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Abstract—We present a method to construct “native” type
systems for a broad class of languages, in which types are built
from term constructors by a rich form of dependent type theory.
Any language with products and functions can be modelled as
a higher-order algebraic theory with rewrites, and the internal
language of its presheaf topos provides complete specification of
the structure and behavior of terms. This construction is func-
torial, so that translations of languages give translations of type
systems. The construction therefore provides a shared framework
for higher-order reasoning about most existing programming
languages.

I. INTRODUCTION

As society becomes rooted in network computing, it is
vital to develop general methods of reasoning about code.
Type theory is growing as a guiding philosophy in the design
of programming languages; but in practice type systems are
mostly heterogeneous, and there are not standard ways to
reason across all languages. In this paper we construct for
any language a native type system which provides complete
specification of the structure and behavior of terms.

Categorical logic [1] unifies languages: any formalism, from
a simple heap to the calculus of constructions, can be modelled
as a structured category. In doing so, we inherit a wealth of
tools from category theory. In particular, we construct native
type systems by composing ideas known for decades:

language
Λ−→ category

P−→ topos
Φ−→ type system

The first Λ forms the syntactic category of a language [2];
the second P is the presheaf construction [3]; and the third Φ
is the concept of logic over a type theory [1]. The composite
is functorial, so that translations between languages induce
translations between type systems.

The type system is native in the sense that types are built
only from term constructors and a rich form of dependent type
theory. For example, the following predicate on processes in
a concurrent language is effectively a compile-time firewall.

µX. ((in(α, N.X) | P) ∧ ¬(in(¬α, N.P) | P))

“Can always input from channels in the set α and cannot input from ¬α.”

Native type theory is intended to be a practical framework
to equip all programming languages with a shared system
for higher-order reasoning. The authors believe that the pos-
sibilities are significant and broad, and we encourage the
development of tools and algorithms to bring them to fruition.

A. Motivation and Implementation

Why do we want native type systems? How can they be
implemented practically? What are the intended applications?

ECMAScript is a dynamic, weakly-typed language built into
every web browser. When code breaks, it does so at runtime;

but software companies prefer to know in advance. They know
from experience that static type systems are necessary for
correct and maintainable code. Microsoft’s TypeScript [4],
Facebook’s Flow [5], and Google’s Closure Compiler [6] are
all multi-million dollar efforts to retrofit ECMAScript with a
strong, static type system. None of them is sound [7].

By contrast, the native type system of ECMAScript is
sound by construction: it conditions code explicitly by its
structure and behavior. By specifying both the language and
the platforms on which it runs, ECMAScript can be formally
integrated into composite systems, to reason in the practical
context of communicating with a back-end server (??).

We plan to implement native type theory as a method which
inputs the formal specification of a language and outputs —.
To do so, we plan to utilize the significant progress that has
been made in formalization.

K Framework [8] is a popular formal verification tool. The
complete semantics of many popular languages have been
expressed using K, including ECMAScript, C, Java, Python,
Haskell, LLVM, Solidity, and more. While K has its own
language for expressing semantics, it corresponds closely to
the notion of a “higher-order algebraic theory with rewrites”,
which we explore in section II.

The most obvious way to use the resulting type system is
to annotate code, but one can also search by types. The search
engine Hoogle [9] enables the search of Haskell libraries on
Stackage by function signature. This system can be expanded
to many languages, and strengthened by more expressive
types. For example, if ϕ : S → Prop is a type of program
and ψ : T → Prop is a security property, there is a “rely-
guarantee” operator to form the type of S.T-contexts for which
substituting a program in ϕ guarantees the property ψ (III-A).

[ϕ,ψ] := {λx.c : S→ T | ∀p : S. p : ϕ⇒ c[p/x] : ψ}

Hence we can query “all contexts where this kind of algorithm
can be run safely”. Imagine being able to search any public
codebase by pre- and postcondition.

Of course, these applications require substantial develop-
ment. Most basic is the need for efficient type-checking, such
as for inductive types, but much has been done for this. To be
usable, we need conversion between existing types and native
types, as well as libraries of native types, so anyone can say
useful things without overly complex formulae.

The larger endeavor, to create a framework for reasoning
across many languages, calls for developing a public library
of both formal semantics and translations between languages.



B. Origin and Connected Ideas

There are many kinds of language-specific logics which
share generally the same form. The present work began in
seeking to generate these logics for concurrency.

T-logic = T-constructors + predicate logic + recursion

Hennessy-Milner logic [10] uses formulae that determine
when processes are bisimilar. Spatial-behavioral logic [11]
specifies system properties such as secrecy and usage of
resources [12]. Namespace logic [13] for the ρ-calculus [14]
(II-C2) expands these by also reasoning about data and chan-
nels.

In developing our approach, we found closely related work.
Matching µ-Logic [15] is the basis of K Framework [8],
“a rewrite-based executable semantic framework in which
programming languages, type systems, and formal analysis
tools can be defined”. It is based on “patterns”, formulae made
from term constructors, predicate logic, and recursion.

The present work generalizes the logic to include binding
operations, and gives a categorical foundation which provides
substantial expansions, such as co/limits and dependent types.
The precise relation to Matching Logic is yet to be expounded.

In “Functors are Type Refinement Systems” [16], Melliès
and Zeilberger introduce a syntax for reasoning about functors
F : D→ T, and use this to distinguish two notions of type.

Intrinsic types are the sorts of a language, S : T, i.e. the
symbols in a BNF grammar or the parts of the total state of
a machine. In the π-calculus, there are distinct sorts N and P

for name and process. In a grammar of a 80x86 CPU, there
are distinct sorts for the stack and the heap.

Refinement types are predicates on a sort, ϕ : S→ Prop. In
Hoare logic [17], assertions are predicates on the valuation of
a memory heap. The triples {ϕ}C{ψ}, which express that if ϕ
holds and command C is applied then ψ holds, are modelled
as the preimage F−1(C).

Static type systems have historically focused on intrinsic
types, but refinement types are growing in popularity. Template
meta-programming in C++ allows checking propositions at
compile time [18]. TypeScript has type guards that refine union
types and superclasses to subclasses [19]. Haskell has various
libraries that provide compile-time refinement types [?].

The natural setting for this type-predicate distinction is
a topos, a category with a canonical functor into it called
a predicate fibration. The modelling of type theories with
toposes is well-established; pertinent here is the Hyland–
Pitts model of the Calculus of Constructions [20], and more
generally the notion of classifying topos [21, X].

Christian: higher-order unification.

