
Theoretical Computer Science 111 (1993) 3-57

Elsevier

Computational interpretations of
linear logic

Samson Abramsky
Deprrrmwnt of Compuring. lnywriul College qf’Science, Technolog~~ md Medicine. 180 Queen’.c Gate.

London SW7 2BZ. CiK

Abramsky, S., Computational interpretations of linear logic, Theorettcal Computer Science 111

(1993) 3-57.

We study Guard’s linear logic from the point of view of giving a concrete computational interpreta-
tion of the logic, based on the Curry-Howard isomorphism. In the case of Intuitionistic linear logic,

this leads to a refinement of the lambda calculus, giving finer control over order of evaluation and

storage allocation, while maintaining the logical content of programs as proofs, and computation as

cut-elimination. In the classical case, it leads to a concurrent process paradigm with an operational

semantics in the style of Berry and Boudol’s chemical abstract machine. This opens up a promising

new approach to the parallel implementation of functional programming languages; and offers the

prospect of typed concurrent programming in which correctness is guaranteed by the typing.

1. Introduction

Since its inception, linear logic [12] has offered great promise, as a formalism

particularly well-suited to serve at the interface between logic and computer science.

l From the logical side, linear logic combines the symmetries of classical logic, as

made manifest in Gentzen’s sequent calculus, with the constructive content of

intuitionistic logic.

l From the computational side, linear logic offers a logical perspective on computa-

tional issues such as control of resources and order of evaluation. By contrast,

extant declarative languages either adulterate their logical content in the search for

efficiency, or require an elaborate infrastructure of implementation techniques,

which do not themselves draw inspiration from the mathematical structure of the

language.

Correspondence to: S. Abramsky, Department of Computing, Imperial College of Science, Technology and
Medicine, 180 Queen’s Gate, London SW7 282, UK. Email: sa(n doc.ic.ac.uk.

0304-3975/93/$06.00 I$? 1993-Elsevier Science Publishers B.V. All rights reserved

The paradigm followed by Girard in seeking to apply linear logic to computation is

the “CurryyHoward” isomorphism (see e.g. [15]), in which propositions (or logical

formulae) are interpreted as types, proofs as programs, and the process of normal-

ization or cut-elimination as computation. This paradigm has been a cornerstone of

much recent work on the connections between intuitionistic logic, functional pro-

gramming and category theory (see e.g. [22]). It has by now firmly established itself as

a major component of the logical foundations of programming. In the case of

intuitionistic logic, it relates typed).-calculus (i.e. typed functional programs in

a canonical syntax) to proofs in intuitionistic logic; and reduction of terms to normal

form (i.e. program execution) to normalization of proofs. What is particularly satisfy-

ing about this correspondence in the case of intuitionistic logic is that the formalism

on the computational side is immediately recognizable as an attractive programming

paradigm, which has already been extensively developed and enthusiastically ad-

vocated by a significant community of software practitioners [45, 6, 9, 381.

What has been lacking to date from the development of linear logic is a comparably

attractive computational interpretation. Such an interpretation would have two main

ingredients:

l An interpretation of proofs as programs, i.e. well-formed expressions in some

programming notation.

l An operational semantics for these programs, embodying a clear conception of

program execution. Such a semantics should be formulated at a suitable level of

abstraction, unencumbered by implementation details, so that it can serve as

a reference spec~ficmtion of the language.

On this basis, linear logic in its computational aspect could be studied in the general

framework of programming language semantics, as developed with considerable

success over the last 30 years. The computational intuitions which have been proposed

in connection with linear logic could be made precise, and its actual advantages as

a computational formalism assessed in relation to the claims made on its behalf.

It should be said that this programme runs somewhat counter to that advocated by

Girard. He has adopted the methodological principle of avoiding the “bureaucracy”

of syntax [141, aiming instead for a “geometrical” view of computation, exemplified by

the “geometry of interaction” [131, which interprets cut-elimination in linear logic by

iterations of operators in C*-algebras. From that perspective, what we are seeking to

do here might be seen as a retrogressive step.

However, we see our work as complementary to Girard’s. By giving a simple,

concrete computational interpretation of linear logic, which makes connections with

other computational formalisms apparent, and is immediately meaningful in pro-

gramming terms, we hope to make linear logic much more accessible to computer

scientists, and to provide the basis for some substantial applications. At the same time,

we hope to establish connections with Girard’s geometrical approach, although that

must be left to future work.

The further contents of this paper are as follows. In Section 2, we review

the connections between intuitionistic logic and typed J.-calculus (functional

programming) and describe the operational semantics of).-calculus in a style inspired

by Martin-Liif [29], and currently (as “natural” or “relational” semantics) widely used

in programming language specification 124, 353. We give the correspondence for both

the natural deduction and sequent calculus presentations of intuitionistic logic. The

former is standardly used as a “type inference” system for functional programming,

while the latter forms the basis for the refinement of intuitionistic logic into linear

logic.

In Section 3 we present intuitionistic linear logic (the fragment containing @,+,

&, 0, !). This fragment gives rise to a refined version of functional programming. We

present a term calculus of notations for proofs in this fragment, essentially a refine-

ment of the i.-calculus which allows greater control over computational behaviour,

while preserving the strict correspondence between terms and proofs. We give an

operational semantics for this language in the natural semantics style, thus achieving

our basic aim of giving a computational interpretation of intuitionistic linear logic.

We study various aspects of this interpretation in the next two sections. In Section 4,

we sketch some of the possible applications to static program analysis and optimiza-

tion, and give a detailed description of a (sequential) implementation of the linear term

calculus, in terms of a variant of the SECD machine [26]. Then in Section 5 we

establish some of the basic theoretical properties of the calculus, in its second-order

propositional version.

We turn to classical linear logic in Sections 668. This should be regarded as the

main contribution of the present paper. Although the material on intuitionistic linear

logic is interesting in its own right, it has been included mainly for expository

purposes. Classical linear logic requires a much more radical departure from the

functional framework, so going by way of intuitionistic linear logic helps to cushion

the shock. In Section 6 we introduce pro~fe.~pressions as a notation for proofs in

classical linear logic and present a concurrent operational semantics in the style of

Berry and Boudol’s chemical abstract machine [S]. The basic theoretical properties of

the proof-expression calculus are established in Section 7. Finally, a parallel imple-

mentation is sketched in Section 8.

2. Intuitionistic logic and functional programming

This section essentially reviews standard material, although the style of presenta-

tion of the operational semantics and the assignment of terms to proofs in the sequent

calculus are not as widely known as they deserve to be. A good reference for general

background is [151.

2.1. Natural &duction

We present natural deduction for intuitionistic logic (strictly speaking for minimal

logic, but we shall not be pedantic on this point). For ease of comparison with the

6 S. Ahramsk)

sequent calculus, we present “natural deduction in sequent form”, in which the objects

being derived are sequents

AI,...,A,kA.

(We use r, d to range over sequences of formulas, including the empty sequence; and

write r, d for concatenation of sequences.) What distinguishes the system as natural

deduction is the form of the rules for each connective: these are structured into

introduction rules and elimination rules.

Axiom:

Structural rules:

(Exchange)
l-, A, B, d t C

1-, B, A, d k C

(Contraction)
l-, A, AF B rFB

r,AkB
(Weakening) ~

r,At-B

Logical rules:

(AI)
1-FA rEB

(AE)
rFAAB rFAAB

rt-AAB TEA TFB

(11)
r,AtB

(1E)
rt-A3B TEA

I-EAIB rtB

(V 1)
l-t-A TFB

(VE)
rt-AVB r,AFC r,BFC

rkAVB Tt-AVB rkc

Note that all the “action” in the natural-deduction-style logical rules is on the

right-hand side of the turnstile. Also notice the asymmetry between the rules for

conjunction and disjunction.

Using the structural rules, it is easy to derive the following variant of (3 E):

and hence the cut rule

which is not a basic rule of natural deduction.

Computational interpretations of linear logic I

2.2. Term assignment .for natural deduction

We now assign terms of the typed 3.-calculus to natural deduction proofs. From the

proof-theoretic point of view, the signfiicance of this is to give a “functional interpreta-

tion” of intuitionistic proofs; this is an embodiment of the Heyting semantics for

intuitionistic logic, in which formulas (or “propositions”) are interpreted by means of

their proofs: a proof of a conjunction is a pair of proofs of the conjuncts; a proof of an

implication A 2 B is a (constructive) function mapping proofs of A to proofs of B;

a proof of a disjunction A V B is either a proof of A or a proof of B, together with the

information as to which disjunct was actually proved. Thus, propositions are viewed

as data types:

A A B = A x B (Cartesian product),

A 2 B = A=sB, (function space),

A V B = A+ B (disjoint union).

From the functional programming point of view, the programs (terms) have

a primary interest of their own. From this perspective, what we have is a type inference

system for functional programs, which assigns types to terms, rather than a logical

system assigning terms to proofs. Of course, the advantage of an isomorphism is that

both views can coexist harmoniously.

We present the term assignment as a version of natural deduction in which the

objects being derived now have the form

xl:A 1, . . . , x,:A, I- t:A

where the xi are distinct variables, and b is a term. We present this system (and all

others in this paper) in the style of Curry rather than that of Church [4]; i.e. terms

have no embedded types, and can have many types assigned to them. This choice is

made for technical convenience rather than necessity, and certainly does not reflect

any ideological commitment.

Axiom:

(14
x:At-x:A

Structural rules:

(Exchange)
I-, x:A, y:B, A t- t:C

I-, y:B, x:A, d I- t:C

(Contraction)
I-,x:A,y:Ak t:B

(Weakening)
l-t t:B

1-, z:A F t[z/x, z/y]:B I-, z: A k t:B

8 S. Ahramsk,~

Logical rules:

(AI)
Tkt:A rtu:B l-l--r:AAB rtt:AAB

f k(t,u):A A B
(AE)

rt-fst(t):A rtsnd(t):B

(11)
I-, .u:A k t:B

(3E)
l-I-t:AzB f ku:A

rFix.t:A 3B r F tu:B

(v 1)
rFrt:A l-tU:B

I-t- inl(t):A V B Tt inr(u):A V B

(V E)
I-kt:A V B L’s:AFu:C I-,y:Btv:C

r Fcase t of inl(x) - ulinr(y) * v:C

2.3. Operational semmtics

From the proof-theoretic point of view, the next step would be to set up an

equational theory for terms, reflecting the intended notion of equivalence of proofs;

and to use this to translate normalization of proofs into reduction of terms to normal

forms. However, we shall proceed in a different fashion, following a method of

presenting operational semantics inspired by Martin-Lof [29], and currently widely

used under the name of natural or relational semantics [24, 351. There are a number of

reasons for this choice:

This style of formalization of operational semantics is much better suited to

specifying realistic programming languages, in which the evaluation strategy is an

intrinsic part of the language, than an equational theory or term-rewriting system.

The style is also more robust, since it extends smoothly to languages incorporating

such features as lazy evaluation and general recursion, in which it is no longer the

case that every program has a normal form.

There are technical advantages, as witnessed by our work in Sections 5 and 8. The

main results are considerably easier to prove. While it may be objected that they are

weaker than the corresponding results for reduction to normal form, they have

a wider range of applicability, to situations where the stronger results may actually

fail.

l The most telling point is that the Martin-Liif style of operational semantics has

what the theory of reductions for proofs significantly lacks: the evaluation rules are

formally inevitable, and write themselves. By contrast, the “commutative conver-

sions” e.g. for disjunction are unmemorable and awkward. Moreover, the evalu-

ation rules capture what is actually done in a computation.

Before presenting the operational semantics for typed i-calculus, we shall explain

the general concepts underlying this approach. Firstly, there is a classification of

constructions on terms into two groups: constructors (corresponding to introduction

Computational interpretations of’ linear logic 9

rules) and destructors (corresponding to elimination rules). (This classification, of

course, goes right back to the pioneers McCarthy [30] and Landin [26], although

they lacked the proof-theoretic perspective.) Constructors produce information (pieces

of structured data); destructors coMsulne it. The basic unit of computation (reduction

step) is when a destructor meets a corresponding constructor; the author has found it

suggestive to think of particles of information and anti-information colliding and

annihilating each other, possibly generating some new particles ~ a communication

event. Note that the operational significance of type checking is precisely to ensure

that a constructor of one type never collides with a destructor of a different type ~

i.e. that the consumer can always plug in to the producer, and communication

occur.

We think of computation as applying only to programs, i.e. closed terms. The

overall effect of a computation is to reduce a program to a canonical form, in which

some quantity of information has been made explicit, by being put into constructor

form. At this point, a bifurcation occurs, between lazy (including call-by-name)

evaluation ~ the principle of producing as little information as possible at each stage

of evaluation - and eager (including call-by-value) evaluation, in which as much as

possible is produced. Each of these determines an evaluation strategy, and hence an

operational semantics. The proof system in itself does not enforce a strategy on us.

This is not too surprising, since exterzsional differences between these strategies only

show up in the J-calculus in the presence of nonterminating programs (see e.g. [39]),

and under the strict correspondence of typed programs with proofs, we have strong

normalization, so that all programs ~ and indeed all strategies - terminate.

(However, it is one of the most notable features of linear logic that a clear

perspective on lazy vs. eager evaluation is provided there, even at the pure logical

level, and in the absence of divergence. See Section 3.)

For each of the lazy and eager strategies we shall specify a set of canonical forms

and present the operational semantics in terms of an evaluation relation tuc, to be read

as “1 evaluates (or converges) to canonical form c”.

Lazy evaluution

Here the canonical forms are all programs (closed terms) with a constructor at the

top.

Canonical forms:

ix.t (f> u> inl(t) inr(u)

Evaluation relation:

This is defined inductively, as the least satisfying the following clauses:

tU(u, v) uuc tlj(u, v) vuc
(t3 u>u cc u> fst(t)ljc snd(t)Jc

10 S. Abramsky

tlJ/lx.u u[u/x]Uc

ix.tu2x.t tul,lc

inl(t)Uinl(t) inr(u)Uinr(u)

tl,Iinl(w) u[w/x]lJc

case t of inl(x) * ulinr(y) 3 z;Ijc

tUinr(w) uCw/~lUc
case t of inl(x) * ulinr(y) * vI,Ic

Eager ez;aluation

Canonical forms:

2x.t CC? d) inl(c) inr(d)

where c, d are canonical forms.

