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Abstract

The fundamental concepts of category theory are systematized in the language of
a bifibrant double category. We define the language of all bifibrant double categories:
the co/descent calculus is a system for double weighted co/limits, and much more; and
we can explore it visually in three dimensions: colors, strings, beads, and flows.

[Note. This is a first draft, with basic definitions and theorems, but limited exposition.]

[This program is too big for one person! If you’re interested, send me a message.]
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0 Introduction

Category Theory is known as a unifying language of mathematics [14]. In recent years,
Applied Category Theory has begun to explore it as a language for all kinds of science [4].
I propose that a category theory is a logic, as in a language of thinking.

In this context, my doctoral thesis creates metalogic: the three-dimensional category of
bifibrant double categories. The language is vastly powerful, yet intuitive and practical in
the forms of string diagrams and the co/descent calculus.

Based on the visual language of thinking, I propose an education and research program.

0.1 Category theory is Logic

The basic concepts of category theory

type and process, relation and transformation
identity and composition, adjunction and representation

are systematized in the language of a bifibrant double category, a concept presently known
as “proarrow equipment” or “framed bicategory” [18]. Such a language can be understood
simply as a logic, i.e. a system of thoughts of a world:

A world is a category of types of things, and processes between types.

A thought of the world is a relation of types (a judgement), and
a process of thinking is a transformation of relations (an inference).

Relations and transformations form a category, and these “thoughts” form a bifibration
from the world to the world, with operations of parallel composition and identity.

In this view, category theory is the realization that thought is connection, the dimension
beyond the world in which type relates to type, and process transforms to process.

Yet a process is a special kind of connection, and so thought encompasses the world:
each process forms a dual pair of relations. By composition, thoughts are pushed forward
or pulled backward along processes; this is the “bifibrance” of a logic.

The language exists in two dual forms: syntax and imagery, a.k.a. string diagrams [16]:
dual to object, arrow, square is color, string, bead. We distinguish processes from relations
by a downward pointer, and their action on relations is drawn as bending.

bif. dbl. cat. dim. logic
object 0 type

tight morphism V process
loose morphism H relation

square 2 transformation
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The simplest kind of logic is binary logic: sets and functions, relations and entailments;
i.e. the predicate logic of sets. Type theory has realized that relations have content beyond
truth values, and in a few decades we have made a multiverse of logics to explore.

So how do we make logics? This is summarized in the motto:

a category is a matrix with composition and identity.

A category is a type of objects, indexing a matrix of morphisms, with the structure of com-
position and identity. In [18], Shulman presented the two ways we construct logics:

1. A bifibered monoidal category R → A forms a logic, in which a relation R : A |B is an
object R over A× B; this is a matrix, i.e. two-variable type a : A, b : B ` R(a, b) :V.

2. Monads in a logic, self-relations with composition and identity, form a richer logic.
A monad in a logic of matrices is a category, “enriched in” or “internal to” that logic.

The two constructions define the language of co/ends [15]: a bimodule of monads is
a matrix with composition actions; these compose by coend, a coequalizer of a coproduct,
and “divide” or transform by end, an equalizer of a product.

R ◦ S = Σb R(−, b)⊗ S(b,−)

[P,Q] = Πx Πy P (x, y)→ Q(x, y)

Categories are self-relations, which act on relations of categories, defining “active logic”:
coend is the bilinear existential, and end is the natural universal. [13]

(r · b, s) ≡ (r, b · s) i(x · p · y) ≡ x · i(p) · y

Category theory is presently seen as a network of concepts, without a central ground.
While it is true that generality begets interdefinability, the “fundamentality” of concepts
must be understood by how we construct the universe of categories, and this leads directly
to the language of coends and ends. In this way, category theory is generalized logic.

Universal constructions are systematically derived in the language: composition and
transformation form a tensor-hom adjunction, giving formulae for lifts and extensions,
and weighted limits and colimits are representations thereof.

[R ◦ S, T ] = Πa Πc (Σb R(a, b)⊗ S(b, c)) → T (a, c)
∼=

[R, S → T ] = Πa Πb R(a, b) → (Πc S(b, c)→ T (a, c))

The coYoneda lemma is the fact that the hom of a category is its identity relation, and the
Yoneda lemma is the curried form of this fact.
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Fundamental ideas are made simple and clear in the language. Presenting CT as logic
provides not only a central ground of category theory, but also a systematic and direct
exposition of the full power of the language of categories.

Moreover, string diagrams provide an intuitive and systematic presentation of these
fundamental ideas. Because imagery is dual to syntax, no exclusionary choice is needed:
the two combine to form the visual formal language of “color syntax”.

C C(A,B) : Cat C(f, g) : Prof C(f, g)(Q,R) : Set

A string diagram is the general form of a concept, and writing syntax in the diagram
determines a specific instance, i.e. substitution into a dependent type. Reasoning can
smoothly transition levels of generality, from an entire logic to a specific transformation.
In color syntax, the language of categories is both intuitive and practical.

0.2 Metalogic

Now, the central insight of the thesis: for each pair of types in a logic, there is a category
of relations, and the structure of a logic is composition and identity of relations.

A logic is a matrix of categories with composition and identity.

The language of logics is the higher-dimensional co/end calculus: the co/descent calculus.
Because bifibrant double categories unify the fundamental concepts of category theory, we
propose the co/descent calculus to be the unified metalanguage of category theory.

We develop the notion of a “matrix of categories”, and its three-dimensional language,
as follows.
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Chapter 1: Spans of categories.
A span of categories A ← R → B is a equivalent to a matrix of categories R(A,B) and
profunctors ~R(a, b), with sequential composition and identity. In the same way, a span of
profunctors i ← f → g is equivalent to a matrix of profunctors i(f, g) :Q(X,Y) |R(A,B)
with composition and identity.

We introduce three-dimensional string diagrams: spans of categories are horizontal
strings, profunctors are vertical bars, and functors are drawn as a closed loop or “bead
within a bead”, interpreted as a transformation from inner to outer.

span category span profunctor
~R(a1, b1) ◦ ~R(a2, b2)⇒ ~R(a1a2, b1b2) i(f, g) ◦ ~R(a, b)⇒ i(fa, gb)

We introduce the concept of displayed profunctor 1.2, and show the double category of span
categories A ← R → B to be equivalent to that of displayed categories R :A × B → Cat.
The matrices R(A,B) are the basic data of the co/descent calculus.

Chapter 2: Matrix categories.
A matrix category R :A ‖B is a span of categories, with actions by both arrows and “op-
arrows” in A and B: the weave double category 〈A〉 is the coproduct of the arrow double
category and its opposite

−→
A +
←−
A , forming a logic, and R is a bimodule from 〈A〉 to 〈B〉. In

the terminology of [21], a matrix category is a two-sided bifibration.

matrix category matrix category
�A : 〈A〉(A0,A1)×R(A1,B)→ R(A0,B) �B :R(A,B0)× 〈B〉(B0,B1)→ R(A,B1)
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This generalizes from categories to profunctors: the arrow profunctor ~f : ~X | ~A consists
of commutative squares f0 ·a = x·f1. The weave vertical profunctor 〈f〉 : 〈A〉 | 〈B〉 is the union
of ~f and its opposite. A matrix profunctor i(f, g) :Q(X,Y) |R(A,B) is a span of profunctors
f ← i→ g, which is a bimodule from 〈f〉 to 〈g〉.

matrix profunctor matrix profunctor
�f : 〈f〉(f0, f1)× i(f1, g)⇒ i(f0, g) �g : i(f, g0)× 〈g〉(g0, g1)⇒ i(f, g1)

Morphisms of matrix categories and matrix profunctors are matrix functors and ma-
trix transformations. These form a double category MatCat over Cat × Cat. Sequential
composition of matrix profunctors over that of profunctors is defined by a coequalizer,
which nullifies the parallel action of zig-zags reassociating [(f0, g0)] = [(f1, g1)] : 〈f ◦ g〉 and
[(k0, l0)] = [(k1, l1)] : 〈k ◦ `〉. (Definition 44)

sequential composite
(m,n) ≡ (f �m� k, g � n� k) : m � n

Moreover, MatCat is a logic, and MatCat→ Cat×Cat is a double fibration [3]: sequen-
tial composition of matrix profunctors preserves substitution of transformations (starting
at Prop. 47). Hence we call the structure MatCat→ Cat× Cat a fibered logic.

To complete the three-dimensional structure of Cat ← MatCat → Cat, we define par-
allel composition of matrix categories in Section 2.5. While profunctors compose by co-
equalizer, matrix categories compose by codescent object [21], which adjoins an associator
isomorphism for the action by arrows and oparrows of the middle category.
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parallel composition
α : (R, b� S) ∼= (R� b, S)

Dually, the category of matrix functors is constructed as a descent object [20]. So com-
position and transformation of matrix categories are dual, just as in the co/end calculus
(Theorem 57).

R⊗ S = ~ΣB. R(−,B)× S(B,−)
[P ,Q] = ~ΠX,Y. P(X,Y)→ Q(X,Y)

However, parallel composition does not preserve sequential composition of matrix pro-
functors: because both dimensions are bimodules, both compositions involve colimits
which the other cannot represent. So Cat ← MatCat → Cat is like a triple category
without interchange, a structure on span categories: we define a metalogic to be a fibered
logic M→ C× C, which forms a 2-weak category in SpanCat. [Definition 55]

Chapter 3: The metalogic of logics.
A bifibrant double category, i.e. a logic, is a pseudomonad in MatCat.

logic composition unit

Because a logic is two-dimensional, there are two kinds of relations between logics: a
vertical profunctor consists of processes between logics, and a horizontal profunctor consists
of relations between logics. Two pairs are connected by a double profunctor, which consists
of inferences between relations, along processes.

Contents



The Language of Category Theory Christian Williams

meta relation meta process meta inference
[horiz. profunctor] [vert. profunctor] [dbl. profunctor]

For horizontal profunctors, parallel composition is a familiar bimodule action. Yet be-
cause vertical profunctors are orthogonal, parallel composition defines a monad structure,
and so double profunctors are bimodules thereof.

H-prof. composition V-prof. composition D-prof. composition

So logics have two kinds of “relations”, and one kind of “function”: a double functor
[[A]] :A0 → A1 maps squares of A0 to squares of A1, preserving relation composition and
unit up to coherent isomorphism. This generalizes to transformations of vertical, horizon-
tal, and double profunctors; all four are defined by mapping squares in a way that coheres
with parallel composition.

double functor preserves composition; double transformation

All together, logics form a metalogic: morphisms are functors, profunctors, and matrix
categories; squares are vertical transformations, horizontal transformations, and double
profunctors; and cubes are double transformations.

Below, the outline: we construct the metalogic of matrix categories, then apply the
“horizontal pseudomonad” construction to form the metalogic of bifibrant double cate-
gories; and we give a metalogical interpretation of this structure.
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MatCat H.PsMnd(−) bf.DblCat Logic

0 category (H)-pseudomonad bifibrant double category logic
V profunctor (H)-vertical monad vertical profunctor meta process
H matrix category (H)-pseudobimodule horizontal profunctor meta relation
VH matrix profunctor (H)-vertical bimodule double profunctor meta inference

T functor ps. mnd. morphism double functor flow type
TV transformation v. mnd. morphism vertical transformation flow process
TH matrix functor ps. bim. morphism horizontal transformation flow relation
TVH matrix transformation v. bim. morphism double transformation flow inference

As a double profunctor consists of inferences between logics, a double transformation
is a “flow” of meta-reasoning, a way to transform one system of reasoning into another.

In this sense, the language of bf.DblCat is the language of metalogic.

0.3 Logic in Color

This language is the basis for an education and research program. First priorities:

- We need a good drawing app. it can be simple: a grid of points, tools for lines and
rectangles, auto-filling colors, and substitution of syntax. Plus an organized database.

- A research seminar. The project is too big for one person, so the sooner we can begin
collaboration the better. If you’re interested, send me a message.
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1 Spans of categories: strings, beads, and flows

We can share a language for all kinds of thinking, if we determine the basic structure of a
“kind of thinking”, and understand the language of these structures.

So, we proceed from the introduction: what is the underlying structure of a logic?
We can understand this by each dimension: type and process, relation and inference.
Types form a category, and processes form a profunctor. So the language of categories,

of objects and morphisms, forms dimensions 0 and V of logic.
Now, relations form a category as well; yet a relation depends on a pair of types, and an

inference depends on a pair of processes. So, the language of matrices of categories forms
the dimensions H and VH of logic. This is the middle column below.

type
category
X :Cat

relation
span category
X← Q→ Y
∼ Q(X,Y) : Cat

type
category
Y :Cat

process
profunctor
f :X |A

∼ f(X,A) : Set

inference
span profunctor
f ← i→ g
∼ i(f, g) : Prof

process
profunctor
g :Y |B

∼ g(Y,B) : Set

type
category
A :Cat

relation
span category
A← R→ B
∼ R(A,B) : Cat

type
category
B :Cat

Contents
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In this way, the language of dependent categories can be understood as metalogic: each
span profunctor is a kind of thinking, and each span transformation is... well, a way to
transform one kind of thinking into another.

Because a span profunctor is a system of inference, it can be imagined as a bead. Now,
the third dimension is inner to outer: a span transformation is a bead within a bead.

We define the three-dimensional visual language of dependent categories.

span transformation [[i]] : i0 ⇒ i1

Imagery is dual to syntax: a color is dual to a point, and a string is dual to an arrow.
So they complement each other; in fact, the visual and symbolic unite in one language,
which we call color syntax: a string diagram is a general concept, and substituting syntax
determines a specific instance of the concept.

Yet this is the very basis of dependent category theory: a span of categories A← R→ B
is equivalent to a matrix of categories R(A,B). Miraculously, not only is the language of
dependent categories visualized in the simple form of colors, strings, beads, and flows —
its key principle is somehow immanent in the very idea of uniting imagery and syntax.

Now we define the logic of span categories A← R→ B, as a visual language, and then
by applying syntax, we form the equivalent logic of displayed categories R :A× B→ Cat.

1.1 Span categories

Let A and B be categories. A span category from A to B is a category R with functors
πRA :R → A and πRB :R → B; we can denote the span by A ← R → B, or R :A ‖B. Note
this data is equivalent to a functor (πRA , π

R
B ) :R → A×B. A and B are the base categories,

and R is the total category; we may refer to the span simply as R.
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We can draw a span category A← R→ B simply as a string.

span category A← R→ B

We can see a span category as a matrix of categories, by inverse image alongR → A×B.
The notion of inverse image along a functor S → C has been given by Street in [19]; the
resulting map S :C → Cat is called a normal lax functor. The notion was later developed
for use in type theory, and rebranded as “displayed category” [1].

Definition 1. A displayed category R :A× B→ Cat gives, for each pair of:

objects a category
A :A,B :B R(A,B) :Cat

morphisms a profunctor
a :A(A0,A1), b :B(B0,B1) ~R(a, b) :R(A0,B0) |R(A1,B1)

composable pairs a transformation
(a1, b1), (a2, b2) r · r : ~R(a1, b1) ◦ ~R(a2, b2)⇒ ~R(a1a2, b1b2)

objects an equality
A :A,B :B R(A,B)(−,−) = ~R(idA, idB)

so that composition is associative and unital, i.e. (r ·r) ·r = r ·(r ·r) and idR ·r = r = r · idR.

We give the proposition, and then expound in the visual language of span categories.

Proposition 2. Let A,B be categories, and let A← R→ B be a span of categories. Inverse
image along R → A× B determines a displayed category R :A× B→ Cat. [19]

For each pair of objects A :A,B :B there is a category R(A,B) of objects R :R which
map to (A,B), also known as the “fiber over” (A,B); this may also be denoted RA

B. This is
given by pullback in Cat, of R along the functor which selects the pair (A,B).

R(A,B) R

∗ A× B(A,B)

y
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We introduce color syntax, a visual language that unifies string diagrams and syntax.
The basic principle is substitution: by writing a pair of objects A,B in the color of each
category A,B, we determine the fiber category R(A,B). An entry is drawn on the right as
a type in Cat, which we color white as the “ambient” logic, outlined in blue and green to
indicate that it is a diagram indexed by categories A and B.

category R(A,B)

Now for the morphisms of a span category A ← R → B, we consider the span of hom-
profunctors ~A ← ~R → ~B. Profunctors are drawn as strings pointing downward, and the
hom of R is drawn as a bead from the R string to itself, along the homs of A and B.

A R B

A R B

~A p ~R ~Bp

span hom-profunctor ~A← ~R → ~B

Just as R → A× B determines a matrix of categories, ~R ⇒ ~A× ~B determines a matrix
of profunctors: for each pair a :A(A0,A1), b :B(B0,B1) there is a profunctor ~R(a, b) from
the category R(A0,B0) to R(A1,B1). This is given by pullback in Prof of the hom of R
along the functor which maps the walking arrow to (a, b) : ~A× ~B.

~R(a, b) ~R R(A0,B0) R(A1,B1)

[0→ 1] ~A× ~B (A0,B0) (A1,B1)(a,b)

~R(a,b)
p

(a,b)

y

Contents



The Language of Category Theory Christian Williams

In color syntax, this pullback is given by substitution of the pair of morphisms a, b into the
hom-profunctors ~A, ~B. This gives a diagram of categories and profunctors ~R : ~A×~B→ Prof,
depicted on the right. Each profunctor is drawn as a blue and green “string of beads”, as
its elements can be understood as two-dimensional morphisms.

profunctor ~R(a, b) :R(A0,B0) |R(A1,B1)

Now we can go one level further, to the morphisms of the span category. GivenR0 :R(A0,B0)

and R1 :R(A1,B1), then ~R(a, b)(R0, R1) is the set of morphisms r :R(R0, R1) over (a, b).

set ~R(a, b)(R0, R1)

As the string diagram suggests, we can interpret objects and morphisms of R as relations
and transformations, i.e. horizontal morphisms and squares in a double category. Once we
define matrix categories, with horizontal composition, this interpretation will be literal.

This completes the data of a span category, which as we see is two-dimensional; we
now consider its structure of composition and unit, which is three-dimensional.
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A span category has a composition transformation r · r : ~R ◦ ~R ⇒ ~R over composition
of A and B. We draw equalities as dotted lines, and the transformation as going outward.

We draw a three-dimensional string diagram “head on” in the same way, but now we
see more: because the source and target span profunctors are drawn as “beads”, the target
can be depicted as a large “hollow” bead. Intuitively, we are looking at the front of a box
and “poking a hole” to look inside.

A R B

A R B

A R B

A R B

A R B

p

p
p

p

p
p

p
p

r · r : ~R ◦ ~R ⇒ ~R

Yet to see the actual 3-morphism, we still need to “slice down the middle”. As we do so,
we draw the middle slice as its “displayed category” equivalent.

The span transformation r · r : ~R ◦ ~R ⇒ ~R determines a matrix of transformations:
for each composable pair of pairs (a1, b1) :A(A0,A1) × B(B0,B1) and (a2, b2) :A(A1,A2) ×
B(B1,B2), there is a transformation r1 · r2 : ~R(a1, b1) ◦ ~R(a2, b2) ⇒ ~R(a1a2, b1b2). This is
given by functoriality of pullback in Prof.

~R ◦ ~R ~R

~R(a1, b1) ◦ ~R(a2, b2) ~R(a1a2, b1b2)

[0→ 1] [0→ 1]

(~A× ~B) ◦ (~A× ~B) A× B

((a1,b1),(a2,b2)) (a1a2,b1b2)

r1·r2

r·r

y y

Again, this is given in color syntax by substituting morphisms (a1, b1) and (a2, b2) into the
homs of A and B. As diagrams become more complex, we may leave types implicit when
they can be inferred in context. We may also use R(a, b), rather than ~R(a, b).
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r1 · r2 :R(a1, b1) ◦ R(a2, b2)⇒ R(a1a2, b1b2)

The second structure of a span category R is a unit transformation idR ⇒ ~R. For each
pair of objects, there is an equality from the hom of R(A,B) to the profunctor ~R(idA, idB).
So, identities of R(A,B) become identities of ~R(idA, idB).

idR :RA
B ⇒ RA

B(−,−) = Rid.A
id.B

Finally, this structure satisfies two properties: composition is associative and unital.
For any composable triple r1, r2, r3 we have r1 · (r2 · r3) = (r1 · r2) · r3.

r1 · (r2 · r3) = (r1 · r2) · r3

Contents
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We introduce the coherence principle for three-dimensional string diagrams:
In a definition, each cube is interpreted as well-defined; so if there are multiple ways of

constructing the cube from the given structure, they are equal. Hence the above equation
of associativity can be drawn as a single cube.

associativity

Finally, composition with identities is unital.

unitality

id.R0 · r = r = r · id.R1

By the coherence principle, the middle diagram alone expresses the two equations.