C. Contribution and Organization

The primary goal of the paper is simply to show that com-
posing a few well-known ideas in categorical logic can be very
useful to computer science. In the process, we emphasize many
facts that are known in theory but not used in practice; we also
define and prove the existence of several new constructions.
(— less tt)

We give two sections to develop the categorical foundation,
one section to present the type system, and one section to
demonstrate some applications. The reader focused on the
latter half may go to IV. The sections are organized as follows.

II. Higher-order algebraic theories [22] are a general frame-
work for modelling languages with product and function types.
We define a new category HOAT, and introduce a new concept
of theories with rewriting.

III. A theory embeds into a category with rich internal
logic, called a presheaf topos. The cartesian closed structure
of predicates and types is very expressive; we give a new way
to form dependent functions called reification. We prove that
the predicate and codomain fibrations form a functor from
presheaf toposes to structures for cartesian closed, complete
and cocomplete full higher-order dependent type theory.

IV. The native type system is presented as the internal
language of the topos structure. The system is an extension of
full higher-order dependent type theory [1], as in the Calculus
of Constructions [23]. We outline the basic features, their
semantics and use.

V. There are a few kinds of applications which we demon-
strate: homs (rely-guarantee), modalities (must/can), well-
formedness (termination/complexity), and functoriality (trans-
lations/combined semantics).

Christian: notation, acknowledgements

II. HIGHER-ORDER ALGEBRAIC THEORIES

The syntax of a programming language can be modelled by
a syntactic category, in which an object is a sorted variable
context, a morphism is a term constructor, and composition is
substitution.1 Algebraic theories are a class of such categories,
which provide a general formalism of algebraic structures [24].
Recently, they have been generalized to include higher-order
operations of logic and computer science [22]. We give an
overview of higher-order algebraic theories: their syntax and
structure, the category they form, and motivating examples.

Algebraic structures, defined by operations and equations,
can be defined in any cartesian category. The 2-category of
cartesian categories has been studied as the abstract setting
of multisorted universal algebra [24]. These categories model
many structures found in mathematics and computer science.

Example 1. The algebraic theory of a stack of sort A is
presented as follows.

push : S× A → S pop : S → S

emp : 1 → S top : S → A

〈pop(push〈l, i〉), top(push〈l, i〉)〉 = 〈l, i〉

In logic and computer science, there are higher-order op-
erations whose operands are themselves operations, such as
universal quantification with predicates and λ-abstraction with
expressions. Higher-order operations bind the variables of their
operands, which establishes the concept of evaluation.

1Equivalently, a BNF grammar generates a category in which an object is
a symbol and a morphism is a production rule.



Binding and capture-avoiding substitution are formalized
by monad strength with respect to a monoidal structure on
presheaves [25]. But in computer science, it is standard to
use exponentials to represent variable-binding operators. This
practice was formally justified by Fiore and Mahmoud [26],
who proved the binding algebraic structure of Fiore, Plotkin,
and Turi [25] to be equivalent to exponential structure.

To represent a higher-order operation, a cartesian category
is equipped with an exponentiable object S. Then TS represents
terms of sort T with free variable of sort S; hence an operation
TS → U inputs terms of the form λx : S.f(x) : T, and binds x.
The definition of TS is characterized by the evaluation map,
which substitutes terms of sort S for the free variable.

Definition 2. Let T be a cartesian category. An object S ∈ T
is exponentiable if the functor S×− has a right adjoint (−)S.
We may denote TS as [S, T] for readability.

We denote “currying” f : U × S → T by λx.f : U → TS,
and the counit by evS,T : S × TS → T, written in syntax as
substitution: evS,T(u, λx.f) := f[u/x].

A cartesian functor F : T1 → T2 preserves an exponen-
tiable object S if F (S) is exponentiable and for all T

λx.(evS,T ◦ 〈πS, πTS〉−1) : F (TS) ' F (T)F (S).

We say F is cartex if it preserves all exponentiable objects.

A higher-order algebraic theory is essentially a cartesian
category equipped with objects which are exponentiable “up
to a certain order”. For example, the control operators of [27]
are third-order operations of the form T(TS) → S and S(TS) → S.

Hence the context for higher-order algebraic theories is
contained in that of algebraic theories, because we require
the functors to preserve the exponentiable objects.

Definition 3. The 2-category of cartesian categories, cartex
functors, and natural transformations is denoted CartEx.

The 2-category CartEx is one definition of the universe
of higher-order algebraic theories. However, more refined
structure is necessary for syntactic presentation of theories.
In particular, it must be represented explicitly in the theory
that every sort is generated by products and exponents from a
set of base sorts, denoted Bi.

A. Presentation and syntax

To formalize higher-order presentations, [22, A1] defines
the nth-order S-sorted simply typed λ-calculus, meaning that
λ-abstraction is limited to order n; we denote this language by
λn(S). Contexts, terms, and substitution define a classifying
category Λn(S), which is a free cartesian category with base
sorts in S being exponentiable to order n.

Definition 4. An nth-order S-sorted signature consists of a
set of operations O and an arity function |−| : O → Λn(S)×S.

The signature gives a syntactic category ΛO, generated by
λn(S) plus the following axiom schema.

Γ ` s : S
(f ∈ O, |f| = (S, B))

Γ ` f(s) : B

Definition 5. An nth-order S-sorted presentation Σ =
(O, |−|, E) consists of a signature and a set of equations

E ⊆
∑

(S,T)∈Λn(S)×S ΛO(S, T)× ΛO(S, T).

The presentation gives a syntactic category ΛΣ generated by
the signature plus the following axiom schema.

Γ ` u : S
((S, B), (f1, f2)) ∈ E

Γ ` f1(u) = f2(u) : B

Finally, we add the inference rules for equality to be an
equivalence relation.

Example 6. The second-order theory of the untyped equa-
tional λ-calculus T=

λ2 is presented as follows.

l : [U, U] → U

a : U× U → U a(l(λx.t), u) ≡ t[u/x]

Example 7. In a paper which helped to shape functional
programming, Wadler introduced a notation for constructing
terms of a monad analogous to set comprehension [28]. This
idea has been implemented and used in at least Haskell [29],
Scala [30], and Python [31], [32]. Monad comprehensions are
terms in a second-order algebraic theory.

Let Th be a single-sorted first-order algebraic theory with
generating sort T, and let M be a monad on Set. The second-
order theory MonComp(Th) of monad comprehensions over
Th adjoins to Th a new sort C and a function symbol for each
natural number i ≥ 0 and object Γ of MonComp(Th):

[−|−]i,Γ : TT
i×Γ × CΓ × CT×Γ × · · · × CT

i−1×Γ → C.

