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In this chapter, we cover most of the content on universal algebra and monads
that we will need in the rest of the thesis. This material has appeared many times
in the literature0, but for completeness (and to be honest my own satisfaction) we 0 [Wec12] and [Bau19] are two of my favorite refer-

ences on universal algebra, and both [Rie17, Chap-
ter 5] and [BW05, Chapter 3] are great references for
monads (the latter calls them triples).

take our time with it. In ??, we will follow the outline of the current chapter to
generalize the definitions and results to sets equipped with a notion of distance.
Thus, many choices in our notations and presentation are motivated by the needs
of ??.

Outline: In §1.1, we define algebras, terms, and equations over a signature of
finitary operation symbols. In §1.2, we explain how to construct the free algebra
for a given signature and set of equations. In §1.3, we give the rules for equational
logic to derive equations from other equations, and we show it sound and complete.
In §1.4, we give define monads and algebraic presentations for monads. We give
examples all throughout, some small ones to build intuition, and some bigger ones
that will be needed later.

1.1 Algebras and Equations

Definition 1 (Signature). A signature is a set Σ whose elements, called operation
symbols, each come with an arity n ∈ N. We write op : n ∈ Σ for a symbol op

with arity n in Σ. With some abuse of notation, we also denote by Σ the functor
Σ : Set→ Set with the following action:1 1 The set Σ(A) can be identified with the set contain-

ing op(a1, . . . , an) for all op : n ∈ Σ and a1, . . . , an ∈
A. Then, the function Σ( f ) sends op(a1, . . . , an) to
op( f (a1), . . . , f (an)).

Σ(A) := ⨿
op:n∈Σ

An on sets and Σ( f ) := ⨿
op:n∈Σ

f n on functions.

Definition 2 (Σ-algebra). A Σ-algebra (or just algebra) is a set A equipped with
functions JopKA : An → A for every op : n ∈ Σ called the interpretation of the
symbol. We call A the carrier or underlying set, and when referring to an algebra,
we will switch between using a single symbol A2 or the pair (A, J−KA), where 2 We will try to match the symbol for the algebra

and the one for the underlying set only modifying
the former with mathbb.

J−KA : Σ(A) → A is the function sending op(a1, . . . , an) to JopKA(a1, . . . , an) (it
compactly describes the interpretations of all symbols).

https://youtube.com/playlist?list=OLAK5uy_n93-f6dE8eLC8LuZfpAoXgY8N3cTRIeJo&si=0GyWN6z9Z09dEnv_
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A homomorphism from A to B is a function h : A→ B between the underlying
sets of A and B that preserves the interpretation of all operation symbols in Σ,
namely, for all op : n ∈ Σ and a1, . . . , an ∈ A,3 3 Equivalently, h makes the following square com-

mute:

Σ(A) Σ(B)

A B

Σ( f )

J−KA

f

J−KB
(0)

This amounts to an equivalent and more concise def-
inition of Alg(Σ): it is the category of algebras for
the signature functor Σ : Set→ Set [Awo10, Defini-
tion 10.8].

h(JopKA(a1, . . . , an)) = JopKB(h(a1), . . . , h(an)). (1)

The identity maps idA : A → A and the composition of two homomorphisms are
always homomorphisms, therefore we have a category whose objects are Σ-algebras
and morphisms are Σ-algebra homomorphisms. We denote it by Alg(Σ).

This category is concrete over Set with the forgetful functor U : Alg(Σ) → Set
which sends an algebra A to its carrier and a homomorphism to the underlying
function between carriers.

Remark 3. In the sequel, we will rarely distinguish between the homomorphism
h : A→ B and the underlying function h : A→ B. Although, we may write Uh for
the latter, when disambiguation is necessary.

Examples 4. 1. Let Σ = {p : 0} be the signature containing a single operation sym-
bol p with arity 0. A Σ-algebra is a set A equipped with an interpretation of p as
a function JpKA : A0 → A. Since A0 is the singleton 1, JpKA is just a choice of el-
ement in A,4 so the objects of Alg(Σ) are pointed sets (sets with a distinguished 4 For this reason, we often call 0-ary symbols con-

stants.element). Moreover, instantiating (1) for the symbol p, we find that a homomor-
phism from A to B is a function h : A→ B sending the distinguished point of A
to the distinguished point of B. We conclude that Alg(Σ) is the category Set∗ of
pointed sets and functions preserving the points.

2. Let Σ = {f : 1} be the signature containing a single unary operation symbol
f. A Σ-algebra is a set A equipped with an interpretation of f as a function
JfKA : A→ A.

For example, we have the Σ-algebra whose carrier is the set of integers Z and
where f is interpreted as “adding 1”, i.e. JfKZ(k) = k + 1. We also have the
integers mod 2 Z2 where JfKZ2(k) = k + 1(mod 2).

The fact that a function h : A → B satisfies (1) for the symbol f is equivalent to
the following commutative square.

A B

A B

JfKA

h

JfKB

h

We conclude that Alg(Σ) is the category whose objects are endofunctions and
whose morphisms are commutative squares as above.5 There is a homomor- 5 For more categorical thinkers, we can also identify

Alg(Σ) with the functor category [BN, Set] from
the delooping of the (additive) monoid N to the
category of sets. Briefly, it is because a functor
BN → Set is completely determined by where it
sends 1 ∈N.

phism is_odd from Z to Z2 that sends k to k(mod 2), that is, to 0 when it is even
and to 1 when it is odd.

3. Let Σ = {+ : 2} be the signature containing a single binary operation symbol. A
Σ-algebra is a set A equipped with an interpretation J+KA : A× A → A. Such



categorical foundations of quantitative algebraic reasoning 5

a structure is often called a magma, and it is part of many more well-known
algebraic structures like groups, rings, monoids, etc. While every group has an
underlying Σ-algebra, not every Σ-algebra underlies a group since J+KA is not
required to be associative for example. The following definitions will allow us to
talk about certain classes of Σ-algebras with some properties like associativity.

Definition 5 (Term). Let Σ be a signature and A be a set. We denote with TΣ A the
set of Σ-terms built syntactically from A and the operation symbols in Σ, i.e., the
set inductively defined by

a ∈ A
a ∈ TΣ A

and
op : n ∈ Σ t1, . . . , tn ∈ TΣ A

op(t1, . . . , tn) ∈ TΣ A
.

We identify elements a ∈ A with the corresponding terms a ∈ TΣ A, and we also
identify (as outlined in Footnote 1) elements of Σ(A) with terms in TΣ A containing
exactly one occurrence of an operation symbol.6 6 Note that any constant p : 0 ∈ Σ belongs to all TΣ A

by the second rule defining TΣX.The assignment A 7→ TΣ A can be turned into a functor TΣ : Set → Set by
inductively defining, for any function f : A → B, the function TΣ f : TΣ A → TΣB as
follows:7 7 Note that TΣ f acts as identity on constants.

a ∈ A
TΣ f (a) = f (a)

and
op : n ∈ Σ t1, . . . , tn ∈ TΣ A

TΣ f (op(t1, . . . , tn)) = op(TΣ f (t1), . . . , TΣ f (tn))
. (2)

Proposition 6. We defined a functor TΣ : Set→ Set, i.e. TΣidA = idTΣ A and TΣ(g ◦ f ) =
TΣg ◦ TΣ f .

Proof. We proceed by induction for both equations. For any a ∈ A, we have
TΣidA(a) = idA(a) = a and

TΣ(g ◦ f )(a) = (g ◦ f )(a) = TΣg(TΣ f (a)).

For any t = op(t1, . . . , tn), we have

TΣidA(op(t1, . . . , tn))
(2)
= op(TΣidA(t1), . . . , TΣidA(tn))

I.H.
= op(t1, . . . , tn),

and

TΣ(g ◦ f )(t) = TΣ(g ◦ f )(op(t1, . . . , tn))

= op(TΣ(g ◦ f )(t1), . . . , TΣ(g ◦ f )(tn)) by (2)

= op(TΣg(TΣ f (t1)), . . . , TΣg(TΣ f (tn))) I.H.

= TΣg(op(TΣ f (t1), . . . , TΣ f (tn))) by (2)

= TΣgTΣ f (op(t1, . . . , tn)). by (2)

Examples 7. 1. With Σ = {p : 0}, a Σ-term over A is either an element of A or p.
The functor TΣ is then naturally isomorphic to the functor sending A to A + 1.

2. With Σ = {f : 1}, a Σ-term over A is either an element of A or a term f(f(· · · f(a)))
for some a and a finite number of iterations of f. The functor TΣ is then naturally
isomorphic to the functor sending A to N× A.

https://en.wikipedia.org/wiki/Magma_(algebra)
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3. With Σ = {+ : 2}, a Σ-term is either an element of A or any expression formed
by “adding” elements of A together like a + b, a + (b + c), ((a + a) + c) + (b + c)
and so on when a, b, c ∈ A.8 8 We write + infix as is very common. The paren-

theses are formal symbols to help delimit which +
is taken first. They are necessary because the in-
terpretation of + is not necessarily associative so
a + (b + c) and (a + b) + c can be interpreted dif-
ferently in some Σ-algebras.

As we said above, any element in A is a term in TΣ A, we will denote this embed-
ding with ηΣ

A : A → TΣ A, in particular, we will write ηΣ
A(a) to emphasize that we

are dealing with the term a and not the element of A. For instance, the base case of
the definition of TΣ f in (2) becomes

a ∈ A
TΣ f (ηΣ

A(a)) = ηΣ
B( f (a))

.

This is exactly what it means for the family of maps ηΣ
A : A→ TΣ A to be natural in

A,9 in other words that ηΣ : idSet ⇒ TΣ is a natural transformation. We can mention 9 As a commutative square:

A B

TΣ A TΣ B

ηΣ
B

f

ηΣ
A

TΣ f

(3)

now that it will be part of some additional structure on the functor TΣ (a monad).
For an arbitrary signature Σ, we can think of TΣ A as the set of rooted trees whose

leaves are labelled with elements of A and whose nodes with n children are labelled
with n-ary operation symbols in Σ. This makes the action of a function TΣ f fairly
straightforward: it applies f to the labels of all the leaves.

This point of view is particularly helpful when describing the flattening of terms:
there is a natural way to see a Σ-term over Σ-terms over A as a Σ-term over A. This
is carried out by the map µΣ

A : TΣTΣ A → TΣ A which takes a tree T whose leaves are
labelled with trees T1, . . . , Tn to the tree T where instead of the leaf labelled Ti, there
is the root of Ti with all its children and their children and so on (we “glue” the
tree Ti at the leaf labelled Ti). Figure 1.1 shows an example for Σ = {+ : 2}. More
formally, µΣ

A is defined inductively by:

µΣ
A(η

Σ
TΣ A(t)) = t and µΣ

A(op(t1, . . . , tn)) = op(µΣ
A(t1), . . . , µΣ

A(tn)). (4)

T =
+

T1 T2

T1 =

+

a b

T2 = a µΣ
AT =

+

+ a

a b

Figure 1.1: Flattening of a term

The use of the word “natural” above is not benign, µΣ is actually a natural trans-
formation.

Proposition 8. The family of maps µΣ
A : TΣTΣ A→ TΣ A is natural in A.

Proof. We need to prove that for any function f : A → B, TΣ f ◦ µΣ
A = µΣ

B ◦ TΣTΣ f .10 10 As a commutative square:

TΣTΣ A TΣTΣ B

TΣ A TΣ B

µΣ
A

TΣ TΣ f

µΣ
B

TΣ f

(5)

It makes sense intuitively, we should get the same result when we apply f to all the
leaves before or after flattening. Formally, we use induction.

For the base case (i.e. terms in the image of ηΣ
TΣ A), we have

µΣ
B(TΣTΣ f (ηΣ

TΣ A(t))) = µΣ
B(η

Σ
TΣB(TΣ f (t))) by (3)

= TΣ f (t) by (4)

= TΣ f (µΣ
A(η

Σ
TΣ A(t))). by (4)

For the inductive step, we have

µΣ
B(TΣTΣ f (op(t1, . . . , tn))) = µΣ

B(op(TΣTΣ f (t1), . . . , TΣTΣ f (tn))) by (2)

= op(µΣ
B(TΣTΣ f (t1)), . . . , µΣ

B(TΣTΣ f (tn))) by (4)
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= op(TΣ f (µΣ
A(t1)), . . . , TΣ f (µΣ

A(tn))) I.H.

= TΣ f (op(µΣ
A(t1), . . . , µΣ

A(tn))) by (2)

= TΣ f (µΣ
A(op(t1, . . . , tn))) by (4)

By definition, we have that µΣ · ηΣTΣ is the identity transformation 1TΣ : TΣ ⇒
TΣ.11 In words, we say that seeing a term trivially as a term over terms then 11 We write · to denote the vertical composition

of natural transformations and juxtaposition (e.g.
Fϕ or ϕF to denote the action of functors on nat-
ural transformations), namely, the component of
µΣ · ηΣTΣ at A is µΣ

A ◦ ηΣ
TΣ A which is idTΣ A by (4).

flattening it yields back the original term. Another similar property is that we see
all the variables in a term trivially as terms and flatten the resulting term over terms,
the result is the original term. Formally:

Lemma 9. For any set A, µΣ
A ◦ TΣηΣ

A = idTΣ A, hence µΣ · TΣηΣ = 1TΣ .