Note that any abstraction ix.t is canonical, since we only evaluate programs, and

t may not be closed. This exactly mirrors what is done in actual eager evaluation

languages, e.g. ML [35].

Evaluation relation:

tUc ul,ld tU<c, d> tU<c, d)
(t, u>U(c, d) fst(t)Uc snd(t)ud

tU1.x.c uuc u[c/x]lJd

ix.tu2x.r tuljd

tUc uUd
inl(t)Uinl(c) inr(u)Uinr(d)

tUinl(c) u[c/x]Ud

case t of inl(x) S- ujinr(y) + vl,ld

tUinr(c) c[c/y]Ud

case t of inl(x) + ulinr(y) * cl,ld

2.4. Sequent calculus

We now review the sequent calculus presentation of intuitionistic logic. The objects

derived in this calculus are exactly the same sequents r t- A as in (our version of)

natural deduction. The difference appears in the form of the rules. Firstly, the Cut rule

is taken as primitive in sequent calculus. The Axiom and structural rules are as before.

The logical rules are different: they are structured into lef and right rules rather

than into introduction and elimination rules. The right rules are the same as the

Computtrtional interpretations of linear loyic 11

introduction rules of natural deduction. The left rules introduce the principal connect-

ive on the left of the turnstile.

Logical rules:

(AR)
I-t-A At-B

f,AtAA B
(ALI

f,AtC r,Bl-C

I-,AABtC T,AABtC

(V RI
I-I-A l-l--B

(V L)
I-,AtC I-,BtC

TkAVB I-I-AVB l-,AVBtC

The importance of sequent calculus and the symmetries it brings to light has been

forcefully argued by Girard [lS]. These symmetries are only partially on view in the

intuitionistic sequent calculus, which incorporates an important asymmetry, in that

only a single formula can appear on the right-hand side of the turnstile. This is

intimately linked with the possibility of a functional interpretation for intuitionistic

logic, since it corresponds to the asymmetric nature of functions with respect to inputs

(premises) and outputs (conclusions).

However, the symmetry that does exist between the left and right rules can be nicely

related to our earlier discussion of constructors and destructors. Constructors (gener-

ated by right rules) build structure on the output

while destructors (generated by left rules) decompose structure on the input

The most familiar instance of this latter pattern is the conditional, which is general-

ized to the case statement in typed i.-calculus; more generally yet, destructors corre-

spond to pattern-matching, which has become an important feature of functional

programming languages [6,9,45]. For function types, the destructor is application,

which decomposes a function into its graph.

Term assignment ,for sequent calculus

We now show how terms can be assigned to proofs in the sequent calculus. The

terms being assigned and the form of the sequents are, of course, exactly the same as

for natural deduction. The point is to show the actual assignments corresponding to

the sequent calculus rules. Although in principle these follow automatically from the

known translations of sequent calculus into natural deduction (see e.g. [15]), they do

not seem to be as well known as they might be.

12

Cut rule:

r F t:A x:A, A F u:B

S. Ahrmshy

r, ‘4 t u[t/x]:B

Logical rules:

(AR)
rtt:A Lltu:Il

r,At(t,u):A AB

(ALI
I-, x:A t t:C 1-, y:B t u:C

T,z:A A Btt[fst(z)/x]:C T,z:A A BFu[snd(z)/y]:C

(3R)
r,x:Att:B rt-t:A x:B,dFu:C

l-kix.t:A3B
(IL)

r,f:A3B,d tu[(ft)/x]:c

i-t t:A rFu:B
(‘JR)

r t inl(t):A V B r F inr(u): A V B

(VL)
r,.v:AFu:C r,y:BFc:C

T,z:A V Bt-case z of inl(x) + ulinr(y) a c:C

Note that terms generated by cut-free proofs are in normul,form; in particular, terms

generated by the left rules have variables in the head position, so no redexes are

created. Redexes only arise as a result of the substitutions performed by applications

of the cut rule. Thus all computation is concentrated into the process of cut

elimination.

3. Intuitionistic linear logic

The basic idea of linear logic [123 is to control the use of resources. In the functional

framework, a resource may be taken to be a piece of information ~ of data ~ supplied

as an input to a computation. The structural rules of intuitionistic logic (excluding the

trivial exchange rule) allow us to copy resources (Contraction) and to discard them

(Weakening):

I-, x:A, y:A t t:B I-Ft:B
(Contraction)

i-,z:Att[z/x,z/y]:B
(Weakening) r z. A t t: B

> .

Specifically, Contraction allows multiple occurrences of a variable to appear in the

proof term, while Weakening allows variables to be introduced as premises which do

not appear in the proof term at all.

Linear logic arises by dropping these two structural rules. This means that each

input must be used exactly once in producing the output. This has immediate

Computational intrrprrtations of linear logic 13

implications for the interpretation of the logical connectives. Firstly, we find that two

distinct interpretations of conjunction, or in programming terms a type of pairs of

values, arise:

If we wish to use both components of the pair, on the unique occasion when we use

the input, then we lose the ability to project. This leads to the multiplicative version

of conjunction, the tensor product A 0 B.

If we wish to project, then on the unique occasion when we use the input, we must

choose to take either the first OY the second projection, and this is the only part of

the input we will ever see. So the additive conjunction A&B appears as a kind of

choice - an “external” choice in the terminology of CSP [191, since it is made by the

consumer of the datum.

The disjoint sum (additive disjunction) A @ B appears as an internal choice, since it

is at the discretion of the producer of the datum whether the choice is made from

A ~ a value of the form inl(t), or from B ~ a value of the form inr(u).

The linear implication A + B is the type of functions which use their argument

exactly once, internalizing linear inference.

These connectives by themselves are far too weak to provide useful expressive

power. This is regained by reintroducing weakening and contraction in a controlled

form, not as omnipresent structural rules, but reflected into a datatype, the exponen-

tial !A (“Of course A”). The effect is to make as many copies of a value of type

A available as may be needed.

That we have recovered adequate expressive power is witnessed by the fact that

intuitionistic logic can be interpreted in linear logic with the above connectives. In

particular, intuitionistic implication is recovered by

AxB=!A-B.

This decomposition of implication (in programming terms, of the function type) is

one of the most interesting aspects of linear logic.

We now flesh out these intuitive ideas by giving the sequent calculus formalization

of intuitionistic linear logic.

Axiom:

(Id) -
AFA

Structural rule:

(Exchange)
r, A, B, A t C

I-,B,A,AFC

Cut rule:

14 S. Ahramsk~

Logical rules:

I-FA
(1R) tr (IL) ~

r,lFA

t--R) r;;‘pB

(AR)
rtA I-t-B

rkA&B

(OL)
I-, A, B t C

r,A@BFC

t--L)
TEA B,dtC
r A

) -B,dFC

(AL)
1-,AtC r,Btc

r,A&BFC r,A&BtC

TEA I-FB
(ORI (0 L)

r,AFC I-,BkC

rkA@B rtA@B r,A@BFC

!TFA
(!R) ~

r,AFB

!TI-!A
(Dereliction)

r,!AtB

(!r means a sequence of the form ! AI,. . , ! Ak.)

r,!A,!AtB rFB
(Contraction)

1-,!AkB
(Weakening)

r,!AkB

The essence of the distinction between the additive and multiplicative connectives is

conveyed by the fact that d@rent contexts are combined, without interaction, in

(0 R), (- L), while the fame contexts are used in (&R) and (0 L). This reflects the fact

that in the additives a choice is made, between one of the components of a pair for &,

or one of the guards in a case for 0; so the Qume inputs must be used in both

alternatives, to ensure that each input is used exactly once in producing the output.

Note also the key role of the left rules in defining the !-type; the proper treatment of

these rules is the technical crux in our computational interpretation of intuitionistic

linear logic.

The linear term calculus

We now give an assignment of terms to proofs in intuitionistic linear logic. The

calculus from which these terms are drawn is a refinement of the i.-calculus. A key role

is played by pattern-matching constructs, corresponding to left rules of the logic. One
_ minor ~ complication is that the syntax of terms is not context-free, but must reflect

linearity construints, i.e. syntactic constraints on occurrences of variables correspond-

ing to the semantic constraint that inputs are used exactly once.

To formalize these notions, it is convenient to use an auxiliary syntactic category of

patterns. We use X, Y, Z to range over finite sets of variables. Now PX, the set of

patterns with variables in X, is defined as follows:

Computational interpretations of linear logic 15

We can now define TX, the linear terms with free variables in X, inductively as

follows:

tE9-x, LIE?*, Xn Y=@ * t 0 u, tuE.‘T~“,

t, UEFx =a (t, U)Ec&

tEY-x a inl(t), inr(t), !tE.FX

tEFxvl,;, xgx =a lX.&Fx

tEFx, PEPp,, UEFY”Z, XnZ= YnZ=Q)

a let t be p in UE&~~

t~~~,u~~~=,(,:,v~~~,,(,.:,XnZ={x,y}nZ=~

a case t of inl(x) * ulinr(y) * vE&_~

We now present the assignment of linear terms to proofs in intuitionistic linear

logic, in the same style as the term assignment for sequent calculus given in the

previous section. Our sequents now have the form

x,:A ,,...,xk:Aktt:A

where the Ai are linear formulae (built from the connectives 1, 0, +, &, 0, !), the Xi

are distinct variables, and tEF_,, X = (x1, . . . , xk}. Note that the rules presented below

are subject to the implicit constraint that the linearity conditions for well-formedness

of terms are satisfied. This constraint can always be met, e.g. by using distinct

variables for all instances of the Axiom.

Axiom:

(W
x:A I- x:A

Structural rule:

(Exchange)
I-,x:A,y:B,Akt:C

I-,y:B,x:A,Akt:C

Cut rule:

Tt-t:A x:A,d Fu:B

I-, A t- u[t/x]:B

Logical rules:

(1R) ~ (IL)
l-l-t:A

F*:l r,z:lt-let z be*int:A

(OR)
Tkt:A dFu:B r,x:A,y:Bkt:C

r,Att@u:A@B
(OL)

r,z:A@Btlet z be x@yin t:C

(-R)
r,x:A+t:B Tkt:A x:B, AFu:C

l-t ix.t:A- B
(- L)

T,f:A+ B, A k u[(ft)/x]:C

16 S. Abram&)

C&R)
l-Et:.4 TFu:B

I-F (t, u):A&B

(AL)
f, x:.4 F t:C

r,z:A&Bk let z be (x,-) in t:C

r, y:B k t:C

r,z:A&Bt-let z be (-,y) in t:C

(OR)
l-tt:A l- F u:B

rt-inl(t):A@B rt-inr(u):A@B

(OL)
r,x:Aku:C r,y:Bkv:C

r,z:A@Bt-case z of inl(x) =S ulinr(y) * v:C

(!R)
!TFt:A

!Tk!t:!A

(Dereliction)
I-,x:AFt:B

r.z:!At- let z be !x in t:B

T,x:!A,y:!Ak t:B

(Contraction) r, z:!A F let z be x(a;y in t:B

(Weakening)
Tl-t:B

r, z:!A k let z be ~ in t:B

Operational semantics

We now give an operational semantics for the linear term calculus in exactly the

same style, and with the same supporting intuitions as the semantics of the j_-calculus

given in the previous section. However, one notable difference emerges, as immediate

evidence of the more refined computational content of the linear types. Whereas

intuitionistic logic was perfectly neutral as to which evaluation strategy to adopt for

the i.-calculus, in linear logic the logical structure of the types gives a clear indication

as to which form of evaluation to employ:

For a term of tensor type A 0 B we know that any consumer (e.g. a destructor

context let [.I be x @ y in U) will evaluate this term to a pair, and use both

components. This clearly indicates eager evaluation. Similarly, a term of type A - B

must evaluate to an abstraction, which when applied to any argument will evaluate

it exactly once. Evaluation of the argument exactly once is the slogan of call-

by-value [37]. Finally, any consumer of a term of type A @ B will evaluate it to

a term of the form inl(t) or inr(t), and then use t in evaluating the appropriate arm

of a case statement; so once again, eager evaluation is indicated.

On the other hand, a value of type A&B will evaluate to a pair, exactly one

component of tvhich will be used in any given context. Since we cannot predict which

component will be used, it is clear that evaluating either component in advance of

their actual use will lead in general to redundant computation. Thus lazy evalu-

ation is indicated here. Again, a value of type ! A may be discarded altogether, so

evaluation in advance of actual use may lead to redundant computation, and lazy

evaluation is indicated.

Thus, we get a classification:

. 0, --3 @ (eager evaluation)

0 &,! (lazy evaluation).

What is particularly interesting is that when we interpret the intuitionistic types

AxB = A&B

we see that the intuitionistic function type will be operationally call-by-name (lazy),

since its argument is “frozen” by the lazy evaluation of the !A type. So the mixed

evaluation strategy of the linear types, incorporating a high degree of eager evalu-

ation, supports lazy evaluation at the higher level of the intuitionistic types. One

might say that this gives a rational reconstruction, in logical terms, of the standard

method for implementing lazy evaluation on top of an eager evaluation strategy, as

introduced by Landin [27], and used in the SECD and CAM machines [lS, 221. This

idea is standardly modelled in denotational semantics by /iftiny [40], i.e.

A*B = A,-B

where A-B is the type of pcrrtial (or alternatively strict) functions. This account

requires the presence of divergent programs; the linear decomposition

A*B = !A-‘B

does not.

With these motivating remarks, we now present the operational semantics.