In summary, a span of categories A← R→ B determines a displayed category R :A×
B→ Cat: this is a matrix of categories R(A,B) and profunctors ~R(a, b), with composition
~R(a1, b1) ◦ ~R(a2, b2)⇒ ~R(a1a2, b1b2) which is associative and unital.

Conversely, the collage of a displayed category R :A × B → Cat is a span category
A← R→ B; this gives the equivalence SpanCat ' DisCat. [Theorem 14]

The relations of a logic form such a matrix of categoriesR(A,B); hence span categories
provide the basic infrastructure for metalogic. Once equipped with horizontal composition,
a span category will be a “metarelation”, i.e. horizontal profunctor, between logics. ??
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1.1.1 Span functors

LetR0 :A0 ‖B0 andR1 :A1 ‖B1 be span categories. A span functor fromR0 toR1 is a pair
of functors [[A]] :A0 → A1 and [[B]] :B0 → B1, and a functor [[R]] :R0 → R1 such that the two
squares commute, i.e. for any R :R0 over (A,B) we have that [[R]] :R1 lies over ([[A]], [[B]]).

A0 R0 B0 R0 R1

A1 R1 B1 A0 × B0 A1 × B1

[[R]]

[[A]]×[[B]]

[[A]] [[R]] [[B]]

Just as a span category is a matrix of categories, a span functor is a matrix of functors.

Definition 3. Let R0 :A0×B0 → Cat and R1 :A1×B1 → Cat be displayed categories, and
[[A]] :A0 → A1, [[B]] :B0 → B1 be functors. A displayed functor [[R]] :R0 ⇒ R1([[A]], [[B]])
gives for each pair:

A0 × B0 Cat

A1 × B1 Cat

R0

[[A]]×[[B]]

R1

[[R]]

objects a functor
A :A,B :B [[R]](A,B) :R0(A,B)→ R1([[A]], [[B]])

morphisms a transformation
a : ~A, b : ~B [[r]](a, b) : ~R0(a, b)⇒ ~R1([[a]], [[b]])

composable pairs an equality
(a1, b1), (a2, b2) [[r]](a1a2, b1b2) = [[r]](a1, b1) · [[r]](a2, b2)

objects an equality
R :R0(A,B) [[idR]] = id[[R]]

Proposition 4. Let A0 ← R0 → B0 and A1 ← R1 → B1 be span categories. Let [[A]] :A0 →
A1 and [[B]] :B0 → B1 be functors, and let [[R]] :R0 → R1 be a span functor over [[A]], [[B]].

Inverse image along [[R]] determines a displayed functor [[R]] :R0 ⇒ R1([[A]], [[B]]).

We now expound this idea, in color syntax.
A functor is a transversal morphism in SpanCat, drawn as a string with a small “bubble”

pointer, filled with the color of its source. A span functor, like a transformation, is drawn
as a solid black bead, to distinguish from the “open” bead of a span profunctor.

A0 R0 B0

A1 R1 B1

[[A]] [[R]] [[B]]

span functor [[R]] :R0 → R1
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Inverse image defines a matrix of functors [[R]](A,B) :R0(A,B) → R1([[A]], [[B]]), by
functoriality of pullback.

R0 R1

R0(A,B) R1([[A]], [[B]])

∗ ∗

A0 × B0 A1 × B1

[[R]]

[[A]]×[[B]]

(A,B)

y

([[A]],[[B]])

[[R]](A,B)

y

Each functor is determined in color syntax by substituting a pair of objects A,B into the
base categories A0,B0 of the source span category R0.

[[R]](A,B) :R0(A,B)→ R1([[A]], [[B]])

The span functor induces a transformation of span profunctors. As span profunctors are
two-dimensional, this transformation is three-dimensional, depicted below on the right. To
distinguish this transformation in the diagram, we may designate white space between the
span functor and the hom of the target span category.

A1 R1 B1

A0 R0 B0

A0 R0 B0

A1 R1 B1

p p pp p
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Inverse image determines a matrix of transformations [[R]](a, b) : ~R0(a, b)⇒ ~R1([[a]], [[b]]),
by functoriality of pullback in Prof.

~R0
~R1

~R0(a, b) ~R1([[a]], [[b]])

[0→ 1] [0→ 1]

~A0 × ~B0
~A1 × ~B1

(a,b) ([[a]],[[b]])

[[A]]×[[B]]

y

[[R]]

y

[[R]](a,b)

Again, this is represented in color syntax by substitution.

[[R]](a, b) :R0(a, b)⇒ R1([[a]], [[b]])

This completes the structure of a displayed functor [[R]] :R0 ⇒ R1([[A]], [[B]]). Lastly: the
property that it preserves the composition and unit of the displayed categories R0,R1.

[[r1 · r2]]

=

[[r1]] · [[r2]]
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[[id.R]]

=

id.[[R]]

This defines a transformation of lax functors, i.e. displayed functor [[R]] :R0 ⇒ R1([[A]], [[B]]).

=

=

So, a span functor [[R]] :R0 → R1 over functors [[A]] :A0 → A1 and [[B]] :B0 → B1 is
equivalent to a matrix of functors [[R]](A,B) :R0(A,B)→ R1([[A]], [[B]]) and transformations
[[R]](a, b) : ~R0(a, b)⇒ ~R1([[a]], [[b]]), which preserves the composition and unit ofR0 andR1.
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1.2 Span profunctors

The previous section gave the known equivalence between span categories A ← R → B
and displayed categoriesR :A×B→ Cat. We now extend this idea to spans of profunctors;
surprisingly this has not been explored, and yet it works in the exact same way.

We introduce the concept of displayed profunctor, a bimodule of displayed categories,
formed by inverse image along a transformation. These are the relations in the logic of
displayed categories, which we prove equivalent to the logic of span categories.

Definition 5. Let X ← Q → Y and A ← R → B be span categories. A span profunctor
from Q to R is a pair of profunctors f :X |A and g :Y |B, and a profunctor i :Q |R with
transformations πif : i⇒ f(πQX , π

R
A ) and πig : i⇒ g(πQY , π

R
B ), denoted i(f, g) :Q(X,Y) |R(A,B).

Note this data is equivalent to a transformation (πif , π
i
g) : i⇒ (f ×g)(πQX ×π

Q
Y , π

R
A ×πRB ).

X Q Y Q R

A R B X× Y A× B

ip

f×g
p

if p gp

Definition 6. Let Q :X× Y→ Cat and R :A× B→ Cat be displayed categories.
A displayed profunctor i : f × g → Prof from Q to R is a map

X× Y f × g A× B

Cat Prof Cat

Q Ri

which gives for each pair:

elements f : f(X,A), g : g(Y,B) a profunctor i(f, g) :Q(X,A) |R(Y,B)

composable pairs (x, y), (f, g) a transformation q · i : ~Q(x, y) ◦ i(f, g)⇒ i(xf, yg)

composable pairs (f, g), (a, b) a transformation i · r : i(f, g) ◦ ~R(a, b)⇒ i(fa, gb)

with associativity (q · i) · r = q · (i · r)
and unitality id.Q · i = i = i · id.R .

Proposition 7. Let Q(X,Y) and R(A,B) be span categories, and i(f, g) a span profunctor.
Inverse image along i⇒ f × g determines a displayed profunctor i : f × g → Prof.

Just as a displayed category is a map R :A × B → Cat with a “monad” structure for
composition, i.e. a “lax functor”, a displayed profunctor is a bimodule of such monads [17].
We now expound the concept, continuing to expand the visual language of SpanCat.
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Generalizing the hom of a span category, a span profunctor can be drawn as a bead
which connects the string of one span category to another, along the profunctors f and g
drawn as downward “pointer strings”.

span profunctor i(f, g) :Q |R

Inverse image along the transformation i ⇒ f × g determines a matrix of profunctors:
for each f : f(X,A) and g : g(Y,B) there is a profunctor i(f, g) from category Q(X,Y) to
category R(A,B). This is given by pullback in Prof of i→ f × g along the transformation
which maps the walking arrow to the pair (f, g) : f × g.

i(f, g) i

[0→ 1] f × g(f,g)

y

This is represented in color syntax by substituting a pair f, g into the strings of f and g.
The resulting profunctor is a relation in the logic of Cat, drawn on the right.

profunctor i(f, g) :Q(X,Y) |R(A,B)
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So the above is the data of a span profunctor, which is two-dimensional. Now we
explicate its structure, sequential composition, which is three-dimensional.

A span profunctor i :Q |R has a precompose action ~Q ◦ i→ i, and a postcompose action
i ◦ R → i. Below, these are given in conventional diagrams and string diagrams.

X Q Y

X Q Y

X Q Y

A R B

A R B

~X p

f p

~Q ~Yp

gp

f p gp

i

precompose action ~Q ◦ i⇒ i

X Q Y

X Q Y

A R B

A R B

A R B

f p gpi

~A p ~Bp~R

f p gp

postcompose action i ◦ ~R ⇒ i
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Precomposition by Q is a matrix of transformations (indexed by composable pairs)
~Q(x, y) ◦ i(f, g)⇒ i(xf, yg). This is given by the functoriality of pullback in Prof.

~Q ◦ i i

~Q(x, y) ◦ i(f, g) i(xf, yg)

[0→ 1] [0→ 1]

(~X× ~Y) ◦ (f × g) f × g

((x,y),(f,g))

y

(xf,yg)

y

So, substitution in the string diagram for composition determines a transformation in Cat.

q · i : ~Q(x, y) ◦ i(f, g)⇒ i(xf, yg)
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Postcomposition by ~R is a matrix of transformations i(f, g) ◦ ~R(a, b)⇒ i(fa, gb).

i ◦ ~R i

i(f, g) ◦ ~R(a, b) i(fa, gb)

[0→ 1] [0→ 1]

(f × g) ◦ (~A× ~B) f × g

((f,g),(a,b)) (fa,gb)

y y

i · r : i(f, g) ◦ ~R(a, b)⇒ i(fa, gb)

Hence the structure of precomposition by ~Q and postcomposition by ~R is given by
matrices of transformations ~Q(x, y) ◦ i(f, g) ⇒ i(xf, yg) and i(f, g) ◦ ~R(a, b) ⇒ i(fa, gb). To
complete the exposition, this structure satisfies the property of associativity and unitality.

~Q(x, y) ◦ i(f, g) ◦ ~R(a, b) ~Q(x, y) ◦ i(fa, gb)

i(xf, yg) ◦ ~R(a, b) i(xfa, ygb)

By the “coherence principle” of string diagrams, introduced for span categories, asso-
ciativity can be depicted simply by drawing the cube Q◦ i ◦R → i. This expresses that the
cube is “coherent” or well-defined, i.e. the two transformations ~Q ◦ i ◦ ~R → i are equal.

Contents



The Language of Category Theory Christian Williams

=

Q(x, y) · (i(f, g) · R(a, b)) (Q(x, y) · i(f, g)) · R(a, b)

Finally, composition is unital.

= =

= =

idQ · i i i · idR

So, a span profunctor determines a matrix of profunctors i(f, g) :Q(X,Y) |R(A,B), with
actions for sequential composition ~Q(x, y)◦i(f, g)⇒ i(xf, yg) and i(f, g)◦ ~R(a, b)⇒ i(fa, gb),
which are associative and unital.

This concept is precisely what was needed to complete the framework for metalogic:
the inferences or “transformations” of a logic form a matrix of profunctors. Once we add
parallel composition, span profunctors form “meta inferences”, i.e. double profunctors,
between logics. Metalogic is the language of metainferences and their transformations.
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1.2.1 Span Transformations

We have seen thus far that a span profunctor can be understood as a system of inference.
Now, metalogic is the language of such systems of inference, and transformations thereof.
Completing the logic of span categories, we define span transformations.

Definition 8. Let Q0 :X0 ‖Y0,R0 :A0 ‖B0,Q1 :X1 ‖Y1,R1 :A1 ‖B1 be span categories.
Let [[Q]] :Q0 → Q1 and [[R]] :R0 → R1 be span functors over [[X]], [[Y]] and [[A]], [[B]].
Let i0(f1, g1) :Q0 |R0, i1(f1, g1) :Q1 |R1 be span profunctors.
A span transformation [[i]] : i0 ⇒ i1 is a pair of transformations [[f ]] : f0 ⇒ f1 over

[[X]], [[A]] and [[g]] : g0 ⇒ g1 over [[Y]], [[B]], and a transformation [[i]] : i0 ⇒ i1 over [[Q]], [[R]],
such that the two squares commute.

X1 Q1 Y1

X0 Q0 Y0

A0 R0 B0

A1 R1 B1

f0

p

i0 g0

p

[[X]] [[Q]] [[Y]]

[[A]] [[R]] [[B]]

f1

p g1p[[i]]

i1

[[g]][[f]]

In two dimensions, the morphism of span profunctors is drawn as follows.

f0 i0 g0

f1 i1 g1

X0 A0 Q0 R0 Y0 B0

X1 A1 Q1 R1 Y1 B1

f0p

f1
p

[[X]] [[A]]

g1
p

[[Y]] [[B]]

g0pi0p

i1
p

[[Q]] [[R]][[f ]] [[g]][[i]]

Note this is equivalent to one commutative square of transformations.

i0 i1

f0 × g0 f1 × g1

[[i]]

[[f ]]×[[g]]
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Just as a span profunctor determines a matrix of profunctors, a span transformation
determines a matrix of transformations.

Definition 9. A displayed transformation [[i]] : i0 ⇒ i1([[f ]], [[g]]) is a map

f0 × g0 f1 × g1

Prof Prof

[[f ]]×[[g]]

i0 i1

Trans
p

[[i]]

which gives for each

pair of morphisms a transformation
f : f0(X,A), g : g0(Y,B) [[i]](f, g) : i0(f, g)⇒ i1([[f]], [[g]])

composable pair an equality
q : ~Q0(x, y), i : i0(f, g) [[q · i]] = [[q]] · [[i]] : i1([[xf]], [[yg]])

composable pair an equality
i : i0(f, g), r : ~R0(a, b) [[i · r]] = [[i]] · [[r]] : i1([[fa]], [[gb]]) .

We now expound the idea, completing the visual language of SpanCat.

A span transformation is a cube: the inner face is the source span profunctor i0, and
the outer face is the target span profunctor i1. The left and right faces are transformations
[[f ]] : f0 ⇒ f1 and [[g]] : g0 → g1, and the top and bottom are span functors [[Q]] :Q0 → Q1

and [[R]] :R0 → R1. The span transformation [[i]] : i0 ⇒ i1 fills the cube.
Note that the string diagram is exactly dual to the conventional diagram.

X1 Q1 Y1

X0 Q0 Y0

A0 R0 B0

A1 R1 B1

f0

p

i0 g0

p

[[X]] [[Q]] [[Y]]

[[A]] [[R]] [[B]]

f1

p g1p[[i]]

i1

[[g]][[f]]
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Substitution determines a matrix of transformations, by functoriality of pullback.

i0 i1

i0(f, g) i1([[f]], [[g]])

[0→ 1] [0→ 1]

f0 × g0 f1 × g1[[f]]×[[g]]

[[i]]

(f,g) ([[f]],[[g]])

y y

[[i]](f,g)

This is given in color syntax by substituting elements f : f0, g : g0 into the profunctors of the
source span profunctor i0, determining the transformation [[i]](f, g) : i0(f, g)⇒ i1([[f]], [[g]]).

So, the structure of a span transformation is three-dimensional: maps of squares.

Finally, it just has one property: the transformation is natural with respect to the actions
of i0 and i1, i.e. it preserves sequential composition of inference.
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[[q · i]]

=

[[q]] · [[i]]

[[i · r]]

=

[[i]] · [[r]]

This is a transformation of bimodules of lax functors, i.e. displayed transformation.

= =

Thus, a span transformation [[i]] : i0 ⇒ i1 determines a matrix of transformations

[[i]](f, g) : i0(f, g)⇒ i1([[f]], [[g]]).
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In giving the correspondence of span categories and displayed categories, we have
essentially turned SpanCat “inside out”: given a span transformation

X1 Q1 Y1

X0 Q0 Y0

A0 R0 B0

A1 R1 B1

f0

p

i0 g0

p

[[X]] [[Q]] [[Y]]

[[A]] [[R]] [[B]]

f1

p g1p[[i]]

i1

[[g]][[f]]

span categories become lax functors, and and span functors become transformations thereof;
span profunctors become bimodules of lax functors, and span transformations become
transformations thereof.

Cat Prof Cat

X0 × Y0 f0 × g0 A0 × B0

X1 × Y1 f1 × g1 A1 × B1

Cat Prof Cat

Q0 i0 R0

Q1 R1i1

[[X]]×[[Y]]Fun
p

Fun

p[[A]]×[[B]][[f ]]×[[g]] Trans

p[[Q]] [[R]][[i]]

Ultimately, this fact is the realization of the collage completeness of Cat [5], by which
Cat forms a classifying object for spans of categories.

Definition 10. Let i : f × g → Prof be a displayed profunctor. The collage Σi is the set

Σi ≡ Σf : f Σg : g. i(f, g)

which is equipped with projections to f and g.
The actions ~Q(x, y) ◦ i(f, g)⇒ i(xf) define an action Σ ~Q◦Σi⇒ Σi; and similarly for R.

The associativity and unitality of the former give that of the latter.
This construction is functorial: given a displayed transformation [[i]] : i0 ⇒ i1, as above,

the collage Σ[[i]] :Σi0 ⇒ Σi1 is a span transformation.
This gives a bijection of squares between the double category SpanCat and DisCat.
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1.3 Sequential composition

We now complete the equivalence of double categories SpanCat ' DisCat. It remains to
define sequential composition of span profunctors and displayed profunctors, as this is the
horizontal composition of each double category.

Definition 11. Letm(f, k) :R(X,A) | S(Y,B) and n(g, l) :S(Y,B) | T (Z,C) be a composable
pair of span profunctors. The sequential composite (m ◦ n)(f ◦ g, k ◦ `) :R(X,A) | T (Z,C)
is the span of profunctor composites.

X R A X R A

Y S B

Z T C Z T C

f p

g p

m k

p

l

pn

f◦g p m◦n k◦`p

An element of f ◦ g is an indexed pair Y.(f, g) : f(X,Y) × g(Y,Z), and of k ◦ ` is
B.(k, l) : k(A,B)× `(B,C). Then an element of m ◦ n over ((f, g), (k, l)) is a pair

S.(m,n) :m(f, k)(R, S)× n(g, l)(S, T )

quotiented by associativity: for any s :S(S0, S1) we have S0.(m, s · n) = S1.(m · s, n).
The sequential composite of span transformations [[m]] :m0 ⇒ m1 and [[n]] :n0 ⇒ n1 is

given by horizontal composition of transformations: [[m]] ◦ [[n]] :m0 ◦ n0 ⇒ m1 ◦ n1 maps

S.(m,n) :m0(f, k)(R, S)× n0(g, l)(S, T )

to
[[S]].([[m]], [[n]]) :m1([[f]], [[k]])([[R]], [[S]])× n1([[g]], [[l]])([[S]], [[T ]]) .

This defines horizontal composition of the double category of span categories.

Proposition 12. Span categories and span functors, span profunctors and span transfor-
mations form a double category SpanCat.

In the same way, displayed categories form a double category.

Proposition 13. Displayed categories and displayed functors, displayed profunctors and
displayed transformations form a double category DisCat.

Proof. Sequential composition of displayed profunctors is defined: given m : f × k → Prof
and n : g × l→ Prof, the composite (m ◦ n) : (f ◦ g)× (k ◦ l)→ Prof is

(m ◦ n)((f, g), (k, l)) = m(f, k)× n(g, l).

This is functorial, defining parallel composition of the double category DisCat.

Thus, we summarize the exposition of the section: the double category of span cate-
gories is equivalent to that of displayed categories.

Theorem 14. SpanCat ' DisCat.
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1.4 Parallel composition

As explored in this section, we can understand span categories to consist of relations,
and span profunctors to consist of inferences. The composition thus far defined has been
sequential composition of inference.

Now to complete the underlying structure of metalogic, we just need to define parallel
composition of these “meta”-relations and “meta”-inferences.

Definition 15. Let R :A ‖B and S :B ‖C be span categories. The parallel composite
R ∗ S :A ‖C is a span category defined by composition of spans in Cat.

This means that an object of R ∗ S over A :A,C :C is a pair R :R(A,B), S :S(B,C) for
some B :B. Hence the composite is equivalent to the matrix of categories

(R ∗ S)(A,C) = ΣB :B. R(A,B)× S(B,C)

and similarly for morphisms.

( ~R ∗ ~S)(a, c) = Σb :B. ~R(a, b)× ~S(b, c)

Composition and unit of R ∗ S are given by that of R and S; this is associative and unital.

