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Preface

Traditionally, projective geometry was based on fundamental concepts like points and lines,
and it was thought that this was unavoidable. However, around 1935, it was shown by G.
Birkhoff and K. Menger1 that, from a lattice theoretic standpoint, projective geometries are
irreducible finite dimensional complemented modular lattices. Here, just as points are ‘in-
cluded’ in lines, ‘order’ becomes the fundamental concept and, due to the finite dimensionality
restriction, objects like points and lines naturally arise. Thus if we eliminate the finite di-
mensionality condition, we would expect to get a new geometry that, in a lattice theoretic
sense, has the same structure as a projective geometry but without points and lines. But
constructing such a geometry is no easy matter. Still, J. von Neumann2 accomplished this
difficult task in 1936-1937. If we change the way we express dimension slightly, a linear sub-
space like a point or line in an n − 1 dimensional projective geometry can take dimension
values 0, 1

n ,
2
n ,. . . ,

n−1
n and 1. Specifically, the dimension of the ‘empty’ subspace is 0, and the

dimension of points and lines is 1
n and 2

n respectively. And the whole space has dimension 1.
Von Neumann showed that sometimes elements of an irreducible continuous complemented
modular lattice can take all real numbers from 0 to 1 as dimension values. In this case, there
are elements having dimension arbitrarily close to 0 and so there is no such thing as a ‘point’.
In other words, this is a continuous geometry (in the strict sense). On the other hand, it is
known that in a projective geometry of dimension at least 3, coordinates can be introduced
by a certain skew field which makes the linear subspace lattice isomorphic to the lattice of
right ideals of the matrix ring over this skew field. Von Neumann generalized this, proving
that a complemented modular lattice of order at least 4 is isomorphic the the principal right
ideals of a certain matrix ring. This is the essence of von Neumann’s continuous geometry
(in the broad sense). In other words, continuous geometry can be roughly divided into two
parts, dimension theory and representation theory.

Von Neumann completely worked out the dimension theory in the irreducible case. How-
ever, in the reducible case, even though he developed some fundamental theorems, he was
unable to attain the final goal of expressing dimension in some form. In 1943 Tsurane Iwa-
mura3 showed that dimension can be expressed by continuous functions on the Boolean space†

representing the centre of a continuous complemented modular lattice. In doing so, he showed
that reducible continuous complemented modular lattices are subdirect products of irreducible
ones. Following this, Yukiyoshi Kawada, Kaneo Higuti and Yatarô Matusima4 developed Iwa-

1[Bir35] and [Men36]. [ ] symbols indicate the references at the end of the book.
2[vN36a]— [vN37b] detail this work, which is also contained in his Princeton lecture notes [vN98].
3[Iwa43] and [Iwa44b].
4[KHM44].

†In modern terminology, these are called Stone spaces or extremally disconnected topological spaces.



mura’s results even further. With this we are inclined to think that the dimension theory of
continuous geometries has been more or less completed.

In the present book, we aim to describe this theory so that it can be easily understood
with almost no background knowledge. In particular, we have described the general theory
relating exclusively to lattices in detail in Chapter 1. Furthermore, to show the relationship
of continuous geometry to projective geometry and quantum logic, we have added Chapter 3
and Chapter 12 respectively.

I express my heartfelt gratitude to both Tôzirô Ogasawara and Usa Sasaki for reading
over the manuscript for this book and providing many valuable comments. I also express my
deep gratitude to both Kenzirô Syôda and Syôkiti Iyanaga for their assistance in publishing
this book.

November 1950

Fumitomo Maeda
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Chapter 1

Lattice Fundamentals

1 Lattice Definitions

Definition 1.1. We denote the elements of a set L by a, b, c, . . . , etc.. Given a binary relation
5 defined on L satisfying (1◦), (2◦), and (3◦), we call L an ordered set.

(1◦) for every a ∈ L, a 5 a,

(2◦) if a 5 b and b 5 a then a = b, and

(3◦) if a 5 b and b 5 c then a 5 c.

We also write b 5 a for a 5 b and say b contains a. When a 5 b and a ̸= b, we write a < b.
When S is a subset of an ordered set L and there exists an element x of S such that a 5 x,

for all a ∈ S, we call x the greatest element of S. Likewise, when there exists an element y
of S such that a = y, for all a ∈ S, we call y the least element of S. When L has a greatest
element we call this the unit element of L and denote it by 1. And when L has a least element
we call this the zero element and denote it by 0.

In a lattice L having a zero element, if a is an element such that a > x implies x = 0 then
we call a an atomic element of L.

When S is a subset of L, we call an element a of S such that there is no x ∈ S with a < x
a maximal element of S. And we call an element a of S such that there is no x ∈ S with
a > x a minimal element of S.

In addition to (1◦), (2◦) and (3◦), when L satisfies

(4◦) for any two elements a and b, at least one of a 5 b or b 5 a holds,

we call L a totally ordered set. In this case, for all a and b, precisely one of a < b, a = b or
a > b always holds.

Definition 1.2. When S is a subset of an ordered set L and there exists an element x of L
such that a 5 x, for all a ∈ S, we call x an upper bound of S. If the set of all upper bounds
has a least element, we call this the join (or supremum) of S and denote it by

∨
(a; a ∈ S).

Likewise we define lower bounds of S, and when there is a greatest lower bound of S we call
this the meet (or infimum) of S and denote it by

∧
(a : a ∈ S).

When there is a join and meet of every non-empty finite subset S of L, we call L a lattice.
When there is a join and meet of every non-empty countable subset S of L, we call L a σ-
complete lattice. When there is a join and meet of every non-empty subset of L (irrespective

1



2 CHAPTER 1. LATTICE FUNDAMENTALS

of cardinality), we call L a complete lattice. When every non-empty subset with an upper
bound has a join, and every non-empty subset with a lower bound has a meet, we call L a
conditionally complete lattice. We define conditionally σ-complete lattices in the same way.

For L to be a lattice, it suffices that there exist joins and meets of any pair of elements.
We denote the join of S = {a1, · · · , an} by a1 ⌣ · · ·⌣an or

∨n
i=1 ai. We denote the meet of

S = {a1, · · · , an} by a1 ⌢ · · ·⌢ an or
∧n

i=1 ai. If S = {ai; i = 1, 2, · · · }, we denote the join
and meet of S by

∨
15i<∞ ai and

∧
15i<∞ ai.

In a complete lattice, there is always a unit and zero element because
∨
(a; a ∈ L) = 1 and∧

(a; a ∈ L) = 0. When S is the empty set, every element of L is an upper bound so the join
of the empty set is the zero element. Likewise, the meet of the empty set is the unit element.

Remark 1.1. By Definition 1.2, the following holds in any lattice L.

(1◦) a⌣ a = a and a⌢ a = a.

(2◦) a⌣ b = b ⌣ a and a⌢ b = b ⌢ a.

(3◦) a⌣ (b ⌣ c) = (a⌣ b)⌣ c and a⌢ (b ⌢ c) = (a⌢ b)⌢ c.

(4◦) a⌣ (b ⌢ a) = a and a⌢ (b ⌣ a) = a.