Canonical forms:

(t, U) !t

* c@d ix. t inl(c) inr(d)

where c, d are canonical

Evaluation relation:

tU* uuc
u let f be*in true

tuc uud rUc 0 d uCc/x, d/ylUe
t@ul,lc@d let t be x @y in uUe

tu2x.c uuc v[c/x]Ud

ix. t u ix. t tuljd

18 S. Abramsky

tU<u, w> vuc uCc/xlUd
(t, u>U(4 u> let t be (x,_) in uljd

tU(Q w> wuc uCc/ylUd
let t be (-,y) in uUd

tuc UUd

inl(t)Uinl(c) inr(u)Uinr(d)

tUinl(c) u[c/x]lJd

case t of inl(x) * ulinr(y) = vljd

tlJinr(c) u[c/y]lJd

case t of inl(x) + ulinr(y) => vljd

tU!v vuc u[c/x]ljd

!tU!t let t be !x in uljd

tU!u uuc tU!v u[!u/x, !u/y]Uc

let r be _ in uuc let t be x&y in uuc

These rules codify the previous discussion in a very direct fashion. Note that the

rules corresponding to Contraction and Weakening, respectively copy and discard

their inputs.

4. Pragmatics and implementation

In this section, we sketch some of the promising applications to program analysis

and optimization opened up by the computational interpretation of intuitionistic

linear logic presented in the previous section. We also describe an SECD machine

implementation of the linear calculus.

Logical compilation

We have already mentioned the translation of intuitionistic logic into intuitionistic

linear logic. The full translation of formulas is as follows:

(A3B)c = !A”-B”

(A A B)” = X&B”

(A v B)” = !A” 0 !B”

It is important to note that the translation works not just at the level of theorems, or

even provable sequents, but of proofs. That is, every proof of a sequent rF A in

intuitionistic sequent calculus can be translated into a proof of !F F A” in intuitionis-

tic linear logic. This in turn induces a translation from A-terms into linear terms. This

Computational intrrprftations of linear logic 19

throws up an interesting aspect of the CurryyHoward isomorphism which I have not

seen discussed in the literature: an interpretation of one logic L1 into another L, at the

level of proofs induces a compiler from the programs corresponding to proofs in L1 to

programs of L2. Of course, the correctness of this compiler should follow directly from

logical properties of the interpretation. In particular, it seems appropriate to speak of

compiling R-terms into linear terms, since the linear types are finer-grained, and

“lower-level” in the programming sense.

We will not describe the translation explicitly here; see [12] for details. The main

points will be sufficiently clear from the following examples.

Examples. Consider the S and K combinators:

S = j..L 9, x.(.fxk7x), K=i.x, y.x,

Neither of these terms in linear: S uses x twice, K discards J’. However, consider the

following linear terms:

S’=iJ y, z.let z be xc&y in (,fx)(gy), K’=j.x, z.let z be _ in x.

We can derive the following typing judgements:

ä S’:(!a-B-;‘)-_;(!riP)-!x-;,

t- K’:a-!/I-r

Logic-based progrum analysis

The above examples illustrate a further point: the typings obtained are the most

general for the given terms. They “optimize” the types which would be obtained by the

uniform translation of S and K into linear logic, i.e.

By introducing fewer !-types, we increase the possibilities of eager (possibly parallel)

evaluation; of course, the justification for these “improved” typings is that e.g. in K’,

x is actually used. But this is exactly the kind of information that strictness analysis

tries to extract [2].

There are other uses for the information made explicit by the linear types. If we

know that a value is never shared (as it will not be unless it is of a !-type) then we can

safely update it in place on the (necessarily unique) occasion when we access it; so we

get a handle on “in-place update analysis” [2]. We can also consider refinements of

the !-type, in which instances of! are indexed by expressions with describe patterns of

usage in more precise ways. This has been done with reference to complexity theory in

[16], where a system of bounded linear logic is described, in which ! is graded by

20 S. Abramsk~

“resource polynomials”. This leads to a term assignment in which exactly the poly-

nomial-time computable functions are typable. Again, there should be connections

with “complexity analysis” as in [42].

The general framework suggested by these ideas might be called “logic-based

program analysis”, by analogy with the already well-established subject of semantics-

based program analysis [2, 173. (Of course, the two approaches should be com-

plementary.) The real applicability of this approach remains to be demonstrated, but

it looks genuinely promising, and a number of researchers have already made

preliminary investigations along these lines [25,20,47]. Our contribution is to sug-

gest that the linear term calculus introduced in the previous section may form a good

medium for performing static analysis and optimization. One may start from a stan-

dard functional program, translate it by the uniform method into the linear calculus,

and then try to “linearize” it, i.e. to minimize the usage of the exponential types. This

should provide a sound basis for performing many useful optimizations.

The linear SECD machine

We will now describe an implementation of the linear term calculus by a variant of

the SECD machine [26]. Although some possibilities for parallel evaluation of the

calculus do exist, the implementation we shall describe is purely sequential. (In any

case, the potential for parallel execution is much greater for classical linear logic,

which is treated in Sections 668.)

We will follow the very lucid exposition of the (standard) SECD machine given in

[18] fairly closely. The machine is based on a list-structured store. We shall use

Turner’s notation [44] for list operations:

Cl for the empty list

x: 1 for infix cons

[x,, . , x,] for x1:x.:[].

The objects manipulated by the machine are inductively defined as follows:

l A code is a list of instructions.

l An instruction is one of the forms

PUSHENV HD TL

RET PUSH POP

MAKEFCL(C) AP

UNIT UNUNIT PAIR UNPAIR

MAKECCL(C1, C2) FST SND

INL INR CASE(C1, Cd

MAKEOCL(C) READ DUP

where c, cl, c2 are codes.

21 Compurational interpretations of linear logic

l A value is one of the forms

* (CI>U2) inl(u) inr(v) fcl(c, e) ccl(c,, c2, e) ocl(c, e)

where U, ur , c2 are values, c, c1 , c2 are codes, and e is an environment. (Values of the

form fcl(c, e), ccl(c,, c2, e), ocl(c, e) are called function, choice and of course clos-

ures, respectively.)

l An environment is a list of values.

The state of the machine is determined by four registers, s, e, c, d:

l s is the current expression evaluation stack; evaluation terminates with the result-

ing value at the top of the stack.

l e is the environment giving the values of the free variables of the current expression.

l c is the code corresponding to the current expression.

l d is a dump, i.e. a stack of suspended procedure activations, represented as [s, e, c]

triples.

The operation of the machine is described by transition rules specifying the effect of

each instruction; see Fig. 1. Note that each instruction can obviously be implemented

in constant time on a conventional machine.

S, e, PUSHENV:C, d

(r:/):s,e,H~:~,d

(r:/):S,e,TL:c,d

L‘:S. e, RET:C, [s’, e’,c’]:d

t’:s,e.PUSH:(.,d

s, v:e, pop:c, d

S, e, MAKEFCL(C’):C, d

s,e,UNIT:c,d

*:s,e,UNUNIT:C,d

l~r%‘:s,e,PAIR:c,d

(L., W):S, e, lJNPAlR:C,d

fcl(c’, e’):s,c:e,k=:c,d

.s,e,MAKECCL(cl, c,):c,d

CCl(C1,CZ,e’):s,e,FST:(.,r~

ccl((.,,c2, e’):.%e.SND:c,d

r:s,r,INL:c,d

r:s.e,lNR:c,d

inl(r):s,e,cAsP(c,,cz):c,d

inr(c):s.e,CASE(c,,c2):c,d

s, e, MAKEOCL(C’):C, d

Ocl(~‘,e’):s,e,READ:c,d

r:s, e, DUP:C, d

- e:s,e,c,d

- c:s,e,c,d

- l:s,e,c,d

- c:s’,e’,c’,d

- s,r:e,c,d

- s, e, c, d

- fcl(c’, e): s, e, c, d

- *:s,e.c.d

- s. e,c,d

- (u, w):s, e, c, d

- r:rv:s.e,c,d

- [I, r:e’, c’, [s, e, c]:d

- ccl(c,,c,,e):s,e,c,d

- [],e’,c,,[s,e,c]:d

- [],e’,c,,[s,e,c]:d

- inl(v):s,r,c,d

- inr(t,):s,e,c,d

- [],c:e,c,,[s,e,c]:d

- [].u:e,c,,[s,e,c]:d

- ocl(c’,e):s,e,c,d

- [I, e’, c’, [s, e, c] :d

- i::r:s,e,c,d

Fig. I. Linear SECD machine transitions

22 S. Ahramsk)

We can now define a compiler from linear terms to SECD codes. More precisely, we

define a function t * I which, for each linear term tE& and list of variables 1 such that

every variable in X occurs in 1, yields a code for the linear SECD machine.

The definition is by induction on the structure oft. (Notation: we use infix 1 for list

concatenation.)

.Y* l= [PUSHENV]/ [TL,...,TL]~ [HD]

where n is the index of the first occurrence of x in 1 (starting from 0).

**I= [UNIT]

lett be*in ~*/=~*~I[uNuNIT]III*I

t@u*l=r*l~u*l~[~~~~]

fett beX@yin u*/=t*/l[UNPAIR.PUSH.PUSH]IU*X:y:/I[POP.POP]

r,X.t*/=[MAKEFCL(t*X:/l[POP.RET])]

tu*!=u*/I[PUSH]lt*/I[AP]

(t,U)*I=[MAKEccL(t*lI [RET]],u*~~[RET])

let t be (x_) in ~*~=~*I/[FsT.PusH]Iu*X:II[POP]

letr be (_,y) in u*I=~*II[sND.PusH]Iu*~:II[PoP]

inl(t)*l=t*I/[~~~]

inr(t) * I= t * 1) [INR]

case t of inl(x) * u(inr(y) * u*l=t*ll [CASE(C~, c2)]

where

C,=u*X:/j[POP,RET]

C2=L'*y:/I [POP.RET]

!t* I= [MAKEOCL(~* 11 [RET])]

lett be !xin u*~=~*~I[READ.PusH]Iu*X:~I[POP]

let t be ~ in u*l=u*l

lett bex@yin u*I=~*~~[DuP,PusH,PusH]Iu*x:~:II[PoP.PoP]

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

The correctness of the implementation with respect to the operational semantics can

be stated as follows. Write t* for t*[], t closed;also, ifc is a code and u a value,write

clufor

Cl> Cl> G Cl -* Cal, Cl? Cl? Cl.

Correctness of the implementation

Computational interpretutions 0J linear logic 23

For all typable programs t,

tuc * 3!u.(t*~u&c*~zl).

We will not attempt to prove correctness here. The main point is that we have an

implementation-independent reference semantics with respect to which correctness

can be formulated.

Yves Lafont has described an implementation of intuitionistic linear logic in terms

of a linear abstract machine [25], which is related to our machine in much the same

way that the Categorical Abstract machine is related to the standard SECD machine

(see e.g. [22]). The reader is referred to [25] for an interesting discussion of the

implications of an implementation of this kind for storage allocation, in particular for

the elimination of garbage collection.

However, our implementation is by no means committed to complete avoidance of

sharing. Our DUP instruction, interpreted in the usual way on a list-structured

memory, creates a copy of the pointer at the top of the stack, thus implementing the

copying of the !-type by sharing. With a little additional work, we can ensure that the

standard function type A =>B = !A ----c B is implemented by the standard call-

by-need technique [38]. We shall briefly describe how this can be done. Firstly, we

introduce a new instruction UPD, and a new form of value ocv(u), representing the

“consolidation” of a value into a !-closure. The compilation of ! t is changed by

replacing RET by UPD. The transition for READ is replaced by the following two

transitions:

l::OCi(C', e'):S, e, READ:C,d- [I, e', c', 1: [s, e, c] :d

ocv(u):s,e, READ:C, d- zj:s, e, c, d

Here the notation l::ocl(c’, e’) means that 1 is the location of the cell representing the

!-closure. The transition for UPD is

c‘:s, e, UPD:C, l:[s', e',c'] :d- v:s’, e’, cl, d

where I := ocv(c)

Thus, in this transition the location of the !-closure is over-written by the consolidated

value.

In this approach, just the values of the nonexponential types would be implemented

without sharing. This seems to offer a better balance for sequential implementations

than Lafont’s approach, and is consistent with the idea of using linear types to

increase efficiency as described in the previous subsection. By contrast, the situation is

rather different in a parallel implementation, where the avoidance of sharing has

potentially much greater benefits. Our concurrent operational semantics for classical

linear logic, as presented in Section 6, does avoid sharing in a thorough-going fashion;

parallel implementation is discussed in Section 8.

24 S. Ahramskj’

5. Basic theory of the linear calculus

The systems we have considered so far have been very weak in expressive power,

corresponding in logical terms to the intuitionistic propositional calculus, and in

programming terms to the simple typed i-calculus, together with their linear re-

finements. We shall now make a deceptively simple-looking extension, which in fact

generates an enormous increase in expressive power. This is the addition of second-

order propositional quantifiers, or in programming terms of (impredicative) quantifi-

cation over types, enabling the definition of polymorphic functions. In the implicit

typing approach we are using here, this extension looks particularly simple, since it

does not appear at the term level at all, following the philosophy that types are

compile-time constraints, and are not used in the actual computation. (This reflects

current practice in languages such as ML [35], Miranda [44] and Haskell [21].)

The syntax of formulas is extended with propositional variables a, /J ;’ and the

universal quantifier V’a.A. The system ILL (i.e. the sequent formulation of linear logic

as given in Section 3) is extended to its second-order version ILL, by the rules

O”R)
l-t-A

(*I w-1
I-, A [B/r] t C

rt-VE.A f, V2.A kc

where the right rule is subject to the side-condition (*) that % does not appear free in r.

The linear term calculus is unchanged, and the term assignment extended to I LL2 as

follows:

(V’R)
l-t-t:A l-, x:A[B/a] t t:C

l-t t:v’x..4
(*) (V’L)

I-, x:Vx.A k t:C

Of course, the operational semantics is left unchanged.

This system can be seen as a refinement of system F [151, i.e. the second-order

intuitionistic propositional calculus with its term assignment (in the implicit typing

version), and we accordingly name it system LF (“linear system F”). System F can be

interpreted into LF by the obvious extension of the translation from intuitionistic

logic into ILL we have already mentioned. The significance of this is that system F can

represent all provably total recursive functions of second-order arithmetic [15].