In the same way, we define parallel composition of span profunctors.

Definition 16. Let i(d, f) :O(U,X) | P(V,Y) and m(f, k) :R(X,A) | S(Y,B) be span pro-
functors. The parallel composite (i ∗ m)(d, k) : (Q ∗ S)(U,A) | (R ∗ T )(V,B) is the span
composite in Prof.

U O X R A

V P Y S B

d

p f k

p

i m

So an element of i ∗m over d : d(U,V), k : k(A,B) is a pair i : i(d, f) and m :m(f, k) for some
f : f(X,Y). This can be understood as pairs of parallel-composable squares.

U X A

V Y B

Op Rp

d f k

P
p

S
p

i m

Hence the composite is equivalent to the following matrix of profunctors.

(i ∗m)(d, k) = Σf : f(X,Y). i(d, f)×m(f, k)

Parallel composition of span functors and of span transformations is defined analogously.
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Parallel composition is lax functorial with respect to sequential composition of span
profunctors, because sequential composition is a quotient: given a diagram

U O X R A

V P Y S B

W Q Z T C

d

p

i f m k
p

e p j g n `

p

there is a canonical transformation (i ∗ m) ◦ (j ∗ n) ⇒ (i ◦ j) ∗ (m ◦ n); yet this may be
noninvertible, because the quotient formed by f ◦g introduces more parallel composability.

Hence SpanCat is an intercategory [6], or “lax triple category”. But this is not yet our
metalanguage, as “meta”relations and “meta”inferences (span categories and profunctors)
are not yet equipped with actions of parallel composition.

The present notion of “double category” is defined to be a pseudomonad in SpanCat;
yet the monad-and-bimodules construction is not well-defined, because composition by an
arbitrary span of categories does not preserve colimits.

Yet when equipped with parallel composition, a matrix category is exponentiable [19];
hence the metalanguage of bifibrant double categories is well-defined, and higher-order.

So next, we determine how a category A forms a logic 〈A〉, its “logic of equations”, and
define a matrix category or two-sided bifibration to be a span category A ← R → B with
bimodule actions by the equational logics A← 〈A〉 → A and B← 〈B〉 → B.
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2 Bifibered categories: push and pull

We establish in Chapter 1 the basic data of a logic: a category of types and processes A,
and a span category of relations and inferences A ← A → A. Now, we add the basic
structure: processes act on relations, i.e. morphisms of A act on objects of A.

So in this chapter, we define the concept of matrix category or two-sided bifibration:
a span category A ← R → B equipped with both “push and pull” actions by A and B.
Matrix categories form a double category MatCat, which is fibered over Cat × Cat; then
Cat← MatCat→ Cat forms a three-dimensional structure which we call a metalogic.

Section 2.1: Fibrations and bifibrations. In order to act on span categories, we first
determine how a category A forms a logic A ← 〈A〉 → A. Two-sided fibrations have been
defined as bimodules of arrow double categories [21]; yet these are not logics, because
they lack conjoints. So, we define the logic of the weave double category to be the coproduct
of the arrow double category with its opposite, 〈A〉 ≡

−→
A +

←−
A .

Section 2.2: Matrix categories. We define a matrix category to be a bimodule of
weave double categories. The “weave construction” extends to profunctors, giving the
new concept of matrix profunctor [2.3]. This is a relation of dependent categories; and to
the author’s knowledge, such a notion has yet to be defined nor explored. We show why
bifibrations are essential to define relation composition.

Matrix categories and matrix functors, matrix profunctors and matrix transformations
form a double category MatCat, which is fibered over Cat× Cat [2.4].

Section 2.5: Parallel composition. Just as a profunctor consists of processes, a matrix
category consists of relations, and hence forms a “meta relation” between logics. So to
conclude the chapter, we define composition of these relations.

While profunctors compose by forming a coequalizer for associativity, matrix categories
compose by forming a codescent object, a weak colimit which adjoins a coherent associator
isomorphism. We show this defines the horizontal composition of a three-dimensional
category; but it does not preserve sequential composition of matrix profunctors, so we
define a metalogic to be a “bifibrant triple category without interchange” [2.5.1].

The language of MatCat is powerful, because composition is dual to the descent object
which forms each category of matrix functors. We derive formulae for extensions and lifts,
which allow for systematic derivation of weighted limits and colimits [2.5.2].
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2.1 Fibrations and bifibrations

A category is seen as a 1-dimensional structure of objects and morphisms; yet reasoning in
a category consists of 2-dimensional equalities between composites of morphisms.

Every category forms a double category, in fact three double categories, whose squares
are commuting squares. Two are known: the arrow double category

−→
A and its opposite

←−
A ;

their modules are fibrations and opfibrations.
Yet
−→
A and

←−
A are not logics; so we define the weave double category 〈A〉 to be the union

−→
A +

←−
A . It is a logic, and its modules are bifibrations.

2.1.1 Arrow double category

Definition 17. Let A be a category. The arrow double category
−→
A is as follows: the base

category is A; a loose morphism is a morphism of A, and a square is a commutative square.
We denote (vertical) processes by a, and (horizontal) relations by â.

A0
0 A1

0

A0
1 A1

1

â10

â11

a0 a1

(a0, a1) :
−→
A (â1

0 → â1
1)

Horizontal composition is that of squares, and horizontal units are identities.

composition unit

By forming a double category, A ←
−→
A → A can act on span categories. If an object

of R :A ‖B is to be a relation from an A-type to a B-type, then such relations should vary
over processes of A and B — this is a module of arrow double categories.
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Definition 18. Let A and B be categories.
A fibered category over A is a left module of the arrow double category

−→
A . This is a

span category R :A ‖ 1, with a span functor � :
−→
A ∗ R → R, and coherent isomorphisms

for associativity and unitality. The action, called substitution, is a matrix of functors

â�R :
−→
A (A0,A1)×R(A1)→ R(A0)

which is contravariant in A. It is also known as “pullback”, and often denoted by a∗(R1).
An opfibered category over B is a right module of the arrow double category

−→
B . This

is a span categoryR : 1 ‖B, with a span functor � :R∗
−→
B → R, and coherent isomorphisms

for associativity and unitality. The action, called image, is a matrix of functors

R� b̂ :R(B0)×
−→
B (B0,B1)→ R(B1)

which is covariant in B. It is also known as “pushforward”, and often denoted by b!(R0).

In string diagrams, with category 1 as white space, the actions are drawn as follows.

substitution image
−→
A (A0,A1)×R(A1)→ R(A0) R(B0)×

−→
B (B0,B1)→ R(B1)

Arrow double categories are special, because every process has a companion: there are
two squares which “bend” the process up or down into a relation.

Definition 19. Let A be a category, with
−→
A the arrow double category. Each morphism

a :A(A0,A1) induces two squares: the cartesian square ε.a and the opcartesian square
η.a, drawn below.

A0 A1 A0 A0

A1 A1 A0 A1

a

a a

a

ε.a η.a

Contents



The Language of Category Theory Christian Williams

Fibered and opfibered categories are usually defined via the notions of cartesian and
opcartesian morphism [9, Ch. 1,9]. These morphisms are given by the actions of squares
in the arrow double category, as follows.

Proposition 20. In a fibered categoryR over A, a morphism r :R0 → R1 over a :A(A0,A1)
is equivalent to η.a◦r :R0 → a�R1 over id.A0, by factoring through ε.a◦id.R1 : a�R1 → R1,
the cartesian morphism of R1 over a.

A0 A0 1

A0 A1 1

A1 A1 1

a

R0p

R1
pa

a

R1
p

rη.a

ε.a

This gives a contravariant representation of morphisms over a.

~R(a)(R0, R1) ∼= R(R0, a�R1)

In an opfibered category R over B, a morphism r :R0 → R1 over b :B(B0,B1) is equivalent
to a morphism r◦ε.b :R0�b→ R1 over id.B1, by factoring through id.R0◦η.b :R0 → R0�b,
the opcartesian morphism of R0 over b.

1 B0 B0

1 B0 B1

1 B1 B1

R0p

R1
p

b

b

b

R0p

r

η.b

ε.b

This gives a covariant representation of morphisms over b.

~R(b)(R0, R1) ∼= R(R0 � b,R1)
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However, there is a limitation to the arrow double category: it is not a logic, because
there are no backwards-pointing arrows to be conjoints. This may seem like a technicality
— surely all equational reasoning of A can be expressed in

−→
A , right? Actually, no.

In two dimensions, we distinguish between morphisms as processes and as relations.
Based on how processes act on relations, there are four basic kinds of equations.

• •

• •

a0

a1a0

a1

natural
a0 · a1 = a0 · a1

• •

• •

a0

a1a0

a1

factorization
a0 = a0 · a1 · a1

• •

• •

a0

a1a0

a1

composition
a0 · a0 · a1 = a1

• •

• •

a0

a1a0

a1

conatural
a0 · a0 = a1 · a1

Of course, each of the above equations can be expressed as a “natural” commutative
square in an arrow double category. However, there is an obstruction to reasoning about
sequential composition. The notion of a composable pair is determined only up to associa-
tivity.

Associativity has two forms, “forward” and “backward”: suppose that two pairs (a0
1, a

0
2)

and (a1
1, a

1
2) are equal in the composite profunctor A◦A; then there is a “zig-zag” connecting

the pair: a sequence of morphisms â :A(Ai,Ai+1) or ǎ :A(Ai+1,Ai), so that the squares
commute. The two unary cases are below.

• •

A0 A1

• •

a01

a02

a11

a12

â

forward associativity
a0

1 · â = a1
1

a0
2 = â · a1

2

• •

A0 A1

• •

a01

a02

a11

a12

ǎ

backward associativity
a0

1 = a1
1 · ǎ

ǎ · a0
2 = a1

2

Forward associativity, on the left, is the composite of two “natural” squares, which can
be expressed in the arrow double category. Backwards associativity, on the right, is the
composite of a “factorization” and a “composition” — this cannot be expressed in the arrow
double category.
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Hence we identify the following limitation.

Proposition 21. Let A be a category. In the arrow double category
−→
A , factorization and

composition squares do not compose in sequence; so backward associativity cannot be
expressed.

This causes an obstruction to defining sequential composition of profunctors between
“two-sided fibrations”, i.e. bimodules of arrow double categories — this lesson the author
learned the hard way.

We could accept this limitation and use this structure to construct logics, but it would
be more complex than necessary. Instead, we see the problem to be that arrow double
categories are not logics, and we determine the logic which a category does form.

2.1.2 Weave double category

Every category A defines a logic, called the weave double category 〈A〉. It is the union, i.e.
coproduct, of the arrow double category and its opposite: 〈A〉 ≡

−→
A +

←−
A . As we will see,

〈A〉 can be understood simply as the equational logic of A.
A relation is a zig-zag in A, and an inference is a weave: a composite of squares in

−→
A ,

opsquares in
←−
A , and unit isomorphisms — the units of

−→
A and

←−
A are “united” by adjoining

isomorphisms between each identity arrow and oparrow.

Definition 22. Let A be a category, with arrow double category
−→
A .

The op-arrow double category
←−
A is the horizontal opposite:

←−
A (A0,A1) ≡

−→
A (A1,A0).

We denote an arrow by â :
−→
A (A0,A1), and an op-arrow by ǎ :

←−
A (A1,A0); and we use

a :
−→
A +

←−
A . A square of

−→
A is a square, and a square of

←−
A is an opsquare.

Definition 23. Define DblA to be the 2-category of double categories on A, double functors
over id.A, and identity-component transformations, a.k.a. icons [12].

Given double categories A0 and A1 on A, and double functors f, g :A0 → A1 over id.A,
an icon γ : f ⇒ g is a natural family of 2-morphisms γ :Πa0 :A0. f(a0)⇒ g(a0).

A A0 A A0 A1

A A1 A A0 A1

gf

f(a0)
p

g(a0)
p

γ γ(a0)

Definition 24. Let A be a category. Define the weave double category 〈A〉 to be the
2-coproduct of the arrow and oparrow double categories in DblA.

〈A〉 ≡
−→
A +

←−
A

So for every double category A← A→ A there is the following natural equivalence.

DblA(〈A〉,A) ' DblA(
−→
A ,A)×DblA(

←−
A ,A)
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For this abstract definition, we now provide an explicit construction: the coproduct−→
A +

←−
A is generated by squares of

−→
A , opsquares of

←−
A , and natural isomorphisms of their

identities îd.A ∼= ǐd.A. We can assume composition to be strictly associative.
Let A and DblA be as above. Let sDblA be the 2-category of semi-double categories, i.e.

span categories A← A→ A with an associative composition.

Theorem 25. The coproduct A0 +A1 in DblA can be constructed as the coproduct in sDblA,
followed by an iso-coinserter of their units, the 2-initial object of the following form.

A0 A0 +s A1

A A0 + A1

A1 A0 +s A1

ι0

ι1

iso.co.ins

iso.co.ins

id0

id1

∼=

A square of A0 +s A1 is a composite of squares in A0 and squares in A1; then the iso-
coinserter adjoins a natural family of isomorphisms id0.A ∼= id1.A, so that A0 + A1 is a
double category (with unit either id0 or id1), and in fact the coproduct in DblA.

Proof. Let A be a double category on A equipped with double functors j0 :A0 → A and
j1 :A1 → A. Then for the underlying semi-double categories, there is a semi-double functor
〈j0, j1〉 :A0 +sA1 → A, equipped with 2-isomorphisms 〈j0, j1〉(ι0) ∼= j0 and 〈j0, j1〉(ι1) ∼= j1.

Yet because j0 and j1 are double functors, there is also j0(id0) ∼= id ∼= j1(id1).

A0 A0 +s A1

A A

A1 A0 +s A1

ι0

ι1

j0

j1

〈j0,j1〉

〈j0,j1〉

id0

id1

id

∼=

∼=

∼=

∼=

The composite isomorphism is exactly the kind which factors through the iso-coinserter,
giving both the 1- and 2-dimensional universal property of coproduct.

A0 A0 +s A1

A A0 + A1 A

A1 A0 +s A1

ι0

ι1

id0

id1

iso.co.ins

iso.co.ins

∼=

∼=

∼=
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A relation in 〈A〉 is a zig-zag in A: a nonempty sequence of morphisms (A0, a1, . . . , ak,Ak)

alternating with each ai either an arrow âi :
−→
A (Ai−1,Ai) or an op-arrow ǎi :

←−
A (Ai−1,Ai).

A0 A1 A2 · · · Ak−2 Ak−1 Ak
â1 ǎ2 âk−1 ǎk

We may abbreviate a zig-zag by 〈a1, . . . , ak〉 or simply by 〈ak〉.
An inference is a weave: a composite of squares of

−→
A , opsquares of

←−
A , and isomor-

phisms of identities. These can be fairly complex, but it should be possible to give a normal
form.

The natural isomorphism of identities can be drawn as follows.

A0 A0 A0 A0

A1 A1 A0 A0

A1 A1 A1 A1

a a

a a

=

∼=

∼=

The weave double category contains all equational reasoning of A, in that it contains
the four kinds of squares and their composites: the sequential composite of a factorization
and a composition square is below.

A0
0 A0

1 A0
0 A0

1 A0
1 A0

1

= A1
1 A1

1

A1
0 A1

1 A1
0 A1

0 A1
1 A1

1

A1
0 A1

0

A2
0 A2

1 A2
0 A2

0 A2
0 A2

1

â0

a11

ǎ1

a01

a02

â2

a12

â0

a11

a1

ǎ1

a1

a02

a2

a01

a11

a02

a12

a11

a02

This is because the arrows and oparrows of 〈A〉 give both companions and conjoints.

Proposition 26. 〈A〉 is a bifibrant double category, i.e. a logic.
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By coproduct, actions by the weave double category 〈A〉 are equivalent to pairs of
actions by the arrow and oparrow double categories

−→
A and

←−
A : so left modules are right

modules are bifibrations.
To show this by universality, we determine how R forms a double category on A that

represents actions on R. The key is to see that an action � :
−→
A (A0,A1)×R(A0) → R(A1)

is equivalent to a displayed functor of the following form.
So, we define the double category as the universal comma square.

−→
A

A A

Cat

R(A0) R(A1)

RR

�

dom cod

−�â

−→
A

R.R

A A

Cat

RR

dom cod

To define sequential composition of R.R, the displayed category R :A → Cat must
be a pseudofunctor, i.e. the composition transformation R(a1) ◦ R(a2) ⇒ R(a1a2) must be
invertible. This is known as an exponentiable category [19], a shared generalization of
fibered and opfibered category.

Definition 27. Let R → A be exponentiable. Define the fiber-hom double category
A← R.R → A to be the collage of the comma object of R :A→ Cat along itself.

A0
0 A0

1

R(A0
0) R(A0

1)

R(A1
0) R(A1

1)

A1
0 A1

1

f0

R(a0) p

f1

R(a1)p

f0p

f1
p

a0 a1ϕ

The base category is A; a loose morphism over (A0,A1) is a functor f :R(A0)→ R(A1), and
a square over (a0, a1) is a transformation ϕ(f0, f1) :R(a0)⇒ R(a1). Parallel composition is
sequential composition in Cat.
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Sequential composition is parallel composition of Cat, conjugated by composition iso-
morphisms of R. Composing in sequence and parallel, the middle isomorphisms cancel,
giving interchange.

R(A0
0) R(A0

0) R(A0
1) R(A0

1)

R(A1
0) R(A1

1)

R(A2
0) R(A2

0) R(A2
1) R(A2

1)

f0

R(a10) p

f1

R(a11)p
R(a20) p R(a21)p

f2

R(a10a20) p R(a11a21)p

ϕ1

ϕ2

∼= ∼=

Proposition 28. Let R → A be an exponentiable category over A. A right action on R by
a double category A over A is equivalent to a double functor A→ R.R .

A left action A ∗ R → R is equivalent to a double functor Aop → R.R.

Proof. Let A : DblA, and � :R ∗A→ R be a module action. Then mapping

A :A to −� A :R(A0)→ R(A1) and
α :A(A,A′) to −� α :R(a0)⇒ R(a1)

defines a double functor A→ R.R: the associator (R � A1)� A2
∼= R � (A1 ◦ A2) defines

the composition isomorphism, and the unitor R ∼= R � UA defines the unit isomorphism;
the coherence equations correspond.

Theorem 29. 〈A〉-modules are equivalent to bifibrations.

Proof. By coproduct, we have the following equivalence.

DblA(
←−
A +

−→
A ,R.R) ' DblA(

−→
A ,R.R)×DblA(

←−
A ,R.R)

This means that a right action by 〈A〉 is equivalent to a pair of right actions by
←−
A and

−→
A ;

these give R the structures of a fibration and opfibration.

We will soon define matrix categories to be bimodules of weave double categories.
These form a double category over that of categories; so we have to determine how the
“weave construction” applies to categories and functors, profunctors and transformations.

How does the notion of “arrow category” generalize to profunctors?
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Definition 30. Let f :X |A be a profunctor. The arrow profunctor
−→
f :
−→
X |
−→
A consists of

commutative squares; it forms a span profunctor f ←
−→
f → f .

−→
f (x̂, â) = {(f0 : f(X0,A0), f1 : f(X1,A1)) | a · f0 = f1 · x}

Dually, the oparrow profunctor of f is the profunctor of oparrow categories
←−
f :
←−
X |
←−
A .

←−
f (x̌, ǎ) = {f0 : f(X0,A0), f1 : f(X1,A1) | x · f0 = f1 · a}

X0 X1 X0 X1

−→
f

←−
f

A0 A1 A0 A1

x̂

â

f0 f1

x̌

ǎ

f0 f1

Note the only difference between the arrow and oparrow profunctors is which morphism
acts on which element of f , i.e. “natural” squares versus “conatural” opsquares.

Just as commutative squares of a category compose in parallel, commutative squares
of a profunctor compose in parallel.

Proposition 31. Let f :X |A be a profunctor. The arrow profunctor f ←
−→
f → f is a

monad in Span(Prof). Composition
−→
f ∗
−→
f ⇒

−→
f is that of commutative squares, and the

unit is given by that of X and A.

X0 X1 X2 X X

f1 f2 id.f

A0 A1 A2 A A

f0 f1 f2

x̂1 x̂2

â1 â2

îd.X

f f

îd.A

Dually, the oparrow profunctor is a monad in Span(Prof).

The arrow profunctor is drawn as follows, and the oparrow profunctor is dual.

arrow profunctor composition unit
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Now, a profunctor of categories forms a “weave profunctor” of weave double categories.

Definition 32. Let f :X |A be a profunctor. Define the weave vertical profunctor between
weave double categories 〈f〉 : 〈X〉 | 〈A〉 to be the coproduct of

−→
f and

←−
f in the 2-category

of vertical profunctors on f , vertical transformations, and modifications.
Hence 〈f〉 is generated by squares of

−→
f and opsquares of

←−
f , and the actions by squares,

opsquares, and unit isomorphisms of 〈X〉 and 〈A〉; these are subject to associativity and
unitality, plus naturality of unit isomorphisms with respect to elements of f .

