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Outline

This talk is part of a series on recently published papers in the journal
Compositionality. The present talk is about the paper:

Stinespring’s construction as an adjunction
2019-12-20, Volume 1, Issue 2
Compositionality 1, 2 (2019)

arXiv:1807.02533

The work has its origins from the earlier paper

From Observables and States to Hilbert Space and Back: A 2-Categorical
Adjunction

Applied Categorical Structures Volume 26, pages 1123–1157 (2018)
arXiv:1609.08975

and there is also overlap with

arXiv:1708.00091 (stochastic Gelfand–Naimark theorem)

arXiv:2009.07125 (functorial von Neumann entropy)
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Outline

The main idea behind this talk

The general idea behind this talk came from an attempt to understand the
sense in which the GNS and Stinespring constructions are functorial.
These are constructions that take certain kinds of states and
(non-deterministic) processes on (abstract) C ⇤-algebras and realize them
as vectors and operations on Hilbert spaces that arise as representations of
the given C ⇤-algebra.
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Outline

The main idea behind this talk

These realizations are universal and functorial in a certain sense. In the
case of states, we have an adjunction:

C*-Algop CATa

States

((

Rep
•

66

rest

KS

GNS
•

↵◆
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Outline

The main idea behind this talk

And in the case of non-deterministic processes, we have an adjunction

C*-Algop CATa

operator-valued CP maps

''

anchored representations

77

rest

KS

Stinespring

↵◆

Since these adjunctions look very similar, and since the first one is a bit
easier to understand, I will mainly focus on the former. I will briefly
describe what happens in the latter towards the end of this talk.
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States and evolution States in quantum mechanics

Pure states in quantum mechanics

Normally, a (pure) state in quantum mechanics is often first defined as a
unit vector  (or more precisely a ray) in a complex Hilbert space
(H, h · , · i).1 It gives rise to a positive unital (linear) functional

B(H)
h , ·  i C

sending a bounded operator A 2 B(H) to the complex number h ,A i.2

An observable is a self-adjoint element of B(H). The real number
h ,A i is interpreted as the expectation value of the observable A in

the state  .

1If it makes you feel more comfortable thinking about linear algebra than analysis,
you can assume H = Cn for some natural number n.

2And if you’re thinking H = Cn, then B(H) = Mn(C), the algebra of n⇥ n matrices.
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States and evolution States in quantum mechanics

Mixed states in quantum mechanics

From this point of view, it is natural to generalize the definition of a
(pure) state to allow for any positive unital functional B(H) ! C. Such
a functional is called a (mixed) state (or sometimes even a family of

expectation values). An example of a (mixed) state is obtained if you
have a collection of pure states { x 2 H}x2X , indexed by some finite set

X , and a probability measure {•}
p

X on X . In this case, a state can be
defined by

B(H) ! C

A 7!
X

x2X

pxh x ,A xi.

This also explains the terminology “mixed” since this describes a mixture
of pure states  x weighted by a probability distribution.
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States and evolution States in quantum mechanics

Density matrices in quantum mechanics

In general, there is a nice theorem that says what all (su�ciently
continuous) states look like.

Theorem 1 (A corollary of the Riesz representation theorem)

Let B(H) ! C be a positive unital (and strongly continuous) functional.
Then there exists a non-negative operator ⇢ with tr(⇢) = 1 such that
! = tr(⇢ · ). Conversely, given any such operator ⇢, the functional
tr(⇢ · ) : B(H) //C is positive unital (and strongly continuous).

Such a ⇢ is called a density matrix. As in our previous example, if we
have a set { x , px}x2X of unit vectors with probabilities, then the density
matrix corresponding to the state is ⇢ =

P
x2X px | ih |, where | xih x |

denotes the projection onto the span of  x .
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States and evolution States in quantum mechanics

States on C ⇤-algebras

We can generalize the previous situation even more, which will be helpful
in giving more familiar examples. Let A be a C ⇤-algebra.3 A positive

element in A is an element of the form A⇤A for some A 2 A. A state on
A is a positive unital functional A ! C. This means !(A⇤A) � 0 for all
A 2 A.