A monad comprehension denotes a morphism into a
monadic type. Given a model F : Th→ Set and a monad M
on Set, we can extend F to a model F̃ : MonComp(Th) →
Set such that F̃ (C) = M(F (T)).

The expression [expr]0,Γ : Γ→ C, where expr is any mor-
phism from Γ to T in MonComp(Th), denotes the morphism
ηMFT ◦ Fexpr : FΓ→MFT. The expression

[expr(x1, . . . xn) | x1 ← expr0;
x2 ← expr1(x1);
· · ·
xn ← exprn−1(x1, . . . , xn−1)]n,Γ,

where expr is any morphism Tn × Γ → T in Th and expri
is any morphism T i × Γ→ C in MonComp(Th), denotes the
morphism
FΓ

∆−−→ (FΓ)2
f0×FΓ
−−−−−−→ MFT × FΓ

∆−−→ (MFT × FΓ)2
(µMFT ◦Mf1)×MFT×FΓ
−−−−−−−−−−−−−−−−−−−−→ (MFT )2 × FΓ · · ·

∆−−→ ((MFT )n−1 × FΓ)2
(µMFT ◦Mfn−1)×MFTn−1×FΓ
−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (MFT )n × FΓ

Mf
−−−→ MFT

where f = F̃expr and fi = F̃expri.

A transliteration of presentations f : (O1, |−|1, E1) →
(O2, |−|2, E2) is a function of operations f : O1 → O2

which preserves arities and equations. For order n and sorts
S, presentations and transliterations form a category Pren(S).

For each presentation Σ, the syntactic category ΛΣ is
equipped with a canonical functor τΣ : Λn(S) → ΛΣ, which



we take to be the categorical definition of an nth-order S-
sorted algebraic theory.

B. The category of higher-order algebraic theories

We define the category of all higher-order algebraic theories,
to be the domain of the native type theory construction. To do
this, we define the category of n-S theories and show that
this is functorial in n and S. We then assemble these into one
category, using a tool called the Grothendieck construction.

The definition of single-sorted algebraic theory, a cartesian
identity-on-objects functor τ : Fop = Λ0(1)→ T, generalizes
to many sorts and higher orders.

Definition 8. An nth-order S-sorted algebraic theory or
n-S theory (T, τ) is a cartesian category T equipped with a
strict cartex identity-on-objects functor τ : Λn(S)→ T.

An n-S theory morphism F : (T1, τ1) → (T2, τ2) is
a cartex functor F : T1 → T2 such that F ◦ τ1 = τ2.
Composition is given by pasting commutative triangles.

We denote the category of n-S theories by Tn(S).

Example 9. A first-order theory of arithmetic TAr can be
presented by 0, s,+,×, and the equations for a commutative
rig. There is a well-known translation into the λ-calculus [33]:

0 7→ l(λf.l(λx.x)) : 1→ U

s 7→ l(λf.l(λx.a(f, a(a(−, f), x)))) : U→ U

+ 7→ l(λf.l(λx.a(a(−, f), a(−, a(f, x))))) : U2 → U

× 7→ l(λf.a(−, a(−, f))) : U2 → U.

This is a 2-{U} theory morphism F : (TAr, τAr)→ (T=
λ2, τ

=
λ2).

To understand the category of n-S theories more concretely,
we clarify its relation to presentations.

A transliteration is a map of base operations, but in practice
one maps base operations to arbitrary terms. A translation
of presentations f : (O1, |−|1, E1) → (O2, |−|2, E2) is a
function f :

∏
o∈O1

ΛO2
(|o|) which preserves equations.

Presentations and translations form a category Presn(S).
The functor ξ : Pren(S)→ Tn(S) which sends Σ to ΛΣ has
a right adjoint υ : Tn(S) → Pren(S), which sends a theory
τ : Λn(S) → T to the signature whose operations are the
morphisms of T. This adjunction is monadic:

Tn(S) ' Kl(υ ◦ ξ) ' Presn(S).

In [22] this fact is proved and used to show that n-S theories
are a coreflective subcategory of (n + 1)-S theories: there is
an adjunction which adds and removes exponentiable structure,
and the unit is an isomorphism.

d−e a b−c : Tn(S) ' Presn(S)� Presn+1(S) ' Tn+1(S)

This implies that (n + 1)-S theories correspond to a class
of monads on n-S theories, generalizing the theory-monad
correspondence which is central to categorical algebra.

We show that T is functorial in n and S. Let CR be the free
coreflection: the free 2-category with l : a → b, r : b → a,
ε : lr ⇒ 1b, η : 1a ' rl satisfying the triangle identities [34].

Let CRω be an ω-chain of copies of CR connected end-to-
end. We take [CRω,Cat] to be a category of 2-functors and
2-natural transformations.

Proposition 10. There is a functor

λn.T : Set→ [CRω,Cat]

such that λn.T(S)(n) = Tn(S), the category of n-S theories.

Proof. For each set S of base sorts, λn.T(S) : CRω → Cat
gives an ω-chain of coreflective subcategories.

. . .� Tn(S)� Tn+1(S)� . . .

For each change of base sorts f : S1 → S2, we define
λn.T(f)(n) in terms of presentations

λn.T(f)(n) : Tn(S1) ' Presn(S1)
f̄−→ Presn(S2) ' Tn(S2),

given by substitution of base sorts in operations and equations.
Then λn.T(f) is a morphism of adjunctions [?]: one may
check for T ∈ Tn(S1),U ∈ Tn+1(S1) that

Tn+1(f)(dTe) = dTn(f)(T)e
bTn+1(f)(U)c = Tn(f)(bUc)
Tn(f)(ηS1

(T)) = ηS2
(Tn+1(f)(T)),

simply because substitution of base sorts commutes with
adding and removing exponentiable structure.

Uncurrying, we have an indexed category

T : Set× CRω → Cat.

The image of T assembles into a single category as follows.

Definition 11. The Grothendieck construction [35] of an
indexed category F : Cop → Cat is a category CnF , defined:

object 〈c : C, x : F (c)〉
morphism 〈f : c→ d, α : F (f)(x)→ y〉
composition 〈g, β〉 ◦ 〈f, α〉 := 〈g ◦ f, β ◦ F (g)(α)〉

This category is equipped with a fibration (III) over C which
projects onto the first coordinate.

πF : C n F → C

Definition 12. The category of higher-order algebraic theories
HOAT is defined to be (CRω × Set) n T.

