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Introdution

The subjet of this thesis is the type theory of ategorial universes suh as Heyting pretoposes and

elementary toposes. These ategories are onsidered universes, sine they provide models for lassial

and intuitionisti set theory. The reason to look for a type theory of suh universes arises from the desire

to ompare them with Martin-L�of 's onstrutive type theory, sine in all these frameworks intuitionisti

mathematis an be modelled.

Beginning in the seventies, Martin-L�of proposed his Construtive Type Theory as a set theory where

intuitionisti mathematis an be formalized. In this approah, \onstrutive" means prediative and

\omputable"; indeed every proof within type theory orresponds to a program [NPS90℄. An example

of onstrutive mathematis fully developed in this framework is formal topology [Sam87℄.

On the ategorial side, in the sixties, Lawvere aimed at giving a purely ategorial foundation of

mathematis. He wanted to axiomatize the ategory of sets, replaing set membership by omposition

of funtions. Together with Tierney, he produed the notion of an elementary topos resembling the

strutural properties of a Grothendiek topos, that is a ategory of set-valued sheaves on a site. The

axiomatization they gave made no relevant set-theoreti assumptions. So, while a Grothendiek topos

is always an elementary topos, the onverse does not hold in general.

Following Lawvere, a topos an be thought as a generalized universe of sets. But the underlying

logi of this universe is intuitionisti, not lassial in general. Indeed, the truth values of a topos form

a Heyting algebra, like the algebra of open sets of a topologial spae.

In the seventies, Mithell, Benabou, Joyal and others provided an expliit desription of a formal

language apt to be interpreted in a topos. This language is typed, beause to eah term ourring in

the formulas a type is assigned. The resulting logi seems to be many-sorted, taking the simple types

as sorts. The formulas are the terms of the spei� type orresponding to the subobjet lassi�er. A

systemati exposition of this theory, as a higher order logi, was given by Lambek and Sott [LS86℄.

This internal language formalizes the ideas of a topos as a generalized set theory.

In order to model lassial set theory, Cole [Col73℄ and Mithell [Mit72℄ found that well-pointed

toposes with a natural numbers objet and axiom of hoie provide models for restrited Zermelo set

theory with the axiom of hoie, where the omprehension axiom is given only for formulas with bounded

quanti�ers.

More reently, Joyal and Moerdijk explored how to provide models for the full Zermelo-Fraenkel set

theory in a ategorial setting [JM95℄. They found that, in order to model lassi and intuitionisti

Zermelo-Fraenkel set theory, it is suÆient to take a Heyting pretopos with a natural numbers objet as

a ategorial universe, and within this to single out a lass of \small" maps satisfying suitable axioms.

The notion of pretopos was introdued by Grothendiek: an elementary topos is a pretopos, but the

latter is a weaker notion. Makkay and Reyes found that pretoposes an be haraterized with respet

to the logial ategories, whih are the neessary strutures to interpret the �rst order, many-sorted,

oherent logi, see [MR77℄. A Heyting pretopos is obtained by enrihing suh a ategory with the

neessary struture to interpret �rst order prediative intuitionisti logi.

In order to ompare Martin-L�of's Construtive Type Theory with these ategorial frameworks, one

possible diretion of researh is to �nd typed theories, whih orresponds preisely to toposes and to

Heyting pretoposes with a natural numbers objet. This diretion has been explored in the present

thesis.

The main issue is to pass from a many-sorted logi to a dependent type theory omplete with

respet to the lass of universes under onsideration. Indeed, in a many-sorted logi there is a syntati
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distintion between formulas and types. Moreover, the types are not dependent, sine they orrespond

to sorts. On the other hand, in a dependent type theory of Heyting pretoposes or of toposes, suh as

those proposed in the thesis, the key point is that formulas orrespond to partiular dependent types.

These aluli are formulated in a style whih is basially that of Martin-L�of's type theory, so that a

more preise omparison with Construtive Type Theory is possible.

Looking at the higher order logi of a topos, the main di�erene with respet to Construtive Type

Theory is that, in a topos, there is a power set onstrution, whih allows imprediative quanti�ation.

Instead in Martin-L�of's type theory only prediative onstrutions are allowed. Moreover, Martin-

L�of's type theory has a stronger existential quanti�er than the intuitionisti one, so that the axiom

of hoie is provable. On the ontrary, in a topos, the axiom of hoie is not always valid; in fat, it

implies the priniple of exluded middle, and thus the logi of the topos beomes lassial, see [Joh77℄,

[MM92℄. Therefore, from a onstrutive point of view, this di�erene seems to make the two frameworks

inompatible.

As a matter of fat, in the �rst hapter, we will prove that by extending intensional Martin-L�of's

type theory with an extensional power set, where subsets are propositional funtions, the priniple of

exluded middle is provable by the axiom of hoie, like in topos theory. This extension is made by

following the isomorphism \propositions as types".

On the other hand, the dependent type theory for toposes, presented in the fourth hapter of the

thesis, reveals that, in a topos, formulas orrespond to \mono" dependent types, i.e. types with at most

one proof, by following the isomorphism \propositions as mono losed types".

Therefore, it should be possible to extend Martin-L�of's type theory, without falling into lassial

logi, with the powersets of a topos, by onsidering as subsets only mono propositional funtions.

Besides powersets, also e�etive quotients based on generi relations an not be added to Martin-

L�of's type theory in the presene of uniqueness of propositional equality proofs. Indeed, as explained

in the seond hapter, by using e�etive quotients on the �rst universe of small sets and on the seond

universe of large sets, we an prove the priniple of exluded middle for small sets. To do this, it is

suÆient to adapt to this framework the already onsidered proof that the axiom of hoie implies the

priniple of exluded middle.

A proposal of e�etive quotients, whih are ompatible with the powerset of a topos without loosing

onstrutivity, is given by the type theory of Heyting pretoposes, proposed in the third hapter of the

thesis. This dependent type theory, omplete with respet to Heyting pretoposes with a natural numbers

objet, orresponds to a �rst order extensional type theory with produt types restrited to mono types

and e�etive quotients restrited to mono equivalene relations.

The ategorial semantis, used to interpret the typed aluli of Heyting pretoposes and toposes, is

explained in the �fth hapter. This semantis ombines together the notion of model given by display

maps [HP89℄, [See84℄, with the tools provided by ontextual ategories to interpret substitution orretly

[Car86℄, emphasizing the ontext formation. In this way, the proofs of ompleteness, presented in the

sixth hapter, are restrited to partiular ontextual ategories.

In the seventh hapter, we show that also the internal language of a Heyting pretopos or a topos

is a dependent type theory, obtained by adding the dependent types spei� of the universe under

onsideration. Finally, another appliation of the type theory is the onstrution of the free Heyting

pretopos and the free topos generated by a ategory.

By the dependent typed aluli of Heyting pretoposes and toposes, we are ready to get a type-

theoretial desription of the notion of small map and hene of the ategorial models for intuitionisti

set theory, as in [JM95℄. On the other hand, we ould also investigate possible extensions of Martin-L�of's

type theory by the type onstrutors of the dependent typed aluli of Heyting pretoposes and toposes.

The results of the �rst hapter are ontained in [MV96℄, of the seond in [Mai97d℄, from the third to

sixth in [Mai97℄ and [Mai97b℄, and �nally, most of the seventh hapter will be published in [Mai97a℄.

Aknowledgements. My gratitude goes to Silvio Valentini, who �rst introdued me into this

researh �eld, for his enouragement and interest in my work, to Pino Rosolini for his onstant help,

to Ieke Moerdijk for making my visit at Utreht extremely useful. Also, I wish to thank Peter Azel,

Mihael Makkay and Paul Taylor for helpful disussions and espeially the referee, who undertook the

task of revising the �rst draft of this thesis in a short period of time, for the areful review and preious

suggestions. Finally, I wish to thank Giovanni Sambin, whose researh motivated me to do this work.



Chapter 1

Extensional powersets in

onstrutive type theory

Summary An extension of Martin-L�of's intensional set theory is proposed by means of a powerset P(S),

whose elements are the subsets of the set S, de�ned as propositional funtions.

Sine the equality among subsets has to be extensional, it turns out that suh extension annot be onstru-

tive: any link between the truth of a proposition and the possibility to exhibit one of its proof-element is lost.

This fat is not ompatible with the usual meaning of intuitionisti set theory. In fat, we will prove that this

extension is lassi, i.e., for any proposition A, (A_:A) true holds, as a onsequene of the intuitionisti axiom

of hoie.

1.1 Introdution

In [GR94℄ it is shown that the proof theoreti strength of Martin-L�of's Type Theory [Mar84, NPS90℄ with

restrited well-orders and the universe of the small types is that of a subsystem of seond order arithmeti

with �

1

2

omprehension and bar-indution. Thus, it is natural to wonder whether it is possible to enfore

it to a theory with the strength of the full omprehension shema by adding a powerset onstrutor; in

fat this extension is neessary in order to quantify over the subsets of a given set, sine in type theory

quanti�ation is allowed only over a set.

In the literature, there are already examples of intuitionisti set theories with some kind of powerset

onstrutor. For instane, one an think of a topos as a \generalized set theory" by assoiating with

any topos its internal language (f. [Bel88℄). The logi underlying suh set theory is the intuitionisti

prediate alulus and so any topos an be thought of as an intuitionisti universe of sets.

Then the lak of the rule of exluded middle seems to assure the onstrutivity of any proof developed

within topos theory. The problem to adapt the topos theoreti approah to Martin-L�of's set theory is

due to the imprediativity of the former. Indeed, Martin-L�of's set theory is prediative and provides a

fully algorithmi way to onstrut the elements of the sets and the proofs of the propositions on these

sets.

Another approah is the Calulus of Constrution by Coquand and Huet [Coq90℄, where the power

of a set S an be identi�ed with the type of the funtions from S into Prop, if we follow the isomorphism

propositions as sets and onsider the notion of types as in [NPS90℄. But, in this ase the power of a set

is not itself a set and despite of this the quanti�ation over Prop is allowed. Anyway, it an be proved

that the strong sum type, whih is present in Martin-L�of's type theory, annot onsistently be added to

the Calulus of Construtions (see [Coq90℄) at the level of propositions, but only at the level of types

[Luo90℄.

Of ourse, there is no reason to expet that a seond order onstrution beomes onstrutive only

beause it is added to a theory whih is onstrutive and prediative. And, indeed, we will prove that

even the weaker fragment iTT , whih ontains only the basi type onstrutors and the intensional

6
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equality, annot be extended with a powerset onstrutor, whih is ompatible with the usual Martin-

L�of's semantial explanation of the onnetives and whih is the olletion of all the subsets of a given

set. In fat, by using the so alled intuitionisti axiom of hoie, it is possible to prove that, for any

powerset onstrutor whih satis�es some natural onditions, whih we will illustrate in the next setion,

lassial logi arises (see also [Hof95℄ page. 170, where a similar result is suggested for an extension of

the Calulus of Constrution with Leibniz equality in the framework of setoids).

1.2 iTT

P

= iTT + powersets

In order to express the rules and the onditions that we are going to require on the powerset, it is

onvenient to reall the main properties of judgements of the form A true (see [Mar84℄): A true holds

if and only if there exists a proof-element a suh that a 2 A holds (for a formal proof see [Val95℄). In

partiular, the following rule is admissible

(True Introdution)

a 2 A

A true

as well as all the rules of the intuitionisti prediative alulus with equality, where the judgement

A true stands for ` A (see [Mar84℄ for the de�nition of the embedding of the intuitionisti prediative

alulus within iTT ). Here, we only reall the ase of the set of the intensional propositional equality

Id (see [NPS90℄, page. 61) whih plays a main role in this hapter (for sake of learness, supposing A

is a set and a; b 2 A, we will often write a =

A

b to mean Id(A; a; b)). The propositional equality is

the internalization of the de�nitional equality between elements of a set. Two objets are de�nitional

equal if they evaluate to the same anonial form. There are two kinds of propositional equality: Id

is intensional (see the rules below) and Eq is extensional (see the rules in setion 3.2). Intensional

propositional equality is entailed by de�nitional equality, that is two objets are propositionally equal if

they are de�nitionally equal, but the vie versa does not hold. On the ontrary, extensional propositional

equality is equivalent to de�nitional equality. The main di�erene is that in the presene of intensional

propositional equality, de�nitional equality and type heking are deidable, but no more in the presene

of extensional propositional equality.

The formation and introdution rules of the set of the intensional propositional equality Id are the

following

A set a 2 A b 2 A

Id(A; a; b) set

A = C set a =  2 A b = d 2 A

Id(A; a; b) = Id(A; ; d)

A set a 2 A

id(a) 2 Id(A; a; a)

A set a = b 2 A

id(a) = id(b) 2 Id(A; a; a)

whereas the elimination rule is

 2 Id(A; a; b)

[x : A℄

j

d(x) 2 C(x; x; id(x))

idpeel(; d) 2 C(a; b; )

and it yields the admissibility of the following two rules on judgements of the form A true:

 2 Id(A; a; b)

[x : A℄

j

C(x; x; id(x)) true

C(a; b; ) true

Id(A; a; b) true

[x : A℄

j

C(x; x) true

C(a; b) true

The rules for the set P(S) depend on the de�nition of what a subset is within iTT . Following

a long tradition, we identify a subset U of S with a propositional funtion on S, i.e. provided that

U(x) set [x : S℄, we put U � (x : S) U(x), and hene, we say that an element a 2 S is an element of U if

U(a) is inhabited, i.e. the judgement U(a) true holds (f. [dB80℄ and [SV95℄ for a detailed disussion of
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this topi). We onsider a propositional funtion orresponding to U(x) set [x : S℄, sine in Martin-L�of's

intensional set theory propositions are identi�ed with sets and we use set for prop.

Thus, provided that we want to have an extensional equality between subsets, we are fored to

onsider equal two subsets U and V of S if and only if U(x)$ V (x) true [x : S℄, i.e. U and V have the

same elements.

Extensional equality on subsets, expressed at the level of the olletion (x : S) set is the ruial

point, where lassial logi breaks into the system.

Inspired by the previous explanations, here we propose the following formation and introdution

rules for P(S):

Formation

S set

P(S) set

S = T

P(S) = P(T )

Introdution

U set [x 2 S℄

f(x 2 S) Ug 2 P(S)

We should now formulate the next rules for the type P(S), i.e. the equality introdution rule, the

elimination rule and the equality rule, but the aim of this hapter is to show that it is atually impossible

to formulate them, sine we would obtain a Heyting semanti for lassial logi. Anyhow, it is lear

that whatever rules one an give for the type P(S), some onditions should be satis�ed to make P(S)

a suitable representation of the set of all the subsets of the set S. The use of onditions is a devie in

order to suppose to have type theoretial rules that make the onditions expressed by true-judgements

admissible. Sine in the presene of these onditions we get a negative result, we onlude that suh

rules do not exist.

The �rst ondition we require is the equality introdution ondition.

Equality introdution ondition

Let U $ V true [x 2 S℄. Then f(x 2 S) Ug = f(x 2 S) V g 2 P(S).

After the previous onsiderations on the equality between subsets, it is lear that this ondition must

be satis�ed, but, as noted by Peter Azel after reading a preliminary version of this work, this should

not be a formal rule for the type P(S), sine the use of an extensional equality rule for powersets does

not �t with the idea of treating the judgemental equalities as de�nitional, whih is basi in iTT .

The elimination and the equality rules are even more problemati, beause it is diÆult to give a plain

appliation of the standard approah, whih allows to obtain the elimination rule out of the introdution

rule (see [Mar71℄). In fat, the introdution rule does not at over elements of a set but over elements

of the olletion ((x : S) set)

$

. Thus, if one wants to follow for P(S) the general pattern for a quotient

set, he ould look for a rule similar to the following:

 2 P(S)

[Y 2 (x 2 S) set℄

j

d(Y ) 2 C(fY g)

[Y; Z 2 (x 2 S) set; Y (x)$ Z(x) true [x 2 S℄℄

j

d(Y ) = d(Z) 2 C(fY g)

P(; d) 2 C()

whih, however, requires the use of variables for propositional funtions.

Moreover, a standard equality rule should be something similar to the following

U set [x 2 S℄

[Y 2 (x 2 S) set℄

j

d(Y ) 2 C(fY g)

[Y; Z 2 (x 2 S) set; Y (x)$ Z(x) true [x 2 S℄℄

j

d(Y ) = d(Z) 2 C(fY g)

P(f(x 2 S) Ug; d) = d((x 2 S) U) 2 C(f(x 2 S) Ug)

These rules are the diret onsequene of the introdution rule and the equality introdution ondition

and they are already not ompletely within standard type theory. But, the real problem is that they

are not suÆient to make P(S) the set of the subsets of S. For instane, there is no way to obtain a

set out of an element of P(S) and this does not �t with the introdution rule. Thus, to deal with the
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set P(S), one should add some rules whih link its elements with the elements of the type set and with

those of the olletion set

$

, whose elements are propositions but whose equality is indued by logial

equivalene, remembering that propositions are identi�ed with sets.

Here, we don't want to propose any partiular rule, sine we are going to show that there an be no

suitable rule, but we simply require that two onditions, whih should be a onsequene of suh rules,

are satis�ed. The �rst ondition is the following:

Elimination ondition

Let  2 P(S) and a 2 S. Then there exists a set a".

This ondition is suggested by the elimination rule that we have onsidered. In fat, even if a formal

derivation annot be given until we do not add the suitable rules, a free use of the elimination rule with

C(z) � set

$

allows to obtain that P(; (Y ) Y (a)) is an element of set

$

and hene, that it is a set that

we an identify with the set a". Of ourse, the above ondition is problemati, beause it requires the

existene of a set but it gives no knowledge about it; in partiular, it is not lear if one has to ask for a

new set (whih are its anonial elements? whih are its introdution and elimination rules?) or for an

old one (whih set should one hoose?).

Moreover, as a onsequene of the suggested equality rule, we require the following equality ondition

whih is just the �-equality for this kind of (seond order) appliation.

Equality ondition

Suppose U set [x 2 S℄ and a 2 S then a"f(x 2 S) Ug $ U [x := a℄ true

This ondition an be proved as above but using the equality rule; in fat, supposing U set [x 2 S℄

and a 2 S, the equality rule allows to obtain that a"f(x 2 S) Ug and U [x := a℄ are equal elements of

set

$

, whih yields our ondition. This ondition annot be justi�ed from a semantial point of view,

sine we have no way to reover the proof element for its onlusion; but, this is also the essential feature

whih allows us to develop our proof in the next setion, without furnishing basi type systems with

onstrutors for lassial logi.

It is worth noting that no form of �-equality, like for instane

 2 P(S)

f(x 2 S) x"g =  2 P(S)

x 62 V F ();

is required on P(S). Also for the other sets of type theory, no rule of �-equality is diretly required,

beause its validity an be proved at least within the extensional version of type theory eTT . This theory

is obtained from iTT by substituting the intensional equality proposition by the extensional equality

proposition Eq(A; a; b), whih allows to dedue a = b 2 A from a proof of Eq(A; a; b). The problem

with extensional equality is that it auses to miss the deidability of the equality judgement and for this

reason is usually rejeted in the present version of the theory. Here, we an also show that �-equality

is a onsequene in eTT of the suggested elimination rule for P(S). In fat, let us assume that Y is a

subset of S and that x 2 S, then Y (x) set and hene x"fY g $ Y (x) true holds beause of the equality

ondition. Then it yields f(x 2 S) x"fY gg = fY g 2 P(S) and hene Eq(P(S); f(x 2 S) x"fY gg; fY g);

thus, if  2 P(S), by using the elimination rule one obtains Eq(P(S); f(x 2 S) x"g; ) and it yields

f(x 2 S) x"g =  2 P(S). Note that the last step is not allowed in iTT

P

.

1.3 iTT

P

is onsistent

It is well known that by adding to iTT just the olletion P(1l), whose elements are (the ode for)

the non-dependent sets, but using an equality between its elements indued by the intensional equality

between sets, one obtains an inonsistent extension of iTT [Ja89℄. On the ontrary, we will prove

that any extension of iTT with a powerset as proposed in the previous setion, i.e. where the equality

between two elements of a powerset is indued by the provability equivalene, is onsistent or at least

it is not inonsistent beause of the rules we have proposed on the powerset and the onditions we have

required.



10 CHAPTER 1. EXTENSIONAL POWERSETS IN CONSTRUCTIVE TYPE THEORY

The easiest way to prove this result is to prove �rst that iTT

P

an be embedded in the simpler

theory iTT




, whih ontains only the powerset 
 � P(1l) of all the subsets of the one element set 1l and

then to show that suh a theory is onsistent.

Thus, we will have the following formation and introdution rules


 set 
 = 


U set [x 2 1l℄

f(x 2 1l) Ug 2 


Moreover, we require that the introdution equality ondition, i.e.

if U $ V true [x 2 1l℄ then f(x 2 1l) Ug = f(x 2 1l) V g 2 
,

holds, while the ondition on the set a" set [a 2 1l;  2 
℄ an be satis�ed by putting, for any  2 
,

a" �  =




>

1l

where >

1l

� f(x 2 1l) x =

1l

xg; here any referene to the element a disappeared in the de�niens, beause

all the elements in 1l are equal. Finally, we require that

if U set [x 2 1l℄ then f(x 2 1l) Ug =




>

1l

$ U true [x 2 1l℄

Now, any powerset an be de�ned by putting

P(S) � S ! 


sine, for any U set [x 2 S℄, one obtains an element in P(S) by putting

f(x 2 S) Ug � �((x 2 S) f(w 2 1l) Ug);

where we suppose that w does not appear free in U , whih is in fat an element in S ! 
. Moreover,

for any element  2 P(S), i.e. a funtion from S into 
, and any element a 2 S, one obtains a set by

putting

a" � ((a) =




>

1l

)

whih satis�es the required ondition.

Thus, any proof of  2 ? in iTT

P

, i.e. any inonsisteny in iTT

P

, an be reonstruted in this

simpler theory.

Therefore, it is suÆient here to show that this new theory is onsistent. This will be done by de�ning

an interpretation I of this theory into Zermelo-Fraenkel set theory with the axiom of hoie, ZFC.

The basi idea is to interpret any non-dependent set A of iTT




into a set I(A) of ZFC and, provided

that

I(A

1

) is a set of ZFC,

I(A

2

) is a map from I(A

1

) into the olletion of all sets of ZFC,

. . . ,

I(A

n

) is a map from the disjoint union

℄

�

1

2I(A

1

);:::;�

n�2

2I(A

n�2

)(h�

1

;:::;�

n�3

i)

I(A

n�1

)(h�

1

; : : : ; �

n�2

i)

into the olletion of all sets of ZFC, then the dependent set of iTT




A(x

1

; : : : ; x

n

) set [x

1

2 A

1

; : : : ; x

n

2 A

n

(x

1

; : : : ; x

n�1

)℄;

i.e. the propositional funtion A 2 (x

1

2 A

1

) : : : (x

n

2 A

n

(x

1

; : : : ; x

n�1

)) set; is interpreted into a map

from the disjoint union

℄

�

1

2I(A

1

);:::;�

n�1

2I(A

n�1

)(h�

1

;:::;�

n�2

i)

I(A

n

)(h�

1

; : : : ; �

n�1

i)

into the olletion of all sets of ZFC.



1.4. ITT

P

IS CLASSICAL 11

Sine the axiom of replaement allows to avoid the use of maps into the olletion of all sets, whih

an be substituted by indexed families of sets, all the interpretation an be explained within basi ZFC.

Anyway, we think that the approah used here is more perspiuous and well suited for the interpretation

of a theory like iTT




, where propositional funtions have to be onsidered.

The interpretation I(a) of a losed term a 2 A, where A is a non-dependent set of iTT




, will be an

element of the set I(A), whereas the interpretation of a non-losed term

a(x

1

; : : : ; x

n

) 2 A(x

1

; : : : ; x

n

) [x

1

2 A

1

; : : : ; x

n

2 A

n

(x

1

; : : : ; x

n�1

)℄;

i.e. the funtion-element a 2 (x

1

2 A

1

) : : : (x

n

2 A

n

(x

1

; : : : ; x

n�1

)) A(x

1

; : : : ; x

n

); is a funtion I(a)

whih, when applied to the element

� 2

℄

�

1

2I(A

1

);:::;�

n�1

2I(A

n�1

)(h�

1

;:::;�

n�2

i)

I(A

n

)(h�

1

; : : : ; �

n�1

i)

gives the element I(a)(�) of the set I(A)(�).

Now, for the basi sets we put: I(?) � ;, I(1l) � f;g and I(Bool) � f;; f;gg and there is an obvious

interpretation of their elements.

Moreover, the sets �(A;B) and �(A;B) are interpreted respetively in the disjoint union and the

indexed produt of the interpretation of B(x) indexed on the elements of the interpretation of A.

The disjoint sum set A+B is interpreted in the disjoint union of the interpretation of A and B and

the interpretation of the equality proposition a =

A

b is the harateristi funtion of the equality of the

interpretation of a and b.

Finally, the interpretation of the set 
 is the set f;; f;gg.

Moreover, the judgement A(x

1

; : : : ; x

n

) true [�℄ is interpreted in I(A)() 6= ; for every  2 I(�),

whih gives I(A) 6= ; when A is a non-dependent set of iTT




.

The interpretation of all the terms is straightforward; thus, here, we only illustrate the interpretation

of the elements of the set 
:

I(f(x 2 1l) U(x)g) �

�

; if I(U(�)) = ;

f;g if I(U(�)) 6= ;

After this de�nition, for any subset U of 1l, I(f(x 2 1l) Ug =




>

1l

$ U) 6= ; by the axiom of hoie and

hene the equality ondition is valid.

It is tedious, but straightforward, to hek that all the rules of iTT




are valid aording to this inter-

pretation and hene that any proof of the judgement a 2 ? within iTT




, i.e. any form of inonsisteny,

would result in a proof that there is some element in ;, that is an inonsisteny in ZFC.

1.4 iTT

P

is lassial

We are going to prove that iTT

P

gives rise to lassial logi, i.e., for any set A, the judgement A_:A true

holds. Even if iTT

P

is not a topos, the proof we show here is obtained by adapting to our framework

an analogous result stating that any topos whih satis�es the axiom of hoie is boolean. Among the

various proofs of this result (f. for instane [LS86℄,[Bel88℄), whih goes bak to Diaonesu's work,

whih shows that by adding the axiom of hoie to IZF one obtains ZF [Dia75℄, we hoose to translate

the proof of Bell [Bel88℄, beause it is very well suited to work in iTT

P

, sine it is almost ompletely

developed within loal set theory instead that in topos theory, exept for the use of a hoie rule.

In iTT

P

, the result is a onsequene of the strong elimination rule for disjoint union whih allows to

prove the so alled intuitionisti axiom of hoie, i.e.

((8x 2 A)(9y 2 B) C(x; y))! ((9f 2 A! B)(8x 2 A) C(x; f(x))) true

Let us reall the proof [Mar84℄. Assume that h 2 (8x 2 A)(9y 2 B) C(x; y) and that x 2 A. Then

h(x) 2 (9y 2 B) C(x; y). Let �

1

(�) and �

2

(�) be the �rst and seond projetion respetively; then

the elimination rule for the set of the disjoint union allows to prove that �

1

(h(x)) 2 B and �

2

(h(x)) 2



12 CHAPTER 1. EXTENSIONAL POWERSETS IN CONSTRUCTIVE TYPE THEORY

C(x; �

1

(h(x))). Hene, by putting f � �x:�

1

(h(x)), we obtain both f 2 A ! B and �

2

(h(x)) 2

C(x; f(x)) sine, by �-equality, f(x) � (�x:�

1

(h(x)))(x) = �

1

(h(x)). Finally, we onlude by true

introdution.

Sine in the following we will use mainly the powerset P(1l), we introdue some abbreviations besides


 � P(1l) and >

1l

� f(w 2 1l) w =

1l

wg that we have already used in setion 1.3; let us suppose that

U is a set and w 2 1l is a variable whih does not appear in U , then we put [U ℄ � f(w 2 1l) Ug and,

supposing p 2 
, we put p � �"p. Moreover, following a standard logial pratie, supposing A is a set,

we will simply write A to assert the judgement A true. It is onvenient to state here all the properties

of the intensional equality proposition Id that we need in the following. First, we reall some well known

results: Id is an equivalene relation; moreover, if A and B are sets and a =

A

 and f =

A!B

g then

f(a) =

B

g() (for a proof see [NPS90℄, page 64).

On the other hand, the following properties of Id are spei� to the new set 
. They are similar to

the properties that the set Id enjoys when it is used on elements of the set U

0

, i.e. the universe of the

small sets. In fat, 
 resembles this set, but it di�ers also both beause of the onsidered equality and

beause a ode for eah set is present in 
, whereas only the odes for the small sets an be found in

U

0

.

Lemma 1.4.1 If p =




q then p$ q.

Proof. Let x 2 
; then x$ x and hene p$ q is a onsequene of p =




q by Id-elimination.

Lemma 1.4.2 :(true =

Bool

false).

Proof. Let x 2 Bool; then if x then [1l℄ else [?℄ 2 
. Now, suppose that true =

Bool

false, then

if true then [1l℄ else [?℄ =




if false then [1l℄ else [?℄, whih yields [1l℄ =




[?℄ by boole-equality and

transitivity.

Thus, by the previous lemma, [1l℄ $ [?℄ but [1l℄ $ 1l and [?℄ $ ? by the equality ondition; hene

? true and thus, by disharging the assumption true =

Bool

false, we obtain the result.

We will start, now, the proof of the main result of this setion. The trik to internalize the proof in

[Bel88℄ within iTT

P

is stated in the following lemma.

Lemma 1.4.3 For any set A, if A true then id(>

1l

) 2 [A℄ =




>

1l

and hene [A℄ =




>

1l

and if

[A℄ =




>

1l

then A true.

Proof. If A true then A $ w =

1l

w true [w 2 1l℄ and hene [A℄ = >

1l

2 
, whih implies

id(>

1l

) 2 [A℄ =




>

1l

and hene [A℄ =




>

1l

true by true introdution; on the other hand, if [A℄ =




>

1l

then, by lemma 1.4.1, [A℄ $ >

1l

, but [A℄ $ A and � =

1l

� $ >

1l

, by the equality ondition, and

hene A true sine � =

1l

� true.

Indeed, after this lemma it is possible to obtain, for any proposition A, a logially equivalent proposition,

i.e. [A℄ =




>

1l

, suh that, if A true, the proof element id(>

1l

) of [A℄ =




>

1l

has no memory of the

proof element whih testi�es the truth of A. We will see that this property is essential in the proof of

the following theorems. We will use it immediately in the following proposition where, instead of the

proposition �

1

(w) _ �

2

(w) set [w : 
 � 
℄, we use [�

1

(w) _ �

2

(w)℄ =




>

1l

set [w : 
 � 
℄ in order

to avoid that the proof-term in the main statement depends on the truth of the �rst or of the seond

disjunt.

We an now prove:

Proposition 1.4.4 In iTT

P

the following proposition

(8z 2 �(
�
; (w) [�

1

(w) _ �

2

(w)℄ =




>

1l

))

(9x 2 Bool) (x =

Bool

true ! �

1

(�

1

(z))) ^ (x =

Bool

false ! �

2

(�

1

(z)))

is true.
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Proof. Suppose z 2 �(
 � 
; (w) [�

1

(w) _ �

2

(w)℄ =




>

1l

) then �

1

(z) 2 
 � 
 and �

2

(z) is a proof

of [�

1

(�

1

(z)) _ �

2

(�

1

(z))℄ =




>

1l

. Thus, by lemma 1.4.3, �

1

(�

1

(z)) _ �

2

(�

1

(z)). The result an now

be proved by _-elimination. In fat, if �

1

(�

1

(z)) true then true =

Bool

true ! �

2

(�

1

(z)); moreover, by

lemma 1.4.2, :(true =

Bool

false) and hene true =

Bool

false! �

2

(�

1

(z)). Thus, we obtain that

(9x 2 Bool) (x =

Bool

true! �

1

(�

1

(z))) ^ (x =

Bool

false! �

2

(�

1

(z)))

On the other hand, by means of a similar proof, we reah the same onlusion starting from the assump-

tion �

2

(�

1

(z)) true.

Thus, we an use the intuitionisti axiom of hoie to obtain:

Proposition 1.4.5 In iTT

P

the following proposition

(9f 2 �(
�
; (w) [�

1

(w) _ �

2

(w)℄ =




>

1l

)! Bool)

(8z 2 �(
�
; (w) [�

1

(w) _ �

2

(w)℄ =




>

1l

))

(f(z) =

Bool

true ! �

1

(�

1

(z))) ^ (f(z) =

Bool

false ! �

2

(�

1

(z)))

is true.

Suppose, now, that A is a set; then

hh[A℄;>

1l

i; id(>

1l

)i 2 �(
�
; (w) [�

1

(w) _ �

2

(w)℄ =




>

1l

)

In fat, h[A℄;>

1l

i 2 
�
. Moreover >

1l

true and hene �

1

(h[A℄;>

1l

i) _ �

2

(h[A℄;>

1l

i); thus, by lemma

1.4.3, id(>

1l

) 2 [�

1

(h[A℄;>

1l

i) _ �

2

(h[A℄;>

1l

i)℄ =




>

1l

.