3A C⇤
-algebra is a normed unital algebra with an involution ⇤ satisfying certain

conditions. That’s basically all you need to know to follow this talk.
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States and evolution States in quantum mechanics

States on CX

An example is A = CX , the C ⇤-algebra of complex-valued functions on a
finite set X with the involution being complex conjugation. Given any state

CX ! C, there exists a unique probability measure {•}
p

X such that

!(A) =
X

x2X

pxAx =: hAip.

Here, A is a function on X whose value at x is written as Ax . This gives
the usual expectation value of a function (the random variable A) on X
with respect to the probability measure p.
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States and evolution States in quantum mechanics

Finite-dimensional C ⇤-algebras

In general, all finite-dimensional C ⇤-algebras are of the form (up to
⇤-isomorphism)

A ⇠=
M

x2X

Mmx (C),

where X is a finite set and mx 2 N. Given a state ! on A there exist a

unique probability measure {•}
p

X and a (not necessarily unique)
family of density matrixes ⇢x 2Mmx (C) such that

!

 
M

x2X

Ax

!
=
X

x2X

pxtr(⇢xAx).
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States and evolution States in quantum mechanics

States on CX
⌦Mm(C)

As an example, let’s think about a state ! on

CX
⌦Mm(C) ⇠=

M

x2X

Mm(C).

The marginals

CX

CX
⌦Mm(C)

C

CX
⌦Mm(C)

Mm(C) t

''

J
j

ww

!
))

!
uu

define a probability distribution {•}
p

X and a density matrix ⇢,
respectively.
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States and evolution States in quantum mechanics

States on CX
⌦Mm(C)

Meanwhile, restricting to one of the matrix factors in the direct sum gives
a positive (not necessarily unital!) functional

!x :=

✓
Mm(C)

ex
,�! CX

⌦Mm(C) ! C
◆

A 7��! ex ⌦ A 7���! !(ex ⌦ A)

with px = !x(1m) 2 [0, 1]. If px 6= 0, then 1
px
!x is a state on Mm(C).

Hence, there exist a family of density matrices ⇢x 2Mm(C) such that
!x = pxtr(⇢x · ). Thus, {⇢x}x2X represents a probabilistic ensemble,
where ⇢x is the state of the system, which occurs with probability px . The
marginal tr(⇢ · ) is the mixed state whose density matrix is
⇢ =

P
x2X px⇢x .
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States and evolution Deterministic evolution

Probability-preserving functions

If (X , p) and (Y , q) are finite probability spaces, a probability-preserving

function (X , p)
f
�! (Y , q), called a deterministic process, can be

visualized in terms of combining water droplets:4

X

Y

f

4I learned this powerful picture from Gromov.
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States and evolution Deterministic evolution

State-preserving ⇤-homomorphisms

There is a one-to-one correspondence between such deterministic

processes (X , p)
f
�! (Y , q) and ⇤-homomorphisms CX F

 � CY such that
! � F = ⇠, where ! and ⇠ are the states corresponding to p and q,
respectively. This assignment sending f to F is defined via pullback:

X Y

C

f
//

B
��

B�f=:F (B)
��

Thus, we write (CX ,!)
F
 � (CY , ⇠) and say that F is state-preserving.
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States and evolution Deterministic evolution

The EPR state

A quantum example of a deterministic state-preserving process is the
following. Let M4(C) ⇠= M2(C)⌦M2(C) ! C be the state with
corresponding (rank 1) density matrix

⇢ =
1

2

2

664

0 0 0 0
0 1 �1 0
0 �1 1 0
0 0 0 0

3

775 .

Let � := 1
212 be the density matrix corresponding to a state

M2(C)
⇠ C. The inclusion M2(C) ,!M2(C)⌦M2(C) to either of

these factors is a state-preserving ⇤-homomorphism
(M2(C), ⇠)! (M4(C),!). This example is special because it illustrates
that a deterministic process can take a pure state (in this case !) to a
mixed state (⇠). This cannot happen in the classical setting (think about
water droplets!).
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States and evolution A fibration picture

State spaces and deterministic evolution

Associated to every C ⇤-algebra A, we get a convex set of states

S(A) :=
�
A

! C : ! positive unital
 
.