X X X0 X1 X X X X

X X A A X X A A

A A A A A A A A

îd.X

f f

îd.A

ǐd.X

ǐd.A

ǐd.X

f f

îd.X îd.X

f f

îd.A

ǐd.A

ǐd.X

ǐd.A

f f

îd.A

≡ ≡

∼=∼=

∼= ∼=

Finally, we extend the “weave construction” to functors and transformations.

Definition 33. Let [[A]] :A0 → A1 be a functor; this induces an arrow double functor
[[
−→
A ]] :
−→
A0 →

−→
A1 and an oparrow double functor [[

←−
A ]] :
←−
A0 →

←−
A1.

Define the weave double functor 〈[[A]]〉 : 〈A0〉 → 〈A1〉 to be their coproduct. So 〈[[A]]〉
maps squares to squares, opsquares to opsquares, and unit isomorphisms to unit isos.

Definition 34. Let [[f ]] : f0 ⇒ f1 be a transformation over [[X]], [[A]].

X0 A0

X1 A1

f0p

f1
p

[[X]] [[A]][[f ]]

Then [[f ]] gives a transformation of squares
−→
[[f ]] :
−→
f0 ⇒

−→
f1 and opsquares

←−
[[f ]] :
←−
f0 ⇒

←−
f1 .

[[X0]] [[X1]] [[X0]] [[X1]]

[[A0]] [[A1]] [[A0]] [[A1]]

[[x̂]]

[[â]]

[[f0]] [[f1]]

[[x̌]]

[[ǎ]]

[[f0]] [[f1]]

Each commutes by naturality: if x · f1 = f0 · a, then [[x]] · [[f1]] = [[x · f1]] = [[f0 · a]] = [[f0]] · [[a]].
The weave vertical transformation 〈[[f ]]〉 : 〈f0〉(〈X0〉, 〈A0〉) ⇒ 〈f1〉(〈X1〉, 〈A1〉) is the

coproduct of these transformations, defined by mapping squares and opsquares of f0.
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So, the “weave construction” is a mapping of squares from Cat to bf.DblCat (3.1): bifibrant
double categories and double functors, vertical profunctors and transformations.

But does 〈−〉 form a double functor? i.e. how does the weave construction interact with
profunctor composition? Here we find that the associativity quotient of f ◦ g introduces
significant complexity.

The complexity of weaves and composition

Let f :X |Y and g :Y |Z be profunctors. The composite f ◦ g :X |Z consists of pairs (f, g)
quotiented by associativity: (f, y · g) = (f · y, g), forming equivalence classes [(f, g)].

Yet two pairs (f0, g0) and (f1, g1) may be equivalent via many distinct zig-zags, while
in the composite there is only an equality [(f0, g0)] = [(f1, g1)], with no specific zig-zag.
This means that all structures defined on f ◦ g, i.e. actions of a matrix profunctor, must be
independent of any choice of pair and any choice of zig-zag.

Fortunately, the associativity quotient can be clearly characterized in the weave of the
composite, 〈f ◦ g〉: the inner actions by zig-zags in Y are precisely the identity squares.

X X

Y0 Y1

Z Z

f0

g0

f1

g1

id.[(f,g)]

Hence to define sequential composition of matrix profunctors, we must quotient by the
action of these zig-zags, to make these identity squares act as the identity; see Def. 44.

So, is 〈−〉 a double functor? The answer is no. Above, there are many distinct repre-
sentations of each identity square, so there is no transformation 〈f ◦ g〉 ⇒ 〈f〉 ◦ 〈g〉. Yet
the other direction is also obstructed, as the following composites of weaves cannot be
expressed as squares in 〈f ◦ g〉.

X0 X1 X2 X3 X0 X1

Y0 Y1 Y1 Y2 Y0 Y2

Y0 Y2 Y0 Y1 Y1 Y2

Z0 Z1 Z0 Z1 Z2 Z3

ŷ1 ŷ2

ŷ1ŷ2

ẑ

x̂1 x̌2 x̂3

f0 f1 f2 f3

g0 g1

x̂

ŷ1ŷ2

ŷ1 ŷ2

g0

ẑ1 ž2

g1 g2

ẑ3

g3

f0 f1

∼= ∼=

Proposition 35. Mapping a category A to the weave double category 〈A〉 defines a span
functor from Cat to bf.DblCat, which is neither a lax nor colax double functor.
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2.2 Matrix categories

We are now ready to define the primary concepts which underlie a logic.

We simplify the presentation of structures and coherences in two ways.
(1) We denote a transformation by its components, e.g. the associator of a matrix category

(a�R)� b ∼= a� (R� b).

(2) We use the symbol x⇒ y to denote that the two transformations from x to y, inferrable
from context, are equal; e.g. the two ways to reassociate four elements are equal.

((a1 � a2)� a3)�R⇒ a1 � (a2 � (a3 �R))

Additionally, we elide the associators and unitors of SpanCat; they can be inferred.

A matrix category is a span category A ← R → B with parallel composition actions by
the logics 〈A〉 and 〈B〉, i.e. objects of R are genuine relations because they can be pushed
and pulled along processes of A and B.

Definition 36. Let A and B be categories, with weave double categories 〈A〉 and 〈B〉.
A matrix category or two-sided bifibration R :A ‖B is a span category A ← R → B

which forms a bimodule from 〈A〉 to 〈B〉.

So a matrix category R :A ‖B is a span category, with a pair of actions, span functors

A 〈A〉 ∗ R B A R ∗ 〈B〉 B

A R B A R B

�A �B
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and three invertible span transformations for associativity

〈A〉 ∗ R ∗ 〈B〉 〈A〉 ∗ R

R ∗ 〈B〉 R

〈A〉∗�B

�A∗〈B〉

�B

�AαR

〈A〉 ∗ 〈A〉 ∗ R 〈A〉 ∗ R R ∗ 〈B〉 ∗ 〈B〉 R ∗ 〈B〉

〈A〉 ∗ R R R ∗ 〈B〉 R

◦∗R

〈A〉∗� �

�

R∗◦

�∗〈B〉 �

�

αA αB

and two invertible span transformations for unitality

R R R R

〈A〉 ∗ R R R ∗B R

id.A∗R

�

υA R∗id.B

�

υB

so that the following transformations are well-defined, for associativity

〈A〉 ∗ 〈A〉 ∗ 〈A〉 ∗ R R 〈A〉 ∗ R ∗ 〈B〉 ∗ 〈B〉 R

〈A〉 ∗ 〈A〉 ∗ R ∗ 〈B〉 R R ∗ 〈B〉 ∗ 〈B〉 ∗ 〈B〉 R

(〈ak〉◦〈a`〉◦〈am〉)�R

〈ak〉�(〈a`〉�(〈am〉�R))

〈ak〉�(R�(〈b`〉◦〈bm〉))

((〈ak〉�R)�〈b`〉)�〈bm〉

(〈ak〉◦〈a`〉)�(R�〈bm〉)

(〈ak〉�(〈a`〉�R))�〈bm〉

R�(〈bk〉◦〈b`〉◦〈bm〉)

((R�〈bk〉)�〈b`〉)�〈bm〉

and for unitality.

〈A〉 ∗ R 〈A〉 ∗ R R ∗ 〈B〉 R ∗ 〈B〉
(〈ak〉◦id.Ak)�R

〈ak〉�(id.Ak�R)

R�(id.B0◦〈bk〉)

(R�id.B0)�〈bk〉
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The objects and morphisms of a matrix category are the loose morphisms and squares
of a bifibrant double category, i.e. relations and inferences of a logic, via the collage (37).

A0 B0

A1 B1

a

R0p

b

R1
p

r

The actions by 〈A〉 and 〈B〉 define parallel composition of this double category.
Because a weave double category is a coproduct, an action by 〈A〉 defines a pair of

actions by
−→
A and

←−
A , and a bimodule structure defines four actions.

−→
A -substitution

−→
B -image

←−
A -image

←−
B -substitution

Combining these pairwise, there are four distinct bimodule structures.
−→
A ,
−→
B -bimodule

−→
A ,
←−
B -bimodule

←−
A ,
−→
B -bimodule

←−
A ,
←−
B -bimodule

companion fibration opfibration conjoint
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The actions define parallel composition by squares in
−→
A ,
←−
A and

−→
B ,
←−
B .

A0
0 A0

1 B0
0 A0

1 B0
0 B0

1

A1
0 A1

1 B1
0 A1

1 B1
0 B1

1

A0
0 A0

1 B0
0 A0

1 B0
0 B0

1

A1
0 A1

1 B1
0 A1

1 A1
1 B1

1

â01

â11

a0 a1

R0p

R1
p

b0

R0p

R1
p

a1 b0

b̂0
1

b1

b̂1
1

ǎ01

a0 a1

R0p

b0

ǎ11 R1
p

R0p

R1
p

a1 b0

b̌0
1

b̌1
1

b1

r r

r r

We draw a zig-zag as an arrow pointing both ways, and denote the action as follows.

A0
0 A0

k B0
0 A0

k B0
0 B0

k

A1
0 A1

k B1
0 A1

k B1
0 B1

k

〈ak〉

〈a`〉

a0 ak

R0p

R1
p

b0

R0p

R1
p

ak b0

〈bk〉

〈b〉`

bkwA r wBr

wA � r :R(〈ak〉 �R0, 〈a`〉 �R1) r � wB :R(R0 � 〈bk〉, R1 � 〈b`〉)

left action by 〈A〉 right action by 〈B〉
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Yet apart from functoriality, which involves weaves in A and B, the action is a structure
on objects; and an action by zig-zags is equivalent to a pair of actions by arrows and
oparrows. Hence for many definitions, particularly the coherence isomorphisms, we may
simplify action notation to a�R and R� b.

We now proceed to draw the coherences of these actions in string diagrams, and show
that they define the parallel composition of a bifibrant double category.

The actions of a matrix category satisfy the following coherence. First, each action is a
span functor, i.e. it preserves the sequential composition of the span categories 〈A〉,R, 〈B〉.

Composing in 〈A〉 and R then acting by 〈A〉, equals acting by 〈A〉 then composing in
R. Composing in R and 〈B〉 then acting by 〈B〉 equals acting by 〈B〉 then composing in R.

Hence the following two composite squares are well-defined.

A0
0 A0

k B0
0 A0

k B0
0 B0

k

A1
0 A1

` B1
0 A1

k B1
0 B1

`

A2
0 A2

m B2
0 A2

k B2
0 B2

m

〈ak〉

a10 a1i

R0p

R1
p

b1
0

〈am〉 R2
p

〈a`〉

a20 a2j b2
0

R0p

R1
p

R2
p

a1i

a2j

b1
0

b2
0

〈bk〉

〈b`〉

〈bm〉

b1
i

b2
j

r1w1
A

w2
A

r2

w1
B

w2
B

r1

r2

By the coherence principle, these equations can be expressed by drawing simultaneous
sequential and parallel composition. This is the “interchange law” for double categories.

left interchange right interchange

(w1
A · w2

A)� (r1 · r2) = (w1
A � r1) · (w2

A � r2) (r1 · r2)� (w1
B · w2

B) = (r1 � w1
B) · (r2 � w2

B)

Next to unpack is the three-dimensional structure. The actions are associative and
unital up to coherent isomorphism: there are three “associators” for AAR, ARB, and
RBB, and two “unitors” for idAR and RidB.
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Three-dimensional string diagrams effectively depict the coherence of these isomor-
phisms. First, each is natural with respect to the morphisms of 〈A〉, R, and 〈B〉.

The center associator is a span transformation (〈A〉 �R)�〈B〉 ∼= 〈A〉 � (R�〈B〉). This
can be drawn as a cube, with source on top and target on bottom, connected by the homs
of 〈A〉, R, and 〈B〉.

center associator
αR : a� (R� b) ∼= (a�R)� b

By the coherence principle, this cube expresses the naturality of the associator with respect
to morphisms of 〈A〉,R, 〈B〉: for every pair of weaves wA : 〈a0

k〉 → 〈a1
m〉 and wB : 〈b0

`〉 → 〈b1
n〉

the following commutes.

(〈a0
k〉 �R)� 〈b0

`〉 〈a0
k〉 � (R� 〈b0

`〉)

(〈a1
m〉 �R)� 〈b1

n〉 〈a1
m〉 � (R� 〈b1

n〉)

αR

(wA�R)�wB wA�(R�wB)

αR

Continuing with the isomorphisms, there are associators for each composite action

left associator right associator
αA : (a1 ◦ a2)�R ∼= a1 � (a2 �R) αB : R� (b1 ◦ b2) ∼= (R� b1)� b2
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and the left and right unitors, which are invertible span transformations.

left unitor right unitor
υA :R ∼= id.A�R υB : R ∼= R� id.B

Finally, we have the equations that these isomorphisms satisfy.

For each quadruple in 〈A〉 ∗ 〈A〉 ∗ 〈A〉 ∗ R, 〈A〉 ∗ 〈A〉 ∗ R ∗ 〈B〉, 〈A〉 ∗ R ∗ 〈B〉 ∗ 〈B〉, and
R ∗ 〈B〉 ∗ 〈B〉 ∗ 〈B〉, the two ways to reassociate are equal.

These are the “pentagon equations” of a double category.

Last, the left unitor coheres with the left associator, and the right unitor coheres with
the right associator. These are the “triangle equations” of a double category.
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associator coherence

(〈ak〉 ◦ 〈a`〉 ◦ 〈am〉)�R R� (〈bk〉 ◦ 〈b`〉 ◦ 〈bm〉)
⇒ 〈ak〉 � (〈a`〉 � (〈am〉 �R)) ⇒ ((R� 〈bk〉)� 〈b`〉)� 〈bm〉

(〈ak〉 ◦ 〈a`〉)� (R� 〈bm〉) 〈ak〉 � (R� (〈b`〉 ◦ 〈bm〉))
⇒ (〈ak〉 � (〈a`〉 �R))� 〈bm〉 ⇒ ((〈ak〉 �R)� 〈b`〉)� 〈bm〉

unitor coherence

(〈ak〉 ◦ id.A)�R⇒ 〈ak〉 � (id.A�R) R� (id.B ◦ 〈bk〉)⇒ (R� id.B)� 〈bk〉
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We summarize the definition, by dimension.

1. matrix category a span category R :A ‖B
2. precompose action a span functor 〈A〉 � R : 〈A〉 ∗ R → R

postcompose action a span functor R� 〈B〉 :R ∗ 〈B〉 → R
3. associators inv. span trans. αA : (a1 � a2)�R ∼= a1 � (a2 �R)

αR : (a�R)� a ∼= a� (R� b)

αB : (R� b1)� b2
∼= R� (b1 � b2)

unitors inv. span trans. υA :R ∼= id.A�R
υB :R ∼= R� id.B

4. assoc. coherence equations (a1 ◦ a ◦ a3)�R⇒ a1 � (a2 � (a3 �R))

a1 � (R� (b2 ◦ b3))⇒ ((a1 �R)� b2)� b3

(a1 ◦ a2)� (R� b3)⇒ (a1 � (a2 �R))� b3

R� (b1 ◦ b2 ◦ b3)⇒ ((R� b1)� b2)� b3

unit coherence equations (a ◦ id.A)�R⇒ a� (id.A�R)

R� (id.B ◦ b)⇒ (R� id.B)� b

To complete the section, we show how matrix category forms a logic.

Proposition 37. Let R :A ‖B be a matrix category, i.e. two-sided bifibration. The collage
of R, defined as follows, is a bifibrant double category. The base category is A + B, and
the total category is 〈A〉+R+ 〈B〉, equipped with the only possible projections.

A + B 〈A〉+R+ 〈B〉 A + B

Parallel composition is given by the actions of 〈A〉 and 〈B〉 on R, and parallel composition
in 〈A〉 and 〈B〉. The associators and unitors are given by the coherence isomorphisms of
R, and those of 〈A〉 and 〈B〉; all of their equations hold by fiat.

The collage is a bifibrant double category, because morphisms of A and B induce arrows
and oparrows, which are companions and conjoints.
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2.2.1 Matrix functors

So, a matrix category consists of relations and inferences in a logic. Now, a matrix functor
is a mapping of these relations and inferences, visualized from inner to outer.

Because a matrix category is a pseudobimodule, a matrix functor preserves composition
actions only up to coherent isomorphism.

Definition 38. Let [[A]] :A0 → A1 and [[B]] :B0 → B1 be functors.
Let R0 :A0 ‖B0 and R1 :A1 ‖B1 be matrix categories. A matrix functor [[R]] :R0 → R1

is a morphism of pseudobimodules in SpanCat. This is a span functor

A0 R0 B0

A1 R1 B1

[[A]] [[B]][[R]]

with invertible span transformations called the left and right join

〈A0〉 ∗ R0 〈A1〉 ∗ R1 R0 ∗ 〈B0〉 R1 ∗ 〈B1〉

R0 R1 R0 R1

〈[[A]]〉∗[[R]]

[[R]]

�0
A �1

A

[[R]]∗〈[[B]]〉

[[R]]

�0
B �1

B[[�A]] [[�B]]

[[�A]] : [[a0]]� [[R0]] ∼= [[a0 �R0]] [[�B]] : [[R0]]� [[b0]] ∼= [[R0 � b0]]

left join right join

Contents



The Language of Category Theory Christian Williams

which together are natural with respect to the center associator:

[[a]]� ([[R]]� [[b]]) ([[a]]� [[R]])� [[b]]

[[a]]� [[R� b]] [[a�R]]� [[b]]

[[a� (R� b)]] [[(a�R)� b]]

αR

[[A]]�A [[�B]]

[[�A]]

αR

[[�A]]�B [[B]]

[[�B]]

center associator coherence

and each is natural with respect to its own associator:

([[a1]] ◦ [[a2]])� [[R]] [[a1]]� ([[a2]]� [[R]]) [[R]]� ([[b1]] ◦ [[b2]]) ([[R]]� [[b1]])� [[b2]]

[[a1 ◦ a2]]� [[R]] [[a1]]� [[a2 �R]] [[R]]� [[b1 ◦ b2]] [[R� b1]]� [[b2]]

[[(a1 ◦ a2)�R]] [[a1 � (a2 �R)]] [[R� (b1 ◦ b2)]] [[(R� b1)� b2]]

αA

αA

[[�A]]�A[[R]]

[[�A]] [[�A]]

[[A]]�A[[�A]]

αB

[[R]]�B[[�B]]

[[�B]]

αB

[[�B]]�B[[B]]

[[�B]]

left associator coherence right associator coherence
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and each is natural with respect to its own unitor.

[[id.A]]� [[R]] [[R]] [[R]]� [[id.B]] [[R]]

[[id.A�R]] [[R]] [[R� id.B]] [[R]]

υA

[[�A]]

υA

υB

[[�B]]

υB

left unitor coherence right unitor coherence

We summarize the concept of matrix functor.

2. matrix functor span functor [[R]]([[A]], [[B]]) :R0(A0,B0)→ R1(A1,B1)

3. left join inv. span trans. [[�A]] : [[a0]]� [[R0]] ∼= [[a0 �R0]]

right join inv. span trans. [[�B]] : [[R0]]� [[b0]] ∼= [[R0 � b0]]

4. left assoc. coherence equation ([[a1]] ◦ [[a2]])� [[R]]⇒ [[a1 � (a2 �R)]]

center assoc. coherence equation [[a]]� ([[R]]� [[b]])⇒ [[(a�R)� b]]

right assoc. coherence equation [[R]]� ([[b1]] ◦ [[b2]])⇒ [[(R� b1)� b2]]

left unit coherence equation [[id.A]]� [[R]]⇒ [[R]]

right unit coherence equation [[R]]� [[id.B]]⇒ [[R]]
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2.3 Matrix profunctors

Just as a matrix category is a bimodule of weave double categories, a matrix profunctor is
a bimodule of weave vertical profunctors, which is coherent with the bimodule structures
of the source and target matrix categories.