Hence a higher-order algebraic theory 〈(n, S), (T, τ)〉
consists of an order n, base sorts S, and cartesian category
with a strict cartex identity-on-objects functor τ : Λn(S)→ T.

A theory morphism 〈(i, f), F 〉 is a relation of orders
i : n1 → n2, a function of base sorts f : S1 → S2, and a
morphism of n2-S2 theories F : Ti(f)(T1, τ1)→ (T2, τ2).

Composition of theory morphisms can be inferred from the
definition of the Grothendieck construction.

The category HOAT contains all languages from product
theories to simple type theories, and all translations between
them. Most existing programming languages, data structures,
and computing systems are represented in HOAT.



Finally, we define models of a theory: actual implementa-
tions of the syntactic structure.

Definition 13. For a higher order algebraic theory
〈(n, S), (T, τ)〉 and a cartesian category C, the category of
models is defined to be CartEx(T,C). These assemble into
a category of all higher-order models.

In the present work we focus on native type theory for
higher-order algebraic theories, and not yet for models thereof.
However, we note that given an n-S theory τ : Λn(S) → T,
a model M : T→ C can be converted into (a non-evil notion
of) an n-S theory by taking the bijective-on-objects factor [36]
of the composite M ◦ τ : Λn(S)→ C.

The category HOAT is the domain in which to generate
native type theories. Prior to the construction, we describe
motivating examples of higher-order theories.

C. Application: theories with rewrites

One major aspect of computing that higher-order algebraic
theories do not explicitly represent is dynamics. In practice,
function evaluation is not an equation but a computation. There
are several ways to incorporate dynamics into languages [37];
we introduce a new method, which is unusual but beneficial.

Rewrite systems can be modelled by theories that include
an internal graph, i.e. two sorts E for edges and V for vertices,
together with two operations s, t : E → V that encode the
source and target of each edge. Such theories construct terms
as vertices and rewrites as edges.

Let {Si}i be a family of sorts. Given an n-ary edge
constructor and two n-ary morphisms into V

r :
∏n
i=0 Si → E

f, g :
∏n
i=0 Si → V,

we write an abbreviation for the pair of equations

r(~u) : f(~u) g(~u) := s(r(~u)) = f(~u)
∧ t(r(~u)) = g(~u).

By representing a rewrite as an operation within a theory,
we gain control of its implementation: we can add sorts,
operations, and equations which account for resource usage,
reduction strategies, and other aspects of computing.

We focus on the second: since not all rewrites happen at
the top level of a term, a theory may include equations that
propagate the reduction context inward.

1) λ-calculus: The second-order theory of the untyped λ-
calculus Tλ2 has two sorts: U for terms and R for rewrites.

Example 14. λ-calculus

a : U× U → U β : [U, U]× U → R

l : [U, U] → U ra : R× U → R

s, t : R → U

β(λx.t, u) : a(l(λx.t), u) t[u/x]
ra(r, u) : a(s(r), u) a(t(r), u)

The rewrite constructor ra restricts rewrites to the first
coordinate, and propagates reduction contexts inward to head

position. This prohibits reductions under an abstraction and on
the right side of an application, giving a “head normal form”
for terminating terms.

2) ρ-calculus: The present work originated in an effort
to develop logics for concurrent languages. RChain [38] is
a distributed computing system based on the ρ-calculus, or
reflective higher-order π-calculus.

We can model the ρ-calculus2 [14] as a second-order theory
Tρ with two sorts, P for processes and N for names. The
sorts act as code and data respectively, and the operations of
reference @ and dereference ∗ transform one into the other.
There is a third sort R for rewrites.3

Terms are built up from one constant, the null process 0.
The two basic actions of a process are output out and input
in, and parallel −|− gives binary interaction: these earn their
names in the communication rule.

Example 15. ρ-calculus

0 : 1 → P −|− : P× P → P

@ : P → N out : N× P → P

∗ : N → P in : N× [N, P] → P

s, t : R → P comm : N× P× [N, P] → R

−c− : R× P → R −b− : P× R → R

comm(n, q, λx.p) : out(n, q)|in(n, λx.p) p[@q/x]
(P,−|−, 0) commutative monoid

∗ ◦@ ≡ 1P

rcp : s(r)|p t(r)|p
−c− commutative monoid action

pbr ≡ swapP,R ◦ rcp ◦ swapR,P

In the predicate logic of P(Tρ), a predicate on names α :
Ω(N) is called a namespace [13], and a predicate on processes
ϕ : Ω(P) is called a codespace.

In the following sections we derive a native type system
from such higher-order algebraic theories with rewrites, to
reason about the structure and behavior of terms.

III. THE LOGIC OF A PRESHEAF TOPOS

Topos theory [21] revolutionizes mathematics by expanding
the domain of higher-order predicate logic and dependent
type theory beyond sets and function. Most useful is the fact
that every category embeds into a topos, called the topos of
presheaves. For any higher-order algebraic theory, the internal
language of its presheaf topos is its native type system.

Let T be a higher-order algebraic theory. A presheaf on T
is a functor A : Top → Set. The category of presheaves is the
functor category [Top,Set], which we denote P(T).

2This theory differs slightly from the original presentation in that we use
bound variables rather than semantic substitution [14, section 2.7].

3When the ρ-calculus is in a system which includes a parallel processor,
instead of c, b we can have −|R− : R2 → R which puts rewrites in parallel.



This defines a functor P : HOATop → CAT, the category
of large categories. We define Psh to be the essential image.

Objects P(T) for eachT∈ HOAT
Morphisms P(F ) = − ◦ F op : P(T2)→ P(T1)

A presheaf is a context-indexed set of data on the sorts of
a theory. The canonical example is a representable presheaf,
of the form T(−, S), which indexes all terms of sort S. The
basic logical objects are to be predicates on representables.

The Yoneda embedding y : T→ P(T) is defined

yT(S) = T(−, S) yT(f) = − ◦ f.

Products and exponentials in P(T) ensure that y is cartex.
A subobject of a presheaf A is a natural indexed injection

αS : ϕ(S)� A(S). Subobjects and commuting triangles form
a category; isomorphism classes form the poset Sub(A).

A subobject classifier in a category with pullbacks C is an
object Ω : C equipped with a natural isomorphism

c : Ω(−) ' Sub(−).

A predicate in C is a morphism in C whose codomain is Ω.
In the type system, Ω is to play the role of the type Prop. The
comprehension of a predicate ϕ : A→ Ω is the subobject

c(ϕ) := {a : A | ϕ(a)}� A.