Furthermore, to each ⇤-homomorphism A
F
 � B, we get a pullback map

S(A)
S(F )
���! S(B).
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States and evolution A fibration picture

As a fibration or an indexed category

Two viewpoints:

1 View state-spaces and
pullbacks as a fibration over
C*-Alg (C ⇤-algebras and
⇤-homomorphisms).

2 Or view as a functor
C*-Algop

S
�! Set (sometimes

called an indexed category).

I will go back and forth between these viewpoints.
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States and evolution A fibration picture

A brief aside on fibrations and entropy

Viewing states as a fibration turns out to be useful in other contexts, too.
One can characterize the von Neumann entropy as a certain functor

of fibrations (using finite-dimensional C ⇤-algebras) in such a way so that it
agrees with the Baez–Fritz–Leinster functorial characterization of the
Shannon entropy.5

5BTW, I’ll be giving a talk on this in about two weeks on December 16th (details:
http://www.sci.brooklyn.cuny.edu/~noson/CTseminar.html).
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From Hilbert space representations to states Pointed representations and state

Pointed representations

Here’s another fibration over C*-Alg involving representations. It is

described by a functor C*-Algop
Rep

•

���! CAT defined as follows. To each A

we get a category Rep
•(A) whose objects are triples (H,⇡,⌦) with

A
⇡
�! B(H) a representation and ⌦ a unit vector in H. A morphism

(H,⇡,⌦)
L
�! (K, ⇢,⇥) is a vector-preserving isometric intertwiner of

representations, i.e.

L⌦ = ⇥, L⇤L = idH, and

B(H) B(H)

B(K) B(K)

⇡(A)
//

⇢(A)
//

L

✏✏

L

✏✏

8A 2 A.

Now, to a ⇤-homomorphism A
F
 � B of C ⇤-algebras, we get a functor

Rep
•(A)

F⇤

�! Rep
•(B), since if ⇡ is a representation of A, we can pull it

back to a representation B
F
�! A

⇡
�! B(H) of B.
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From Hilbert space representations to states Pointed representations and state

Pointed representations and states as functors

So we have two di↵erent indexed categories (or fibrations)

C*-Algop

Set

CAT

S
33

Rep
•

++

Are they related? Well, every set can be viewed as a discrete category, so
we can view these functors as having the same codomain as well.

C*-Algop

Set

CAT

S
33

Rep
•

++

� _

✏✏

or just C*-Algop CAT

S

##

Rep
•

;;
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From Hilbert space representations to states Pointed representations and state

From pointed representations to states

Let’s first construct a natural transformation

C*-Algop CAT

S

##

Rep
•

;;

rest

KS

by associating to each C ⇤-algebra A a functor Rep•(A)
restA
���! S(A). It

takes a pointed representation (H,⇡,⌦) to a state defined by the
composite

A
⇡
�! B(H)

h⌦, · ⌦i C.
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From Hilbert space representations to states Pointed representations and state

From pointed representations to states

Since the category S(A) is discrete, the functor Rep•(A)
restA
���! S(A)

must send an isometric intertwiner (H,⇡,⌦)
L
�! (K, ⇢,⇥) to the identity

on states, i.e.

A

B(H)

B(K)

C
⇡ 55

⇢ ))

h⌦, · ⌦i

))

h⇥, · ⇥i

55

So is it true? Yes!

h⇥, ⇢(A)⇥i = hL⌦, ⇢(A)L⌦i = hL⌦, L⇡(A)⌦i

= h⌦, L⇤L⇡(A)⌦i = h⌦,⇡(A)⌦i
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From Hilbert space representations to states Pointed representations and state

From pointed representations to states

Naturality of rest says that to every ⇤-homomorphism A
F
 � B,

S(A) S(B)

Rep
•(A) Rep

•(B)

S(F )
//

Rep
•(F )

//

restA

OO

restB

OO

Note that this is an equality of functors on the nose! Does the natural
transformation rest have an inverse or an adjoint in any sense? Yes! But
we shouldn’t expect things to be on the nose anymore because Rep

•(A)
and Rep

•(B) have nontrivial morphisms.
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From states to Hilbert space The GNS construction

The GNS construction

Although we’ve thrown away Hilbert space by looking at C ⇤-algebras and
states instead of representations, there is a natural way to construct a
Hilbert space from these data. Namely, given A

! C, first define the
nullspace6

N! :=
�
A 2 A : !(A⇤A) = 0

 
.