Proof. We proceed by induction. For the base case, we have

µΣ
A(TΣηΣ

A(η
Σ
A(a)))

(3)
= µΣ

A(η
Σ
TΣ A(η

Σ
A(a)))

(4)
= ηΣ

A(a).

For the inductive step, if t = op(t1, . . . , tn), we have

µΣ
A(TΣηΣ

A(t)) = µΣ
A(TΣηΣ

A(op(t1, . . . , tn)))

= µΣ
A(op(TΣηΣ

A(t1), . . . , TΣηΣ
A(tn))) by (2)

= op(µΣ
A(TΣηΣ

A(t1)), . . . , µΣ
A(TΣηΣ

A(tn))) by (4)

= op(t1, . . . , tn) = t I.H.

Trees also make the depth of a term a visual concept. A term t ∈ TΣ A is said to
be of depth d ∈ N if the tree representing it has depth d.12 We give an inductive 12 i.e. the longest path from the root to a leaf has d

edges. In Figure 1.1, the depth of T and T1 is 1, the
depth of T2 is 0 and the depth of µΣ

AT is 2.
definition:

depth(a) = 0 and depth(op(t1, . . . , tn)) = 1 + max{depth(t1), . . . , depth(tn)}.

A term of depth 0 is a term in the image of ηΣ
A. A term of depth 1 is an element of

Σ(A) seen as a term (recall Footnote 1).
In any Σ-algebra A, the interpretations of operation symbols give us an element

of A for each element of Σ(A). Using, the inductive definition of TΣa, we can extend
these interpretations to all terms in TΣ A: abusing notation, we define the function
J−KA : TΣ A→ A by13 13 For categorical thinkers, TΣ A is essentially defined

to be the initial algebra for the endofunctor Σ + A :
Set → Set sending X to Σ(X) + A. Any Σ-algebra
(A, J−KA) defines another algebra for that functor
[J−KA, idA] : Σ(A) + A → A. Then, the extension
of J−KA to terms is the unique algebra morphism
drawn below.

Σ(TΣ A) + A Σ(A) + A

TΣ A A

[J−KA ,idA ]

a ∈ A
JaKA = a

and
op : n ∈ Σ t1, . . . , tn ∈ TΣ A

Jop(t1, . . . , tn)KA = JopKA(Jt1KA, . . . , JtnKA)
. (6)

This allows to further extend the interpretation J−KA to all terms TΣX over some
set of variables X, provided we have an assignment of variables ι : X → A, by
precomposing with TΣι. We denote this interpretation with J−Kι

A:

J−Kι
A = TΣX

TΣ ι−→ TΣ A
J−KA−−−→ A. (7)

Example 10. In the signature Σ = {f : 1} and over the variables X = {x}, we have
(amongst others) the terms t = ffx and s = fffx. If we compute the interpretation of
t and s in Z and Z2,14 we obtain 14 Recall their Σ-algebra structure given in Exam-

ples 4.
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JtKι
Z = ι(x) + 2 JsKι

Z = ι(x) + 3 JtKι
Z2

= ι(x) JsKι
Z2

= ι(x) + 1(mod 2),

for any assignment ι : X → Z (resp. ι : X → Z2).

By definition, a homomorphism preserves the interpretation of operation sym-
bols. We can prove by induction that it also preserves the interpretation of arbitrary
terms. Namely, if h : A → B is a homomorphism, then the following square com-
mutes.15 15 Quick proof. If t = a ∈ A, then both paths send it

to h(a). If t = op(t1, . . . , tn), then

h(JtKA) = h(JopKA(Jt1KA, . . . , JtnKA))

= JopKB(h(Jt1KA), . . . , h(JtnKA))

= JopKB(JTΣh(t1)KB, . . . , JTΣh(tn)KB)

= Jop(TΣh(t1), . . . , TΣh(tn))KB

= JTΣh(t)K.

TΣ A TΣB

A B

TΣh

J−KA

h

J−KB
(8)

The converse is (almost trivially) true, if (8) commutes, then we can quickly see (0)
commutes by embedding Σ(A) into TΣ A and Σ(B) into TΣB. It follows readily that
for all homomorphisms h : A→ B and all assignments ι : X → A,

h ◦ J−Kι
A = J−Kh◦ι

B . (9)

Definition 11 (Equation). An equation over a signature Σ is a triple comprising a
set X of variables called the context, and a pair of terms s, t ∈ TΣX. We write these
as X ⊢ s = t.

A Σ-algebra A satisfies an equation X ⊢ s = t if for any assignment of variables
ι : X → A, JsKι

A = JtKι
A. We use ϕ and ψ to refer to equations, and we write A ⊨ ϕ

when A satisfies ϕ. We also write A ⊨ι ϕ when the equality JsKι
A = JtKι

A holds for
a particular assignment ι : X → A and not necessarily for all assignments.

Example 12 (Associativity). Let Σ = {+ : 2}, X = {x, y, z}, s = x + (y + z) and
t = (x + y) + z. The equation ϕ = X ⊢ s = t16 asserts that the interpretation of + is 16 Alternatively, we may write ϕ omitting brackets:

x, y, z ⊢ x + (y + z) = (x + y) + z.associative. Indeed, suppose A ⊨ ϕ, we need to show that for any a, b, c ∈ A,

J+KA(a, J+KA(b, c)) = J+KA(J+KA(a, b), c). (10)

Observe that the L.H.S. is the interpretation of s under the assignment ι : X → A
sending x to a, y to b and z to c, that is, we have J+KA(a, J+KA(b, c)) = JsKι

A. Under
the same assignment, the interpretation of t is the R.H.S. By hypothesis, JsKι

A = JtKι
A,

so we conclude (10) holds.

Examples 13. Without going into this much details, there are many other simple
examples of equations.

• x, y ⊢ x + y = y + x states that the binary operation + is commutative.

• x ⊢ x + x = x states that the binary operation + is idempotent.

• x ⊢ fx = ffx states that the unary operation f is idempotent.

• x ⊢ p = x states that the constant p is equal to all elements in the algebra (this
means the algebra is a singleton).
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Since interpretations are preserved by homomorphisms, it is expected that satis-
faction is also preserved.

Lemma 14. Let ϕ be a equation with context X. If h : A → B is a homomorphism and
A ⊨ι ϕ for an assignment ι : X → A, then B ⊨h◦ι ϕ.

Proof. Let ϕ be the equation X ⊢ s = t, we have

A ⊨ι ϕ⇐⇒ JsKι
A = JtKι

A definition of ⊨

=⇒ h(JsKι
A) = h(JtKι

A)

=⇒ JsKh◦ι
B = JtKh◦ι

B by (9)

⇐⇒ B ⊨h◦ι ϕ. definition of ⊨

What is more surprising is that flattening interacts well with intepreting in the
following sense.

Lemma 15. For any Σ-algebra A, the following square commutes.17 17 In words, given a term in TΣTΣ A, you obtain the
same result if you interpret its flattening in A, or if
you interpret the term obtained by first interpreting
all the “inner” terms.TΣTΣ A TΣ A

TΣ A A

µΣ
A

TΣJ−KA

J−KA

J−KA

(11)

Proof. We proceed by induction. For the base case, we have

JµΣ
A(η

Σ
A(t))KA

(4)
= JtKA

(6)
= JηΣ

A(JtKA)KA
(3)
= JTΣJ−KA(η

Σ
A(t))K.

For the inductive step, if t = op(t1, . . . , tn), then

JµΣ
A(t)KA = Jop(µΣ

A(t1), . . . , µΣ
A(tn))KA by (4)

= JopKA (JµΣ
A(t1)KA, . . . , JµΣ

A(tn)KA) by (6)

= JopKA (JTΣJ−KA(t1)KA, . . . , JTΣJ−KA(tn)KA) I.H.

= Jop(TΣJ−KA(t1), . . . , TΣJ−KA(tn))KA by (6)

= JTΣJ−KA(op(t1, . . . , tn))KA by (2)

= JTΣJ−KA(t)KA.

Remark 16. To see Lemma 15 in another way, notice that (11) looks a lot like (8), but
the map on the left is not the interpretation on an algebra. Except it is! Indeed, we
can give a trivial interpretation of op : n ∈ Σ on the set TΣ A by JopKTΣ A(t1, . . . , tn) =

op(t1, . . . , tn). Then, we can verify by induction18 that J−KTΣ A : TΣTΣ A → TΣ A 18 Or we can compare (4) and (6) to see they become
the same inductive definition in this instance.is equal to µΣ

A. We conclude that Lemma 15 says that for any algebra, J−KA is a
homomorphism from (TΣ A, J−KTΣ A) to A.

In light of this remark, we mention two very similar results: given a set A, µΣ
A is

a homomorphism between TΣTΣ A and TΣ A, and given function f : A → B, TΣ f is a
homomorphism between TΣ A and TΣB.
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Lemma 17. For any function f : A→ B, the following squares commute.19 19 Proof. We have already shown both these squares
commute. Indeed, (12) is an instance of (11) where
we identify µΣ

A with the interpretation J−KTΣ A as
explained in Remark 16, and (13) is the naturality
square (5).

TΣTΣTΣ A TΣTΣ A

TΣTΣ A TΣ

µΣ
TΣ A

TΣµΣ
A

µΣ
A

µΣ
A

(12)
TΣTΣ A TΣTΣB

TΣ TΣB

µΣ
A µΣ

B

TΣ f

TΣTΣB

(13)

Another consequence of (12) is that if you have a term in Tn
Σ A for any n ∈ N,

there are (n− 1)! ways to flatten it20 by successively applying an instance of Ti
ΣµΣ

T j
Σ A

20 There is 1 way to flatten a term in T2
Σ A to one in

TΣ A, and there are n− 1 ways to flatten from Tn
Σ A

to T(n−1)
Σ A. By induction, we find (n− 1)! possible

combinations of flattening Tn
Σ A→ TΣ A.

with different i and j (i.e. flattening at different levels inside the term), but all these
ways lead to the same end result in TΣ A. It is like when you have an expression built
out of additions with possibly lots of nested bracketing, you can compute the sums
in any order you want and it will give the same result. That property of addition is
called associativity, and we will also say µΣ is associative.

Given a set E of equations, we say A satisfies E and write A ⊨ E if A ⊨ ϕ for all
ϕ ∈ E.21 A (Σ, E)-algebra is a Σ-algebra that satisfies E. We define Alg(Σ, E), the 21 Similarly for satisfaction under a particular assign-

ment ι:
A ⊨ι E⇐⇒ ∀ϕ ∈ E, A ⊨ι ϕ.

category of (Σ, E)-algebras, to be the full subcategory of Alg(Σ) containing only
those algebras that satisfy E. There is an evident forgetful functor U : Alg(Σ, E)→
Set which is the composition of the inclusion functor Alg(Σ, E) → Alg(Σ) and

U : Alg(Σ)→ Set.22 22 We will denote all the forgetful functors with the
symbol U unless we need to emphasize the distinc-
tion. However, thanks to the knowledge package,
you can click on (or hover) that symbol to check ex-
actly which forgetful functor it is referring to.

Examples 18. 1. With Σ = {p : 0}, there are morally only three different equa-
tions:23

23 Let us not formally argue that here, but your intu-
ition about equality and the fact that terms in TΣX
are either x ∈ X or p should be enough to convince
you at this point.

⊢ p = p, x ⊢ p = x, and x, y ⊢ x = y.

Any algebra A satisfies the first because JpKι
A = JpKι

A, where ι : ∅→ A is the only
possible assignment.24 If A satisfies the second, it means that A is a singleton

24 We write nothing before the turnstile (⊢) instead
of the empty set ∅.

because for any a, b ∈ A, the assignments ιa = x 7→ a and ιb = x 7→ b give us25

25 We find a = b for any a, b ∈ A and A contains at
least one element, the interpretation of the constant
p, so A is a singleton.

a = ιa(x) = JxKιa
A = JpKιa

A = JpKιb
A = JxKιb

A = ιb(x) = b.

If A satisfies the third equation, it is also a singleton because for any a, b ∈ A,
the assignment ι sending x to a and y to b gives us

a = ι(x) = JxKι
A = JyKι

A = ι(y) = b.

Therefore,26 there are only two things Alg(Σ, E) can be for any E, either it is all 26 Modulo the argument about these being all the
possible equations over Σ.of Alg(Σ), or it contains only the singletons.