A topos is a cartesian closed category which has finite limits
and a subobject classifier. The presheaf category P(T) is a
topos: exponents and subobject classifier are defined

QP (S) = P(T)(yT(S)× P,Q)
Ω(S) = {ϕ� yT(S)}.

In fact P(T) has all limits and colimits, evaluated pointwise.

(limiAi)(S) = limi Ai(S)
(colimiAi)(S) = colimi Ai(S)

The values of Ω can be understood more concretely as

Ω(S) ' {sieves of sort S}.

An sieve of sort S is a set of terms of sort S that is closed under
substitution. A simple example is a principal sieve generated
by a term f : S→ T.

[f] : Ω(T) [f](R) :=
∑
u:R→S f ◦ u.

Example 16. The ρ-calculus is a concurrent language which
can express recursive processes without a replication operator,
as in the π-calculus. On a given name n : 1 → N, we may
define a context which replicates processes as follows.

c(n) := in(n, λx.{out(n, ∗x) | ∗ x})
!(−)n := out(n, {c(n)|−}) | c(n).

One can check that !(p)n  !(p)n | p for any process p.
The sieve [!(−)n] : Ω(P) consists of processes which replicate
on the name n by the above method.

For simpler formulae, we introduce some notation. We
denote the values of a presheaf by AS := A(S), and the action
of u : R→ S by − · u := A(u) : A(S)→ A(R).

For a predicate ϕ : ΩA, we denote ϕaS := ϕ(S)(a). More
generally for any indexed presheaf p : P → A, we denote
paS := p−1

S (a) as the fiber over a (III-B).

A. The predicate fibration

There is a functor into P(T) called the predicate fibration,
where the fiber over each presheaf is the complete Heyting
algebra of its predicates. We show that quantification gives
change-of-base adjoints between fibers; and moreover the
domain is cartesian closed, complete and cocomplete. The
fibration encapsulates the higher-order predicate logic of the
topos.

Definition 17. The predicate functor of P(T) is defined

Ω(−) : P(T)op → CHA.

For every f : A → B, precomposition Ωf : ΩB → ΩA

corresponds to preimage Sub(f) : Sub(B) → Sub(A). For
any ψ : ΩB , this can be expressed as substitution

Ωf (ψ)aS = ψ
fS(a)
S .

The fact that Ωf is a morphism in CHA is known as Frobenius
reciprocity [21].

The complete Heyting algebra structure of ΩA is given:
predicates are partially ordered by implication, meet and join
are defined by pointwise intersection and union, > = A and
⊥ = ∅, implication is defined

(ϕ⇒ ψ)aS :=
∏
u:R→S

ϕa·uR ⇒ ψa·uR

and negation is ¬(ϕ) := (ϕ⇒ ⊥).
Hence, Ω(−) is an indexed category, and we can assemble

its image into one category by applying the Grothendieck
construction (II).

Definition 18. The category of predicates of P(T) is denoted
ΩP(T), and is defined to be P(T) n Ω(−).

Objects 〈A , ϕ : ΩA〉
Morphisms f : 〈A,ϕ〉 → 〈B,ψ〉

〈f : A→ B , ϕ⇒ Ωf (ψ)〉

It is equipped with a projection called the predicate fibration

πΩ : ΩP(T)→ P(T),

so that the fiber over A is ΩA, and the fiber over f : A→ B
is Ωf : ΩB → ΩA, known as a change-of-base functor.

The authors of [16] give a syntax for functors to be
understood as type refinement systems. Let p : D → T be
a functor. We denote p(ψ) = B by ψ @ B, read as “ψ
refines B”, and we denote p(ϕ

α−→ ψ) = (A
f−→ B) by

ϕ
α−→
f

ψ; this can be understood as precondition-command-

postcondition (I-B).



Definition 19. A fibration is a functor p : D → T with
inference rules and axioms

f : A→ B ψ @ B
L

Ωf (ψ) −→
f
ψ

ϕ −−→
f◦g

ψ

R
ϕ −→

g
Ωf (ψ)

for all ϕ
β−−→
f◦g

ψ, L(f) ◦ R(β) = β

for all ϕ
α−→
g

Ωf (ψ), R(L(f) ◦ α) = α.

The projection πΩ : ΩP(T) → P(T) is a fibration: for each
f : A → B and ψ @ B there is L(f) : Ωf (ψ) → ψ which
maps the preimage into its image; this morphism is cartesian,
meaning the equations above ensure that derivations of type
ψ over f ◦ g factor uniquely through L(f).

In addition, the change-of-base functors have adjoints which
generalize existential and universal quantification.

Proposition 20. πΩ : ΩP(T)→ P(T) is a ∗-bifibration [39]:
for each f : A→ B, the functor Ωf : ΩB → ΩA has left and
right adjoints Σf a Ωf a Πf , defined as follows.

Σf (ϕ)bS :=
∑
a:AS

∑
fR(a)=b ϕ

a
R (1)

Πf (ϕ)bS :=
∏
u:R→S

∏
fR(a)=b·u ϕ

a
R (2)

The left adjoint Σf is called direct image, because on
subobjects it is simply composition by f ; we call the right
adjoint Πf secure image. While Ωf is a morphism of com-
plete Heyting algebras, Σf and Πf are only morphisms of join
and meet semilattices, respectively.

These adjoints are intuited in the case of Set. For ϕ : 2A

and f : A → B, the subset c(Σf (ϕ)) is the image of c(ϕ),
and c(Πf (ϕ)) is the subset of elements of B with preimage
contained in ϕ. Existential and universal quantification are
special cases of these adjoints, by taking f to be a projection.

Example 21. Let T be a theory with rewrites (II-C), and
suppose ϕ : ΩV is a predicate on terms. Then c(Ωs(ϕ)) are the
rewrites with source in ϕ; and c(Σt(Ω

s(ϕ))) are the targets
of these rewrites.

Hence there are step-forward and step-back operators

F! := ΣtΩ
s : ΩV → ΩV B! := ΣsΩ

t : ΩV → ΩV.

The secure step-forward performs a more refined operation:
F∗(ϕ) := Πt(Ω

s(ϕ)) are terms u for which (t u)⇒ ϕ(t).
This should be useful in security protocols, to filter agents by
past behavior.

Proposition 22. The change-of-base adjoints satisfy the
Beck–Chevalley condition: if 〈a, b〉 : D → A× B is a pull-
back of A

f−→ C
g←− B, then there are natural isomorphisms:

ΩgΣf (ϕ) ' ΣbΩ
a(ϕ)

ΩgΠf (ϕ) ' ΠbΩ
a(ϕ).