Now, let f be the hoie funtion, i.e. use an 9-elimination rule on the judgement in the proposition

1.4.5; then f(hh[A℄;>

1l

i; id(>

1l

)i) =

Bool

true ! [A℄. But

(f(hh[A℄;>

1l

i; id(>

1l

)i) =

Bool

true) _ (f(hh[A℄;>

1l

i; id(>

1l

)i) =

Bool

false)

sine the set Bool is deidable (for a proof see [NPS90℄, page. 177), and hene, by _-elimination and a

little of intuitionisti logi, one obtains that

(1) [A℄ _ (f(hh[A℄;>

1l

i; id(>

1l

)i) =

Bool

false)

Analogously, one an prove that

(2)
[A℄
_ (f(hh>

1l

; [A℄i; id(>

1l

)i) =

Bool

true)

Thus, by using distributivity on the onjuntion of (1) and (2), one �nally obtains

Proposition 1.4.6 For any set A in iTT

P

the following proposition

(9f 2 �(
�
; (w) [�

1

(w) _ �

2

(w)℄ =




>

1l

)! Bool)

[A℄ _ ((f(hh[A℄;>

1l

i; id(>

1l

)i) =

Bool

false) ^ (f(hh>

1l

; [A℄i; id(>

1l

)i) =

Bool

true))

is true.

Let us now assume [A℄ true; then, by equality ondition A true, from whih by equality introdution

ondition, that is by extensionality on subsets, [A℄ = >

1l

2 
 and hene

hh[A℄;>

1l

i; id(>

1l

)i =

�(
�
;:::)

hh>

1l

;>

1l

i; id(>

1l

)i:

Thus f(hh[A℄;>

1l

i; id(>

1l

)i) =

Bool

f(hh>

1l

;>

1l

i; id(>

1l

)i), where f is obtained by an 9-elimination rule

on the judgement in the proposition 1.4.6. With the same assumption, also f(hh>

1l

; [A℄i; id(>

1l

)i) =

Bool

f(hh>

1l

;>

1l

i; id(>

1l

)i) an be proved in a similar way; hene

f(hh[A℄;>

1l

i; id(>

1l

)i) =

Bool

f(hh>

1l

; [A℄i; id(>

1l

)i)
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Then assuming both [A℄ true and

(f(hh[A℄;>

1l

i; id(>

1l

)i) =

Bool

false) ^ (f(hh>

1l

; [A℄i; id(>

1l

)i) =

Bool

true)

one an onlude true =

Bool

false. But, by lemma 1.4.2, :(true =

Bool

false). Hene, under the assumption

(f(hh[A℄;>

1l

i; id(>

1l

)i) =

Bool

false) ^ (f(hh>

1l

; [A℄i; id(>

1l

)i) =

Bool

true);

the judgement :[A℄ true holds. Thus, by using proposition 1.4.6 and a little of intuitionisti logi, we

an onlude ([A℄ _ :[A℄) true whih, by the equality ondition, yields (A _ :A) true. Thus, provided

one an give for the powerset suitable rules whih allow our onditions to hold, i.e. whih really express

the meaning of the powerset, and that meanwhile allow to keep the usual meaning for the judgement

C true, i.e. C true holds if and only if there exists a proof element for the set C, then we would have a

proof element for the set A _ :A, whih is expeted to fail.

1.5 Conlusion

To help the reader who knows the proof in [Bel88℄, it may be useful to explain the di�erenes between

the original proof and that presented in the previous setion. Our proof is not the plain appliation of

Bell's result to iTT

P

, sine iTT

P

is not a topos. It is possible to obtain a topos out of the extensional

theory eTT

P

, obtained by adding a powerset onstrutor to eTT , if one adds to it also the rule of

�-equality for powersets, as in the end of setion 1.2. But, it is not neessary to be within a topos to

reonstrut Diaonesu's result and a weaker theory is suÆient. It is also possible to get the same result,

by replaing the equality introdution ondition with a weaker rule, stating: if U $ V true [x 2 S℄ then

there is a proof-term (U; V )) 2 f(x 2 S) Ug =

P(S)

f(x 2 S) V g.

This fat suggests that it is not possible to extend Martin-L�of's type theory, where proof-elements

an be provided for any provable set, to an intuitionisti theory of sets fully equipped with powersets, like

topos theory, following the isomorphism \propositions as sets" and preserving the onstrutive meaning

of the onnetives: one has to hoose between prediativity and expressive power.



Chapter 2

E�etive quotients in onstrutive

type theory

Summary We extend Martin-L�of's Construtive Set Theory with e�etive quotient sets and the uniqueness

of propositional equality proofs. We prove that in the presene of at least two universes U

0

and U

1

, to whih

the odes of quotient sets are added, the priniple of exluded middle holds for small sets. The key point is

e�etiveness ondition, that allows us to reover information on the equivalene relation, from the equality on

the quotient set.

2.1 Introdution

Within the framework of Martin-L�of's set theory, in order to generate some formal topologies the quotient

sets are also desirable [NV97℄. But, some are is neessary in extending Martin-L�of's set theory by

quotient sets, if we want to keep onstrutivity.

Here, we onsider to extend the intensional version of Martin-L�of's type theory with the quotient

sets as formulated in [Hof95℄ and with the addition of e�etiveness ondition and the uniqueness of

propositional equality proofs. We show that with the presene of at least two universes U

0

and U

1

, to

whih the odes of quotient sets are added, then the priniple of exluded middle holds for small sets.

Preisely, in this extension we an reprodue the proof that the axiom of hoie implies the priniple of

exluded middle, at least for small sets. The key point to do this proof is the appliation of the equality

rule of quotient sets ombined together with the e�etiveness ondition on the quotients of the �rst two

universes under equiprovability.

Of ourse, an analogous proof an be reprodued in the extensional version of Martin-L�of's type

theory with the quotient sets as given in Nuprl [Con86℄ and always with the addition of e�etiveness

ondition. We know that the e�etiveness ondition is surely derivable for deidable equivalene relations,

but the general e�etiveness ondition is problemati, beause it restores information that has been

forgotten in the introdution rule for equality of equivalene lasses.

The interest in e�etiveness ondition arises from mathematial pratie of quotient sets. In order

to keep e�etiveness for quotient sets, an alternative strategy ould be to let only quotient sets based

on equivalene relations, whih are proof-irrelevant, as it is in the type theory of Heyting pretoposes

proposed in this thesis.

2.2 Extension of iTT with quotient sets

We extend the intensional Martin-L�of onstrutive set theory by quotient sets and uniqueness of proofs

for the intensional propositional equality as in [Hof95℄ (page 111), with the following inferene rules. We

all this extension iTT

Q

.

15
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Intensional Quotient set

R(x; y) set [x 2 A; y 2 A℄



1

2 R(x; x)[x 2 A℄; 

2

2 R(y; x)[x 2 A; y 2 A; z 2 R(x; y)℄



3

2 R(x; z)[x 2 A; y 2 A; z 2 A;w 2 R(x; y); w

0

2 R(y; z)℄

A=R set

I-int.quotient

a 2 A

[a℄ 2 A=R

We speify also the equality between terms of A=R

eq -int.quotient

a 2 A b 2 A d 2 R(a; b)

Qax(d) 2 Id(A=R; [a℄; [b℄)

E-int.quotient

s 2 A=R l(x) 2 L([x℄)[x 2 A℄

h 2 Id(L([y℄); sub(Qax(d); l(x)); l(y)) [x 2 A; y 2 A; d 2 R(x; y)℄

Q(l; s) 2 L(s)

where sub is de�ned as in [NPS90℄ page.64 for substitution with equal elements;

C-int.quotient

a 2 A l(x) 2 L([x℄)[x 2 A℄

h 2 Id(L([y℄); sub(Qax(d); l(x)); l(y)) [x 2 A; y 2 A; d 2 R(x; y)℄

Q(l; [a℄) = l(a) 2 L([a℄)

We also want to make equivalene relations e�etive:

E�etiveness ondition

a 2 A b 2 A Id(A=R; [a℄; [b℄) true

R(a; b) true

Moreover, we add the axiom of uniqueness of propositional equality proofs:

Id-Uni I

a 2 A p 2 Id(A; a; a)

iduni(a; p) 2 Id(Id(A; a; a); p; id(a))

The orresponding onversion rule is the following:

Id-Uni onv

a 2 A

iduni(a; id(a)) = id(id(a)) 2 Id(Id(A; a; a); id(a); id(a))

By Id-Uni and the elimination rule of propositional equality on the proposition

�

w2Id(A;x;y)

Id(Id(A; x; y); w; z) [x 2 A; y 2 A; z 2 Id(A; x; y)℄

Streiher proved that under the ontext x 2 A; y 2 A; z 2 Id(A; x; y); w 2 Id(A; x; y) this proof-term

idpeel(z; �w 2 Id(A; x; x):iduni(x;w))(w)

is of type

Id(Id(A; x; y); w; z) [x 2 A; y 2 A; z 2 Id(A; x; y); w 2 Id(A; x; y)℄

that is the uniqueness of proofs of propositional equality type, alled UIP (see [Hof95℄ page.81).

Remark 2.2.1 The uniqueness of proofs of propositional equality type is de�nable by pattern-mathing,

but it is not derivable in the intensional version of Martin-L�of's type theory, as showed by M. Hofmann

and T. Streiher (see [Hof95℄ ). In our proof of the priniple of exluded middle for small sets, the use

of this priniple seems ruial.
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Remark 2.2.2 Note that in order to do the proof of exluded middle for small sets, we never make use

of the elimination rule for the quotient set and of the onversion rule Id-Uni onv.

Moreover, we onsider the �rst universe U

0

, whose elements are alled small sets, and the seond universe

U

1

, whose elements are alled large sets, as in [Mar84℄ and [NPS90℄.

We have to add to the rules for these universes the following introdution rule for the odes of quotient

sets for i = 0; 1:

UQ-I

a 2 U

i

r(x; y) 2 U

i

[x 2 T

i

(a); y 2 T

i

(a)℄



1

2 T

i

(r(x; x)) [x 2 T

i

(a)℄; 

2

2 T

i

(r(y; x)) [x 2 T

i

(a); y 2 T

i

(a); z 2 T

i

(r(x; y))℄



3

2 T

i

(r(x; z)) [x 2 T

i

(a); y 2 T

i

(a); z 2 T

i

(a); w 2 T

i

(r(x; y)); w

0

2 T

i

(r(y; z))℄

a

^

=r 2 U

i

with the following onversion rule:

T

i

(a

^

=r) = T

i

(a)=T

i

(r(x; y))

About the properties of judgements of the form A true (see [Mar84℄) we refer to the setion 1.2.

This extension of iTT is onsistent, beause there exists an interpretation in lassial set theory

(ZFC) plus two strongly inaessible ardinals, by interpreting the quotient sets in lassial quotient sets

and the �rst two universes respetively in the set of small sets and in the set of large sets.

2.3 Small sets are lassial

We are going to prove that for small sets in iTT

Q

the priniple of exluded middle holds, i.e. for any

element of the �rst universe a 2 U

0

, the judgement T

0

(a) _ :T

0

(a) true holds. By quotienting the two

universes under the relation of equiprovability among their elements, we simulate the powersets. The

proof we show here is obtained by adapting to our framework the analogous result of setion 1.4, that

the axiom of hoie implies the priniple of exluded middle in the presene of extensional powersets.

Therefore, also in iTT

Q

the result is a onsequene of the strong elimination rule for disjoint union

whih allows to prove the so alled intuitionisti axiom of hoie as in setion 1.4, i.e.

((8x 2 A)(9y 2 B) C(x; y))! ((9f 2 A! B)(8x 2 A) C(x; f(x))) true

In order to reover the proof of the priniple of exluded middle from the axiom of hoie, we quotient

the �rst two universes under the equivalene relation of equiprovability, i.e.

T

0

(x)$ T

0

(y) [x 2 U

0

; y 2 U

0

℄ T

1

(x)$ T

1

(y) [x 2 U

1

; y 2 U

1

℄

Then we use the following abbreviations for i = 0; 1




i

� U

i

= T

i

(x)$ T

i

(y)

Sine there is a ode of U

0

in U

1



U

0

2 U

1

then there is inside U

1

the ode for 


o






0

�



U

0

^

= x$̂y

Indeed, we an derive






0

2 


1

and T

1

(






0

) = 


0

Note that we do not distinguish the odes of U

0

and U

1

, with t

0

and t

1

as in [Dyb97℄, in order to make

formulas more readable.
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The reason to use the �rst two universes is due to the possibility of deriving

^

Id(

^




o

; z; [

b

>℄) 2 U

1

[z 2 


0

℄

where > is the terminal type (see the rule in setion 3.2). We use the abbreviation a =

A

b for Id(A; a; b),

when it is not oded in a universe.

Following a standard logial pratie, supposing A is a proposition, we will simply write A to assert

the judgement A true.

We reall that, in the presene of U

0

, we an derive

:(true =

Bool

false)

We will start now the proof of the main result of this setion. One of the key points to internalize the

proof in [Bel88℄ within iTT

Q

is stated in the following lemma.

Lemma 2.3.1 For any set a 2 U

i

, [a℄ =




i

[

b

>℄ i� T

i

(a) true for i = 0; 1.

Proof. From [a℄ =




i

[

b

>℄ true by e�etiveness of quotient sets we get T

i

(a) $ T

i

(

b

>) true, but

T

i

(

b

>) = > so T

i

(a) true. On the other hand, from T

i

(a) true, we get T

i

(a) $ T

i

(

b

>) and by the

equality rule on the quotient set we onlude [a℄ =




i

[

b

>℄.

Now we onsider the following abbreviations: for z 2 


0

E(z) � Id(


0

; z; [

b

>℄)

We an now prove:

Proposition 2.3.2 In iTT

Q

the following proposition

(8z 2 �(


0

�


0

; (w) [

\

E(�

1

(w))

^

_

\

E(�

2

(w))℄ =




1

[

b

>℄)

(9x 2 Bool) (x =

Bool

true ! E(�

1

(�

1

(z))) ^

(x =

Bool

false ! E(�

2

(�

1

(z)))

is true.

Proof. Suppose z 2 �(


0

�


0

; (w) [

\

E(�

1

(w))

^

_

\

E(�

2

(w))℄ =




1

[

b

>℄. Then �

1

(z) 2 


0

�


0

and �

2

(z)

is a proof of [

\

E(�

1

(�

1

(z)))

^

_

\

E(�

2

(�

1

(z)))℄ =




1

[

b

>℄. Thus, by lemma 2.3.1 and by the onversion rules

for U

1

, E(�

1

(�

1

(z))) _ E(�

2

(�

1

(z))) . The result an now be proved as in the proposition 1.4.4.

Thus, we an use the intuitionisti axiom of hoie to obtain:

Proposition 2.3.3 In iTT

Q

the following proposition

(9f 2 �(


0

�


0

; (w) [

\

E(�

1

(w))

^

_

\

E(�

2

(w))℄ =




1

[

b

>℄)! Bool)

(8z 2 �(


0

�


0

; (w) [

\

E(�

1

(w))

^

_

\

E(�

2

(w))℄ =




1

[

b

>℄)

(f(z) =

Bool

true ! E(�

1

(�

1

(z))) ^ (f(z) =

Bool

false ! E(�

2

(�

1

(z)))

is true.

Suppose, now, that a 2 U

0

is a small set; then

hh[a℄; [

b

>℄i;Qax(h�y:?; �y

0

:inr(id([

b

>℄))i)i

is of type

�(


0

�


0

; (w) [

\

E(�

1

(w))

^

_

\

E(�

2

(w))℄ =




1

[

b

>℄)
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where ? 2 >. In fat, h[a℄; [

b

>℄i 2 


0

�


0

and

h�y:?; �y

0

:inr(id([

b

>℄))i 2 Id(


0

; [a℄; [

b

>℄) _ Id(


0

; [

b

>℄; [

b

>℄)$ >

from whih, sine

Id(


0

; [a℄; [

b

>℄) _ Id(


0

; [

b

>℄; [

b

>℄)$ > = T

1

(

\

E([a℄)

^

_

\

E([

b

>℄))$ T

1

(

b

>)

by the equality rule on the quotient set we get

Qax(h�y:?; �y

0

:inr(id([

b

>℄))i) 2 [

\

E([a℄)

^

_

\

E([

b

>℄)℄ =




1

[

b

>℄

Analogously,

hh[

b

>℄; [a℄i;Qax(h�y:?; �y

0

:inl(id([

b

>℄))i)i

is of type

�(


0

�


0

; (w) [

\

E(�

1

(w))

^

_

\

E(�

2

(w))℄ =




1

[

b

>℄)

sine h[

b

>℄; [a℄i 2 


0

�


0

and

h�y:?; �y

0

:inl(id([

b

>℄))i 2 Id(


0

; [

b

>℄; [

b

>℄) _ Id(


0

; [a℄; [

b

>℄)$ >

Let us put for w 2 


0

q

1

(w) � Qax(h�y:?; �y

0

:inr(id([

b

>℄))i)

and

q

2

(w) � Qax(h�y:?; �y

0

:inl(id([

b

>℄))i)

Now, let f be the hoie funtion, i.e. use an 9-elimination rule on the judgement in the proposition

2.3.3; then as in the proof of proposition 1.4.6 f(hh[a℄; [

b

>℄i; q

1

([a℄)i) =

Bool

true ! E([a℄). But

(f(hh[a℄; [

b

>℄i; q

1

([a℄)i) =

Bool

true) _ (f(hh[a℄; [

b

>℄i; q

1

([a℄)i) =

Bool

false)

sine the set Bool is deidable (for a proof see [NPS90℄, page. 177), and hene, by _-elimination, lemma

2.3.1 and a little of intuitionisti logi, one obtains that

(1) T

0

(a) _ (f(hh[a℄; [

b

>℄i; q

1

([a℄)i) =

Bool

false)

and in an analogous way

(2) T

0

(a) _ (f(hh[

b

>℄; [a℄i; q

2

([a℄)i) =

Bool

true)

Thus, by using distributivity on the onjuntion of (1) and (2), one �nally obtains

Proposition 2.3.4 For any small set a 2 U

0

in iTT

Q

the following proposition

(9f 2 �(


0

�


0

; (w) [

\

E(�

1

(w))

^

_

\

E(�

2

(w))℄ =




1

[

b

>℄)! Bool)

T

0

(a) _ (f(hh[a℄; [

b

>℄i; q

1

([a℄)i) =

Bool

false) ^ f(hh[a℄; [

b

>℄i; q

2

([a℄)i) =

Bool

true))

is true.

Let us now assume T

0

(a) true; then, by lemma 2.3.1, [a℄ =




0

[

b

>℄ true and hene

hh[a℄; [

b

>℄i; q

1

([a℄)i =

�(


0

�


0

;:::)

hh[

b

>℄; [

b

>℄i; q

1

([

b

>℄)i

by the elimination rule of the intensional propositional equality with respet to the proposition

hhx; [

b

>℄i; q

1

(x)i =

�(


0

�


0

;:::)

hhy; [

b

>℄i; q

1

(y)i [x 2 


0

; y 2 


0

℄
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where q

1

(x) � Qax(h�y:?; �y

0

:inr(id([

b

>℄))i) [x 2 


0

℄ and q

2

(y) � Qax(h�y:?; �y

0

:inl(id([

b

>℄))i) [y 2 


0

℄.

Thus, f(hh[a℄; [

b

>℄i; q

1

([a℄)i) =

Bool

f(hh[

b

>℄; [

b

>℄i; q

1

([

b

>℄)i), where f is obtained by an 9-elimination rule

on the judgement in the proposition 2.3.4. With the same assumption, also

f(hh[

b

>℄; [a℄i; q

2

([a℄)i) =

Bool

f(hh[

b

>℄; [

b

>℄i; q

2

([

b

>℄)i)

an be proved in a similar way; hene, sine by uniqueness of propositional equality proofs UIP we get

a proof-term of

q

1

([

b

>℄) =

[

\

E([

b

>℄)

^

_

\

E([

b

>℄)℄=




1

[

b

>℄

q

2

([

b

>℄)

we onlude by the elimination rule of propositional equality

hh[

b

>℄; [

b

>℄i; q

1

([

b

>℄)i =

�(


0

�


0

;:::)

hh[

b

>℄; [

b

>℄i; q

2

([

b

>℄)i

and therefore

f(hh[a℄; [

b

>℄i; q

1

([a℄)i) =

Bool

f(hh[

b

>℄; [a℄i; q

2

([a℄)i)

Then assuming both T

0

(a) true and

(f(hh[a℄; [

b

>℄i; q

1

([a℄)i) =

Bool

false) ^ (f(hh[

b

>℄; [a℄i; q

2

([a℄)i) =

Bool

true) true

one an onlude true =

Bool

false. But we know that :(true =

Bool

false) an be derived. Hene, under

the assumption

(f(hh[a℄; [

b

>℄i; q

1

([a℄)i) =

Bool

false) ^ (f(hh[

b

>℄; [a℄i; q

2

([a℄)i) =

Bool

true);

the judgement :T

0

(a) true holds. So, by using proposition 2.3.4 and a little of intuitionisti logi, we

an onlude (T

0

(a) _ :T

0

(a)) true that is

�

a2U

0

T

0

(a) _ :T

0

(a) true

In onlusion the key points to reprodue the proof of the priniple of exluded middle on small sets are

the following:

� we use the axiom of hoie, by quantifying on

�(


0

�


0

; (w) [

\

E(�

1

(w))

^

_

\

E(�

2

(w))℄ =




1

[

b

>℄)

instead of �(


0

�


0

; (w) E(�

1

(w))_ E(�

2

(w))) in order to forget the proof-term of the disjuntion;

� we exhibit the proof-term q

1

by means of the equality rule on the quotient set in order to get

hh[a℄; [

b

>℄i; q

1

([a℄)i 2 �(


0

�


0

; (w) [

\

E(�

1

(w))

^

_

\

E(�

2

(w))℄ =




1

[

b

>℄)

in order to prove under the assumption [a℄ =




0

[

b

>℄ true for a 2 U

0

hh[a℄; [

b

>℄i; q

1

([a℄)i =

�(


0

�


0

;:::)

hh[

b

>℄; [

b

>℄i; q

1

([

b

>℄)i

� we need the uniqueness of propositional equality proofs in order to prove

hh[

b

>℄; [

b

>℄i; q

1

([

b

>℄)i =

�(


0

�


0

;:::)

hh[

b

>℄; [

b

>℄i; q

2

([

b

>℄)i

Thus, provided one an give suitable rules, whih allow quotient sets and our e�etiveness ondition to

hold, and that meanwhile allow us to keep the usual meaning for the judgement C true, i.e. C true

holds if and only if there exists a proof element for the proposition C, then we would have a proof

element for the proposition �

a2U

0

T

0

(a) _ :T

0

(a), whih is expeted to fail for small sets, aording to

an intuitionisti explanation of onnetives.
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2.4 Extensional quotient sets in extensional type theory

The proof that e�etiveness of quotient sets yields lassial logi for small sets an also be done for the

extensional version of Martin-L�of's Construtive Set Theory, eTT , with the rules for quotient sets, as

in Nuprl [Con86℄, to whih we add the e�etiveness ondition and the introdution and onversion rules

of the odes for quotient sets into the �rst two universes.

About the properties of judgements of the form A true, we only reall the ase of the set of the

extensional propositional equality Eq (see [NPS90℄). The formation and introdution rules are the

following

A set a 2 A b 2 A

Eq(A; a; b) set

A = C set a =  2 A b = d 2 A

Eq(A; a; b) = Eq(C; ; d)

A set a 2 A

eq

A

(a) 2 Eq(A; a; a)

A set a = b 2 A

eq

A

(a) = eq

A

(b) 2 Eq(A; a; a)

whereas the elimination rule is

d 2 Eq(A; a; b)

a = b 2 A

and it yields the admissibility of the following rule on judgements of the form A true:

Eq(A; a; b) true

a = b 2 A

In the following, we reall the rules for quotient sets in the extensional type theory:

Quotient set

R(x; y) set [x 2 A; y 2 A℄



1

2 R(x; x)[x 2 A℄; 

2

2 R(y; x)[x 2 A; y 2 A; z 2 R(x; y)℄



3

2 R(x; z)[x 2 A; y 2 A; z 2 A;w 2 R(x; y); w

0

2 R(y; z)℄

A=R set

I-quotient

a 2 A

[a℄ 2 A=R

We speify also the equality between terms of A=R

eq-quotient

a 2 A b 2 A d 2 R(a; b)

[a℄ = [b℄ 2 A=R

E-quotient

s 2 A=R l(x) 2 L([x℄)[x 2 A℄ l(x) = l(y) 2 L([x℄)[x 2 A; y 2 A; d 2 R(x; y)℄

Q(l; s) 2 L(s)

C-quotient

a 2 A l(x) 2 L([x℄)[x 2 A℄ l(x) = l(y) 2 L([x℄)[x 2 A; y 2 A; d 2 R(x; y)℄

Q(l; [a℄) = l(a) 2 L([a℄)

We also want to make equivalene relations e�etive:

E�etiveness ondition

a 2 A b 2 A [a℄ = [b℄ 2 A=R

R(a; b) true

We also add the odes of quotient sets in the introdution rules for the �rst two universes and their

orresponding onversion rules, as in setion 2.2. Moreover, like for the intensional propositional equality

set, the introdution of equality on quotient sets yields the admissibility of the following rule:

a 2 A b 2 A R(a; b) true

[a℄ = [b℄ 2 A=R
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This extension of eTT , alled eTT

Q

, is onsistent, beause there exists an interpretation in lassial

set theory (ZFC) with two strongly inaessible ardinals, by interpreting the quotient sets in lassial

quotient sets and the �rst two universes respetively in the set of small sets and in the set of large sets.

In the presene of extensional propositional equality type, the rule for intensional quotient sets

beome equivalent to those of extensional quotient sets and the same holds with respet to e�etiveness

onditions. So, we an reprodue in eTT

Q

the proof of the previous setion, and we onlude

�

a2U

0

T

0

(a) _ :T

0

(a) true

whih is expeted to fail for small sets.



Chapter 3

The type theory of Heyting

pretoposes

Summary We present a type theory, based on dependent types and proof-terms, whih is valid and omplete

with respet to the lass of Heyting pretoposes with a natural numbers objet. The type theory of Heyting

pretoposes turns out to be extensional in the presene of the extensional propositional equality type and of the

extensional quotient type. Subobjets are haraterized as \mono" types.

3.1 Introdution

An elementary topos an be viewed as a generalized universe of sets to develop mathematis. From a

logial point of view, topos theory orresponds to an intuitionisti higher order logi with typed variables

[LS86℄. Suitable toposes provide models for restrited Zermelo set theory [MM92℄. Reently, Joyal and

Moerdijk built a model of the whole intuitionisti set theory by using the notion of small map and by

taking a Heyting pretopos with a natural numbers objet as the ategorial universe [JM95℄. The searh

for a type theory of Heyting pretoposes with a natural numbers objet arises from the purpose of giving

a pure type-theoreti desription of the models for intuitionisti set theory in [JM95℄, after analyzing

the notion of \Small map" from a type-theoreti point of view. From now on, we shall refer to a Heyting

pretopos with a natural numbers objet as H-pretopos.

With respet to a topos, a Heyting pretopos laks exponentials and the subobjet lassi�er. Indeed, a

pretopos is a ategory equipped with �nite limits, stable �nite disjoint sums and stable e�etive quotients

of equivalene relations. A Heyting pretopos is a pretopos, where the pullbak funtor on subobjets

has a right adjoint.

Makkay and Reyes found that pretoposes an be haraterized with respet to the logial ategories,

whih are the neessary strutures to interpret the many-sorted oherent logi [MR77℄. Here, we want

to �nd a type theory omplete with respet to H-pretoposes, where there is no syntati distintion

between formulas and sorts.

The type theory of H-pretoposes, alled HP , is a alulus of dependent types, with a formation rule

for every type and introdution, elimination and onversion rules for terms of the same type aording

to the style of Martin-L�of's type theory. In order to interpret the dependenies, we use the fat that

any H-pretopos is loally a H-pretopos, i.e. for every objet A 2 ObP of the H-pretopos P , P=A is a

H-pretopos.

The main diÆulty in �nding a type theory of H-pretoposes is exatly to desribe the relation between

the odomain �bration of a H-pretopos and the �bration of its subobjets. Indeed, we have to express

the fat that the subobjets form a Heyting algebra and are suÆiently omplete to interpret quanti�ers.

It is possible to haraterize proof-theoretially the subobjets as \mono" types: we say that a

dependent type B(x)[x 2 A℄ is mono, when

y = z 2 B(x) [x 2 A; y 2 B(x); z 2 B(x)℄

23
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is derivable. Indeed, in the ategorial semantis (see hapter 5) the interpretation of a mono type will

turn out to be in orrespondene with a monomorphism.

The mono dependent type is the ruial onept for the proof-theoretial haraterization of the right

adjoint to the \pullbak funtor" on subobjets. As a matter of fat, in order to represent this right

adjoint, we introdue a dependent produt type restrited to a mono type, alled the forall type.

Moreover, we onsider the indexed sum type instead of the simple produt type, sine for its inter-

pretation it is suÆient to have pullbaks. In the syntati H-pretopos, by the indexed sum types we

establish a orrespondene between subobjets and mono dependent types.

In onlusion, in the type theory of H-pretoposes there are the following types: the terminal type, the

indexed sum type, the extensional equality type orresponding to �nite limits, the quotient type based

only on mono equivalene relations orresponding to the quotient of an equivalene relation, the disjoint

sum type together with the false type orresponding to �nite disjoint oproduts and �nally, the forall

type orresponding to the right adjoint on subobjets. The presene of the extensional propositional

equality is ruial in order to prove that the syntati ategory of losed types and suitable terms of HP

is an H-pretopos.

To prove the ompleteness theorem of HP with respet to the lass of H-pretoposes, we need to add

two axioms, whih do not follow the shema of all the other rules: e�etiveness for quotients of mono

equivalene relations and disjointness of sums.

3.2 The type theory HP

We start with the desription of the dependent type theory HP , valid and omplete with respet to

H-pretoposes, as we will see in the next hapters. This typed system is equipped with types, whih

should be thought of as sets or data types, and with typed terms whih represent proofs of the types to

whih they belong. In the following we present the formation rules for types and the introdution and

elimination rules for terms. In the style of Martin-L�of's type theory, we have four kinds of judgements

[NPS90℄:

A type A = B a 2 A a = b 2 A

that is the type judgement, the equality between types, the term judgement and the equality between

terms of the same type. The ontexts of these judgements are telesopi [dB91℄, sine types are allowed

to depend on variables of other types. The ontexts are generated by the following rules

1C) ; ont 2C)

� ont A type [�℄

�; x 2 A ont

(x 2 A 62 �)

plus the rules of equality between ontexts [Str91℄, [Pit95℄. In the following, we present the inferene

rules to onstrut type judgements and term judgements with their equality judgements by reursion.

One should also add all the inferene rules that express reexivity, symmetry and transitivity of the

equality between types and terms and the set equality rule

onv)

a 2 A [�℄ A = B [�℄

a 2 B [�℄

Moreover, by the following rule we assume typed variables

var)

�; x 2 A;� ont

x 2 A [�; x 2 A;�℄

We an derive then the strutural rules of weakening, substitution and of a suitable exhange.

Now, we give the formation rules for types spei� to HP and then the introdution, elimination and

onversion rules of its terms.

We adopt the usual de�nitions of bound and free ourrenes of variables and we identify two terms

under �-onversion.

Remark 3.2.1 In the following, the ontext ommon to all judgements involved in a rule will be omitted.

The typed variable appearing in a ontext is meant to be added to the impliit ontext as the last one.
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Terminal type

Tr) > type I-Tr) ? 2 > C-Tr)

t 2 >

t = ? 2 >

False type

Fs) ? type E-Fs)

a 2 ? A type

r

o

(a) 2 A

Indexed Sum type

�)

C(x) type [x 2 B℄

�

x2B

C(x) type

I-�)

b 2 B  2 C(b)

hb; i 2 �

x2B

C(x)

E-�)

d 2 �

x2B

C(x) m(x; y) 2M(hx; yi) [x 2 B; y 2 C(x)℄

split(d;m) 2M(d)

C-�)

b 2 B  2 C(b) m(x; y) 2M(hx; yi) [x 2 B; y 2 C(x)℄

split(hb; i;m) = m(b; ) 2M(hb; i)

Equality type

Eq)

C type  2 C d 2 C

Eq(C; ; d) type

I-Eq)

 2 C

eq

C

() 2 Eq(C; ; )

E-Eq)

p 2 Eq(C; ; d)

 = d 2 C

C-Eq)

p 2 Eq(C; ; d)

p = eq

C

2 Eq(C; ; d)

Disjoint Sum type

+)

C type D type

C +D type

I

1

-+)

 2 C

inl() 2 C +D

I

2

-+)

d 2 D

inr(d) 2 C +D

E-+)

w 2 C +D a

C

(x) 2 A(inl(x)) [x 2 C℄ a

D

(y) 2 A(inr(y)) [y 2 D℄

D(w; a

C

; a

D

) 2 A(w)

C

1

-+)

 2 C a

C

(x) 2 A(inl(x)) [x 2 C℄ a

D

(y) 2 A(inr(y)) [y 2 D℄

D(inl(); a

C

; a

D

) = a

C

() 2 A(inl())

C

2

-+)

d 2 D a

C

(x) 2 A(inl(x)) [x 2 C℄ a

D

(y) 2 A(inr(y)) [y 2 D℄

D(inr(d); a

C

; a

D

) = a

D

(d) 2 A(inr(d))

Disjointness

 2 C d 2 D inl() = inr(d) 2 C +D

m(; d) 2 ?