2. With Σ = {+ : 2, e : 0}, there are many more possible equations, but the following
three are quite famous:

x, y, z ⊢ x+(y+ z) = (x+ y)+ z, x, y ⊢ x+ y = y+ x, and x ⊢ x+ e = x. (14)

We already saw in Example 12 that the first asserts associativity of the interpre-
tation of +. With a similar argument, one shows that the second asserts J+K
is commutative, and the third asserts JeK is a neutral element (on the right) for
J+K.27 Moreover, note that a homomorphism of Σ-algebras from A to B is any 27 i.e. if A satisfies x ⊢ x + e = x, then for all a ∈ A,

J+KA(a, JeKA) = a.
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function h : A→ B that satisfies

∀a, a′ ∈ A, h(J+KA(a, a′)) = J+KB(h(a), h(a′)) and h(JeKA) = JeKB.

Namely, a homomorphism preserves the “addition” and its neutral element.
Thus, letting E be the set containing the three equations in (14), we find that
Alg(Σ, E) is the category CMon of commutative monoids and monoid homo-
morphisms.

3. We can add a unary operation symbol − to get Σ = {+ : 2, e : 0,− : 1}, and add
the equation x ⊢ x + (−x) = e to those in (14),28 and we can show that Alg(Σ, E) 28 While the signature has changed between the two

examples, the equations of (14) can be understood
over both signatures because they concern terms
constructed using the symbols common to both sig-
natures.

is the category Ab of abelian groups and group homomorphisms.

Definition 19 (Algebraic theory). Given a set E of equations over Σ, the algebraic
theory generated by E, denoted by Th(E), is the class of equations (over Σ) that are
satisfied in all (Σ, E)-algebras:29 29 Note that there is no guarantee that Th(E) is a

set (in fact it never is) because there is no set of all
equations (because the context can be any set).

Th(E) = {X ⊢ s = t | ∀A ∈ Alg(Σ, E), A ⊨ X ⊢ s = t} .

Formulated differently, Th(E) contains the equations that are semantically entailed
by E, namely ϕ ∈ Th(E) if and only if

∀A ∈ Alg(Σ), A ⊨ E =⇒ A ⊨ ϕ.

Of course, Th(E) contains all of E,30 but also many more equations like x ⊢ x = x 30 Because a (Σ, E)-algebra satisfies E by definition.

which is satisfied by any Σ-algebra. We will see in §1.3 how to find which equations
are entailed by others.

We call a class of equations an algebraic theory if it equals Th(E) for some set E
of generating equations.

Example 20. If E contains the equations in (14), then Th(E) will contain all the
equations that every commutative monoid satisfies. Here is a non-exhaustive list:

• x ⊢ e+ x = x says that JeK is a neutral element on the left for J+K which is true
because, by equations in (14), it JeK is neutral on the right and J+K is commutative.

• z, w ⊢ z + w = w + z also states commutativity of J+K but with different variable
names.

• x, y, z, w ⊢(x + w) + (x + z) + (x + y) = ((x + x) + x) + (y + (z + (e + w))) is
just a random equation that can be shown using the properties of commutative
monoids.

1.2 Free Algebras

Up to now we have not given a single concrete example of an algebra, we give here
a very special example.
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Example 21 (Words). Let ΣMon = {· : 2, e : 0}, X = {a, b, · · · , z} be the set of (lower-
case) letters in the latin alphabet, and X∗ be the set of finite words using only these
letters.31 There is a natural ΣMon-algebra structure on X∗ where + is interpreted 31 We are talking about words in a mathematical

sense, so X∗ contains weird stuff like aczlp and the
empty word ε.

as concatenation, i.e. J·KX∗(u, v) = uv, and e as the empty word ε. This algebra
satisfies the equations defining a monoid given in (15).

EMon = {x, y, z ⊢ x · (y · z) = (x · y) · z, x ⊢ x · e = x, x ⊢ e · x = x} . (15)

In fact, X∗ is the free monoid over X. This means that for any other (ΣMon, EMon)-
algebra A and any function f : X → A, there exists a unique homomorphism
f ∗ : X∗ → A such that f ∗(x) = f (x) for all x ∈ X ⊆ X∗. This can be summarized
in the following diagram.

X X∗ X∗

A A

f ∗
f

f ∗

in Set in Alg(ΣMon ,EMon)

U (16)

The free (ΣMon, EMon)-algebra over any set is always32 the set of finite words over 32 We have to say up to isomorphism here if we want
to be fully rigorous. Let us avoid this bulkiness here
and later in most places where it can be inferred.

that set with · and e interpreted as concatenation and the empty word respectively.
At a first look, X∗ does not seem correlated to the operation symbols in ΣMon and

the equations in EMon, so it may seem hopeless to generalize this construction of
free algebra for an arbitrary Σ and E. It is possible however to describe the algebra
X∗ starting from ΣMon and EMon.

Recall that TΣMon X is the set of all terms constructed with the symbols in ΣMon

and the elements of X.33 Since we want the interpretation of e to be a neutral 33 For instance, it contains e, e · e, a · a, a · (r · (e · u)),
and so on.element for the interpretation of ·, we could identify many terms together like e

and e · e, in fact whenever a term has an occuence of e, we can remove it with no
effect on its interpretation in a (ΣMon, EMon)-algebra. Similarly, since we want · to
be interpreted as an associative operation, we could identify r · (s · m) and (r · s) · m,
and more generally, we can rearrange the parentheses in a term with no effect on
its interpretation in a (ΣMon, EMon)-algebra.

Squinting a bit, you can convince yourself that a ΣMon-term over X considered
modulo occurrences of e and parentheses is the same thing as a finite word in X∗.34 34 For instance, both r · (s · m) and (r · s) · m become

the word rsm and e, e · e and e · (e · e) all become the
empty word.

Under this correspondence, we find that the interpretation of · on X∗ (which was
concatenation) can be realized syntactically by the symbol ·. For example, the con-
catenation of the words corresponding to r · r and u · p is the word corresponding
to (r · r) · (u · p). The interpretation of e in X∗ is the empty word which corresponds
to e. We conclude that the algebra X∗ could have been described entirely using the
syntax of ΣMon and equations in EMon.

We promptly generalize this to other signatures and sets of equations. Fix a
signature Σ and a set E of equations over Σ. For any set X, we can define a binary
relation ≡E on Σ-terms35 that contains the pair (s, t) whenever the interpretation 35 We omit the set X from the notation as it would

be more bulky than illuminative.of s and t coincide in any (Σ, E)-algebra. Formally, we have for any s, t ∈ TΣX,

s ≡E t⇐⇒ X ⊢ s = t ∈ Th(E). (17)
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We now show ≡E is a congruence relation.

Lemma 22. For any set X, the relation ≡E is reflexive, symmetric, transitive, and satisfies
for any op : n ∈ Σ and s1, . . . , sn, t1, . . . , tn ∈ TΣX,

∀1 ≤ i ≤ n, si ≡E ti =⇒ op(s1, . . . , sn) ≡E op(t1, . . . , tn). (18)

Proof. Briefly, reflexivity, symmetry and transitivity all follow from the fact that
equality satisfies these properties, and (18) follows from the fact that operation
symbols are interpreted as deterministic functions, so they preserve equality. We
detail this below.

(Reflexivity) For any t ∈ TΣX, and any Σ-algebra A, A ⊨ X ⊢ t = t because it
holds that JtKι

A = JtKι
A for all ι : X → A.

(Symmetry) For any s, t ∈ TΣX and A ∈ Alg(Σ), if A ⊨ X ⊢ s = t, then A ⊨
X ⊢ t = s. Indeed, is JsKι

A = JtKι
A holds for all ι, then JtKι

A = JsKι
A holds too.

Symmetry follows because if all (Σ, E)-algebras satisfy X ⊢ s = t, then they also
satisfy X ⊢ t = s.

(Transitivity) For any s, t, u ∈ TΣX, if all (Σ, E)-algebras satisfy X ⊢ s = t and
X ⊢ t = u, then they also satisfy X ⊢ s = u.36 Transitivity follows. 36 Just like for symmetry, it is because for any A ∈

Alg(Σ) and ι : X → A, JsKι
A = JtKι

A with JtKι
A =

JuKι
A imply JsKι

A = JuKι
A.

(18) For any op : n ∈ Σ, s1, . . . , sn, t1, . . . , tn ∈ TΣX, and A ∈ Alg(Σ), if A satisfies
X ⊢ si = ti for all i, then for any assignment ι : X → A, we have JsiKι

A = JtiKι
A for all

i. Hence,

Jop(s1, . . . , sn)Kι
A = JopKA(Js1Kι

A, . . . , JsnKι
A) by (6)

= JopKA(Jt1Kι
A, . . . , JtnKι

A) ∀i, JsiKι
A = JtiKι

A

= Jop(s1, . . . , sn)Kι
A by (6),

which means A ⊨ X ⊢ op(s1, . . . , sn) = op(t1, . . . , tn). This was true for all Σ-
algebras, so we can use the same arguments as above to conclude (18).

This lemma show ≡E is an equivalence relation, so we can define terms modulo
E. Given Σ, E and X, let TΣ,EX = TΣX/≡E denote the set of Σ-terms modulo E.
We will write [−]E : TΣX → TΣ,EX for the canonical quotient map, so [t]E is the
equivalence class of t in TΣ,EX.

This yields a functor TΣ,E : Set → Set which sends a function f : X → Y to the
unique function TΣ,E f making (19) commute, i.e. satisfying TΣ,E f ([t]E) = [TΣ f (t)]E.
By definition, [−]E is also a natural transformation from TΣ to TΣ,E.

TΣX TΣ,EX

TΣY TΣ,EY

TΣ f

[−]E

TΣ,E f

[−]E

(19)

Definition 23 (Term algebra, semantically). The term algebra for (Σ, E) on X is the
Σ-algebra whose carrier is TΣ,EX and whose interpretation of op : n ∈ Σ is defined
by37 37 This is well-defined (i.e. invariant under change

of representative) by (18).JopKTX([t1]E, . . . , [tn]E) = [op(t1, . . . , tn)]E. (20)

We denote this algebra by TΣ,EX or simply TX.

A main motivation behind this definition is that it makes [−]E : TΣX → TΣ,EX a
homomorphism,38 namely, (21) commutes. 38 Indeed, (20) looks exactly like (1) with h = [−]E,

A = TΣX and B = TX.
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TΣTΣX TΣTΣ,EX

TΣX TΣ,EX

µΣ
X

TΣ [−]E

J−KTX

[−]E

(21)

It is very easy to “compute” in the term algebra because all operations are re-
alized syntactically, i.e. only by manipulating symbols. Let us first look at the
interpretation of Σ-terms in TX, i.e. the function J−KTX : TΣTΣ,EX → TΣ,EX. It was
defined inductively to yield39 39 where t ∈ TΣX, op : n ∈ Σ, and t1, . . . , tn ∈

TΣTΣ,EX.

JηΣ
TΣ,EX([t]E)KTX = [t]E and Jop(t1, . . . , tn)KTX = JopKTX(Jt1KTX , . . . , JtnKTX). (22)

Remark 24. In particular, when E is empty, the set TΣ,∅X is TΣX quotiented by ≡∅ ,
but one can show that equivalence relation ≡∅ is equal to equality (=), i.e. Th(∅)

only contains equation of the form X ⊢ t = t.40 Therefore, TΣ,∅X = TΣX. Moreover, 40 For any other equation X ⊢ s = t where s and t
are not the same term, the Σ-algebra TΣX does not
satisfy it. Indeed, take the assignment ηΣ

X : X →
TΣX.

since [−]∅ is the identity map, we find that (20) becomes the definition of the in-
terpretations given in Remark 16, so TΣ,∅X is the algebra on TΣX we had defined.
Also, we find the interpretation of terms J−KTΣ,∅X is the flattening.41 41 By Remark 16 or by comparing (22) when E = ∅

and µΣ
X .

Example 25. Let Σ = ΣMon and E = EMon be the signature and equations defnin-
ing monoids as explained in Example 21. We saw informally that TΣ,EX is in corre-
spondence with the set X∗ of finite words over X, and we already have a monoid
structure on X∗.42 Thus, we may wonder whether the term algebra TX describes 42 The interpretation of · and e is concatenation and

the empty word.the same monoid. Let us compute the interpretation of u · (v · w) where u = uu,
v = vv and w = www are words in X∗ ∼= TΣ,EX. First we use the inductive definition:

Ju · (v · w)KTX = J·KTX(JuKTX , Jv · wKTX) = J·KTX(JuKTX , J·KTX(JvKTX , JwKTX)).

Next, we choose a representative for u, v, w ∈ TΣ,EX and apply the base step of the
inductive definition:

Ju · (v · w)KTX = J·KTX([u · u]E, J·KTX([v · v]E, [w · (w · w)]E)).

Finally, we can apply (20) a couple times to find

Ju · (v · w)KTX = J·KTX([u ·u]E, [(v ·v) · (w · (w ·w))]E) = [(u ·u) · ((v ·v) · (w · (w ·w)))]E,

which means that the word corresponding to Ju · (v · w)KTX is uuvvwww, i.e. the
concatenation of u, v and w.

In general (for other signatures), what happens when applying J−KTX to some
big term in TΣTΣ,EX can be decomposed in three steps.

1. Apply the inductive definition until you have an expression built out of many
JopKTX and JcKTX where op ∈ Σ and c is an equivalence class of Σ-terms.