Definition 39. Let X,Y,A,B be categories, and Q :X ‖Y R :A ‖B be matrix categories.
Let f :X |A and g :Y |B be profunctors, determining weave profunctors f ← 〈f〉 → f

and g ← 〈g〉 → g.
A matrix profunctor i(f, g) :Q(X,Y) |R(A,B) is a span profunctor which is a bimodule

from 〈f〉 to 〈g〉, which coheres with the associators and unitors of Q and R.
Hence a matrix profunctor is a span profunctor

X Q Y

A R B

f p gpi

with two span transformations, precompose action by 〈f〉 and postcompose action by 〈g〉

〈X〉 ∗ Q 〈A〉 ∗ R Q ∗ 〈Y〉 R ∗ 〈B〉

Q R Q R

�X �A

〈f〉∗i
p

i
p

i∗〈g〉
p

i
p

�Y �B�f �g

precompose action postcompose action
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which cohere with the associators and unitors of Q and R, as follows.

x� (Q� y) (x�Q)� y

a� (R� b) (a�R)� b

αQ

αR

[f0,f1]�(i�[g0,g1]) ([f0,f1]�i)�[g0,g1]

center associator coherence

(x1 ◦ x2)�Q x1 � (x2 �Q)

(a1 ◦ a2)�R a1 � (a2 �R)

αX

αA

[f0,f1,f2]�i [f0,f1]�([f1,f2]�i)

left associator coherence

Q� (y1 ◦ y2) (Q� y1)� y2

R� (b1 ◦ b2) (R� b1)� b2

αY

αB

i�[g0,g1,g2] (i�[g0,g1])�[g1,g2]

right associator coherence
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id.X�Q Q

id.A�R R

υX

υA

id.f�i i

left unit coherence

Q� id.Y Q

R� id.B R

υY

i�id.g

υB

i

right unit coherence

We summarize the concept of matrix profunctor, ordered by dimension.

2. matrix profunctor a span profunctor i(f, g) :Q(X,Y) |R(A,B)

3. precompose action a span transformation 〈f〉 � i : 〈f〉 ∗ i⇒ i

postcompose action a span transformation i� 〈g〉 : i ∗ 〈g〉 ⇒ i

4. assoc. coherence equations (x1 � x2)�Q⇒ a1 � (a2 �R)

x� (Q� y)⇒ (a�R)� b

Q� (y1 � y2)⇒ (R� b1)� b2

unit coherence equations id.X�Q⇒ id.A�R
Q� id.Y ⇒ R� id.B

Note. A matrix profunctor i(f, g) :Q(X,Y) |R(A,B) does not include any action of the
elements of f or g on Q or R. Visually, this means that in general the “pointer strings” of
f and g connecting X to A and Y to B do not bend; i.e. the collage is not a bifibrant double
category. It is a special property when such actions do exist.
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2.3.1 Matrix transformations

Just as a matrix profunctor is a bimodule of weave profunctors, a matrix transformation
is a homomorphism of these bimodules, which coheres with the joins of the source and
target matrix functors.

Definition 40. Let [[X]], [[Y]], [[A]], [[B]] be functors, f0 :X0 |A0, f1 :X1 |A1, g0 :Y0 |B0, g1 :Y1 |B1

profunctors, and [[f ]] : f0 ⇒ f1, [[g]] : g0 ⇒ g1 transformations.
LetQ0 :X0 ‖Y0, Q1 :X1 ‖Y1,R0 :A0 ‖B0,R1 :A1 ‖B1 be matrix categories, and [[Q]], [[R]]

be matrix functors. Let i0(f0, g0) :Q0 |R0 and i1(f1, g1) :Q1 |R1 be matrix profunctors.
A matrix transformation [[i]] : i0 → i1 is a span transformation

f0 i0 g0

f1 i1 g1

[[i]] [[g]][[f ]]

matrix transformation

which coheres with the left and right joins of [[Q]] and [[R]].

[[x]]� [[Q]] [[x�Q]]

[[a]]� [[R]] [[a�R]]

[�X]

[[f�i]][[f]]�[[i]]

[�A]

left join coherence

[[Q]]� [[y]] [[Q� y]]

[[R]]� [[b]] [[R� b]]

[�Y]

[[i�g]][[g]]�[[i]]

[�B]

right join coherence
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We summarize the concept of matrix transformation.

3. matrix transformation a span transformation [[i]]([[f ]], [[g]]) : i0(f0, g0)⇒ i1(f1, g1)

4. left join coherence equation [[x]]� [[Q]]⇒ [[a�R]]

right join coherence equation [[Q]]� [[y]]⇒ [[R� b]]

Matrix categories and matrix functors, matrix profunctors and matrix transformations
form MatCat, a bifibrant double category which is fibered over Cat× Cat.

2.4 Sequential composition

To complete the logic of matrix categories, we define its relation composition: sequential
matrix profunctor composition, in the direction of profunctors.

First, we see the category of matrix profunctors is fibered over the category of pairs of
matrix categories; so the double category will indeed be a logic.

Definition 41. Define MatCat to be the category of matrix categories and matrix functors.
Composition of matrix functors is defined by that of span functors, and that of joins; one
can verify this satisfies the necessary coherence, and that matrix functor composition is
associative and unital.

Definition 42. Define MatProf to be the category of matrix profunctors and matrix trans-
formations. Composition is defined by that of span transformations, and the coherence
of the composite follows from that of its factors. MatProf is equipped with projections to
MatCat, giving a span of categories.

MatCat MatProf MatCat

Theorem 43. MatProf is fibered over MatCat×MatCat.

Proof. Let Q0(X0,Y0), R0(A0,B0), Q1(X1,Y1) and R1(A1,B1) be matrix categories.
Let [[Q]]([[X]], [[Y]]) :Q0 → Q1 and [[R]]([[A]], [[B]]) :R0 → R1 be matrix functors.
The substitution matrix profunctor i1(f1, g1)([[Q]], [[R]]) :Q0(X0,Y0) |R0(A0,B0) is given

by substituting functors into profunctors: f1([[X]], [[A]]), i1([[Q]], [[Q]]), g1([[Y]], [[B]]).

X1 Q1 Y1

X0 Q0 Y0 Q0 R0

A0 R0 B0 Q1 R1

A1 R1 B1

i1
f1
g1

([[Q]],[[R]])f1

p g1pp p

i1
f1
g1

([[Q]],[[R]])
p

i1
p

[[Q]] [[R]]cart cart cart

Contents



The Language of Category Theory Christian Williams

Hence it consists of elements

i1
f1
g1

([[Q]], [[R]])(f1, g1)(Q0, R0) = i1(f1, g1)([[Q0]], [[R0]])

which can be understood as squares of the following form.

[[X0]] [[Y0]]

[[A0]] [[B0]]

[[Q0]]
p

[[R0]]
p

f1 g1i1

The substitution i1
f1
g1

([[Q]], [[R]]) is a matrix profunctor, because it is a restriction of the
matrix profunctor i1; its actions by the arrow profunctors of f1 and g1 are inherited, as well
as their coherence. It is equipped with a cartesian morphism to i1, by pullback.

Hence MatProf is fibered over MatCat×MatCat.

To compose matrix profunctors m over f and n over g, we define an action by 〈f ◦ g〉.
We can use the actions of 〈f〉 on m and 〈g〉 on n, because squares of 〈f ◦ g〉 are composites
in 〈f〉 ◦ 〈g〉, as follows.

A square of 〈f ◦ g〉 from x̂ : 〈X〉(X0,X1) to ẑ : 〈Z〉(Z0,Z1) is a pair (f0, g0) and (f1, g1) so
that (f0, g0 · z) = (x · f1, g1). This means there is a zig-zag of arrows and oparrows in 〈Y〉
reassociating one to the other. Because 〈X〉 and 〈Z〉 are bifibered, the square factors as a
weave in 〈f〉 and a weave in 〈g〉, by “bending” x and z to the left or right.

X0 X1 X0 X1

X0 X0 X0 X1

X1 X1

Y0 Yk = Y0 Y0 Yk Yk

Z0 Z0

Z0 Z1 Z1 Z1

Z0 Z1 Z0 Z1

x̂

ẑ

f0 f1

g0 g1

〈yk〉

f0 f0

g0

z

ẑ

g0

g1 g1

〈yk〉

〈id.X〉 x̂

x

f1 f1

〈id.Z〉

x̂

ẑ

∼=

∼=

Hence we can define an action by a square or opsquare in 〈f ◦ g〉 by the action of
each factor in 〈f〉 and 〈g〉. This ensures the totality of the actions; so in fact, the crux of
sequential composition is to ensure that the actions are well-defined over the identities.
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Definition 44. Let m(f, k) :R(X,A) | S(Y,B) and n(g, `) :S(Y,B) | T (Z,C) be a pair of
sequential-composable matrix profunctors.

The sequential composite matrix profunctor (m � n)(f ◦ g, k ◦ `) :R(X,A) | T (Z,C) is
defined to be the following coequalizer.

R

R 〈X〉 ∗ R ∗ 〈A〉 R R

〈Y〉 ∗ S ∗ 〈B〉 S

T 〈Z〉 ∗ T ∗ 〈C〉 T T

T

m p

n p
�

〈f〉∗m∗〈k〉

�

〈g〉∗n∗〈`〉

�

m�n

id∗R∗id

id∗T ∗id

p

∼=

m◦n p

∼=

�

�

coeq
cartproj

Hence elements are equivalence classes [S.(m,n)] :m◦n, such that for each pair of zig-zags,
and each pair of pairs of weaves, the following are equated.

[S.(m,n)] ≡ [υR · (〈yi〉 � S � 〈bj〉).(wf �m� wk, wg � n� w`) · υ−1
T ]

X A

X X A A

Y0 Y1 B0 B1

Z Z C C

Z C

Rp

Sp

Tp

f1 k0

g1 l0

f0

g0

〈yi〉 〈bj〉

k1

l1

Rp

T
p

m

∼=

n

∼=

wf

wg

wk

w`
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This is a span profunctor f ◦ g ← m � n → k ◦ ` mapping each [S.(m,n)] to [Y1.(f1, g1)]
and [B0.(k0, l0)]; this is well-defined because any other representative lies over equivalent
pairs Y0.(f0, g0) and B1.(k1, l1).

Moreover, m � n is a matrix profunctor from f ◦ g to k ◦ `: we now define the action
inductively over the structure of a composite weave. Then for the base generators, the
quotient ensures that the action is well-defined.

- The action of a horizontal composite is the composite of the actions of each factor.

X0 X1 X2 A X0 X1 A

Y0 Y1 Y2 B = Y0 Y1 B

Z0 Z1 Z2 C Z0 Z1 C

p

p

p

p

p p

f2 mf1

g1 g2 n

f1

g1

f2�m

g2�n

- The action of a vertical composite of weaves in X and Z with a weave in f ◦ g is the
vertical composite of the actions of the following factorization by op/cartesian squares.

X0
0 X0

1 X0
1 A

X0
0 X0

1 A X1
0 X1

1 X0
1 A

X1
0 X1

1 X1
0 X1

1 X1
1

Y0 Y1 B = Y0 Y1 Y1 B

Z0
0 Z0

1 Z0
0 Z0

1 Z0
1

Z1
0 Z1

1 C Z0
0 Z0

1 Z1
1 C

Z1
0 Z1

1 Z1
1 C

p

p p

p

p

p

p p

x

z

x η

ε

R

η

εz T

m

f

g

n

f

g

m

n
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- The action by a square or opsquare is the action of its factorization into a weave in f
and a weave in g, on m and n respectively. The case of a square is given as follows, and an
opsquare dually.

X0 X1 A

X0 X1 A X0 X0 X0 X1

X1 X1

Y0 Yi B = Y0 Y0 Yi Yi B

Z0 Z0

Z0 Z1 C Z0 Z1 Z1 Z1

Z0 Z1 C

x̂

f0 f1

〈yi〉

g0 g1

ẑ

Rp

k

l

Sp

T
p

x̂

ẑ

ẑ

x̂

f0 f0

g0 g0

g1 g1

x

f1 f1

z

Rp

k

Sp

T
p

l

〈yi〉

m

n

ε

η

m

n

∼=

∼=

This action is well-defined by the quotient. Because squares and opsquares are the base
generators of weaves, this completes the induction. Hence the actions by 〈f ◦ g〉 and 〈k ◦ `〉
are well-defined.

Finally, the coherence of m�n with the associators and unitors ofR and T follows from
that of m with R and S and that of n with S and T . For example, the center associator.

x� (R� a) (x�R)� a

y � (S � b) (y � S)� b

z� (T � c) (z� T )� c

αR

αS

αT

yf�(m�bk) (yf�m)�bk

yg�(n�bl) (yg�n)�bl

Hence the sequential composite (m�n)(f ◦g, k◦`) :R(X,A) | T (Z,C) is a matrix profunctor.
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Theorem 45. Matrix categories and matrix functors, matrix profunctors and matrix trans-
formations form a bifibrant double category, i.e. logic, which we call MatCat.

Proof. Because matrix profunctor composition is defined by coequalizer, it is canonically
functorial. Let [[m]]([[f ]], [[k]]) :m0(f0, k0)⇒ m1(f1, k1) and [[n]]([[g]], [[`]]) :n0(g0, `0)⇒ n1(g1, `1)
be a sequential-composable pair of matrix transformations. The composite is defined:

([[m]] � [[n]]) : (m0 � n0)(f0 ◦ g0, k0 ◦ `0) ⇒ (m1 � n1)(f1 ◦ g1, k1 ◦ `1)

[S0.(m0, n0)] 7→ [[[S0]].([[m0]], [[n0]])]

To be a matrix transformation, this composite must cohere with the left and right joins of
the matrix functors [[R]]([[X]], [[A]]) and T ([[Z]], [[C]]); yet this follows from the coherence of
[[m]] with respect to [[R]] and [[S]] and that of [[n]] with respect to [[S]] and [[T ]].

[[x]]� [[R]] [[x�R]] [[R]]� [[a]] [[R� a]]

[[y]]� [[S]] [[y � S]] [[S]]� [[b]] [[S � b]]

[[z]]� [[T ]] [[z� T ]] [[T ]]� [[c]] [[T � c]]

[[�X]]

[[�Y]]

[[�Z]]

[[f]]�[[m]]

[[g]]�[[n]]

[[f�m]]

[[g�n]]

[[m]]�[[k]]

[[n]]�[[l]]

[[m�k]]

[[n�l]]

[[�A]]

[[�B]]

[[�C]]

This preserves composition of matrix transformations, by functoriality of coequalizer.
The associator and unitors of MatCat are inherited from SpanCat: the following

(m � n) � p ∼= m � (n � p)
[((m,n), p)] 7→ [(m, (n, p))]

m ∼= R �m R �m ∼= m

m 7→ [(id.R,m)] [(r,m)] 7→ r ·m
m ∼= m � S m � S ∼= m

m 7→ [(m, id.S)] [(m, s)] 7→ m · s

are matrix transformations, and they are well-defined on the sequential composite, be-
cause the quotient only reindexes along the base pair of morphisms.

Hence MatCat is a double category, and as already shown, a logic.

We now define substitution of functors in matrix categories, and transformations in
matrix profunctors: MatCat is fibered over Cat× Cat, and MatProf over Prof × Prof.

MatCat MatProf MatCat

Cat× Cat Prof × Prof Cat× Cat

Definition 46. A double fibration is a category in the 2-category of fibrations. See [3].
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Proposition 47. Let Cat be the category of categories and functors, and MatCat the cate-
gory of matrix categories and matrix functors. Then MatCat→ Cat× Cat is a fibration.

Proof. Let [[A]] :A0 → A1, [[B]] :B0 → B1 be functors, and let R1 :A1 ‖B1 be a matrix cate-
gory. We define the substitution matrix category R1([[A]], [[B]]) :A0 ‖B0 as follows.

1. The span category A0 ← R1([[A]], [[B]])→ B0 is the pullback of R1 along the functors
[[A]], [[B]]. So the category over A0 :A0,B0 :B0 isR1([[A0]], [[B0]]), and similarly for morphisms.

A0 R1([[A0]], [[B0]]) B0

A1 R1 B1

[[A]] [[B]]

yy

Hence R1([[A]], [[B]])(a0, b0)(R0
1, R

1
1) consists of squares r1 :R1 over ([[a0]], [[b0]]).

[[A0
0]] [[B0

0]]

[[A1
0]] [[B1

0]]

R0
1p

R1
1

p

[[a0]] [[b0]]r1

2. The actions of A0 and B0 on R1([[A]], [[B]]), span functors

〈A0〉 � − : 〈A0〉 ∗ R1([[A]], [[B]]) → R1([[A]], [[B]])

−� 〈B0〉 : R1([[A]], [[B]]) ∗ 〈B0〉 → R1([[A]], [[B]])

are those induced by pullback: map the arrow or oparrow by the functor, then act on R1.

a0 : 〈A0〉(A0
0,A

1
0) R1 :R1([[A1

0]], [[B0
0]]) 7→ [[a0]]�R1 : R1([[A0

0]], [[B0
0]])

R1 :R1([[A1
0]], [[B0

0]]) b0 : 〈B0〉(B0
0,B

1
0) 7→ R1 � [[b0]] : R1([[A1

0]], [[B1
0]])

[[A0
0]] [[A1

0]] [[B0
0]] [[B1

0]]
[[a0]] [[b0]]R1p

3,4. The associators and unitors are inherited from R1, satisfying the coherence.

The substitution matrix categoryR1([[A]], [[B]]) is equipped with a projection matrix func-
tor to R1, and this is a cartesian morphism over functors [[A]], [[B]], by pullback.
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In the same way, we define substitution of transformations in a matrix profunctor.

Theorem 48. MatProf → Prof × Prof is a fibration.

Proof. Let [[X]], [[Y]], [[A]], [[B]] be functors, and let Q1 :X1 ‖Y1 and R1 :A1 ‖B1 be matrix cat-
egories, with Q1([[X]], [[Y]]) :X0 ‖Y0 and R1([[A]], [[B]]) :A0 ‖B0.

Let f0 :X0 |A0, f1 :X1 |A1, g0 :Y0 |B0, g1 :Y1 |B1 be profunctors, and [[f ]] : f0 ⇒ f1 and
[[g]] : g0 ⇒ g1 be transformations. For i1(f1, g1) :Q1 |R1, define the substitution matrix pro-
functor i1([[f ]], [[g]]) :Q1([[X]], [[Y]]) |R1([[A]], [[B]]) from f0 to g0 as follows.

2. The span profunctor f0 ← i1([[f ]], [[g]])→ g0 is the pullback of i1 along [[f ]]× [[g]].

f0 i1([[f0]], [[g0]]) g0

f1 i1 g1

[[f ]] [[g]]

yy
So the profunctor over f0 : f0(X0,A0), g0 : g0(Y0,B0) is i1([[f0]], [[g0]]) :Q1([[X0]], [[Y0]]) |R1([[A0]], [[B0]]),
consisting of squares of the following form.

[[X0]] [[Y0]]

[[A0]] [[B0]]

[[f0]] [[g0]]

Q1p

R1
p

i1

3. The actions by the weave profunctors 〈f0〉 and 〈g0〉 are those induced by pullback.

[[X0
0]] [[X1

0]] [[Y0
0]] [[Y1

0]]

[[A0
0]] [[A1

0]] [[B0
0]] [[B1

0]]
[[a0]] [[b0]]R1

p

[[x0]] Q1p
[[y0]]

[[f00 ]] [[f10 ]] [[g0
0]] [[g1

0]]i1

4. Because the associators and unitors of Q1([[X]], [[Y]]) and R1([[A]], [[B]]) are inherited
from Q1 and R1, their coherence with i1([[f ]], [[g]]) is inherited.
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Theorem 49. MatCat→ Cat× Cat is a double fibration.

Proof. We show that matrix profunctor composition preserves substitution.
Let mi(f, k) :R(X,A) | S(Y,B) and ni(g, `) :S(Y,B) | T (Z,C), for i : {0, 1}, be matrix

profunctors. Let [[m]] :m0 ⇒ m1 and [[n]] :n0 ⇒ n1 be matrix transformations, and form
the substitution.

X1 R1 A1

X0 R1([[X]], [[A]]) A0

Y1 Y0 S1([[Y]], [[B]]) B0 B1

Z0 T1([[Z]], [[C]]) C0

Z1 T1 C1

f1([[X]],[[Y]])p

f1

p

g1 p

g1([[Y]],[[Z]])p

k1([[A]],[[B]]) p
k1

p

`1([[B]],[[C]]) p

`1

p

m1([[f ]],[[k]])

n1([[g]],[[`]])

cart

cart

cart

cart

The compositem1([[f ]], [[k]])�n1([[g]], [[`]]) consists of equivalence classes [S1.(m1, n1)] over
[([[f0]], [[g0]])] and [([[k0]], [[l0]])]. By comparison, the substitution (m1 � n1)([[f ]] ◦ [[g]], [[k]] ◦ [[`]])
consists of equivalence classes [S1.(m1, n1)] over pairs [(f1, g1)] and [(k1, l1)] which are equal
to pairs [([[f0]], [[g0]])] and [([[k0]], [[l0]])] by associativity.