Forall type

8)

C(x) type[x 2 B℄ y = z 2 C(x) [x 2 B; y 2 C(x); z 2 C(x)℄

8

x2B

C(x) type

I-8)

 2 C(x)[x 2 B℄ y = z 2 C(x) [x 2 B; y 2 C(x); z 2 C(x)℄

�x

B

: 2 8

x2B

C(x)

E-8)

b 2 B f 2 8

x2B

C(x)

Ap(f; b) 2 C(b)

�C-8)

b 2 B  2 C(x)[x 2 B℄ y = z 2 C(x) [x 2 B; y 2 C(x); z 2 C(x)℄

Ap(�x

B

:; b) = (b) 2 C(b)

�C-8)

f 2 8

x2B

C(x)

�x

B

:Ap(f; x) = f 2 8

x2B

C(x)

Quotient type

Q)

R(x; y) type [x 2 A; y 2 A℄; z = w 2 R(x; y)[x 2 A; y 2 A; z 2 R(x; y); w 2 R(x; y)℄



1

2 R(x; x)[x 2 A℄; 

2

2 R(y; x)[x 2 A; y 2 A; z 2 R(x; y)℄



3

2 R(x; z)[x 2 A; y 2 A; z 2 A;w 2 R(x; y); w

0

2 R(y; z)℄

A=R type
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I-Q)

a 2 A

[a℄ 2 A=R

eq-Q)

a 2 A b 2 A d 2 R(a; b)

[a℄ = [b℄ 2 A=R

E-Q)

p 2 A=R l(x) 2 L([x℄) [x 2 A℄ l(x) = l(y) 2 L([x℄) [x 2 A; y 2 A; d 2 R(x; y)℄

Q(l; p) 2 L(p)

C-Q)

a 2 A l(x) 2 L([x℄) [x 2 A℄ l(x) = l(y) 2 L([x℄) [x 2 A; y 2 A; d 2 R(x; y)℄

Q(l; [a℄) = l(a) 2 L([a℄)

E�etiveness

a 2 A b 2 A [a℄ = [b℄ 2 A=R

f(a; b) 2 R(a; b)

Natural Numbers type

nat) N type I

1

-nat) 0 2 N I

2

-nat)

n 2 N

s(n) 2 N

E-nat)

n 2 N a 2 L(0) l(x; y) 2 L(s(x)) [x 2 N; y 2 L(x)℄

Re(a; l; n) 2 L(n)

C

1

-nat)

a 2 L(0) l(x; y) 2 L(s(x)) [x 2 N; y 2 L(x)℄

Re(a; l; 0) = a 2 L(0)

C

2

-nat)

n 2 N a 2 L(0) l(x; y) 2 L(s(x)) [x 2 N; y 2 L(x)℄

Re(a; l; s(n)) = l(n;Re(a; l; n)) 2 L(s(n))

Thus, we have �nished with the presentation of our alulus. In the �C-8 rule the variable x does not

appear in f , sine we an abstrat only on the last variable of the ontext by the introdution rule of

the forall type. From now on we shall often omit the word type in the type judgements.

Note that the disjointness axiom is not derivable from the other rules. Indeed, we an obtain a model for

the alulus, whih falsi�es disjointness by using a domain with only one element (see [Smi88℄), where

the quotient type A=R is interpreted as A.

Atually, from now on, we will refer to an equivalent formulation of the alulus HP , where the

elimination and onversion rules for the indexed sum type are replaed by the following rules:

E

1

-�)

d 2 �

x2B

C(x)

�

B

1

(d) 2 B

E

2

-�)

d 2 �

x2B

C(x)

�

C(�

1

(d))

2

(d) 2 C(�

1

(d))

�

1

C-�)

b 2 B  2 C(b)

�

B

1

(hb; i) = b 2 B

�

2

C-�)

b 2 B  2 C(b)

�

C(b)

2

(hb; i) =  2 C(b)

�C-�)

d 2 �

x2B

C(x)

h�

B

1

(d); �

C(�

1

(d))

2

(d)i = d 2 �

x2B

C(x)

Every type for whih we an prove

B(x) type [x 2 A℄

y = z 2 B(x) [x 2 A; y 2 B(x); z 2 B(x)℄

is alled a mono type, that is a proof-irrelevant type.

In partiular, the forall type is mono.

In the following, given a judgement b(x) 2 B(x)[x 2 A℄ by the expression

(x)b(x)

we mean the equivalene lass of b(x) 2 B(x)[x 2 A℄ under the following relation:

b(x) 2 B(x)[x 2 A℄ � b(y) 2 B(y)[y 2 A℄
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Moreover, we write b for (x)b(x). Atually, in order to have suh expressions we should pass to the type

theory with higher ariety [NPS90℄, with the warning that what it is a type here, it is a set in [NPS90℄.

By adding the so alled funtion type, given b(x) 2 B(x)[x 2 A℄ we have the abstration, that is (x)b 2

(x 2 A)B(x), the appliation, the �-onversion and the �-onversion, that is (x)b(x) = b 2 (x 2 A)B(x).

Note that the E-quotient and C-quotient rules of the quotient type are derivable, by using the indexed

sum type, from the following restrited elimination rule of the quotient type for types not depending on

A=R,

E

s

-quotient

M type m(x) 2M [x 2 A℄ m(x) = m(y) 2M [x 2 A; y 2 A; d 2 R(x; y)℄

Q

s

(m; z) 2M [z 2 A=R℄

together with the following two onversion rules, also derivable in HP : one is the �-onversion

�

s

C-quotient

a 2 A m(x) 2M [x 2 A℄ m(x) = m(y) 2M [x 2 A; y 2 A; d 2 R(x; y)℄

Q

s

(m; [a℄) = m(a) 2M

and the other one is the �-onversion stating the uniqueness of Q

s

:

�

s

C-quotient

t(z) 2M [z 2 A=R℄

Q

s

((x)t([x℄); z) = t(z) 2M [z 2 A=R℄

Indeed, given the judgements l(x) 2 L([x℄)[x 2 A℄ and l(x) = l(y) 2 L([x℄) [x 2 A; y 2 A; d 2 R(x; y)℄,

we use the E

s

-quotient rule on h[x℄; l(x)i 2 �

z2A=R

L(z) [x 2 A℄. So, by the seond projetion of the

indexed sum type, we an de�ne Q(l; p) 2 L(p) for p 2 A=R, whih turns out to be well de�ned by �

s

and �

s

onversion rules. Indeed, given the following two judgements

l(x) 2 L([x℄) [x 2 A℄ l(x) = l(y) 2 L([x℄) [x 2 A; y 2 A; d 2 R(x; y)℄

we get

h[x℄; l(x)i 2 �

z2A=R

L(z) [x 2 A℄

and

h[x℄; l(x)i = h[y℄; l(y)i 2 �

z2A=R

L(z) [x 2 A; y 2 A; d 2 R(x; y)℄

Hene, by E

s

-quotient rule

Q

s

((x)h[x℄; l(x)i; z) 2 �

z2A=R

L(z) [z 2 A=R℄

and we de�ne

Q(l; z) � �

2

(Q

s

((x)h[x℄; l(x)i; z))

where

�

2

(Q

s

((x)h[x℄; l(x)i; z)) 2 L(�

1

(Q

s

((x)h[x℄; l(x)i; z))) [z 2 A=R℄

Q(l; z) is well de�ned, beause by �

s

C-quotient rule

�

1

(Q

s

( (x)h[x℄; l(x)i; z) = Q

s

( (x

0

)�

1

(Q

s

((x)h[x℄; l(x)i; [x

0

℄); z) 2 A=R

but we derive

�

1

(Q

s

( (x)h[x℄; l(x)i; [x

0

℄) = [x

0

℄ 2 A=R [x

0

2 A℄

hene

Q

s

( (x

0

)�

1

(Q

s

( (x)h[x℄; l(x)i; [x

0

℄ ); z) = Q

s

((x

0

)[x

0

℄; z) 2 A=R [z 2 A=R℄

and again by �

s

C-quotient rule

Q

s

( (x

0

)[x

0

℄; z) = z 2 A=R [z 2 A=R℄
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so we onlude

�

1

(Q

s

((x)h[x℄; l(x)i; z) = z 2 A=R [z 2 A=R℄

Also, the E-Nat rule and the onversion rules of the natural numbers type are derivable, by using the

indexed sum type, from the following restrited elimination rule of the natural numbers type for types

not depending on N

E

s

-Nat

L type a 2 L l(y) 2 L [y 2 L℄

Re

s

(a; l; n) 2 L [n 2 N ℄

together with the following three onversion rules, also derivable in HP : two are the �-onversions

�

s

C

1

-Nat

a 2 L l(y) 2 L [y 2 L℄

Re

s

(a; l; 0) = a 2 L

�

s

C

2

-Nat

a 2 L l(y) 2 L [y 2 L℄

Re

s

(a; l; s(n)) = l(Re

s

(a; l; n)) 2 L [n 2 N ℄

and the other one is the �-onversion stating the uniqueness of Re

s

:

�

s

C-Nat

a 2 L l(y) 2 L [y 2 L℄ t(n) 2 L [n 2 N ℄

t(0) = a 2 L t(s(n)) = l(t(n)) 2 L

Re

s

(a; l; n) = t(n) 2 L [n 2 N ℄

Indeed, given the judgements a 2 L(0) and l(x; y) 2 L(s(x)) [x 2 N; y 2 L(x)℄, we use the E

s

-Nat

elimination rule on h0; ai 2 �

n2N

L(n) and hs(�

1

(z)); l(�

1

(z); �

2

(z))i 2 �

n2N

L(n) [z 2 �

n2N

L(n)℄. So,

by the seond projetion of the indexed sum type, we an de�ne the reursion term, whih turns out to

be well de�ned by �

s

and �

s

onversion rules.

Indeed, given the following two judgements

a 2 L(0) and l(x; y) 2 L(s(x)) [x 2 N; y 2 L(x)℄

we get

h0; ai 2 �

n2N

L(n)

and

hs(�

1

(z)); l(�

1

(z); �

2

(z))i 2 �

n2N

L(n) [z 2 �

n2N

L(n)℄

hene, by E

s

-Nat rule we obtain

Re

s

(h0; ai; (z)hs(�

1

(z)); l(�

1

(z); �

2

(z))i; n) 2 �

n2N

L(n)

and we de�ne

Re(a; l; n) � �

2

(Re

s

(h0; ai; (z)hs(�

1

(z)); l(�

1

(z); �

2

(z))i ; n))

where

�

2

(Re

s

(h0; ai; hs(�

1

(z)); l(�

1

(z); �

2

(z))i ; n))

2 L(�

1

(Re

s

(h0; ai; (z)hs(�

1

(z)); l(�

1

(z); �

2

(z))i ; n)))

Re(a; l; n) is well de�ned beause by �

s

C-Nat rule we an derive

�

1

(Re

s

(h0; ai; (z)hs(�

1

(z)); l(�

1

(z); �

2

(z))i ; n)) = n 2 N [n 2 N ℄

Indeed, by �

s

C

1

-Nat rule on the zero

�

1

(Re

s

(h0; ai; hs(�

1

(z)); l(�

1

(z); �

2

(z))i ; 0)) = �

1

(h0; ai) = 0

and by �

s

sC

2

-Nat rule on the suessor

�

1

(Re

s

(h0; ai; hs(�

1

(z)); l(�

1

(z); �

2

(z))i ; s(n))) = �

1

(hs(u); l(u;w)i)
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where

u = �

1

(Re

s

(h0; ai; hs(�

1

(z)); l(�

1

(z); �

2

(z))i ; n)))

w = �

2

(Re

s

(h0; ai; hs(�

1

(z)); l(�

1

(z); �

2

(z))i ; n)))

and then

�

1

(Re

s

(h0; ai; hs(�

2

(z)); l(�

1

(z); �

2

(z))i ; s(n))) =

s(�

1

(Re

s

(h0; ai; hs(�

1

(z)); l(�

1

(z); �

2

(z))i ; n)))

So, by �

s

C-Nat rule we obtain

�

1

(Re

s

(h0; ai; hs(�

1

(z)); l(�

1

(z); �

2

(z))i ; n)) = Re

s

(0; s(n); n)

and again by �

s

C-Nat rule

Re

s

(0; s(n); n) = n 2 N

Finally, we onlude

�

1

(Re

s

(h0; ai; hs(�

1

(z)); l(�

1

(z); �

2

(z))i ; n)) = n 2 N [n 2 N ℄

Remark 3.2.2 Note that the extensional propositional equality type is ruial to derive the onversion

rules stating the uniqueness of the elimination onstants for the quotient type and the natural numbers

type.

3.2.1 The signature of the alulus HP .

In order to give a more rigorous presentation of the type theoryHP , we assigne to it a signature Sg(HP ),

as in [Pit95℄. We write the signature in the typed lambda alulus with � and � equalities based on the

following types, that we all sorts, to avoid onfusion with the types of T :

� TY PES, TERMS are ground sorts;

� �! � is a sort, provided that � and � are sorts.

Therefore, the signature onsists of a olletions of meta-onstants, given by type-valued funtion sym-

bols

C : �! TY PES

and term-valued funtion symbols

s : �! TERMS

where � is a sort.

Remark 3.2.3 We ould also desribe the type-valued funtion symbol as in [NPS90℄, where a unique

ground sort O is onsidered.

Def. 3.2.4 We all raw types the expressions of sort TY PES and raw terms the expressions of sort

TERMS, whih are built up from the funtion symbols of the signature and a �xed ountably number

of variables V ar = fx

1

; x

2

; : : :g of sort TERMS.

We give the de�nition of Sg(HP ) in orrespondene with the type formation rules and the terms

introdued in the introdution, elimination, onversion rules and in the axioms of HP . Notie that in

giving the signature, we onsider a variant of the formulation of the type theory HP , where in the ase

of elimination rule for the quotient type and the natural numbers type we have restrited elimination

rules with the orresponding onversion rules.

1. With respet to the terminal type

> : TY PES

? : TERMS
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2. With respet to the false type we de�ne

? : TY PES

r

o

: TERMS ! TERMS

3. With respet to the equality type we de�ne

Eq : TY PES ! TERMS ! TERMS ! TY PES

eq : TY PES ! TERMS ! TERMS

and we put eq

X

(x) � eq(X; x).

4. With respet to the indexed sum type, we de�ne

� : TY PES ! (TERMS ! TY PES)! TY PES

and we put �

x2X

Y (x) � �(X;Y ),

h i : TY PES ! (TERMS ! TY PES)! TERMS ! TERMS ! TERMS

and we put hx; yi

X;Y

� h i(X;Y; x; y),

�

1

: TY PES ! (TERMS ! TY PES)! TERMS ! TERMS

�

2

: TY PES ! (TERMS ! TY PES)! TERMS ! TERMS

and we put �

1

X

(x) � �

1

(X;Y; x) and �

2

Y

(x) � �

2

(X;Y; x).

5. With respet to the disjoint sum type we de�ne

+ : TY PES ! TY PES ! TY PES

and we put X + Y � +(X;Y ),

inl : TY PES ! TY PES ! TERMS ! TERMS

inr : TY PES ! TY PES ! TERMS ! TERMS

and we put inl

X;Y

(x) � inl(X;Y; x) and inr

X;Y

(x) � inr(X;Y; x),

D : TY PES ! TY PES ! (TERMS ! TY PES)!

! TERMS ! (TERMS ! TERMS)! (TERMS ! TERMS)! TERMS

and we put D

X;Y;Z

(x; y; z) � D(X;Y; Z; x; y; z),

m

?

: TY PES ! TY PES ! TERMS ! TERMS ! TERMS

and we put m

?;X;Y

(x; y) � m

?

(X;Y; x; y).

6. With respet to the forall type we de�ne

8 : TY PES ! (TERMS ! TY PES)! TY PES

and we put 8

x2X

Y (x) � 8(X;Y ),

� : TY PES ! (TERMS ! TY PES)! (TERMS ! TERMS)! TERMS

and we put �(X;Y; y) � �

X;Y

x

X

:y(x),

Ap : TY PES ! (TERMS ! TY PES)! TERMS ! TERMS ! TERMS

and we put Ap

X;Y

(x; y) � Ap(X;Y; x; y).



3.3. THE SYNTACTIC H-PRETOPOS 31

7. With respet to the quotient type we de�ne

= : TY PES ! (TERMS ! TERMS ! TY PES)! TY PES

and we put X=Y � =(X;Y ),

[ ℄ : TY PES ! (TERMS ! TERMS ! TY PES)! TERMS ! TERMS

and we put [x℄

X=Y

� [ ℄(X;Y; x),

Q

s

: TY PES ! (TERMS ! TERMS ! TY PES)! TY PES !

! (TERMS ! TERMS)! TERMS ! TERMS

and we put Q

s

X;Y;Z

(x; y) � Q

s

(X;Y; Z; x; y), where Q

s

orresponds to the signature introdued in

the restrited elimination rule E

s

-quotient,

f : TY PES ! (TERMS ! TERMS ! TY PES)! TERMS ! TERMS ! TERMS

and we put f

X;Y

(x; y) � f(X;Y; x; y).

8. With respet to the natural numbers type we de�ne

N : TY PES

0

N

: TERMS

s

N

: TERMS ! TERMS

Re

s

: TY PES ! TERMS ! (TERMS ! TERMS)! TERMS ! TERMS

and we put Re

s

X

(x; y; z) � Re

s

(X; x; y; z), where Re

s

orresponds to the signature introdued

in the restrited elimination rule E

s

-Nat.

3.3 The syntati H-pretopos

We reall the ategorial de�nition of a Heyting pretopos [MR77℄, [JM95℄.

Def. 3.3.1 A pretopos is a ategory equipped with �nite limits, stable �nite disjoint sums and stable

e�etive quotients of equivalene relations. A Heyting pretopos is a pretopos where the pullbak funtor

on subobjets has a right adjoint.

We reall that with a H-pretopos we mean a Heyting pretopos with a natural numbers objet (see the

appendix in [JM95℄).

Now, we show how to build a H-pretopos with the type theory in order to prove the ompleteness

theorem w.r.t. H-pretopoi. We de�ne the syntati ategory P

T

as follows.

Def. 3.3.2 The objets of P

T

are the losed types of HP , A;B;C : : : and the morphisms between two

types, A and B, are the expressions (x)b(x) (see [NPS90℄) orresponding to

b(x) 2 B[x 2 A℄

where the type B does not depend on A. The omposition in P

T

is de�ned by substitution, that

is given (x)b(x) 2 P

T

(A;B) and (y)(y) 2 P

T

(B;C) their omposition is (x)(b(x)). We state that

(x)b(x) 2 P (A;B) and (x)b

0

(x) 2 P (A;B) are equal i� we an derive

b(x) = b

0

(x) 2 B[x 2 A℄

The identity is (x)x 2 P (A;A) obtained by x 2 A[x 2 A℄.

In this setion we are going to prove that
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Proposition 3.3.3 The ategory P

T

is a H-pretopos.

First of all we prove that P

T

has finite limits:

The terminal objet is > and from any objet A the morphism towards > is

(x)? 2 P

T

(A;>)

whih is unique by the onversion rule for >.

Given  2 P

T

(A;C) and d 2 P

T

(B;C) the pullbak is given by

�

x2A

�

y2B

Eq(C; (x); d(y))

where the �rst projetion to A is

(z)�

A

1

(z) 2 P

T

(�

x2A

�

y2B

Eq(C; (x); d(y)); A)

and the seond projetion to B is

(z)�

B

1

(�

A

2

(z)) 2 P

T

(�

x2A

�

y2B

Eq(C; (x); d(y)); B)

From now on, we simply write a =

A

b to mean Eq(A; a; b) and often we will simply write eq

C

, instead

of eq

C

().

3.3.1 The disjoint oprodut

The oprodut of A and B is de�ned by A+B, where the injetions are

(x) inl(x) 2 P

T

(A;A+B) and (y) inr(y) 2 P

T

(B;A +B)

Given  2 P

T

(A;C) and d 2 P

T

(B;C) the mediating morphism � d from A+B to C is (w)D(w; ; d).

Coproduts are disjoint by the rule of disjointness. Moreover, oproduts are stable under pullbak. For

this purpose, we prove that

Lemma 3.3.4 A+B is isomorphi in P

T

to

�

w2A+B

(�

x2A

inl(x) =

A+B

w) + (�

y2B

inr(y) =

A+B

w)

Proof.

We put the following abbreviations

A+

P

B � �

w2A+B

(�

x2A

inl(x) =

A+B

w) + (�

y2B

inr(y) =

A+B

w)

and for any w 2 A+B

~

A(w) � �

x2A

inl(x) =

A+B

w

~

B(w) � �

y2B

inr(y) =

A+B

w

where the injetions of

~

A(w)+

~

B(w) are inl

P

(z) 2

~

A(w)+

~

B(w) [z 2

~

A(w)℄ and inr

P

(z) 2

~

A(w)+

~

B(w) [z 2

~

B(w)℄. We onsider (z)�

1

(z) 2 P

T

(A+

P

B;A+B) and we de�ne its inverse Æ as

(w)hw;D(w; d

1

; d

2

)i 2 P

T

(A+B;A+

P

B)

where d

1

orresponds to

inl

P

(hx; eq

A+B

i) 2

~

A(inl(x)) +

~

B(inl(x)) [x 2 A℄

and d

2

orresponds to

inr

P

(hy; eq

A+B

i)

~

A(inr(y)) +

~

B(inr(y)) [y 2 B℄



3.3. THE SYNTACTIC H-PRETOPOS 33

We an easily see that �

1

is the inverse morphism of Æ. Indeed, �

1

� Æ = id follows from the elimination

rule for the disjoint sum type. In order to prove that Æ � �

1

= id, that is to �nd a proof of

h�

1

(z);D(�

1

(z); d

1

; d

2

)i = z 2 A+

P

B [z 2 A+

P

B℄

it is suÆient to derive a proof of

�

2

(z) = D(�

1

(z); d

1

; d

2

) 2

~

A(�

1

(z)) +

~

B(�

1

(z)) [z 2 A+

P

B℄

So, we show how by the elimination rule for the disjoint sum type we derive a proof of

D(�

1

(z); d

1

; d

2

) =

A+

P

B

z

2

[z 2 A+

P

B; z

2

2

~

A(�

1

(z)) +

~

B(�

1

(z))℄

Indeed, suppose z 2 A +

P

B and w

1

2

~

A(�

1

(z)), from whih we get inl(�

A

1

(w

1

)) = �

1

(z) 2 A + B and

then

D(�

1

(z); d

1

; d

2

) = D(inl(�

A

1

(w

1

)); d

1

; d

2

) = inl

P

(h�

A

1

(w

1

); eq

A+B

i) = inl

P

(w

1

)

that is we get a proof of D(�

1

(z); d

1

; d

2

) =

A+

P

B

inl

P

(w

1

) [z 2 A+

P

B;w

1

2

~

A(�

1

(z))℄. Analogously, we

derive a proof of D(�

1

(z); d

1

; d

2

) =

A+

P

B

inr

P

(w

2

) [z 2 A+

P

B;w

2

2

~

B(�

1

(z))℄. So, given z 2 A+

P

B,

by elimination rule with respet to

~

A(�

1

(z)) +

~

B(�

1

(z)) we get a proof of

D(�

1

(z); d

1

; d

2

) =

A+

P

B

z

2

[z 2 A+

P

B; z

2

2

~

A(�

1

(z)) +

~

B(�

1

(z))℄

Now, suppose z 2 A+

P

B, sine �

2

(z) 2

~

A(�

1

(z)) +

~

B(�

1

(z)) by substitution and by elimination of the

extensional equality type we onlude

�

2

(z) = D(�

1

(z); d

1

; d

2

) 2

~

A(�

1

(z)) +

~

B(�

1

(z))

Proposition 3.3.5 In P

T

oproduts are stable under pullbaks.

Proof.

Given the following pullbaks

P

1

�

1

1

��

�

1

2 //
A

a

��
D

m //
C

P

2

�

2

1

��

�

2

2 //
B

b

��
D

m //
C

P

�

P

1

��

�

P

2 //
A+B

a�b

��
D

m //
C

we have to show that in P

T

=D

�

1

1

� �

2

1

' �

P

1

For this purpose we de�ne

 : P

1

+ P

2

! P

as  � (w)D(w; d

1

; d

2

) where d

1

orresponds to

h�

1

(w

1

); hinl(�

1

(�

2

(w

1

))); eq

C

ii 2 P [w

1

2 P

1

℄

and d

2

orresponds to

h�

1

(w

2

); hinr(�

1

(�

2

(w

2

))); eq

C

ii 2 P [w

2

2 P

2

℄

We an notie that �

P

1

�  = �

1

1

� �

2

1

and that �

P

2

�  = (inl � �

1

2

)� (inr � �

2

2

).

Moreover, we want to de�ne



�1

: P ! P

1

+ P

2

First of all, we onsider that, given w 2 P , we get �

1

(�

2

(w)) 2 A+B, hene, by Æ de�ned in the above

lemma we dedue

�

2

(Æ(�

1

(�

2

(w)))) 2

~

A(�

1

(�

2

(w))) +

~

B(�

1

(�

2

(w)))
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Now, we use the elimination rule with respet to

~

A(�

1

(�

2

(w))) +

~

B(�

1

(�

2

(w))) and we de�ne



�1

� (w)D(�

2

(Æ(�

1

(�

2

(w)))); d

0

1

; d

0

2

)

where d

0

1

orresponds to

inl(h�

1

(w); h�

1

(x

0

); eq

C

ii) 2 P

1

+ P

2

[w 2 P; x

0

2

~

A(�

1

(�

2

(w)))℄

Indeed, from w 2 P and x

0

2

~

A(�

1

(�

2

(w))) we get

m(�

1

(w)) = (a� b)(�

1

(�

2

(w))) and �

1

(�

2

(w)) = inl(�

1

(x

0

))

therefore m(�

1

(w)) = a(�

1

(x

0

)). In an analogous way, we de�ne d

0

2

as

inr(h�

1

(w); h�

1

(y

0

); eq

C

ii) 2 P

1

+ P

2

[w 2 P; y

0

2

~

B(�

1

(�

2

(w)))℄

We an prove that 

�1

is the inverse morphism of  by the elimination rule of the disjoint sum type.

3.3.2 The quotient of an equivalene relation

Given an equivalene relation

R

// g

//
A�A

in the syntati ategory P

T

, we onsider the following mono type:

R(x; x

0

) � �

y2R

g(y) =

A�A

hx; x

0

i[x 2 A; x

0

2 A℄

It is easy to hek that the ategorial de�nition of equivalene relation implies thatR(x; x

0

)[x 2 A; x

0

2 A℄

is an equivalene relation from the type-theoretial point of view. Let A=R be the quotient with

respet to R(x; x

0

)[x 2 A; x

0

2 A℄. We an prove that (z)[z℄ 2 P

T

(A;A=R) is the oequalizer of

�

2

� g 2 P

T

(R;A) and �

2

� g 2 P

T

(R;A), by the elimination and onversion rules of the quotient type.

The uniqueness property of the oequalizer follows from the �

s

C-quotient rule.

In P

T

the ategorial equivalene relations are e�etive, by the rule of e�etiveness and by the fat that

equivalene relations are moni. Moreover, we prove stability of quotients for equivalene relations.

Proposition 3.3.6 In P

T

equivalene relations are stable e�etive.

Proof.

In the following we write �

A�D

i

for the i'th projetion from the vertex of the pullbak of unspei�ed

arrows A! �  D. We will omit to label the projetions, when their domains and odomains are lear

from the ontext.

Given m 2 P

T

(D;A=R) let us onsider the following pullbaks:

P

�

D�A

2 //

�

D�A

1

��

A

(z)[z℄

��
D

m //
A=R

Q

�

D�R

1

��

�

D�R

2 //
R

�

1

�g

��
�

2

�g

��
A

(z)[z℄

��
D

m //
A=R

where

P � �

w2D

�

x2A

Eq(A=R;m(w); [x℄) and Q � �

w2D

�

y2R

Eq(A=R;m(w); [(�

1

� g)(y)℄)



3.3. THE SYNTACTIC H-PRETOPOS 35

Moreover, let us onsider these two pullbaks:

Q

(�

D�A

2

)

�

(�

1

�g)

��

�

D�R

2 //
R

�

1

�g

��
P

�

D�A

2

//
A

Q

(�

D�A

2

)

�

(�

2

�g)

��

�

D�R

2 //
R

�

2

�g

��
P

�

D�A

2

//
A

where

(�

D�A

2

)

�

(�

1

� g) � (w)h�

1

(w); h�

1

(g(�

1

(�

2

(w)))); eqii

and

(�

D�A

2

)

�

(�

2

� g) � (w)h�

1

(w); h�

2

(g(�

1

(�

2

(w)))); eqii

We must show that in P=P

T

�

D�A

1

' oeq((�

A

2

)

�

(�

1

� g); (�

A

2

)

�

(�

2

� g))

We reall that the objets of the ategory P=P

T

are the morphisms b : P ! B of P , and the morphisms

of P=P

T

from b : P ! B to b

0

: P ! B

0

are the morphisms t : B ! B

0

of P suh that t � b = b

0

. We an

observe that the pullbak given by the e�etiveness

R

�

1

�g

��

�

2

�g

//
A

(z)[z℄

��
A

(z)[z℄

//
A=R

D

m

==zzzzzzzz

an be ompleted in a ube of pullbaks, therefore

Q

(�

A

2

)

�

(�

1

�g)

��

(�

A

2

)

�

(�

2

�g)

//
P

�

D�A

1

��
P

�

D�A

1

//
D

is a pullbak and hene h�

�

2

(�

1

� g); �

�

2

(�

2

� g)i is an equivalene relation as kernel pair of �

D�A

1

.

Hene, let us onsider the oequalizer of �

�

2

(�

1

� g) and �

�

2

(�

2

� g)

[�℄ : P ! P=m

�

(R)

where P=m

�

(R) is the quotient type onerning the equivalene relation h�

�

2

(�

1

� g); �

�

2

(�

2

� g)i.

Sine �

D�A

1

� �

�

2

(�

1

� g) = �

D�A

1

� �

�

2

(�

2

� g) and [�℄ is the oequalizer of �

�

2

(�

1

� g) and �

�

2

(�

2

� g), there

exists a map

Q

P

: P=m

�

(R)! D

suh that Q

P

� [�℄ = �

D�A

1

. In order to prove that Q

P

is an isomorphism, we need the following lemma:

Lemma 3.3.7 The arrow Q

P

is a monomorphism.

Proof.

We show that we an derive in HP

8z 2 P=m

�

(R) 8z

0

2 P=m

�

(R) (Q

P

(z) =

D

Q

P

(z

0

)! z =

P=m

�

(R)

z

0

)
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In order to �nd a proof-term of this type, we use the elimination rule for the quotient type. Suppose we

have a proof of

Q

P

([w℄) =

D

Q

P

([w

0

℄) [w 2 P;w

0

2 P ℄

then given w 2 P and w

0

2 P , by the elimination rule of the equality type and by de�nition of

Q

P

, we dedue Q

P

([w℄) = �

D�A

1

(w), from whih we get �

D�A

1

(w) = �

D�A

1

(w

0

) 2 D. But, sine

w 2 P and w

0

2 P , we also get m(�

D�A

1

(w)) = [�

1

(�

2

(w))℄ and m(�

D�A

1

(w

0

)) = [�

1

(�

2

(w

0

))℄, from

whih we �nally have [�

1

(�

2

(w))℄ = [�

1

(�

2

(w

0

))℄. By e�etiveness we derive f(�

1

(�

2

(w)); �

1

(�

2

(w

0

))) 2

R(�

1

(�

2

(w)); �

1

(�

2

(w

0

))).

So we get

�

1

(�

2

(w)) = (�

1

� g)(�

1

(f(�

1

(�

2

(w)); �

1

(�

2

(w

0

)))))

�

1

(�

2

(w

0

)) = (�

2

� g)(�

1

(f(�

1

(�

2

(w)); �

1

(�

2

(w

0

)))))

from whih we onlude [w℄ = [w

0

℄ 2 P=m

�

(R). In this way, we have derived a proof of Q

P

([w℄) =

Q

P

([w

0

℄) ! [w℄ =

P=m

�

(R)

[w

0

℄ [w 2 P;w

0

2 P ℄, sine the proof-terms of this type are ompatible with

respet to m

�

(R), from whih by the elimination rule of the quotient type and by the introdution rule

for the forall type we onlude.

(of lemma 3.3.7)

Therefore, we an de�ne the inverse morphism of Q

P

.