2. Choose a representative for each such classes (i.e. c = [t]E).

3. Use (20) repeatedly until the result is just an equivalence class in TΣ,EX.
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More intuitively, if you have written the term with a choice of representative for
all equivalence classes it uses, you can remove all brackets inside and put one pair
around the whole term. In this sense, J−KTX looks a lot like the flattening µΣ

X except
it deals with equivalence classes of terms. This motivates the definition of µΣ,E

X to be
the unique function making (23) commute.43 43 This guarantees µΣ,E

X satisfies the following equa-
tions that look like the inductive definition of µΣ

X in
(4): for any t ∈ TΣX, µΣ,E

X ([[t]E]E) = [t]E and for any
op : n ∈ Σ and t1, . . . , tn ∈ TΣX,

µΣ,E
X ([op([t1]E, . . . , [tn]E)]E) = [op(t1, . . . , tn)]E.

Thanks to Remark 24, we can immediately see
that µΣ,∅

X = µΣ
X because [−]∅ is the identity, and

J−KTΣ,∅ X = µΣ
X .

TΣTΣ,EX TΣ,EX

TΣ,ETΣ,EX

J−KTX

[−]E µΣ,E
X

(23)

The first thing we showed when defining µΣ
X was that it yielded a natural transfor-

mation µΣ : TΣTΣ ⇒ TΣ. We can also do this for µΣ,E.

Proposition 26. The family of maps µΣ,E
X : TΣ,ETΣ,EX → TΣ,EX is natural in X.

Proof. We need to prove that for any function f : X → Y, the following square
commutes.

TΣ,EX TΣ,ETΣ,EY

TΣ,EX TΣ,EY

µΣ,E
X µΣ,E

Y

TΣ,ETΣ,E f

TΣ,E f

(24)

We can pave the following diagram.44 44 By paving a diagram, we mean to build a large
diagram out of smaller ones, showing all the smaller
one commute, and then concluding the bigger must
commute. We often refer parts of the diagram with
them letters written inside them, and explain how
each of them commutes one at a time.

TΣTΣ,EX TΣ,ETΣ,EX TΣ,ETΣ,EY

TΣTΣ,EY

TΣ,ETΣ,EX TΣ,EX TΣ,EY

µΣ,E
Y

TΣ,ETΣ,E f

TΣ,E f

[−]E

J−KTX

µΣ,E
X

[−]E

TΣTΣ,E f
[−]E

J−KTY

(a)

(b) (c)
(d)

All of (a), (b) and (d) commute by definition. In more details, (a) is an instance of
(19) with X replaced by TΣ,EX, Y by TΣ,EY and f by TΣ,E f , and both (b) and (d) are
instances of (23). To show (c) commutes, we draw another diagram that looks like a
cube and where (c) is the front face. We can show all the other faces commute, and
then use the fact that TΣ[−]E is surjective (i.e. epic) to conclude that the front face
must also commute.45 45 In more details, the left and right faces commute

by (21), the bottom and top faces commute by (19),
and the back face commutes by (5).

The function TΣ[−]E is surjective (i.e. epic) because
[−]E is (it is a canonical quotient map) and functors
on Set preserve epimorphisms (if we assume the ax-
iom of choice). Thus, it suffices to show that TΣ[−]E
pre-composed with the bottom path or the top path
of the front face gives the same result.

Now it is just a matter of going around the cube
using the commutativity of the other faces. Here is
the complete derivation (we write which face was
used as justifications for each step).

TΣ,E f ◦ J−KTX ◦ TΣ[−]E
= TΣ,E f ◦ [−]E ◦ µΣ

X left

= [−]E ◦ TΣ f ◦ µΣ
X bottom

= [−]E ◦ µΣ
Y ◦ TΣTΣ f back

= J−KTY ◦ TΣ[−]E ◦ TΣTΣ f right

= J−KTY ◦ TΣTΣ,E f ◦ TΣ[−]E top
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TΣTΣX TΣTΣY

TΣTΣ,EX TΣTΣ,EY

TΣX TΣY

TΣ,EX TΣ,EY
TΣ,E f

J−KTX

TΣTΣ,E f

J−KTY

TΣ [−]E

TΣTΣ f

TΣ [−]E

[−]E

TΣ f

[−]E

µΣ
X

µΣ
Y

The front face of the cube is interesting on its own, it says that for any function
f : X → Y, TΣ,E f is a homomorphism from TΣ,EX to TΣ,EY. We redraw it below for
future reference.

TΣTΣ,EX TΣTΣ,EY

TΣ,EX TΣ,EY
TΣ,E f

J−KTX

TΣTΣ,E f

J−KTY (25)

Stating it like this may remind you of Lemma 15 and Remark 16. We will need a
variant of Lemma 15 for TΣ,E, but there is a slight obstacle due to types. Indeed,
given a Σ-algebra A we would like to prove a square like in (26) commutes.

TΣTΣ,E A TΣ A

TΣ,E A A

J−KTA

TΣJ−KA

J−KA

J−KA (26)

However, the arrows on top and bottom do not really exist, the interpretation
J−KA takes terms over A as input, not equivalence classes of terms. The quick fix is
to assume that A satisfies the equations in E. This means that J−KA is well-defined
on equivalence class of terms becuase if [s]E = [t]E, then A ⊢ s = t ∈ Th(E), so A

satisfies that equation, i.e. taking the assignment idA : A→ A,

JsKA = JsKidA
A = JtKidA

A = JtKA.

When A is a (Σ, E)-algebra, we abusively write J−KA for the interpretation of terms
and equivalence classes of terms as in (27).

TΣ A TΣ,E A

A
J−KAJ−KA

[−]E

(27)

Lemma 27. For any (Σ, E)-algebra A, the square (26) commutes.

Proof. Consider the following diagram that we can view as a triangular prism and
whose front face is (26). Both triangles commute by (27), the square face at the back
and on the left commutes by (21), and the square face at the back and on the right
commutes by (11). With the same trick as in the proof of Proposition 26 using the
surjectivity of TΣ[−]E, we conclude that the front face commutes.46 46 Here is the complete derivation.

J−KA ◦ J−KTA ◦ TΣ[−]E
= J−KA ◦ [−]E ◦ µΣ

A left

= J−KA ◦ µΣ
A bottom

= J−KA ◦ TΣJ−KA right

= J−KA ◦ TΣJ−KA ◦ TΣ[−]E top

Then, since TΣ[−]E is epic, we conclude that J−KA ◦
J−KTA = J−KA ◦ TΣJ−KA.
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TΣTΣ A

TΣTΣ,E A TΣ A

TΣ A

TΣ,E A A

J−KTA

TΣJ−KA

J−KA

J−KA
[−]E J−KA

TΣ [−]E TΣJ−KA

µΣ
A

An important consequence of Lemma 15 was (12) saying that flattening is a ho-
momorphism from TΣ,∅TΣ,∅ A to TΣ,∅ A. This is also true when E is not empty, i.e.
µΣ,E

A is a homomorphism frmo TTA to TA.

Lemma 28. For any set A, the following square commutes.

TΣTΣ,ETΣ,E A TΣTΣ,E A

TΣ,ETΣ,E A TΣ,E A

J−KTA

µΣ,E
A

J−KTTA

TΣµΣ,E
A

(28)

Proof. We prove it exactly like Lemma 27 with the following diagram.47 47 The top and bottom faces commute by definition
of µΣ,E

A (23), the back-left face by (21), and the back-
right face by (11).

Then, TΣ[−]E is epic, so the following derivation
suffices.

µΣ,E
A ◦ J−KTTA ◦ TΣ[−]E
= µΣ,E

A ◦ [−]E ◦ µΣ
TΣ,E A left

= J−KTA ◦ µΣ
TΣ,E A bottom

= J−KTA ◦ TΣJ−KTA right

= J−KTA ◦ TΣµΣ,E
A ◦ TΣ[−]E top

TΣTΣTΣ,E A

TΣTΣ,ETΣ,E A TΣTΣ,E A

TΣTΣ,E A

TΣ,ETΣ,E A TΣ,E A

J−KTA

µΣ,E
A

J−KTTA

TΣµΣ,E
A

[−]E J−KTA

µΣ
TΣ,E A

TΣJ−KTATΣ [−]E

In a moment, we will show that TΣ,EX is not only a Σ-algebra, but also a (Σ, E)-
algebra. This requires us to talk about satisfaction of equations, hence about the
interpretation of terms in some TΣY under an assignment σ : Y → TΣ,EX. By the
definition J−Kσ

TX = J−KTX ◦ TΣσ, and our informal description of J−KTX , we can
infer that JtKσ

TX is the equivalence class of the term t where all occurences of the
variable y have been substituted by a representative of σ(y).

In particular, this means that under the assignment σ : X → TΣ,EX that sends a
variable x to its equivalence class [x]E, the interpretation of a term t ∈ TΣX is [t]E.48 48 The representative chosen for σ(x) is x so the term

t is not modified.We prove this formally below.
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Lemma 29. Let σ = X
ηΣ

X−→ TΣX
[−]E−−→ TΣ,EX be an assignment. Then, J−Kσ

TX = [−]E.

Proof. We proceed by induction. For the base case, we have

JηΣ
X(x)Kσ

TX = JTΣσ(ηΣ
X(x))KTX by (7)

= JTΣ[−]E(TΣηΣ
X(η

Σ
X(x)))KTX by Proposition 6

= JTΣ[−]E(ηΣ
TΣX(η

Σ
X(x)))KTX by (3)

= JηΣ
TΣ,EX([η

Σ
X(x)]E)KTX by (3)

= [ηΣ
X(x)]E by (22)

For the inductive step, if t = op(t1, . . . , tn), we have

JtKσ
TX = JTΣσ(t)KTX by (7)

= JTΣ[−]E(TΣηΣ
X(t))KTX by Proposition 6

= JTΣ[−]E(TΣηΣ
X(op(t1, . . . , tn)))KTX

= JTΣ[−]E(op(TΣηΣ
X(t1), . . . , TΣηΣ

X(tn)))KTX by (2)

= Jop(TΣ[−]E(TΣηΣ
X(t1)), . . . , TΣ[−]E(TΣηΣ

X(tn)))KTX by (2)

= JopKTX (JTΣ[−]E(TΣηΣ
X(t1))KTX , · · · , JTΣ[−]E(TΣηΣ

X(tn))KTX) by (22)

= JopKTX ([t1]E, · · · , [tn]E) I.H.

= [op(t1, . . . , tn)]E by (20)

We will denote that special assignment ηΣ,E
X = [−]E ◦ ηΣ

X : X → TΣ,EX.49 A quick
49 Note that ηΣ,E becomes a natural transformation
idSet → TΣ,E because it is the vertical composition
[−]E · ηΣ.

corollary of the previous lemma is that for any equation ϕ with context X, ϕ belongs
to E if and only if the algebra TΣ,EX satisfies it under the assignment ηΣ,E

X .

Lemma 30. Let s, t ∈ TΣX, X ⊢ s = t ∈ E if and only if TΣ,EX ⊨ηΣ,E
X X ⊢ s = t.50 50 Proof. By Lemma 29, we have

JsK
ηΣ,E

X
TX = [s]E and JtK

ηΣ,E
X

TX = [t]E,

then by definition of ≡E , X ⊢ s = t ∈ E if and only
if [s]E = [t]E.

The interaction between µΣ and ηΣ is mimicked by µΣ,E and ηΣ,E.

Lemma 31. The following diagram commutes.

TΣ,EX TΣ,ETΣ,EX TΣ,EX

TΣ,EX

ηΣ,E
TΣ,EX

µΣ,E
X

TΣ,EηΣ,E
X

idTΣ,EXidTΣ,EX

Proof. For the triangle on the left, we pave the following diagram.

Showing (29) commutes:

(a) Definition of ηΣ,E
X .

(b) Definition of J−KTX (22).

(c) Definition of µΣ,E
X (23).

TΣ,EX TΣTΣ,EX TΣ,ETΣ,EX

TΣ,EX
J−KTX

[−]E

µΣ,E
X

ηΣ
TΣ,EX

ηΣ,E
TΣ,EX

idTΣ,EX

(a)

(b)
(c) (29)
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For the triangle on the right, we show that [−]E = µΣ,E
X ◦ TΣ,EηΣ,E

X ◦ [−]E by paving
(30), and we can conclude since [−]E is surjective (or epic) that idTΣ,EX = µΣ,E

X ◦
TΣ,EηΣ,E

X .

Showing (30) commutes:

(a) Definition of ηΣ,E
X and functoriality of TΣ,E.

(b) Naturality of [−]E (19).

(c) Naturality of [−]E again.

(d) Definition of µΣ
X (4).

(e) By (21).

(f) By (23).