Moreover, inductive types such as lists and trees can be encoded in system F. For

good surveys of programming in system F, see [15,4 1,221.

Determinac’y and convergence

We now turn to the basic metatheory of system LF. The two major results for

system F are undoubtedly that it satisfies the ChurchPRosser and strong normaliz-

ation properties [151. These results concern reduction, and apply to all strategies. The

ChurchPRosser property implies that all reduction strategies lead to the same result

(normal form) when they terminate, while strong normalization says that all strategies

do in fact terminate. What analogous properties can be formulated in terms of our

style of operational semantics? Corresponding to the Church-Rosser property, we

have:

Determinacy: For all closed t, tuc and tud implies c=d; while corresponding to

strong normalization, we have:

Conwrgence: For all closed t typable in system LF (i.e. for which

t- t:A

can be derived in LF for some type A), tuc for some c.

These two properties together say that evaluation, which primafacie is just a binary

relation between programs and canonical forms, is in fact a total function on typable

programs.

Since these properties are clearly weaker than CR and SN, why study them?

l Firstly, these results extend smoothly to situations where the stronger properties

actuallyfail. For example, in Section 7 we will prove corresponding results for our

computational interpretation of classical linear logic, while the Church-Rosser

property&i/s for the theory of reduction, as applied to sequent proofs or proof nets

[121. Again, if we extend the calculus with general recursion, strong normalization

will definitely be lost, while Convergence can be refined into semantic soundness

[8] plus computational adequacy [31].

l As already explained, the evaluation relation reflects the intrinsic computational

content of the linear types, and so is the natural object of study.

l The proofs of Determinacy and Convergence are considerably simpler and less

technical than the proofs of CR and SN.

Firstly, we have the following theorem.

Theorem 5.1. System LF satisjies Determinacy.

Proof. By induction on the length of the inference that tuc. If t has any form other

than a case, at most one clause in the inductive definition of the evaluation relation is

applicable to it. Otherwise, by the induction hypothesis at most one of the two rules

corresponding to (0 L) is applicable. 0

We now turn to Convergence. Our proof is a simplified and suitably modified

version of Girard’s original proof of SN for system F [l 11; see [lo] for a good

exposition.

The idea is to use the evaluation relation to give a realizability semantics for types.

We take a semantic type to be a set of closed linear terms, i.e. a subset of Y=Y@. We

interpret the linear connectives over y(Y) as follows:

I = (ts,Y 1 rU*)

S. Ahramsky

while for F: $?(T)+~J (Z), we define

V(F)= n (F(U)1 UE$>(Y)}.

These definitions induce a semantic function

l.1 :TExp+TEnv+p(F)

where TExp is the set of linear type expressions, and TEnv = TVar+ go (F) is the set of

type environments mapping type (or propositional) variables to semantic types.

We can now give a realizability interpretation for sequents:

?c:Tl= t:A o VqeTEnv, u~[[rIi~.(t[u/x]~[[AIIrl),

and state the basic result:

Theorem 5.2 (Realizability). If rE t: A is derivuble in system LF, then r I= t: A.

Proof. By induction on the derivation of f E t: A in LF. Three cases will illustrate the

argument quite sufficiently.

(1).

(6- I-1
rt-t:A .u:A, dEu:C

1-, f: A+ B, A F u[(.ft)/x]:C

Let q, U, E, w be given with ti~[rl v, ti~[dj v, WE[A+ Bl I?. By induction hypo-

thesis .?:rl= t:A, and so t[ii/.f]E[Ajy; together with WE[A-Bjq, this implies

wt [u/x] E[B~ q. By induction hypothesis again, x: A, j:A I= u: C, and so

u[wt[u/x]/x, u/JJ]E[[C~ q. But (using linearity)

U[M’f [U/Xl/x, 5/j] = u[(ft)/x] [U/X, \V/,f, i?/j].

So r, ,f: A --d B, A + u [(ft)/.x] : C, as required.

(2).

(Contraction)
r,x:!A,y:!At-t:B

r, z:!A F let z be x(;iv in t:B

Let y, U, tl be given with U, UE[[T, !A] q. By induction hypothesis,

r, x:! A, y:! A I= t:B, so t[ii, u/x, u/y] U CE[B~ q. Applying the definition of the evalu-

ation relation, we can conclude that let u be x(a:y in t[ti]Uc~[Bl q, as required.

(3).

(V’R)
Ttt:A

l-t t:V’a.A

Computational interpretations of linrar logic 21

By induction hypothesis, rl= t: A, i.e.

Because r does not occur free in r, this is equivalent to

i.e. to rI= t:Vsr.A. 0

As a simple consequence of the realizability theorem, we have the following

theorem.

Theorem 5.3. System LF satisfies Convergence.

Proof. Suppose that E t: A is derivable in system LF. We can apply (VR) freely here,

so, without loss of generality, we can assume that A is closed. By the realizability

theorem, + t:A, i.e. tc[A]. Write A as V?.B, where B does not have a quantifier

outermost. If B=xi, then [A] =8, contradicting tE[A]. In any other case, the realiz-

ability semantics of the outermost connective in B immediately implies that tu. 0

6. Classical linear logic

Intuitionistic linear logic is essentially a refinement of ordinary intuitionistic logic,

and its computational interpretation is a refinement of the i,-calculus. The full system

of linear logic, which for emphasis we refer to as classical linear logic (CLL), represents

a much more radical departure from the tradition of constructive logic, and its

computational interpretation requires a corresponding departure from the functional

framework.

The basic step in the extension from intuitionistic to classical linear logic is the

introduction of the linear negation A ‘. The idea is that this will obey the same kind of

laws as classical negation, while constructive content is retained through linearity.

This requires the introduction of a number of new connectives, as duals to the existing

ones: -L as dual to 1, ‘B (“par”) as dual to 0, ? (“why not”) as dual to !, and 3 as dual to

V. (The two additive constructs & and @ will be dual to each other in CLL.) Linear

negation is then characterized by the following laws:

(A @ B)l= A’ P.B’

(18)

28

(!A)‘=?A-

(kkA)‘=3c(.AL

A-‘lB=A1’BB.

The syntax of linear formulas in CLL is then defined as follows. Formulas are built

from propositional variables a, p, ;’ and their linear negations X-, /j’, ‘I” by the

following connectives and quantifiers:

Units I I

Multiplicatives @ -5’

Additives & 0

Exponentials ! ?

Quantifiers v 3.

Linear negation is definifiorzull~ extended to general formulas by the equations (18),

while linear implication is treated as a derived operator, defined by the last equation

in (1X).

The proof system for CLL is a fully symmetric sequent calculus, in which sequents

have the form

with the intended meaning that the formula @ f -.. P A is valid. However, a consider-

able economy is gained by observing that a sequent r t- A is equivalent, by (1 S), to the

sequent k I”, 3; so it is sufficient to consider right-sided sequents only. The sequent

calculus presentation of CLL can then be given as follows:

Axiom -__
t- r, A, B, A

cut
I-f,A tA,A’

t-AAL,A
Exchange ---

k l-, B, A, A t- 1-, A

Unit K Perp &$

Times
t-r,A kA,B

Par
t r, A, B

FI-,A,A@B FI-, APB

With flk: AL:!f Plus (i)
t l-. A

W,A@B
Plus (ii)

t r, B

t-r,A@B

b I., A
Dereliction ~

kr,?A

t- ? I‘, A
Of Course __--

F?l-, !A

Weakening &$!A
t i-, ?A, ?A

Contraction --Km

I- r, A
All -~

kf,V%.A
(*I Exists

tT, A[B,‘z]

t- I-, 3%. A

Note that these rules can be obtained from the rules of ILL by using the equations

(18) and shifting the premises to the right of the turnstile. For example, both (&R) and

(0 L) translate into instances of the With rule, while ((-7 R) translates into the Par

rule, and (- L) into the Times rule. In particular, this shows that ILL can be

interpreted as a subsystem of CLL; and hence that intuitionistic logic can be inter-

preted in CLL.

The question now arises as to how to give a computational interpretation for CLL,

which is not merely an extension of ILL, but embodies a radical change of perspective:

the asymmetry between inputs and outputs has been abolished, apparently by formal

fiat. But what does this actually man in computational terms?

To sharpen our ideas, let us focus on the Cut rule. In ILL, this appears as:

while in CLL one has:

t I-, A

There is an important formal difference between these two versions of the Cut rule.

The intuitionistic version is asymmetri.c; the left premise is distinguished from the right

by the fact that the cut formula appears in the output position (i.e. as a conclusion) in

one, and in input position (i.e. as a premise) in the other. This is reflected on the

programming level by the fact that Cut is interpreted in system LF by the noncom-

mutative operation offknction composition (expressed syntactically as substitution).

By contrast, the Cut rule in CLL is fully symmetric; in CLL we have the equulity

II” = A, so we could equally well write

(By the Exchange rule, the different order of the formulas in the resulting sequent is

not significant.) So on the programming level, we should expect to interpret the CLL

Cut rule by a commutatice operation. At this point it becomes very natural to invoke

concurrency theory, as offering just the kind of generalization we need. As Milner has

emphasized throughout his work on concurrency [32,34], communicating processes

can be thought of as a generalization of functions, while the key operation of parullel

composition is a commutative operation which generalizes function application or

composition. So we may attempt to replace expression evaluation by concurrent

process execution as the underlying computational paradigm, and to interpret Cut by

a suitable form of parallel composition. Of course, these ideas are entirely in line with

Girard’s emphatic hints that classical linear logic opens the way to a logical view of

parallel computation [12, 141.

30 S. Ahramskbs

We shall now present a computational interpretation of CLL which seeks to

embody these ideas in a simple and elegant form, in the general framework we have

established in the preceding sections. Thus, we will define a syntax for proqf expres-

sions, and give an assignment of proof expressions to sequent proofs in CLL, and an

operational semantics for proof expressions.

6. I. Syntux of procf expressions

Firstly, a point of terminology: we shall use list to mean finite sequence. We define

a number of syntactic categories:
- - _

l A set _ 1” of names, ranged over by x, y, z. We use x, J-, z to range over lists of names.

l Terms have one of the forms

X

* 0

fOZ.4 tPu

inl(t) inr(u) X(PO Q)

?t t@ u X(P)

where t, u are terms, and P, Q are proof expressions.

l Coequations have the form t _L u, where t, u are terms. We use 0, E to range over

lists of coequations.

l Proof‘expressions have the form 0; t, where 0 is a list of coequations, and F is a list

of terms. We use P, Q to range over proof expressions.

Notation. The occurrences of .x1, . . . , xk in a term of the form x1, . . . , xk(P[l Q) or

x1, . ..) xk(P) are said to be passbe; all other occurrences are active. If e is some

syntactic expression (term, coequation, proof expression, etc.), we write ~ +‘(e) for the

set of names occurring in e, and A, $“(e) (PC 1 ‘(e)) for the set of names occurring

actively (passively) in e.

We shall now define an assignment of proof expressions to sequent proofs in CLL.

The idea is that, to each proof IT of a sequent t- Al, . . . , Ak, we will assign a proof

expression 0; tl, , fk, where 0 corresponds to the uses of the Cut rule in Il.

To ensure that suitable linearity constraints are satisfied, we shall adopt the

following name convention (cf. the variable convention in [3]): dzferent names are

introduced for each instance of the Axiom, With and Of Course rules.

Proof expression assignment for CLL

Axiom Exchange
t- 0; 1-, t:A,u:B, A

k; x:A’, x:A k 0; r, u:B, t:A, A

tO;r,t:A kZ;A,u:A’
cut -

t 0, 8, t I u;T, A

Cotnpuiational interpretations of‘ linear logic 31

Unit ~ Perp
t- 0;r

t-;*:l l-0;r, @:I

Times
t e;r, t:A t E;A, u:B

Par
F 0; 1-, t: A, u:B

F 0, E; r, A, t @ u:A 0 B F O;l-, t3’u:APB

With
t o;i:r, t:A t E;ii:r, u:B

F; .u:T, X(O;t, t [Z;U, u):A&B

Plus (i)
t- o;r, t:A

Plus (ii)
F o;r, u:B

F O;r, inl(t):A 0 B I- O;r, inr(u):A 0 B

Dereliction
k- O;l-,t:A

Weakening
t o;r

b- O;r,?t:?A t-@$_:?A

Contraction
t O;l-, t:?A, u:?A

t o;r, t (d u:?A

Of Course
t o;cr, t:A

t-;x:?T, X(O;f, t):! A

All
t o;r, t:A

(*) Exists
t O;l-, t:A[B/a]

t o;r, t:V’z.A t o;r, t:h.A

6.2. Operational semantics: the linear CHAM

We now complete our computational interpretation of classical linear logic by

giving an operational semantics for proof expressions. Rather than directly defining

the relation of evaluation to canonical form, we shall define a one-step transition

relation on proof expressions, and define canonical forms as certain norma/,forms with

respect to this relation. This is because the notion of computation for proof expres-

sions is inherently parallel; the model is that the coequations form a pool of concur-

rent processes. In fact, our presentation of the operational semantics fits very nicely

into the framework of the chemical abstract machine proposed recently by Berry and

Boudol [S] as a paradigm for concurrent abstract machines. They describe the basic

ideas thus:

Most available concurrency models are based on architectural concepts, e.g.

networks of processes communicating by means of ports or channels. Such concepts

convey a rigid geometrical vision of concurrency. Our chemical abstract machine

model is based on a radically different paradigm . where the concurrent compon-

ents are freely “moving” in the system and communicate when they come into

contact. .

Intuitively, the state of a system is like a chemical solution in which floating

molecules can interact with each other according to reaction rules; a magical

mechanism stirs the solution, allowing for possible contacts between molecules ~ in

chemistry, this is the result of Brownian motion, but we do not insist on any

particular mechanism, this being an implementation matter. The solution trans-

formation process is obviously truly parallel; any number of reactions can be

performed in parallel, provided that they involve disjoint sets of molecules.