In order to do that, by the elimination rule for the quotient type A=R we want to derive a proof-term of

8z 2 A=R 8d 2 D (z =

A=R

m(d))! (�

w2P=m

�

(R)

Q

P

(w) =

D

d)

This type is well formed, sine Q

P

is a monomorphism by the previous lemma.

Given d 2 D and x 2 A, supposed [x℄ = m(d), then hd; hx; eq

A=R

ii 2 P and we derive

h[hd; hx; eq

A=R

ii℄; eq

D

i 2 �

w2P=m

�

(R)

Q

P

(w) =

D

d

sine Q

P

([hd; hx; eq

A=R

ii℄) = �

1

(hd; hx; eq

A=R

ii) = d.

So we get

q([x℄; d) 2 [x℄ =

A=R

m(d)! �

w2P=m

�

(R)

Q

P

(w) =

D

d

where q([x℄; d) � �w

Eq

:h[hd; hx; eq

A=R

ii℄; eq

D

i.

Now by the elimination rule for the quotient type A=R we get

Q(z; q([x℄; d)) 2 z =

A=R

m(d)! �

w2P=m

�

(R)

Q

P

(w) =

D

d

and we onlude by the introdution rule for the forall type.

For short, we all f � �z:�d:Q(z; q([x℄; d)) and �nally, we de�ne

T : D ! P=m

�

(R)

as follows: for every d 2 D T (d) � �

1

(Ap(Ap(Ap(f;m(d)); d); eq

A=R

)). Now, it is easy to show that

Q

P

� T = id and sine Q

P

is a mono, Q

P

turns out to be an isomorphism. In onlusion, �

D

1

is a

oequalizer of (�

A

2

)

�

(�

1

� g) and (�

A

2

)

�

(�

2

� g).

(of proposition 3.3.6)

3.3.3 The natural numbers objet

The syntati H-pretopos is equipped with a natural numbers objet. The natural numbers objet is

the losed type N . Given a losed type Y the zero map is

(x)hx; 0i 2 P

T

(Y; Y �N)
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and the suessor map orresponds to s(n) [n 2 N ℄. We put id � s � (w)h�

2

(w); s(�

2

(w))i. Given the

morphisms hid; fi 2 P

T

(Y; Y � B) and g 2 P

T

(Y � B;B), we an prove that there exists an unique

morphism t 2 P

T

(Y �N;B) suh that the following diagram ommutes in all its parts:

Y

hid;0i

//

hid;fi ##F
FF

FF
FF

FF
Y �N

id�s

//

h�

1

;ti

��

Y �N

t

��
Y �B

g

//
B

By hypothesis we get

f(y) 2 B [y 2 Y ℄ and g(hy; wi) 2 B [y 2 Y;w 2 B℄

By the elimination rule of the natural numbers type we derive

Re

s

(f(y); g; z) 2 B [y 2 Y; z 2 N ℄

So, we put t � (x)Re

s

(f(�

1

(x)); g; �

2

(x)); whih is the required morphism to make the diagram ommute

by the onversion rules for the natural numbers type.

3.3.4 About subobjets

In order to show that the subobjets of any objet of P

T

form a Heyting algebra and are suÆiently

omplete to interpret quanti�ers, we need to prove that eah pullbak funtor on subobjets has a right

adjoint. For this purpose, we show that the pullbak funtor on subobjets is isomorphi to the funtor

Prop(�) : P

op

T

! Cat de�ned in the following.

Def. 3.3.8 For any objet A 2 ObP

T

, the objets of the ategory Prop(A) are the equivalene lasses

of mono types depending on A, B(x) [x 2 A℄, under the relation of equiprovability, and the morphisms

are the terms f 2 B(x) ! C(x) where B(x) ! C(x) � 8

B(x)

(C(x)), sine C(x) is mono. The identity

is �y:y 2 B(x) ! B(x). The omposition of f 2 B(x) ! C(x) and g 2 C

0

(x) ! D(x), supposing that

C(x) is equivalent to C

0

(x) and in partiular s 2 C(x) ! C

0

(x), is given by �y:Ap(g;Ap(s;Ap(f; y))) 2

B(x)! D(x).

Therefore, we an de�ne the above funtor Prop(�) : P

op

T

! Cat:

Def. 3.3.9 For any objet A 2 ObP

T

, Prop(A) is the above de�ned ategory and given a morphism

m 2 P

T

(D;A) we de�ne Prop(m) as the following funtor: for any B(x) [x 2 A℄

Prop(m)(B(x) [x 2 A℄) � B(m(z)) [z 2 D℄

and for every t 2 B(x)! C(x), given z 2 D, we de�ne

Prop(m)(t) � �w 2 B(m(z)):Ap(t[x := m(z)℄; w)

whih is a term of type B(m(z))! C(m(z)).

We an easily notie that Prop(�) is a well de�ned funtor.

We also onsider the funtor Sub(�) : P

op

T

! Cat, de�ned as follows. For every A 2 ObP

T

, we assoiate

the poset ategory Sub(A), whose objets are the subobjets on A of P

T

and the morphism, neessarily

unique, between subobjets is indued by the morphisms of P

T

=A, from any monomorphism representing

the domain subobjet to any monomorphism representing the odomain subobjet. For every t : A! B,

Sub(t) is the restrition of pullbak funtor on subobjets.

Proposition 3.3.10 The funtor Sub(�) : P

op

T

! Cat is naturally isomorphi to the funtor Prop(�) :

P

op

T

! Cat
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Proof.

For any A 2 ObP

T

we de�ne the funtor

 

1

(A) : Sub(A)! Prop(A)

in this manner: given a mono
B

// t //
A
,  

1

(A)(t) is the equivalene lass of �

y2B

t(y) =

A

x [x 2 A℄,

whih is a mono type. Indeed, we an notie that a morphism t of P

T

is a mono if and only if

�

y2B

t(y) =

A

x [x 2 A℄ is a mono type. Note that  

1

(A)(t) is well-de�ned on subobjets.

Given
B

m //
!!

t

!!B
BB

B B

0

||

t

0||yyy
yy

A

we de�ne

 

1

(A)(m) � �w:hm(�

1

(w)); eq

A

i

of type �

y2B

t(y) =

A

x ! �

z2B

0

t

0

(z) =

A

x [x 2 A℄. It is easy to see that  

1

(A) is a funtor and that

( 

1

(A))

A2ObP

T

is a natural transformation, that is for every m(y) 2 A [y 2 D℄ in P

T

the following

diagram ommutes

Sub(A)

 

1

(A)

//

m

�

��

Prop(A)

Prop(m)

��
Sub(D)

 

1

(D)

//
Prop(D)

Moreover, we de�ne

 

2

(A) : Prop(A)! Sub(A)

in this manner: for every mono type B(x) [x 2 A℄ we put  

2

(A)(B(x) [x 2 A℄) � �

1

, where �

1

2

P

T

(�

x2A

B(x); A) is the expression that orresponds to the judgement �

1

(w) 2 A [w 2 �

x2A

B(x)℄.

Note that �

1

is a monomorphism, sine B(x) [x 2 A℄ is a mono type.

For every s 2 B

0

(x)! B(x) we de�ne

 

2

(A)(s) � (w)h�

1

(w);Ap(s; �

2

(w))i

suh that the following diagram ommutes

�

x2A

B

0

(x)

id�s

//
&&
�

1 &&MMMMMM
�

x2A

B(x)

xx
�

1xxrrrrrr

A

. It is easy to see that  

2

(A)

is the inverse funtor of  

1

(A) and that ( 

2

(A))

A2ObP

T

is a natural transformation.

Now we prove that

Proposition 3.3.11 For every morphism m(y) 2 A [y 2 D℄ in P

T

, there exists the right adjoint of m

�

.

Sub(A)

m

�

//
Sub(D)

8

m

?oo

Proof. By the previous proposition, it is enough to show that Prop(m) has a right adjoint. For every

mono type B(y) [y 2 D℄ we put

8

m

(B(y) [y 2 D℄) � 8

y2D

(x =

A

m(y))! B(y) [x 2 A℄

whose value at a mono type is indeed a mono type. It is well-de�ned on subobjets, sine it preserves

equiprovability. Moreover, we de�ne a bijetion

Prop(D)(Prop(m)(C(x)); B(y))

 

1 //
Prop(A)(C(x);8

m

(B(y)))

 

2

oo
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as follows: for any t 2 C(m(y))! B(y) [y 2 D℄ we put for any x 2 A

 

1

(t) � �z:�y:�w:Ap(t; z)

and for any s 2 C(x)! 8

m

(B(y)) [x 2 A℄ and any y 2 D we put

 

2

(s) � �z:Ap(Ap(Ap(s[x := m(y)℄; z); y); eq

A

)

It is easy to see that  

1

and  

2

are inverse to eah other and that they are natural on the �rst variable.

This is suÆient to assure that the pullbak funtor on subobjets has a right adjoint.

Remark 3.3.12 Note that the extensional propositional equality type is ruial to get a H-pretopos

out of the ategory P

T

, if we onsider terms as morphisms and the de�nitional equality as the equality

of morphisms. Indeed, we need the extensional equality type to get equalizers. We also use it to

prove stability of the various ategorial properties and existene of right adjoints to pullbak funtors

on subobjets. Moreover, we need it to prove uniqueness of the universal properties of the various

ategorial onstrutors.



Chapter 4

The type theory of elementary

toposes

Summary We propose a type theory, based on dependent types and proof-terms, whih is valid and omplete

with respet to the lass of elementary toposes. This theory is obtained from the �rst order fragment of Martin-

L�of's Construtive Type Theory by adding the type orresponding to the subobjet lassi�er. This is the type

of losed mono types, whose equality is given by equiprovability. Indeed, this type an be seen as the quotient

of the intensional type of propositions under the equivalene relation of equiprovability.

4.1 Introdution

The axiomatization of a Grothendiek topos, free of set-theoreti assumptions, led Lawvere and Tierney

to produe the ategorial notion of elementary topos. Aording to Lawvere, an elementary topos

an be thought as a generalized universe of sets. The formalization of this idea is expressed by the so

alled Mithell-Benabou language, assoiated with any topos. But, in this language there is a syntati

distintion between the objets of the topos orresponding to types and the subobjets orresponding

to formulas, whih are terms of the subobjet lassi�er. Moreover, there are no onstrutors to turn

formulas into types.

Here, for toposes we propose the type theory T

t

, where the formulas orrespond to partiular depen-

dent types, as we have already seen in the type theory of Heyting pretoposes. This type theory, whih is

omplete with respet to elementary toposes, is obtained by extending the �rst order fragment of Martin-

L�of's Construtive Type Theory, with the Omega type orresponding to the subobjet lassi�er. In this

theory subobjets are represented by dependent types with at most one proof, already alled mono types

in hapter 3. So, the novelty of this type theory for elementary toposes is that it onsists only of de-

pendent types equipped with terms orresponding to their proofs, where the isomorphism \propositions

as losed mono types" holds. The mono type is the ruial onept for the proof-theoretial harateri-

zation of the subobjet lassi�er of the topos, sine in the ategorial semantis the interpretation of a

mono type turns out to be in orrespondene with a monomorphism.

With this type theory, we an build a syntati topos, whose objets are losed types and whose

morphisms are terms. In ontrast, in the syntati topos built up from the Mithell-Benabou language

as in [LS86℄,[Bel88℄, the objets are losed terms of powersets and the morphisms are funtional relations.

Also, with this type theory, we ould ompare Martin-L�of's Construtive Type Theory with topos

theory, sine in both frameworks intuitionisti mathematis an be developed.

4.2 The type theory T

t

The type theory for toposes is obtained by enlarging with the Omega type the �rst order fragment of

the extensional version of Martin-L�of's Intuitionisti Type Theory [Mar84℄. This �rst order fragment

40
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ontains the terminal type, indexed sum types, extensional equality types, produt types and we all it

ML

0

.

Therefore, in the style of Martin-L�of's type theory we have four kinds of judgements [NPS90℄:

A type A = B a 2 A a = b 2 A

that is the type judgement, the equality between types, the term judgement and the equality between

terms of the same type. The ontexts of these judgements are telesopi [dB91℄, sine types are allowed

to depend on variables of other types. The ontexts are generated by the following rules

1C) ; ont 2C)

� ont A type [�℄

�; x 2 A ont

(x 2 A 62 �)

plus the rules of equality between ontexts [Str91℄, [Pit95℄. In the following, we present the inferene

rules to onstrut type judgements and term judgements with their equality judgements by reursion.

One should also add all the inferene rules that express reexivity, symmetry and transitivity of the

equality between types and terms and the set equality rule

onv)

a 2 A [�℄ A = B [�℄

a 2 B [�℄

for all the four kinds of judgements [NPS90℄. Moreover, by the following rule we assume typed variables

var)

�; x 2 A;� ont

x 2 A [�; x 2 A;�℄

The strutural rules of weakening, substitution and of a suitable exhange an be derived.

We adopt the usual de�nitions of bound and free ourrenes of variables and we identify two terms

under �-onversion.

Remark 4.2.1 In the following, the ontext ommon to all judgements involved in a rule will be omitted.

The typed variable appearing in a ontext is meant to be added to the impliit ontext as the last one.

Now, we show the inferene rules of T

t

orresponding to the �rst order fragment ML

o

of the exten-

sional version of Martin-L�of's type theory as in [Mar84℄.

Terminal type

F-ter) > type

I-ter) ? 2 > C-ter)

t 2 >

t = ? 2 >

Indexed Sum type

F-�)

C(x) type[x 2 B℄

�

x2B

C(x) type

I-�)

b 2 B  2 C(b)

hb; i 2 �

x2B

C(x)

E

1

-�)

d 2 �

x2B

C(x)

�

1

(d) 2 B

E

2

-�)

d 2 �

x2B

C(x)

�

2

(d) 2 C(�

1

(d))

�

1

C-�)

b 2 B  2 C(b)

�

1

(hb; i) = b 2 B

�

2

C-�)

b 2 B  2 C(b)

�

2

(hb; i) =  2 C(b)

�C-�)

d 2 �

x2B

C(x)

h�

1

(d); �

2

(d)i = d 2 �

x2B

C(x)

Equality type

F-Eq)

C type  2 C d 2 C

Eq(C; ; d) type

I-Eq)

 2 C

eq

C

() 2 Eq(C; ; d)
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E-Eq)

p 2 Eq(C; ; d)

 = d 2 C

C-Eq)

p 2 Eq(C; ; d)

p = eq

C

() 2 Eq(C; ; d)

Produt type

F-�)

C(x) type [x 2 B℄

�

x2B

C(x) type

I-�)

 2 C(x)[x 2 B℄

�x

B

: 2 �

x2B

C(x)

E-�)

b 2 B f 2 �

x2B

C(x)

Ap(f; b) 2 C(b)

�C-�)

b 2 B  2 C(x)[x 2 B℄

Ap(�x

B

:; b) = (b) 2 C(b)

�C-�)

f 2 �

x2B

C(x)

�x

B

:Ap(f; x) = f 2 �

x2B

C(x)

The novelty of the type theory for toposes is the Omega type, orresponding to the subobjet

lassi�er, where propositions orrespond to losed mono types, that is losed types with at most one

proof.

We reall that a dependent type B type [�℄ is mono, if we an derive

y = z 2 B [�; y 2 B; z 2 B℄

The mono types are alled proof-irrelevant in the literature, as for example in [Hof95℄. In the Omega

type there are the odes of the mono types up to equiprovability.

Here, we present the rules that the Omega type should satisfy to represent the subobjet lassi�er.

Formation


 type

Introdution

B type y = z 2 B [y 2 B; z 2 B℄

fBg 2 


Equality

B type y = z 2 B [y 2 B; z 2 B℄

C type y = z 2 C [y 2 C; z 2 C℄

f 2 B $ C

fBg = fCg 2 


Elimination

q 2 


T (q) type

q 2 
  2 T (q) d 2 T (q)

 = d 2 T (q)

�-onversion

B type y = z 2 B [y 2 B; z 2 B℄

hr

B

; r

�1

B

i 2 T (fBg)$ B

�-onversion

q 2 


fT (q)g = q 2 


From these rules we derive

B type y = z 2 B [�

n

; y 2 B; z 2 B℄

C type y = z 2 C [�

n

; y 2 C; z 2 C℄

fBg = fCg 2 


hr

C

� r

�1

B

; r

B

� r

�1

C

i 2 B $ C

where r

C

� r

�1

B

� �x:r

C

(r

�1

B

(x)) and B $ C � �

x2B

C.

We use the notation fBg for the subset indued by B. Note that, for every q 2 
, we an �nd a proof

of

T (q)$ Eq(
; q; f>g)
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So, �nally, we propose the following inferene rules for the Omega type, as a re�nement of the previous

ones, where we put T (q) � Eq(
; q; f>g):

The Omega type

Formation

F-
) 
 type

Introdution

I-
)

B type y = z 2 B [y 2 B; z 2 B℄

fBg 2 


Equality

eq-
)

B type y = z 2 B [y 2 B; z 2 B℄

C type y = z 2 C [y 2 C; z 2 C℄

f 2 B $ C

fBg = fCg 2 


�-onversion

�C-
)

B type y = z 2 B [y 2 B; z 2 B℄

hr

B

; r

�1

B

i 2 Eq(
; fBg; f>g)$ B

�-onversion

�C-
)

q 2 


fEq(
; q; f>g)g = q 2 


In onlusion, we all T

t

the type theory onsisting of the rules of ML

0

, together with the rules for the

Omega type de�ned above.

By these rules of T

t

, when d 2 
, we do not introdue a new type T (d), of whih we do not know the

proofs. But, anyway, we introdue a link between the proofs of the equality type Eq(
; fBg; f>g) and

the type B, whih restores some information that has been forgotten.

Indeed, in the introdution rule of equality on the Omega type we forget the proof of equiprovability,

that we want to restore in the �-onversion rule. This fat will be very lear in the next setion, where

we show that the Omega type is the quotient under equiprovability of the type of mono types. The

possibility to restore the information forgotten in the introdution rule of equality on the Omega type

is given by e�etiveness of the quotient type. This is possible, sine equiprovability between mono types

is a mono equivalene relation.

Remark 4.2.2 Note that in T

t

we derive that if B is a mono type

r

�1

B

= �z:eq 2 B ! Eq(
; fBg; f>g)

Indeed, sine, given z 2 B, we get

h�w:�; �x:zi 2 B $ >

from whih we obtain

fBg = f>g 2 


and we onlude by the introdution rule for the extensional equality type.

So, from now on, we onsider a variant of T

t

where the �-onversion of the Omega type is the following

�-onversion

�C-
)

B type y = z 2 B [y 2 B; z 2 B℄

r

B

2 Eq(
; fBg; f>g)! B

With T

t

, we see that the imprediativity of toposes is restrited to mono types, but the Omega type is

not neessarily itself a mono type.
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4.2.1 The signature of the alulus T

t

.

We give the de�nition of the signature for the alulus T

t

, in orrespondene with the type formation

rules and the terms introdued in the introdution, elimination, onversion rules (see 3.2.1 for a de�nition

of signature). Notie that in giving the signature, we onsider the variant of the formulation of the type

theory T

t

, with the restrited � onversion rule for the Omega type.

1. With respet to the terminal type we de�ne

> : TY PES

? : TERMS

2. With respet to the equality type we de�ne

Eq : TY PES ! TERMS ! TERMS ! TY PES

eq : TY PES ! TERMS ! TERMS

and we put eq

X

(x) � eq(X; x).

3. With respet to the indexed sum type, we de�ne

� : TY PES ! (TERMS ! TY PES)! TY PES

and we put �

x2X

Y (x) � �(X;Y ),

h i : TY PES ! (TERMS ! TY PES)! TERMS ! TERMS ! TERMS

and we put hx; yi

X;Y

� h i(X;Y; x; y),

�

1

: TY PES ! (TERMS ! TY PES)! TERMS ! TERMS

�

2

: TY PES ! (TERMS ! TY PES)! TERMS ! TERMS

and we put �

1

X

(x) � �

1

(X;Y; x) and �

2

Y

(x) � �

2

(X;Y; x).

4. With respet to the produt type, we de�ne

� : TY PES ! (TERMS ! TY PES)! TY PES

and we put �

x2X

Y (x) � �(X;Y ),

� : TY PES ! (TERMS ! TY PES)! (TERMS ! TERMS)! TERMS

and we put �(X;Y; y) � �

X;Y

x

X

:y(x),

Ap : TY PES ! (TERMS ! TY PES)! TERMS ! TERMS ! TERMS

and we put Ap

X;Y

(x; y) � Ap(X;Y; x; y).

5. With respet to the Omega type we de�ne


 : TY PES

f g




: TY PES ! TERMS

and we put fXg




� f g




(X),

r : TY PES ! TERMS

and we put r

X

� r(X).
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4.3 A alulus with intensional Omega and restrited quotients.

The rules of T

t

an be derived inside an extension of ML

0

with extensional e�etive quotients restrited

to mono equivalene relations, as in the type theory of Heyting pretoposes (see hapter 3), and with

the intensional Omega type, whih is the intensional type of propositions. This intensional Omega type

resembles the type Prop of the Calulus of Construtions, but, here, propositions are only losed mono

types. The Omega type is alled intensional, sine the equality on it is given by the equality of mono

types, with the warning that the oding and deoding between propositions and mono types enjoy �

and �-onversions. The name of this extension of ML

0

is T

q

.

Here, we propose the following rules for the intensional type of propositions:

The intensional Omega type

Formation




i

type

Introdution

B type y = z 2 B [y 2 B; z 2 B℄

(B) 2 


i

Equality

B type y = z 2 B [y 2 B; z 2 B℄

C type y = z 2 C [y 2 C; z 2 C℄

B = C

(B) = (C) 2 


i

Elimination

p 2 


i

D(p) type

p 2 


i

 2 D(p) d 2 D(p)

 = d 2 D(p)

�-onversion

B type y = z 2 B [y 2 B; z 2 B℄

D((B)) = B

�-onversion

p 2 


i

(D(p)) = p 2 


i

The rules for the quotient types based only proof-irrelevant relations with the e�etiveness axiom are

the following ones:

Quotient type

Formation

R(x; y) type [x 2 A; y 2 A℄; z = w 2 R(x; y)[x 2 A; y 2 A; z 2 R(x; y); w 2 R(x; y)℄



1

2 R(x; x)[x 2 A℄; 

2

2 R(y; x)[x 2 A; y 2 A; z 2 R(x; y)℄



3

2 R(x; z)[x 2 A; y 2 A; z 2 A;w 2 R(x; y); w

0

2 R(y; z)℄

A=R type

I-quotient

a 2 A A=R type

[a℄ 2 A=R

eq-quotient

a 2 A b 2 A d 2 R(a; b)

[a℄ = [b℄ 2 A=R

E-quotient

s 2 A=R l(x) 2 L([x℄)[x 2 A℄ l(x) = l(y) 2 L([x℄)[x 2 A; y 2 A; d 2 R(x; y)℄

Q(l; s) 2 L(s)
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C-quotient

a 2 A l(x) 2 L([x℄)[x 2 A℄ l(x) = l(y) 2 L([x℄)[x 2 A; y 2 A; d 2 R(x; y)℄

Q(l; [a℄) = l(a) 2 L([a℄)

E�etiveness

a 2 A b 2 A [a℄ = [b℄ 2 A=R

f(a; b) 2 R(a; b)

Therefore we an prove:

Proposition 4.3.1 In T

q

we an derive the rules of the Omega type.

Proof. In T

q

we de�ne the Omega type as follows:


 � 


i

=$

where $� D(x)$ D(y) [x 2 


i

; y 2 


i

℄ is a mono equivalene relation.

Moreover, for every losed mono type B we de�ne

fBg � [(B)℄

and for every q 2 


i

=$ we abbreviate T (q) � Eq(


i

=$; q; [(>)℄).

Now, we show that the �-onversion for the Omega type holds. Preisely, we de�ne

r

B

� �z:�

2

(f((B); (>)))(�)

sine, given z 2 Eq(
; [(B)℄; [(>)℄), by the elimination rule for the extensional equality type we get

[(B)℄ = [(>)℄ 2 


and by e�etiveness we onlude that

f((B); (>)) 2 D((B))$ D((>))

that is f((B); (>)) 2 B $ >.

Now, we show that the �-onversion for the Omega type holds by the elimination rule of the quotient

type. Indeed, we laim that, for every p 2 


i

, we get a proof of

Eq(
; fT ([p℄)g; [p℄)

from whih, sine the proof-term assigns equal values to equiprovable elements of 


i

, by the elimination

rule of the quotient type we get a proof of

Eq(
; fT (q)g; q) [q 2 
℄

Therefore, we onlude that the �-onversion holds by the elimination rule of the extensional equality

type. Now, suppose p 2 


i

, sine fT ([p℄)g � [(Eq(
; [p℄; [(>)℄))℄, by de�nition of equality w.r.t. 
 and

by e�etiveness we prove that

fT ([p℄)g = [p℄ 2 


is derivable if and only if there is a proof of

D((Eq(
; [p℄; [(>)℄)))$ D(p)

that is, by �-onversion w.r.t. 


i

, if and only if there is a proof of Eq(
; [p℄; [(>)℄)$ D(p). So now, we

derive a proof of Eq(
; [p℄; [(>)℄) $ D(p). Indeed, given z 2 Eq(
; [p℄; [(>)℄), by the elimination rule

of the extensional equality type, we get [p℄ = [(>)℄. By e�etiveness we obtain f(p; (>)) 2 D(p) $

D((>)), that is by �-onversion w.r.t. 


i

, f(p; (>)) 2 D(p) $ >. We onlude �

2

(f(p; (>)))(�) 2

D(p) and �nally we get

�z:�

2

(f(p; (>)))(�) 2 Eq(
; [p℄; [(>)℄)! D(p)
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Moreover, given z 2 D(p), we get

h�w:�; �x:zi 2 D(p)$ >

from whih, as > = D((>)), we obtain [p℄ = [(>)℄. Therefore, we derive that eq




2 Eq(
; [p℄; [(>)℄).

Finally, we onlude

�z:eq




2 D(p)! Eq(
; [p℄; [(>)℄)

By introdution rule of the equality type, we get a proof of Eq(
; fT ([p℄)g; [p℄), as we laimed.

The alulus T

q

is onsistent, beause it an be interpreted in the topos of natural numbers, where the

interpretation of the intensional 


i

oinides with that of 
. Note that in the topos of natural numbers

the monomorphisms on every objet form a set.

4.4 The syntati topos

We reall the ategorial de�nition of a topos [MR77℄, [MM92℄.

Def. 4.4.1 A topos is a ategory equipped with �nite limits, exponentials and a subobjet lassi�er.

Here, we show how to build up a topos with the type theory, in order to prove the ompleteness theorem

with respet to the lass of toposes. We de�ne the syntati ategory S

T

as follows.

Def. 4.4.2 The objets of S

T

are the losed types of T

t

, A;B;C : : : and the morphisms from the type

A to the type B, are the expressions (x)b(x) (see [NPS90℄) orresponding to

b(x) 2 B [x 2 A℄

where the type B does not depend on A. The omposition in S

T

is de�ned by substitution, that

is, given (x)b(x) 2 S

T

(A;B) and (y)(y) 2 S

T

(B;C), their omposition is (x)(b(x)). We state that

(x)b(x) 2 P (A;B) and (x)b

0

(x) 2 P (A;B) are equal i� we an derive

b(x) = b

0

(x) 2 B[x 2 A℄

The identity is (x)x 2 P (A;A) obtained by x 2 A [x 2 A℄.

Along this setion we are going to prove that

Proposition 4.4.3 The ategory S

T

is a topos.

Proof. First of all we prove that S

T

has �nite limits.

The terminal objet is > and from any objet A the morphism to > is

(x)? 2 S

T

(A;>)

whih is unique by the onversion rule for >.

Given  2 S

T

(A;C) and d 2 S

T

(B;C) the pullbak is given by

�

x2A

�

y2B

Eq(C; (x); d(y))

where the �rst projetion to A is

(z)�

A

1

(z) 2 S

T

(�

x2A

�

y2B

Eq(C; (x); d(y)); A)

and the seond projetion to B is

(z)�

B

1

(�

A

2

(z)) 2 S

T

(�

x2A

�

y2B

Eq(C; (x); d(y)); B)

The right adjoint to the pullbak funtor is desrived as in [See84℄. For every morphism m : D ! A of

S

T

, for every objet b : B ! D of S

T

=D, we put

8

m

(b) � �

1

: �

x2A

C(x)! A
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where for x 2 A

C(x) � 8

y2D

(x =

A

m(y))! �

z2B

b(z) =

D

y

In the syntati ategory S

T

, the subobjet lassi�er is 
.

The true map is

f>g 2 
 [x 2 >℄

Moreover, given a monomorphism
B

// t //
A

its harateristi map is

f�

y2B

t(y) =

A

xg 2 
 [x 2 A℄

It is easy to prove that the pullbak of the harateristi map with the True map is isomorphi to t.

B

��

t ��?
??

??
'

//
�

x2A

�

z2>

(f�

y2B

t(y)=

A

xg=




f>g)

tt

�

1

ttiiiiiiiiiiiiii

A

By the equality on 
 and the �-C onversion rule of 
, the harateristi map is unique.

Indeed, for every q(x) 2 
[x 2 A℄ suh that

B

��

t ��?
??

??
'

//
�

x2A

�

z2>

(q(x)=




f>g)

vv

�

1

vvmmmmmmmmmmm

A

by �-C onversion rule of 
 and by the equality on 


q(x) = fEq(
; q(x); f>g)g = f�

y2B

t(y) =

A

xg

Remark 4.4.4 As we said in 3.3.12, the extensional propositional equality type is ruial to get a topos

out of the ategory S

T

, if we onsider terms as morphisms and the de�nitional equality as the equality

of morphisms. Indeed, we need the extensional equality type to get equalizers. We also use it to prove

existene of right adjoints to pullbak funtors and in the universal property of the subobjet lassi�er.

Remark 4.4.5 In a topos, it is known that the image funtor from the odomain �bration to the

subobjet �bration is �rst order logial if and only is the internal axiom of hoie holds (see [Joh77℄

page 145, and [See83℄ page 528). We say that this funtor is �rst order logial, if it translates the

interpretation of onnetives of the �rst order type theory ML

0

, as it is given in a loally artesian

losed ategory in [Law69℄, [Law70℄, [See84℄ through the odomain �bration, into the interpretation of

�rst order many-sorted prediative logi, as it is given through the �bration of subobjets, for example,

in [MM92℄. Note that, in this ase, the provability of a prediate seen as a type in the �rst order

type theory ML

0

, namely that there is morphism from the terminal objet of the �ber in whih the

prediate is interpreted, entails the provability of the prediate interpreted as a subobjet, namely its

image is the identity. The onverse, i.e. the provability in the subobjet �bration entails the provability

in the odomain �bration, is valid, if the external axiom of hoie holds (that is every epimorphism

has got a retration). In other words, suppose to translate a type A into a mono type, for example by

quotienting it under the terminal type A=> (this is not a problem, sine in a topos there are e�etive

quotients [MM92℄). Then, the logi of �rst order prediative types, following propositions as types,

an be translated into the logi of mono types suh that the logi of types and mono types beome

equivalent, if and only if there is a hoie operator (that is we should have a proof-term  2 A=> ! A).

But, in the presene of external axiom of hoie, we get a boolean topos, that is we fall into the lassial

logi. Therefore, suh a hoie operator with a Heyting semantis of onnetives an not be added to

the type theory of toposes. In other words, if we refuse to fall into lassial logi the natural translation

of onnetives from types to mono types does not preserve provability in both diretions.



Chapter 5

The semantis in a ategorial

universe

Summary We desribe the ategorial semantis of the dependent type theories for H-pretoposes and for

toposes. We show how to build a model out of a H-pretopos for the type theory HP and out of a topos for

the type theory T

t

. After de�ning a partial interpretation of eah alulus, we prove the validity theorem with

respet to the orresponding lass of universes.

5.1 Introdution

Our notion of model for the type theories of universes, desribed in the previous hapters, ombines the

notion of model given by display maps [HP89℄, [See84℄ together with the tools provided by ontextual

ategories to interpret substitution orretly [Car86℄. We shall emphasize ontext formation. Indeed, the

judgement B [�℄, asserting that B is a dependent type under the ontext �, is interpreted as a suitable

sequene of morphisms of P to the terminal objet. Moreover, the judgement b 2 B[�℄, asserting that b

is a term of type B under the ontext �, is interpreted as a setion of the last morphism of the sequene

representing the dependent type B. Sine we want to express substitution by means of pullbak, whih is

determined up to isomorphisms, we use �bred funtors, as in [Hof94℄, to interpret substitution orretly.

But in our semantis, a type judgement orresponds to a sequene of �bred funtors, whih represents the

type under a ontext with all its possible substitutions, and a term judgement orresponds to a natural

transformation, whih also represents the term under a ontext with all its possible substitutions.

Our models for the two type theories orrespond to partiular ontextual ategories, where the

ategory of ontexts is equivalent to the universe under onsideration. Indeed, our model is a ategorial

universe, with a hoie of its struture, where the interpretation of judgements is de�ned by taking the

reindexing funtor of the split �bration equivalent to the odomain �bration of the ategorial universe.

It is worthwhile to say that is enough to onsider a split �bration of the odomain �bration in order to

obtain a orret interpretation not only of substitution, but also of the other onstrutors.