In type theory, the Beck–Chevalley condition means that
quantification commutes with substitution. It implies that
Ω(−) : P(T)→ CHA is a first-order hyperdoctrine [40].

Proposition 23. The projection πΩ : ΩP(T) → P(T)
is a higher-order fibration [1, section 5.3]: a preordered
∗-bifibration satisfying the Beck–Chevalley condition, with
cartesian closed fibers and a generic object Ω : P(T).

This concept leaves implicit additional important structure:
in predicate logic, there is implication between predicates on
the same set; but more generally, the category of predicates is
cartesian closed. Given ϕ : 2A and ψ : 2B , we can define

[ϕ,ψ](f) := ∀a ∈ A. ϕ(a)⇒ ψ(f(a)).

Proposition 24. Let ϕ : ΩA, ψ : ΩB in P(T), and let

〈π1, π2, ev〉 : A× [A,B]→ A× [A,B]×B.

Define the hom predicate [ϕ,ψ] : Ω[A,B] to be

[ϕ,ψ] := Ππ2
(Ωπ1(ϕ)⇒ Ωev(ψ)).

With this structure, ΩP(T) is cartesian closed, as is πΩ.

The above gives maps (ΩA)op × ΩB → Ω[A,B], which
assemble into a global closed structure; but there is another
way to form hom predicates which is much more fine-grained.

Proposition 25. Let LA,B : [ΩA,ΩB ] → Ω[A,B] be the
canonical morphism given by curried evaluation. There is a
right adjoint which we call reification.

RA,B : [ΩA,ΩB ]→ Ω[A,B]

RA,B(F ) are the maps which “respect the rule of F ”:

RA,B(F )fS =
∏
ϕ:ΩA

Σf (y(S)× ϕ)⇒ F (ϕ). (3)

The cartesian closed structure of ΩP(T) is significant,
because this means that π−1

Ω (yT(T)) can be understood as
a higher-order theory which refines the entire language T.

We emphasize the idea of having “lifted” the language by
an abuse of notation: for any operation f : S→ T, we denote
Σf : ΩyT(S) → ΩyT(T) simply by f, and Πf by f∗.

Example 26. Let Tρ be the theory of the ρ-calculus (II-C2).
The operation in : N× [N, P]→ P constructs a process which
inputs on a name n : N and continues as λx.p : [N, P].

Hence for α, χ : Ω(N) and ϕ : Ω(P) there is a refined input

inα,[χ,ϕ] : α× [χ, ϕ]→ P

which constructs a process that inputs on namespace α and
upon receiving a name n : χ continues as p[n/x] : ϕ.

Moreover, this generalizes to “dependent processes”: given
a rule F : ΩN → ΩP, then

inα,RN,P(F ) : α× RN,P(F )→ P

constructs a process that inputs on namespace α and upon
receiving n : χ continues as p[n/x] : F (χ).

As a more widely known example of contexts which ensure
implications across substitution, we can construct the “magic
wand” of separation logic [16]:



Example 27. Let Th be the theory of a commutative monoid
(H,∪, e), with a set of constants {h} : 1 → H adjoined as
the elements of a heap. If we define

(ϕ–∗ψ) := Ωλx.∪[ϕ,ψ]

then h1 : (ϕ–∗ψ) asserts that h2 : ϕ⇒ h1 ∪ h2 : ψ.
Using reification as described above, this can be generalized

from pairs of predicates to functions of predicates. The authors
are not aware if this has been studied.

In addition, the category of predicates has all limits and
colimits, by a result of [41]. These can be used to form
modalities, inductive and coinductive types, and more.

Proposition 28. ΩP(T) is complete and cocomplete, and πΩ

preserves all limits and colimits. They are computed pointwise;
letting π, ι represent the cone and cocone:

limi〈Ai, ϕi〉 = 〈limi(Ai), limi(Ω
πiϕi)〉

colimi〈Ai, ϕi〉 = 〈colimi(Ai), colimi(Σιiϕi)〉.

Example 29. In the ρ-calculus, we can construct a predicate
for safety and liveness sl(α), which asserts that a process that
can always input on namespace α and cannot input on ¬α.

There is a functor SLα : ΩyT(P) → ΩyT(P) defined

SLα(ϕ) = (in(α, [N, ϕ]) | P) ∧ ¬(in(¬α, [N, P]) | P).

The free monad SL∗α is constructed as a colimit of iterated
composites, and its values are greatest fixed points. Then

µϕ.SLα(ϕ) = sl(α) := SL∗α([0]).

Definition 30. A cartesian closed fibration F : D → T is
a fibration which is a strict cartesian closed functor, such that
F is a morphism of the adjunction − × ϕ a [ϕ,−] [42, Def.
3.12].

Similarly, the fibration is complete and cocomplete if it
preserves limits and colimits [43].

To summarize the rich structure present, we allude to a term
from category theory: a cosmos is a monoidal closed category
which is complete and cocomplete [44].

Proposition 31. The predicate fibration πΩ : ΩP(T)→ P(T)
is a higher-order fibration which is cosmic: cartesian closed,
complete and cocomplete.

B. The codomain fibration

Predicates ϕ : ΩA correspond to subobjects c(ϕ) � A.
While predicates suffice for certain modes of reasoning, it is
natural to consider any p : P → A as a dependent type. This
expands the fibers over A from truth values to sets, and the
fibers over P(T) from posets to categories.

Definition 32. The slice category over A is denoted P(T)/A.
An object is a pair 〈P, p : P → A〉, a morphism h : p→ q is
a morphism h : P → Q such that q ◦ h = p.

The slice category P(T)/A subsumes the poset Sub(A),
and it has all of the same rich structure.

Proposition 33. P(T)/A is equivalent to a presheaf topos.

k : P(T)/A � P(el(A)) : l
k(p)(S, x) = p−1

S (x) l(F )xS = F (S, x)

Here el(A) is the category of elements, i.e. the Grothendieck
construction of ι ◦A : Top → Set→ Cat. [21]

Hence P(T)/A is a complete and cocomplete topos. Given
p : P → A, q : Q→ A, the hom [p, q] : [P,Q]→ A is given

[p, q]zS =
∏
u:R→S

∏
a:AS

pa·uR ⇒ q
zR(u,a·u)
R .

The category has all limits and colimits, evaluated pointwise.
Let CCT be the category of complete and cocomplete toposes.

Proposition 34. There is a functor ∆ : P(T)op → CCT that
maps A to P(T)/A and f : A→ B to pullback.