(5◦) a 5 b, a⌣ b = b and a⌢ b = a are equivalent.

Conversely, the following theorem holds.

Theorem 1.1. Given operations ⌣ and ⌢ on a set L satisfying Remark 1.1 (2◦), (3◦) and
(4◦), L is a lattice in which a⌣ b and a⌢ b are the join and meet of a and b respectively.

Proof.

(i) Replacing b with a⌣ b in the first equation in (4◦), we see from the second equation in
(4◦) that a⌣ a = a. Likewise, a⌢ a = a. Thus (1◦) holds.

(ii) If a ⌣ b = b then, by the second equation in (4◦), a ⌢ b = a. Conversely, if a ⌢ b = a
then, rewriting the first equation in (4◦) as b ⌣ (b ⌢ a) = b, we see from (2◦) that
a⌣ b = a. Thus a⌣ b = b and a⌢ b = a are equivalent, in which case we define a 5 b.

(iii) As a ⌣ a = a, by (1◦), a 5 a. And if a 5 b and b 5 a then a ⌣ b = b and b ⌣ a = a
so a = b. Next, if a 5 b and b 5 c then a ⌣ b = b and b ⌣ c = c. Therefore
a⌣ c = a⌣ (b ⌣ c) = (a⌣ b)⌣ c = b ⌣ c = c so a 5 c. Thus, by Definition 1.1, L is
an ordered set.

(iv) By (4◦) and (2◦), a 5 a ⌣ b and b 5 a ⌣ b. Furthermore, if a 5 c and b 5 c then
a⌣ c = c and b⌣ c = c. By (1◦) and (3◦), a⌣ b⌣c = c so a⌣ b 5 c. Therefore a⌣ b
is the join of a and b. Likewise, a⌢ b is the meet of a and b.

Remark 1.2. Generally, in any order theoretic statement, we can replace = with 5 to obtain
another statement which we call its dual. In a lattice, we can replace =, ⌣, ⌢, 0 and 1 with
5, ⌢, ⌣, 1, and 0 respectively to obtain the dual statement. As Remark 1.1 (2◦), (3◦) and
(4◦) are unchanged by these replacements, whenever a lattice theoretic statement holds, its
dual also holds.
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Theorem 1.2. For an ordered set L to be a complete lattice, it suffices that either joins or
meets exist for arbitrary subsets S.

Proof. Now assuming that there are joins of arbitrary subsets1, we prove that, given S 5 L†,∧
(a; a ∈ S) exists. Let T be the set of all b such that b 5 a, for all a ∈ S. By assumption,∨
(b; b ∈ T ) exists. However, for all a ∈ S,

∨
(b; b ∈ T ) 5 a. Next, if d 5 a, for all a ∈ S, then

d ∈ T so
∨
(b; b ∈ T ) = d. Therefore, by Definition 1.2,

∧
(a; a ∈ S) exists and coincides with∨

(b; b ∈ T ). Dually, we can say the same when meets exist.

Definition 1.3. For a in a lattice L with 0 and 1, any a′ satisfying

a⌣ a′ = 1, and a⌢ a′ = 0

is called a complement of a. When every element of L has a complement, we call L a
complemented lattice.

Definition 1.4. In a lattice L, when

a 5 c implies (a⌣ b)⌢ c = a⌣ (b ⌢ c), (1)

we call L a modular lattice. We call (1) the modular law.

When L is a complemented lattice and simultaneously a modular lattice, we call L a
complemented modular lattice.

Definition 1.5. When the following holds, for all a, b and c in a lattice L,

(a⌢ b)⌣ c = (a⌢ c)⌣ (b ⌢ c) and (1)

(a⌣ b)⌢ c = (a⌣ c)⌢ (b ⌣ c), (2)

we call L a distributive lattice2. We call (1) and (2) the distributive law. When L is a
complemented lattice and simultaneously a distributive lattice, we call L a Boolean lattice.

Remark 1.3. All subsets of a fixed space, ordered by the inclusion relation on sets, form
a complete Boolean lattice. Here joins and meets are unions and intersections respectively,
the space is the unit element and the empty set is the zero element. Complements are
complementary sets. Generally, lattices made up of sets, where joins and meets are unions
and intersections respectively, are called set lattices. Set lattices are distributive lattices3.

Remark 1.4. In Chapter 3 Remark 3.3‡ we show that complemented modular lattices satis-
fying certain conditions are the same as projective geometries. Here the join of a point a and
a line b not containing the point a is the plane defined by a and b. Meets are none other than
intersections. If one applies the general properties of complemented modular lattices below
to projective geometries, their geometric meaning becomes clear.

1Thus, being the join of the empty subset, L has a zero element. So assuming that joins of arbitrary subsets
of L exist is equivalent to assuming L has a zero element and joins of arbitrary non-empty subsets exist.

2See Remark 1.5.
3In this book, the union and intersection operations are expressed by + or

∑
and · or

∏
respectively.

†i.e. S ⊆ T
‡Erroneous reference to Remark 2.3 in the original.
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Definition 1.6. In a lattice L we denote the relation (a ⌣ b) ⌢ c = (a ⌢ c) ⌣ (b ⌢ c) by
(a, b, c)D. We denote the dual relation (a⌢ b)⌣ c = (a⌣ c)⌢ (b ⌣ c) by (a, b, c)D∗.

Theorem 1.3. In a modular lattice, if (a, b, c)D holds then relations like (b, c, a)D and
(b, c, a)D∗ all hold, irrespective of the position of a, b, and c.

Proof. If (a, b, c)D holds then, by the modular law,

(b ⌣ a)⌢ (c ⌣ a) = {(a⌣ b)⌢ c}⌣a = {(a⌢ c)⌣ (b ⌢ c)}⌣a = (b ⌢ c)⌣a.

In other words, (a, b, c)D → (b, c, a)D∗. (1)

Dually, by (1),

(a, b, c)D∗ → (b, c, a)D. (2)

By (1) and (2)

(a, b, c)D →(b, c, a)D∗ → (c, a, b)D → (a, b, c)D∗. (3)

By Definition 1.6, (a, b, c)D = (b, a, c)D. Thus, by (3),

(a, b, c)D → (c, a, b)D → (b, c, a)D = (c, b, a)D → (a, c, b)D → (b, a, c)D.

Also, by (3), (a, b, c)D∗ holds and, dually, every instance of D∗ holds.

Remark 1.5. In order for L to be a distributive lattice, it suffices for either (1) or (2) in
Definition 1.5 to hold, for arbitrary a, b and c. This is because if (1), i.e. (a, b, c)D, holds
then L is a modular lattice. Thus, by Theorem 1.3, (a, b, c)D∗, i.e. (2), holds.

Definition 1.7. When a subset L0 of a lattice L containing a and b also contains a⌣ b and
a⌢ b, we call L a sublattice.

Definition 1.8. Assume c 5 d in a lattice L. We denote all x such that c 5 x 5 d, given the
same ordering as in L, by L(c, d).

L(c, d) is a sublattice, with c and d being the zero element and unit element respectively.

Definition 1.9. When c 5 a 5 d in a lattice L, we call b satisfying

a⌣ b = d and a⌢ b = c

a relative complement of a in d/c. When such relative complements exist for all a, c and d,
we call L a relatively complemented lattice.