In the appendix, we outline the desription of the ontextual ategories with attributes, suitable to

model the type theories of H-pretoposes and of toposes.

5.2 The ategorial semantis

Sine we intend to model a type theory, we shall assume that, with a universe, a given hoie of its

ategorial onstrutors is made. More preisely, with a H-pretopos P , we �x hoies of

� �nite limits: 1 is the terminal objet and for every objet A of P the unique morphism to the

terminal objet is !

A

: A ! 1; for every t : D ! A and f : B ! A the following diagram

49
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is a pullbak

D

�

t

�

(f)

//

f

�

(t)

��

D

t

��
B

f

//
A

, so that for every f : A ! B, we an de�ne the pullbak funtor

f

�

: P=B ! P=A, whih assoiates f

�

(t) to every t : D ! A and to every morphism b : t ! s of

P=B the unique morphism hf

�

(t);

B

b � t

�

(f)i to the pullbak of s along f ; sine we have de�ned

pullbak, the produt of A and B is the vertex of the pullbak of !

A

and !

B

and the two projetions

are �

1

A

� !

A

�

(!

B

) : A � B ! A and �

2

B

� !

B

�

(!

A

) : A � B ! B, and �nally the equalizer of

a : A! B and b : A! B is (ha; bi)

�

(hid

B

; id

B

i) : E ! A, where ha; bi is the unique morphism to

the produt B �B suh that �

1

B

� ha; bi = a and �

2

B

� ha; bi = b;

� �nite oproduts: O is the initial objet and, for every objet A of P , the unique morphism from

the initial objet is ?

A

: O ! A; for every objets A and B in P , A�B is the oprodut together

with the injetions �

1

: A ! A � B and �

2

: B ! A � B and given a : A ! C and b : B ! C

a� b : A�B ! C is the unique morphism suh that a� b � �

1

= a and a� b � �

2

= b;

� quotients of equivalene relations: for every equivalene relation � : R! A�A there is a quotient

 = oeq(�

1

� �; �

2

� �), where �

i

for i = 1; 2 are the two projetions of the pullbak of !

A

: A ! 1

along itself;

� right adjoints on subobjets of the spei�ed pullbak funtors: for every morphism f : A! B the

funtor 8

f

(�) : Mon(A) ! Mon(B) is the right adjoint to the restrited pullbak funtor f

�

:

Mon(B)!Mon(A), whereMon(A) is the subategory of P=A, whose objets are monomorphism;

� a natural numbers objet N with the zero map o : 1! N and the suessor map s : N ! N .

With a topos P , we �x hoies of

� �nite limits (as in the ase of a H-pretopos);

� exponentials: for every objet A in P , the funtor A! � : P ! P is the right adjoint of the funtor

��A : P ! P , whih assoiates B �A to every objet B of P , and hf � �

1

; �

2

i : B �A! C �A

to every morphism f : B ! C of P ;

� a subobjet lassi�er P(1) with a map True : 1 ! P(1) suh that for every monomorphism

X

// � //
A

there is a unique harateristi map h(r) : A ! P(1) suh that h(r)

�

(True) is iso-

morphi to r in P=A.

An essential feature for the interpretation of a dependent type theory is the loal property of the

universe under onsideration. Indeed, for every objet A of the H-pretopos (topos) P , the omma

ategory P=A is an H-pretopos (topos, respetively).

The proof for the topos an be found in [MM92℄ or [Joh77℄. The loal property of a H-pretopos is

derived from the fat that the forgetful funtor U : P=A! P reates limits and for every f : A! B the

pullbak funtor f

�

: P=B ! P=A preserves oproduts and quotients. Note that given an equivalene

relation in P=D

R

�

//

r

  A
A A�

D

A

a��

1

yysss

D

h�

1

� �; �

2

� �i : R ! A � A is also an equivalene relation in P , where �

i

: A �

D

A ! A for i : 1; 2 are

the projetions of the pullbak of a : A! D along itself in P .

In a H-pretopos also Bek-Chevalley onditions for right adjoints are satis�ed. It is easy to see that

for every objet A of the H-pretopos P , a natural numbers objet in P=A is �

1

: A�N ! A, where N

is a natural objet of P .

The reason to require the loal property of the struture of a universe is that onstruting a type,

depending on a ontext �, from other types orresponds to a ategorial property of P=A, where A is

determined by �. Moreover, sine substitution orresponds to pullbak, the various ategorial properties

must be stable under pullbak.
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Remark 5.2.1 From now on, we shall mean with the ategorial universe P a H-pretopos, when we

refer to the type theory HP for H-pretoposes, and a topos, when we refer to the type theory T

t

for

toposes. Indeed, the ategorial semantis for the two type theories is the same with regard to the

interpretation of type and term judgements. One di�ers from the other only for the struture suitable

to interpret some partiular type and term onstrutors.

The idea is to interpret a dependent type as a sequene of morphisms of a given universe P , ending

with the terminal objet 1, whereas the terms are setions of the last morphism of the type to whih

they belong. Thus, we onsider the algebrai development of the �bration od of P : it is the ategory

Pgr(P).

Def. 5.2.2 The objets of the ategory Pgr(P) are �nite sequenes a

1

; a

2

; :::; a

n

of morphisms of P

A

n

a

n //
A

2

a

2 //
A

1

a

1 //
1

and a morphism from a

1

; a

2

; :::; a

n

to b

1

; b

2

; :::; b

m

is a morphism b of P suh that b

n

� b = a

n

A

n

b //
a

n

$$JJ
J B

n

b

n

zzttt
1

A

1

!

A

1

oo
A

n�1

a

n�1

oo

provided m = n and a

i

= b

i

for i = 1; :::; n� 1.

Remark 5.2.3 We reall that given a ategory P we an de�ne the ategory P

!

, whose objets are

the morphisms of P

X

���
A

and the morphisms are pairs of morphisms of P , f : X ! Y and u : A ! B suh that the following

diagram ommutes:

X

�

��

f

//
Y

 

��
A

u

//
B

Besides, given a universe P the following funtors are �brations (see [Ben85℄, [Ja91℄ for the de�nition):

� od

P

: P

!

�! P de�ned by:

 

X

���
A

!

7! A

and

(f; u) 7! u

� dom

P

: P

!

�! P de�ned by:

 

X

���
A

!

7! X

and

(f; u) 7! f

Remark 5.2.4 We would like to interpret substitution by means of pullbak, using the reindexing

pseudofuntor, with respet to the �bration od

P

, F : P

OP

�! Cat de�ned as follows: F assoiates

to every A 2 ObP the ategory P=A and to every morphism f : B ! A of P the pullbak pseudo-

funtor f

�

: P=A ! P=B. But, in general, for an arbitrary hoie of pullbaks, F would not be a

funtor: for instane, even F (id) may not be an identity. Therefore, if substitution were interpreted
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by F then it would not be well de�ned. The solution is to replae F by an equivalent pseudofun-

tor S : P

OP

�! Cat, whih is in fat a funtor [Ben85℄, [Ja91℄. S is de�ned as follows. For ev-

ery objet A in P , S(A) � Fib(P=A;P

!

), where Fib(P=A;P

!

) is the ategory of �bred funtors

� : P=A ! P

!

, from the �bration dom

P

to the �bration od

P

(they send artesian morphisms of

dom

P

to artesian morphisms of od

P

). A �bred funtor � : P=A ! P

!

assoiates to every triangle

C

t //

b

0   A
AA

A B

b

~~}}
}}

A

a pullbak diagram

C

0

q(t;�(b))

//

�(b�t)

��

B

0

�(b)

��
C

t

//
B

. The morphisms of Fib(P=A;P

!

) are natural

transformations � suh that for every b : B ! A the seond member of �(b) is the identity (reall that

�(b) is a morphism of P

!

), that is the triangle

�

1

(b)

//

�(b)

  @
@@

@

�(b)

~~~~
~~

B

ommutes. Moreover, for a morphism

f : B ! A of P , the funtor S(f) : Fib(P=A;P

!

) ! Fib(P=B;P

!

) assoiates to every �bred funtor

� a �bred funtor �[f ℄. �[f ℄ is de�ned as follows: for every t : C ! B, �[f ℄(t) � �(f � t). Besides, for

every natural transformation �, S(f)(�) � �[f ℄, where �[f ℄(t) � �(f � t) for every t : C ! B. S is the

reindexing funtor with respet to the �bration p

G(S)

: Fib(P=�;P

!

)! P , whih is the Grothendiek

onstrution on the funtor S de�ned as follows. The objet of Fib(P=�;P

!

) are (A; �) suh that

� 2 ObFib(P=A;P

!

) and the morphisms from (A; �) to (B; �) are (f; �), where f 2 P(A;B) and

� : � ! S(f)(�) is a morphism of Fib(P=A;P

!

). The �bration G(S) is a projetion: p

G(S)

(A; �) = A

for every (A; �) 2 ObFib(P=�;P

!

) and p

G(S)

((f; �)) = f for every (f; �) 2 MorF ib(P=�;P

!

). Note

that the pseudofuntor F : P

OP

�! Cat is equivalent to the funtor S in the appropriate 2-ategory of

pseudofuntors, and also the odomain �bration od

P

is equivalent to p

G(S)

. The funtors establishing

suh an equivalene an be desribed as follows. We de�ne a funtor

(�)(id) : Fib(P=A;P

!

)! P=A

whih assoiates to every � 2 ObFib(P=A;P

!

) its evaluation �(id) on the identity of the objet A, and

for every �; � 2 ObFib(P=A;P

!

) the morphism part

(�)(id)

�;�

: S(A)(�; �) ! P=A(�(id); �(id))

assoiates to every � 2 S(A)(�; �) the morphism
D

�(id)

//

�(id)

  A
AA

A B

�(id)

~~}}
}}

A

. Moreover, we de�ne the funtor

d

(�) : P=A! Fib(P=A;P

!

)

establishing the equivalene with (�)(id). The objet part of (�)(id) assoiates to every objet b : B ! A

of P=A the �bred funtor

b

b, de�ned as

b

b(t) � t

�

(b) for every t : D ! A and extended to morphisms by

the universal property of pullbak. For every a : C ! A and b : B ! A, the morphism part of (�)(id)

d

(�)

ba;

b

b

: P=A(a; b)! S(A)(ba;

b

b)

assoiates to every
C

g

//

a   A
AA

A B

b

~~}}
}}

A

the natural transformation g : ba !

b

b de�ned in this way: for every

t : D ! A, we put g(t) � hba(t);

B

g � a

�

(t)i), where hba(t);

B

g � a

�

(t)i is the unique morphism to the

pullbak of b along t indued by ba(t) and g � a

�

(t).

We use �bred funtors to interpret the dependent types with all its possible substitutions, as in

[Hof94℄. Moreover, we use natural transformations to represent terms with all its possible substitutions.

We all preinterpretation an assignment of �bred funtors to type judgements and of natural transfor-

mations to term judgements. To this purpose, we onsider the ategory Pgf(P), where the judgements

of the type theories HP and T

t

are preinterpreted. We put I(�) = A if � 2 [P=A;P

!

℄.
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Def. 5.2.5 The objets of the ategory Pgf(P) are �nite sequenes �

1

; �

2

; :::; �

n

of �bred funtors suh

that �

1

(id

A

1

); �

2

(id

A

2

); :::; �

n

(id

A

n

) is an objet of Pgr(P), where A

i

= I(�

i

) for i = 1; :::; n. The

morphisms of Pgf(P) from �

1

; �

2

; :::; �

m

to �

1

; �

2

; :::; �

n

are de�ned only if m = n and �

i

= �

i

for

i = 1; :::; n � 1, and they are natural transformations from the funtor �

n

to �

n

suh that, if A

n

=

I(�

n

) = I(�

n

), then for every b : B ! A

n

the seond member of �(b) is the identity (reall that �(b) is a

morphism of P

!

), that is the triangle

�

1

(b)

//

�

n

(b)

  @
@@

@

�

n

(b)

~~~~
~~

B

ommutes.

In the following, we simply write �

i

instead of �

i

(id

A

i

). Moreover, sine the seond member of �(b) is

always the identity, we onfuse �(b) with the �rst member �

1

(b).

Besides, notie that by naturality any omponent �(b) of a morphism � of Pgf(P) is determined

by the properties of pullbak from �(id

A

n

). Indeed, if we onsider
B

b //

b

!!B
BB

B A

n

id

||yy
yy

A

n

, we get that �(b)

is equal to h�

n

(b);

B

�(id

A

n

) � q(b; �

n

(id))i, from �

n

(b) to �

n

(b), and it is the unique morphism to the

pullbak of �

n

(id) along b, aording to the funtorial hoie of pullbaks of � , indued by �

n

(b) and

�(id

A

n

) � q(b; �

n

(id)) . We onlude that � � (�)(id)

�;�

�1

(�(id)).

Finally, for every A 2 ObP , we de�ne the �bred funtor i

A

: P=A! P

!

assoiating to every triangle

C

t //

b

0   A
AA

A B

b

~~}}
}}

A

the following pullbak diagram
C

t //

id ��

B

id��
C

t

//
B

.

5.3 The interpretation and validity

Given a universe P , before de�ning the interpretation, we de�ne a preinterpretation

~

I

P

j

: T �! Pgf(P)

on the type and term judgements derivable in the type theory T . With T we shall mean the type theory

HP or T

t

.

~

I

P

j

will turn out to be de�ned as a restrition of an a priori partial interpretation

~

I

P

from

the pseudo-judgements of T , whih are expressions in the form of a judgement with the signature of T .

The preinterpretation says how to interpret a dipendent type and a typed term after any possible

substitution. The interpretation of type and term judgements orresponds to evaluate their preinterpre-

tations on the idential substitution.

Moreover, we de�ne a valuation V : Pgf(P) �! Pgr(P) in this manner: for every objet of Pgf(P)

�

1

; �

2

; :::; �

n

V(�

1

; �

2

; :::; �

n

) = �

1

(id

A

1

); �

2

(id

A

2

); :::; �

n

(id

A

n

)

where A

i

= I(�

i

) for i = 1; :::; n, and for every morphism � of Pgf(P) between �

1

; �

2

; :::; �

n

and

�

1

; �

2

; :::; �

n

V(�) = �(id

A

n

)

Finally, the interpretation I

P

: T �! Pgr(P) is de�ned as I

P

� V �

~

I

P

j

T

I

P //

~

I

P

j

$$H
HHHH Pgr(P)

Pgf(P)

V

88qqqqq

So, a type judgement of HP or T

t

will be preinterpreted as a sequene of �bred funtors, sine a �bred

funtor is used to represent the dependent type with all the possible substitutions in its free variables

[Hof94℄, and it will turn out to be interpreted as an objet of Pgr(P), by the evaluation of the �bred

funtors on the idential substitution. Preisely, a type judgement with empty ontext, that is a losed

type, will be simply interpreted as a sequene of only one arrow to the terminal objet 1 of P : for

example, every judgement of HP or T

t

A [ ℄
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will be preinterpreted as a �bred funtor

�

1

: P=1! P

!

and interpreted as

A

�

!

A

� //
1

sine �

1

(id

1

) =!

A

�

with A

�

= dom(�

1

(id

1

)).

More generally, a dependent type judgement of HP or T

t

B(x

1

; :::; x

n

) [x

1

2 A

1

; :::; x

n

2 A

n�1

(x

1

; :::; x

n�1

)℄

will be preinterpreted as the objet of Pgf(P)

�

1

; �

2

; :::; �

n

; �

and hene interpreted as

1

A

�1

�

1

(id)

oo
A

�n

�

n

(id)

oo
B

�

�(id)

oo

In the following, for short, we write �

n

� x

1

2 A

1

; :::; x

n

2 A

n

(x

1

; :::; x

n�1

).

The equality between types will be preinterpreted as equality between objets of Pgf(P) and hene

interpreted as the equality between objets of Pgr(P).

The typed term judgements will be interpreted as morphisms of Pgr(P):

given the type judgement B(x

1

; :::; x

n

) [�

n

℄ interpreted as

1

A

�1

�

1

(id)

oo
A

�n

�

n

(id)

oo
B

�

�(id)

oo
the term judge-

ment

b 2 B(x

1

; :::; x

n

) [�

n

℄

will be preinterpreted as a natural transformation b

I

from �

1

; �

2

; :::; �

n

; i

A

�n

to �

1

; �

2

; :::; �

n

; �, and it

will be interpreted as b

I

(id), that is a setion of �(id)

A

�n

b(id)

//
id

$$H
HH

HH
B

�

�(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

The equality between terms will be preinterpreted as equality between natural transformations and hene

interpreted as the equality between morphisms of Pgr(S). From now on, for short, we simply write b

I

to mean b

I

(id).

Essentially, we de�ne the preinterpretation

~

I

P

: pseudo(T ) �! Pgf(P)

as an a priori partial funtion from the pseudo-judgements of T , pseudo(T ), about dependent types and

terms, by indution on their omplexity (see, for example, [Pit95℄, [Str91℄). Indeed, later we will show

that the preinterpretation is well de�ned on the type and term judgements derivable in the theory, by

indution on the derivation. But, we will prove this in the validity theorem, beause for our purpose

we also need the validity of the judgements about equality between types and terms. With regard to

this, see, for example, the elimination rule for the extensional propositional equality type, the formation

rule for the forall type in the type theory HP and the introdution rule for the Omega type in the type

theory T

t

.

Remark 5.3.1 As already said, a ompliation of these dependent type theories is that by the depen-

deny of types from terms, we have to onsider the equality between types and between terms. Indeed,

the proofs that some types or terms are well formed depend on these equality judgements. So, we give

a partial interpretation.



5.3. THE INTERPRETATION AND VALIDITY 55

Another diÆulty is that in the presene of the set equality rule onv), an interpretation de�ned

by indution on the derivations must be heked to be well-de�ned suh that the interpretation of a

judgement does not depend on the derivation, if the derivation is not unique.

We think that this ould be done by avoiding all the weakening, substitution and set equality rules

in the formulation of the alulus. But our formulations of the dependent type theories do not let us to

prove the set equality rule onv).

5.3.1 The partial interpretation

We de�ne pseudo(T ) as the pseudo-judgements of a type theory T , onsisting of expressions of these

four kinds

A(x) type [�℄ A(x) = B(x) [�℄

a(x) 2 A(x) [�℄ a(x) = b(x) 2 A(x) [�℄

where x � x

1

; : : : ; x

n

and

� � � [ ℄ or � � x

1

2 A

1

; :::; x

n

2 A

n

(x

1

; :::; x

n�1

) is a list of distint typed variables, and

A

i

(x

1

; :::; x

i�1

) for i = 1; : : : ; n is a raw type, that may depend on variables, previously listed;

we all this list a pseudo-ontext;

� A(x) is a raw type, whose variables our in the pseudo-ontext �;

� a(x) is a raw term, whose variables our in the pseudo-ontext �.

Remark 5.3.2 We will omit to write the type in the signature of a term. Indeed, we assume that

whenever a new symbol is introdued in the introdution, elimination and onversion rules of the type

theory about a term judgement a 2 A type [�℄, the types that should be appear in the signature of the

term a are determined by A and by the types of the premisses.

We de�ne an a priori partial preinterpretation

~

I

P

: pseudo(T ) �! Pgf(P) of the pseudo-judgements

of the type theory HP and T

t

A type [�℄ a 2 A [�℄

by indution on the omplexity of pseudo-judgements.

The omplexity of pseudo-judgements is de�ned by reursion, as in [Str91℄. We assume to know the

omplexity of raw types and raw terms. We de�ne the depth of a ontext. The depth of the empty ontext

is 0. The depth of a pseudo-ontext �; x 2 A is the omplexity of the pseudo-judgement A type [�℄. The

omplexity of a pseudo-judgement A type [�℄ is the sum of the omplexity of the type-valued funtion

symbol A with the depth of the pseudo-ontext �. The omplexity of a pseudo-judgement a 2 A [�℄ is

the sum of the omplexity of the term-valued funtion symbol a with the omplexity of A type [�℄.

Moreover, we preinterpret the pseudo-ontexts:

� for the empty ontext

~

I

P

([ ℄) � 1

� for a generi pseudo-ontext

~

I

P

(�; x 2 A) �

~

I

P

(A type [�℄)

As for the judgements, we de�ne the partial preinterpretation of the pseudo-judgements of equality:

�

~

I

P

(A = B [�℄) is preinterpreted as

~

I

P

(A type [�℄) =

~

I

P

(B type [�℄)

provided that

~

I

P

(A type [�℄) and

~

I

P

(B type [�℄) are de�ned;
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�

~

I

P

(a = b 2 A [�℄) is preinterpreted as

~

I

P

(a 2 A [�℄) =

~

I

P

(b 2 A [�℄)

provided that

~

I

P

(a 2 A [�℄) and

~

I

P

(b 2 A [�℄) are de�ned.

Remark 5.3.3 Note that it is suÆient to speify only the interpretation of a term, sine the preinter-

pretation of a term is the orresponding natural transformation of Pgf(P) determined by its evaluation

on the identity.

The interpretation of the type theory HP

Now, given a H-pretopos P , we proeed to de�ne the partial preinterpretation

~

I

P

from the pseudo-

judgements of the type theory HP into Pgf(P), and therefore, a partial interpretation into Pgr(P),

by indution on the omplexity of the pseudo-judgements. In the indutive hypothesis, we will refer

to the interpretation of a pseudo-judgement, assuming that also the preinterpretation is given. The

interpretation of the assumption of variable is the following:

provided that the pseudo-judgement

C(x

1

; :::; x

n

; x) [�

n

; x 2 B(x

1

; :::; x

n

)℄

is interpreted as

!

A

�1

; �

2

(id); :::; �

n

(id); �(id); (id)

and the pseudo-judgement

B(x

1

; :::; x

n

)[x

1

2 A

1

; :::; x

n

2 A

n

(x

1

; :::; x

n�1

); x 2 B(x

1

; :::; x

n

); y 2 C(x

1

; :::; x

n

; x)℄

as

!

A

�1

; �

2

(id); :::; �

n

(id); �(id); (id); �((id) � �(id))

then

x 2 B(x

1

; :::; x

n

)[x

1

2 A

1

; :::; x

n

2 A

n

(x

1

; :::; x

n�1

); x 2 B(x

1

; :::; x

n

); y 2 C(x

1

; :::; x

n

; x)℄

is interpreted as

C

�

x

I

//

id

!!C
CC

CC
C

C

�

�B

2

�

�((id)��(id))zzvv
vv

vv
v

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo
B

�

�(id)

oo
C

�

(id)

oo

where x

I

(id) = (id)

�

(4

B

�

) and 4

B

�

� hid

B

�

; id

B

�

i. In order to interpret the inferene rule about

the assumption of variable, when the ontext � is made of more than one typed variable, we repeat the

semanti operation of weakening, interpreted as in the lemmas of weakening (we refer to setion 5.3.2

for its interpretation).

Now, we go on by de�ning the interpretation on the signature given by the formation, introdution and

elimination rules for types and terms.

Remark 5.3.4 Note that we will write

b

A for the �bred funtor

b

!

A

: P=1! P

!

.

1. The Terminal type pseudo-judgement

> [ ℄

is interpreted as

1

1

�

!

1

�oo

where 1

�

� dom((id

1

)

�

(id

1

)), and we reall that the preinterpretation

b

1 : P=1 ! P

!

is the

funtor de�ned in the following manner: for every
D

!

D //
1

we put

b

1(!

D

) = (!

D

)

�

(id

1

) and on the

morphisms it is de�ned through the pullbak. Hene we get

b

1(id

1

) =!

1

�

.
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Moreover, if the pseudo-ontext �

n

is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo

we interpret

> [�

n

℄

as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
A

�n

�1

�

b

1(!

A

�n

)

oo

and we interpret

? 2 > [�

n

℄

as

A

�n

?

I

(id)

//
id

$$H
HH

HH
A

�n

�1

�

b

1
(!

A

�n

)

xxqqqqq

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

where ?

I

(id) � hid

A

�n

; (!

1�

)

�1

�!

A

�n

i.

2. If the pseudo-ontext �

n

is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo

the False type pseudo-judgement

? [�

n

℄

is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
A

�n

�0

�

b

0
(!

A

�n

)

oo

where 0 is the initial objet of P and 0

�

� dom((id

1

)

�

(!

0

)) and the preinterpretation

b

0 : P=1 !

P

!

is the funtor de�ned in the following manner: for every
D

!

D //
1

we put

b

0(!

D

) = (!

D

)

�

(!

0

).

Therefore

b

0(id

1

) =!

0

�

. On the morphisms it is de�ned through the pullbak.

The signature introdued in the elimination rule of the false type is interpreted in the following

manner:

provided that the pseudo-judgements a 2 ? [�

n

℄ and A [�

n

℄ are interpreted as

A

�n

a

I

//
id

$$H
HH

HH
A

�n

�0

�

b

0
(!

A

�n

)

xxqqqqq

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
A

�

�(id)

oo

we interpret

r

o

(a) 2 A [�

n

℄

as

A

�n

?

A

�

�(a

I

(id))

//
id

$$H
HH

HH
A

�

�(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

where ?

A

�

is the unique morphism from A

�n

� 0

�

to A

�n

, beause 0 is a strit initial objet and

then

b

0(!

D

) is an initial objet in P=D.
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3. The Indexed Sum type.

Provided that the pseudo-judgement C(y) [�

n

; y 2 B℄ is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
B

�

�(id)

oo
C

�

(id)

oo

we interpret

�

y2B

C(y) [�

n

℄

as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
C

�

�

�

()(id)

oo

where �

�

() : P=A

�n

! P

!

is the funtor de�ned in the following manner: for every
D

t //
A

�n

we put �

�

()(t) = �(t) � (q(t; �(id))) and on the morphisms it is de�ned through the pullbak. It

is well de�ned, sine the orresponding Bek-Chevalley onditions hold in any H-pretopos.

The pair term is interpreted in the following manner:

provided that the pseudo-judgements b 2 B [�

n

℄ and  2 C(b) [�

n

℄ are interpreted as

A

�n

b

I

//
id

$$H
HH

HH
B

�

�(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

A

�n



I

//
id

$$H
HH

HH
A

�n

�C

�

(b

I

)

xxqqqqq

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

we interpret

hb; i 2 �

y2B

C(y) [�

n

℄

as

B

�

hb;i

I

//
id

##G
GGG

C

�

�

�

()(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

where hb; i

I

(id) = q(b

I

(id); (id)) � (

I

(id)).

The �rst projetion of the indexed sum type is interpreted in this manner:

provided that the pseudo-judgement d 2 �

y2B

C(y) [�

n

℄ is interpreted as

A

�n

d

I

//
id

$$H
HH

HH
C

�

�

�

()(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

we interpret

�

1

(d) 2 B [�

n

℄

as

A

�n

(�

1

(d))

I

//
id

$$H
HH

HH
B

�

�(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

where (�

1

(d))

I

(id) � (id) � (d

I

(id)).

The seond projetion of the indexed sum type is interpreted in this manner:

provided that the pseudo-judgement d 2 �

y2B

C(y) [�

n

℄ is interpreted as

A

�n

d

I

//
id

$$H
HH

HH
C

�

�

�

()(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo
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we interpret

�

2

(d) 2 C(�

1

(d)) [�

n

℄

as

A

�n

(�

2

(d))

I

//
id

$$H
HH

HH
A

�n

�C

�

((id)�d

I

)

xxqqqqq

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

where (�

2

(d))

I

(id) � hid; d

I

(id)i is the unique morphism to the pullbak between (id) and (id) �

(d

I

(id)).

4. The Equality type.

Provided that the pseudo-judgements  2 C [�

n

℄ and d 2 C [�

n

℄ are interpreted as

A

�n



I

//
id

$$H
HH

HH
C

�

(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

A

�n

d

I

//
id

$$H
HH

HH
C

�

(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

we interpret

Eq(C; ; d) [�

n

℄

as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
E

�

Eq(

I

;d

I

)(id)

oo

where Eq(

I

; d

I

) : P=A

�n

! P

!

is the funtor de�ned in the following manner: for every

D

t //
A

�n

we put Eq(

I

; d

I

)(t) = (h

I

(t); d

I

(t)i)

�

(4

D�C

�

) with 4

D�C

�

� hid

D�C

�

; id

D�C

�

i.

It is well de�ned sine eah pullbak funtor preserves equalizers, as it has a left adjoint. On the

morphisms it is de�ned through the pullbak.

The signature introdued in the introdution rule of the equality type is interpreted in the following

manner:

provided that the pseudo-judgement  2 C [�

n

℄ is interpreted as

A

�n



I

//
id

$$H
HH

HH
C

�

(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

we interpret

eq

C

() 2 Eq(C; ; ) [�

n

℄

as

A

�n

4

C

(A

�n

)

//
id

$$H
HH

HH
E

�

Eq(

I

;

I

)(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

where 4

C

(A

�n

) � hid

A

�n

;

C



I

(id)i is the unique morphism to the pullbak that de�nes the equal-

izer Eq(

I

; 

I

)(id) indued by id

A

�n

and 

I

(id).

Therefore, eq

C

()

I

�

\

4

C

(A

�n

).

5. The Disjoint Sum type.

Provided that the pseudo-judgements C [�

n

℄ and D [�

n

℄ are interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
C

�

(id)

oo
1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
D

�

Æ(id)

oo
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we interpret

C +D [�

n

℄

as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
C

�

�D

�

�Æ(id)

oo

where  � Æ : P=A

�n

! P

!

is the funtor de�ned in the following manner: for every
D

t //
A

�n

we put  � Æ(t) = (t) � Æ(t) and on the morphisms it is de�ned through the pullbak. It is well

de�ned, sine oproduts are stable under pullbak.

The �rst and seond injetions of the introdution rules of the disjoint sum type are interpreted

in this manner:

provided that the pseudo-judgements  2 C [�

n

℄ and d 2 D [�

n

℄ are interpreted as

A

�n



I

//
id

$$H
HH

HH
C

�

(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

A

�n

d

I

//
id

$$H
HH

HH
D

�

Æ(id)

{{www
ww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

we interpret

inl() 2 C +D [�

n

℄ and inr(d) 2 C +D [�

n

℄

as

A

�n

�

1

(

I

)

//
id

$$H
HH

HH
C

�

�D

�

�Æ(id)

xxrrrrr

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

A

�n

�

2

(d

I

)

//
id

$$H
HH

HH
C

�

�D

�

�Æ(id)

xxrrrrr

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

where (inl())

I

(id) � �

1

� (

I

(id)), (inr(d))

I

(id) � �

2

� (d

I

(id)) and �

1

, �

2

are the injetions of the

oprodut C

�

�D

�

.

The signature introdued in the elimination rule for the disjoint sum type is interpreted in this

manner:

provided that the pseudo-judgements a

C

2 A(inl(y)) [�

n

; y 2 C℄ and a

D

2 A(inr(z)) [�

n

; z 2 D℄

are interpreted as

C

�

a

I

C //
id

##G
GGG

A

�

�C

�

�(�

1

)

yysssss

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo
C

�

(id)

oo

D

�

a

I

D //
id

##G
GG

GG
A

�

�D

�

�(�

2

)

yysssss

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo
D

�

Æ(id)

oo

we interpret

D(w; a

C

; a

D

) 2 A(w) [�

n

; w 2 C +D℄

as

C

�

�D

�

D

I

//
id

''OOOOOO
A

�

�(id)

yysssss

1

A

�1

!

A

�1

oo
C

�

�D

�

�Æ(id)

oo

where D

I

(id) � (q(�

1

; �(id)) �a

I

C

(id))� (q(�

2

; �(id)) �a

I

D

(id)). We prove that D

I

(id) is a setion of

�(id). Indeed, we get �(id) � (D

I

(id) � �

1

) = �(id) � (q(�

1

; �(id)) �a

I

C

(id)) = (�

1

��(�

1

)) �a

I

C

(id) = �

1

,

by the de�nitions of D

I

and � and by the hypothesis on a

I

C

, and, hene, analogously �(id)�(D

I

(id)�

�

2

) = �

2

. Sine �

1

� �

2

= id, we onlude that D

I

(id) is a setion of �(id).

Now, we interpret the signature introdued in the axiom of Disjointness

m(; d) 2 ? [�

n

℄ as

A

�n

hid;ti

//
id

$$H
HH

HH
A

�n

�0

�

b

0(!

A

�n

)

xxqqqqq

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo
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provided that �

1

(

I

(id)) = �

2

(d

I

(id)), where hid; ti is the unique morphism to the pullbak of

!

0

and !

A

�n

and t is de�ned as follows. Sine the oprodut is disjoint, the unique morphisms

p

1

: O ! C

�

and p

2

: O ! D

�

are the projetions of a pullbak square between �

1

and �

2

(though

this is not the spei�ed one from the struture of P). So, by the hypothesis �

1

(

I

(id)) = �

2

(d

I

(id)),

there exists a unique t : A

�n

! 0 suh that p

1

� t = 

I

(id) and p

2

� t = d

I

(id).