TΣX TΣ,EX TΣ,ETΣX TΣ,ETΣ,EX

TΣTΣX TΣTΣ,EX

TΣX TΣ,EX

TΣ,E [−]E

µΣ,E
X

TΣ,EηΣ
X

TΣ,EηΣ,E
X

[−]E

TΣηΣ
X

[−]E

TΣ [−]E

[−]E

J−KTX
µΣ

X

[−]E

idTΣX (d)

(b)

(a)

(c)

(e)

(f)
(30)

We single out another special case of interpretation in a term algebra when E is
empty (recall from Remark 24 that TΣ,∅X is the algebra on TΣX whose interpretation
of op applies op syntactically).

Definition 32 (Substitution). Given a signature Σ, an empty set of equations, and
an assignment σ : Y → TΣX,51 we call J−Kσ

TX the substitution map, and we denote 51 We can identify TΣX with TΣ,∅X because ≡∅ is the
equality relation.it by σ∗ : TΣY → TΣX. We saw in Remark 24 that J−KTX = µΣ

X , thus substitution is

σ∗ = TΣY
TΣσ−−→ TΣTΣX

µΣ
X−→ TΣX. (31)

In words, σ∗ replaces the occurences of a variable y by σ(y).52 52 You may be more familiar with the notation
t[σ(y)/y] (e.g. from substitution in the λ-calculus).
An inductive definition can also be given: for any
y ∈ Y, σ∗(ηΣ

Y(y)) = σ(y), and

σ∗(op(t1, . . . , tn)) = op(σ∗(t1), . . . , σ∗(tn)).

That simple description makes substitution a little special, and the following
result has even deeper implications. It morally says that substitution preserves the
satisfaction of equations.

Lemma 33. Let Y ⊢ s = t be an equation, σ : Y → TΣX an assignment, and A a Σ-algebra.
If A satisfies Y ⊢ s = t, then it also satisfies X ⊢ σ∗(s) = σ∗(t).

Proof. Let ι : X → A be an assignment, we need to show Jσ∗(s)Kι
A = Jσ∗(t)Kι

A.
Define the assignment ισ : Y → A that sends y ∈ Y to Jσ(y)Kι

A, we claim that
J−Kισ

A = Jσ∗(−)Kι
A. The lemma then follows because by hypothesis, JsKισ

A = JtKισ
A .

The following derivation proves our claim.

J−Kισ
A = J−KA ◦ TΣ(ισ) by (7)

= J−KA ◦ TΣ(Jσ(−)Kι
A) definition of ισ

= J−KA ◦ TΣ (J−KA ◦ TΣι ◦ σ) by (7)

= J−KA ◦ TΣJ−KA ◦ TΣTΣι ◦ TΣσ by Proposition 6

= J−KA ◦ µΣ
A ◦ TΣTΣι ◦ TΣσ by (11)
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= J−KA ◦ TΣι ◦ µΣ
Y ◦ TΣσ by (5)

= J−KA ◦ TΣι ◦ σ∗ by (31)

= Jσ∗(−)Kι
A. by (7)

We are finally ready to show that TΣ,E A is a (Σ, E)-algebra.53 53 All the work we have been doing finally pays off.

Proposition 34. For any set A, the term algebra TΣ,E A satisfies all the equations in E.

Proof. Let X ⊢ s = t belong to E and ι : X → TΣ,E A be an assignment. We need to
show that JsKι

TA = JtKι
TA. We factor ι into54 54 This factoring is correct because

ι = idTΣ,E A ◦ ι

= µΣ,E
A ◦ ηΣ,E

TΣ,E A ◦ ι Lemma 31

= µΣ,E
A ◦ TΣ,E ι ◦ ηΣ,E

X . naturality of ηΣ,E

ι = X
ηΣ,E

X−−→ TΣ,EX
TΣ,E ι
−−→ TΣ,ETΣ,E A

µΣ,E
A−−→ TΣ,E A.

Now, Lemma 30 says that the equation is satisfied in TX under the assignment

ηΣ,E
X , i.e. that JsKηΣ,E

X
TX = JtKηΣ,E

X
TX . We also know by Lemma 14 that homomorphisms

preserve satisfaction, so we can apply it twice using the facts that TΣ,Eι and µΣ,E
A are

homomorphisms (by (25) and (28) respectively) to conclude that

JsKι
TA = JsKµΣ,E

A ◦TΣ,E ι◦ηΣ,E
X

TA = JtKµΣ,E
A ◦TΣ,E ι◦ηΣ,E

X
TA = JtKι

TA.

We now know that TΣ,EX belongs to Alg(Σ, E), in order to tie up the parallel with
Example 21, we will show that TΣ,EX is the free (Σ, E)-algebra over X.

Definition 35 (Free object). Let C and D be categories, U : D → C be a functor
between them, and X ∈ C0. A free object on X (with respect to U) is an object Y ∈
D0 along with a morphism i ∈ HomC(X, UY) such that for any object A ∈ D0 and
morphism f ∈ HomC(X, UA), there exists a unique morphism f ∗ ∈ HomD(Y, A)

such that U f ∗ ◦ i = f . This is summarized in the following diagram.55 55 This is almost a copy of (16).

X UY Y

UA A

i

U f ∗
f

f ∗

in C in D

U (32)

Proposition 36. Free objects are unique up to isomorphism, namely, if Y and Y′ are free
objects on X, then Y ∼= Y′.56 56 Very abstractly: a free object on X is the same

thing as an initial object in the comma category
∆(X) ↓ U, and initial objects are unique up to iso-
morphism.

Proposition 37. For any set X, the term algebra TX is the free (Σ, E)-algebra on X.

Proof. Let A be another (Σ, E)-algebra and f : X → A a function. We claim that
f ∗ = J−KA ◦ TΣ,E f is the unique homomorphism making the following commute.

X TΣ,EX TX

A A

ηΣ,E
X

f ∗
f

f ∗

in Set in Alg(Σ,E)

U
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First, f ∗ is a homomorphism because it is the composite of two homomorphisms
TΣ,E f (by (25)) and J−KA (by Lemma 27 since A satisfies E). Next, the triangle
commutes by the following derivation.

J−KA ◦ TΣ,E f ◦ ηΣ,E
X = J−KA ◦ ηΣ,E

A ◦ f naturality of ηΣ,E

= J−KA ◦ [−]E ◦ ηΣ
A ◦ f definition of ηΣ,E

= J−KA ◦ ηΣ
A ◦ f by (27)

= f definition of J−KA (6)

Finally, uniqueness follows from the inductive definition of TX and the homomor-
phism property. Briefly, if we know the action of a homomorphism on equivalence
classes of terms of depth 0, we can infer all of its action because all other classes of
terms can be obtained by applying operation symbols.57 57 Formally, let f , g : TX → A be two homomor-

phisms such that for any x ∈ X, f [x]E = g[x]E,
then, we can show that f = g. For any t ∈ TΣX,

we showed in Lemma 29 that [t]E = JtK
ηΣ,E

X
TX . Then

using (9), we have

f [t]E = JtK
f ◦ηΣ,E

X
A = JtK

g◦ηΣ,E
X

A = g[t]E,

where the second inequality follows by hypothesis
that f and g agree on equivalence classes of terms
of depth 0.

Once we have free objects, we have an adjunction, and once we have an ad-
junction, we have a monad, so we need to talk about monads. Unfortunately, our
univeral algebra spiel is not finished yet, we will get back to monads shortly.

1.3 Equational Logic

We were happy that interpretations in the term algebra are computed syntactically,
but there is a big caveat. Evertything is done modulo ≡E which was defined in (17)
to morally contain all equations in Th(E), that is, all equations semantically implied
by E. Equational logic is a deductive system that allows to derive syntactically all
of Th(E) starting from E.

In Lemma 22, we proved that ≡E is a congruence (i.e. reflexive, symmetric,
transitive, and invariant under operations), and in Lemma 33 we showed ≡E is also
preserved by substitutions. This can help us syntactically derive Th(E) because,
for instance, if we know X ⊢ s = t ∈ E, we can conclude X ⊢ t = s ∈ Th(E) by
symmetry. Then, by transitivity, we can conclude that X ⊢ s = s ∈ Th(E), which
we already knew by reflexivity. This can be summarized with the inference rules of
equational logic in Figure 1.2.

ReflX ⊢ t = t
X ⊢ s = t SymmX ⊢ t = s

X ⊢ s = t X ⊢ t = u TransX ⊢ s = u

op : n ∈ Σ ∀1 ≤ i ≤ n, X ⊢ si = ti Cong

X ⊢ op(s1, . . . , sn) = op(t1, . . . , tn)

σ : X → TΣY X ⊢ s = t
Sub

Y ⊢ σ∗(s) = σ∗(t)

Figure 1.2: Rules of equational logic over the signa-
ture Σ, where X and Y can be any set, and s, t, u,
si and ti can be any terms in TΣX. As indicated in
the premises of the rules Cong and Sub, they can
be instantiated for any n-ary operation symbol and
for any function σ respectively.
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Definition 38 (Derivation). A derivation58 of X ⊢ s = t in equational logic with
58 Many other definitions of derivation exist, and our
treatment of them will not be 100% rigorous.axioms E (a set of equations) is a finite rooted tree such that:

• all nodes are labelled by equations,

• the root is labelled by X ⊢ s = t,

• when an internal node (not a leaf) is labelled by ϕ and its children are labelled
by ϕ1, . . . , ϕn, there is a inference rule in Figure 1.2 which concludes ϕ from
ϕ1, . . . , ϕn, and

• all the leaves are either in E or instances of Refl, i.e. an equation Y ⊢ u = u for
some set Y and u ∈ TΣY.

Example 39. We write a derivation with the same notation used to specify the
inference rules in Figure 1.2. Consider the signature Σ = {+ : 2, e : 0} with E con-
taining the equations defining commutative monoids in (14). Here is a derivation
of x, y, z ⊢ x + (y + z) = z + (x + y) in equational logic with axioms E.

∈ E
x, y, z ⊢ x + (y + z) = (x + y) + z

σ =
x 7→ x + y
y 7→ z

∈ Ex, y ⊢ x + y = y + x

Sub

x, y, z ⊢(x + y) + z = z + (x + y)
Trans

x, y, z ⊢ x + (y + z) = z + (x + y)

Given any set of equations E, we denote by Th′(E) the class of equations that
can be proven from E in equational logic, i.e. ϕ ∈ Th′(E) if and only if there is a
derivation of ϕ in equational logic with axioms E.

Our goal for the rest of this section is to prove that Th′(E) = Th(E). We say
that equational logic is sound and complete for (Σ, E)-algebras. Less concisely,
soundness means that whenever equational logic proves an equation ϕ with axioms
E, then ϕ is satisfied by all (Σ, E)-algebras, and completeness says that whenever
an equation ϕ is satisfied by all (Σ, E)-algebras, then there is a derivation of ϕ in
equational logic with axioms E.

Soundness is a straightforward consequence of earlier results.59 59 In the story we are telling here, the rules of equa-
tional logic were designed to be sound because we
knew some properties of ≡E already. In general
when defining rules of a logic, we may use intu-
itions and later prove soundness to confirm them,
or realize that soundness does not hold and infirm
them.

Theorem 40 (Soundness). If ϕ ∈ Th′(E), then ϕ ∈ Th(E).

Proof. In the proof of Lemma 22, we proved that each of Refl, Symm, Trans, and
Cong are sound rules for a fixed arbitrary algebra. Namely, if A ∈ Alg(Σ) satisfies
the equations on top, then it satisfies the one on the bottom. Lemma 33 states the
same soundness property for Sub. This implies a weaker property: if all (Σ, E)-
algebras satisfy the equations on top, then they satisfy the one on the bottom.60 60 This is a classical theorem of first order logic:

(∀A.(PA⇒ QA))⇒ (∀A.PA⇒ ∀A.QA)Now, if ϕ ∈ Th′(E) was proven using equational logic and the axioms in E, then
since all A ∈ Alg(Σ, E) satisfy all the axioms, by repeatedly applying the weaker
property above for each rule in the derivation, we find that all A ∈ Alg(Σ, E) satisfy
ϕ, i.e. ϕ ∈ Th(E).

Completeness is a wilder beast we need to tame. The more classical proofs rely
on a theory of congruences. Our method is based on uniqueness free algebras
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(Proposition 36). We will define an algebra exactly like TA but using the equality
relation induced by Th′(E) instead ≡E which is induced by Th(E). We then show
that algebra is the free (Σ, E)-algebra and conclude that Th(E) and Th′(E) must
coincide (this proves soundness again).

Fix a signature Σ and a set E of equations over Σ. For any set X, we can define
a binary relation ≡′E on Σ-terms61 that contains the pair (s, t) whenever X ⊢ s = t 61 Again, we omit the set X from the notation.

can be proven in equational logic. Formally, we have for any s, t ∈ TΣX,

s ≡′E t⇐⇒ X ⊢ s = t ∈ Th′(E). (33)

We can show ≡′E is a congruence relation.

Lemma 41. For any set X, the relation ≡′E is reflexive, symmetric, transitive, and for any
op : n ∈ Σ and s1, . . . , sn, t1, . . . , tn ∈ TΣX,

∀1 ≤ i ≤ n, si ≡′E ti =⇒ op(s1, . . . , sn) ≡′E op(t1, . . . , tn). (34)

Proof. This is immediate from the presence of Refl, Symm, Trans, and Cong in
the rules of equational logic.