We call a relatively complemented distributive lattice with 0 a generalized Boolean lattice.

Remark 1.6. By Definition 1.8 a relative compelement of a in d/c is none other than a
complement of a in L(c, d).

Among relative complements, the c = 0 case is the most often considered. We call this
the relative complement of a in d and write it as a⊕ b = d.

Generally, complements and relative complements are not unique.
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Lemma 1.1. For two elements a and b in a relatively complemented lattice with 0,† if b =
(a⌢ b)⊕ b1 then a⌣ b = a⊕ b1.

Proof. a⌣ b = a⌣ (a⌢ b)⌣ b1 = a⌣ b1, and b1 5 b so a⌢ b1 = a⌢ b⌢ b1 = 0.

Lemma 1.2. In a relatively complemented lattice with 0 and 1,

(i) if a⌣ x = 1 then there is a complement a′ of a such that a′ 5 x.

(ii) if a⌢ x = 0 then there is a complement a′ of a such that a′ = x.

Proof.

(i) Taking a′ such that x = (a⌢ x)⊕ a′, by Lemma 1.1

1 = a⌣ x = a⊕ a′.

(ii) Holds dually to (i).

Lemma 1.3. Complemented modular lattices are relatively complemented lattices.

Proof. When c 5 a 5 d, take a′ such that a⊕a′ = 1 and set b = (a′⌢d)⌣c. By the modular
law,

a⌣ b = a⌣ (a′ ⌢d)⌣ c = a⌣ (a′ ⌢d) = (a⌣ a′)⌢d = d and

a⌢ b = a⌢ {(a′ ⌢d)⌣ c} = (a⌢ a′ ⌢d)⌣ c = c.

Thus b is a relative complment of a in d/c.

Remark 1.7. By Lemma 1.3, if L is a complemented modular lattice then L(c, d) is also a
complemented modular lattice.

Theorem 1.4. A necessary and sufficient condition for a lattice L to be a modular lattice is
that whenever x and y are relative complements of a in d/c and x = y, we must have x = y.

Proof.

(i) Necessity. As a⌣ x = a⌣ y = d, a⌢ x = a⌢ y = c and x = y, by the modular law

x = (d⌢ x) = (a⌣ y)⌢x = (a⌢ x)⌣y = c ⌣ y = y.

(ii) Sufficiency. When a 5 c, set x = (a⌣b)⌢c and y = a⌣ (b⌢ c). x = y because x = a
and x = b ⌢ c. Also

y ⌣ b = a⌣ (b ⌢ c)⌣ b = a⌣ b = (a⌣ b)⌣ b = x⌣ b = y ⌣ b

so x⌣ b = y ⌣ b.

x⌢ b = (a⌣ b)⌢ c⌢ b = c ⌢ b = (b ⌢ c)⌢ b 5 y ⌢ b 5 x⌢ b

so x ⌢ b = y ⌢ b. Thus if we set x ⌣ b = y ⌣ b = u and x ⌢ b = y ⌢ b = v then x
and y are relative complements of b in u/v with x = y so, by hypothesis, x = y, i.e. the
modular law holds.
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Figure 1.1:
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Remark 1.8. Consider a plane d in an affine geometry on which we take a straight line a
and draw a striaght line x parallel to a through a point y not in a. Then x and y are relative
complements of a in d/0 and x > y. Thus affine geometries are not modular lattices (see
Figure 1.1).

Theorem 1.5. A necessary and sufficient condition for a lattice L to be a distributive lattice
is that if x and y are relative complements of a in d/c then we must have x = y.

Proof.

(i) Necessity. As a⌣ x = a⌣ y = d and a⌢ x = a⌢ y = c,

x = x⌢(a⌣x) = x⌢(a⌣y) = (x⌢a)⌣(x⌢y) = (a⌢y)⌣(x⌢y) = (a⌣x)⌢y = (a⌣y)⌢y = y.

(ii) Sufficiency1. By Theorem 1.4, L is a modular lattice. Next, for any a, b, c ∈ L, if we set

x = {(a⌣ b)⌢ c}⌣ (a⌢ b) and y = {(a⌣ c)⌢ b}⌣ (a⌢ c)

then, by the modular law,

x⌣ a = {(a⌣ b)⌢ c}⌣a = (a⌣ b)⌢ (a⌣ c) and

x⌢ a = {((a⌣ b)⌢ c)⌣ (a⌢ b)}⌢a = (a⌢ c)⌣ (a⌢ b).

The right hand side of the two equations above are symmetric in b and c so x⌣a = y⌣a
and x⌢ a = y ⌢ a. Thus, by hypothesis, x = y. However

x⌢ c = [{(a⌣ b)⌢ c}⌣ (a⌢ b)]⌢ c = {(a⌣ b)⌢ c}⌣ (a⌢ b⌢ c) = (a⌣ b)⌢ c and

y ⌢ c = [{(a⌣ c)⌢ b}⌣ (a⌢ c)]⌢ c = (b ⌢ c)⌣ (a⌢ c)

so (a, b, c)D. Therefore, by Remark 1.5, L is a distributive lattice.

Definition 1.10. In a lattice L, we call a pair of elements a and b related by a = b a quotient
and denote it a/b. When a = a1 = b1 = b, we call a1/b1 a subquotient of a/b. Two quotients
that can be expressed in the form a⌣b/a and b/a⌢b are said to be transformations of each

1from [Oga48] p4.

†In fact this holds in any poset (necessarily with 0 to have b = (a⌢ b)⊕ b1) if a⌣ b exists.
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other. Two quotients that are transformations of the same quotient are said to be mutually
perspective. Two quotients that are connected by a finite sequence of successive quotient
transformations are said to be projective. In particular, when L has a 0 and a/0 and b/0 are
mutually perspective, we say the two elements a and b are perspective and denote this by
a ∼ b. Moreover, when a/0 and b/0 are mutually projective, we say the two elements a and
b are projective and denote this by a ≈ b.

Remark 1.9. In a lattice with 0, if a ∼ b then a/0 and b/0 are both tranformations of a
certain quotient c/d. In other words, a⊕d = b⊕d = c so a and b have a common complement
d in c. Conversely, if two elements a and b have a common complement in some element c
then a ∼ b.

Lemma 1.4. In a relatively complemented lattice† with 0, if there is an x such that

a⌣ x = b ⌣ x and a⌢ x = b ⌢ x

then a ∼ b.

Proof. If we take w such that x = (a ⌢ x) ⊕ w then, by Lemma 1.1, a ⌣ x = a ⊕ w. But
x = (b ⌢ x)⊕ w so, likewise, b ⌣ x = b⊕ w. In other words, a⊕ w = b⊕ w so a ∼ b.

Lemma 1.5. In a relatively complemented‡ lattice having a 0, a necessary and sufficient
condition for a ≈ b is that there exist finitely many c1, · · · , cn such that

a ∼ c1 ∼ · · · ∼ cn ∼ b.