The “molecules” of the linear CHAM are the coequations. We refer to 0 in O;tas the

“solution”, and to las the “main body”. The idea is that the computation is done in the

solution, with the result recorded in the main body. One can think of each coequation

either as a single sequential process, or as a tightly coupled synchronous parallel

composition of two processes, proceeding in lockstep. (So coequations could be

modelled by “membranes” in Berry and Boudol’s terminology; but we shall not

pursue this idea.)

We distinguish between two kinds of rule for the CHAM (cf. [34]): structural rules,

which describe the “magical mixing” of the solution; and reaction rules, which describe

the actual computation steps.

Structural rules

There are two basic structural rules:

0 tJ_u * u_Lt

0 t I u, t’ I u’ % t’ I li’, t I u

The first says that each coequation can be regarded as a multiset of exactly two

terms, the second that lists of coequations can be regarded as multisets.

These rules can be applied in any context:

The basic metarule for the CHAM refers to the transition relation __f to be

defined below.

Magical mixing rule:

P+“p’ P'---fQ' Q'+*Q

P-Q

We regard this as a metarule, since it is really part of the specification of the

machine, rather than a description of an actual computation step.

Notational interlude: mriants

We shall need to consider variants of terms t occurring in a proof expression P, i.e.

copies of t in which all names have been replaced by “fresh” names not already

occurring in P. In order to implement this global condition in a local way, we need

a little extra structure. We fix a bijection &t“z No x (1, r}*, and extend the name

convention so that when a name .xH(x~, s) is introduced in a proof expression, the

,x0 component is distinct from that of any name already occurring in the expression.

Now given a term t, we define t’. t’ to be the result of replacing each occurrence of

a name .x+-+(x0, s) in t by J~++(.x~, sl), z-(.x,,, sr), respectively. The idea is that the

following invariant is established by the proof expression assignment and maintained

by the transition relation to be defined below:

For all distinct names .xH(.x,,, s), ytr (JJ~, t) occurring in P, xO=yo implies that

s is incompatible with t (i.e. they have no upper bound in the prefix ordering).

Reaction rules

These rules describe how lists of adjacent coequations react, giving rise to new lists.

Notation. Given X=.x1, . , .yk, t= tI , . . . , tkr we write XI I to denote the list

xr 1 tr, , xk ,_ tk.

Communication:

t_Lx,.ulu - tlu

Unit:

t @ u I t’Pu’ - t I t’, u I u’

Case Left:

X(O;t, t [IE;U, u) I inl(c) __f 0, x I t, t J_ u

Case Right:

X(O;i, t) l?u - 0, x I i, t I_ u

Discard:

X(P)I- d x1 ,__, . , .xk I_

copy:

X(P) _L u (8 u -+ x I (2 (a; X’), W(P)’ I u, X(P)* i 2’

The reaction rules contribute to the global transition relation on proof expressions

via the following metarule:

Reaction context rule:

34 S. Ah,arnsk\

Cleanup rule

Finally, we have a rule which tidies up a computation by consolidating information

back into the main body i of a proof expression O;t. This is somewhat analogous to

collecting the answer substitution from a PROLOG computation.

Cleanup:

x I t, O;t ---f @;i[r/x] (xcA,Y‘(t)).

We can now define the result of a computation. A proof expression P= 0; i is

canonical if it is a +-normal form, and each coequation in 0 has the form x I t or

t I x for some name x. P is cut-@ee if 0 is empty.

def

PUQ o P-w* Q, Q canonical

6.3. Discussion

Firstly, we consider the computational intuitions behind these rules. The key rule is

Communication, which is the only one which involves interaction between coequa-

tions. In ILL, as in i-calculus, variables are place-holders for substitution. In CLL, the

two occurrences of a name can be thought of as the two ends of a channel; the

Communication rule uses this channel to connect two processes (terms) together.

Linearity amounts to the restriction that channels are used only once.

From the computational aspect, the most interesting rules are those for the

additives and exponentials. In both cases we have lazy types - & and !-which in the

concurrent framework must be implemented by some form of explicit synchronization.

This is the role of the forms X(P 0 Q) and -W(P). In both cases, proof expressions are

suspended from execution, and only resumed when sufficient information is available

(or, in more computational terms, when sufficient demand has been generated). In the

case of the additives, the With rule (which under the classical dualities is equivalent to

the intuitionistic rule (@L)) corresponds to a case statement, i.e. a choice between two

alternatives. Clearly, we only want to evaluate that expression corresponding to the

alternative actually chosen; so we must wait until the choice is made. This is done

when the term X(P[Q) is cut against a term denoting a proof of the dual

(A&B)l =A’ 0 B’, of the form inl(t), where t is a proof of A’, or inr(u), where u is

a proof of B’; hence the Case Left and Case Right rules. So we must defer any

evaluation of the proofs of the side formulas r of the With rule until this choice is

made. (Indeed, we don’t even know till then whether these proofs should be taken as

tar U.) This is accomplished by replacing the proof terms by the names X. These can in

turn be embedded in complex proof terms and cut against other terms. However,

when one of these names “rises to the surface” in a coequation Xi -L w, the computation

with that coequation will not be able to proceed until the choice associated

with the With rule which generated the name Xi is resolved, by the application

of a Case Left or Case Right rule. Suppose the Case Left rule is applied. At that

point, the coequation xi I ti is released into the solution, and by the Communication

rule, this can “bond” with xi 112: to form the coequation ti J_ ~1, which can now

proceed.

Similar considerations apply to the rules for the exponentials. The idea here is that

the term of type ?AL specifies how many copies of the term of type !A are required;

each of the terms for the side formulas ?I- of the Of Course rule which generated the

!A term Z(P) must then be directed to ask for a corresponding multiple of copies from

its “input”.

From the logical side, the reaction rules correspond exuctly to the key steps in Cut

Elimination, or more precisely of evaluation to canonical form. This is spelled out in

detail in the proof of the realizability theorem (Theorem 7.17), and the reader is

strongly encouraged to work out some of the transitions described there in detail. So

each rule has a clear logical content.

Finally, some brief remarks about the relationship between our proof-expressions

and Girard’s proof nets [121. (A detailed comparison must be left to future work.)

Roughly speaking, proof expressions correspond to proof nets, the lazy forms

.q(Po Q) and X(P) to proof boxes, and the reaction rules to the symmetric contrac-

tions, as described in [12]. A more precise comparison would require some care; for

example, the use of channels for both axiom contraction and the synchronization

associated with the lazy types in our calculus does not appear in the proof net

formalism. The author’s impression is that both representations have their merits and

uses:

l Proof nets are visually appealing and support geometric insights into the structure

of proofs. They work very well for the multiplicative fragment, but the use of boxes

is cumbersome and negates many of their advantages.

l Proof expressions are an efficient syntactic vehicle for making precise definitions

and carrying out detailed proofs; and also as a linear notation for writing down

linear proofs!

The reader must be left to form his or her own opinion of the relative merits of proof

expressions vs. proof nets as a syntactic medium, and, more importantly, whether we

have succeeded in making the computational reading of linear logic, and particularly

the connections with concurrent computation, more substantial and convincing. (A

full evaluation should include the material to be presented in Sections 7 and 8.) We

will briefly indicate a significant difference in the present approach as compared to

Girard’s, that should not be overlooked. This is that, in keeping with the general

philosophy on operational semantics set out in Section 2, our operational semantics is

based on evaluation to canonicalform rather than normal jbrm. We feel that this choice

is amply justified by the general arguments given in Section 2, the evidence of our

definitions in this section, and the detailed results in Section 7. To recapitulate:

l Our operational definitions are much more compact, elegant, and memorable than

the calculus presented in [12].

36 S. Ahramsky

l They correspond much better to what would actually be done in an implementa-

tion. (See Section 8.)

l There are considerable technical beneifits, the main one being that Determinacy is

preserved. See Theorem 7.9 and Lemma 7.10. At the same time, not too much is

lost: see Theorem 7.20. (Also, our realizability interpretation of the linear types is

essentially the same as Girard’s, yet our computation rules suffice to prove the

realizability theorem (Theorem 7.17).)

7. Basic theory of PE2

We name the formal system of second-order propositional CLL with its assignment

of proof expressions PE2, by analogy with Girard’s PN2. We shall now study the basic

properties of this system.

Notation. We write PE2 t- O;t:T if the sequent t-@;t:T is derivable in PE,.

Firstly, we consider two important structural conditions on proof expressions.

1. Linearity. A proof expression P is linear if

l each name occurring in P does so exactly twice, and

l for each term -f(Q) or ?c(Q 0 R) occurring in P, the proof expressions Q, R are linear.

2. Acyclicity. Given a proof expression P, we define a graph Y(P) with two types of

arc as follows:

l The nodes of Y(P) are the set of all occurrences of terms t in P. (We will blur the

distinction between terms and their occurrences in our notation, but the reader

should be aware of it.)

l There is an arc t-u iff one of the following conditions holds:

~ t I u or u I t occurs in P.

~~ t @ u or u @ t occurs in P.

~ For some ~1, VV, X, 2’ (t I u or L’ I t) and (u I pi or u’ I U) occur in P, XE_~“(U),

ye-l”(w), and x, J’ occur in X for some i(Q) occurring in P.

l There is an arc t-u iff t, u are disjoint occurrences, and Uli’(t)n,V(u)#@

A cq~cle in Y(P) is a sequence

t,_u, “’ -t!X-4L-t, (k> I),

in which no occurrence is repeated other than tI.

A proof expression P is ac~lclic if Y(P) has no cycles.

Acyclicity can be understood as the appropriate hereditary condition to ensure that

self-loops x Ix can never appear in a typable proof expression as we apply

transitions. We can read t-u as “t should be disjoint from u”, and t-u as “t is

connected to ~1”. Then acyclicity precludes the “contradictory” situation in which

nodes that should be disjoint are connected.

Proposition 7.1. If PE2 t @;?I‘, then O;f is linear and acyclic.

Proof. By induction on derivations in PE,. Linearity is immediate from the form of

the rules and the name convention. For acyclicity, we consider the case for the Cut

rule:

t O;i:l-, t: A t E;ii:A, u: Al-

t- 0, 2, t I u;I:r, ii: A

By the name convention, 1 ‘(O;t, t)nL 1 “(E;U, IL)=@, so there is no --link between

these two proof expressions. Hence, any cycle in Y(O, 8, t l_ u;t, U) must in fact lie

either in %(O;t, t) or in C%(E;U, u), contrary to hypothesis. Cl

Proposition 7.2. Suppose P d Q. !f‘P is linrar and acyclic, so is Q.

Proof. Firstly, we show that linearity is preserved, by cases on the rule used to derive

P-‘Q.

Unit, Pair: trivial.

Communication: t I x, x J_ 11 d t I u. The net effect is to delete both occurrences

of x.

Cleanup: t I .x, O;f- O;f[t/x], where XEA. t”(r). Since P is linear, the net effect

is to delete both occurrences of s.

Case Left: i(R 0 S) I inl(c)d 0, X I f, t I c, where R = O;t, t. By definition of

linearity, P linear implies R, S linear. Thus, every name occurring in S had both its

occurrences there; so the net effect of this trasition is to delete all occurrences of “1 ‘(S).

Case Right: symmetrical to Case Left.

Read: trivial, since this transition has no effect on the number of name occurrences.

Discard: .2(R) L---t .Y L, ,_. Similarly to Case Left, since R is linear the effect

is to delete all occurrences of I 1 ‘(R).

Copy: Y(R) I t(a u- X I (.?{a 2’). Y(R)’ I t, Y(R)’ _L u. Since R was linear, and

(.)I, (.)’ rename outside P, the net effect is to delete / 1 ‘(R), and to add two copies of xl, x”

for each .XE~ 1 ‘(R)uf. Furthermore, R’, R’ will be linear, since R was.

Now we show that acylicity is preserved; this will require the assumption that P is

linear. The general technique is to show that any cycle in Q can be transformed into

one in P, contradicting the assumption that P is acyclic. We argue again by cases on

how P -Q was derived.

Cleanup: t I x, O;t-- @;f[t/.x]. Any path

-t_...

in Q can be transformed into

-t_x-x;~~

in P.

38 S. AhmmskJ

Communication: t I x, x -L u __f t _L u. A cycle in Q can be transformed into one in

P by replacing any subpath

‘-t-L,-...

~-t._.Y-x_u-~~~.

Unit: trivial.

Pair: f 0 u I t’vu’ - t .L t’, u I u’. Consider e.g. a link

. -‘r_r’“..,

in a putative cycle in Q. If u-t or t’- u’ then we can replace this link by

. -t_11-...

In any other case, we can replace it by

,.. -t 0 u_t”8u’-...

Case Left: Z(K OS) I inl(o)- 0, X I t, t I u, where R = O;?, t. Since R is linear by

assumption, I 1 ‘(R) is disjoint from the remainder of P. So there can be no cycle

containing links Xi_ ti or t, U; and any cycle containing a link in R must lie entirely in

R. But then any cycle in Q must have already occurred in P.
Case Right, Read: similar to Case Left.

Discard: trivial.

Copy: i(R) I t (a u+ X I (.?‘@I.?), T(R)’ I t, T(R)’ I u. Arguing as in the proof of

linearity, we know that R’ is linear, and ,t ‘(R’) is disjoint from the rest of Q. Hence any

cycle in Q containing a node in R’ must lie wholly within R’; but this would imply

a cycle in R and hence in P, contrary to hypothesis. Similarly for R’. Thus, if we had

a cycle in Q, by replacing any subpaths

. ..-x ,_(xf(u;xl)-~(R)‘_t-...

or

by

. ..-.y. ,_(.uf(n:x~)-x(R)l_u-..’

. ..-f(R)_t(?u’-...

we would obtain a cycle in P, contrary to hypothesis. The only case in which this

cannot be done, because t”u, yields

-0. ,_M)i-iXi_ (x;(i x7)-x(R)‘_t-u _~(R)'-(xS~~.XS)_X~-W~_C~~...

But then we can replace this by

. - 1.; z,cj-...

since Ui_L’j in 9(P). C

Computational interpwtntions of linm logic 39

For the remainder of this section, we will assume that all proof expressions under

consideration are linear and acyclic.