We write *− +E : TΣX → TΣX/≡′E for the canonical quotient map, so *t + E is the
equivalence class of t modulo the congruence ≡′E induced by equational logic.

Definition 42 (Term algebra, syntactically). The new term algebra for (Σ, E) on X
is the Σ-algebra whose carrier is TΣX/≡′E and whose interpretation of op : n ∈ Σ is
defined by62 62 This is well-defined (i.e. invariant under change

of representative) by (34).JopKT′X(*t1 + E, . . . , *tn + E) = *op(t1, . . . , tn) + E. (35)

We denote this algebra by T′Σ,EX or simply T′X.

We will prove that this alternative definition of the term algebra coincides with
TX because both are the free (Σ, E)-algebra on X. First, we have to show that T′X
belongs to Alg(Σ, E) like we did for TX in Proposition 34, and we prove a technical
lemma before that.

Lemma 43. Let ι : Y → TΣX/≡′E be an assignment. For any function σ : Y → TΣX
satisfying *σ(y) + E = ι(y) for all y ∈ Y, we have J−Kι

T′X = *σ∗(−) + E.

Proof. We proceed by induction. For the base case, we have by definition of the
interpretation of terms (6), definition of σ, and definition of σ∗ (31),

JηΣ
Y(y)K

ι
T′X

(6)
= ι(y) = *σ(y) + E

(31)
= *σ∗(ηΣ

Y(y)) + E.

For the inductive step, we have

Jop(t1, . . . , tn)Kι
T′X = JopKT′X(Jt1Kι

T′X , . . . , JtnKι
T′X) by (6)

= JopKT′X(*σ∗(t1) + E, . . . , *σ∗(tn) + E) I.H.

= *op(σ∗(t1), . . . , σ∗(tn)) + E by (35)

= *σ∗(op(t1, . . . , tn)) + E. definition of σ∗
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Proposition 44. For any set X, T′X satisfies all the equations in E.

Proof. Let Y ⊢ s = t belong to E and ι : Y → TΣX/≡′E be an assignment. By the
axiom of choice,63 there is a function σ : Y → TΣX satisfying *σ(y) + E = ι(y) for 63 Choice implies the quotient map *− +E has a left

inverse r : TΣX/≡′E → TΣX, and we can then set
σ = r ◦ ι.

all y ∈ Y. Thanks to Lemma 43, it is enough to show *σ∗(s) + E = *σ∗(t) + E.64 64 By Lemma 43, it implies

JsKι
T′X = *σ∗(s) + E = *σ∗(t) + E = JtKι

T′X ,

and since ι was an arbitrary assignment, we con-
clude that T′X ⊨ Y ⊢ s = t.

Equivalently, by definition of * − +E and Th′(E), we can exhibit a derivation of
X ⊢ σ∗(s) = σ∗(t) in equational logic with axioms E. This is rather simple because
that equation can be proven with the Sub rule instantiated with σ∗ : Y → TΣX and
the equation Y ⊢ s = t which is an axiom.

Completeness of equational logic readily follows.

Theorem 45 (Completeness). If ϕ ∈ Th(E), then ϕ ∈ Th′(E).

Proof. Write ϕ = X ⊢ s = t ∈ Th(E). By Proposition 44 and definition of Th(E), we
know that T′X ⊨ ϕ. In particular, T′X satisfies ϕ under the assignment

ι = X
ηΣ

X−→ TΣX
*−+E−−−→ TΣX/≡′E ,

namely, JsKι
T′X = JtKι

T′X . Moreover with σ = ηΣ
X , we can show σ satisfies the

hypothesis of Lemma 43 and σ∗ = idTΣX ,65 thus we conclude 65 We defined ι precisely to have *σ(x) + E = ι(x). To
show σ∗ = ηΣ

X
∗ is the identity, use (31) and the fact

that µΣ · ηΣTΣ = 1TΣ (it holds by definition (4)).*s + E = JsKι
T′X = JtKι

T′X = *t + E.

By definition of *− +E, this implies s ≡′E t which in turn means X ⊢ s = t belongs to
Th′(E).

Note that because TX and T′X were defined in the same way in terms of Th(E)
and Th′(E) respectively, and since we have proven the latter to be equal, we obtain
that TX and T′X are the same algebra. In the sequel, we will work with TX mostly
but we may use the fact that s ≡E t if and only if there is a derivation of X ⊢ s = t
in equational logic.

Remark 46. We have used the axiom of choice twice in proving completeness of
equational logic. That is only an artifact of our presentation that deals with arbi-
trary contexts. Since terms are finite and operation symbols have finite arities, it
is possible make do with only finite contexts (which removes the need for choice).
Formally, one can prove by induction on the derivation that a proof of X ⊢ s = t
can be transformed into a proof of FV{s, t} ⊢ s = t which uses only equations with
finite contexts.66 66 We denoted by FV{s, t} the set of free variables

used in s and t. This can be defined inductively as
follows:

FV{ηΣ
X(x)} = {x}

FV{op(t1, . . . , tn)} = FV{t1} ∪ · · · ∪ FV{tn}
FV{t1, . . . , tn} = FV{t1} ∪ · · · ∪ FV{tn}.

Note that FV{−} applied to a finite set of terms is
always finite.

We mention now two related results for the sake of comparison when we intro-
duce quantitative equational logic. For any set X and variable y, the following rules
are derivable in equational logic.

X ⊢ s = t Add

X ∪ {y} ⊢ s = t
X ⊢ s = t y /∈ FV{s, t}

Del

X \ {y} ⊢ s = t

In words, Add says that you can always add a variable to the context, and Del

says you can remove a variable from the context when it is not used in the terms of
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the equations. Both these rules are instances of Sub. For the first, take σ to be the
inclusion of X in X ∪ {y} (it may be the identity if y ∈ X). For the second, let σ send
y to whatever element of X \ {y} and all the other elements of X to themselves67, 67 When X is empty, the equations on the top and

bottom of Del coincide, so the rule is clearly deriv-
able.

then since y is not in the free variables of s and t, σ∗(s) = s and σ∗(t) = t.

1.4 Monads

Definition 47 (Monad). A monad on a category C is a triple (M, η, µ) comprised
of an endofunctor M : C → C and two natural transformations η : idC ⇒ M and
µ : M2 ⇒ M called the unit and multiplication respectively that make (36) and (37)
commute in [C, C].68 68 In equations, ie means for any object A ∈ C0, µA ◦

MηA = idA, µA ◦ ηMA = idA, and µA ◦ µMA = µA ◦
MµA.M M2 M

M

Mη

µ
1M

ηM

1M

(36)
M3 M2

M2 Mµ

Mµ

µM

µ (37)

In this chapter we will mostly talk about monads on Set, but it is good to keep
some arguments general for later. Here are some very important examples (for the
literature and especially for this manuscript).

Example 48 (Maybe). Suppose C has (binary) coproducts and a terminal object 1,
then (−+ 1) : C → C is a monad. It is called the maybe monad. We write inlX+Y

(resp. inrX+Y) for the coprojection of X (resp. Y) into X + Y.69 First, note that for a 69 These notations are very common in the commu-
nity of programming language research, they stand
for injection left (resp. right). We may omit the su-
perscript in case it is too cumbersome.

morphism f : X → Y,

f + 1 = [inlY+1 ◦ f , inrY+1] : X + 1→ Y + 1.

The components of the unit are given by the coprojections, i.e. ηX = inlX+1 : X →
X + 1, and the components of the multiplication are

µX = [inlX+1, inrX+1, inrX+1] : X + 1 + 1→ X + 1.

Checking that (36) and (37) commute is an exercise in reasoning with coproducts. It
is much more interesting to give the intuition in Set where + is the disjoint union
and 1 is the singleton {∗}:70 70 This intuition should carry over well to many cat-

egories where the coproduct and terminal objects
have similar behaviors.• X + 1 is the set X with an additional (fresh) element ∗,

• the function f + 1 acts like f on X and sends the new element ∗ ∈ X to the new
element ∗ ∈ Y,

• the unit ηX : X → X + 1 is the injection (sending x ∈ X to itself),

• the multiplication µX acts like the identity on X and sends the two new elements
of X + 1 + 1 to the single new element X + 1,

• one can check (36) and (37) commute by hand because (briefly) x ∈ X is always
sent to x ∈ X and ∗ is always sent to ∗.
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Example 49 (Powerset). The covariant non-empty finite powerset functor Pne :
Set → Set sends a set X to the set of non-empty finite subsets of X which

we denote by PneX. It acts on functions just like the usual powerset functor, i.e.
given a function f : X → Y, Pne f is the direct image function, it sends S ⊆ X to
f (S) = { f (x) | x ∈ S}.71 71 It is clear that f (S) is non-empty and finite when

S is non-empty and finite.One can show Pne is a monad with the following unit and multiplication:

ηX : X → Pne(X) = x 7→ {x} and µX : Pne(Pne(X))→ Pne(X) = F 7→
⋃
s∈F

s.

Example 50 (Distributions). The functor D : Set → Set sends a set X to the set of
finitely supported distributions on X:72 72 We will simply call them distributions.

D(X) := {φ : X → [0, 1] | ∑
x∈X

φ(x) = 1 and φ(x) ̸= 0 for finitely many x’s}.

We call φ(x) the weight of φ at x, and let supp(φ) denote the support of φ, that
is, supp(φ) contains all the elements x ∈ X such that φ(x) ̸= 0. On morphisms, D
sends a function f : X → Y to the function between sets of distributions defined by

D f : DX → DY = φ 7→

y 7→ ∑
x∈X, f (x)=y

φ(x)

 .

In words, the weight of D f (φ) at y is equal to the total weight of φ on the preimage
of y under f .

One can show that D is a monad with unit ηX = x 7→ δx, where δx is the Dirac
distribution at x (the weight of δx is 1 at x and 0 everywhere else), and multiplication

µX = Φ 7→

x 7→ ∑
φ∈supp(Φ)

Φ(φ)φ(x)

 .

In words, the weight µX(Φ) at x is the average weight at x of distributions in the
support of Φ.

Monads have historically been the prevailing categorical approach to universal
algebra.73 This is due to a result of Linton [Lin66] stating that any algebraic theory 73 Although this has been changing, in part due to

[HP07] (and the articles leading to that paper, e.g.
[PP01, HPP06]) where the authors argue for using
Lawvere theories instead.

gives rise to a monad. Given a signature Σ and a set E of equations, the monad
Linton constructed is TΣ,E.

Proposition 51. The functor TΣ,E : Set→ Set defines a monad on Set with unit ηΣ,E and
multiplication µΣ,E. We call it the term monad for (Σ, E).

Proof. We have done most of the work already.74 We showed that ηΣ,E and µΣ,E are 74 In fact, we have done it twice because we showed
that TΣ,E A is the free (Σ, E)-algebra on A for every
set A, and that automatically yields (through ab-
stract categorical arguments) a monad sending A to
the carrier of TΣ,E A, i.e. TΣ,E A.

natural transformations of the right type in Footnote 49 and Proposition 26 respec-
tively, and we showed the appropriate instance of (36) commutes in Lemma 31. It
remains to prove (37) commutes which, instantiated here, means proving the fol-
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lowing diagram commutes for every set A.

TΣ,ETΣ,ETΣ,E A TΣ,ETΣ,E A

TΣ,ETΣ,E A TΣ,E A

µΣ,E
A

µΣ,E
A

µΣ,E
TΣ,E A

TΣ,EµΣ,E
A

It follows from the following paved diagram.75 75 We know that (a), (b) and (c) commute by (23),
(19), and (23) respectively. This means that (d) pre-
composed by the epimorphism [−]E yields the outer
square. Moreover, we know the outer square com-
mutes by (28), therefore, (d) must also commute.

TΣTΣ,ETΣ,E A TΣTΣ,E A

TΣ,ETΣ,ETΣ,E A TΣ,ETΣ,E A

TΣ,ETΣ,E A TΣ,E A

J−KTA

µΣ,E
A

J−KTTA

TΣµΣ,E
A

[−]E

µΣ,E
TΣ,E A

TΣ,EµΣ,E
A

[−]E

µΣ,E
A

(a)

(b)

(d)

(c)

Note that when E is empty, we get a monad (TΣ, ηΣ, µΣ).76 76 Here is an alternative proof that TΣ is a monad.
We showed ηΣ and µΣ are natural in (3) and (5) re-
spectively. The right triangle of (36) commutes by
definition of µΣ (4), the left triangle commutes by
Lemma 9, and the square (37) commutes by (12).

It makes sense now to ask to go in the other direction, namely, given a monad,
how do we obtain a signature and a set of equations? First, just like (Σ, E)-algebras
are models of the theory (Σ, E), we can define models for a monad, which we also
call algebras.

Definition 52 (M–algebra). Let (M, η, µ) be a monad on C, an M-algebra is a pair
(A, α) comprising an object A ∈ C0 and a morphism α : MA → A such that (38)
and (39) commute.