Proof. Sufficiency is clear. Next, to see necessity, consider two quotients u/u⌢v and u⌣v/v
that are transformations of one another. In this situation, there exist r and s such that
u = (u ⌢ v) ⊕ r and u ⌣ v = v ⊕ s. Also u/u ⌢ v and r/0, and u ⌣ v/v and s/0 are,
respectively, transformations of each other. However, by Lemma 1.1, u⌣v = v⊕r. Therefore
r ∼ s. Next, if a ≈ b then a/0 and b/0 are connected by a finite sequence

a/0, c1/d1, · · · , cn/dn, b/0

of successive quotient transformations. From above, there are transformations r1/0 of c1/d1
and s1/0 of c2/d2 with r1 ∼ s1. Here a/0 and r1/0 are transformations of c1/d1 so a ∼ r1,
i.e. a ∼ r1 ∼ s1. If we continue in this way, we can connect a and b with a finite sequence of
successively perspective elements.

Lemma 1.6. In a modular lattice with 0, if a ∼ b and a 5 b then a = b. Moreover, in a
distributive lattice with 0, if a ∼ b then a = b.

Proof. By Remark 1.9, if a ∼ b then there are c and d such that a⊕ d = b⊕ d = c. As a and
b are complements of d in c, the lemma follows from Theorem 1.4 and Theorem 1.5.

†Only the section L(0, x) needs to be complemented.
‡Again, section complemented suffices.
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Definition 1.11. When there is a map† ϕ : x → ϕ(x) from a lattice L1 onto a lattice L2 such
that, for all x and y, we always have

ϕ(x⌣ y) = ϕ(x)⌣ϕ(y) and ϕ(x⌢ y) = ϕ(x)⌢ϕ(y),

we say L2 is homomorphic to L1. In particular, when the mapping is one-to-one, we say the
two lattices are isomorphic.

When a mapping yields a one-to-one correspondence that does not change the order, the
two lattices are isomorphic. This is because joins and meets are determined by the order.

If a map yields a one-to-one correspondence that reverses the order then joins and meets
are interchanged by the mapping. In this case we say the two lattices are dual isomorphic.
When the two lattices coincide, we call this correspondence a self dual isomorphic correspon-
dence.

Remark 1.10. The relevant properties of modular, distributive, complemented and relatively
complemented lattices are preserved by homomorphisms. For example, say x → x∗ = ϕ(x)
is a homomorphism from a lattice L1 onto a lattice L2 and L1 is a modular lattice. When
a∗ 5 c∗ in L2, take certain preimages a and c of a∗ and c∗ respectively. Now ϕ(a ⌣ c) =
ϕ(a) ⌣ ϕ(c) = a∗ ⌣ c∗ = c∗ so a ⌣ c is a preimage of c∗. Thus if we replace c with a ⌣ c,
we may assume that a 5 c. If we take a preimage b of b∗ then, as L1 is a modular lattice,
(a⌣b)⌢c = a⌣ (b⌢ c). Thus (a∗ ⌣b∗)⌢c∗ = a∗ ⌣ (b∗ ⌢c∗), i.e. L2 is a modular lattice.
The other properties are proved in the same way.

Theorem 1.6 (The Transformation Law‡). In a modular lattice L, the maps S and T defined
by

x ∈ L(a, a ⌣ b) implies Sx = x⌢ b and

y ∈ L(a⌢ b, b) implies Ty = y ⌣ a

are order preserving maps between L(a, a⌣ b) and L(a⌢ b, b) such that S and T are inverse
maps of each other. Thus L(a, a ⌣ b) and L(a⌢ b, b) are isomorphic.

Proof. If a 5 x 5 a⌣b then a⌢b 5 x⌢b 5 (a⌣b)⌢b = b. Thus Sx ∈ L(a⌢b, b). Likewise
Ty ∈ L(a, a ⌣ b). Moreover, by the modular law, TSx = (x ⌢ b) ⌣ a = x ⌢ (b ⌣ a) = x.
Likewise, STy = y. Thus S and T are inverse maps of each other. It is clear that they are
order preserving. Therefore L(a, a ⌣ b) and L(a⌢ b, b) are isomorphic.

Definition 1.12. When 5 is a binary relation defined on a set D satisfying (1◦), (2◦) and
(3◦) below, we call D a directed set.

(1◦) For all δ ∈ D, δ 5 δ.

(2◦) If δ1 5 δ2 and δ2 5 δ3 then δ1 5 δ3.

(3◦) For any two elements δ1 and δ2 of D, there exists an element δ3 of D such that δ1 ≤ δ3
and δ2 5 δ3.

†In the original, this map was required to be unique (which would imply L1 and L2 are singleton sets).
This was either an oversight/misprint or, alternatively, the word for ‘mapping’ could be interpreted as ‘image’
so a more literal translation might be something like ‘...for each x there is a unique image ϕ(x)...’.

‡More commonly known as ‘The Diamond Isomorphism Theorem’
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When a subset {aδ; δ ∈ D} of ordered set L is indexed by a directed set D and

δ1 < δ2 implies aδ1 5 aδ2 ,

we call {aδ; δ ∈ D} a monotone increasing system of L. Moreover, when

δ1 < δ2 implies aδ1 = aδ2 ,

we call {aδ; δ ∈ D} a monotone decreasing system of L.

Definition 1.13.

(i) When there is a monotone increasing system {aδ; δ ∈ D} in a conditionally complete
lattice L and a =

∨
(aδ; δ ∈ D), we write aδ ↑ a. Likewise, when there is a monotone

decreasing {aδ; δ ∈ D} and a =
∧
(aδ; δ ∈ D), we write aδ ↓ a.

(ii) More generally, when given a subset {aδ; δ ∈ D} of L indexed by a directed set D and
there exist uδ and vδ such that vδ 5 aδ 5 uδ, vδ ↑ a and uδ ↓ a, we say aδ(δ ∈ D)
(0)-converges to a and write limδ aδ = a.

Definition 1.14. If, for all elements b in a complete lattice L,

aδ ↑ a implies aδ ⌢ b ↑ a⌢ b

then we call L an upper continuous lattice. Dually, if

aδ ↓ a implies aδ ⌣ b ↓ a⌣ b

then we call L a lower continuous lattice. When L is simultaneously an upper and lower
continuous lattice we call L a continuous lattice1†.

When L is a conditionally complete lattice satisfying the above conditions, we call L a
conditionally upper continuous lattice, conditionally lower continuous lattice or conditionally
continuous lattice respectively. We call a conditionally upper continuous relatively comple-
mented modular lattice with 0 a generalized upper continuous relatively complemented modular
lattice, and we call a conditionally continuous relatively complemented modular lattice with
0 a generalized upper continuous relatively complemented modular lattice.

If a generalized (upper) continuous complemented modular lattice has a unit element 1
then it is a (upper) continuous complemented modular lattice.

Remark 1.11. When (0)-limδ aδ = a, we certainly have uδ ⌢ b ↓ a ⌢ b and so being
(conditionally) upper continuous means that (0)-limδ aδ = a implies (0)-limδ(aδ⌢b) = a⌢b‡.
Dually, being a (conditionally) lower continuous lattice means (0)-lim

δ
aδ = a implies (0)-

lim
δ
(aδ ⌣ b) = a ⌣ b. Thus, in a (conditionally) continuous lattice, the lattice operations ⌣

and ⌢ are continuous with respect to (0)-convergence.