6. The Forall type.

Provided that the pseudo-judgement C(y) [�

n

; y 2 B℄ is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
B

�

�(id)

oo
C

�

oo(id)

oo

and (id) is a monomorphism, we interpret

8

y2B

C(y) [�

n

℄

as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
8

�

(C

�

)

oo
8

�

(id)

oo

where 8

�

 : P=A

�n

! P

!

is the funtor de�ned in the following manner: for every

D

t //
A

�n

we put 8

�

(t) = 8

�(t)

(q(t; �(id))). On the morphisms it is de�ned through the pullbak. It is

well de�ned, sine (id) is a monomorphism and on the morphism part 8

�

(�) sends a morphism

of P=A

�n

to a pullbak square by the orresponding Bek-Chevalley onditions.

The abstration of the forall type is interpreted in the following manner:

provided that the pseudo-judgement  2 C(y) [�

n

; y 2 B℄ is interpreted as

B

�



I

//
id

##G
GGG

C

�||

(id)

||yy
yy

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo
B

�

�(id)

oo

we interpret

�y

B

: 2 8

y2B

C(y) [�

n

℄

as

A

�n

(�y

B

:)

I

//
id

##H
HH

HH
8

y2B

C

�

yy

8

�

(id)

yyrrrrr

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

where (�y

B

:)

I

(id) �  (

I

(id)) and  is the bijetion

 : P=B

�

(id

B

�n

); (id))! P=A

�n

(id

A

�n

;8

�(id)

((id)))

sine P=B

�

(id

B

�n

); (id)) ' P=B

�

(�(id)

�

(id

A

�n

); (id)) ' P=A

�n

(id

A

�n

;8

�(id)

((id))), where

the latter isomorphism is obtained by the bijetion of the adjuntion �(id)

�

a 8

�

.

The appliation of the forall type is interpreted in the following manner:

provided that the pseudo-judgements b 2 B [�

n

℄ and f 2 8

y2B

C(y) [�

n

℄ are interpreted as

A

�n

b

I

//
id

##G
GG

GG
GG

B

�

�(id)||xxx
xx

x

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

A

�n

f

I

//
id

##G
GG

GG
GG

8

�

C

�

{{

8

�

(id){{vv
vv

vv
v

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

we interpret

Ap(f; b) 2 C(b) [�

n

℄
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as

A

�n

(Ap(f;b))

I

//
id

##G
GG

GG
GG

A

�n

�C

�

(b

I

)

yysssssss

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

where (Ap(f; b))

I

(id) � hid;

B

�

 

�1

(f

I

(id)) � b

I

(id)i is the morphism to the pullbak of (id) along

b

I

(id) and  

�1

is the inverse of  .

7. The Quotient type.

Suppose that the pseudo-judgement

R(x; y) type [x 2 A; y 2 A℄

is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
A

�

�A

�

�(id)��

1

oo
R

�

oo�(id)

oo

where �(id) is an equivalene relation in P=A

�n

and

A [�

n

℄

is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
A

�

�(id)

oo

with �

1

� �(�(id)) and �

2

� q(�(id); �(id)).

Sine �(id) is an equivalene relation in P=A

�n

, there exists the oequalizer  : A

�

! A

�

=R

�

of

�

1

� �(id) and �

2

� �(id) and we get Q(�(id)) suh that the following triangle diagram ommutes

R

�

�

2

��(id)

//

�

1

��(id)

//
A

�

 //

�(id)

!!D
DD

DD
DD

D
A

�

=R

�

Q(�(id))

zzvv
vvv

vv
vv

A

�n

Therefore, we interpret

A=R [�

n

℄

as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
A

�

=R

�

Q(�)(id)

oo

where Q(�) : P=A

�n

! P

!

is the funtor de�ned in the following manner: for every
D

t //
A

�n

we put Q(�)(t) � Q(�(t)), where Q(�(t)) is the unique morphism suh that �(t) = Q(�(t)) � (t)

and (t) is the quotient of the equivalene relation �(q(q(t; �(id)); �

1

). Q(�) is well de�ned beause

the quotient is stable under pullbaks. On the morphisms it is de�ned through the pullbak.

The signature of the introdution rule of the quotient type is interpreted in the following manner:

provided that the pseudo-judgement a 2 A [�

n

℄ is interpreted as

A

�n

a

I

//
id

$$H
HH

HH
A

�

�(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

we interpret

[a℄ 2 A=R [�

n

℄
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as

A

�n

�(a

I

(id))

//
id

##H
HH

HH
A

�

=R

�

Q(�)(id)

yysss
ss

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

Now, we interpret the signature introdued in the restrited elimination rule, E

s

-quotient.

Suppose that the pseudo-judgement m(x) 2M [�

n

; x 2 A℄ is interpreted as

A

�

m

I

//
id

""E
EE

E
A

�

�M

�

�(�(id))

yysssss

1

A

�1

!

A

�1

oo
A

�

�(id)

oo

and that m

I

(id) � (�

1

� �(id)) = m

I

(id) � (�

2

� �(id)). Therefore, as  is the oequalizer of �

1

� �(id)

and �

2

� �(id), there exists a morphism q in P=A

�n

suh that q �  = q(�(id); �(id)) � m

I

(id).

Sine by hypothesis �(id) � (q(�(id); �(id)) � m

I

(id)) = �(id), we also have that by uniqueness

�(id) � q = Q(�(id)).

We �nally de�ne the interpretation of Q

s

(m; z) 2M [�

n

; z 2 A=R℄ as

A

�

=R

�

hid;qi

//

id

&&MMMMM
A

�

=R

�

�M

�

�(Q(�)(id))

vvnnnnnn

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo
A

�

=R

�

Q(�(id))

oo

Now, we interpret the signature introdued in the axiom of E�etiveness.

Suppose that the pseudo-ontext �

n

is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo

We interpret

f(a; b) 2 R(a; b) [�

n

℄

as

A

�n

hid;ti

//
id

$$H
HH

HH
R

�

�(ha

I

;b

I

i)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

provided that  � a

I

(id) =  � b

I

(id), where t is de�ned as follows. Sine the quotient is e�etive

in P=A

�n

, then there exists a morphism t : A

�n

! R

�

suh that (�

1

� �(id)) � t = a

I

(id) and

(�

2

� �(id)) � t = b

I

(id).

8. The Natural Numbers type.

Suppose that the pseudo-ontext �

n

is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo

then we interpret

N [�

n

℄

as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
A

�n

�N

b

N (!

A

�n

)

oo
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where N is a natural numbers objet of P and we reall that

b

N : P=1! P

!

is the funtor de�ned

in the following manner: for every
D

!

D //
1

we put

b

N (!

D

) = (!

D

)

�

(!

N

) and on the morphisms it is

de�ned through the pullbak.

Moreover, under the same assumption about �

n

, the zero

0 2 N [�

n

℄

is interpreted as

A

�n

hid;o�!

A

�n

i

//

id

""F
FF

FFFF
F

A

�n

�N

b

N (!

A

�n

)zzuuuuuuuuu

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

where o : 1! N is the zero map in the H-pretopos P ;

and the suessor

s(x) 2 N [�

n

; x 2 N ℄

is interpreted as

A

�n

�N

id

''OOOOOO

hid;�s��

2

i

//
A

�n

�N�N

��

1

vvmmmmmmm

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo
A

�n

�N

b

N
(!

A

�n

)

oo

where s : N ! N is the suessor map in the H-pretopos P , �s � id

�

1

(s) onsidering s 2 P=1(!

N

; !

N

),

��

1

�

b

N (!

A

�n

�N

) and �

2

� q(!

A

�n

;

b

N (id)) and �nally hid; �s � �

2

i is the unique morphism to the

pullbak of !

A

�n

�N

and

b

N (!

1

),

Now, we interpret the signature introdued in the weaker elimination rule E

s

-Nat.

Provided that the pseudo-judgements a 2 L [�

n

℄ and l(y) 2 L [�

n

; y 2 L℄ are interpreted as

A

�n

a

I

//
id

$$H
HH

HH
L

�

�(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

L

�

l

I

//
id

##G
GGG

L

�

�L

�

�

L

1

yysssss

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo
L

�

�(id)

oo

where �

L

1

� �(�(id)), then we interpret

Re

s

(a; l; n) 2 L [�

n

; n 2 N ℄

as

A

�n

�N

hid;

A

�n

ri

//
id

''OOOOOO
(A

�n

�N )�L

�

�(�

1

)

vvlllllll

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo
A

�n

�N

b

N
(!

A

�n

)

oo

where r is the unique morphism that makes the following diagram ommute by the property of

natural numbers objet in P=A

�n

A

�n

hid;0�!

A

�n

i

//

a

I

$$H
HHHH

HH
HHH

H
A

�n

�N

h�

1

;�s��

2

i

//

r

��

A

�n

�N

r

��
L

�

�

L

2

�l

I

//
L

�

with �

1

�

b

N (!

A

�n

) and �

L

2

� q(�(id); �(id)).
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5.3.2 The validity of the type theory HP

In order to prove the validity theorem we need to know how the rules for weakening and substitution

are interpreted.

Weakening and substitution of variables in types and terms are expressed by pullbak:

Lemma 5.3.5 The weakening of a variable in type and term judgements is interpreted as follows:

given the pseudo-judgements

B(x

1

; :::; x

n

) [�

n

℄ and D(x

1

; :::; x

j

) [�

j

℄

where n � j, interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
B

�

�(id)

oo
1

A

�1

!

A

�1oo
A

�j

�

j

(id)

oo
D

�

Æ(id)

oo

then the pseudo-judgement

B(x

1

; :::; x

n

) [�

j

; y 2 D; x

j+1

2 A

j+1

; : : : ; x

n

2 A

n

℄

is interpreted as

1

A

�1

!

A

�1oo
A

�j

D

�

Æ(id)

oo
D

�

�A

�j+1

�

j+1

(t

j

)

oo
D

�

�A

�n

�

n

(t

n�1

)

oo
D

�

�B

�

�(t

n

)

oo

where t

j

� Æ(id) and if n � j + 1, t

i

� q(t

i�1

; �

i

(id)) for i = j + 1; : : : ; n

and given the pseudo-judgement

b 2 B(x

1

; :::; x

n

) [�

n

℄ and D(x

1

; :::; x

j

) [�

j

℄

where n � j, interpreted as

A

�n

b

I

(id)

//
id

$$H
HH

HH
B

�

�(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

1

A

�1

!

A

�1oo
A

�j

�

j

(id)

oo
D

�

Æ(id)

oo

then

b 2 B(x

1

; :::; x

n

) [�

j

; y 2 D; x

j+1

2 A

j+1

; : : : ; x

n

2 A

n

℄

is interpreted as

D

�

�A

�n

b

I

(t

n

)

//
id

''NNNNNNNN
D

�

�B

�

�(t

n

)xxpppppppp

1

A

�1

!

A

�1

oo
A

�j

D

�

�(id)

oo
D

�

�A

�n

�

n

(t

n�1

)

oo

Lemma 5.3.6 The substitution of variables in type and term judgements is interpreted as follows:

given the pseudo-judgements

B(x

1

; :::; x

n

) [�

n

℄ and a

j

2 A

j

[�

j�1

℄

where n � j, interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
B

�

�(id)

oo
A

�j�1

a

I

j

(id)

//
id

%%L
LLLL

A

�j

�

j

(id)

zzttt
tt

1

A

�1

!

A

�1

oo
A

�j�1

�

j�1

(id)

oo
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then the pseudo-judgement

B(x

1

; : : : ; x

j

; a

j

; x

0

j+1

; : : : ; x

0

n

)[�

j�1

; x

0

j+1

2 A

0

j+1

; : : : ; x

0

n

2 A

0

n

℄

where if n � j + 1, A

0

j+k

� A

j+k

[x

j

=a

j

℄[x

i

=x

0

i

℄

i=j+1;:::;j+k�1

for k = 1; : : : n� j,

is interpreted as

1

A

�1

!

A

�1oo
A

�j�1

A

0

�j+1

�

j+1

(q

j

)

oo
A

0

�n

�

n

(q

n�1

)

oo
B

0

�

�(q

n

)

oo

where q

j

� a

I

j

(id) and if n � j + 1, q

i

� q(q

i�1

; �

i

(id)) for i = j + 1; : : : ; n

and given a pseudo-term judgement

b 2 B(x

1

; :::; x

n

) [�

n

℄ and a

j

2 A

j

[�

j�1

℄

where n � j, interpreted as

A

�n

b

I

(id)

//
id

$$H
HH

HH
B

�

�(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

A

�j�1

a

I

j

(id)

//
id

%%L
LLLL

A

�j

�

j

(id)

zzttt
tt

1

A

�1

!

A

�1

oo
A

�j�1

�

j�1

(id)

oo

then the pseudo-judgement

b[x

j

=a

j

℄[x

i

=x

0

i

℄

i=j;:::;n

2 B(x

1

; : : : ; x

j

; a

j

; x

0

j+1

; : : : ; x

0

n

) [�

j�1

; x

0

j+1

2 A

0

j+1

; : : : ; x

0

n

2 A

0

n

℄

is interpreted as

A

0

�n

b

I

(q

n

)

//
id

##F
FF

FF
B

0

�

�(q

n

)

||zz
zz

1

A

�1

!

A

�1

oo
A

�j�1

A

0

�j+1

�

j+1

(q

j

)

oo
A

0

�n

�

n

(q

n�1

)

oo

The proofs an be done by indution on the signature of the judgements. For the assumption of variable,

the lemma of weakening holds by de�nition and the lemma of substitution holds beause terms are

interpreted as setions. In the ase of onstant type, like > or N , we use the indutive hypothesis,

sine the preinterpretation of a ontext is redued to that of a type pseudo-judgement. The de�nition

of partial preinterpretation of type and term judgements assures that all these lemmas for weakening

and substitution hold for the other type and term onstrutors.

Now, we are ready to prove the validity theorem:

Theorem 5.3.7 (Validity) Given a H-pretopos P, if A type [�

n

℄ is derivable in HP then I

P

(A type [�

n

℄)

is well de�ned. If a 2 A [�

n

℄ is derivable then I

P

(a 2 A [�

n

℄) is well de�ned.

Suppose that A type [�

n

℄ and B type [�

n

℄ are derivable in HP , if A = B [�

n

℄ is derivable in HP then

I

P

(A type [�

n

℄) = I

P

(B type [�

n

℄).

Suppose that a 2 A [�

n

℄ and b 2 A [�

n

℄ are derivable in HP , if a = b 2 A [�

n

℄ is derivable in HP , then

I

P

(a 2 A [�

n

℄) = I

P

(b 2 A [�

n

℄).

Proof. The proof an be done by indution on the derivation of the judgement.

Remark 5.3.8 A judgement is valid, if its interpretation is well-de�ned and hene, in partiular an

equality judgement for types or terms is valid, if the interpretations of the orresponding type or term

judgements are equal. We say that an inferene rule holds or is valid, if it preserves the validity of

judgements.

Surely, the set rule onv) preserves validity of the judgements. Hene, we proeed by proving the

validity of the formation, introdution and elimination and onversion rules for the various types with

their terms. The lemma of weakening and substitution are ruial for the dependent types, whose rules

refer to substitution or weakening suh as, for example, the forall type.
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1. The formation, introdution and elimination and onversion rules for the Terminal type hold

beause for every objet D in P ,

b

1(!

D

) is a terminal objet in P=D.

2. The formation and elimination rules of the False type are valid.

3. The formation, introdution and elimination rules of the Indexed Sum type are valid. Moreover,

the � and � onversion rules for the indexed sum type hold by the properties of pullbak. Indeed,

the �

1

-C onversion rule for the indexed sum type

b 2 B  2 C(b)

�

1

(hb; i) = b 2 B

holds beause (id) � (q(b

I

(id); (id)) � 

I

(id)) = b

I

(id) � (b

I

(id)) � 

I

(id), from whih as 

I

(id) is a

setion of (b

I

(id)) we get (id) � (q(b

I

(id); (id)) � 

I

(id) = b

I

(id).

The �

2

-C onversion rule for the indexed sum type

b 2 B  2 C(b)

�

2

(hb; i) =  2 C(b)

holds beause hid; q(b

I

(id); (id)) � 

I

(id)i = 

I

(id), sine 

I

(id) is a setion of (b

I

(id)). Finally,

the �-C onversion rule for the indexed sum type

d 2 �

x2B

C(x)

h�

1

(d); �

2

(d)i = d 2 �

x2B

C(x)

holds sine q((id) � d

I

(id); (id)) � hid; d

I

(id)i = d

I

(id).

4. The formation, introdution rules of the Equality type hold.

The E-equality elimination rule

p 2 Eq(C; ; d)

 = d 2 C

holds beause for every t : D ! A

n

, p

I

(t) is a setion of Eq(

I

; d

I

)(t), whih is the equalizer of



I

(t) and d

I

(t), so we onlude that 

I

(t) = d

I

(t): Moreover, the C-equality onversion rule

p 2 Eq(C; ; d)

p = eq

C

2 Eq(C; ; d)

holds, beause the equalizer is a monomorphism.

5. The formation, introdution and elimination rules of the Disjoint Sum type hold.

The C

1

onversion rule for the disjoint sum type

a

C

(x) 2 A(inl(x)) [x 2 C℄ a

D

(y) 2 A(inr(y)) [y 2 D℄

D(inl(x); a

C

; a

D

) = a

I

C

(x) 2 A(inl(x)) [x 2 C℄

holds sine D(inl(x); a

C

; a

D

)

I

(id) = hid ;

C

�

�D

�

(q(�

1

; �(id)) � a

I

C

(id) � q(�

2

; �(id)) � a

I

D

(id))) � �

1

i

and by uniqueness of the morphism to a pullbak D(inl(x); a

C

; a

D

)

I

(id) = a

I

C

(id).

The C

2

onversion rule for the disjoint sum type holds for an analogous reason.

The axiom of Disjointness is valid, sine by hypothesis �

1

(

I

(id)) = �

2

(d

I

(id)).

6. The formation rule of the Forall type hold. Indeed, given C(y) [�

n

; y 2 B℄ interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
B

�

�(id)

oo
C

�

oo(id)

oo

from the validity of the judgement expressing that C(y) is a mono type, (id) is a monomorphism

as follows. In fat, the interpretations of z 2 C [�

n

; y 2 B; z 2 C;w 2 C℄ and w 2 C [�

n

; y 2
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B; z 2 C;w 2 C℄ are isomorphi with the same isomorphism respetively to the �rst projetion

and to the seond projetion of the produt (id) � (id). Therefore, by the interpretation of

z = w 2 C [�

n

; y 2 B; z 2 C;w 2 C℄, we get that the two projetions of (id), that are ((id))

and q((id); (id)), are equal and we onlude that (id) is a monomorphism.

The introdution and elimination rules of the Forall type hold by the lemma of substitution.

The �-C onversion rule

b 2 B [�

n

℄  2 C [�

n

; y 2 B℄ y = z 2 C [�

n

; x 2 B; y 2 C; z 2 C℄

Ap(�x

B

:; b) = (b) 2 C [�

n

℄

holds sine hid;

B

�n

 

�1

( (

I

(id))) � b

I

(id)i = 

I

(b

I

(id)).

The �-C onversion rule

f 2 8

x2B

C(x)

�x

A

:Ap(f; x) = f 2 8

x2B

C(x)

holds beause

(�x

A

:Ap(f; x))

I

(id) =  (hid;

B

�

�B

�

 

�1

(hid;

A

�n

f

I

(id) � �(id)i) � 4

B

�

i)

=  (hid;

B

�

�B

�

hid;

B

�

 

�1

(f

I

(id)) � q(�(id); �(id))i � 4

B

�

)i) =  ( 

�1

(f

I

(id))) = f

I

(id),

sine  

�1

(hid;

A

�n

f

I

(id) � �(id)i) = hid;

B

�

 

�1

(f

I

(id)) � q(�(id); �(id))) by Bek-Chevalley ondi-

tions for the bijetions of the adjuntion and the lemma of weakening.

7. The formation rule of the Quotient type holds.

Indeed, given the following judgements (we omit �

n

in the ontext)

R(x; y) type [x 2 A; y 2 A℄; z = w 2 R(x; y) [x 2 A; y 2 A; z 2 R(x; y); w 2 R(x; y)℄;



1

2 R(x; x)[x 2 A℄; 

2

2 R(y; x)[x 2 A; y 2 A; z 2 R(x; y)℄;



3

2 R(x; z)[x 2 A; y 2 A; z 2 A;w 2 R(x; y); w

0

2 R(y; z)℄

suppose that R(x; y) type [�

n

; x 2 A; y 2 A℄ is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
A

�

�A

�

�(id)��

1

oo
R

�

oo�(id)

oo

with �

1

� �(�(id)) and �

2

� q(�(id); �(id)).

From the ase of the forall type, we already know that a mono type is interpreted as a monomor-

phism and here we an prove that �(id) turns out to be an equivalene relation in P=A

�n

.

Indeed, for reexivity, sine 

1

2 R(x; x)[x 2 A℄, there exists a setion 

I

1

of �(4

A

�

) and q(4

A

�

; �(id))�



I

1

is the required morphism that fatorizes 4

A

�

through �(id) in P=A

�n

.

For symmetry, from 

2

2 R(y; x)[x 2 A; y 2 A; z 2 R(x; y)℄ we get a setion 

I

2

of �(s ��(id)), where

s is the exhange morphism h�

2

; �

1

i in P=A

�n

. Therefore, s � �(id) = �(id) � (q(s � �(id); �(id)) � 

I

2

),

satis�es the ategorial ondition for symmetry.

For transitivity, from 

3

2 R(x; z)[x 2 A; y 2 A; z 2 A;w 2 R(x; y); w

0

2 R(y; z)℄ we get a setion



I

3

of �(h ��

1

; ��

3

i � �(1)� �(2)), where we all ��

1

� �

1

��(�(id) � �

2

), ��

2

� �

2

��(�(id) � �

2

) and ��

3

�

�

2

� q(�

2

; �

1

) and we also abbreviate �(1) � �(h ��

1

; ��

2

i), �(2) � �(h ��

2

; ��

3

i) and �(3) � �(h ��

1

; ��

3

i),

and �nally �(1)� �(2) � �(1) � �(h ��

2

; ��

3

i � �(1)). Let us onsider the following pullbak

P

p

2 //

p

1

��

R

�

2

��(id)

��
R

�

1

��(id)

//
A

where p

1

� q(h ��

2

; ��

3

i � �(1); �(id)) and p

2

� q(h ��

1

; ��

2

i; �(id)) � �(h ��

2

; ��

3

i � �(1)).

Therefore, we onlude that
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(�

1

� �(id)) � p

2

=

= �

1

� h ��

1

; ��

2

i � �(1)� �(2)

= �

1

� h ��

1

; ��

3

i � �(1)� �(2)

= (�

1

� �(id)) � q(h ��

1

; ��

3

i � �(1)� �(2); �(id)) � 

3

and analogously

(�

2

� �(id)) � p

1

=

= �

2

� h ��

2

; ��

3

i � �(1)� �(2)

= �

2

� h ��

1

; ��

3

i � �(1)� �(2)

= (�

2

� �(id)) � q(h ��

1

; ��

3

i � �(1)� �(2); �(id)) � 

3

hene, h�

1

� �(id) � p

2

; �

2

� �(id) � p

1

i fatorizes through �(id), that is the ategorial ondition for

transitivity holds.

The equality rule for the quotient type holds. Indeed, suppose that a 2 A [�

n

℄ and b 2 A [�

n

℄ are

interpreted as

A

�n

a

I

//
id

$$H
HH

HH
A

�

�(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

A

�n

b

I

//
id

$$H
HH

HH
A

�

�(id)

{{wwww

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

and d 2 R(a; b) [�

n

℄ is interpreted as

A

�n

d

I

//
id

$$H
HH

HH
R

�(ha

I

;b

I

i)

||yy
yy

y

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

Then we get that (�

1

��(id))�(q(ha

I

; b

I

i; �(id))�d

I

) = a

I

(id) and (�

2

��(id))�(q(ha

I

; b

I

i; �(id))�d

I

) =

b

I

(id). We onlude that  � a

I

(id) =  � b

I

(id), that gives the validity of

[a℄ = [b℄ 2 A=R [�

n

℄

The elimination rule for the quotient type holds, sine given m(x) 2M [�

n

; x 2 A℄ interpreted as

A

�

m

I

//
id

""E
EE

E
A

�

�M

�

�(�(id))

yysssss

1

A

�1

!

A

�1

oo
A

�

�(id)

oo

and given m(x) = m(y) 2 M [�

n

; x 2 A; y 2 A; d 2 R(x; y)℄ interpreted as the equality between

morphisms, we get that

hid;m

I

(id) � (�

1

� �(id))i = hid;m

I

(id) � (�

2

� �(id))i

(we reall that �

1

� �(�(id)) and �

2

� q(�(id); �(id))). From this, we obtain m

I

(id) �(�

1

��(id)) =

m

I

(id) � (�

2

� �(id)).

The �

s

C-quotient onversion rule

a 2 A m(x) 2M [x 2 A℄ m(x) = m(y) 2M [x 2 A; y 2 A; d 2 R(x; y)℄

Q

s

(m; [a℄) = m(a) 2M

holds sine

(Q

s

(m; [a℄))

I

(id) = hid ;

A

�

=R

�

hid ;

A

�n

qi �  � (a

I

(id))i = hid ;

A

�n

q � ( � a

I

(id))i =

= hid;

A

�n

(q(�(id); �(id)) �m

I

(id)) � a

I

(id)i = hid ;

A

�

m

I

(id) � a

I

(id)i = m(a)

I

(id).
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The �

s

C-quotient onversion rule

t(z) 2M [z 2 A=R℄

Q

s

((x)t([x℄); z) = t(z) 2M [z 2 A=R℄

holds sine

Q

s

((x)t([x℄); z)

I

(id) = hid ;

A

�n

qi, where q �  = q(Q(�)(id); �(id)) � (t

I

(id) � ). So by uniqueness of

the morphism from a oequalizer we get q = q(Q(�)(id); �(id)) �t

I

(id) and then hid;

A

�n

qi = t

I

(id):

The axiom of E�etiveness holds

a 2 A b 2 A [a℄ = [b℄ 2 A=R

f(a; b) 2 R(a; b)

sine, by validity of the hypothesis,  � a

I

(id) =  � b

I

(id).

8. The formation, introdution and elimination rule for the Natural Numbers type hold, sine

b

N (!

D

)

is a natural numbers objet of P=D.

The onversion rules for the natural numbers type follow from the properties of the natural numbers

objet. The �

s

C

1

-Nat onversion rule for the natural numbers type

a 2 L l(y) 2 L [y 2 L℄

Re

s

(a; l; 0) = a 2 L

holds sine

Re

s

(a; l; 0)

I

(id) = hid ;

A

�n

r � (hid; o�!

A

�n

i)i = a

I

(id) by de�nition of the natural numbers objet

A

�n

�N in P=A

�n

.

The �

s

C

2

-Nat onversion rule for the natural numbers type

a 2 L l(y) 2 L [y 2 L℄

Re

s

(a; l; s(n)) = l(Re

s

(a; l; n)) 2 L [n 2 N ℄

holds sine

Re

s

(a; l; s(n))

I

(id) = hid ;

A

�n

�N

(hid;

A

�n

ri � q(

b

N (!

A

�n

); !

A

�n

)) � hid ; �s � �

2

ii =

= hid ;

A

�n

r � h�

1

; �s � �

2

ii = hid ;

A

�n

(�

L

2

� l

I

(id)) � ri =

= hid ;

A

�n

(�

L

2

� l

I

(id)) � (q(�

1

; �(id)) � hid;

A

�n

ri) = l(Re

s

(a; l; n))

I

(id)

where we reall that �

1

�

b

N (!

A

�n

) and �

2

� q(!

A

�n

;

b

N (id)).

The �

s

C-Nat onversion rule for the natural numbers type also holds by uniqueness of the morphism

that makes the diagram of the natural numbers objet ommute w.r.t. l

I

.

The interpretation of the type theory T

t

Now, given a topos S, we proeed to de�ne the partial preinterpretation

f

I

S

from the pseudo-judgements

of T

t

into Pgf(S), and hene a partial interpretation into Pgr(S), by indution on the omplexity

of pseudo-judgements. In the indutive hypothesis, we will refer to the interpretation of a pseudo-

judgement, assuming that also the preinterpretation is given.

We assume all the de�nitions, already given in the introdution of this setion about the ategorial

semantis in a universe, replaing P with the topos S.

The interpretation of the assumption of variable and the pseudo-judgements with the signature intro-

dued in the formation, introdution, elimination and onversion rules for the Terminal type, the Indexed

Sum type, the Equality type are the same as for the type theory HP of H-pretoposes. It remains to in-

terpret the signature introdued in the formation, introdution, elimination and onversion rules for the

Produt type and the Omega type.
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1. The Produt type.

Provided that the pseudo-judgement C(y) [�

n

; y 2 B℄ is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
B

�

�(id)

oo
C

�

(id)

oo

we interpret

�

y2B

C(y) [�

n

℄

as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
�

�

(C

�

)

�

�

(id)

oo

where �

�

 : S=A

�n

! S

!

is the funtor de�ned in the following manner: for every

D

t //
A

�n

we put �

�

(t) = �

�(t)

(q(t; �(id))). On the morphisms it is de�ned through the pullbak. It is

well de�ned, sine the orresponding Bek-Chevalley onditions hold.

The abstration of the produt type is interpreted as follows:

provided that the pseudo-judgement  2 C(y) [�

n

; y 2 B℄ is interpreted as

B

�



I

//
id

##G
GGG

C

�

(id)

||yy
yy

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo
B

�

�(id)

oo

we interpret

�y

B

: 2 �

y2B

C(y) [�

n

℄

as

A

�n

(�y

B

:)

I

//
id

##H
HH

HH
�

y2B

C

�

�

�

(id)

xxrrrrr

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

where (�y

B

:)

I

(id) �  (

I

(id)) and and  is the bijetion

 : S=B

�

(id

B

�n

); (id))! S=A

�n

(id

A

�n

;�

�(id)

((id)))

sine S=B

�

(id

B

�n

); (id)) ' S=B

�

(�(id)

�

(id

A

�n

); (id)) ' S=A

�n

(id

A

�n

;�

�(id)

((id))), where

the latter isomorphism is obtained by the bijetion of the adjuntion �(id)

�

a �

�

.

The appliation of the produt type is interpreted in the following manner:

provided that the pseudo-judgements b 2 B [�

n

℄ and f 2 �

y2B

C(y) [�

n

℄ are interpreted as

A

�n

b

I

//
id

##G
GG

GG
GG

B

�

�(id)||xx
xx

xx

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

A

�n

f

I

//
id

##G
GG

GG
GG

�

�

C

�

�

�

(id)zzvv
vv

vv
v

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

we interpret

Ap(f; b) 2 C(b) [�

n

℄

as

A

�n

(Ap(f;b))

I

//
id

##G
GG

GG
GG

A

�n

�C

�

(b

I

)

yysssssss

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

where (Ap(f; b))

I

(id) � hid;

B

�

 

�1

(f

I

(id)) � b

I

(id)i is the morphism to the pullbak of (id) along

b

I

(id) and  

�1

is the inverse of  .
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2. The Omega type.

Provided that the pseudo-ontext �

n

is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo

we interpret


 type [�

n

℄

as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
A

�n

�P(1)




I

(!

A

�n

)

oo

where, for every D 2 ObP , we put 


I

(!

D

) �!

�

D

(!

P(1)

) and P(1) is the subobjet lassi�er.

Morever, in the introdution rule for the Omega type, provided that the pseudo-judgementB type [�

n

℄

is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
B

�

oo�(id)

oo

where �(id) is a monomorphism, we interpret

fBg 2 
 [�

n

℄

as

A

�n

fBg

I

//
id

##H
HH

HH
A

�n

�P(1)




I

(!

A

�n

)

xxppp
pp

p

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

where fBg

I

(id) � h(�(id)), that is the harateristi morphism of the monomorphism �(id) with

respet to A

�n

�P(1).

Now, we interpret the signature introdued in the �-onversion rule for the Omega type.

Provided that the pseudo-judgement B type [�

n

℄ is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
B

�

oo�(id)

oo

and �(id) is a monomorphism then, we interpret

r

B

(z) 22 B[�

n

; w 2 Eq(
; fBg; f>g)[�

n

℄

as

E

�

r

B

(z)

I

//
id

##G
GGG

E

�

�B

zz

�(e)

zztttt

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo
E

�

oo
e

oo

where e � Eq(fBg

I

; f>g

I

)(id) and r

B

(z)

I

(id) � hid; �

B

�

i, and �

B

�

is the isomorphism in C=A

�n

from the equalizer of fBg

I

(id) and True�!

B

�

to the monomorphism �(id).

5.3.3 The validity of the type theory T

t

In order to prove the validity theorem, we need to know how the rules of weakening and substitution are

interpreted. The lemmas about the interpretation of the rules of weakening and substitution and their

proofs are the same as for the type theory HP (see setion 5.3.2).
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Theorem 5.3.9 (Validity) Given a topos S, if A type [�

n

℄ is derivable in T

t

then I

S

(A type [�

n

℄) is

well de�ned. If a 2 A [�

n

℄ is derivable in T

t

, then I

S

(a 2 A [�

n

℄) is well de�ned.

Suppose that A type [�

n

℄ and B type [�

n

℄ are derivable in T

t

, if A = B [�

n

℄ is derivable in T

t

then

I

S

(A type [�

n

℄) = I

S

(B type [�

n

℄).