7. I. Determinac>

We now prove a suitable version of Determinacy for PE,. To state this properly, we

need a definition.

Definition 7.3. A renaming is a permutation p : ~_I’ g -1.. This is extended to a substitu-

tion on terms, coequations, proof expressions, etc., in the usual way. Now we define

structural equivalence of proof expressions:

def

PEQ - 3p.(p(P) e*Q).

Structural equivalence merely factors out irrelevant syntactic detail, similarly to

a-equivalence in the i-calculus [3].

We can now state the appropriate form of Determinacy:

Determinacy: PUQ& PUR * Q=R.

The remainder of this subsection is devoted to proving this property.

Firstly, it will be convenient to decompose the transition relation -+. We define

P+,Q iff P- Q can be derived using the Reaction rules, and P----t, Q iff

P----t Q can be derived using the Cleanup rule. Clearly ----) = -+ru bc.

Proposition 7.4. If P--+, Q and Pd, R, then either Qe* R, or jbr some S,

Q ---+,S and R-,S.

Proof. The only critical pair for _I arises from the Communication rule. Acyclicity

precludes the situation x _L y, x I y. The only remaining possibility is

tlu

Proposition 7.5. If P -C Q and P---t, R, then either Q = R, or for some S, Q -+C S

and R -< s.

40 S. Ahramskj

Proof. The only case for a critical pair is

Proposition 7.6. !f P-I? Q und P-, R, tken,for some S, Q-c S and Rd,S.

Proof. By linearity, the only case for a critical pair is

Proposition 7.7. If P ---+c Q ---+r R, then fbr some S, PI,. S bc R.

Proof. If P=.u I t, O;i-, O;I[t/x] -,Z;F[t/.u], then

P lr x I t, z; I-+, 3; t [t/x]. -..

By standard arguments 131, Propositions 7.4-7.7 imply the corresponding proper-

ties for -:,-;.

Now we show that -* is confluent up to structural equivalence.

Theorem 7.8. If P +* P’ and P---•,* P”, then .for some Q’= Q”, P’-* Q’ and

P” .* Q”.

Proof. Consider the following diagram:

Computational interpretations 01 linear logic 41

Firstly, by Proposition 7.7, P- *P’ can be written as P-,*-: P’, and

similarly for P -* P”. Next, (1) can be filled in up to +* by Proposition 7.4; then (2)

and (3) can be filled in by Proposition 7.6; and finally (4) can be filled in up to = by

Proposition 7.5. 0

As an immediate corollary to confluence, we have the following theorem.

Theorem 7.9 (Determinacy). Pl,l Q & PIJ R + Q = R

7.2. Conaergence

Our aim in this subsection is to prove:

Convergence: PE, k O;f:T * llQ.(O;IUQ).

In fact, we shall prove a stronger result: every typable proof expression P is

canonically strongly norinaliziny (notation: CSN(P)), i.e. every transition sequence

P+P1-Pz+‘..

ends in a canonical form.

Firstly, we will prove a very useful lemma, which will play a role in our work

analogous to Girard’s use of the standardization theorem in [12].

Lemma 7.10. P-* Q&CSN(Q) + CSN(P).

Proof. We begin by making a number of reductions of what is to be proved. Firstly, it

clearly suffices to prove

P-Q&CSN(Q) * CSN(P)

since the general case follows immediately

prove

by induction. Next, note that it suffices to

P-Q&SN(Q) * SN(P) (19)

Indeed, suppose (19) holds, P----, Q
sequence from P ends in a normal form; by

the (any) canonical form that Q evaluates

Finally, it suffices to prove that

and CSN(Q). By (19), every transition

Determinacy, this is the same (up to -) as

to.

P-Q&W(Q) * SW’) (20)

where SN,(P) means that every -,-sequence starting from P ends in a I~-

normal form. In fact, SN(P) o SN,(P). To see this, suppose for a contradiction that

SN,(P), and there is an infinite sequence

(21)

42 S. Ahramsk~

If there were infinitely many -,-steps in the sequence, then by Proposition 7.7 we

could construct an infinite +,-sequence from P, contradicting SN,(P). So there are

only finitely many +,-steps in (21), hence there is an infinite -,-sequence from

some P,. But this is impossible, as wc is obviously strongly normalizing.

Finally, we prove (20). Suppose that P- Q1, and that there is an infinite sequence

P+,P,-,PZ-r....

Using Propositions 7.4 and 7.6, we can proceed as in the following diagram:

P d PI - P2 - ...

I

I’ . r r

Q1 . > lz> ;,

r r r

Either this diagram can be extended indefinitely, or Qn%* P, for some II. In

either case, there is an infinite -,-sequence from Q. So SN,(Q) 3 SN,(P), as

required. 0

def

If we define Pl,l o 3Q. (PUQ), then as an immediate corollary of this Lemma we

have the following proposition.

Proposition 7.11. Pl,l e CSN(P).

Itl’,,the light of this proposition, we write P/j rather than CSN(P). Also, we define

Pljo1 (PU).
We now proceed with the proof of Convergence, following much the same lines as

Girard’s proof of strong normalization for PN2 in [12], but in the style of Section 5,

and with some significant modifications dictated by the differences in our framework.

Firstly, some notation. Given proof expressions

P=O;i, t, Q= E; ii, u

we define

Cut(P, Q)= 0, 3, t I u;t, tl.

More precisely, we choose P’E P, Q’= Q such that ..+^(P')n A'*(Q')=@, and form

Cut(P’, Q’) (compare the definition of substitution in [3]); we will generally take this

renaming for granted, and not refer to it explicitly. Note that Cut(P, Q) is defined only

for proof expressions with nonempty main body; shortly, we will take steps to excise

this minor nuisance.

Now we define

def

PI Q o Cut(P, Q)J

Computational interpretations ($ linear logic 43

(This definition is easily seen to be independent of the choice of P’, Q’.) Let PIE be the

set of linear, acyclic proof expressions with nonempty main body. Given Us $(E, we

can define

Now by standard fact about Galois connections [7], we have the following

proposition.

Proposition 7.12. (i) The operutor (.) li is monotone, injationary and idempotent.

(ii) U”‘= U’.

(iii) V’PEE, UgE(PI U 0 PIU”).

A semantic type is a subset U i PiE satisfying:

l U#@

0 UJ i.e. VPGU.(PU)

l u=uLL.

We write &! for the set of all semantic types,

Lemma 7.13. Cut(P, Q)l,l * PlJ&QU.

Proof. Suppose Pfi. There are two possibilities:

(1) 1 SN(P). By Lemma 7.10, this implies 1 SN,(P); but then 1 SN,(Cut(P, Q)),

and so Cut(P, Q)J’/.

(2) P has a noncanonical normal form. This means that P-F t I u, O;f, where

neither t nor u are names, and no reaction rule is applicable to t I u. But then

Cut(P, Q) -,* t I u, E;ti, and any normal form derivable from this expression will

still contain the co-equation t I u, and hence be noncanonical.

The case when Qfi is entirely similar. 0

Lemma 7.14. For all U G PIE:

(i) U#8 3 U’U,

(ii) Ulj = U’#@

Proof. (i) If PEU, QEU’, then Cut(P, Q)U, so by Lemma 7.13, PU.

(ii) If U 1, then ;x, XE U-. To see this, suppose PcU. Then Cut(P, ;x, x)-’ P, and

Plj, so by Lemma 7.10, Cut(P,;.x, x)u as required. 0

Proposition 7.15. [f U & PE satisfies U #fl and U IJ, then U ‘E%.

Proof. By Lemma 7.14 and Proposition 7.12(ii). 0

We will now give a realizability interpretation of the linear types as elements of @.

44 S. Ahmmsk~~

Firstly, we define some operations on proof expressions, corresponding to the

logical rules of PE,:

Id,y=;x, x

Unit=;*

Perp(O;l) = O;t, 0

Par(O;i, t, u)=O;t, t’B II

Times(O;t, t, Z;U, u)= 0, Z;t, ii, t 0 u

With,(P, Q)= X(P 0 Q)

Plusl(O;t, t)=@;t, inl(t)

Plusr(O;f, t)= O;f, inr(t)

Of Course,(P) = X(P)

Der(O;t, t)=@;t, ?t

Weak(O;T)= O;i,

Con(O;t, t, u)=O;t, t@tr

The same provisos about renaming which we made for the Cut construct apply to

all these operations; this ensures that, except for the Cut, none of these operations

create any communication between their arguments. It easily follows that all of the

above operations F(P1,. . . , P,) satisfy:

Pilj&...&P,l,l * F(P,,...,P,)jj.

In a sense, the whole purpose of the realizability semantics is to formulate a suffi-

ciently strong “inductive hypothesis” to allow us to extend this to the Cut.

Now we define:

UPV=\‘T~~~~~(P,Q)JPEU~,QEV’)~

U&V=(~PIUSI(P)~PEU’)~(PI~~~(Q)~QEV’})~

?U={Of Course(P)1 PEU~}’

and for F : 4+#

tf(F)=(u (F(U)- (uE&)y.

By Propositions 7.15 and 7.12 and the remarks immediately preceding these

definitions, they do yield semantic types.

Computational ir~tvrprrtations of linear logic 45

The remaining connectives are defined by duality, so as to force the equations (18)

to be satisfied:

l=l.l

ug V=(U1’BVl)l

u @ V=(UI& Vl)l

!u=(?uly

3(F)=v(xJ.F(U)1)1

These definitions induce a semantic function

1.4 : TExp+TEnv++Y

where TExp is the set of linear type expressions, i.e. formulae of CLL, and

TEnv=TVar-+‘)/ is the set of type environments, ranged over by r].

Lemma 7.16. For all .4~TExp, qETEnv:

(lI-44VY=uA’nV.

Proof. Immediate from the fact that the realizability interpretation of the linear

connectives satisfies (18). 0

We can now give a realizability interpretation of PE2 sequents. Firstly, given

P=O;t,f, Q=Z;ii,u we define

P~Q=0,3,t_Lu;t,ii

(with the standard proviso about renaming to ensure ..1 ‘(P) disjoint from -1 ‘(Q)); and

write PQ, ...Qk to abbreviate (...(P.Q1)....Qk).

Now we define

def

where P=O;F, T=A,, . . . ,A~,~T~I~~=~IA:IIYI,...,~A:II~.
As a final preliminary, we define the shif operator on PIE:

a(O;t, f)=O;i, t.

Clearly, a(P)1 o P/j. More generally, if 7~ is a permutation on

O;t,,, tnJ”l 0 O;tl)..., fklj.

Note the following relationship:

Cut(a(P), Q) = P Q.

{l,...,k }, then

We can now prove the basic result on the realizability interpretation.

46 S. Ahramsk,

Theorem 7.17 (Realizability). PE2 F O;i:T 3 /= O;t:r.

Proof. By induction on derivations in PE2.

(1) Axiom:

k;.x:AL, .x:A

Fix VeTEnv, P~[A”]q=([A~ljv)‘, QE[A’I;~. We must show that Id,PQlJ. But

Id, PQ - Cut(P, Q), and Cut(P, Q)lj, since P _L Q by assumption. Hence by Lemma

7.10, Id, PQlj.

(2) Exchange: Immediate from the remarks about permutations preceding the

theorem.

(3) cut:

F 0, z-, t I u;i:r, u:Ll

Let P=O;t,t, Q= Z;U, u, and fix r/ETEnv, PG[[T’]~, Q~[d’]q. We must show

that Cut(P, Q)PQU. By induction hypothesis, for all RE[A’]~, PERU, and for

all SE[A]~,QQSIJ. H ence o(PP)@ [A’] a)‘= [A] y, and a(QQ)@[A] q)‘, so

Cut(a(PP), a(QQ))U. But Cut(o(PP), o(QQ))+* Cut(P, Q)PQ, so Cut(P, Q)PQlJ.

(4) Perp:

Let P=O;f and fix VETEnv, Qc[r’]q. We must show that for all Qs[IJ_‘] q,

Perp(P)Q&,I, i.e. that a(Perp(P)Q) I {Unit}“. By Proposition 7.12(iii), it suffices to

show that a(Perp(P)Q) I {Unit>, i.e. that Perp(P)Q Unitu. But Perp(P)Q Unit-

PO, and by induction hypothesis Pou, so by Lemma 7.10, Perp(P)QQU.

(5) Unit:

t;*:1

We must show that for all q, PE[l’]v, Unit Plj. By Proposition 7.12(i), (.)‘I is

inflationary, so UnitE[lljy, and Unit P=Cut(Unit, P)lJ.

(6) Par:

t e;t:r, t:~, U:B
t- O;I:r, tPu:APB

Let P=O;f, t, u, and fix VETEnv, QE[[r-] 9. We must show that for all

QE[(AFB)‘] q, Par(P)QQ U, i.e. that o(Par(P)Q) I [(APB)‘] q. Applying Proposi-

tion 7.12(iii) to the definition of [(A TB)‘] y, we see that it is sufficient to consider Q of

Con~putational intrrpretations cf hear logic 41

the form Times(R, S), where RE[A’] y, SERB’] v]. But Par(P)0 Times(R, S) - PQRS,

and by the induction hypothesis PQRSU, so by Lemma 7.10, Par(P)0 Times(R, S)u.

(7) Times:

k- O;t:P, t:A t- E;ti:A, u:B

to , F;f:l-, U:A, t @ u:A @ B

Let P=O;t, t, Q=E; ii, u, and fix TlETEnv, P~[r’j q, QE[[A’] ye. We must show

that for all RE[(A 0 B)‘] y, Times(P, Q)PQRU. By induction hypothesis, for all

SE[A’]q, PPSlJ,and for all TE[B’]~, QQTU. Hence a(PP)E([IA’IIr?)‘=[Aljy,and

a(QQ)E([Bl] q)‘. Applying Proposition 7.12(i) (specifically, the fact that (.)” is

inflationary) to the definition of [(A&B)‘] ye, we see that

Times(a(PP), o(QQ)&([AI&B’] q)‘,

and hence that Cut(Times(o(PP), o(QQ)), R)U. But

Cut(Times(o(PP), a(QQ)), R) U %* Times(P, Q)p@R,

so Times(P, Q)pGR lj.