Lemma 1.7. If S is a subset with an upper bound in a conditionally upper continuous lattice
L with 0 then the following statement (α) holds.

1See Appendix §2.

†Not to be confused with the rather different notion later introduced by Dana Scott under the same name.
‡In essence, L is upper continuous precisely when a → a⌢ b is continuous w.r.t the Scott topology on L.
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(α) If
∨
(a; a ∈ ν)⌢ b = 0, for all finite subsets ν of S, then

∨
(a; a ∈ S)⌢ b = 0.

Proof. The set D of all finite subsets of S, ordered by the inclusion relation, is a directed
set. If we let sν =

∨
(a; a ∈ ν) and s =

∨
(a; a ∈ S) then sν ↑ s. However, by hypothesis,

sν ⌢ b = 0 and sν ⌢ b ↑ s ⌢ b so s ⌢ b = 0.

Remark 1.12. When L is a conditionally complete relatively complemented lattice with 0,
if Lemma 1.7(α) holds then L is a conditionally upper continuous lattice. This is because,
when aδ ↑ a and we assume

a⌢ b =
∨

(aδ ⌢ b; δ ∈ D)⊕ c

then, for all δ ∈ D,

aδ ⌢ b⌢ c 5
∨

(aδ ⌢ b; δ ∈ D)⌢ c = 0.

Now if we take any finite subset ν of D then there exists δ0 such that δ 5 δ0, for all δ ∈ ν, so∨
(aδ; δ ∈ ν)⌢ b⌢ c 5 aδ0 ⌢ b⌢ c = 0.

As Lemma 1.7(α) holds,

a⌢ b⌢ c =
∨

(aδ; δ ∈ D)⌢ b⌢ c = 0.

But c 5 a⌢ b so c = 0. Therefore aδ ⌢ b ↑ a⌢ b.

Remark 1.13. Complete Boolean lattices are continuous lattices. To show this it suffices, by
Remark 1.12, to note that Lemma 1.7(α) and its dual statement hold. For all finite subsets ν
of S,

∨
(a; a ∈ ν)⌢b = 0 so, for all a ∈ S, a⌢b = 0. In other words, if we take a complement

b′ of b, a 5 b′1. Therefore
∨
(a; a ∈ S) 5 b′, in other words (a; a ∈ S) ⌢ b = 0. Thus (α)

holds. Likewise, the dual statement to (α) also holds.
Therefore, for any subset S of a Boolean lattice,∨

(a; a ∈ S)⌢ b =
∨

(a⌢ b; a ∈ S)

and its dual statment hold. This is because if we take finite subsets ν of S and set sν =∨
(a; a ∈ ν) then sν ↑

∨
(a; a ∈ S) so∨

(a⌢ b; a ∈ ν) = sν ⌢ b ↑
∨

(a; a ∈ S)⌢ b.

Lemma 1.8. If aδ ↑ a and bδ ↑ b in a conditionally upper continuous lattice, aδ ⌢bδ ↑ a⌢b.

Proof. As
∨
(aδ ⌢ bδ; δ ∈ D) =

∨
(aδ ⌢ bγ ; γ ∈ D) = aδ ⌢ b,∨

(aδ ⌢ bδ; δ ∈ D) =
∨

(aδ ⌢ b; δ ∈ D) = a⌢ b.

On the other hand,
∨
(aδ ⌢ bδ; δ ∈ D) 5 a ⌢ b so

∨
(aδ ⌢ bδ; δ ∈ D) = a ⌢ b, i.e. aδ ⌢ bδ ↑

a⌢ b.

Lemma 1.9. Assume aδ ↑ a in a continuous lattice. If there are complements a′δ of aδ and
a′δ ↓ a′ then a′ is a complement a.

1In a Boolean lattice, a⌢ b = 0 and a 5 b′ are equivalent. See Lemma 3.5.
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Proof. As
1 = aδ ⌣aδ

′ 5 a⌣ aδ
′ and a⌣ aδ

′ ↓ a⌣ a′,

a ⌣ a′ = 1. Also, as

0 = aδ ⌢aδ
′ = aδ ⌢a′ and aδ ⌢a′ ↑ a⌢ a′,

a ⌢ a′ = 0. Therefore a′ is a complement of a.

Definition 1.15. Say S = {a1, · · · , an} is a set of finitely many elements of a lattice L with
0. If, for any two subsets S1 and S2 of S with no elements in common,∨

(a; a ∈ S1)⌢
∨

(a; a ∈ S2) = 0

then we call S an independent system and denote this by (a, · · · , an)⊥, (ai; i = 1, · · · , n)⊥ or
(a; a ∈ S)⊥.

In particular, when L is a conditionally complete lattice with 0, we can apply the above
definition of an independent system to any subset S (of arbitrary cardinality) with an upper
bound. (In this case the cardinality of S1 and S2 is also arbitrary)

By this definition, the order of the sequence a1, · · · , an has no relation to (a1, · · · , an)⊥.
Also, if (a; a ∈ S)⊥ and S1 5 S then (a; a ∈ S1)⊥. And if (aα;α ∈ I)⊥ and bα 5 aα(α ∈ I)
then (bα;α ∈ I)⊥.

When (a1, · · · , an)⊥, we denote a1 ⌣ · · ·⌣ an by a1 ⊕ · · · ⊕ an or
∨n

i=1⊕ai. Also, when
(a; a ∈ S)⊥, we denote

∨
(a; a ∈ S) by

∨
(⊕a; a ∈ S).

Theorem 1.7. In a conditionally upper continuous lattice L with 0, a necessary and sufficient
condition for a subset S of L with an upper bound to be an independent system is that all
finite subsets of S are independent systems.

Proof. Necessity is clear. Next assume all finite subsets ν of S are independent systems. Take
any subsets S1 and S2 of S with no elements in common. When ν1 and ν2 are finite subsets
of S1 and S2 respectively, by hypothesis ν1 + ν2 is an independent system so∨

(a; a ∈ ν1)⌢
∨

(a; a ∈ ν2) = 0.

This holds for all finite subsets ν2 of S2 so, by Lemma 1.7,∨
(a; a ∈ ν1)⌢

∨
(a; a ∈ S2) = 0.

Again, this holds for all finite subsets ν1 of S1 so∨
(a; a ∈ S1)⌢

∨
(a; a ∈ S2) = 0.

Therefore, S is an independent system.

Lemma 1.10. In a conditionally upper continuous lattice with 0, if (ai; i = 1, 2, · · · )⊥ and
we set bn =

∨
n5i<∞ ai then bn ↓ 0.

Proof. If we set b =
∧

15n<∞ bn then

b ⌢
∨

15i5n

ai 5 bn+1 ⌢
∨

15i5n

ai = 0.

But
∨

15i5n ai ↑ b1 so, by upper continuity b ⌢ b1 = 0. Thus, as b 5 b1, b = 0.
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Lemma 1.11. In a modular lattice with 0, if (x1 ⌣ · · ·⌣xn)⌢a = 0 then

(x1 ⌢ · · ·⌢xn)⌣a = (x1 ⌣a)⌢ · · ·⌢ (xn ⌣a).