Suppose that a 2 A [�

n

℄ and b 2 A [�

n

℄ are derivable in T

t

, if a = b 2 A [�

n

℄ is derivable in T

t

then

I

S

(a 2 A [�

n

℄) = I

S

(b 2 A [�

n

℄).

Proof. The proof an be done by indution on the derivation of the judgement.

We adopt the same de�nition of validity of an inferene rule, as in the proof of the validity theorem for

the type theory HP . Surely, the set rule preserves validity of the judgements. For the validity of the

formation, introdution, elimination and onversion rules for the Terminal type, the Indexed Sum type,

the Equality type and also the Produt type we refer to the same proof of the type theory HP in setion

5.3.2. It remains to prove the validity of formation, introdution, elimination and onversion rules for

the Omega type. The formation rule for the Omega type is valid, sine the subobjet lassi�er is stable

under pullbaks (see the appendix A).

The introdution rule for the Omega type is valid, beause, provided that the pseudo-judgementB type [�

n

℄

is interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
B

�

oo�(id)

oo

then �(id) turns out to be a monomorphism by the validity of the judgement in the hypothesis of the

introdution rule

y = z 2 B [�

n

; y 2 B; z 2 B℄

as we have already seen in the ase of the interpretation of the forall type in the type theory HP in

setion 5.3.2. Therefore

fBg 2 
 [�

n

℄

turns out to be well interpreted as

A

�n

fBg

I

//
id

##H
HH

HH
A

�n

�P(1)




I

(!

A

�n

)

xxppp
pp

p

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo

where fBg

I

(id) � h(�(id)), that is the harateristi morphism of the monomorphism �(id) with

respet to A

�n

�P(1).

We an show that the equality rule on 
 is valid. Indeed, given

B type y = z 2 B [�

n

; y 2 B; z 2 B℄

C type y = z 2 C [�

n

; y 2 C; z 2 C℄

interpreted as

1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
B

�

oo�(id)

oo
1

A

�1

!

A

�1oo
A

�n

�

n

(id)

oo
C

�

oo(id)

oo

and given f 2 B $ C [�

n

℄, by validity of the rules for the produt type, �(id) and (id) turn out to

be isomorphi, sine they are monomorphisms. Hene, by the property of subobjet lassi�er, we get

fBg

I

(id) = fCg

I

(id).

Moreover, for the same reason as the introdution rule, the �-onversion rule for the Omega type is

valid.

Finally, we show that the �C onversion rule holds. Given q 2 
 [�

n

℄ interpreted as

A

�n

q

I

//
id

##H
HH

HH
A

�n

�P(1)




I

(!

A

�n

)

xxppp
pp

p

1

A

�1

!

A

�1

oo
A

�n

�

n

(id)

oo
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we get that

fEq(
; q; f>g)g = q 2 


is satis�ed. Indeed, fEq(
; q;>)g

I

(id) is the harateristi map of the equalizer between q

I

(id) and the

True map pulled bak by a suitable ! morphism. This equalizer is isomorphi to the pullbak of the

True map along q(!

A

�n

;


I

(id)) � q

I

(id), so that we get fEq(
; q; f>g)g

I

(id) = q

I

(id).

5.4 Appendix A: about the subobjet lassi�er

We show that the subobjet lassi�er is stable under pullbaks. Consider the pullbak of !

D

and !

P(1)

,

then the pullbak of the true map along

D�P(1)

�

2 //
P(1)

in the following diagram

B

��
t

��

//
D

��

��

//
1

��
true

��
A

hm;si

//

m

##G
GG

GG
GG

GG
D�P(1)

�

1

��

�

2 //
P(1)

��
D

//
1

Note that in S=D for every monomorphism
B

m�t   A
AA

AA
A
// t //

A

m

��
D

, there exists in S its harateristi morphism

A

s //
P(1)

and hm; si turns out to be its harateristi morphism in S=D by properties of omposition

of pullbaks.

5.5 Appendix B: our semantis as ategory with attributes

As we have seen in this hapter, our notion of model for the type theories HP and T

t

onsists of a

ategorial universe, namely respetively a H-pretopos and a topos, with a �xed hoie of its stru-

ture, where the interpretation is given by the reindexing funtor of the split �bration equivalent to the

odomain �bration. The fat that these interpretations provide models for the theories is assured by

the theorems of validity of HP and T

t

with respet to their orresponding ategorial universes. We

desribe the notion of model for the type theory of Heyting pretoposes and that for the type theory of

toposes, in terms of ontextual ategory with attributes.

5.5.1 The ontextual ategory with attributes for HP

The ontextual ategory with attributes for the type theory HP is a ontextual ategory C as in [Pit95℄

with attributes to interpret the various type onstrutors.

Def. 5.5.1 A ontextual ategory C is a ategory possessing a terminal objet, 1, and equipped with the

following struture:

� for eah objet X in C, a olletion of Type

C

(X), whose elements will be alled X-indexed types

in C;

� for eah objet X in C, operations assuming to eah X-indexed type A an objet X / A, alled

the total objet of A, together with a morphism

�

A

: X / A! X

alled the projet morphism of A;
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� for eah morphism f : Y ! X in C, an operation assigning to eah X-indexed type A, a Y -indexed

type f

�

A, alled the pullbak of A along X , together with a morphism f / A : Y / f

�

A! X / A,

making the following diagram a pullbak in C

Y/f

�

A

f/A

//

�

f

�

A

��

X/A

�

A

��
Y

f

//
X

and suh that the following stritness onditions hold:

id

X

�

A = A id

X

/ A = id

X/A

g

�

(f

�

A) = (f � g)

�

A (f / A) � (g / f

�

A) = (f � g) / A

for every f : Y ! X and g : Z ! Y morphism in C.

For eah objet X , the global setions of an X-indexed type A are the morphisms in C

a : X ! X / A suh that �

A

� a = id

X

and for eah morphism f : Y ! X , using the universal property of pullbak, we get the unique morphism

f

�

a : Y ! Y / f

�

A

suh that �

f

�

A

� f

�

a = id

Y

and (f / A) � f

�

a = a � f .

Remark 5.5.2 We an endow the olletion Type

C

(X) with the ategory struture, by de�ning a

morphism of Type

C

(X) from the indexed type A to B as a morphism in C=X from �

A

to �

B

.

Def. 5.5.3 For eah morphism f : Y ! X in C we de�ne the pullbak funtor along f

f

�

: Type

C

(X)! Type

C

(Y )

suh that

f

�

(
A

g

//
B
) =

f

�

A

h�

f

�

A

;g�(f/A)i

//
f

�

B

Remark 5.5.4 The attributes, that we are going to de�ne for the various onstrutors of HP and T

t

are not neessarily the minimal attributes to model eah type onstrutor with its terms, onsidered

separately from the others.

Def. 5.5.5 A ategory with attributes supports the false type, if for eah objet X in C there is an

indexed type

O

X

2 Type

C

(X)

satisfying:

� Universal Property. For every C 2 Type

C

(X / O

X

), there is a unique global setion

~r

o

C

: id

X/O

X

! �

C

� Stritness Property. For eah morphism f : Y ! X in C

f

�

O

X

= O

Y

Note that in the universal property we ould have simply required a global setion ~r

o

C

, stable under

pullbak, sine in the presene of extensional propositional equality type uniqueness follows.
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Def. 5.5.6 A ategory with attributes supports disjoint sum types, if for eah objet X in C and for

every A 2 Type

C

(X), B 2 Type

C

(X), there is an indexed type

A�B 2 Type

C

(X)

and there are two morphisms in Type

C

(X)

�

A

: A! A�B

�

B

: B ! A�B

satisfying:

� Universal Property. For every C 2 Type

C

(X / A+B), for every global setions a : id

X/A

! �

�

�

A

C

and b : id

X/B

! �

�

�

B

C

, there is a unique global setion a� b : id

A�B

! �

C

suh that

�

�

A

(a� b) = a �

�

B

(a� b) = b

� Stritness Property. For eah morphism f : Y ! X in C

f

�

(A�B) = f

�

A� f

�

B

f

�

(�

A

) = �

f

�

A

� Disjointness. For every global setions a : id

X

! �

A

and b : id

X

! �

B

suh that �

A

� a = �

B

� b,

there exists a unique global setion m : id

X

! �

0

, where 0

X

2 Type

C

(X) is the indexed type

orresponding to the attribute supporting the false type.

Note that in the universal property we ould have simply required a global setion a � b, stable under

pullbak.

Remark 5.5.7 In the presene of indexed sum type in HP , we ould only de�ne the attribute to

interpret a restrited elimination rule for the disjoint sum type, where the type in onsideration does

not depend on the disjoint sum, by adding the suitable onversion rules, among whih that stating the

uniqueness of the term introdued in the restrited elimination rule, as in the ase of the quotient type

and of the natural numbers type (see setion 5.3.1).

Def. 5.5.8 A ategory with attributes supports extensional equality types, if for eah objet X in C,

A 2 Type

C

(X) and for every global setions a : id

X

! �

A

and b : id

X

! �

A

in C=X , there is an indexed

type

f

Eq(A; a; b) 2 Type

C

(X)

suh that the following onditions are satis�ed:

� its projetion

X/

f

Eq(A;a;b)

//
�

g

Eq

//
X

is the equalizer of a and b in C=X .

� Stritness Property. For eah morphism f : Y ! X in C

f

�

(

f

Eq(A; a; b)) =

f

Eq(f

�

A; f

�

(a); f

�

(b))

Therefore, for every global setions a : id

X

! �

A

, we de�ne eeq

A

(a) as the isomorphism suh that

�

f

Eq(A;a;a)

� eeq

A

(a) = id

X

:

Note that we ould have also de�ned this attribute, by simply saying that there is a type

f

Eq(A; a; b),

stable under pullbak, suh that, whenever there is a global setion towards it, then a = b and that there

is a global setion eeq

A

(a) : id

X

! �

f

Eq(A;a;a)

, stable under pullbak suh that, for every global setion

p : id

X

! �

f

Eq
(A;a;b)

, we get p = eeq

A

(a).
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Def. 5.5.9 A ategory with attributes supports forall types, if for eah objet X in C, A 2 Type

C

(X)

and B 2 Type

C

(X / A) suh that its projetion

X/A/B

//�B //
X/A

is a mono in C, there is an indexed type

8(A;B) 2 Type

C

(X)

whose projetion

X/8(A;B)

//
�

8(A;B)

//
X

is a mono in C, and there is a morphism in Type

C

(X / A)

ap

A;B

: �

A

�

8(A;B)! B

satisfying:

� Adjointness Property. �

8(A;B)

: X / 8(A;B)! X is the value of the right adjoint to the pullbak

funtor at �

B

with ounit ap

A;B

. In other words, for eah morphism f : Y ! X in C, and

g : �

�

A

(f)! �

B

in C=X / A, there is a unique morphism in C=X

 (g) : f ! �

8(A;B)

satisfying ap

A;B

� �

�

A

( (g)) = g;

� Stritness Property. For eah morphism f : Y ! X in C

f

�

8(A;B) = 8(f

�

A; (f / A)

�

B)

(f / A)

�

(ap

A;B

) = ap

f

�

A;(f/A)

�

B

Remark 5.5.10 In the adjointness property, we ould restrit the requirement of having  (g), when g

is a global setion of B.

Def. 5.5.11 A ategory with attributes supports e�etive quotient types, with an elimination rule for

types not depending on the quotient type, if for eah objet X in C, A 2 Type

C

(X) and R 2 Type

C

(X /

A / �

�

A

A) suh that its projetion

X/A/�

�

A

A/R

//�R //
X/A/�

�

A

A

is a mono and h�

�

�

A

A

� �

R

; (�

A

/ A) � �

R

i is an equivalene relation in C=X , there is an indexed type

A=R 2 Type

C

(X)

and there is a morphism in Type

C

(X)

f

[�℄

A=R

: �

A

! �

A=R

satisfying:

� Universal Property. For eah C 2 Type

C

(X) and eah morphism

�

A

d //
�

C

suh that d � �

�

�

A

A

�

�

R

= d � (�

A

/ A) � �

R

, there exists a unique morphism

Q(d) : �

A=R

! �

C

suh that Q(d) �

f

[�℄

A=R

= d.
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� Stritness Property. For eah morphism f : Y ! X in C

f

�

A=R = f

�

A=((f / A) / �

�

A

A)

�

R

f

�

(

f

[�℄

A=R

) =

f

[�℄

f

�

A=((f/A)/�

�

A

A)

�

R

� E�etiveness. For every global setions a : id

X

! �

A

and b : id

X

! �

A

in C=X suh that

f

[�℄

A=R

� a =

f

[�℄

A=R

� b

there exists a unique morphism

^

f(a; b) : id

X

! �

ha;bi

�

R

suh that (�

R

� ha; bi / R) �

^

f(a; b) = ha; bi,

where ha; bi is the morphism indued by a and b towards the pullbak of �

A

along �

A

.

As for the ategory with attributes supporting the terminal type, indexed sum types, the natural numbers

type we refer to [Hof95℄.

5.5.2 The ontextual ategory with attributes for T

t

We desribe the notion of model for the type theory of elementary toposes, in terms of ontextual

ategory with attributes. We refer to the de�nition of ontextual ategory of the setion 5.5.1.

Def. 5.5.12 A ategory with attributes supports produt types, if for eah objet X in C, A 2 Type

C

(X)

and B 2 Type

C

(X / A), there is an indexed type

�(A;B) 2 Type

C

(X)

and a morphism in Type

C

(X / A)

ap

A;B

: �

�

A

�(A;B)! B

satisfying:

� Adjointness Property. �

�(A;B)

: X / �(A;B) ! X is the value of the right adjoint to the pullbak

funtor at �

B

: X / A / B ! X / A with ounit ap

A;B

. In other words, for eah morphism

f : Y ! X in C, and g : �

�

A

(f)! �

B

in C=X / A, there is a unique morphism in C=X

ur(g) : f ! �

�(A;B)

satisfying ap

A;B

� �

�

A

(ur(g)) = g;

� Stritness Property. For eah morphism f : Y ! X in C

f

�

�(A;B) = �(f

�

A; (f / A)

�

B)

(f / A)

�

(ap

A;B

) = ap

f

�

A;(f/A)

�

B

Remark 5.5.13 In the adjointness property, we ould restrit the requirement of having ur(g), when

g is a global setion of B (see [Hof95℄).

Def. 5.5.14 A ategory with attributes supports the Omega type, if for eah objet X in C, there is a

type P(1)

X

2 Type

C

(X) and a global setion

true

X

: id

X

! �

P(1)

X

suh that for eah A 2 Type

C

(X), whose projetion

X/A

//�A //
X

is a mono in C, there is a unique global setion

h(A) : id

X

! �

P(1)

X

in C=X satisfying the following onditions:
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� Universal Property. The following diagram is a pullbak in C=X

X/A

//

�

A

��

X

true

X

��
X

h(A)

//
X/P(1)

X

� Stritness Property. For eah morphism f : Y ! X

f

�

(P(1)

X

) = P(1)

Y

f

�

(h(A)) = h(f

�

A)

where f

�

(h(A)) is de�ned as the unique morphism in C=Y towards the pullbak of �

A

along f ,

indued by id

Y

and h(A) � f .

Note that the projetion of A is isomorphi to the equalizer of h(A) and true

X

. Let us all

� : eq(h(A); true

X

)! �

A

this isomorphism.

For every A 2 Type

C

(X) suh that its projetion is a mono, ~r

A

ur(hid

eq(::)

; �i) in C=X . By the way,

we reall that every morphism of C, whose domain is X , beomes a global setion of C=X by taking its

graph.

In this de�nition we assume that the attribute for the extensional equality type is de�ned as in 5.5.1.

About the attributes for the terminal type and the indexed sum type we also refer to setion 5.5.1.

5.5.3 Our model out of a universe as a ategory with attributes

Now, we see how our notion of model for the type theories HP and T

t

, desribed in this hapter,

orresponds to a partiular ontextual ategory. This ontextual ategory is given by the reindexing

funtor of the split �bration equivalent to the odomain �bration, as in the remark 5.2.4, and it is

desribed in the following. Given a H-pretopos or a topos P , we onsider, as C, the ategory of ontexts

Cont(P) de�ned as follows:

Def. 5.5.15 The objets of the ategory Cont(P) are �nite sequenes a

1

; a

2

; :::; a

n

of morphisms of P

A

n

a

n //
A

2

a

2 //
A

1

a

1 //
1

and a morphism from a

1

; a

2

; :::; a

n

to b

1

; b

2

; :::; b

m

is simply a morphism b of P

A

n

b //

a

n

$$JJ
J

B

n

b

n

zzttt
A

n�1

a

n�1

&&LL
L

B

n�1

b

n�1

xxrrr
A

n�2

B

n�2

1

provided that m = n and a

i

= b

i

for i = 1; :::; n� 1.

Moreover, for eah objet of Cont(P)

A

n

a

n //
A

2

a

2 //
A

1

a

1 //
1

we de�ne

Type

C

(a

1

; a

2

; :::; a

n

) � Fib(P=A

n

;P

!

)

Therefore, Cont(P) is equivalent to P and to Type

C

(1) (see the remark 5.2.4). In the ase of the model

for the type theory HP , the ategory P is required to be a H-pretopos and the attributes are de�ned

similarly to the interpretation for the type theory HP in setion 5.3.1.

In the ase of the model for the type theory T

t

, the ategory P is required to be a topos and the attributes

are de�ned as in the interpretation for the type theory T

t

in setion 5.3.2.
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Remark 5.5.16 The lass of ontextual ategories with attributes for the type theory HP ( T

t

), ap-

tured by our semantis, is smaller than the lass of ontextual ategories with attributes for the HP

(T

t

) aluli. Indeed, not for any ontextual ategory C, we have that C is equivalent to Type

C

(1). By

the way, from a ontextual ategory for the type theory HP (T

t

) we should get a H-pretopos ( a topos)

out of the ategory Type

C

(1), as shown in the setions 3.3 and 4.4.



Chapter 6

The ompleteness theorems

Summary We prove the ompleteness theorem for the type theory HP with respet to H-pretoposes and the

ompleteness theorem for the type theory T

t

with respet to toposes.

6.1 The proof of ompleteness

Completeness theorems for the type theories HP and T

t

are proved with respet to a partiular lass of

ontextual ategories, namely those related to the split �bration equivalent to the odomain �bration.

We know that the ompleteness theorem with respet to general ontextual ategories with attributes

is quite straightforward (see, for example, [Pit95℄, [Str91℄). Indeed, the interpretation in the syntati

ontextual ategory is faithful, sine it turns out to orrespond to an identity modulo provable equality

between types and between terms. But, sine our models are partiular ontextual ategories with

attributes, and the interpretation of the indexed sum type is the omposition of �bred funtors, the

interpretation in the syntati ategory is no more exatly an identity modulo provable equality. Anyway,

this interpretation is isomorphi to a anonial omprehension struture, whih does not require new

data or hoies, useful to prove ompleteness.

Having seen the validity of the type theory HP with respet to Pgr(P) for every H-pretopos P , we

prove the ompleteness theorem w.r.t. the lass of H-pretoposes with a �xed hoie of their struture.

In a similar way, having seen the validity of the type theory T

t

with respet to Pgr(S) for every topos

S, we prove the ompleteness theorem w.r.t. the lass of toposes with a �xed hoie of their struture.

For this purpose, given a H-pretopos or a topos P , we de�ne the following ategory P

!

n

whose objets

are the objets of Pgr(P) and whose morphisms between �

1

; �

2

; :::; �

n

and �

1

; �

2

; :::; �

n

are sequenes

of morphisms of P �

1

; :::; �

n

suh that all the following squares ommute

A

n

�

n //

�

n

��

B

n

�

n��
A

n�1

�

n�1

��

�

n�1

//
B

n�1

�

n�1

��

A

2

�

2

��

�

2 //
B

2

�

2��
A

1

�

1

��

�

1 //
B

1

�

1��
1

id

1 //
1

The proof of the ompleteness theorem with respet to a lass of universes is based on the investigation of

the interpretation I

P

T

in the syntati H-pretopos P

T

and on the investigation of the interpretation I

S

T

in the syntati topos S

T

. These interpretations do not resemble the identity interpretation. Anyway, we

81
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will prove that there is a kind of isomorphism between the interpretation I

P

T

and another interpretation

of judgements of HP , whih we all J

P

T

. Analogously, there is also a kind of isomorphism between the

interpretation I

S

T

and another interpretation of judgements of T

t

, whih we all J

S

T

. The interpretations

J

P

T

and J

S

T

resemble the identity interpretation modulo the equality and are faithful.

6.1.1 The ompleteness with respet to H-pretoposes

We prove the ompleteness theorem of the type theory HP with respet to H-pretoposes. In order to

do this, we take the syntati H-pretopos P

T

, and we de�ne the interpretation

J

P

T

: HP ! Pgr(P

T

)

by indution on the number of assumptions in the ontext in this manner:

J

P

T

(B type [x

1

2 A

1

; :::; x

n

2 A

n

(x

1

; :::; x

n�1

)℄) is

�

z

n

2

g

A

n

B

�

B

1

((QQQQQQ

�

z

n�1

2

^

A

n�1

A

n

�

n

1

''OOOOOO

�

z2>

A

1

�

1

1

$$I
IIII

>

where

f

A

n

is the domain of the last morphism of J

P

T

(A

n

type[x

1

2 A

1

; :::; x

n�1

2 A

n�1

(x

1

; :::; x

n�2

)℄)

and

B � B[x

1

:= �

1

2

� �

2

1

� � ��

n

1

(z

n

)℄ : : : [x

n�1

:= �

n�1

2

(�

n

1

(z

n

))℄[x

n

:= �

n

2

(z

n

)℄

with �

n

i

� �x:�

n

i

(x) for i = 1; 2, where �

n

1

(x) and �

n

2

(x) are the two projetions of �

z

n�1

2

^

A

n�1

A

n

and

�

B

1

and �

B

2

are the two projetions of �

z

n

2

f

A

n

B. For i = 1; : : : ; n A

i

is de�ned in the same manner as

B, where

f

A

1

� �

z2>

A

1

and A

1

� A

1

.

If b 2 B [�

n

℄ is a judgement of HP , we put

b � b [x

1

:= �

1

2

� �

2

1

� � ��

n

1

(z

n

)℄ : : : [x

n�1

:= �

n�1

2

(�

n

1

(z

n

))℄[x

n

:= �

n

2

(z

n

)℄

and we an derive

b 2 B [z

n

2

f

A

n

℄

From now on, we all B

I

= dom(I

P

T

(B type [�

n

℄)).

In order to prove the ompleteness theorem, we want to show that

Proposition 6.1.1 For every judgement

B type [�

n

℄

derivable in HP , (whih we suppose to be interpreted as �

1

(id); �

2

(id); :::; �

n

(id); �(id)) there is an

isomorphism of P

!

n

T

�

A

1

; :::; �

A

n

; �

B

between I

P

T

(B type [�

n

℄) and J

P

T

(B type [�

n

℄) suh that for every judgement b 2 B [�

n

℄

�

B

� b

I

(id) = hid; bi � �

A

n

and for weakening, for every judgement with n � j

M type [�

j

℄
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(whih we suppose to be interpreted as �

1

(id); �

2

(id); :::; �

j

(id); �(id))

�

B

� t

n

= p

n

� id � �

M�B

where �

M�B

: (M � B)

I

! �

x2

f

M

B, t

i

is de�ned as in the lemma of weakening, p

j

� �

M

1

� id and if

n � j + 1, p

i

� p

i�1

� id for i = j + 1; : : : ; n,

and for substitution, for every a

j

2 A

j

[�

j�1

℄ with n � j

�

B

� q

n

= s

n

� id � �

B(a

n

)

where q

i

is de�ned as in the lemma of substitution, s

j

� hid; a

n

i � id and if n � j + 1, s

i

� s

i�1

� id

for i = j + 1; : : : ; n.

Proof. The de�nition of the isomorphisms is given by indution on the derivation of type and term

judgements of HP . In general, given a type judgement

B type [x

1

2 A

1

; :::; x

n

2 A

n

(x

1

; :::; x

n�1

)℄

by indutive hypothesis we know that �

A

1

; :::; �

A

n

is the isomorphism between I

P

T

(A

n

type [x

1

2

A

1

; :::; x

n�1

2 A

n�1

(x

1

; :::; x

n�2

)℄) and J

P

T

(A

n

type [x

1

2 A

1

; :::; x

n�1

2 A

n�1

(x

1

; :::; x

n�2

)℄), so we

only de�ne the isomorphism �

B

: B

I

! �

z

n

2

f

A

n

B in order to prove that �

A

1

; :::; �

A

n

; �

B

is the isomor-

phism in P

!

n

T

between I

P

T

(B type [�

n

℄) and J

P

T

(B type [�

n

℄).

We an de�ne the isomorphisms by indution on the derivation of type and term judgements, sine by

the validity theorem these are well de�ned. For the terms it is ruial that isomorphisms ommute with

the seond projetions of pullbaks related to weakening and substitution.

For example, we show the indutive steps for the terminal type and for the indexed sum type.

1. Given the Terminal type judgement > [�

n

℄ we de�ne

�

A

n

�>

: >

I

! �

z

n

2

f

A

n

>

as �

A

n

�>

(z) = h�

A

n

(�

>

1

(z)); �

1

(�

>

2

(z))i for z 2 >

I

, sine by de�nition >

I

� �

z

n

2

f

A

n

�

y2>

? =

>

?.

We an easily prove that this isomorphism satis�es all the equations of the proposition.

2. Given the Indexed Sum type judgement �

y2B

C(x

1

; :::; x

n

; y)[�

n

℄ we de�ne

�

�

y2B

C

: (�

y2B

C)

I

! �

z

n

2

f

A

n

�

y2B

C

as �

�

y2B

C

� � � �

C

where

� : �

y2

e

B

C ! �

z

n

2

f

A

n

�

y2B

C

is de�ned in this manner: for every z 2 �

y2

e

B

C

�(z) = h�

B

1

(�

C

1

(z)); h�

B

2

(�

C

1

(z)); �

C

2

(z)ii

For short we write � for �

y2B

C.

We an easily prove that � is an isomorphism and in order to hek the weakening equation

�

�

� t

n

= p

n

� id � �

M��

it is suÆient to show that

p

n

� id � �

M�C

= �

C

� (p

n

� id)� id

Finally, in analogous way we an prove the substitution equations.

Given the pair term hb; i 2 �

y2B

C(x

1

; :::; x

n

; y)[�

n

℄ we want to prove that

�

�

y2B

C

� (hb; i)

I

= hid; hb; ii � �

A

n
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Indeed by indutive hypotheses on pullbak projetions and on substitution

(� � �

C

)) � (q(b

I

; (id)) � 

I

) =

= � � (hid; bi � id � �

C(b)

) � 

I

=

= (� � hid; bi � id) � (hid; i � �

A

n

)

= hid; hb; ii � �

A

n

:

Given the �rst projetion �

1

(d) 2 B(x

1

; :::; x

n

)[�

n

℄ we want to prove that

�

B

� (�

1

(d))

I

= hid; �

1

(d)i � �

A

n

Indeed, by indutive hypotheses on type judgements and on d

I

�

B

� ((id) � d

I

) =

�

�

y2B

C

1

� (�

C

� d

I

) =

= �

�

y2B

C

1

� (�

�1

� hid; di � �

A

n

)

= hid; �

1

(d)i � �

A

n

.

Given the seond projetion �

2

(d) 2 B(x

1

; :::; x

n

)[�

n

℄ we want to prove that

�

C(�

1

(d))

� (�

2

(d))

I

= hid; �

2

(d)i � �

A

n

We start to onsider �

�1

C(�

1

(d))

� (hid; �

2

(d)i � �

A

n

) and note that by indution hypotheses

(�

1

(d)

I

) � �

�1

C(�

1

(d))

� (hid; �

2

(d)i � �

A

n

)) =

= (�

�1

A

n

� �

C(b)

1

) � (hid; �

2

(d)i � �

A

n

)) =

= id

and moreover, by indution hypotheses on pullbak projetions and on substitution

q(�

1

(d)

I

; (id)) � (�

�1

C(�

1

(d))

� (hid; �

2

(d)i � �

A

n

)) =

= (�

�1

C

� hid; �

1

(d)i � id) � (hid; �

2

(d)i � �

A

n

) =

= �

�1

C

� (�

�1

� hid; di) � �

A

n

) =

= d

I

.

Therefore, by uniqueness of a morphism to a pullbak we onlude that

�

2

(d)

I

= hid; d

I

i = �

�1

C(�

1

(d))

� (hid; �

2

(d)i � �

A

n

)

For all the other types, we an go on de�ning the isomorphisms that satisfy the various equations by

using their term onstrutors and the indutive hypotheses. For the equality type and the forall type

the equations hold diretly by the indutive hypotheses, sine the last morphism is a mono.

Now we are ready to prove:

Theorem 6.1.2 (ompleteness) Suppose that a 2 A [�

n

℄ and b 2 A [�

n

℄ are derivable in HP , if for

every H-pretopos P I

P

(a 2 A [�

n

℄) = I

P

(b 2 A [�

n

℄) then a = b 2 A [�

n

℄ is derivable in HP .

Suppose that A type [�

n

℄ and B type [�

n

℄ are derivable in HP , if for every H-pretopos P I

P

(A type [�

n

℄) =

I

P

(B type [�

n

℄) then A = B [�

n

℄ is derivable in HP .

Proof.

If I

P

T

(a 2 A [�

n

℄) = I

P

T

(b 2 A [�

n

℄) then by the above proposition

�

�1

B

� hid; ai � �

A

n

= a

I

= b

I

= �

�1

B

� hid; bi � �

A

n

from whih we onlude a = b 2 A [�

n

℄. The proof for the judgements about equality between types

an be done by double indution on the derivation, onsidering the interpretation I

P

T

in the syntati

ategory P

T

. When the equality type step ours in the indution, we an onlude by the ompleteness

for judgements about equality between terms.
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6.1.2 The ompleteness with respet to elementary toposes

We prove the ompleteness theorem of T

t

with respet to elementary toposes, in the same way as we have

done for HP . In order to do this, we onsider the syntati topos S

T

, and we de�ne the interpretation

J

S

T

: T

t

! Pgr(S

T

)

by indution on the number of assumptions in the ontext in this manner:

J

S

T

(B type [x

1

2 A

1

; :::; x

n

2 A

n

(x

1

; :::; x

n�1

)℄) is

�

z

n

2

g

A

n

B

�

B

1

((QQQQQQ

�

z

n�1

2

^

A

n�1

A

n

�

n

1

''OOOOOO

�

z2>

A

1

�

1

1

$$I
IIII

>

where

f

A

n

is the domain of the last morphism of J

S

T

(A

n

type [x

1

2 A

1

; :::; x

n�1

2 A

n�1

(x

1

; :::; x

n�2

)℄)

and

B � B[x

1

:= �

1

2

� �

2

1

� � ��

n

1

(z

n

)℄ : : : [x

n�1

:= �

n�1

2

(�

n

1

(z

n

))℄[x

n

:= �

n

2

(z

n

)℄

with �

n

i

� �x:�

n

i

(x) for i = 1; 2, where �

n

1

(x) and �

n

2

(x) are the two projetions of �

z

n�1

2

^

A

n�1

A

n

and

�

B

1

and �

B

2

are the two projetions of �

z

n

2

f

A

n

B. For i = 1; : : : ; n A

i

is de�ned in the same manner as

B, where

f

A

1

� �

z2>

A

1

and A

1

� A

1

.

If b 2 B [�

n

℄ is a judgement of T

t

, we put

b � b[x

1

:= �

1

2

� �

2

1

� � ��

n

1

(z

n

)℄ : : : [x

n�1

:= �

n�1

2

(�

n

1

(z

n

))℄[x

n

:= �

n

2

(z

n

)℄

and we an derive

b 2 B [z

n

2

f

A

n

℄

From now on, we all B

I

= dom(I

S

T

(B type [�

n

℄)).

In order to prove the ompleteness theorem we want to show that

Proposition 6.1.3 For every judgement

B type [�

n

℄

derivable in T

t

, (whih we suppose to be interpreted as �

1

(id); �

2

(id); :::; �

n

(id); �(id)) there is an iso-

morphism of S

!

n

T

�

A

1

; :::; �

A

n

; �

B

from I

S

T

(B type [�

n

℄) to J

S

T

(B type [�

n

℄) suh that for every judgement b 2 B [�

n

℄

�

B

� b

I

(id) = hid; bi � �

A

n

and about weakening for every judgement with n � j

M type [�

j

℄

(whih we suppose to be interpreted as �

1

(id); �

2

(id); :::; �

j

(id); �(id))

�

B

� t

n

= p

n

� id � �

M�B

where �

M�B

: (M � B)

I

! �

x2

f

M

B, t

i

is de�ned as in the lemma of weakening, p

j

� �

M

1

� id and if

n � j + 1, �

i

� �

i�1

� id for i = j + 1; : : : ; n,
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and about substitution for every a

j

2 A

j

[�

j�1

℄ with n � j

�

B

� q

n

= s

n

� id � �

B(a

n

)

where q

i

is de�ned as in the lemma of substitution, s

j

� hid; a

n

i � id and if n � j + 1, s

i

� s

i�1

� id

for i = j + 1; : : : ; n.