(8) With:

k-@o;t:r,t.A FH;ti:l-,u:B

F;X:T, X(P[Q):A&B

where P=O;i, t, Q= F-;U, u. Fix r/ETEnv, Pe[P’]q. We must show that for all

RE[(A&B)lI] q, With(P, Q)PRU. Reasoning as in the case for Par, it suffices to

consider Q of the form either PlusI(%[A’] q, or Plusr(T), TE[B’] y. In the first

case, With(P, Q)P PlusI -* Pl??, and by induction hypothesis Pl%U, so by

Lemma 7.10, With(P, Q)PR U. The second case is similar.

(9) Plus Left:

k e;t:r, t:A

t O;t:r, inl(t):A @B

Let P=O;i, t, and fix VETEnv, QE[[P’] ye. We must show that for all

QE[(A 0 B)‘] q, Plusl(P)QQlJ. By induction hypothesis, for all RE[AL] q, PQRU, so

dP&([Al II)‘, and

Plusl(a(PQ))E([[A~&BIlj~)i=[A @Bnv,

so Cut(Plusl(a(PQ)), Q)l,j. But

Cut(Plusl(a(PQ)), Q)=* PIusl(P)QQ,

so PIusl(P)QQlj.

(10) Plus Right: Similar to Plus Left.

(11) Dereliction:

E o;t:r, t:A

t- 0.f.r ?r:?A >. >.

48 S.

Let P= O;i, t, and fix r/ETEnv, QE[[P~] q. We must show that for all QE[(?A)‘J q,

Der(P)QQ lj . Reasoning as in the case for Par, it suffices to consider Q of the form

OfCourse(R~1.4’1 q. But Der(P)Q OfCourse -* PQR, and by the induc-

tion hypothesis PQR u. Hence by Lemma 7.10, Der(P)QQU.

(12) Contraction:

t- O;t:r, t:?A, u:?B

+ O;t:l-, t@ u:?A

Let P= O;f, t, and fix VtiTEnv, QE[~~] q. We must show that for all Qe[(?A)‘] ye,

Con(P)QQ 1. Reasoning as in the case for Par, it suffices to consider Q of the form

OfCourse(RE[A’] q. But Con(P)Q OfCourse -* Con,(PQRR), where

Con,(E;ti, rl, . , ck, wl, . . . , wk)=Z;U, u1 (4 wl, , ~(4 wk.

(Recall the stipulations on renaming in the definition of P. Q.) Now

Con,(PQRR) U o PQRR IJ,

but by induction hypothesis PQRRU, hence by Lemma 7.10, Con(P)QQU,

(13) Weakening:

Let P=O;f, and fix VETEnv, QE[[r’] q. We must show that for all Qs[(?A)‘j q,

Weak(P)QQl,l. Once again, it suffices to consider Q of the form OfCourse(

RE[A’] ‘1. But Weak(P)Q OfCourse -* Weakk(PQ), and Weakk(PQ)U o PQl,l.

By induction hypothesis PQU, hence by Lemma 7.10, Weak(P)QQ 1.

(14) Of Course:

I- e;t:?r, t:A

t o;x:?r, X(P):! A

where P= O;f, t. Fix VETEnv, Qe[?r’] q. We must show that for all QE[(! A)‘] q,

OfCourse (P)QQU. By induction hypothesis, for all RE[IA’]~, PQRIJ, hence

o(PQ)@IA’TI vl)‘, so OfCourse(c(PQ))E([?(A’)] v])‘, and Cut(OfCourse(a(PQ)),

Q)l.l. We must show that this implies that OfCourse(P)QQl,l.

Firstly, we claim that it is sufficient to prove that OfCourse(P)QQU for Q of the

form

OfCourse(R)=OfCourse(R,), OfCourse(

To see this, define K’(O;t, t)=O;t, f, and note that

OfCourse(P)QQ 1

o Park~l(K1(OfCourse(P))Q)Timesk-‘(Q)lj

o a(Par”-‘(K’(OfCourse(P))Q)) I Timeskp’(Q),

49

and that

if and only if

o(Park-‘(a-‘(OfCourse(P))Q)) I {Timesk-‘(OfCourse(~))~~~[~‘~~},

by Proposition 7.12(iii).

Next, we will establish the desired relationship between Cut(Of-

Course(a(PQ)), Q)U and OfCourse(P)QQU. At the corresponding point in his proof

in [12], Girard is able to use the commutative conversions, under which we would

have

OfCourse(P)QQ .* Cut(OfCourse(o(PQ)), Q).

As the commutative conversions are not part of our calculus, we need a more

elaborate argument. We shall use a technique inspired by concurrency theory [33].

We say that a relation .JA G PIE’ is a simulatinn if it satisfies

P.%‘Q&P---t R =s ZIP’, Q’.(R +* P’&Q++ Q’&P’.&‘Q’).

We need to establish some notation. We can write

OfCourse(P)QQ = 50, x I J(Q), X(P) 11’; I’, v

Cut(OfCourse(a(PQ)), Q)=E,, F(R) I c; 2, C

where

Moreover, .1 ‘(E,,; 6. c) is disjoint from the names occurring in the remainder of

these expressions.

Now we define a relation .&’ by: P’.+?Q’ iff

where k>O, {SI, .” 1 .%J is a pairwise incompatible subset of

I/, Y}“, J?“’ , . , JlkgA. 1 ‘(a), and l’(E)u uFE1 ,f ‘(vi)u.k’(i?) is disjoint from the

names occurring in the remainder of these expressions. Taking k= 1, s, =E, v1 =v,
“-7 ---0, %=Y, we have OfCourse(P)QQ& Cut(OfCourse(a(PQ)), Q). We claim that

& is a simulation. To prove this, suppose P”d?Q”, and consider the various cases for

50 S. Abrumsk)

P”- S. If the coequations to which a rule is applied occur in &, we can take P’=S,

and apply the same rule to the corresponding coequation in Q” to get Q’ with P’.%Q’.

If the Communication rule is applied to some x I u in E-, and some X(P)“’ I Ui for

which C‘i = x (the only possibility by the condition on names in E incorporated into the

definition of a), then again the corresponding rule can be applied to Q” to obtain Q’

such that P’:&Q’, where P’=S. The final case to be considered is when some rule is

applied to one of the coequations X(P)“’ I vi. Without loss of generality (by the

Magical Mixing rule), we can take i= 1. Now there are three sub-cases.

(i) The Read rule is applied, say with vi =?v’. In this case, we have S-* P’,

Q" ++ Q’, where

P’=K, @“‘, I”’ 1 J(Q,sl, tS’ 1 v’,

Z(R)S’IU2)...) z(R)“” I vk;G [Z”, . , Z”“/j”‘, . , j”“], 17’.

(ii) The Discard rule is applied, with u1 = _. In this case, we have S-* P’,
Q” - ’ Q’, where

P’=E, xsz I jT(&,) .fSk I J(Q)=,

Z(P)“’ I c2) . . .) X(P)“” I L&KJ[l/jS’], 3

Q’=E, F(R)“’ -L u2, . , z(R)“” I c’~;IC[Z’~, , z”““/j”‘, . . . , j”“][:/Is’], 17’.
(iii) The Copy rule is applied, with vi =u’@c”. In this case, we have S-* P’,

Q” - + Q’, where

P’=E, .ySl’ J_ J(&“, ,A,, 1 j(Q”)s”, ,= 1 P(&, ,,,) ,Ak 1 P(Q)=,

X(P)“” I u’, X(P)“” I u”, X(P)“’ I u2, . ..) X(P)“” I ak;KJ[j”“@J”“/js’], V’

Q’= E, F(R)“” I u’, Z(R)s” I u”, F(R)“* I liz, , z(R)“” I vk;

61 [?I, , 2=/y) .) L;Sk] [ysl’@~““/~sI], C’,

Now we can use 8 to prove that Cut(OfCourse(a(PQ)), Q)U 5

OfCourse(P)QQJj. We define a (finite or infinite) sequence (P,, QJ, with P,,52Qn for all

II, as follows:

l PO = OfCourse(P)QQ, Q. = Cut(OfCourse(o(PQ)), Q).

l If P,, is in normal form, then the sequence terminates at n. Otherwise, choose some

P” with P,,--+ P”, and then use the fact that P&Q,, to obtain P,+ i, Q,,+ I such

that P” -*pn+~> Qn -'Q n+lrandP,+l~Q,+~.
Now suppose that OfCourse(P)QQ 0. There are two cases:

l If OfCourse(P)QQ has an infinite +-sequence, then applying Lemma 7.10, we

can argue by induction that each P, has an infinite --sequence, and hence that

the sequence (P,,, QJ is infinite. This means that (Q,J is an infinite -+-sequence.

Computational interpvetutiona of linear lo,yic 51

If OfCourse(P@Q +* S, where S is a noncanonical normal form, then applying

Determinacy and Lemma 7.10, some P, in the above sequence is a noncanonical

normal form. Clearly P,,&!QN then implies that Q,, is a noncanonical normal form.

In either case, we see that

OfCourse(fi 3 Cut(OfCourse{cr(OfCourse(~)~)), Q) T/,

and so

Cut(OfCourse(a(PQ)), Q) l,l * OfCourse(P)eQ u,

as required.

(15) All:

I- O;f:r, t:A

FO;r:r, t:V’r.A
(*)

Let P=O;i, t and fix qeTEnv, Qe[f’nq. We must show that for all Qt[(V’a.A)‘jq,

PQQ IJ Reasoning as in the case for Par, it suffices to consider QEF(U)’ for some

U~42, where F=LU.[AJq[CIF+ U]. By the eigenvariable condition I[r’j v]=

[T’~~[c~I+U], so by the induction hypothesis (with respect to y[cx~+U]), F’OQ 1.

(16) Exists:

t O;r:f, t:A[Bjr] -
i-- O;t:r, t:3cr. A

Let P=O;f, t and fix VETEnv, QE[~~~v. We must show that for all

;;tSz.A)‘Jq, F’QQU. By induction hypothesis, for ail R~([A[B/~j~jfil, PORJJ.

~ACW4i]v=[A+M-+ [B]Y/J=F(C~)‘,

where F=i.U.[IA’jq[x F+ U], U = [I34 q. (It is just at this point in the proof that

second-order comprehension is used.) Hence ~(PQ)EV((F)‘=([(~X. A)Ljj v)‘, so

Cut(a(PQ), Q)JJ But Cut(o(P&, Q)+* POQ, so PQQJJ. D

As an immediate consequence of Theorem 7.17, we get the following theorem.

Theorem 7.18 (Convergence). PE2 t O;i:T =S O;Il,l.

Proof. By Theorem 7.17,

PE2 k 0;7:r + /= @;I:l-.

Now choose VETEnv, Q~[r’Jrl, and conclude that PQl.l, which implies Pl.l by

Lemma 7.13. q

52 S. Abramsky

7.3. Canonical vs. cut:free

We would expect that the distinction between canonical and cut-free arises in

practice only because of the lazy types: we do not fully evaluate proofs of lazy types in

advance of the information telling us which arm of a case statement is to be evaluated

(a), or how many copies are required (!). Our task in this subsection is to turn this

expectation into a theorem. This will also provide a nice illustration of the use of

acyclicity, which guarantees “deadlock freedom”.

Proposition 7.19. If PE, t O;t:r, O;iU Z;ii, and r does not contain any occurrences of

&, ! or 3, then PL 1 ‘(ii) =@

Proof. We sketch the proof only, as the result is not surprising, and the details would

be quite lengthy. The idea is to introduce a typed version of PE2 ~ in the “Church

style” (cf. [4]) ~ in which the proof expressions have embedded types; in particular,

names are decorated with types. The quantifier rules are interpreted nontrivially in

this version:

E 0, Z; I:r t:A

t- o;F:r, n& t):V’x.A
(*)

E o;i:r, t:A[B/cr]

t O;f:r, (13, ~):sx.A

where c(does not occur free in 0 in the For All rule. The rules of the linear CHAM are

modified in a fairly obvious fashion, the most interesting case being the Communica-

tion rule, which becomes:

fIX~,X“QU - tlu

(Note that t: Al, U: A, so the new coequation is still well-typed.) Also, there is one new

reaction rule, for the quantifier forms:

/Icc.(O;t) I (B, U) - 0 [B/x], t [B/x] -L U

The previous results of this section can be transferred to this typed version of the

system. Now consider the following property of typed proof expressions P:

For all t: A occurring in P, if A does not contain any occurrences of &, ! or 3, then

P-l ‘(t)=@

This property is easily checked to hold for derivable proof expressions, and to be

preserved under the transition relation. Stripping off the types again, this establishes

the Proposition, 0

The appearance of 3 in the hypotheses of this proposition should not be a surprise.

3 provides “information hiding” (cf. [36]), and the information hidden may well

include the use of lazy types.

Theorem 7.20. If PE2 F O;t:r, r does not contain any occurrences of &, ! or 3, and

O;tl,l P, then P is cut+ee.

Computational interprrtations of linear loyic 53

Proof. Suppose for a contradiction that P=E;U is not cut-free, i.e. that E contains

some coequation x _L r. By linearity, there must be another occurrence of x in P, either

elsewhere in 3, or in the main body tr. However, an active occurrence in U would

contradict P canonical, while a passive occurrence is precluded by the assumption on

r and Proposition 7.19. So the other occurrence must be in 3, and we have

t _x-u_y-...

(note that we cannot have u=x, since P is canonical). Using the same reasoning, we

can continue this path indefinitely, but since Y(P) is finite, we must eventually get

a cycle, contradicting the acyclicity of P. 0

We give some examples to illustrate the use of this theorem. Firstly, note that the

unique cut-free proof of 1 is the axiom

and the only cut-free proofs of 1 @ 1 are

E;*:l k;*:l

k;inl(*):l F;inr(*):l @ 1

So we can think of 1 @ 1 as a type Boo1 of taking say tt = ;inl(*),

ff = ;inr(*). Any proof of type Boo1 (containing cuts) will yield a proof expression

cut-free, i.e. Q = tt or Q = ff. So any computation of type

Bool will yield an “honest to God” explicit boolean value.