A MA

A
idA

ηA

α (38)
M2 A MA

MA A

Mα

µA

α

α

(39)

We call A the carrier and we may write only α to refer to an M-algebra.

Definition 53 (Homomorphism). Let (M, η, µ) be a monad and (A, α) and (B, β)

be two M-algebras. An M-algebra homomorphism or simply M-homomorphism
from α to β is a morphism h : A→ B in C making (40) commute.

MA MB

A B

α

Mh

β

h

(40)

The composition of two M-homomorphisms is an M-homomorphism and idA

is an M-homomorphism from (A, α) to itself whenever α is an M-algebra, thus we
get a category of M-algebras and M-homomorphisms called the Eilenberg–Moore
category of M and denoted by EM(M).77 77 Named after the authors of the article introducing

that category [EM65].
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Since EM(M) was built from objects and morphisms in C, there is an obvious
forgetful functor UM : EM(M) → C sending an M-algebra (A, α) to its carrier A
and an M-homomorphism to its underlying morphism.

The terminology suggests that (Σ, E)-algebras and TΣ,E-algebras are the same
thing. Let us check this.

Proposition 54. There is an isomorphism Alg(Σ, E) ∼= TΣ,E.

Proof. ...

What about algebras for other monads?

Example 55 (Maybe). In Set, an (−+ 1)-algebra is a function α : A+ 1→ A making
the following diagrams commute.

A A + 1

A

α
idA

ηA A + 1 + 1 A + 1

A + 1 Aα

α+1

µA

α

Reminding ourselves that ηA is the inclusion in the left component, the triangle
commuting enforces α to act like the identity function on all of A. We can also write
α = [idA, α(∗)].78 The square commuting ads no additional constraint. Thus, an 78 We identify the element α(∗) ∈ A with the func-

tion α(∗) : 1→ A picking out that element.algebra for the maybe monad on Set is just a set with a distinguished point. Let
h : A → B be a function, commutativity of (41) is equivalent to h(α(∗)) = β(∗).
Hence, a (− + 1)-homomorphism is a function that preserves the distinguished
point.

A + 1 B + 1

A B

[idA ,α(∗)] [idB ,β(∗)]

h

h+1

(41)

Seeing the distinguished point of a (− + 1)-algebra as the interpretation of a
constant, we recognize that the category EM(−+ 1) is isomorphic to the category
Alg(Σ) where Σ = {p : 0} contains a single constant.

An other option to recognize EM(−+ 1) as a category of algebras is via monad
isomorphisms.

Definition 56 (Monad morphism). Let (M, ηM, µM) and (N, ηN , µN) be two monads
on C. A monad morphism from M to N is a natural transformation ρ : M ⇒ N
making (42) and (43) commute.79 79 Recall that ρ ⋄ ρ denotes the horizontal composi-

tion of ρ with itself, i.e.

ρ ⋄ ρ = ρN ·Mρ = Nρ · ρM.
idC

M Nρ

ηM ηN (42)
MM NN

M Nρ

µM µN

ρ⋄ρ

(43)

As expected ρ is called a monad isomorphism when there is a monad morphism
ρ−1 : N ⇒ M satisfying ρ · ρ−1 = 1N and ρ−1 · ρ = 1M. In fact, it is enough
that all the components of ρ are isomorphisms in C to guarantee ρ is a monad
isomorphism.80 80 One checks that natural isomorphisms are pre-

cisely the natural transformations whose compo-
nents are all isomorphisms, and that the inverse of
a monad morphism is automatically a monad mor-
phism.

Example 57. For the signature Σ = {p : 0}, the term monad TΣ is isomorphic to
−+ 1. Indeed, recall that a Σ-term over A is either an element of A or p, this yields
a bijection ρA : A + 1→ TΣ A that sends any a ∈ A to itself and ∗ to the constant p ∈
TΣ A. To verify that ρ is a monad morphism, we check these diagrams commute.81 81 All of them commute essentially because ρA acts

like the identity on A.
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A + 1 TΣ A

B + 1 TΣB

ρA

f+1 TΣ f

ρB

(44)
A

A + 1 TΣ AρA

ηA
ηΣ

A (45)
A + 1 + 1 TΣTΣ A

A + 1 TΣ AρA

µA µΣ
A

ρTΣ A◦(ρA+1)

(46)

We obtained a monad isomorphism between the maybe monad and the term
monad for the signature Σ with only a constant. We can recover the isomorphism
between the categories of algebras EM(−+ 1) and Alg(Σ) from Example 55 with
the following result.

Proposition 58. If ρ : M ⇒ N is a monad morphism, then there is a functor −ρ :
EM(N)→ EM(M). If ρ is a monad isomorphism, then −ρ is also an isomorphism.

Proof. Given an N-algebra α : NA → A, we show that α ◦ ρA : MA → A is an
M-algebra by paving the following diagrams.

Showing (47) commutes:

(a) By (42).

(b) By (38) for α : NA→ A.

(c) By (43), noting that (ρ ⋄ ρ)A = ρNA ◦MρA.

(d) Naturality of ρ.

(e) By (39) for α : NA→ A.

A MA MMA MA

NA MNA NNA NA

A MA NA A

ηM
A

idA

ρA

α

ηN
A MρA

Mα

ρA α

ρA

α

µM
A

ρNA µN
A

Nα

(a)

(b)

(c)

(d) (e)

(47)

Moreover, if h : A → B is an N-homomorphism from α to β, then it is also a
M-homomorphism from α ◦ ρA to β ◦ ρB by the paving below.82 82 The top square commutes by naturality of ρ and

the bottom square commutes because h is an N-
homomorphism (40).MA MB

NA NB

A B

ρA

α

h

β
Nh

Mh

ρB

We obtain a functor −ρ : EM(N)→ EM(M) taking an algebra (A, α) to (A, α ◦ ρA)

and a homomorphism h : (A, α)→ (B, β) to h : (A, α ◦ ρA)→ (B, β ◦ ρB).
Furthermore, it is easy to see that −ρ = idEM(M) when ρ = 1M is the identity

monad morphism, and that for any other monad morphism ρ′ : N ⇒ L, −(ρ′ · ρ) =
(−ρ) ◦ (−ρ′).83 Thus, when ρ is a monad isomorphism with inverse ρ−1, −ρ−1 is 83 In other words, the assignments M 7→ EM(M)

and ρ 7→ −ρ becomes a functor from the category
of monads on C and monad morphisms to the cate-
gory of categories.

the inverse of −ρ, so −ρ is an isomorphism.

With the monad isomorphism −+ 1 ∼= TΣ of Example 57, we obtain an isomor-
phism EM(−+ 1) ∼= EM(TΣ), and composing it with the isomorphism of Proposi-
tion 54 (instantiating E = ∅), we get back the result from Example 55 that algebras
for the maybe monad are the same thing as algebras for the signature with only a
constant.

This motivates the following definition.
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Definition 59 (Set presentation). Let M be a monad on Set, an algebraic presenta-
tion of M is signature Σ and a set of equations E along with a monad isomorphism
M ∼= TΣ,E. We also say M is presented by (Σ, E).

We have proven in Example 57 that Σ = {p : 0} and E = ∅ is an algebraic
presentation for the maybe monad on Set. Here is a couple of additional examples.

Example 60 (Powerset). The powerset monad Pne is presented by the theory of semi-
lattices (ΣSLat, ESLat) where ΣSLat = {⊕ : 2} and ESLat contains the following equa-
tions stating that ⊕ is idempotent, commutative and associative resepctively.

x ⊢ x = x⊕ x x, y ⊢ x⊕ y = y⊕ x x, y, z ⊢ x⊕ (y⊕ z) = (x⊕ y)⊕ z

...

Example 61 (Distributions). The distribution monad D is presented by the theory
of convex algebras (ΣCA, ECA) where ΣCA = {+p : 2 | p ∈ (0, 1)} and ECA contains
the following equations for all p, q ∈ (0, 1).

x ⊢ x = x +p x x, y ⊢ x +p y = y +1−p x

x, y, z ⊢(x +p y) +q z = x +pq +(y + p(1−q)
1−pq

z)

...

Remark 62. Not all monads on Set have an algebraic presentation. Linton also gave
in [Lin66] a characterization of which monads can be presented by a signature with
finitary operation symbols, such monads are aptly called finitary monads.
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2.1 L-Spaces

Definition 63 (Complete lattice). A complete lattice is a partially ordered set (L,≤
)84 where all subsets S ⊆ L have a infimum and a supremum denoted by inf S and 84 i.e. L is a set and ≤ ⊆ L× L is a binary relation on

L that is reflexive, transitive and antisymmetric.sup S respectively. In particular, L has a bottom element ⊥ = sup ∅ and a top
element ⊤ = inf ∅ that satisfy ⊥ ≤ ε ≤ ⊤ for all ε ∈ L. We use L to refer to the
lattice and its underlying set.

Let us describe two central (for this thesis) examples of complete lattices.

Example 64 (Unit interval). The unit interval [0, 1] is the set of real numbers be-
tween 0 and 1. It is a poset with the usual order≤ (“less than or equal”) on numbers.
It is usually an axiom in the definition of R85 that all non-empty bounded subsets 85 Or possibly a theorem proven after constructing

R.of real numbers have an infimum and a supremum. Since all subsets of [0, 1] are
bounded (by 0 and 1), we conclude that ([0, 1],≤) is a complete lattice with ⊥ = 0
and ⊤ = 1.

Later in this section, we will see elements of [0, 1] as distances between points
of some space. It would make sense, then, to extend the interval to contain values
bigger than 1. Still because a complete lattice must have a top element there must
be a number above all others. We could either stop at some arbitrary 0 ≤ B ∈ R

and consider [0, B], or we can consider ∞ to be a number as done below.86 86 If one needs negative distances, it is also possible
to work with any interval [A, B] with A ≤ B ∈ R, or
even [−∞, ∞]. We will stick to [0, 1] and [0, ∞].Example 65 (Extended interval). Similarly to the unit interval, the extended interval

is the set [0, ∞] of positive real numbers extended with ∞, and it is a poset after
asserting ε ≤ ∞ for all ε ∈ [0, ∞]. It is also a complete lattice because non-empty
bounded subsets of [0, ∞) still have an infimum and supremum, and if a subset is
not bounded above or contains ∞, then its supremum is ∞. We find that 0 is bottom
and ∞ is top.

It is the prevailing custom to consider distances valued in the extended interval.87 87 In fact, [0, ∞] is also famous under the name Law-
vere quantale because of Lawvere’s seminal paper
[Law02]. In that work, he used some structure on
[0, ∞] (now called a quantale) to give a categorical
definition very close to that of a metric, the most
accepted abstract notion of distance.

However, in our research, we preferred to use the unit interval for a very subtle and

https://www.youtube.com/watch?v=nKU7iz9RYV0
https://en.wikipedia.org/wiki/Quantale
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inconsequential reason (explained in ??), and that is why most examples will have
distances valued in [0, 1].

There are many other interesting complete lattices, although (unfortunately) they
are rarely viewed as possible places to value distances.

Example 66 (Booleans). The Boolean lattice B is the complete lattice containing
only two elements, bottom and top. Its name comes from the interpretation of ⊥ as
a false value and ⊤ as a true value which makes the infimum act like an AND and
the supremum like an OR.

Example 67 (Extended natural numbers). The set N∞ of natural numbers extended
with ∞ is a sublattice of [0, ∞].88 Indeed, it is a poset with the usual order and 88 As expected, a sublattice of (L,≤) is a set S ⊆

L closed under taking infimums and supremums.
Note that the top and bottom of S need not coincide
with those of L. For instance [0, 1] is a sublattice of
[0, ∞], but ⊤ = 1 in the former and ⊤ = ∞ in the
latter.

the infimum and supremum of a subset of natural numbers is either itself a natural
number of ∞ (when the subset is unbounded).

Example 68 (Powerset lattice). For any set X, we denote the powerset of X by P(X).
The inclusion relation ⊆ between subsets of X makes P(X) a poset. The infimum
of a family of subsets Si ⊆ X is the intersection ∩i∈ISi, and its supremum is the
union ∪i∈ISi. Hence, P(X) is a complete lattice. The bottom element is ∅ and the
top element is X.

It is well-known that subsets of X correspond to functions X → {⊥,⊤}.89 En- 89 A subset S ⊆ X is sent to the characteristic func-
tion χS, and a function f : X → B is sent to f−1(⊤).
We say that {⊥,⊤} is the subobject classifier of Set.

dowing the two-element set with the complete lattice structure of B is what yields
the complete lattice structure on P(X). The following example generalizes this
construction.

Example 69 (Function space). Given a complete lattice (L,≤), for any set X, we
denote the set of functions from X to L by LX . The pointwise order on functions
defined by

f ≤∗ g⇐⇒ ∀x ∈ X, f (x) ≤ g(x)

is a partial order on LX . The infimums and supremums of families of functions are
also computed pointwise.90 Namely, given { fi : X → L}i∈I , for all x ∈ X: 90 Taking L = B, we find that P(X) and BX are iso-

morphic as complete lattices under the usual corre-
spondence. Namely, pointwise infimums and supre-
mums become intersections and unions respectively.
For example, if χS, χT : X → B are the characteristic
functions of S, T ⊆ X, then

inf {χS, χT} (x) = ⊤ ⇔ χS(x) = χT(x) = ⊤
⇔ x ∈ S and x ∈ T

⇔ x ∈ S ∩ T.