[[X0]] [[X0]] [[A0]] [[A0]]

[[Y0]] Y1 B1 [[B0]]

[[Z0]] [[Z0]] [[C0]] [[C0]]

R1p

S1p

T1p

f1

g1

k1

l1

[[f0]]

[[g0]]

[[k0]]

[[l0]]

m1

n1

Hence the two are isomorphic.

m1([[f ]], [[g]]) � n1([[k]], [[`]]) ∼= (m1 � n1)([[f ]] ◦ [[g]], [[k]] ◦ [[`]])
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Thus, sequential composition preserves substitution, so MatCat a double fibration or
“fibered double category” [3].

MatCat MatProf MatCat

Cat× Cat Prof × Prof Cat× Cat

As Cat and MatCat are bifibrant double categories, we call this a fibered logic.

2.5 Parallel composition

We now define composition of matrix categories, and prove that Cat ← MatCat → Cat is
a metalogic [Def. 55], i.e. a “bifibrant triple category without interchange”.

Matrix categories compose in essentially the same way as profunctors; but rather than
a coequalizer, the composite is formed by codescent [11] which adjoins to A← R ∗ S → C
a coherent associator of the inner actions of 〈B〉.

Definition 50. Let R :A ‖B and S :B ‖C be matrix categories. The composite matrix
categoryR⊗S :A ‖C is defined as follows. To the composite span category A← R∗S → C,
an associator isomorphism is adjoined, by the following iso-coinserter.

(R ∗ 〈B〉) ∗ S R ∗ S

(R ∗ S)α

R ∗ (〈B〉 ∗ S) R ∗ S

�∗S

ι

∼=

R∗�

ι

αRS

This associator is natural by its universal construction, so for every weave wB : 〈B〉(〈bk〉, 〈b`〉)
and r :R(R0, R1), s :S(S0, S1) the following commutes.

(R0, 〈bk〉 � S0) (R0 � 〈bk〉, S0)

(R1, 〈b`〉 � S1) (R1 � 〈b`〉, S1)

αRS

αRS

(r,wB�s) (r�wB,s)
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Then, two equations are imposed by coequifier, for reassociating a composite and a unit.

R ∗ 〈B〉 ∗ 〈B〉 ∗ S (R ∗ S)α (R ∗ S)β

B0.(R,b1�(b2�S))

B2.((R�b1)�b2,S)

co.equif

R ∗ S (R ∗ S)β R⊗ S

B.(R,id.B�S)

B.(R�id.B,S)

co.equif

All together, the composite matrix category R⊗S :A ‖C is the following codescent object.

R ∗ 〈B〉 ∗ 〈B〉 ∗ S R ∗ 〈B〉 ∗ S R ∗ S R⊗ S

�∗〈B〉∗S

R∗〈B〉∗�

R∗◦∗S

�∗S

R∗�

R∗id∗S
co.desc

We denote the codescent object by the following “arrow sum” notation.

(R⊗ S)(A,C) ≡ ~ΣB :B. R(A,B)× S(B,C)

So, the parallel compositeR⊗S :A ‖C consists of pairs b.(r, s) : B0.(R0, S0)→ B1.(R1, S1),
plus a coherent associator αRS : B0.(R, b� S) ∼= B1.(R� b, S).

The iso-coinserter which constructs the associator is drawn in string diagrams as fol-
lows: the black bead is the colimiting span functor from (R∗S) to (R∗S)α, and the inner
face is the associator isomorphism.

αRS : B0.(R, b� S) ∼= B1.(R� b, S)
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Each coequifier on the associator can be drawn as the cube which it makes well-defined.

associator coherence
(R, b1�(b2�S))⇒ ((R�b1)�b2), S)

unitor coherence
(R, id.B� S)⇒ (R� id.B, S)

We compose matrix profunctors analogously; yet we need only impose one equation,
for naturality of the adjoined associators.

Definition 51. Let m(f, g) :Q(X,Y) |R(A,B) and n(g, h) :S(Y,Z) | T (B,C) be a pair of
parallel-composable matrix profunctors.

X Q Y S Z

A R B T C

f p m g n h

p

The composite matrix profunctor m⊗ n :Q⊗ S |R ⊗ T is the following coequalizer.

(R ∗ 〈B〉) ∗ T R ∗ T

∼= R⊗ T R⊗ T

R ∗ (〈B〉 ∗ T ) R ∗ T

(Q ∗ 〈Y〉) ∗ S Q ∗ S

∼= Q⊗ S Q⊗ S

Q ∗ (〈Y〉 ∗ S) Q ∗ S

ι

ι

ι

ι(m∗〈g〉)∗n

m∗(〈g〉∗n)

m∗n

m∗n

ι!(m∗n) m⊗n∼=
co.equ
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The profunctor ι!(m ∗ n) forms all composites of elements g.(m,n) and the morphisms of
Q ⊗ S and R ⊗ T . Then, the coequalizer imposes that the associators are natural with
respect to the elements. So the elements of (m ⊗ n)(f, h) : (Q ⊗ S)(X,Z) | (R ⊗ T )(A,C)
are composites of:

morphisms y.(q, s) : (Q⊗ S)(Y0.(Q0, S0),Y1.(Q1, S1))

associators αQS : (Q⊗ S)(Y0.(Q, y � S),Y1.(Q� y, S))

elements g.(m,n) : (m ∗ n)(Y.(Q,S),B.(R, T ))

associators αRT : (R⊗ T )(B0.(R, b� T ),B1.(R� b, T ))

morphisms b.(r, t) : (R⊗ T )(B0.(R0, T0),B1.(R1, T1))

such that for any [g0, g1] : 〈g〉(y, b) and m :m(f, g0), n :n(g1, h) the following commutes.

Y0.(Q, y � S) Y1.(Q� y, S)

B0.(R, b� T ) B1.(R� b, T )

αQS

αRT

g0.(m,[g0,g1]�n) g1.(m�[g0,g1],n)

We denote the composite by the same “arrow sum” notation as for matrix categories.

(m⊗ n)(f, h) ≡ ~Σg : g. m(f, g)× n(g, h)

We now see that composition defines a span functor ⊗ : MatCat ∗MatCat → MatCat,
but not a double functor.

Proposition 52. Parallel composition of matrix categories defines a span functor

⊗ : MatCat ∗MatCat→ MatCat.

Proof. As composition is defined by colimit, it is canonically functorial. Let [[R]] :R0(A0,B0)→
R1(A1,B1) and [[S]]([[B]], [[C]]) :S0(B0,C0)→ S1(B1,C1) be matrix functors. The composite

([[R]]⊗ [[S]]) : (R0 ⊗ S0)(A0,C0)→ (R1 ⊗ S1)(A1,C1)

is defined by applying the functors [[R]] and [[S]] in parallel

([[R]]⊗ [[S]])(B0.(R0, S0)) = [[B0]].([[R0]], [[S0]])

and mapping the “inner associator” of R0 ⊗ S0 to that of R1 ⊗ S1.

([[R]]⊗ [[S]])(α(b0.(R0, S0))) = α([[b0]].([[R0]], [[S0]]))

The joins of this matrix functor are inherited from those of [[R]] and [[S]].

[[a0]]�([[B0]].([[R0]], [[S0]]))�[[c0]] = [[B0]].([[a0]]�[[R0]], [[S0]]�[[c0]]) ∼= [[B0]].([[a0�R0]], [[S0�c0]])

Finally, − ⊗ − clearly preserves matrix functor composition and identity. Hence it
defines a span functor MatCat ∗MatCat→ MatCat.
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Proposition 53. Parallel composition of matrix profunctors defines a span functor

⊗ : MatProf ∗MatProf → MatProf.

Proof. Let m(f, g) :Q(X,Y) |R(A,B) and n(g, h) :S(Y,Z) | T (B,C) be matrix profunctors
with subscripts 0, 1.

Let [[m]]([[f ]], [[g]]) :m0(f0, g0) ⇒ m1(f1, g1) and [[n]]([[g]], [[h]]) :n0(g0, h0) ⇒ n1(g1, h1) be
matrix transformations.

X1 Q1 Y1 S1 Z1

X0 Q0 Y0 S0 Z0

A0 R0 B0 T0 C0

A1 R1 B1 T1 C1

f0

p m0 g0 n0 h0

pf1

p h1

p

Then the composite matrix transformation

([[m]]⊗ [[n]]) : (m0 ⊗ n0)(f0, h0)⇒ (m1 ⊗ n1)(f1, h1)

is defined by applying the transformations [[m]] and [[n]] in parallel.

([[m]]⊗ [[n]])(g0.(f0, h0)) = [[g0]].([[f0]], [[h0]])

The coherence of [[m]]⊗ [[n]] with the joins of [[Q]]⊗ [[S]] and [[R]]⊗ [[T ]] follows from that of
[[m]] with [[Q]] and [[R]], and [[n]] with [[S]] and [[T ]].

Finally, −⊗− clearly preserves matrix transformation composition and identity. Hence
it defines a span functor MatProf ∗MatProf → MatProf.

We have defined parallel composition of matrix categories, and matrix profunctors.
Now: is parallel composition a double functor? In fact, no — parallel composition does

not preserve sequential composition of matrix profunctors; it is neither lax nor colax.

(i⊗m) � (j ⊗ n) = (i � j)⊗ (m � n)

The is due to the combination of strict and weak colimits: weak-to-strict (lax, left-to-right
above) is not total, while strict-to-weak (colax, right-to-left above) is not well-defined.
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Sequential composition is given by coequalizer, while parallel composition is given by
codescent object. The former equates elements, while the latter creates an isomorphism.

So, sequence-of-parallel (i ⊗ m) � (j ⊗ n) contains composites with associators which
cannot be expressed as a parallel-of-sequence composite (i � j)⊗ (m � n).

U X A

V Y0 Y1 B

V Y0 Y1 B

W Z C

Op Rp

P
p y S

p

d f k

Pp y Sp

∼=

e g l

Q
p

T
p

mi

j n

Hence there is no transformation (i⊗m) � (j ⊗ n)⇒ (i � j)⊗ (m � n).
Yet in the other direction, there is a dual obstruction. To define sequential composition,

each associativity zig-zag (yi) : (f0, g0) = (f1, g1) in 〈f ◦g〉 is given as a composite in 〈f〉◦〈g〉;
yet elements of (i � j)⊗ (m �n) are just “parallel-composable pairs” along (f0, g0) = (f1, g1),
without any specific choice of zig-zag.

U X X A

V Y0 Y1 B

W Z Z C

Op

Pp

Qp

d f0

e g0

f1

g1

Rp

k

Sp

Tp

l

i

j

m

n

So a transformation (i� j)⊗ (m�n)⇒ (i⊗m)� (j �n) would have to be independent of the
choice of zig-zag. Yet there is no canonical choice; there are many distinct zig-zags which
reassociate from (f0, g0) to (f1, g1), and they each give distinct actions on the parallel pairs.

Thus, parallel composition is neither lax nor colax for sequential composition; there is
no interchange between the two operations. Recall also that that the weave construction
〈−〉 is not lax nor colax (2.1.2). So while Cat and MatCat are double categories, parallel
composition of Cat← MatCat→ Cat is a structure on span categories.
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2.5.1 Metalogic

We define a metalogic to be a “bifibrant triple category without interchange”, with parallel
composition weakly associative and unital like that of a tricategory [8].

Lastly, what ensures that parallel composition has coherent associator and unitors?
Matrix categories and matrix profunctors are exponentiable, meaning composition has a
right adjoint, and hence preserves the colimits which define parallel composition.

It is known that two-sided fibrations are exponentiable [21], and so matrix categories
are as well. We show in Theorem 57 that matrix profunctors are exponentiable, by the
duality of composition-by-codescent and transformation-by-descent.

Definition 54. A metalogic is a logic C and a fibered logic M→ C×C, with the structure
of a 2-weak category internal to SpanCat.

This structure is expounded in the following theorem.

Theorem 55. MatCat→ Cat× Cat forms a metalogic.

Proof. As we showed, MatCat is a fibered span of logics equipped with span functors, for
composition and identity

C MC C

P MP P

C MC C

MC ∗h MC MC C

MP ∗h MP MP P

MC ∗h MC MC C

⊗

⊗

⊗

〈−〉

〈−〉

〈−〉

with invertible span transformations for associativity,

MC0 ∗h MC0 MC0 ∗h MC0 ∗h MC0 MC0 ∗h MC0

MC0 MC1 MC0

MC0∗⊗ ⊗∗MC0

⊗ α ⊗

α :R⊗ (S ⊗ T ) ∼= (R⊗ S)⊗ T

for both matrix categories and matrix profunctors

α :m⊗ (n⊗ p) ∼= (m⊗ n)⊗ p
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and span transformations for left and right unitality

MC0 MC0 MC0 ∗h MC0

MC0 MC1 MC0

〈−〉∗MC0

⊗λ◦

λ◦ = R.(id.A, R) :R → 〈A〉 ⊗ R

MC0 MC0 MC0 ∗h MC0

MC0 MC1 MC0

MC0∗〈−〉

⊗ρ◦

ρ◦ = R.(R, id.B) :R → R⊗ 〈B〉

MC0 ∗h MC0 MC0 MC0

MC0 MC1 MC0

λ•

〈−〉∗MC0

⊗

λ• = �A : 〈A〉 ⊗ R → R

MC0 ∗h MC0 MC0 MC0

MC0 MC1 MC0

ρ•

MC0∗〈−〉

⊗

ρ• = �B :R⊗ 〈B〉 → R

so that (λ◦, λ•) and (ρ◦, ρ•) form adjoint equivalences;

MC0 MC0 MC1 ∗t MC1

MC1 MP1 MC1

(λ◦,λ•)

·ηλid

R R

〈A〉 ⊗ R
λ◦ λ•

ηλ

ηλ = υA :R ∼= id.A�R

MC0 MC0 MC1 ∗t MC1

MC1 MP1 MC1

(ρ◦,ρ•)

·ηρid

R R

R⊗ 〈B〉
ρ◦ ρ•

ηρ

ηρ = υB :R ∼= R� id.B

MC1 ∗t MC1 MC0 MC0

MC1 MP1 MC1

(λ•,λ◦)

· ελ

R

〈A〉 ⊗ R 〈A〉 ⊗ R

λ• λ◦

ελ

ελ = αA : (id.A0, a�R) ∼= (a, R)

MC1 ∗t MC1 MC0 MC0

MC1 MP1 MC1

(ρ•,ρ◦)

· ερ

R

R⊗ 〈B〉 R ⊗ 〈B〉

ρ• ρ◦

ερ

ερ = αB : (R� b, id.B1) ∼= (R, b)
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similarly for each matrix profunctor there are span transformations

λ◦ = i.(id.f, i) : i⇒ 〈f〉 ⊗ i ρ◦ = i.(i, id.g) : i⇒ i⊗ 〈g〉
λ• = �f : i⊗ 〈f〉 ⇒ i ρ• = �g : i⊗ 〈g〉 ⇒ i

so that the unitor isomorphisms cohere with these transformations, as in a modification:

MC0 MC0 MC0 MP0 MC0 MC0 MC0

MC1 MP1 MC1 MP1 MC1 MP1 MC1

MC1 MP1 ∗v MP1 ∗v MP1 MC1

MC1 MP1 MC1

λ◦i ·λ•iλ◦Q·λ
•
Q λ◦R·λ

•
Rid ηλ ελ id

◦

=

MC0 MP0 MC0

MC1 MP1 MC1

id id id

and this is given by the naturality of the unitors with respect to matrix profunctor elements;

Q R

Q 〈X〉 ⊗ Q 〈A〉 ⊗ R R

Q R

ip

〈f〉⊗i
p

i
p

∼= ∼=

λi

λ•i

id.X�Q Q

id.A�R R

υX

υA

id.f◦i i

Q R

Q Q⊗ 〈Y〉 R ⊗ 〈B〉 R

Q R

ip

i⊗〈g〉
p

i
p

∼= ∼=

ρ•i

ρi

Q� id.Y Q

R� id.B R

υY

i◦id.g

υB

i

the analogous coherence holds for the right unitor ρ.
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The “pentagon identity” for reassociating a composite is replaced by a “pentagonator”.

Q⊗ ((R⊗ S)⊗ T ) (Q⊗ (R⊗ S))⊗ T

Q⊗ (R⊗ (S ⊗ T )) ((Q⊗R)⊗ S)⊗ T

(Q⊗R)⊗ (S ⊗ T )

π

In our case, this isomorphism is an equality, as the associator simply moves parentheses.
Hence it satisfies the coherence equation, which is given for a tricategory in [8].

Last, the unitors respect parallel composition by the “triangulator” isomorphism:

MC0 MC0 ∗h MC0 MC1 ∗t MC1 ∗t MC1

MC1 MP1 MC1

⊗ (ρ◦⊗id,α,id⊗λ•)

id τ ·

which is given by the unitor

R⊗ S R⊗ S

R⊗ (〈B〉 ⊗ S) (R⊗ 〈B〉)⊗ S

R⊗ρ◦

α

λ•⊗Sτ

τ = υB : (R, S) ∼= (R� id.B, S)

and which coheres with matrix profunctors, as in a modification.

Q⊗ S Q⊗ S

(Q⊗ 〈Y〉)⊗ S Q⊗ (〈Y〉 ⊗ S)

(R⊗ 〈B〉)⊗ T R⊗ (〈B〉 ⊗ T )

R⊗ T R⊗ T

m⊗n p

ρ◦⊗S

α

Q⊗λ•

ρ◦⊗T

α

R⊗λ•

(m⊗〈g〉)⊗n m⊗(〈g〉⊗n) m⊗np

τ

τ−1

ρ◦⊗n
α

m⊗λ•
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For its coherence, the two ways to transform the top composite to the associator are equal:

R⊗ (S ⊗ (〈C〉 ⊗ T )) R⊗ ((S ⊗ 〈C〉)⊗ T )

R⊗ (S ⊗ T ) R⊗ (S ⊗ T )

(R⊗ S)⊗ T

meaning that applying the triangulator commutes with reassociating. This holds by the
naturality of the unitor with respect to the associator.

(R, (S, T )) ((R, S � id.C), T ) (R, (S � id.C, T ))

(R, (S, T )) ((R, S), T ) (R, (S, T ))

(τRS ,T )

λ◦T ·αC·ρ•S ·αS
α

(R,τST )

α−1
α

The same coherence holds for applying the triangulator on the other side of the associator.
Hence MatCat is a metalogic, i.e. a “bifibrant triple category without interchange”.

We now show that the metalogic of matrix categories is higher-order: composition is
dual to transformation, giving MatCat closure.
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2.5.2 Descent

In the same way that the set of transformations between profunctors forms an end [15],
the category of matrix functors between matrix categories forms a descent object [20].

The set of transformations is an equalizer, for the equation of naturality. Yet a matrix
functor is only “natural” up to isomorphism: the following iso-inserter forms the category
of span functors equipped with a pair of joins �A and �B. (We shorten SpanCat to S.)

S(R0,R1) S(〈A0〉 ∗ (R ∗ 〈B0〉),R1)

S(R0,R1)µ

S(R0,R1) S((〈A0〉 ∗ R) ∗ 〈B0〉,R1)

∼=

[[a]]�[[R]]�[[b]]

[[a�R�b]]

[[�]]

Each coherence equation is then imposed by an equifier. For joining composites:

S(R0,R1)α S(R0,R1)µ S(〈A0〉 ∗ 〈A0〉 ∗ R0 ∗ 〈B0〉 ∗ 〈B0〉,R1)

[[a1]]�[[a2]]�[[R]]�[[b1]]�[[b2]]

[[a1�a2�R�b1�b2]]

and for joining units.

M[R0 → R1] S(R0,R1)α S(R0,R1)

[[id.A]]�[[R]]�[[id.B]]

[[R]]

All together, this forms the descent object in Cat of the above functors and transformations.

M[R0 → R1]

S(R0,R1)

S(〈A0〉 ∗ R0 ∗ 〈B0〉,R1)

S(〈A0〉 ∗ 〈A0〉 ∗ R0 ∗ 〈B0〉 ∗ 〈B0〉,R1)

We denote the descent object by an “arrow product” notation.

MatCat[R0 → R1] ≡ ~ΠA :A0,B :B0 Cat[R0(A,B)→ R1([[A]], [[B]])]
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Based on the hom of matrix categories, we define the hom of matrix profunctors.

Definition 56. Let i0(f0, g0) :Q0(X0,Y0) |R0(A0,B0) and i1(f1, g1) :Q1(X1,Y1) |R1(A1,B1)
be matrix profunctors. Matrix transformations i0 ⇒ i1 form a profunctor from M[Q0 → Q1]
to M[R0 → R1], which is constructed by the following equalizer.