If we now consider the standard representation

V’r.(?(!cc 0 &)79?%_YB)

essential use of the

exponential here is in the “successor” function,

algebraic data-types

semantics yields fully cut:free proofs at all observable

54 S. Ahrumsk,

8. Implementation notes

Firstly, we consider a sequential implementation of proof expressions. The main

point is to show that the “magical mixing” of the linear CHAM can in fact be

implemented in a simple and efficient way. The implementation uses two data

structures: a stack of coequations to be processed, and a name queue. The internal

representation of names is as pointers to entries in this queue. Such an entry can be in

one of two states: empty OY pending. Initially, the entry for each name is empty. When

a coequation x i t is encountered on the coequation stack, the name queue entry

pointed to by N is inspected. If it is empty, the state is changed to pending, and t is

stored there. If it is pending, with some term u stored there, then the entry is deleted

from the name queue (and returned to the free store, since there can be no other

references to it), and the coequation r I u pushed on the coequation stack. This

implements the Communication rule. All the other reaction rules can be implemented

very straightforwardly (note that the Copy rule requires the creation of new entries in

the name queue).

It is worth pausing at this point to note that this very simple implementation, with

no closures, environments or garbage collection, supports a very powerful higher

order functional programming language (system F), and both lazy and eager modes of

evaluation.

Now we consider the prospects for a parallel implementation. We assume the

following architecture: a network of uyents, i.e. processor-memory pairs, each capable

of sending data to any other. The coequations are distributed over this network. Each

agent executes an instance of the sequential interpreter described above, with a co-

equation stack and name queue held in its local memory. However, names x are now

represented by pairs (i, /), where i is the (network-wide unique) identifier of the agent

on whose name queue the entry for x is held, and I the location in the local memory of

agent i for that entry. So names ~ and only names - are represented by global

addresses. The only difference to the way each interpreter works is that when

a coequation x I t is encountered, with x = (i, /), it must be sent to agent i for further

processing (and, of course, incoming requests of this kind must be handled).

As in the Sherlock Holmes story, the main point about this implementation scheme

is the dog that didn’t bark. In particular:

l The on/~: requirement for inter-agent sharing and synchronization arises from the

handling of names as described above. This seems much simpler than recent

proposals e.g. for architectures to perform parallel graph reduction [23].

l There are no centralized resources. Indeed, there are no distinguished nodes in the

network. Each agent runs an instance of the same program.

l The elimination of garbage collection is probably of much greater value in a paral-

lel implementation that a sequential one.

l There are good prospects for applying static analysis techniques to obtain “good”

mappings of sets of coequations onto the agent network, e.g. to optimize “locality of

reference”, so that most of the time when a name (i, 1) is encountered in an agent j,

Compututional interpretations of linear loyic 55

i is “near”j, thus reducing the cost of communication between them. In particular,

by linearity channels are used exactly once, so to determine the “strength” of the

connection between terms t and u, we can simply count ~/U(t) n .h”(u). (Contrast this

with occam [28] or CSP [19], where what matters is not the number of channels

two processes have in common, but the number of times the channels will be used.)

A mapping algorithm could then attempt to optimize locality of reference by

making the distance between two coequations inversely proportional to the

strength of their connection.

Of course, this is far from the whole story. One significant point is the need for

load-bahnciny, i.e. maintaining an even loading of coequations over the network.

However, even here the structure of the linear CHAM offers some support. The only

rule which increases the size of the proof expression is the Copy rule, so this provides

a natural place for load-balancing to be performed. Again, one might hope to use

static analysis techniques to “compile in” load balancing, keeping a good trade-off

with locality of reference.

The remarks in this section are speculative; detailed work is needed to evaluate the

ideas. However, I believe that they do have genuine promise. The key point is that the

closer marriage of mathematical form with computational content in linear logic

seems to offer much better possibilities for efficient implementations to arise naturally,

from the logical structure of the language.

Acknowledgment

It is a great pleasure to acknowledge the enormous amount I have learnt from the

writings, lectures and conversation of Jean-Yves Girard, the originator of linear logic.

I have also learnt a great deal from Yves Lafont, who introduced me to linear logic

during his “tour of duty” at Imperial. I have tried to give a self-contained account of

linear logic in this paper, reflecting my own understanding and intuitions but, of

course, this is based on what I learnt from their presentations. The computational

interpretation of intuitionistic linear logic described in Section 3 clearly owes much to

previous work by Yves Lafont [25] and Siiren Holmstrom [20]. However, the key

ingredients seem to me to be either new, or clarified and simplified in an essential

fashion by comparison with these previous works. Similar remarks apply to the

discussion of pragmatics and implementation in Section 4. The material in Section 5 is

new, but should be regarded as a straightforward adaptation of similar results for

other calculi. The material on classical linear logic in Sections 668 is new; connections

with proof nets are discussed at the end of Section 6.

My thanks to Phil Wadler, Phil Scott and Andre Scedrov for stimulating dis-

cussions. I would particularly like to thank Christian Retore and Steve Vickers for

many very helpful discussions on these matters; Mike Mislove for inviting me to give

a talk at the MFPS Workshop at Kingston in May 1990, where I presented my

preliminary work on this topic; Paul Taylor for the use of his linear logic font and

56 S. Ahramskr

diagram macros; and the U.K. Science and Engineering Research Council and

ESPRIT Basic Research Action 3003 (the “CLICS” project) for financial support.

Since the preliminary version of this paper was released as a technical report [l],

I have benefited from comments and corrections from a number of people, parti-

cularly Phil Wadler, Anne Troelstra, Ian Mackie, and especially Yves Lafont. My

thanks also to Ugo Solitro and Silvio Valentini for bringing their papers [43, 461 to

my attention.

References

[I] S. Abramsky, Computational interpretations of linear logic, Tech. Report DOC 90/20, Imperial

College, Department of Computing, 1990.

[2] S. Abramsky and C.L. Hankin (eds.), Ahstruct Interpretarion ,for Declarative Languages (Ellis Hor-
wood. Chichester. UK, 1987).

[3] H. Barendregt, 77ir Lambdo Calculus: Its Syftar und Smmanrics (North-Holland, Amsterdam, revised

ed., 1984).

[4] H. Barendregt and K. Hemerik, Types in lambda calculi and programming languages, in: Proc. ESOP

‘90.
[S] G. Berry and G. Boudol, The chemical abstract machine, in: Corlf: Record of!he 17th Ann. ACM Sump.

011 Priwiples of Programmingq Languages (I 990) 8 l-94.

[6] R. Bird and P. Wadler, Introducrh to Functional Programminy (Prentice-Hall, Englewood Cliffs. NJ,

1988).
[7] P.M. Cohn. Uniwrsal A/<qehra (Reidel, Dordrecht, 1981).

[S] L. Damas and R. Milner, Principal type schemes for functional programs. in: Conf: Record of’thr 9rk

Ann. 4CM Symp. on r/w Priwiplrs of Pro~~rammi~~g Lamqun~qes (1982) 207-2 12.

[9] A.J. Field and P.G. Harrison, Funcrional Programmincl (Addison-Wesley, Reading, MA, 1988).

[IO] J. Gallier, On Girard’s “Candidats de Reductibilite”, in: P.-G. Odifreddi, ed.. Lyic and Computer

Science (North-Holland. Amsterdam, 1990).

[1 I] J.-Y. Guard, IntrrprCtnfion jimcfione/lr ef Xmincztion des coupures dans I’arithmitique d’ordre

suphrieur, Ph.D. Thesis, University of Paris VII, 1972.

1121 J.-Y. Girard. Linear logic, Theorer. Comput. Sci. 50 (1987) I-102.

1131 J.-Y. Girard, Geometry of interaction 1: interpretation of system F. in: R. Ferro et al., eds., Logic

Colloquium ‘88 (North-Holland. Amsterdam, 1989).

1141 J.-Y. Girard, Towards a geometry of interaction, in: J.W. Gray and A. Scedrov eds.. Catryorirs in

Computer Sciet~ce and Logic, Contemporary Mathematics, Vol. 92 (Amer. Mathematical Sot., Provi-

dence, 1989) 699108.

[15] J.-Y. Girard, Y. Lafont and P. Taylor. Proof< tmd T~,pe.s, Cambridge Tracts in Theoretical Computer

Science, Vol. 7 (Cambridge University Press, Cambridge, 1989).

[16] J.-Y. Girard. A. Scedrov and P.J. Scott, Bounded linear logic, in: S.R. Buss and P.J. Scott. eds., Proc.

Murk. Sci. Insritute Workshop cm fect.sih/r Mafhematics (Birkhauser, Base], 1990).

[17] H. Ganzinger and N.D. Jones (eds.), Programs us Data Objects, Lecture Notes in Computer Science,

Vol. 217 (Springer, Berlin, 1986).

[lS] P. Henderson, Fuiicfionul Proyrummin(/: Applicurions tmd Implenrnrarro~~ (Prentice-Hall. Englewood
Cliffs, NJ, 1980).

[19] C.A.R. Hoare, Comnzunicutin(/ Sequential Processes (Prentice-Hall, Englewood Cliffs, NJ 1985).

[20] S. Holmstrom, Linear functional programming, in: T. Johnsson, S. Peyton Jones and K. Karlsson,
eds., Proc. Workshop otz Implrmentation of‘ Lazy Functional Lat~guagrs (1988) 13332.

[Zl] P. Hudak and P. Wadler. Report on the functional programming language Haskell. Tech. Report

YALEU;‘DCS/RR666, Department of Computer Science, Yale University, 1988.

[22] G. Huet (ed.). Logical Foundations ofFu~wtiona/ Proyrumming (Addison-Wesley, Reading, MA, 1990).

1231 T. Johnsson. S. Peyton Jones and K. Karlsson (eds.). Proc. Workslzop on Implernenturion of’ Luzy

Functionul Languages (Programming Methodology Group. Chalmers University. 1988).

Computational interpretations q/ linear logic 51

[24] G. Kahn, Natural semantics, in: Proc. Symposium on Theoretical Aspects ofComputer Science, Lecture

Notes in Computer Science, Vol. 247 (Springer, Berlin, 1987) 22-39.

1251 Y. Lafont, The linear abstract machine, Theoret. Comput. Sci. 59 (1988) 157-180.

1261 P.J. Landin. The mechanical evaluation of expressions, Comput. J. 6 (1964) 308-320.

[27] P.J. Landin, A correspondence between ALGOL 60 and Church’s lambda notation, Comm. ACM

8 (1965) 899101, 15X%165.

[2X] INMOS LTD. occam 2 R@wtce Manual (Prentice-Hall, Englewood Cliffs, NJ, 1988).

1291 P. Martin-Lof, Intuitionistic Type Theory, Vol. 443 (Bibliopolis, Naples, 1984).

1301 J. McCarthy, A basis for a mathematical theory of computation, in: P. Braffort and D. Hirschberg,

eds., Computer Programming und Formal Systems (North-Holland, Amsterdam, 1963) 33.-69.

1311 A. Meyer and S. Cosmodakis, Semantical paradigms, in: Proc. 3rd Ann. Symp. on Logic in Computer

Science (Computer Society Press, Rockville, 1988) 2366255.

1321 R. Milner, A Ca/cu/u.s fin Communicating Systems, Lecture Notes in Computer Science. Vol. 92

(Springer. Berlin, 1980).

1331 R. Mimer, Communication und Concurremy (Prentice-Hall, Englewood Cliffs, NJ, 1989).

1341 R. Mimer. Functions as processes, in: Proc. SCALP ‘YO, Lecture Notes in Computer Science, Vol. 443

(Springer. Berlin, 1990) 167-180.

1351 R. Milner, M. Tofte and R. Harper, The Definitions oj Standurd ML (MIT Press, Cambridge, MA,

1990).

[36] J.C. Mitchell and G.D. Plotkin. Abstract types have existential type, in: Con/: Record of’the f2th Ann.

ACM Symp. on Principles of’ Progrummirug Languages (1985) 37-5 1.

1371 A. Mycroft, The theory and practice of transforming call-by-need into call-by-value, in: B. Robinet,

cd., Internat. Swp. on Programming, Lecture Notes in Computer Science, Vol. 83 (Springer, Berlin,
1980).

1381 S.L. Peyton Jones, Tile Implementation. q/Functional Programming Languages (Prentice-Hall, Engle-

wood Cliffs, NJ. 1987).

1391 G.D. Plotkin. Call-by-name. call-by-value and the lambda calculus, Theoret. Comput. Sci. I (1975)

125-I 59.

1407 G.D. Plotkin, Lectures on predomains and partial functions, Notes for a course given at the Center for

the Study of Language and Information, Stanford, 1985.

1413 J.C. Reynolds, Three approaches to type structure, in: H. Ehrig, C. Floyd, M. Nivat and J. Thatcher,

eds., Mathematical Foundations of Sojtware Derelopment. Lecture Notes in Computer Science,

Vol. 185 (Springer, Berlin, 1985) 97-138.

1421 D. Sands, Complexity analyis for a lazy higher order language, in: Proc. 2nd Glasgow Workshop on

Functional Pro<gramming. 1989.

[43] U. Solitro, A typed calculus based on a fragment of linear logic, Theoret. Comput. Sci. 68 (1989)

333-342.

[44] D.A. Turner, Miranda a non-strict functional language with polymorphic types, in: J.P. Jouannaud,

ed., Functional Programming Languages and Computer Architectures, Lecture Notes in Computer
Science, Vol. 201 (Springer, Berlin, 1985).

1451 D.A. Turner (ed.), Research Topics in Functional Programming (Addison-Wesley, Reading, MA, 1990).

[46] S. Valentini, The judgement calculus for intuitionistic linear logic: proof theory and semantics, Tech.

Report 64189, University of Milan. Dip. Scienze dell’lnformazione, 1989.

1471 P. Wadler, Linear types can change the world!, in: M. Broy and C.B. Jones, eds., Programming

Concepts und ~VLethods (North-Holland. Amsterdam, 1990).