Proof. If we set x1 ⌣ · · ·⌣xn = b then, by Theorem 1.6, Tx = x⌣ a is an isomorphic map
from L(0, b) to L(a, a ⌣ b) and xi ∈ L(0, b)(i = 1, · · · , n) so

(x1 ⌢ · · ·⌢xn)⌣a = T (x1 ⌢ · · ·⌢xn) = Tx1 ⌢ · · ·⌢Txn

= (x⌣ a)⌢ · · ·⌢ (xn ⌣a)

Theorem 1.8. In a modular lattice with 0, a necessary and sufficient condition for (a1, · · · , an)⊥
is that

(a1 ⌣ · · ·⌣ai)⌢ai+1 = 0 (i = 1, · · · , n− 1)

holds.

Proof. Necessity is clear from Definition 1.15. To prove sufficiency, we use mathematical
induction. The n = 2 case is clear. Now assume m < n and (a1, · · · , am)⊥. Take two subsets
S1 and S2 of {a1, · · · , am+1} that have no elements in common. When both S1 and S2 do not
contain am+1, (a1, · · · , am)⊥ so

∨
(a; a ∈ S2) ⌢

∨
(a; a ∈ S1) = 0. Next, when S2 contains

am+1, if we let S′
2 be the set S2 with am+1 removed and let

b1 =
∨

(a; a ∈ S1) and b2 =
∨

(a; a ∈ S′
2)

then b1 ⌢ b2 = 0 and (b1 ⌣ b2)⌢am+1 = 0. Then, by Lemma 1.11,

(b1 ⌣am+1)⌢ (b2 ⌣am+1) = (b1 ⌢ b2)⌣am+1 = am+1

so

b1 ⌢ (b2 ⌣am+1) = b1 ⌢ (b1 ⌣am+1)⌢ (b2 ⌣am+1) = b1 ⌢am+1 = 0,

i.e.
∨
(a; a ∈ S1)⌢

∨
(a; a ∈ S2) = 0 so (a1, · · · , am+1)⊥.

Lemma 1.12. For two elements a and b in a relatively complemented modular lattice with
0, if we let a = (a⌢ b)⊕ a1 and b = (a⌢ b)⊕ b1 then

a⌣ b = (a⌢ b)⊕ a1 ⊕ b1.

Proof. As

(a⌢ b)⌢a1 = 0 and {(a⌢ b)⌣a1}⌢ b1 = a⌢ b1 = a⌢ b⌢ b1 = 0,

(a⌢ b, a1, b1)⊥, by Theorem 1.8. Also a⌣ b = (a⌢ b)⌣a1 ⌣ b1.

Lemma 1.13. For any two elements a and b and any complement a′ of a in a complemented
modular lattice, there is a complement b′ of b satisfying the following condition.

(α) a′ ⌢ b′ is a complement of a⌣ b and a′ ⌣ b′ is a complement of a⌢ b1.

1Due to Tôzirô Ogasawara.
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Proof. As (a⌣b)⌣a′ = 1, there exists c such that (a⌣b)⊕ c = 1 and c 5 a′, by Lemma 1.2
(i). And if we apply Lemma 1.2 (i) to L(0, a⌣b) then there exists b1 such that b⊕ b1 = a⌣b
and b1 5 a. By Theorem 1.8, b ⊕ b1 ⊕ c = 1. Therefore, if we let b′ = b1 ⊕ c then b′ is a
complement of b. As a′ ⌢ b1 5 a′ ⌢a = 0,

a′ ⌢ b′ = a′ ⌢ (b1 ⌣ c) = (a′ ⌢ b1)⌣ c = c,

i.e. a′ ⌢ b′ is a complement of a⌣ b. Moreover, a′ ⌣ b′ = a′ ⌣ b1 ⌣ c = a′ ⌣ b1 so

(a′ ⌣ b′)⌣ (a⌢ b) = (a′ ⌣ b1)⌣ (a⌢ b) = a′ ⌣ {a⌢ (b1 ⌣ b)} = a′ ⌣ {a⌢ (a⌣ b)} = a′ ⌣a = 1 and

(a′ ⌣ b′)⌢ (a⌢ b) = (a′ ⌣ b1)⌢ (a⌢ b) = {(a′ ⌢a)⌣ b1}⌢ b = b1 ⌢ b = 0.

Thus a′ ⌣ b′ is a complement of a⌢ b. Therefore b′ is a complement of b satisfying (α).

Definition 1.16. Say we are given a set S. If, to each subset X, there always corresponds a
second subset X such that

(1◦) X = X and

(2◦) X = Y implies X = Y

holds, we call this correspondence X → X a closure operation. In particular, we call a set
such that X = X a closed set with respect to this closure operation. Apart from (1◦) and
(2◦), when the closure operation X → X also satisfies

(3◦) X = X,

we call this an idempotent closure operation.

Theorem 1.9. All the closed sets with respect to a closure operation on a set S form a
complete lattice when ordered by the set inclusion relation.

Proof. If (Xα;α ∈ I) is a non-empty family of closed sets and P =
∏
(Xα;α ∈ I) then

P 5 Xα = Xα(α ∈ I) so P 5 P . By Definition 1.16 (1◦), P is a closed set so P is the meet
of {Xα;α ∈ I}. As S itself is also a closed set, all the closed sets form a complete lattice, by
Theorem 1.2.

Remark 1.14. In Theorem 1.9, in particular case when the closure operation is idempotent,
the join of {Xα;α ∈ I}, in the complete lattice formed by all closed sets with respect to the
closure operation, is Q, where Q =

∑
(Xα;α ∈ I). This is because Q is a closed set containing

all the Xα and, whenever T is a closed set containing all the Xα, T = Q so T = T = Q. Thus
Q is the join of {Xα;α ∈ I}.

Lemma 1.14. When there is a family of subsets Φ of a certain set S that satisfies the
conditions

(1◦) S belongs to Φ,

(2◦) if we take any non-empty subset Φ0 of Φ then the intersection
∏
(X;X ∈ Φ0) belongs

to Φ, and

(3◦) if we take any monotone increasing system {Xδ; δ ∈ D} of Φ, the union
∑

(Xδ; δ ∈ D)
belongs to Φ,
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Φ is an upper continuous lattice, when ordered by the set inclusion relation.

Proof. By (1◦) and (2◦), any subset Φ0 of Φ has a meet so, by Theorem 1.2, Φ is a complete
lattice. Here the meet is the intersection and, by (3◦), the join of a monotonic increasing
sequence {Xδ; δ ∈ D} is the union Q =

∑
(Xδ; δ ∈ D), i.e. Xδ ↑ Q. Thus, for any M ∈ Φ,

the set operations ∑
(Xδ ·M ; δ ∈ D) =

∑
(Xδ; δ ∈ D) ·M

yield
∨
(Xδ⌢M ; δ ∈ D) = Q⌢M , i.e. Xδ⌢M ↑ Q⌢M . Therefore Φ is an upper continuous

lattice.