S(R0,R1) S(〈A0〉 ∗ (R0 ∗ 〈B0〉,R1)

M[R0 → R1] M[R0 → R1]

S(R0,R1) S((〈A0〉 ∗ R0) ∗ 〈B0〉,R1)

S(Q0,Q1) S(〈X0〉 ∗ (Q0 ∗ 〈Y0〉),Q1)

M[Q0 → Q1] M[Q0 → Q1]

S(Q0,Q1) S((〈X0〉 ∗ Q0) ∗ 〈Y0〉,Q1)

∼=

[[x]]�([[Q]]�[[y]])

[[(x�Q)�y]]

[[a]]�([[R]]�[[b]])

[[(a�R)�b]]

∼=

P(i0,i1)

P(i0,i1)

P(〈f0〉∗(i0∗〈g0〉))

P((〈f0〉∗i0)∗〈g0〉)

P[i0→i1] ∼=

[[f]]�([[i]]�[[g]])

[[(f�i)�g]]

cart

cart

equ

∼=

∼=

We denote this equalizer as follows.

M[i0 → i1] = ~Πf : f0, g : g0 i0(f, g)→ i1([[f]], [[g]])

Yet this construction is exactly dual to composition of matrix profunctors (2.5).

(R ∗ 〈B〉) ∗ T R ∗ T

∼= R⊗ T R⊗ T

R ∗ (〈B〉 ∗ T ) R ∗ T

(Q ∗ 〈Y〉) ∗ S Q ∗ S

∼= Q⊗ S Q⊗ S

Q ∗ (〈Y〉 ∗ S) Q ∗ S

ι

ι

ι

ι(m∗〈g〉)∗n

m∗(〈g〉∗n)

m∗n

m∗n

ι!(m∗n) m⊗n∼=
co.equ

A composite matrix category forms a coequifier of an iso-coinserter of the actions of the
inner category. Matrix functors form an equifier of an iso-inserter of the actions of the outer
categories. A composite matrix profunctor forms a coequalizer along those iso-coinserters,
and matrix transformations form an equalizer along those iso-inserters.

Hence, we show the duality of composition-by-codescent and transformation-by-descent.
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Theorem 57. MatCat is closed: for each pair of matrix categories R :A ‖B and S :B ‖C
and matrix category T :A ‖C, there is an extension

MatCat(A,C)(R⊗ S, T ) ' MatCat(B,C)(S, [R → T ])

with the following explicit formula:

[R → T ] ≡ ~ΠA R(A,−)→ T (A,−)

and dually, there is a lift

MatCat(A,C)(R⊗ S, T ) ' MatCat(A,B)(R, [T ← S])

with the following explicit formula:

[T ← S] ≡ ~ΠC S(−,C)→ T (−,C)

For each pair of matrix profunctorsm(f, g) :Q(X,Y) |R(A,B) and n(g, h) :S(Y,Z) | T (B,C),
and matrix profunctor p(f, h) : (Q⊗S)(X,Z) | (R⊗T )(A,C), there is an extension and lift.

[m→ p] ≡ ~Πg m(f,−)→ p(f,−) [p← n] ≡ ~Πh n(−, h)→ p(−, h)

Proof. The compositeR⊗S is a coequifier of an iso-coinserter, while the hom [(R⊗S), T ] is
an equifier of an iso-inserter. These are constructed pointwise in Cat; the first coordinate
of Cat(−,−) converts 2-colimits into 2-limits, while the second preserves 2-limits [10].
The Fubini equivalence is given in [2]. Hence we have the following equivalence.

MatCat(R⊗ S, T ) = ~ΠA,C Cat((R⊗ S)(A,C), T (A,C))

= ~ΠA,C Cat(~ΣB R(A,B)× S(B,C), T (A,C))

' ~ΠA,C ~ΠB Cat(R(A,B)× S(B,C), T (A,C))

' ~ΠA,B,C Cat(S(B,C), [R(A,B)→ T (A,C)])

' ~ΠB,C Cat(S(B,C), ~ΠC [R(A,B)→ T (A,C)])

= MatCat(S, [R → T ])

In the same way, the equalizer formed by matrix transformations is dual to the coequalizer
formed by composition of matrix profunctors; hence we have the following isomorphism.

MatProf(m⊗ n, p) = ~Πf, h Prof((m⊗ n)(f, h), p(f, h))

= ~Πf, h Prof(~Σg m(f, g)× n(g, h), p(f, h))
∼= ~Πf, h ~Πg Prof(m(f, g)× n(g, h), p(f, h))
∼= ~Πf, g, h Prof(n(g, h), [m(f, g)→ p(f, h)])
∼= ~Πg, h Prof(n(g, h), ~Πf [m(f, g)→ p(f, h)])

= MatProf(n, [m→ p])

These define a weak right adjoint [7] to composition R ⊗ − and m ⊗ −; dually for lifts.
The detailed definition of closed metalogic will be given in a forthcoming draft.
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Hence matrix profunctors are exponentiable, ensuring the coherence of MatCat.
The above theorem gives the formula for the right adjoint; but first we follow the rea-

soning of Street in [19]: let i(f, g) :Q(X,Y) |R(A,B) be a matrix profunctor, determining
a displayed profunctor i : f × g → Prof with actions

Q(x, y) ◦ i(f, g)⇒ i(xf, yg) and i(f, g) ◦ R(a, b)⇒ i(fa, gb).

These actions are invertible, as Q andR are bifibered: each i : i(xf, yg) and each i : i(fa, gb)
factor as the following elements of Q(x, y) ◦ i(f, g) and i(f, g) ◦ R(a, b), respectively.

X0 Y0

X0 X0 Y0 Y0

X1 X0 Y0 Y1

X1 X1 Y1 Y1

A A B B

A B

Qp
x y

f g

R
p

x̌

x

Qp

ŷ

y

f g

Qp

R
p

i

∼=

∼=

X Y

X X Y Y

A0 A0 B0 B0

A0 A1 B1 B0

A1 A1 B1 B1

A1 B1

Qp
f g

a b

R
p

â

a

b̌

b

R
p

R
p

gf

Qp

i

∼=

∼=

Then for j(f, h) :S(X,Z) | T (A,C), the extension

[i→ j](g, h) : [Q → S](Y,Z) | [R → T ](B,C)

consists of transformations i(−, g)⇒ j(−, h) and actions as follows.

Q(−,Y0) R(−,B)

Q(−,Y0) Q(−,Y1) R(−,B)

S(−,Z0) S(−,Z1) T (−,C)

S(−,Z0) T (−,C)

Q(−,y)
p

i(−,g)
p

S(−,z)
p

j(−,h)
p

i(−,yg)

j(−,zh)
p

∼=

∼=

Q(−,Y) R(−,B1)

Q(−,Y) R(−,B0) R(−,B1)

S(−,Z) T (−,C0) T (−,C1)

S(−,Z) T (−,C1)

i(−,g)
p

R(−,b)
p

j(−,h)
p

T (−,c)
p

i(−,gb)
p

j(−,hc)
p

∼=

∼=

Hence by reasoning exactly analogous to [19], matrix profunctors are exponentiable.
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3 Metalogic: the language of bifibrant double categories

We can now define a logic, or bifibrant double category: a matrix category A :A ‖A with
composition ◦ :A⊗ A → A and unit id :A → A, with coherent associator and unitors — a
pseudomonad in MatCat. So, this chapter is simply the completion of the previous chapter.

Because we developed all underlying structure, we can define the whole “multiverse”
of logics. As a logic is two-dimensional, there are two kinds of relations between logics: a
vertical profunctor consists of processes between logics, and a horizontal profunctor consists
of relations between logics. Two pairs are connected by a double profunctor, which consists
of inferences between relations, along processes.

meta relation meta process meta inference
[horiz. profunctor] [vert. profunctor] [dbl. profunctor]

Because MatCat consists of categories and profunctors, the above profunctors already
have sequential composition; so we only need to add the structure of parallel composition.
For horizontal profunctors, this is a familiar bimodule action. But as vertical profunctors
are orthogonal, parallel composition defines a monad structure, and double profunctors
are bimodules thereof.

H-prof. composition V-prof. composition D-prof. composition

So logics have two kinds of “relations”, and one kind of “function”: a double functor
[[A]] :A0 → A1 maps squares of A0 to squares of A1, preserving relation composition and
unit up to coherent isomorphism. This generalizes to transformations of vertical, horizon-
tal, and double profunctors; all four are defined by mapping squares in a way that coheres
with parallel composition.

Contents



The Language of Category Theory Christian Williams

double functor preserves composition; double transformation

Logics form a metalogic: the three kinds of 1-morphism are v-profunctor, h-profunctor,
and double functor; the three kinds of 2-morphism are double profunctor, v-transformation,
and h-transformation; and the 3-morphism is a double transformation.

MatCat H.PsMnd(−) bf.DblCat Logic

0 category (H)-pseudomonad bifibrant double category logic
V profunctor (H)-vertical monad vertical profunctor meta process
H matrix category (H)-pseudobimodule horizontal profunctor meta relation
VH matrix profunctor (H)-vertical bimodule double profunctor meta inference

T functor ps. mnd. morphism double functor flow type
TV transformation v. mnd. morphism vertical transformation flow process
TH matrix functor ps. bim. morphism horizontal transformation flow relation
TVH matrix transformation v. bim. morphism double transformation flow inference

We construct the double category bf.DblCat of bifibrant double categories and double
functors, vertical profunctors and vertical transformations.

We construct the double category bf.DblProf of horizontal profunctors and horizontal
transformations, double profunctors and double transformations.

Then we define parallel composition of horizontal profunctors. As for matrix categories
in 2.5, the composite forms a codescent object, which adjoins a coherent associator for the
middle action. We show that this defines the structure of a metalogic.
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3.1 Logic [Bifibrant double category]

Definition 58. A logic A, a.k.a. bifibrant double category, is a pseudomonad in MatCat.
Hence a logic is a category A with a matrix category A :A ‖A

A A A

A A A

pp p
with matrix functors ◦ :A⊗ A→ A for composition and id :A→ A for unit

A A⊗ A A A A A

A A A A A A

◦ id

and invertible matrix transformations for associativity and unit

A⊗ A⊗ A A⊗ A A A⊗ A

A⊗ A A A⊗ A A

◦⊗A

A⊗◦ ◦

◦

α

A⊗id

◦id⊗A

◦

λ

ρ

which satisfy the associator and unitor coherence.

A⊗ A⊗ A⊗ A A A A

A1◦(A2◦(A3◦A4))

((A1◦A2)◦A3)◦A4

A1◦(id◦A2)

(A1◦id)◦A2
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bifibrant double category composition unit
matrix category matrix functor matrix functor

A :A ‖A ◦ :A⊗ A→ A id :A→ A

left unitor associator right unitor
matrix transformation matrix transformation matrix transformation

λ :A ∼= id ◦ A α : (A ◦ A) ◦ A ∼= A ◦ (A ◦ A) ρ :A ∼= A ◦ id

associator coherence unitor coherence
((A0 ◦ A1) ◦ A2) ◦ A3 ⇒ A0 ◦ (A1 ◦ (A2 ◦ A3)) (A1 ◦ id) ◦ A2 ⇒ A1 ◦ (id ◦ A2)
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3.2 Relations [Double profunctor]

Definition 59. Let X,A be bifibrant double categories. A vertical profunctor f :X |A, i.e.
meta process, is a vertical monad between pseudomonads in MatCat.

Hence it is a profunctor f :X |A and a matrix profunctor f(f, f) :X(X,X) |A(A,A)

X X X

A A A

f p fpf

with matrix transformations ◦ : f ∗ f ⇒ f for composition and id : f ⇒ f for unit

f f ⊗ f f f f f

f f f f f f

◦ id

which cohere with the associators and unitors of X and A.

X⊗ X X

X⊗ X⊗ X X⊗ X

A⊗ A⊗ A A⊗ A

A⊗ A A

f⊗f⊗fp f⊗f p fpf⊗f p ◦⊗f

∼=

∼=

◦f⊗◦

◦

X X

X X⊗ X X X⊗ X

A A⊗ A A A⊗ A

A A

◦

fp

◦

f⊗fp

id⊗X

f p

id⊗A

f p f⊗fp

X⊗id

A⊗id

◦

◦

fpid⊗f ◦

∼=

∼=

f⊗id

∼=

∼=

◦
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vertical profunctor composition unit
matrix profunctor matrix transformation matrix transformation

f(f, f) :X(X,X) |A(A,A) ◦ : f ∗ f → f id : f → f

left unit coherence assoc coherence right unit coherence
id.X ◦ X⇒ id.A ◦ A (X ◦ X) ◦ X⇒ A ◦ (A ◦ A) X ◦ id.X⇒ A ◦ id.A

Contents
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Definition 60. Let A and B be bifibrant double categories. A horizontal profunctor
R :A ‖B, i.e. meta relation, is a matrix category forming a bimodule of pseudomonads.

Hence it is a matrix category R :A ‖B, with action matrix functors A ⊗ R → R and
R⊗ B→ R, and invertible matrix transformations for associators and unitors

A⊗ A⊗R A⊗R A⊗R⊗ B R⊗ B R⊗ B⊗ B R⊗ B

A⊗R R A⊗R R R⊗ B R

A⊗◦

◦⊗R

◦

◦

◦⊗B

A⊗◦

◦

◦ R⊗◦

◦⊗B

◦

◦αA αR αB

(A1 ◦ A2) ◦R ∼= A1 ◦ (A2 ◦R) A ◦ (R ◦B) ∼= (A ◦R) ◦B R ◦ (B1 ◦B2) ∼= (R ◦B1) ◦B2

R

A⊗R R

R⊗id

◦

λ

υA :R ∼= id.A ◦R

R

R⊗ B R

R⊗id

◦

ρ

υB :R ∼= R ◦ id.B

satisfying the associator coherence

A⊗ A⊗ A⊗R R A⊗R⊗ B⊗ B R

A⊗ A⊗R⊗ B R R⊗ B⊗ B⊗ B R

A◦(A◦(A◦R))

((A◦A)◦A)◦R

A◦(R◦(B◦B))

((A◦R)◦B)◦B

(A◦A)◦(R◦B)

(A◦(A◦R))◦B

R◦(B◦(B◦B))

((R◦B)◦B)◦B

and unitor coherence.

A⊗R R R⊗ B R

A◦(id◦R)

(A◦id)◦R

R◦(id◦B)

(R◦id)◦B
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horizontal profunctor left composition right composition
matrix category matrix functor matrix functor
R :A ‖B ◦ :A ∗ R → R ◦ :R ∗ B→ R

left associator center associator right associator
matrix transformation matrix transformation matrix transformation

αA : (A ◦ A) ◦ R ∼= A ◦ (A ◦ R) αR :A ◦ (R ◦ B) ∼= (A ◦ R) ◦ B αB :R ◦ (B ◦ B) ∼= (R ◦ B) ◦ B

left unitor right unitor
λ :R ∼= A ◦ R ρ :R ∼= R ◦ B
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A-assoc coherence AAB-assoc coherence
((A ◦ A) ◦ A) ◦ R⇒ A ◦ (A ◦ (A ◦ R)) (A ◦ A) ◦ (R ◦ B)⇒ (A ◦ (A ◦ R)) ◦ B

ABB-assoc coherence B-assoc coherence
A ◦ (R ◦ (B ◦ B))⇒ ((A ◦ R) ◦ B) ◦ B R ◦ (B ◦ (B ◦ B))⇒ ((R ◦ B) ◦ B) ◦ B

A-unit coherence B-unit coherence
(A ◦ id) ◦ R⇒ A ◦ (id ◦ R) R ◦ (id ◦ B)⇒ (R ◦ id) ◦ B
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Definition 61. Let X,Y,A,B be bifibrant double categories, let Q :X ‖Y and R :A ‖B be
horizontal profunctors, and let f :X |A and g :Y |B be vertical profunctors.

A double profunctor or meta inference i(f, g) :Q(X,Y) |R(A,B) is a matrix profunc-
tor which forms a “vertical bimodule” of weak bimodules. So it is equipped with action
matrix transformations ◦ : f ⊗ i⇒ i and ◦ : i⊗ g ⇒ i which cohere with the associators:

X⊗Q Q

X⊗Q⊗ Y Q⊗ Y

A⊗R⊗ B R⊗ B

A⊗R R

f⊗i⊗g p i⊗gp ipf⊗i p ◦⊗g f⊗◦ ◦

∼=

∼=

◦

X⊗Q Q

X⊗ X⊗Q X⊗Q

A⊗ A⊗R A⊗R

A⊗R R

f⊗f⊗i p f⊗ip ipf⊗i p ◦⊗i f⊗◦ ◦

∼=

∼=

◦

Q⊗ Y Q

Q⊗ Y⊗ Y Q⊗ Y

R⊗ B⊗ B R⊗ B

R⊗ B R

i⊗g⊗g p i⊗gp ipi⊗g p ◦⊗g i⊗◦ ◦

∼=

∼=

◦
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and cohere with the unitors of X,Y,A,B.

Q R

X⊗Q A⊗R

Q R

ip

f⊗ip

i
p

id⊗i

◦

∼= ∼=

Q R

Q⊗ Y R⊗ B

Q R

ip

i⊗gp

i
p

i⊗id

◦

∼= ∼=
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double profunctor left composition right composition
matrix profunctor matrix transformation matrix transformation

i(f, g) :Q(X,Y) |R(A,B) ◦ : f ⊗ i→ i ◦ : i⊗ g → i

l-assoc coherence c-assoc coherence r-assoc coherence
(X ◦ X) ◦ Q⇒ A ◦ (A ◦ R) (X ◦ Q) ◦ Y⇒ A ◦ (R ◦ B) (Q ◦ Y) ◦ Y⇒ R ◦ (B ◦ B)

l-unit coherence r-unit coherence
id.X ◦ Q⇒ id.A ◦ R Q ◦ id.Y⇒ R ◦ id.B
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3.3 Morphisms [Double transformation]

Definition 62. Let A0,A1 be bifibrant double categories. A double functor, i.e. flow type,
is a morphism of pseudomonads. Hence it is a matrix functor [[A]] :A0 → A1 with invertible
matrix transformations called the join and unit

A0 ⊗ A0 A1 ⊗ A1 A0 A1

A0 A1 A0 A1

[[A]]⊗[[A]]

◦ ◦

[[A]]

[[A]]

id id

[[A]]

[[◦]] [[id]]

which cohere with the associators of A0,A1

A0 ⊗ A0 A1 ⊗ A1

A0 ⊗ A0 ⊗ A0 A1 ⊗ A1 ⊗ A1

A0 ⊗ A0 A1 ⊗ A1

A0 A1

∼= ∼=[[◦]]⊗[[A]]

[[A]]⊗[[◦]]

[[◦]]

[[◦]]

and the unitors of A0,A1.

A0 A1

A0 ⊗ A0 A1 ⊗ A1

A0 A1

[[A]]

id⊗A0 id⊗A1

[[A]]⊗[[A]]

◦ ◦

[[A]]

[[id]]⊗[[A]]

[[◦]]

∼= ∼=

A0 A1

A0 ⊗ A0 A1 ⊗ A1

A0 A1

[[A]]

A0⊗id A1⊗id

[[A]]⊗[[A]]

◦ ◦

[[A]]

[[A]]⊗[[id]]

[[◦]]

∼= ∼=
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double functor join unit
[[A]] :A0 → A1 [[◦]] : [[A]] ◦ [[A]] ∼= [[A ◦ A]] [[id]] : id.[[A]] ∼= [[id.A]]

left unit coherence associator coherence right unit coherence
id ◦ [[A]]⇒ [[id ◦ A]] ([[A]] ◦ [[A]]) ◦ [[A]]⇒ [[A ◦ (A ◦ A)]] [[A]] ◦ id⇒ [[A ◦ id]]

Contents



The Language of Category Theory Christian Williams

Definition 63. Let X0,X1,A0,A1 be bifibrant double categories, let [[X]] :X0 → X1 and
[[A]] :A0 → A1 be double functors, and let f0 :X0 |A0 and f1 :X1 |A1 be vertical profunctors.

A vertical transformation, i.e. flow process, [[f ]]([[X]], [[A]]) : f0(X0,A0) ⇒ f1(X1,A1) is
a transformation of vertical modules.

Hence it is a transformation [[f ]] : f
0
⇒ f

1
and a matrix transformation [[f ]] : f0 ⇒ f1

f
0

f0 f
0

f
1

f1 f
1

[[f ]][[f ]] [[f ]]

which coheres with the joins of [[X]] and [[A]].

X0 X1

X0 ∗ X0 X1 ∗ X1

A0 ∗ A0 A1 ∗ A1

A0 A1

f0∗f0 pf0

p f1

pf1∗f1p

µ

◦ ◦

µ

[[f ]]∗[[f ]]

[[f ]]

and the units of [[X]] and [[A]].