This turns out to be a left ideal in A. The sesquilinear form
A1,A2 7! !(A⇤

1A2) descends to an inner product on A/N!. Completing
this normed vector space with respect to this inner product gives a Hilbert
space

H! := A/N!.

6This is the same nullspace that appears in the non-commutative definition of a.e.
equivalence and agrees with the string-diagrammatic definition of Cho and Jacobs in
synthetic probability theory (cf. earlier talks at this seminar by Fritz and Rischel) when
instantiated in the quantum Markov category of C⇤-algebras.
Arthur J. Parzygnat (IHÉS, France) Stinespring’s construction as an adjunction 2020 December 3 26 / 46



From states to Hilbert space The GNS construction

The GNS construction

The C ⇤-algebra A also acts on H! by left-multiplication (on
representatives). This defines a representation A

⇡!
�! B(H!). Together

with the vector [1A]! 2 H! associated to the representative 1A 2 A, these
three data define a pointed representation (H!,⇡!, [1A]!). Thus, we’ve

specified a functor S(A)
GNS

•

A

����! Rep
•(A) for each C ⇤-algebra A. But

given a ⇤-homomorphism A
F
 � B, does the diagram

S(A) S(B)

Rep
•(A) Rep

•(B)

S(F )
//

Rep
•(F )

//

GNS
•

A

✏✏

GNS
•

B

✏✏

commute?
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From states to Hilbert space The GNS construction

The GNS construction

S(A) S(B)

Rep
•(A) Rep

•(B)

S(F )
//

Rep
•(F )

//

GNS
•

A

✏✏

GNS
•

B

✏✏

! ! � F

(H!,⇡!, [1A]!)

(H!�F ,⇡!�F , [1B]!�F )

(H!,⇡! � F , [1A]!)

� S(F )
//

�
Rep

•(F )
//

_

GNS
•

A

✏✏

_

GNS
•

B

✏✏

✏✏✏✏ ✏✏ ✏✏

GNS
•

F ,!

✏✏
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From states to Hilbert space The GNS construction

The GNS construction

So the two representations are not necessarily the same!7 Nevertheless,
there is a canonical map GNS

•

F ,! : B/N!�F ! A/N! obtained from the
diagram

B A

B/N!�F A/N!

✏✏

✏✏

✏✏

✏✏

F
//

GNS
•

F ,!

//

and explicitly given by

GNS
•

F ,!([B]) := [F (B)] 8 [B] 2 B/N!�F .

This is then extended to the full Hilbert spaces, which is possible since this
assignment is an isometry. Furthermore, it is a vector-preserving isometric
intertwiner.

7For example, if F is the unique map A C, then GNS
•

C(! � F ) ⇠= (C, id, 1).
Arthur J. Parzygnat (IHÉS, France) Stinespring’s construction as an adjunction 2020 December 3 30 / 46



From states to Hilbert space The GNS adjunction

The GNS oplax-natural transformation

This provides us with a natural transformation

S(A) S(B)

Rep
•(A) Rep

•(B)

S(F )
//

Rep
•(F )

//

GNS
•

A

✏✏

GNS
•

B

✏✏

GNS
•

F
s{

Oplax-naturality of GNS
• says (in particular)

S(A) S(B) S(C)

Rep
•(A) Rep

•(B) Rep
•(C)

S(F )
//

S(G)
//

Rep
•(F )
//

Rep
•(G)
//

GNS
•
A
✏✏

GNS
•
B
✏✏

GNS
•
C
✏✏

GNS
•
F

s{

GNS
•
G

s{

=

S(A) S(B)

Rep
•(A) Rep

•(C)