Remark 1.15. Given a family of subsets Φ of a set S satisfying Lemma 1.14 (1◦) and (2◦),
if we set X to be the intersection of all sets in Φ containing X, for any subset X of S, then
X → X is an idempotent closure operation, and the collection of all closed subsets with
respect to this closure operation coincides with Φ. This is because X → X clearly satisfies
Definition 1.16 (1◦) and (2◦) and, by Lemma 1.14 (2◦), X ∈ Φ so Definition 1.16 (3◦) holds
and X = X is equivalent to X ∈ Φ.

Lemma 1.15. Given a family of subsets Φ of a certain set S ordered by the set inclusion
relation, if the condition

(α) whenever Ψ is a non-empty totally ordered subset of Φ, the union
∑

(X;X ∈ Ψ)
belongs to Φ,

holds then there is a maximal element in Φ.

Proof. By (α), the union of Ψ is its upper bound so, by Zorn’s lemma1, there is a maximal
element in Φ.

Remark 1.16. Conversely one can prove Zorn’s lemma from Lemma 1.15. Specifically, the
collection Φ of all totally ordered subsets of an ordered set L satisfies (α) so, by Lemma 1.15,
there is a maximal element in Φ. As C is a totally ordered subset of L, by hypothesis it has
an upper bound a in L. If a were not a maximal element of L then there would be an element
b of L such that a < b. The set C + {b}† obtained by adding b to C also belongs to Φ and so
contradicts the fact C is a maximal element of Φ. Thus a is a maximal element of L.

Thus Lemma 1.15 and Zorn’s lemma are equivalent.

Definition 1.17. When J is a subset of a lattice L satisfying

(1◦) a, b ∈ J implies a⌣ b ∈ J and

(2◦) a ∈ J and c 5 a implies c ∈ J ,

we call J an ideal of L. Dually when

(1′) a, b ∈ J implies a⌢ b ∈ J and

(2′) a ∈ J and c = a implies c ∈ J ,

1See Appendix 1.

†{C, b} in the original.
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we call J a dual ideal of L.
J(a) = {x;x 5 a}1 is an ideal of L. We call this a principal ideal of L. Dually, we call

J(a) = {x;x = a} a dual principal ideal.
When J is an ideal different from L and there is no ideal I such that J < I < L, we call

J a maximal ideal of L. Dually we define maximal dual ideals.

Theorem 1.10. The ideals J of a lattice L ordered by the set inclusion relation form an upper
continuous lattice. L is isomorphic to the sublattice {J(a); a ∈ L} of Φ via the map a → J(a).
A necessary and sufficient condition for Φ to be a modular (or distributive) lattice is that L
be a modular (or distributive) lattice2. Likewise, this also holds for dual ideals (although in
this case L is dual isomorphic to the sublattice {J(a); a ∈ L} of Φ via the map a → J(a)).

Proof.

(i) Considering ideals as subsets of L, it is clear that the collection Φ of all ideals of
L satisfies Lemma 1.14 (1◦) and (2◦). Take a monotone increasing system of ideals
{Jδ; δ ∈ D} and set I =

∑
(Jδ; δ ∈ D). If a, b ∈ I then there are δ1 and δ2 such that

a ∈ Jδ1 and b ∈ Jδ2 . If we take δ3 such that δ1 5 δ3 and δ2 5 δ3 then a, b ∈ Jδ3 . Thus
a⌣b ∈ Jδ3 so a⌣b ∈ I. Moreover, if a ∈ I and c 5 a then a ∈ Jδ for some δ. As c ∈ Jδ,
c ∈ I. Thus I an ideal of L, i.e. Lemma 1.14 (3◦) holds so Φ is upper continuous.

The meet of two ideals I and J of L is their intersection. Next, if we set K = {c; c 5
a⌣b, a ∈ I and b ∈ J}3 then K is clearly an ideal containing I and J . Conversely, any
ideal containing I and J contains K so I ⌣ J = K.

(ii) For principal ideals J(a) = {x;x 5 a} of L, in Φ we have

J(a)⌣J(b) = J(a⌣ b) and J(a)⌢J(b) = J(a⌢ b). (1)

This is because J(a) 5 J(a ⌣ b) and J(b) 5 J(a ⌣ b) so J(a)⌣ J(b) 5 J(a ⌣ b). As
a ⌣ b ∈ J(a)⌣ J(b), if x 5 a ⌣ b then x ∈ J(a)⌣ J(b), i.e. J(a ⌣ b) 5 J(a)⌣ J(b)
so the first equation in (1) holds. Next, J(a) = J(a ⌢ b) and J(b) = J(a ⌢ b) so
J(a)⌢J(b) = J(a⌢ b). If x ∈ J(a)⌢J(b) then x ∈ J(a) so x 5 a. Likewise, x 5 b so
x 5 a⌢ b. Thus x ∈ J(a⌢ b) so the second equation in (1) holds.

By (1), L is isomorphic to the sublattice {J(a); a ∈ L} of Φ via the map a → J(a).
Therefore if Φ is a modular lattice (or distributive lattice) then L is also a modular
lattice (or distributive lattice).

(For dual ideals J(a) = {x;x 5 a}, instead of (1),

J(a)⌣J(b) = J(a⌢ b) and J(a)⌢J(b) = J(a⌣ b)

holds.)

(iii) Assuming L is a modular lattice, if X, Y and Z are ideals such that X 5 Z then, for
any t ∈ (X ⌣ Y )⌢Z, t ∈ Z and there exist x and y such that t 5 x⌣ y, x ∈ X and
y ∈ Y . If we set z1 = x⌣ t then z1 ∈ Z so

t 5 (x⌣ y)⌢ z1 = x⌣ (y ⌢ z1) ∈ X ⌣ (Y ⌢ Z).

1{x;x 5 a} denotes the set of all x such that x 5 a.
2[Dil41] p329.
3K denotes the set of all c such that c 5 a⌣ b, for some a ∈ I and b ∈ J .
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Thus (X ⌣Y )⌢Z 5 X ⌣ (Y ⌢Z). Clearly (X ⌣Y )⌢Z = X ⌣ (Y ⌢Z) so Φ is a
modular lattice.

(iv) Next, when L is a distributive lattice, if t ∈ (X ⌣Y )⌢Z then t ∈ Z and there exist x
and y such that t 5 x⌣ y, x ∈ X and y ∈ Y . As

t = (x⌣ y)⌢ t = (x⌢ t)⌣ (y ⌢ t), x ⌢ t ∈ X ⌢Z and y ⌢ t ∈ Y ⌢ Z,

t ∈ (X ⌢ Z) ⌣ (Y ⌢ Z). Thus (X ⌣ Y ) ⌢ Z 5 (X ⌢ Z) ⌣ (Y ⌢ Z). Clearly
(X ⌣Y )⌢Z = (X ⌢Z)⌣ (Y ⌢Z) so, by Remark 1.5, Φ is a distributive lattice.

Lemma 1.16. When S is a subset of a lattice L with 0 such that the meet of any finite (̸= 0)
number of elements of S is not 0, there exists a maximal dual ideal of L containing S.