X0 X1

X0 X1

A0 A1

A0 A1

f
0 pf0

p f1

pf
1p

η

id

η

[[f ]]

id[[f ]]
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vertical transformation join coherence unit coherence
[[f ]] : f0 ⇒ f1 [[X]] ◦ [[X]]⇒ [[A ◦ A]] id.[[X]]⇒ [[id.A]]
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Definition 64. Let A0,B0,A1,B1 be bifibrant double categories, let [[A]] :A0 → A1 and
[[B]] :B0 → B1 be double functors, and let R0 :A0 ‖B0 and R1 :A1 ‖B1 be h-profunctors.

A horizontal transformation, i.e. flow relation, [[R]]([[A]], [[B]]) :R0(A0,B0)→ R1(A1,B1)
is a transformation of weak bimodules. Hence it is a matrix functor [[R]] :R0 → R1 with
invertible matrix transformations called left and right join

A0 ⊗R0 A1 ⊗R1

R0 R1

[[A]]⊗[[R]]

◦0A

[[R]]

◦1A[[◦A]]

[[◦A]] : [[A0]] ◦1 [[R0]] ∼= [[A0 ◦0 R0]]

R0 ⊗ B0 R1 ⊗ B1

R0 R1

[[R]]⊗[[B]]

◦0B

[[R]]

◦1B[[◦B]]

[[◦B]] : [[R0]] ◦1 [[B0]] ∼= [[R0 ◦0 B0]]

which coheres with the joins of [[A]] and [[B]], along the associators of R0 and R1

A0 ⊗R0 A1 ⊗R1

A0 ⊗ A0 ⊗R0 A1 ⊗ A1 ⊗R1

A0 ⊗R0 A1 ⊗R1

R0 R1

[[◦A]]

[[◦A]]⊗[[R]]

[[A]]⊗[[◦A]] [[◦A]]∼= ∼=

A0 ⊗R0 A1 ⊗R1

A0 ⊗R0 ⊗ B0 A1 ⊗R1 ⊗ B1

R0 ⊗ B0 R1 ⊗ B1

R0 R1

[[◦B]]

[[◦A]]⊗[[B]]

[[A]]⊗[[◦B]] [[◦A]]∼= ∼=
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R0 ⊗ B0 R1 ⊗ B1

R0 ⊗ B0 ⊗ B0 R1 ⊗ B1 ⊗ B1

R0 ⊗ B0 R1 ⊗ B1

R0 R1

[[◦B]]

[[◦B]]⊗[[B]]

[[R]]⊗[[◦B]] [[◦B]]∼= ∼=

and the units of [[A]] and [[B]].

R0 R1

A0 ⊗R0 A1 ⊗R1

R0 R1

[[R]]

[[A]]⊗[[R]]

[[R]]

∼= ∼=

[[id]]⊗[[R]]

[[◦A]]

R0 R1

R0 ⊗ B0 R1 ⊗ B1

R0 R1

[[R]]

[[R]]⊗[[B]]

[[R]]

∼= ∼=

[[R]]⊗[[id]]

[[◦B]]
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horizontal transformation
matrix functor

[[R]]([[A]], [[B]]) :R0(A0,B0)→ R1(A1,B1)

left join right join
matrix transformation matrix transformation

[[◦A]] : [[A]] ◦ [[R]] ∼= [[A ◦ R]] [[◦B]] : [[R]] ◦ [[B]] ∼= [[R ◦ B]]
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center assoc. coherence
equality

[[A]] ◦ ([[R]] ◦ [[B]])⇒ [[(A ◦ R) ◦ B]]

left assoc. coherence right assoc coherence
equality equality

([[A1]] ◦ [[A2]]) ◦ [[R]]⇒ [[A1 ◦ (A2 ◦ R)]] [[R]] ◦ ([[B1]] ◦ [[B2]])⇒ [[(R ◦ B1) ◦ B2]]

left unit coherence right unit coherence
equality equality

id.[[A]] ◦ [[R]]⇒ [[id.A ◦ R]] [[R]] ◦ id.[[B]]⇒ [[R ◦ id.B]]
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Definition 65. Let i0(f0, g0) :Q0(X0,Y0) |R0(A0,B0) and i1(f1, g1) :Q1(X1,Y1) |R1(A1,B1)
be matrix profunctors. Let [[X]] :X0 → X1 etc. be double functors, [[f ]] : f0 ⇒ f1, [[g]] : g0 ⇒
g1 be vertical transformations, and [[Q]]([[X]], [[Y]]) :Q0 → Q1, [[R]]([[A]], [[B]]) :R0 → R1 be
horizontal transformations.

A double transformation, i.e. flow inference or simply flow

[[i]]([[f ]], [[g]]) : i0(f0, g0)⇒ i1(f1, g1)

is a transformation of vertical bimodules. Hence it is a matrix transformation

f0 i0 g0

f1 i1 g1

[[f ]] [[g]][[i]]

which coheres with the left and right joins of the horizontal transformations.

Q0 Q1

X0 ⊗Q0 X1 ⊗Q1

A0 ⊗R0 A1 ⊗R1

R0 R1

f0⊗i0p f1⊗i1p

[[X]]⊗[[Q]]

[[A]]⊗[[R]]

[[Q]]

[[R]]

i0

p i1

p

[[◦A]]

[[◦X]]

[[f ]]⊗[[i]]◦0 ◦1

[[i]]

[[X]] ◦ [[Q]] [[X ◦Q]]

[[A]] ◦ [[R]] [[A ◦R]]

[[f ]]◦[[i]]

[[◦X]]

[[◦A]]

[[f◦i]]

Q0 Q1

Q0 ⊗ Y0 Q1 ⊗ Y1

R0 ⊗ B0 R1 ⊗ B1

R0 R1

i0⊗g0p i1⊗g1p

[[Q]]⊗[[Y]]

[[R]]⊗[[B]]

[[Q]]

[[R]]

i0

p i1

p

[[◦B]]

[[◦Y]]

[[i]]⊗[[g]]◦0 ◦1

[[i]]

[[Q]] ◦ [[Y ]] [[Q ◦ Y ]]

[[R]] ◦ [[B]] [[R ◦B]]

[[i]]◦[[g]]

[[◦Y]]

[[◦B]]

[[i◦g]]
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double transformation
matrix transformation

[[i]]([[f ]], [[g]]) : i0(f0, g0)⇒ i1(f1, g1)

left join coherence right join coherence
equality equality

[[X]] ◦ [[Q]]⇒ [[A ◦ R]] [[Q]] ◦ [[Y]]⇒ [[R ◦ B]]
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3.4 The metalogic of logics

To show that logics form a metalogic, we simply compose structures and equations.

Proposition 66. Bifibrant double categories and double functors, vertical profunctors and
vertical transformations form a double category, which we call bf.DblCat.

Proof. For double functors [[A]]1 :A0 → A1, [[A]]2 :A1 → A2, the composite [[[[A]]1]]2 :A0 → A2

is a double functor, with structure given by [[◦]]1 ◦ [[◦]]2 and [[id]]1 ◦ [[id]]2; these satisfy the
coherence by composing equations. Composition is associative and unital.

A0 ⊗ A0 A1 ⊗ A1 A2 ⊗ A2 A0 A1 A2

A0 A1 A2 A0 A1 A2

[[A0]]⊗[[A0]] [[A1]]⊗[[A1]]

◦

[[A0]]

◦

[[A1]]

◦ id id id

[[A0]] [[A1]]

[[A0]] [[A1]]

[[◦]]1 [[◦]]2 [[id]]1 [[id]]2

Composition of vertical transformations is given in the same way.

X0 X1 X2

X0 ⊗ X0 X1 ⊗ X1 X2 ⊗ X2

A0 ⊗ A0 A1 ⊗ A1 A2 ⊗ A2

A0 A1 A2

f0⊗f0 p f1⊗f1 f2⊗f2p

[[X0]]⊗[[X0]] [[X1]]⊗[[X1]]

[[A0]]⊗[[A0]] [[A1]]⊗[[A1]]

[[X0]] [[X1]]

◦ ◦ ◦

◦

f0

p

◦ ◦

f2

p

[[A0]] [[A1]]

◦ ◦[[f0]]⊗[[f0]] [[f1]]⊗[[f1]]

[[◦]]0 [[◦]]1

[[◦]]0 [[◦]]1

[[f0]]·[[f1]]

So it remains to define sequential composition of vertical profunctors, and verify that
it is functorial, i.e. preserves composition of vertical transformations.

Consider the following sequential composite of vertical profunctors.

X X X X X X

Y Y Y

Z Z Z Z Z Z

f

g

f p fp

g p gp

f◦g p f◦g f◦gp
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Just as for matrix profunctors, the equalities adjoined by the quotient are represented
by squares in Y. The sequential composite matrix profunctor f � g :X |Z is a vertical
profunctor, with composition and unit given by sequentially composing that of f and g.

X⊗ X X X X

Y⊗ Y Y Y Y

Z⊗ Z Z Z Z

f⊗f p

g⊗g p

◦

◦

◦

fp

gp

id

id

id

f p
g p

fp

gp

◦

◦

id

id

Again, these satisfy the coherence simply by composing equations.
Sequential composition is functorial: let [[f ]] : f0 ⇒ f1 and [[g]] : g0 ⇒ g1 be vertical

transformations; then ([[f ]] � [[g]]) : (f0 � g0)⇒ (f1 � g1) is defined by sequential composition.

X0 X1

X0 ⊗ X0 X1 ⊗ X1

Y0 Y0 ⊗ Y0 Y1 ⊗ Y1 Y1

Z0 ⊗ Z0 Z1 ⊗ Z1

Z0 Z1

f0⊗f0 p

g0⊗g0 p

f1⊗f1p

g1⊗g1p

f1

p

g1p

f0

p

g0 p

[[f ]]⊗[[f ]]

[[g]]⊗[[g]]

◦

◦

◦

◦

µ

µ

[[f ]]

[[g]]

This preserves composition of transformations: picture two of the above such cubes,
composed from left to right. So, sequential composition is functorial.

Hence bifibrant double categories and double functors, vertical profunctors and vertical
transformations form a double category bf.DblCat.

Proposition 67. Horizontal profunctors and horizontal transformations, double profunc-
tors and double transformations form a double category, which we call bf.DblProf.

Proof. Composition of horizontal transformations [[R]]1 :R0 → R1 and [[R]]2 :R1 → R2 is
defined by that of matrix functors, and that of the joins.
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A0 ⊗R0 A1 ⊗R1 A2 ⊗R2

R0 R1 R2

[[A]]1⊗[[R]]1 [[A]]2⊗[[R]]2

◦ ◦ ◦

[[R]]1 [[R]]2

[[◦A]]1 [[◦A]]2

R0 ⊗ B0 R1 ⊗ B1 R2 ⊗ B2

R0 R1 R2

[[R]]1⊗[[B]]1 [[R]]2⊗[[B]]2

◦ ◦ ◦

[[R]]1 [[R]]2

[[◦B]]1 [[◦B]]2

This coheres with the associators, again by composing equations.

A0 ⊗R0 A1 ⊗R1 A2 ⊗R2

A0 ⊗R0 ⊗ B0 A1 ⊗R1 ⊗ B1 A2 ⊗R2 ⊗ B2

R0 ⊗ B0 R1 ⊗ B1 R2 ⊗ B2

R0 R1 R2

∼=

[[A]]1⊗[[◦B]]1

[[◦A]]1⊗[[B]]1

[[◦B]]1

[[◦A]]1

[[A]]2⊗[[B]]2

∼=

[[B]]2

[[◦A]]2⊗[[B]]2 [[◦A]]2

Composition of double transformations [[i]]1 · [[i]]2 : i0 ⇒ i2 is defined by that of matrix trans-
formations, and this coheres with the joins of [[[[Q]]1]]2 and [[[[R]]1]]2 by composing equations.

Q0 Q1 Q2

X0 ⊗Q0 X1 ⊗Q1 X1 ⊗Q1 X2 ⊗Q2

A0 ⊗R0 A1 ⊗R1 A1 ⊗R1 A2 ⊗R2

R0 R1 R2

f0⊗i0pi0

p f1⊗i1 p

[[◦]]1

[[Q]]1

[[f ]]1⊗[[i]]1

[[R]]1

[[◦1]] [[◦1]]

[[i]]1

[[f ]]2⊗[[i]]2 [[◦2]]

[[i]]2

[[Q]]2

[[R]]2

So it remains to define sequential composition of double profunctors, and verify that it
is functorial. Because the reindexing quotient has already been imposed in MatCat (44),
composition of double profunctors is defined by that of matrix profunctors.

X R A X R A

Y S B

Z T C Z T C

m p

n p

f p k

p

g p `

p

f◦g p

m◦np

k◦`p
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So the composite double transformation is given by the composite matrix transformation.

R0 S0 T0

R1 S1 T1

m0p n0p

m1p n1p

[[R]] [[S]] [[T ]][[m]] [[n]]

The coherence with the joins is given by composing equations.

R0 R1

X0 ⊗R0 X1 ⊗R1

Y0 ⊗ S0 Y1 ⊗ S1

S0 S1

Y0 ⊗ S0 Y1 ⊗ S1

Z0 ⊗ T0 Z1 ⊗ T1

T0 T1

f0⊗m0

pm0

p
n0

p

f1⊗m1

p

n1

p

m1

p

g0⊗n0

p g1⊗n1

p

◦ [[f ]]⊗[[m]] ◦

[[◦X]]

[[◦Z]]

[[m]]

[[n]]

◦ ◦[[g]]⊗[[n]]

[[◦Y]]

[[◦Y]]

Sequential composition of double transformations preserves transformation composition,
because that of matrix transformations does. Thus, horizontal profunctors and transfor-
mations, double profunctors and transformations form a double category bf.DblProf.

R0 S0

R1 S1m1
p

m0p

[[R]] [[S]][[m]]

Contents



The Language of Category Theory Christian Williams

Proposition 68. bf.DblCat← bf.DblProf → bf.DblCat is a fibered logic.

Proof. Substitution of double functors in a horizontal profunctor, and vertical transforma-
tions in a double profunctor, are defined by pullback. Sequential composition of vertical
profunctors preserves this substitution, in the same way as for matrix profunctors.

Parallel composition

Composition of horizontal profunctors is defined in the same way as for matrix categories
(2.5): by a codescent object, which adjoins a coherent associator for the middle action —
in fact, all the proofs are essentially the same. The only difference is now B is a general
bifibrant double category, rather than a weave double category 〈B〉.

Definition 69. LetR :A ‖B and S :B ‖C be horizontal profunctors. We define the parallel
composite R ⊗ S :A ‖C as follows. To the composite matrix category R ⊗M S :A ‖C we
adjoin for every B :B(B0,B1) an associator B0.(R,B ◦ S) ∼= B1.(R ◦B, S).

R⊗M (B⊗M S) R⊗M S

(R⊗ S)α

(R⊗M B)⊗M S R⊗M S

R⊗M◦B

ι

∼=

◦B⊗MS

ι

αRS

This associator is natural by its universal construction, so for every square b :B(B0, B1) and
r :R(R0, R1), s :S(S0, S1) the following commutes.

(R0, B0 ◦ S0) (R0 ◦B0, S0)

(R1, B1 ◦ S1) (R1 ◦B1, S1)

αRS

αRS

(r,b◦s) (r◦b,s)

Then we form the following coequifier, for reassociating a composite and a unit.

R⊗M B⊗M B⊗M S (R⊗ S)α (R⊗ S)β

B0.(R,B1◦(B2◦S))

B2.((R◦B1)◦B2,S)

co.equif

R⊗M S (R⊗ S)β R⊗ S

B.(R,UB◦S)

B.(R◦UB,S)

co.equif
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This defines the parallel composite horizontal profunctor R⊗ S : bf.DblCat(A,C).

Next, we define parallel composition of double profunctors along vertical profunctors.

Definition 70. Let m(f, g) :Q(X,Y) |R(A,B) and n(g, h) :S(Y,Z) : T (B,C) be double pro-
functors, composable along the vertical profunctor g :Y |B.

X Q Y S Z

A R B T C

f p m g n h

p

The parallel composite (m ⊗ n)(f, h) : (Q ⊗ S)(X,Z) | (R ⊗ T )(A,C) is defined as the
following coequalizer.

(R⊗M 〈B〉)⊗M T R ⊗M T

∼= R⊗ T R⊗ T

R⊗M (〈B〉 ⊗M T ) R⊗M T

(Q⊗M 〈Y〉)⊗M S Q⊗M S

∼= Q⊗ S Q⊗ S

Q⊗M (〈Y〉 ⊗M S) Q⊗M S

ι

ι

ι

ι(m⊗M〈g〉)⊗Mn

m⊗M(〈g〉⊗Mn)

m⊗Mn

m⊗Mn

ι!(m⊗Mn) m⊗n∼=
co.equ

The profunctor ι!(m ⊗M n) forms all composites of elements g.(m,n) and the morphisms
of Q⊗ S and R⊗ T . Then, the coequalizer imposes that the associators are natural with
respect to the elements. So the elements of the composite (m⊗n)(f, h) : (Q⊗S)(X,Z) | (R⊗
T )(A,C) are composites of:
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morphisms y.(q, s) : (Q⊗ S)(Y0.(Q0, S0),Y1.(Q1, S1))

associators αQS : (Q⊗ S)(Y0.(Q, Y ◦ S),Y1.(Q ◦ Y, S))

elements g.(m,n) : (m ◦M n)(Y.(Q,S),B.(R, T ))

associators αRT : (R⊗ T )(B0.(R,B ◦ T ),B1.(R ◦B, T ))

morphisms b.(r, t) : (R⊗ T )(B0.(R0, T0),B1.(R1, T1))

such that for any g : g(g0, g1)(Y,B) and m :m(f, g0), n :n(g1, h) the following commutes.

Y0.(Q, Y ◦ S) Y1.(Q ◦ Y, S)

B0.(R,B ◦ T ) B1.(R ◦B, T )

αQS

αRT

g0.(m,g◦n) g1.(m◦g,n)

The parallel composite matrix profunctor can be drawn as follows.

Parallel composition of horizontal profunctors and double profunctors is functorial in
the same way as matrix categories and matrix profunctors, by functoriality of colimit.

Yet just as for matrix profunctors, parallel composition does not preserve sequential
composition of horizontal profunctors. So following definition 55, bifibrant double cate-
gories form a metalogic.

Theorem 71. Bifibrant double categories form a metalogic.
Morphisms are double functors, vertical profunctors, and horizontal profunctors; squares

are vertical transformations, horizontal transformations, and double profunctors; and
cubes are double transformations.

bf.DblCat← bf.DblProf → bf.DblCat

Proof. Let DC be the category of bifibrant double categories and double functors, and let
VP be the category of vertical profunctors and vertical transformations; so DC ← VP →
DC is bf.DblCat.
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Let HP be the category of horizontal profunctors and horizontal transformations, and
let DP be the category of double profunctors and double transformations; so HP← DP→
HP is bf.DblProf.

As we showed, these form a fibered span of logics

DC HP DC

VP DP VP

DC HP DC

equipped with span functors for parallel composition and unit:

HP ∗h HP HP DC HP

DP ∗h DP DP VP DP

HP ∗h HP HP DC HP

⊗

⊗

⊗

X.X(−,−)

f.f(−,−)

A.A(−,−)

with span transformations for left and right unitors, forming adjoint equivalences: for ev-
ery horizontal profunctorR :A ‖B, its unitors and associators give the following horizontal
transformations.

R R

A⊗R
λ◦ λ•

ηλ

ηλ = υA :R ∼= UA ◦R

R R

R⊗ B
ρ◦ ρ•

ηρ

ηρ = υB :R ∼= R ◦ UB

R

A⊗R A⊗R

λ• λ◦

ελ

ελ = αA : (UA0 , A ◦R) ∼= (A,R)

R

R⊗ B R⊗ B

ρ• ρ◦

ερ

ερ = αB : (R ◦B,UB1)
∼= (R,B)
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Just as in MatCat, the naturality of unitors with respect to elements of double pro-
functors gives that the above transformations cohere with the unitor transformations for
double profunctors, as in a modification.

Q R

Q X⊗Q A⊗R R

Q R

ip

f⊗ip

i
p

∼= ∼=

λi

λ•i

UX ◦Q Q

UA ◦R R

υX

υA

Uf◦i i

Q R

Q Q⊗ Y R⊗ B R

Q R

ip

i⊗gp

i
p

∼= ∼=

ρ•i

ρi

Q ◦ UY Q

R ◦ UB R

υY

i◦Ug

υB

i

The associator is an isomorphismR⊗(S⊗T ) ∼= (R⊗S)⊗T , with equality pentagonator.
The triangulator is given by the unitors, and its coherence follows from the naturality

of the unitors with respect to the associator.
Hence bf.DblCat is a metalogic, whose cubes are drawn as follows.

By the same reasoning as Theorem 57, bf.DblCat is closed, with the same extension and
lift formulae, defining double co/limits with fully general weights. Details in next draft.
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