S(G�F )
//

Rep
•(G�F )

//

GNS
•
A
✏✏

GNS
•
C
✏✏

GNS
•
G�F

s{

for every pair of composable ⇤-homomorphisms A
F
 � B

G
 � C.
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From states to Hilbert space The GNS adjunction

The GNS adjunction

All this gives us an adjunction

C*-Algop CATa

S

((

Rep
•

66

rest

KS

GNS
•

↵◆

,

but one must be careful about the meaning of the 2-morphisms ) drawn
here. Only rest is a natural transformation between functors. However,
GNS

• is only an oplax-natural transformation! Therefore, this defines an
adjunction in the 2-category Fun(C*-Algop, CAT ) whose objects are
functors, 1-morphisms are oplax-natural transformations, and 2-morphisms
are modifications.
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From states to Hilbert space The GNS adjunction

The GNS adjunction

But such an adjunction should come equipped with modifications

S

Rep
•

S

GNS
•

��

rest

??

idS
//

n

↵◆

and

Rep
•

S

Rep
•

rest

??

GNS
•

��

idRep•
//

m

↵◆

On a C ⇤-algebra A, this should provide us with natural transformations
(2-morphisms in CAT )

S(A)

Rep
•(A)

S(A)

GNS
•

A
��

restA

??

idS(A)
//

nA

↵◆

and

Rep
•(A)

S(A)

Rep
•(A)

restA

??

GNS
•

A

��

idRep•(A)

//

mA

↵◆
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From states to Hilbert space The GNS adjunction

The modification n

Let’s see what these natural transformations are.

S(A)

Rep
•(A)

S(A)

GNS
•

A
��

restA

??

idS(A)
//

nA

↵◆

!

(H!,⇡!, [1A]!)

!

h[1A]!,⇡!( · )[1A]!i
�

��

4
::

$
22

nA;!
✏✏

But by definition of the inner product on H!,

h[1A]!,⇡!(A)[1A]!i = h[1A]!, [A]!i = !(1⇤AA) = !(A).

Therefore, nA is the identity modification!
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From states to Hilbert space The GNS adjunction

The modification m

As for m, we have

Rep
•(A)

S(A)

Rep
•(A)

restA

??

GNS
•

A

��

idRep•(A)

//

mA

↵◆

(H,⇡,⌦)

! := h⌦,⇡( · )⌦i

(H,⇡,⌦)

(H!,⇡!, [1A]!)?

?? ⌦
$$

⇢
,,

mA;(H,⇡,⌦)
✏✏

There is a unique vector-preserving isometric intertwiner

(H!,⇡!, [1A]!)
mA;(H,⇡,⌦)
������! (H,⇡,⌦)

uniquely determined by the condition

mA;(H,⇡,⌦) ([1A]!) = ⌦.
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From states to Hilbert space The GNS adjunction

The GNS adjunction

Theorem 2 (P. 2018)

GNS
• is the left adjoint of rest:

C*-Algop CATa

S

((

Rep
•

66

rest

KS

GNS
•

↵◆

,

or equivalently

C*-Alg

Rep
•

S

?

�� ��

rest

((

GNS
•

ii

in terms of fibrations.
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From states to Hilbert space GNS recap

GNS provides the minimal realization of your state

Given a pointed representation (H,⇡,⌦) of A, one obtains a state on

A via pullback A
⇡
�! B(H)

h⌦, · ⌦i C.
Given a state A

! C, one obtains a pointed representation
(H!,⇡!, [1A]!).

The pointed representation (H!,⇡!, [1A]!) satisfies the universal
property that it is the “smallest” realization of the state as a pure
state on some Hilbert space which is acted upon by the algebra.
Smallest here actually means smallest because for any other (H,⇡,⌦)
satisfying ! = h⌦,⇡( · )⌦i, there exists a unique vector-preserving
isometric intertwiner (H!,⇡!, [1A]!)! (H,⇡,⌦).