∆f : P(T)/B → P(T)/A ∆f (P )aS = P
fS(a)
S

Definition 35. The category of dependent types of P(T) is
denoted ∆P(T), and is defined to be P(T) n ∆.

Objects 〈A , p : P → A〉
Morphisms f : 〈A, p〉 → 〈B, q〉

〈f : A→ B , α : p→ ∆f (q)〉
Composition 〈g, β〉 ◦ 〈f, α〉 = 〈g ◦ f, β ◦∆g(α)〉

This is equivalent to the arrow category of P(T).

The codomain fibration is the projection, which we denote
π∆ : ∆P(T) → P(T). Change-of-base adjoints are given by
the same formulae as predicates (1,2), and these satisfy the
Beck–Chevalley condition.

Proposition 36. The codomain fibration π∆ is a closed
comprehension category [1, Sec 10.5] which is cosmic, i.e.
cartesian closed, complete and cocomplete.

The two fibrations are connected by a reflection: com-
prehension interprets a predicate as a dependent type, and
factorization takes a dependent type to its image predicate.

Definition 37. The native structure of a presheaf topos
P(T), denoted Φ(P(T)) = 〈πΩT, π∆T, iT, cT〉, consists of the
predicate and codomain fibrations of P(T), connected by the
image-comprehension adjunction.

ΩP(T) ∆P(T)

P(T)

c

i

π∆πΩ

a

This is a full higher-order dependent type theory with
comprehension [1, Sec. 11.6]. This is a very rich structure
which we cannot fully expound here.

There is a category of Fho-DTT structures, in which a mor-
phism is a morphism of predicate fibrations and a morphism of
type fibrations, such that the pair is a morphism of reflections.



If moreover these fibrations are cosmic, we demand that the
morphisms preserve this structure. We denote by CHDT the
category of cosmic FhoDTT-structures.

Theorem 38. The native structure of a presheaf topos defines
a functor Φ : Psh→ CHDT.

Proof. The functor forms the native structure

Φ(P(T)) := 〈πΩT, π∆T, iT, cT〉

and for P(F ) : P(T2)→ P(T1), a morphism in CHDT

Φ(F ) : 〈πΩT2
, π∆T2

, iT2
, cT2
〉 → 〈πΩT1

, π∆T1
, iT1

, cT1
〉

which is simply precomposition by F .

Φ(F )Ω(〈A,ϕ〉) = 〈A ◦ F , c−1
T1

(cT2
(ϕ) ◦ F )〉

Φ(F )∆(〈A, p〉) = 〈A ◦ F , p ◦ F )〉.

These functors are continuous and cocontinuous because P(F )
is both a left and right adjoint. They are morphisms of fibra-
tions because the cartesian morphisms are pullback squares.
Finally, they are morphisms of reflections because whiskering
units and counits commutes with precomposition.

In summary, we have constructed a functor

Presop Λ−→ HOATop P−→ Psh
Φ−→ CHDT

which elucidates a wealth of structure in every language given
by a higher-order algebraic theory.

We now present the native type system.

IV. NATIVE TYPE THEORY

We present the native type system Φ(P(T)) of a higher-
order algebraic theory T given by a presentation Σ (II).

The system is a full higher-order dependent type theory [1,
Sec. 11.5] parameterized by the theory T. We do not present
Equality and Quotient types. We encode Subtyping, Hom, and
Inductive types, which we use in applications.

The system has two basic entities: predicates and types

A ` ϕ : Prop A ` B : Type

interpreted as ϕ : A → Ω and p : B → A, where Ω is
the subobject classifier. The higher-order axiom Prop : Type
enables quantification over predicates of a type.

Substitution is interpreted as pullback: B[t] := ∆t(p). A
term Γ ` a : A is a morphism a : X → Γ together with a
section x : 1X → A[a] in P(T)/X . For details see [45].

For usability, we present the type system as generated from
the theory. This way, a programmer can start in the ordinary
language, and use the ambient logical structure as needed.

Representables are given in the type system as axioms,
because y : T→ P(T) preserves products and exponents.

JS : TK
TS

y(S) : Type

JS1 ` f : S2K
TO

y(S2) ` y(f) : Type

JS1 ` f = g : S2K
TE

y(S2) ` y(f) = y(g)

Subobject type of a predicate. Using comprehension, a
predicate is converted to the type of its satisfying terms.

Γ, x:A ` ϕ : Prop
cF

Γ ` {x:A | ϕ} : Type

Γ, x:A ` ϕ : Prop Γ `M : A Γ ` ϕ[M/x]
cI

Γ ` i(M) : {x:A | ϕ}

Γ ` N : {x:A | ϕ}
cE

Γ ` o(N) : A

o(i(M)) = M (cβ)
i(o(N)) = N (cη)

Γ1, x:A,Γ2, ϕ ` ψ
c◦E

Γ1, y : {x:A | ϕ},Γ2[o(y)/x] ` ψ[o(y)/x]

Image type rules, which convert a type to its image predicate,
can be derived from Σ and Equality.

Because predicates are a reflective subcategory of types, it
suffices to give the inference rules for types.

Dependent sum type is a form of indexed sum, which
generalizes product types and existential quantification.

Γ ` A : Type Γ, x:A ` B : Type
ΣF

Γ ` Σx:A.B : Type

Γ ` a : A Γ ` u : B[a/x]
ΣI

Γ ` 〈a, u〉 : Σx:A.ϕ

Γ, z : Σx:A.ϕ ` B : Type Γ, a:A, u:B ` Q : B[〈a, u〉/z]
ΣE

Γ, z : Σx:A.B ` (unpack z as 〈a, u〉 in Q) : B

unpack 〈M,N〉 as 〈a, u〉 in Q = Q[M/a,N/u] (β)
unpack P as 〈a, u〉 in Q[〈a, u〉/z] = Q[P/z] (η)

Dependent product type is a form of indexed product,
which generalizes function types and universal quantification.

Γ ` A : Type Γ, x:A ` B : Type
ΠF

Γ ` Πx:A.B : Type

Γ, x:A ` t : B
ΠI

Γ ` λx:A.t : Πx:A.B

Γ ` f : Πx:A.B Γ ` u : B
ΠE

Γ ` f(u) : B[u/x]

(λx:A.t)(a) = t(a) (β)
f = λx:A.f (η)

We can derive existential ∃ from Σ and universal ∀
from Π, by image factorization. The rest of predicate logic
⊥,>,∨,∧,⇒,¬ is also encoded as special cases of Σ and Π.