Proof. The de�nition of the isomorphisms is given by indution on the derivation of type and term

judgements of T

t

. In general, given a type judgement

B type [x

1

2 A

1

; :::; x

n

2 A

n

(x

1

; :::; x

n�1

)℄

by indutive hypothesis we know that �

A

1

; :::; �

A

n

is an isomorphism from I

S

T

(A

n

type [x

1

2 A

1

; :::; x

n�1

2

A

n�1

(x

1

; :::; x

n�2

)℄) to J

S

T

(A

n

type [x

1

2 A

1

; :::; x

n�1

2 A

n�1

(x

1

; :::; x

n�2

)℄), so, we only de�ne an iso-

morphism �

B

: B

I

! �

z

n

2

f

A

n

B in order to prove that �

A

1

; :::; �

A

n

; �

B

is an isomorphism in S

!

n

T

from

I

S

T

(B type [�

n

℄) to J

S

T

(B type [�

n

℄).

We an de�ne the isomorphisms by indution on the derivation of type judgement and term judgement,

sine by the validity theorem these are well de�ned. For the terms it is ruial that isomorphisms

ommute with the seond projetions of pullbaks related to weakening and substitution. See, for the

terminal type, the indexed sum type and the equality type the analogous proposition 6.1.1 for the type

theory HP . About the produt type, the isomorphism is de�ned in a similar way as for the indexed

sum type, looking at the desription of the right adjoint in setion 4.4. About the Omega type, see the

terminal type.

Now, we are ready to prove:

Theorem 6.1.4 (ompleteness) Suppose that a 2 A [�

n

℄ and b 2 A [�

n

℄ are derivable in T

t

, if for

every topos S I

S

(a 2 A [�

n

℄) = I

S

(b 2 A [�

n

℄) then a = b 2 A [�

n

℄ is derivable in T

t

.

Suppose that A type [�

n

℄ and B type [�

n

℄ are derivable in T

t

, if for every topos S I

S

(A type [�

n

℄) =

I

S

(B type [�

n

℄) then A = B [�

n

℄ is derivable in T

t

.

Proof.

If I

S

T

(a 2 A [�

n

℄) = I

S

T

(b 2 A [�

n

℄), then by the above proposition

�

�1

B

� hid; ai � �

A

n

= a

I

= b

I

= �

�1

B

� hid; bi � �

A

n

from whih we onlude a = b 2 A [�

n

℄.

The proof for the judgements about equality between types an be done by double indution on the

derivation, onsidering the interpretation I

S

T

in the syntati ategory S

T

. When the equality type step

ours in the indution, we an onlude by the ompleteness for judgements about equality between

terms.



Chapter 7

The internal type theory of a

universe

Summary We present the internal type theory of a Heyting pretopos with a natural numbers objet and of

a topos. The resulting theories are based respetively on the initial type theories HP and T

t

. We prove that

there is a sort of equivalene between the type theories and the orresponding ategory of universes. By using

the type theory we also build the free Heyting pretopos and the free topos generated by a ategory.

7.1 The internal type theory of a Heyting pretopos

Given a H-pretopos P we want to desribe its internal dependent type theory T (P). The type theory

is based on the initial type theory HP for H-pretoposes (see setion 3.2), augmented with the spei�

type and term judgements of P . As in the non-dependent ase, we give a dependent formulation of the

internal language of a universe saying what a type judgement is, what a term judgement is, in a lear

order, without onsidering before raw types and raw terms and then well-formed types and terms, as

it is usually done in the dependent ase. Indeed, it is meaningless in a dependent theory to onsider a

type or a term in isolation from the orresponding type or term judgement and its derivation. As in the

ategorial semantis for the dependent typed aluli in setion 5.2, the idea is to onsider a dependent

type as a sequene of morphisms of P , ending with the terminal objet 1, whereas the terms are setions

of the last morphism of the type to whih they belong. Therefore, the type theory T (P) is formulated in

the style of Martin-L�of's type theory with the four kinds of judgements [NPS90℄ and telesopi ontexts.

We assume all the inferene rules about the formation of ontexts, delarations of typed variables, about

reexivity, symmetry and transitivity of the equality between types and terms [NPS90℄ and the set rule

onv) as in setion 3.2. As in the semantis in setion 5.2, a type judgement arises from a objet of

Pgf(P), whih represents a dependent type with all its possible substitutions. More preisely, a type

judgement orresponds to the evaluation of a �nite sequene of �bred funtors on the identity. Indeed,

for a sequene of �bred funtors �

1

; �

2

; :::; �

n

; � of Pgf(P), we de�ne

�

�1

(x

1

; :::; x

n

)[x

1

2 �

�1

1

; :::; x

n

2 �

�1

n

(x

1

; :::; x

n�1

)℄

as the type judgement orresponding to

B

�(id)

//
A

n

�

n

(id)

//
A

1

�

1

(id)

//
1

by thinking of the �bers of the morphism �(id). This notation turns out to be very lear when we look at

the ategory of paths built on any syntati H-pretopos. The equality between types orresponds to the

equality between objets of Pgf(P), whih implies the equality between objets of Pgr(P). For short,

we use the abbreviation �

n

� x

1

2 �

�1

1

; :::; x

n

2 �

�1

n

(x

1

; :::; x

n�1

) in the ontexts. On the other hand,

a term judgement arises from a morphism of Pgf(P), whih is a natural transformation representing

87
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a term with all its possible substitutions. The evaluation of a natural transformation on the idential

substitution is a term judgement. Indeed, for a suitable morphism b of Pgf(P) from �

1

; �

1

; :::; �

n

; i

A

n

to �

1

; �

2

; :::; �

n

; �, the term judgement

b 2 �

�1

(x

1

; :::; x

n

)[�

n

℄

orresponds to a setion of �(id)

A

n

b(id)

//
id

##F
F B

�(id)

}}{{{
1

A

1

!

A

1

oo
A

n

�

n

oo

by hoosing the identity as the terminal objet

in P=A

n

. The equality between terms orresponds to the equality between morphisms of Pgf(P). So,

we add as axioms all the equality judgements that orrespond to atual equations holding in Pgf(P).

In the following, to make formulas more readable in type judgements, we will write �[�

n

℄ instead of

�

�1

[�

n

℄. In the diagrams we will often write �

i

instead of �

i

(id

A

i

) for �bred funtors and b instead of

b(id) for natural transformations.

The rules for substitution of variables in a type and in a term and for weakening of a variable w.r.t

type and term judgements are the usual ones and they are de�ned as their interpretation in the semantis

in setion 5.2. We only show how they work in these partiular ases:

sT

[�

n

; y 2 �℄ b 2 �[�

n

℄

[b(id)℄[�

n

℄

is

C



//
B

�

//
A

n

::: A

n

b //

id

##F
F B

�

}}{{{
A

n

A

n

�C

[b(id)℄

//
A

n

:::

where we put [b(id)℄(id) � (b(id))

st

 2 [�

n

; y 2 �℄ b 2 �[�

n

℄

[b(id)℄ 2 [b(id)℄[�

n

℄

is

C

 //
id

""D
DD

C



~~}}
A

n

B

�

oo

A

n

b //

id

##F
F B

�

}}{{{
A

n

A

n

[b(id)℄

//
A

n

�C

where we put [b(id)℄(id) � (b(id))

wT

�[�

n

℄ Æ[�

n

℄

�[�

n

; y 2 Æ℄

is

B

�

//
A

n

:::

D

Æ //
A

n

:::

D�B

�[Æ(id)℄

//
D

Æ //
A

n

:::

where we put �[Æ(id)℄(id) � �(Æ(id))

wt

b 2 �[�

n

℄ �[�

n

℄

b 2 �[�

n

; w 2 �℄

is

A

n

b //

id

##F
F B

�

}}{{{
A

n

E

�

//
A

n

:::

E

b[�(id)℄

//

id

!!C
CC

C E�B

�[�(id)℄

{{ww
ww

A

n

E

�

oo

where we put b[�(id)℄(id) � (�(id))

�

(b(id)), that is the unique morphism of P=E from i

A

n

(�(id)) to

�(�(id)), obtained from b(id) by the properties of pullbak.

The rule expressing the assumption of variable is the following:

var

� [�

n

℄

x 2 �[�

n

; x 2 �℄

is

B

�

//
A

n

:::

B

4

//
id

!!C
CC

C B�B

�[�(id)℄

{{xx
xx

x

A

n

B

�

oo
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where x(id) � 4

B

� hid

B

; id

B

i.

Now, we show the formation rules for types and then the introdution, elimination and onversion

rules for their terms.

The proper types and terms of T (P) are desribed as follows. Proper type judgements arise from

objets of Pgr(P) and proper term judgements arise from morphisms of Pgr(P). For every objet of

Pgr(P) a

1

; a

2

; :::; a

n

; t we onsider the sequene obtained by making the pullbak of a

1

along the

identity, then by making the pullbak of a

2

along the seond projetion p

1

of the previous pullbak, and

so on, that is we obtain the following sequene of pullbaks:

B

�

p

�

n

(t) ��

t

�

(p

n

)

//
B

t��
A

�n

p

n //
p

�

n�1

(a

n

)

��

A

n

a

n

��

A

�2

p

�

1

(a

2

) ��

p

2 //
A

2

a

2��
A

1

!

A

1 ��

p

1 //
A

1

a

1��
1

id

1 //
1

where p

i

is the seond projetion of the pullbak of a

i

and p

i�1

, for i = 1; : : : ; n: Finally, we onsider

the assoiate sequene of �bred funtors



A

1

; ba

2

[p

1

℄; ba

3

[p

2

℄; :::;a

n

[p

n�1

℄;

b

t[p

n

℄

where



A

1

� ba

1

, hene we introdue a new dependent type t

�1

and �nally we state that

t

�1

[x

1

2 A

1

; :::; x

n

2 a

�1

n

℄ is

B

�

b

t
[p

n

℄

//
A

�n

a

n

[p

n�1

℄

//
A

�1



A

1 //
1

where the � subsript is used for the interpretation of the series of judgements of proper types introdued

by an objet of Pgr(P).

Moreover, given a sequene of �bred funtors �

1

; �

2

; :::; �

n

; � of Pgf(P), for every morphism  of

Pgr(P)

A

n

 //
id

""E
EE

E B

�(id)

}}||
||

1

A

1

!

A

1oo
A

n

we introdue a new term  and we state that

 2 �(id)[x

1

2 A

1

; :::; x

n

2 �

n

℄ is

A

n

(id)

//

id !!D
DD

DD
D B

�(id)~~||
||

||

A

n

where (id) � .

Finally, we add all the types and terms of the type theory HP , de�ned as for the interpretation in

setion 5.3.1.

Remark 7.1.1 Our de�nition of internal language of a ategory follows [LS86℄, for instane, and it is

di�erent from that in [Tay97℄.

7.2 The relation between the HP type theories and H-pretoposes

There is a sort of equivalene between the internal type theories of H-pretoposes desribed in setion

7.1 and the ategory of H-pretoposes. As a onsequene of this, we an state that the type theory T (P)

is the internal language of the H-pretopos P . First of all, we de�ne the following ategories:
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1. Th(HP ) whose objets are the type theories of H-pretoposes, whose initial type theory is HP

and whose morphisms are translations: they send types to types so as to preserve the type and

term onstrutors, losed terms to losed terms and variables to variables; we all Th(HP )

�

the

ategory whose objets are those of Th(HP ), but whose morphisms are translations preserving

type and term onstrutors up to isomorphisms;

2. HPretop

o

whose objets are H-pretoposes with a �xed hoie of H-pretopos struture and whose

morphisms are strit logial funtors, that is funtors preserving the H-pretopos struture w.r.t.

the �xed hoies; we all HPretop the ategory whose objets are those of HPretop

o

, but whose

morphisms are funtors preserving the H-pretopos struture up to isomorphisms.

Now, we de�ne a funtor from H-pretoposes to type theories

T : HPretop

o

�! Th(HP )

that assoiates to every H-pretopos P the internal type theory T (P) desribed in the previous setion.

The funtor T assoiates to every morphism F : P ! D of HPretop

o

the translation T (F ) : T (P) !

T (D) de�ned as follows. Given a �bred funtor � : P=A ! P

!

, orresponding to a type judgement,

and a natural transformation , orresponding to a term judgement, we de�ne T (F )(�) and T (F )()

in the same way as we have de�ned the interpretation of a type theory in setion 5.3.1. If � =

b

b for

any b : B ! A of P , then we put F (�) =

d

F (b), sine the hosen pullbaks of P are sent into the

hosen pullbaks of D by F . If � is introdued by an inferene rule of HP , then we simply de�ne

F (�) suh that F (�)(id) = F (�(id)), in order to make T (F ) be a translation. For example, we put

F (�

�

()) � �

F (�)

(F ()). This de�nition of T (F ) is good, sine the funtor F preserves the H-pretopos

struture w.r.t. the �xed hoies used in the internal type theories of P and D.

Moreover, we de�ne a funtor from type theories to H-pretoposes

P : Th(HP ) �! HPretop

o

that assoiates to every type theory T the ategory P (T ), whose objets are losed types A;B;C; :::

and whose morphisms are the expressions (x)b(x) orresponding to b(x) 2 B[x 2 A℄, where the type

B does not depend on A. We an prove that P (T ) is a H-pretopos by �xing a hoie of its struture

as in setion 3.3. The funtor P assoiates to every morphism of Th(HP ) L : T ! T

0

the funtor

P (L) : P (T ) ! P (T

0

) de�ned as follows. For every losed type A, we put P (L)(A) � L(A), whih is

well de�ned sine a translation sends losed types to losed types. For every morphism b(x) 2 B[x 2 A℄

of P (T ) we put

P (L)(b(x) 2 B[x 2 A℄) � L(b(x)) 2 L(B)[x 2 L(A)℄

Sine L is a translation, then P (L) is a funtor preserving the H-pretopos struture. In order to desribe

the relation between type theories and H-pretoposes, we have to onsider a type theory T as a ategory.

We think of T as the ategory whose objets orrespond to those of Pgr(P (T )), but whose morphisms are

sequenes of morphisms by whih we built a series of ommutative squares. More preisely, the objets

of T are the dependent types under a ontext B(x

1

; :::; x

n

)[x

1

2 A

1

; :::; x

n

2 A

n

℄. The morphisms of T

exist only from B[x

1

2 A

1

; :::; x

n

2 A

n

℄ to B

0

[x

0

1

2 A

0

1

; :::; x

0

n

2 A

0

n

℄ and they are

1

b

0

2 B

0

(a

0

1

; :::; a

0

n

)[x

1

2 A

1

; :::; x

n

2 A

n

; y 2 B(x

1

; :::; x

n

)℄

suh that a

1

2 A

0

1

[x

1

2 A

1

℄ and a

0

i

2 A

0

i

(a

0

1

; :::; a

0

i�1

)[x

1

2 A

1

; :::; x

i

2 A

i

℄ for i = 1; :::; n: The omposition

is the substitution and the identity is y 2 B(x

1

; :::; x

n

)[x

1

2 A

1

; :::; x

n

2 A

n

; y 2 B℄. Therefore, we an

onsider equivalenes of type theories. In the following we mean by ID the identity funtor.

Proposition 7.2.1 Let T : HPretop

o

! Th(HP ) and P : Th(HP ) ! HPretop

o

be the funtors

de�ned above. There are two natural transformations: � from ID to T � P , thought as funtors from

Th(HP ) to Th(HP )

�

, and � from P � T to ID, thought as funtors from HPretop

o

to HPretop, suh

that for every type theory T and for every H-pretopos P, �

T

: T ! T (P (T )) and �

P

: P (T (P))! P are

equivalenes.

1

One ould also onsider the usual morphisms of ontexts.
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Proof. In order to obtain the natural transformation �, for every type theory T we de�ne

�

T

: T ! T (P (T ))

as follows. For any losed type �

T

(A[ ℄) �

b

A(id) : A

�

! 1. For dependent type judgements,

�

T

(C(x; y)[x 2 A; y 2 B(x)℄) is the type judgement of T (P (T )) orresponding to the sequene

�

z2

~

B

C(x)

�

q

3

(id)

//
�

x2A

B(x)

�

q

2

(id)

//
A

�

b

A
(id)

//
1

where

~

B � �

x2A

B(x) and q

i

��

1

[p

i�1

℄ for i = 2; 3. This is the dependent type judgement arising from

the following sequene

�

z2�

x2A

B(x)

C(x)

�

1 //
�

x2A

B(x)

�

1 //
A

� //
1

in the internal type theory T (P (T )), as it is desribed in the previous setion. For term judgements,

�

T

( 2 C(x; y)[x 2 A; y 2 B(x)℄) is

�

x2A

B(x)

�

hz;~i[p

2

℄(id)

//

id

''OOOOOOOOOOOO �

z2�

x2A

B(x)

C(z)

�

q

3

(id)

vvlllllllllllll

1

A

�

b

A
(id)

oo
�

x2A

B(x)

�

q

2

(id)

oo

where ~ � [x=�

1

(z); y=�

2

(z)℄[z 2 �

x2A

B(x)℄. This is the term judgement arising from hz; ~i in the

internal type theory T (P (T )), as it is desribed in the setion 7.1. We an obviously imagine how

�

T

is de�ned in the ase of having a generi ontext of n types. We an see that � is a natural

transformation, sine translations preserve indexed sum types and projetions. �

T

is a translation up

to isomorphisms and it is an equivalene of ategories sine the funtor is faithful, full and essentially

surjetive. Indeed, we an de�ne a natural transformation �

�1

suh that, given a type theory T , the

omponent �

�1

T

: T (P (T ))! T is de�ned as follows. Given a type judgement
B

�(id)

//
A

�(id)

//
1

of T (P (T ))

we de�ne

�

�1

T

(�(id); �(id)) � �(id)

�1

(x)[x 2 A℄

where �(id)

�1

(x) � �

z2B

Eq(A; �(id)(z); x), that is the �bers of �(id). Given the term judgement

A

(id)

//
id

  A
AA

B

�(id)

~~}}
}

1

A

�(id)

oo

of T (P (T )), provided that (id) is (x) 2 B[x 2 A℄, �

�1

T

assoiates to it the term

judgement of T

h(x); eqi 2 �

z2B

Eq(A; �(id)(z); x)[x 2 A℄

We an see that �

�1

is a natural transformation, sine translations preserve indexed sum types, pro-

jetions and equality types. We an prove that, for every type theory T , �

T

and �

�1

T

give rise to an

equivalene of ategories (also see [See84℄).

Moreover, we de�ne a natural transformation � suh that for every H-pretopos P the omponent

�

P

: P (T (P))! P

is de�ned as follows. �

P

assoiates to every objet
A

�(id)

//
1

of P (T (P)) the objet A and it assoiates

to the morphism
A

b(id)

//
id

  @
@@

A�B

�(!

A

)

{{ww
ww

1
A

�(id)

oo

the morphism q(!

A

; �(id)) � b(id) : A ! B. We an easily prove that

�

P

is a funtor preserving the H-pretopos struture up to isomorphisms

2

. We have that �

P

gives rise to

2

This due to the fat that the split �bration selets a hoie of struture di�erent from the hoie given with a H-

pretopos: see, for instane, the terminal objet.
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a natural transformation, sine the funtors preserve the H-pretopos struture w.r.t. the �xed hoies.

Moreover, �

P

is an equivalene of ategories, sine it is faithful by uniqueness of morphisms towards

pullbaks, full beause every setion of a �bred funtor has got a name in the language, and essentially

surjetive. Indeed, we an de�ne a natural transformation �

�1

suh that for every H-pretopos P the

omponent �

�1

P

: P ! P (T (P)) is de�ned as follows. For every objet A of P , �

�1

P

(A) is the losed

type orresponding to

A

�

b

A(id)

//
1

. For every morphism b : A! B of P , �

�1

P

(b) is the term orresponding

to

A

�

hid;b

0

i(id)

//
id

""F
FF

F
A

�

�B

�

b

B(!

A

�

)

yyrrr
rr

1

A

�

b

A(id)

oo

where b

0

= �

�1

B

� b � �

A

and where �

B

and �

A

are the seond projetions of the

pullbaks of !

A

and !

B

along the identity. We onlude that for every H-pretopos P , �

P

and �

�1

P

give

rise to an equivalene of ategories.

7.3 The internal type theory of a topos

Given a topos S we desribe its internal dependent type theory L(S), exatly in the same way as for a

Heyting pretopos P in setion 7.1. The type theory is based on the initial type theory T

t

for toposes (see

setion 4.2), augmented with the spei� type and term judgements of S. Therefore, also the internal

type theory of a topos is formulated in the style of Martin-L�of's type theory with the four kinds of

judgements [NPS90℄, where the ontexts are telesopi. We assume all the inferene rules about the

formation of ontexts, delarations of typed variables, about reexivity, symmetry and transitivity of

the equality between types and terms [NPS90℄ and the onv) rule. We only repeat how type and term

judgements are de�ned. For a sequene of �bred funtors �

1

; �

2

; :::; �

n

; � of Pgf(S), we de�ne

�

�1

(x

1

; :::; x

n

)[x

1

2 �

�1

1

; :::; x

n

2 �

�1

n

(x

1

; :::; x

n�1

)℄

as the type judgement orresponding to

B

�(id)

//
A

n

�

n

(id)

//
A

1

�

1

(id)

//
1

by thinking of the �bers of the morphism �(id). The equality between types orresponds to the equality

between objets of Pgf(S), whih implies the equality between objets of Pgr(S). For short, we use the

abbreviation �

n

� x

1

2 �

�1

1

; :::; x

n

2 �

�1

n

(x

1

; :::; x

n�1

) in the ontexts. For a morphism b of Pgf(S)

from �

1

; �

1

; :::; �

n

; i

A

n

to �

1

; �

2

; :::; �

n

; �, the term judgement

b 2 �

�1

(x

1

; :::; x

n

)[�

n

℄

orresponds to the setion of �(id)

A

n

b(id)

//
id

##F
F B

�(id)

}}{{{
1

A

1

!

A

1

oo
A

n

�

n

oo

by hoosing the identity as the terminal

objet in S=A

n

.

The equality between terms orresponds to the equality between morphisms of Pgf(S).

For the formulation of the strutural rules of weakening and substitution and of the type and term

judgements that are spei� to S, we refer to setion 7.1, where P should be replaed with S.

7.4 The relation between the T

t

type theories and toposes

There is a sort of equivalene between the internal type theories of toposes desribed in the setion 7.3

and the ategory of toposes. As a onsequene of this, we an state that the type theory L(S) is the

internal language of the topos S.

First of all, we de�ne the following ategories:
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1. Th(T

t

) whose objets are the type theories of toposes, whose initial type theory is T

t

, and whose

morphisms are translations: they send types to types so as to preserve the type and term on-

strutors, losed terms to losed terms and variables to variables; we all Th(T

t

)

�

the ategory

whose objets are those of Th(T

t

), but whose morphisms are translations preserving type and term

onstrutors up to isomorphisms;

2. Top

o

whose objets are toposes with a �xed hoie of topos struture and whose morphisms are

strit logial funtors, that is funtors preserving the topos struture w.r.t. the �xed hoies;

we all Top the ategory whose objets are those of Top

o

, but whose morphisms are funtors

preserving the topos struture up to isomorphisms.

We de�ne the funtors

L : Top

o

! Th(T

t

) S : Th(T

t

)! Top

o

in the same way we have de�ned T : HPretop

o

�! Th(HP ) and P : Th(HP ) �! HPretop

o

. In an

analogous way we an prove:

Proposition 7.4.1 Let L : Top

o

! Th(T

t

) and S : Th(T

t

)! Top

o

be the funtors de�ned above. There

are two natural transformations: � from ID to L � S, thought as funtors from Th(T

t

) to Th(T

t

)

�

, and

� from S � L to ID, thought as funtors from Top

o

to Top, suh that for every type theory T and for

every topos S, �

T

: T ! L(S(T )) and �

S

: S(L(S))! S are equivalenes.

Proof. The only di�erene with the proof for H-pretoposes is that here, we have to hek that the

translations preserve the type and term onstrutors of T

t

and that the funtors preserve the topos

struture.

7.5 The free H-pretopos

The main idea is to generate a H-pretopos from a given ategory C by onsidering its objets as losed

types and its morphisms as terms with a free variable. We an prove the universal property by the

onstrution of the ategory of paths, whih represents the dependent types in a ategorial way.

Given a ategory C, we onsider the dependent type theory T (C) generated by the inferene rules as

follows:

1. For every objet A of ObC we introdue a new type A and we state the losed type judgement

A [ ℄.

Given A 2 ObC and B 2 ObC we state A = B [ ℄, if they are the same objet in ObC.

2. For every morphism b : A! B in C, we introdue a new term b(x) and we state b(x) 2 B [x 2 A℄,

where A and B are losed types.

Given b : A! B and d : A! B in C, we state b(x) = d(x) 2 B [x 2 A℄, provided that b and d are

the same morphism in C.

Given b : A ! B and a : D ! A in C, we state about omposition b(x)[x := a(y)℄ = (b � a)(y) 2

B [y 2 D℄.

3. There are all the inferene rules of the type theory HP . for H-pretoposes.

Therefore, T (C) is a type theory of H-pretoposes.

Now, we an prove:

Proposition 7.5.1 Let P : Th(HP ) �! HPretop

o

be the funtor desribed in setion 3. The ategory

P (T (C)) is the free H-pretopos generated by the ategory C in P (Th(HP )).
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Proof. We know that P (T (C)) is a H-pretopos from the de�nition of P . Given a funtor G : C ! P ,

from the ategory C to the H-pretopos P , we laim that there exists a unique funtor

~

G : P (T (C))! P in

HPretop

o

suh that the diagram
C

I //

G

��>
>>

> P (T (C))

~

G

zzttttt

P

ommutes, where I : C ! P (T (C)) is the following

funtor: for every objet A 2 ObC we put I(A) � A [ ℄ and for every morphism b : A ! B we put

I(b) � b(x) 2 B[x 2 A℄.

In order to de�ne

~

G on P (T (C)), we de�ne an interpretation J : T (C) ! Pgr(P), by passing to

Pgf(P), with the warning that we have to normalize the interpretation. This is done by adding the

value of every �bred funtor � 2 Fib(P=1;P

!

) on the empty ontext,

3

suh that a type judgement will

be interpreted by a sequene of Pgr(P) like

�

1

(;); �

2

(id

A

1

); :::; �

n

(id

A

n�1

)

The interpretation is given in the same way as for the type theory HP in setion 5.3.1, exept for losed

types and terms, whih are interpreted in �bred funtors evaluated on ;. The reason is that we want

to put

~

G(A[ ℄) � domJ (A[ ℄) and

~

G(b 2 B[x 2 A℄) � q(J (A[ ℄);J (B[ ℄)) � J (b 2 B[x 2 A℄), but if we

adopt for J the semantis de�ned in setion 5.3.1, then

~

G would ommute with G up to isomorphisms.

So, for every objet A of ObP , we extend the funtor

b

A by adding

b

A(;) �!

A

and for every objet

B, q(!

B

;

b

A(;)) is the seond projetion of the pullbak of !

B

and

b

A(;). For example, for the natural

numbers J (N [ ℄) �

b

N (;) =!

N

, instead of being interpreted as !

1�N

like in the semantis de�ned in

5.3.1. Moreover, J (0 2 N [ ℄) is

1

bo(;)

//

id

1

��>
>>

N

b

N (;)

~~}}
}

1

where bo(;) � o and o : 1 ! N is the zero map in P .

Finally, given a proper type arising from an objet A 2 ObC, we put J (A[ ℄) �

[

G(A)(;) and given a

proper term arising from a morphism b : A ! B of C, we put J (b 2 B[x 2 A℄) � hid

G(A)

; G(b)i setion

of

\

G(B)(

[

G(A)(;)) : G(A) �G(B) ! G(A). By de�nition

~

G preserves the H-pretopos struture and we

get

~

G � I = G. Moreover,

~

G is obviously unique for �xed hoies of the H-pretopos struture, whih are

required to interpret the type theory T (C) into Pgr(P).

The free struture gives rise to a monad. It would be interesting to investigate if the ategory HPretop

o

is monadi on Cat and Graph. Or at least, if we prove that HPretop

o

is essentially algebrai, as for

the ategorial models of ITT in [Obt89℄, we would get a representation theorem of HPretop

o

into a

ategory of presheaves [AR94℄.

7.6 The free topos

As for the free H-pretopos, we generate a topos from a given ategory C by onsidering its objets as

losed types and its morphisms as terms with a free variable. We an prove the universal property by

the onstrution of the ategory of paths, whih represents the dependent types in a ategorial way.

To this purpose we onsider the dependent type theory L(C) generated by the same inferene rules as

in setion 7.5, replaing in the last point the rules of the type theory HP , with the rules of the type

theory T

t

.

Therefore, we an prove:

3

In a rigorous way, we onsider the free ategory P=1

>

with terminal objet ; generated from P=1. So a type and a

term with empty ontext are interpreted respetively as funtor �

>

and natural transformation �

>

of [P=1

>

;P

!

℄ suh

that �

>

and �

>

restrited to P=1 are in Fib(P=1;P

!

). We extend the �bred funtors as desribed above. For example,

b

N

>

(;) �!

N

and

b

N

>

(!

B

! ;) �

q(!

B

;



N

>

(;))

//



N

>

(!

B

)

��

N



N

>

(;)

��
B

!

B

//
1

with q(!

B

;

b

N

>

(;)) � (

b

N

>

(;))

�

(!

B

). For short we still write �

for �

>

.
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Proposition 7.6.1 Let S : Th(T

t

) �! Top

o

be the funtor desribed in the setion 7.4. The ategory

S(L(C)) is the free H-pretopos generated by the ategory C in P (Th(T

t

)).

Proof. We know that S(L(C)) is a topos from the de�nition of S.

Exatly, as for the free H-pretopos, given a funtor G : C ! S, from the ategory C to the topos

S, we laim that there exists a unique funtor

~

G : S(L(C)) ! S in Top

o

suh that the diagram

C

I //

G

��>
>>

> S(L(C))

~

G

zzuuuuu

S

ommutes, where I : C ! S(L(C)) is the following funtor: for every objet A 2 ObC

we put I(A) � A [ ℄ and for every morphism b : A! B we put I(b) � b(x) 2 B[x 2 A℄.

In order to de�ne

~

G on S(L(C)), we de�ne an interpretation J : L(C) ! Pgr(S), by passing to

Pgf(S), with the warning that we have to normalize the interpretation. This is done in the same way as

for the free H-pretopos, exept that we have the produt type and the subobjet lassi�er. We normalize

the interpretation of the subobjet lassi�er as that of the natural numbers objet.

By the free topos generated by an arbitrary ategory, we get a presentation of a monad on Cat, with

respet to whih the ategory of toposes is monadi on Cat [DK83℄.

7.7 Some other free strutures: the Lex and LCC

+

ategories

A similar orrespondene to that one between type theories and H-pretoposes an be established for the

ategory Lex and LCC

+

. The ategory Lex, whose objets are the ategories with �nite limits and

whose morphisms are funtors stritly preserving �nite limits, provides a valid and omplete semantis

for the type theory with terminal type, extensional equality types and indexed sum types. In the same

way, the LCC

+

ategory, whose objets are the loally artesian losed ategories with �nite oproduts

and a natural numbers objet and whose morphisms are funtors stritly preserving the ITT struture,

provides a valid and omplete semantis for the fragment of Martin-L�of's type theory with extensional

equality and without universes and well-orders [Mar84℄. These validity and ompleteness theorems an

be proved in a similar way to that for H-pretoposes and for toposes. We an easily notie that these

dependent type theories enable us to build the free struture for Lex and LCC

+

over Cat, in the same

way we proved for the ategory HPretop

o

and Top

o

. The free strutures give a presentation of two

monads, whose algebras orrespond respetively to Lex and LCC

+

, sine Lex and ITT are monadi

over Graph [Bur81℄ and admit an equational presentation.



Conlusions and further researh

The type theories of Heyting pretoposes and of elementary toposes an be used to give translations of

ategorial proofs from topos theory into type theory and vie versa.

These typed aluli make lear that topos and H-pretopos theory are governed by the isomorphism

propositions as mono types.

On the ontrary, in Martin-L�of's Construtive Type Theory logi is aptured via the Curry-Howard

isomorphism proposition as types.

So, it seems more natural to onsider a type theory, where the notion of Proposition is distint from

the notion of Type or Set. After establishing the various isomorphisms between propositions and other

types, then we an analize the various frameworks to develop intuitionisti mathematis, like Topos

Theory presented as a type theory, Martin-L�of's Construtive Type Theory and also the Calulus of

Construtions.

Moreover, sine the type theories of Heyting pretoposes and of toposes are extensional, while Martin-

L�of's Construtive Type Theory is intensional, it should be analyzed how muh of suh type theories

an be saved in a more intensional setting.

Another diretion of appliation of the type theory of Heyting pretoposes with a natural numbers

objet is to desribe the notion of small maps via type theory and then to get a type-theoreti desription

of the models for the whole intuitionisti set theory as in [JM95℄.
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