The GNS adjunction in the 2-category Fun(C*-Algop, CAT ) also
explains the “functoriality” of the GNS construction as coming from
oplax-naturality.
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Operator-valued CP maps

One can generalize the previous discussion further by the following
schematic. First, instead of working with states A ! C on C ⇤-algebras,
work with operator-valued completely positive (OCP) maps

A
'

B(K), where K is some Hilbert space.8 These are written as pairs
(K,'). Such a completely positive map represents the evolution of a
system under some dynamics. Unlike in the case of states, there are
non-trivial morphisms between such OCP maps. A morphism of OCP

maps T : (K,')! (L, ) is a bounded linear map T : K! L such that

K K

L L

'(A)
//

 (A)
//

T

✏✏

T

✏✏

8A 2 A.

8A positive linear functional is obtained in the special case K = C.
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Operator-valued CP maps

OCP maps and their morphisms for a given C ⇤-algebra A form a category

OCP(A). In fact, for every ⇤-homomorphism A
F
 � B,

OCP(A)
OCPF
���! OCP(B)

(K,') 7����! (K,' � F )
⇣
(K,')

T
�! (L, )

⌘
7����!

⇣
(K,' � F )

T
�! (L, � F )

⌘

defines a functor. Combining these gives a functor

C*-Algop
OCP
���! CAT .
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Anchored representations

Second, we need a category AnRep(A) (replacing Rep
•(A), pointed

representations). For this, we define an anchored representation of A to
be a quadruple (K,H,⇡,V ) consisting of two Hilbert spaces H and K, a
⇤-homomorphism ⇡ : A! B(H), and a bounded linear map V : K! H.
Morphisms are a bit technical, so I’ll skip them. Once this is done, you get
AnRep(A). Much like in the case of OCP maps, one obtains a functor

C*-Algop
AnRep
����! CAT .

So again, we have two functors and we can ask how/if they’re related.

C*-Algop CAT

OCP

&&

AnRep

88
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The restriction natural transformation

Given an anchored representation (K,H,A
⇡
�! B(H),K

V
�! H), one

obtains an OCP map A // B(K) via the composite

A
⇡
�! B(H)

AdV⇤

B(K),

where AdV ⇤(A) := V ⇤AV .9 One can also extend this to morphisms of
OCP maps and this defines a natural transformation

C*-Algop CAT

OCP

''

AnRep

77

rest

KS

.

9Special case: If K = C, then C V
�! H picks a vector ⌦ := V (1) and

AdV⇤(A) = V ⇤AV = h⌦,A⌦i.
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The Stinespring adjunction

By using Stinespring’s construction, a generalization of the GNS
construction to OCP maps, one can construct a left adjoint of rest.

Theorem 3 (P. 2019)

There exists a left adjoint Stine : OCP) AnRep to the natural
transformation rest : AnRep) OCP

C*-Algop CATa

OCP

((

AnRep

66

rest

KS

Stine

↵◆

in the 2-category Fun(C*-Algop, CAT ).

Note: Stine is only an oplax-natural transformation.
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Summary

Representations and vectors produce states and vice versa. The two
are related by an adjunction in a 2-category of functors.

Representations and bounded linear maps produce certain completely
positive maps and vice versa. The two are also related by an
adjunction in the same 2-category of functors.

The adjunction realizes the Stinespring construction associated to an
OCP map as having a universal property describing it as a minimal
anchored representation for that OCP map.

The functoriality under ⇤-homomorphisms is realized as
oplax-naturality from this adjunction.

Intricate details of von Neumann algebras and normality are not
needed for this characterization.

Question: Can one use Paschke’s construction to generalize this to all
completely positive maps between C ⇤-algebras?
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Thank you!

Thanks for your attention and thanks to Compositionality!
For more details, including some of the physics related to this work, see

arXiv:1807.02533/https://doi.org/10.32408/compositionality-1-2

arXiv:1609.08975/https://doi.org/10.1007/s10485-018-9522-6

arXiv:1708.00091

arXiv:2009.07125

and the references therein.
Advertisement: A talk on the last paper (functoriality of the von Neumann
entropy) will be given in Noson Yanofsky’s category theory seminar
http://www.sci.brooklyn.cuny.edu/⇠noson/CTseminar.html on December
16th.
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