Proof. If we let J be the collection of all a such that a = a1 ⌢ · · ·⌢ an, for some arbitrary
elements a1, · · · , an of S, then J is clearly a dual ideal of L containing S but not 0. As there
are dual ideals like this that contain S but not 0, we let Φ be the collection of all these dual
ideals. Let Ψ be any non-empty totally ordered subset of Φ and set I =

∑
(J ; J ∈ Ψ). If

a, b ∈ I then there exist J1 and J2 belonging to Ψ such that a ∈ J1 and b ∈ J2. As Ψ is
totally ordered, J1 5 J2 or J2 5 J1. For example, in the former case, a, b ∈ J2 so a⌢ b ∈ J2.
Therefore a ⌢ b ∈ I. If c = a and a ∈ I then there exists J ∈ Ψ such that a ∈ J which,
as c ∈ J , means c ∈ I. Thus Lemma 1.15 (α) holds so there is a maximal element p in Φ
and p < L. If there were a dual ideal J such that p < J < L then J would be a dual ideal
containing S but not 0, contradicting the fact that p is a maximal element of Φ. Thus p is a
maximal dual ideal1.

2 Lattice Products and Direct Sums

3 The Centre of a Lattice

Lemma 3.5. If we take a complement z′ of a central element z in a lattice L with 0 and 1
then, when a ∈ L, z ⌢ a = 0 is equivalent to a 5 z′.

4 Lattice Congruences

5 Representing Lattices on Sets

6 Metric Lattices

1As in Theorem 1.10 and Lemma 1.16, there are many proofs in which we use Lemma 1.14 or Lemma 1.15.
From now on we will not be making this explicit in every single such proof.
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Appendix

1 The Axiom of Choice, Well-Ordering Theorem and Zorn’s
Lemma

2 The Definition of a Continuous Lattice

In Chapter 1 Definition 1.14, a complete lattice L is defined to be upper continuous when the
following holds.

(α) Whenever {aδ; δ ∈ D} is a subset of L indexed by a directed set D,

aδ ↑ a implies aδ ⌢ b ↑ a⌢ b.

However, J. von Neumann used (β) instead of (α).

(β) Whenever Ω is a transfinite ordinal such that α < β < Ω implies aα 5 aβ,∨
(aα;α < Ω)⌢ b =

∨
(aα ⌢ b;α < Ω).

We can also consider the following.

(γ) If S 5 L and, for all finite subsets ν of S,∨
(a; a ∈ ν)⌢ b =

∨
(a⌢ b; a ∈ ν)

then
∨
(a; a ∈ S)⌢ b =

∨
(a⌢ b; a ∈ S).

In a complete lattice L, (α), (β) and (γ) are equivalent1. In other words, we can use either
(α), (β) or (γ) as the definition of an upper semicontinuous lattice.

(α)→(γ): If we let D be the set of all finite subsets ν of S, which we make a directed set by
ordering by set inclusion, let a′ =

∨
(a; a ∈ S) and let sν =

∨
(a; a ∈ ν) then sν ↑ a′.†

Thus, by (α), sν ⌢b ↑ a⌢b. But, by hypothesis, sν ⌢b =
∨
(a⌢b; a ∈ ν) so (γ) holds.

(γ)→(β): If we let {aα1 , · · · , aαn} be an aribtrary finite subset of {aα;α < Ω} then it has a
maximum, for example aαn . In this case,

∨
(aαi ; i = 1, · · · , n) ⌢ b = aαn ⌢ b =∨

(aαi ⌢ b; i = 1, · · · , n), so from (γ) we see that (β) holds.

1The equivalence of (β) and (γ) was shown in [Mae42]. And their equivalence to (α) was shown in [Sas48].

†a′ was misprinted as a in the original.
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In order to prove (β)→(α) we use the following lemma.

Lemma.1 If a directed set D is an infinite set then there is a transfinite sequence {Dα;α < Ω}
of directed subsets of D having the following properties.

(1◦) Dα < D, (Dα indicates the cardinality of Dα),

(2◦) α < β < Ω implies Dα 5 Dβ, and

(3◦) D =
∑

α<ΩDα.

Proof.

(i) For any finite subset ν of D, there exists δ(ν) such that δ 5 δ(ν), for all δ ∈ ν. When
the cardinality of D is countable, there exist νn (n = 1, 2, · · · ) such that ν1 < · · · <
νn < · · · and D =

∑
15n<∞ νn. If we add δ(ν1) to ν1 and define this to be D1, and add

δ(νn+1+Dn) to νn+1+Dn and define this to be Dn+1 then each Dn is a directed subset
of D of finite cardinality. In other words, (1◦) holds. (2◦) and (3◦) are clear.

(ii) Next assume D > ℵ0. For any N 5 D,

F1(N) = N + {δ(ν); ν 5 N}2†.

More generally, if we set Fn+1(N) = F1(Fn(N)) then

F1(N) 5 F2(N) 5 · · · .

Set Fω(N) =
∑

15n<∞ Fn(N). If a finite set ν satisfies ν 5 Fω(N) then there exists n
such that ν 5 Fn(N) so δ(ν) ∈ Fω(N). Thus Fω(N) is a directed subset. Next, if N

is a finite set then the cardinality of {δ(ν); ν 5 N} is finite. If N ≥ ℵ0 then it is the

same as N . Thus, in either case, {δ(ν); ν 5 N} 5 N · ℵ0
‡. Therefore F1(N) 5 N · ℵ0.

In general Fn(N) 5 N · ℵ0 so Fω(N) 5 N · ℵ0. But D > ℵ0 so

N < D implies Fω(N) < D. (1)

By the well-ordering theorem, there is a transfinite sequence {Nα;α < Ω} of subsets of
D such that

(1′) Nα < D,

(2′) α < β < Ω implies Nα < Nβ, and

(3′) D =
∑

α<ΩNα.

If we write Dα = Fω(Nα) here then (1◦) holds, by (1). And (2◦) and (3◦) are clear from
(2′) and (3′).

1[Iwa44a] [3]. See [Nak49] [2] p79.
2{δ(ν); ν 5 N} denotes all δ(ν) such that ν is a finite subset of N .

†Erroneous reference to footnote 1 in the original.
‡Second ν was misprinted as δ in the original.
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(β)→(α): If we assume that (α) does not hold for some directed set then there exists one with
the smallest cardinality ℵ among such directed sets. Let this be D. As (α) holds for
all finite directed sets, D is an infinite set. Thus, by the lemma, there is a transfinite

sequence {Dα;α < Ω} such that Dα < D, for each α < Ω. Therefore, by hypothesis,
(α) holds for Dα so ∨

(aδ ⌢ b; δ ∈ Dα) =
∨

(aδ; δ ∈ Dα)⌢ b.

However, by (2◦), if α < β < Ω then
∨
(aδ; δ ∈ Dα) 5

∨
(aδ; δ ∈ Dβ) so, by (β),∨

α<Ω

{
∨

(aδ; δ ∈ Dα)}⌢ b =
∨
α<Ω

{
∨

(aδ; δ ∈ Dα)⌢ b} =
∨
α<Ω

{
∨

(aδ ⌢ b; δ ∈ Dα)}.

Thus, by (3◦), we see that (α) holds for D, a contradiction.
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