Hom type is defined

A1 ` B1 : Type A2 ` B2 : Type

[A1, A2] ` [B1, B2] := Πx:A1.B1[π]⇒ B2[ev]

where 〈π, ev〉 : A1 × [A1, A2] → A1 × A2. This encoding
represents functions of “independent types”.

Subtyping of predicates is defined

(ϕ ≤ ψ) := ∀a:A. ϕ(a)⇒ ψ(a).



Inductive type for any endofunctor F : ΩA → ΩA, the
greatest fixed point predicate is defined:

µϕ.F (ϕ) := ∀ϕ:[A,Prop]. (F (ϕ) ≤ ϕ)⇒ ϕ

Coinductive type is defined dually.

These types and rules constitute the native type system
Φ(P(T)), abridged for a first presentation. By adding rules
of functoriality, we can incorporate translations of languages.

JF : T1 → T2K Γ ` A : Type1
FTy

Γ ◦ F ` A ◦ F : Type2

JF : T1 → T2K Γ ` a : A
FTm

Γ ◦ F ` a(F ) : A ◦ F
How do we use the system to express simple, useful ideas?

Suppose we are working in a language T; we have constructed
a program f : S → T, and we have a protocol p : T → U for
which we need terms to have been already processed by f.
We construct the type

y(T) ` y(f) : Type y(T), y(f) ` y(S) : Type

y(T) ` Σx:y(f).y(S) : Type

for which a term must be derived by the rule

y(T) ` g : y(f) y(T) ` u : y(S)[g/x]

y(T) ` 〈g, u〉 : Σx:y(f).y(S).

Then the image (III-A) ∃f(y(S)) : [T,Prop] accepts terms of
the form g = f(u) for some u : R→ S. We can then refine the
protocol y(p)f : ∃f(y(S))→ y(T) to enforce the condition.

Of course, a first paper uses simple examples to explain.
Exploring the full scope and utility of native type systems is
really a community activity. For now we demonstrate some
applications to indicate only a few possibilities.

V. APPLICATIONS

A. Behavior and Modalities

Let T be a higher-order algebraic theory with rewriting.
The graph of rewrites over terms is a dependent type. The
fiber over each pair is the set of rewrites between terms.

g := y(〈s, t〉) : y(E)→ y(V2)

g
(v1,v2)
S = {e | S ` e : v1  v2}

By incorporating dynamics in a theory with rewriting (II-C),
a native type system can express predicates for future and past
behaviors, or temporal modalities.

By using adjoints to preimage along s, t : E→ V, we defined
step-forward and backward operators F!, B! and “secure-step”
operators F∗, B∗. For a predicate on terms ϕ : Ω(V), B!(ϕ)
are terms which possibly rewrite to ϕ, and B∗(ϕ) are terms
which necessarily rewrite to ϕ.

By iterating, we can form each kind of modality.

B◦! (ϕ) =
∨

NB
n
! (ϕ) can become ϕ

B◦∗(ϕ) =
∨

NB
n
∗ (ϕ) will become ϕ

B•! (ϕ) =
∧

NB
n
! (ϕ) always can become ϕ

B•∗(ϕ) =
∧

NB
n
∗ (ϕ) always will become ϕ

(also for F , past behavior) For example, when ϕ is a capacity
to receive and process input, B•∗(ϕ) is “liveness”. If it is a
guarantee to only communicate on the proper channels, B•∗(ϕ)
is “safety”.

B. Firewall

The namespace ϕ might be a collection of trusted addresses
for an organization or it could be a datatype, such as the XML
schema.

We can express these conditions as an inductive type.

sole.in(α) := µϕ. (in(α, N.ϕ) | P) ∧ ¬(in(¬(α), N.P) | P)

In effect, this is a compile-time firewall: a process satisfies this
predicate if and only if it can only communicate within

The continuing process q has a free name – how do we
know that it can’t receive a name b : ¬α, and then input
on b? While negation (§III) is boolean for closed terms, it is
strictly intuitionistic for general contexts: the algorithm above,
formalized in the presheaf topos, will “detect” if there exists
a substitution which allows a process to input on ¬α. The
correctness of the type theory is that of the internal logic.

By constructing a process which uses this type, such as
in(n, x.p) : obin(N, χ.sole.in(χ)), the communication of the
the continuing process p is controlled and understood.

C. Internal Hom and Semantic Search

Christian: compelling example for the hom.
Hoogle [9] is a search engine for the Haskell libraries on

Stackage where one provides a type as a search query. A
code search engine using native types could search by pre- or
post-condition, by computational complexity, or even search
by security vulnerability.

The RV-Match software, built on K Framework’s opera-
tional semantics for C, essentially tries to unify programs
with the type of “underspecified C program” [?]. A successful
unification indicates a bug in the software like a buffer
overflow or an out-of-lifetime access.

D. Sublanguages

Languages have many useful “sublanguages” consisting of
terms that satisfy certain properties. For example, the linear
λ-calculus consists of terms which use each variable exactly
once, such as the pairing combinator λxyz.zxy.

In any language T, we can specify the “linear sublanguage”
linear(T) by restricting to terms which do not copy or delete,
simply by excluding ∆S : S→ S2 and !S : S→ 1.

linear(T)(−, S) :=
∧

f :S2→S

¬[f(∆S)] ∧
∧

f :1→S

¬[f(!S)]

In general, typing rules which restrict terms by certain
“well-formed” conditions can define a predicate that deter-
mines the sublanguage of such terms.

For examples, the simply-typed λ-calculus consists of λ
terms which terminate; Abramsky’s “proofs as processes” does
the same for a π-calculus [?]; and Baillot and Terui describe
a λ-calculus whose terms halt in polynomial time [46].



Hence, native types can be used to reason about sublan-
guages which address practical issues such as resource usage
and complexity.

E. Translations and Composite Systems

Christian: need to demonstrate functoriality of the construc-
tion. Might combine with Composite Systems, but not sure.

Even if a programming language has a strong type system,
the type system is usually restricted to reasoning about the lan-
guage in isolation. However, the reality of modern computing
is that programs usually execute in an embedded, networked
environment.

ECMAScript is a single-threaded language that executes
purely synchronously, but often runs in an asynchronous
environment. In a web browser, programmers have to be aware
of HTML and CSS rendering, DOM events, network events,
deferred scripts, async scripts, timers, and promises, and know
the order in which each of these occur.

Given an operational semantics for a web browser that
includes the operational semantics of ECMAScript, one can
generate a type system that includes the semantics of the
browser. Programmers can then express their intended order of
execution in the type system, and the type checker can verify
that the code satisfies the type.

VI. CONCLUSION

The conclusion goes here.
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