free stru
tures: the Lex and LCC

+


ategories

A similar 
orresponden
e to that one between type theories and H-pretoposes 
an be established for the


ategory Lex and LCC

+

. The 
ategory Lex, whose obje
ts are the 
ategories with �nite limits and

whose morphisms are fun
tors stri
tly preserving �nite limits, provides a valid and 
omplete semanti
s

for the type theory with terminal type, extensional equality types and indexed sum types. In the same

way, the LCC

+


ategory, whose obje
ts are the lo
ally 
artesian 
losed 
ategories with �nite 
oprodu
ts

and a natural numbers obje
t and whose morphisms are fun
tors stri
tly preserving the ITT stru
ture,

provides a valid and 
omplete semanti
s for the fragment of Martin-L�of's type theory with extensional

equality and without universes and well-orders [Mar84℄. These validity and 
ompleteness theorems 
an

be proved in a similar way to that for H-pretoposes and for toposes. We 
an easily noti
e that these

dependent type theories enable us to build the free stru
ture for Lex and LCC

+

over Cat, in the same

way we proved for the 
ategory HPretop

o

and Top

o

. The free stru
tures give a presentation of two

monads, whose algebras 
orrespond respe
tively to Lex and LCC

+

, sin
e Lex and ITT are monadi


over Graph [Bur81℄ and admit an equational presentation.



Con
lusions and further resear
h

The type theories of Heyting pretoposes and of elementary toposes 
an be used to give translations of


ategori
al proofs from topos theory into type theory and vi
e versa.

These typed 
al
uli make 
lear that topos and H-pretopos theory are governed by the isomorphism

propositions as mono types.

On the 
ontrary, in Martin-L�of's Constru
tive Type Theory logi
 is 
aptured via the Curry-Howard

isomorphism proposition as types.

So, it seems more natural to 
onsider a type theory, where the notion of Proposition is distin
t from

the notion of Type or Set. After establishing the various isomorphisms between propositions and other

types, then we 
an analize the various frameworks to develop intuitionisti
 mathemati
s, like Topos

Theory presented as a type theory, Martin-L�of's Constru
tive Type Theory and also the Cal
ulus of

Constru
tions.

Moreover, sin
e the type theories of Heyting pretoposes and of toposes are extensional, while Martin-

L�of's Constru
tive Type Theory is intensional, it should be analyzed how mu
h of su
h type theories


an be saved in a more intensional setting.

Another dire
tion of appli
ation of the type theory of Heyting pretoposes with a natural numbers

obje
t is to des
ribe the notion of small maps via type theory and then to get a type-theoreti
 des
ription

of the models for the whole intuitionisti
 set theory as in [JM95℄.
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