(inf
i∈I

fi)(x) = inf
i∈I

fi(x) and (sup
i∈I

fi)(x) = sup
i∈I

fi(x).

This makes LX a complete lattice. The bottom element is the function that is constant
at ⊥ and the top element is the function that is constant at ⊤.

As a special case of function spaces, it is easy to show that when X is a set with
two elements, LX is isomorphic (as complete lattices) to the product L× L as defined
below.

Example 70 (Product). Let (L,≤L) and (K,≤K) be two complete lattices. Their
product is the poset (L× K,≤L×K) on the Cartesian product of L and K with the
order defined by

(ε, δ) ≤L×K (ε′, δ′)⇐⇒ ε ≤L ε′ and δ ≤K δ′. (48)
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It is a complete lattice where the infimums and supremums are computed coordi-
natewise, namely, for any S ⊆ L×K,91 91 Where πL and πK are the projections from L× K

to L and K respectively.
inf S = (inf{πL(c) | c ∈ S}, inf{πK(c) | c ∈ S}) and

sup S = (sup{πL(c) | c ∈ S}, sup{πK(c) | c ∈ S}).

The bottom (resp. top) element of L× K is the pairing of the bottom (resp. top)
elements of L and K. i.e. ⊥L×K = (⊥L,⊥K) and ⊤L×K = (⊤L,⊤K).

The following example is also based on functions and it appears in many works
on generalized notions of distances, e.g. [Fla97, HR13].

Example 71 (CDF). A cumulative distribution function92 (or CDF for short) is a
92 Although cumulative subdistribution function
might be preferred.function f : [0, ∞] → [0, 1] that is monotone (i.e. ε ≤ δ =⇒ f (ε) ≤ f (δ)) and

satisfies
f (δ) = sup{ f (ε) | ε < δ}. (49)

Intuitively, (49) says that f cannot abruptly change value at some x ∈ [0, ∞], but it
can do that “after” some x.93 For instance, out of the two functions below, only f>1

93 This property is often called right-continuity.

is a CDF.

f≥1 = x 7→

0 x < 1

1 x ≥ 1
f>1 = x 7→

0 x ≤ 1

1 x > 1

We denote by CDF([0, ∞]) the subset of [0, 1][0,∞] containing all CDFs, it inherits
a poset structure (pointwise ordering), and we can show it is a complete lattice.94 94 Note however that CDF([0, ∞]) is not a sublattice

of [0, 1][0,∞] because the infimums are not always
taken pointwise. For instance, given 0 < n ∈ N,
define fn by (see them on Desmos)

fn(x) =


0 x ≤ 1− 1

n
nx 1− 1

n < x < 1
1 1 ≤ x

.

The pointwise infimum of { fn}n∈N clearly sends
everything below 1 to 0 and everything above and
including 1 to 1, so it does not satisfy f (1) =
supε<1 f (ε). We can find the infimum with the
general formula that defines infimums in terms of
supremums:

inf
n>0

fn = sup{ f ∈ CDF([0, ∞]) | ∀n > 0, f ≤∗ fn}.

We find that infn>0 fn = f>1.

Let { fi : [0, ∞] → [0, 1]}i∈I be a family of CDFs. We will show the pointwise
supremum supi∈I fi is a CDF, and that is enough since having all supremums im-
plies having all infimums.

• If ε ≤ δ, since all fis are monotone, we have fi(ε) ≤ fi(δ) for all i ∈ I which
implies

(sup
i∈I

fi)(ε) = sup
i∈I

fi(ε) ≤ sup
i∈I

fi(δ) = (sup
i∈I

fi)(δ).

• For any δ ∈ [0, ∞], we have

(sup
i∈I

fi)(δ) = sup
i∈I

fi(δ) = sup
i∈I

sup
ε<δ

fi(ε) = sup
ε<δ

sup
i∈I

fi(ε) = sup
ε<δ

(sup
i∈I

fi)(ε).

Nothing prevents us from defining CDFs on other domains, and we will write
CDF(L) for the complete lattice of functions L→ [0, 1] that are monotone and satisfy
(49). We could also change the codomain, but we will stick to [0, 1].

Definition 72 (L-space). Given a complete lattice L and a set X, an L-relation on X
is a function d : X × X → L. We refer to the pair (X, d) as an L-space, and we will
also use a single bold-face symbol X to refer to an L-space with underlying set X
and L-relation dX.95 The set X is called the carrier or the underlying set. 95 We will often switch between referring to spaces

with X or (X, dX), and we will try to match the sym-
bol for the space and the one for its underlying set
only modifying the former with mathbf.

A nonexpansive map from X to Y is a function f : X → Y between the underlying
sets of X and Y that satisfies

∀x, x′ ∈ X, dY( f (x), f (x′)) ≤ dX(x, x′). (50)

https://www.desmos.com/calculator/fqcudbkqge
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The identity maps idX : X → X and the composition of two nonexpansive maps
are always nonexpansive96, therefore we have a category whose objects are L-spaces 96 Fix three L-spaces X, Y and Z with two nonexpan-

sive maps f : X → Y and g : Y → Z, we have by
nonexpansiveness of g then f :

dZ(g f (x), g f (x′)) ≤ dY( f (x), f (x′))

≤ dX(x, x′).

and morphisms are nonexpansive maps. We denote it by LSpa.
This category is concrete over Set with the forgetful functor U : LSpa → Set

which sends an L-space X to its carrier and a morphism to the underlying function
between carriers.

Remark 73. In the sequel, we will not distinguish between the morphism f : X→ Y
and the underlying function f : X → Y. Although, we may write U f for the latter,
when disambiguation is necessary.

Instantiating L for different complete lattices, we can get a feel for what the
categories LSpa look like. We also give concrete examples of L-spaces.

Examples 74 (Binary relations). When L = B, a function d : X× X → B is the same
thing as a subset of X × X, which is the same thing as a binary relation on X.97 97 Hence, the choice of terminology L-relation.

Then, a B-space is a set equipped with a binary relation, and we choose to have,
as a convention, d(x, y) = ⊥ when x and y are related and d(x, y) = ⊤ when they
are not.98 A nonexpansive map from X to Y is a function f : X → Y such that for 98 This conventions might look backwards, but it

makes sense with the morphisms.any x, x′ ∈ X, f (x) and f (x′) are related when x and x′ are. When x and x′ are not
related, f (x) and f (x′) might still be related.99 The category BSpa is well-known 99 Note that this interpretation of nonexpansiveness

depends on our just chosen convention. Swapping
the meaning of d(x, y) = ⊤ and d(x, y) = ⊥ is the
same thing as taking the opposite order on B (i.e
⊤ ≤ ⊥), namely, morphisms become functions f :
X → Y such that for any x, x′ ∈ X, f (x) and f (x′)
are not related when neither are x and x′.

under different names, EndoRel in [Vig23], Rel in [AHS06] (although that name is
more commonly used for the category where relations are morphisms) and 2Rel in
my book. Here are a couple of fun examples of B-spaces:

1. Chess. Let P be the set of positions on a chess board (a2, d6, f3, etc.) and dB :
P × P → B send a pair (p, q) to ⊥ if and only if q is accessible from p in one
bishop’s move. The pair (P, dB) is an object of BSpa. Let dQ be the B-relation
sending (p, q) to ⊥ if and only if q is accessible from p in one queen’s move.
The pair (P, dQ) is another object of BSpa. The identity function idP : P → P
is nonexpansive from (P, dB) to (P, dQ) because whenever a bishop can go from
p to q, a queen can too. However, it is not nonexpansive from (P, dQ) to (P, dB)

because e.g. a queen can go from a1 to a2 but a bishop cannot.100 100 In other words, the set of valid moves for a bishop
is included in the set of valid moves for a queen, but
not vice versa.2. Siblings. Let H be the set of all humans (me, Paul Erdős, my brother Paul, etc.)

and dS : H × H → B send (h, k) to ⊥ if and only if h and k are full siblings.101 101 Full siblings share the same biological parents.

The pair (H, dS) is an object of BSpa. Let d= be the B-relation sending (h, k)
to ⊥ if and only if h and k are the same person. The pair (H, d=) is another
object of BSpa. The function f : H → H sending h to their biological mother is
nonexpansive from (H, dS) to (H, d=) because whenever h and k are full siblings,
they have the same biologcial mother.

Examples 75 (Distances). The main examples of L-spaces in this thesis are [0, 1]-
spaces or [0, ∞]-spaces. These are sets X equipped with a function d : X×X → [0, 1]
or d : X × X → [0, ∞], and we can usually understand d(x, y) as the distance be-
tween two points x, y ∈ X. With this interpretation, a function is nonexpansive
when applying it never increases the distances between points.102 Let us give sev- 102 This is a justification for the term nonexpansive.

In the setting of distances being real-valued, another
popular term is 1-Lipschitz.

eral examples of [0, 1]- and [0, ∞]-spaces:
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1. Euclidean. Probably the most famous notion of distance in mathematics is the
Euclidean distance on real numbers d : R×R → [0, ∞] = (x, y) 7→ |x− y|. The
distance between any two points is unbounded, but it is never ∞. The pair (R, d)
is an object of [0, ∞]Spa. Multiplication by r ∈ R is a nonexpansive function
r · − : (R, d)→ (R, d) if and only if r is between −1 and 1. Intuitively, a function
f : (R, d) → (R, d) is nonexpansive when its derivative at any point is between
−1 and 1.103 103 The derivatives might not exist, so this is just an

intuitive explaination.

2. Collaboration. Let H be the set of humans again. The collaboration distance
d between two humans h and k is the length of the shortest chain of humans
between h and k in which two humans can be linked only if they co-authored a
scientific paper together.104 For instance d(me, Paul Erdős) = 4 as computed by 104 As conventions, the length of a chain is number of

links, not humans. Also, d(h, k) = ∞ when no such
chain exists between h and k, except when h = k,
then d(h, h) = 0 (or we could say it is the length of
the empty chain from h to h).

csauthors.net on December 8th 2023:

me D. Petrişan M. Gehrke M. Erné P. Erdős
[PS21] [GPR16] [EGP07] [EE86]

The pair (H, d) is a [0, ∞]-space, but it could also be seen as a N∞-space (because
the length of a chain is always an integer).

3. Hamming. Let W be the set of words of the English language. If two words u and
v have the same number of letters, the Hamming distance d(u, v) between u and
v is the number of positions in u and v where the letters do not match.105 When 105 For instance d(carrot, carpet) = 2 because these

words differ only in two positions, the second and
third to last (r ̸= p and o ̸= e).

u and v are of different lengths, we let d(u, v) = ∞, and we obtain a [0, ∞]-space
(W, d). (It is also a N∞-space.)

Remark 76. As Examples 75 come with many important intuitions, we will often call
an L-relation d : X × X → L a distance function and d(x, y) the distance from x to
y,106 even when L is neither [0, 1] nor [0, ∞]. 106 The asymmetry in the terminology “distance

from x to y” is justified because, in general, noth-
ing guarantees d(x, y) = d(y, x).Examples 77. We give more examples of L-spaces to showcase the potential of our

abstract framework.

1. Diversion.107 Let J be the set of products available to consumers inside a vending 107 This example takes inspiration from the diversion
matrices in [CMS23], where they consider the auto-
mobile market in the U.S. instead of a vending ma-
chine.

machine (including a “no purchase” option), the second-choice diversion d(p, q)
from product p to product q is the fraction of consumers that switch from buying
p to buying q when p is removed (or out of stock) from the machine. That fraction
is always contained between 0 and 1, so we have a function d : J × J → [0, 1]
which makes (J, d) an object of [0, 1]Spa.108 108 Eventhough d is valued in [0, 1], calling it a dis-

tance function does not fit our intuition because
when d(p, q) is big, it means the products p and q
are probably very similar.

2. Rank. Let P be the set of web pages available on the internet. In [BP98], the
authors introduce an algorithm to measure the importance of a page p ∈ P giving
it a rank R(p) ∈ [0, 1]. This data can be organized in a function dR : P× P→ [0, 1]
which assigns R(p) to a pair (p, p) and 0 (or 1) to a pair (p, q) with p ̸= q.109 109 The values dR(p, q) when p ̸= q are considered

irrelevant, so they are filled with an arbitrary value,
e.g. 0 or 1.

This yields a [0, 1]-space (P, dR).

The rank of a page varies over time (it is computed from the links between all
web pages which change quite frequently), so if we let T be the set of instants of

https://www.csauthors.net/distance/ralph-sarkis/paul-erdos
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time, we can define d′R(p, p) to be the function of type T → [0, 1] which sends t
to the rank R(p) computed at time t.110 This makes (P, d′R) into a [0, 1]T-space. 110 Again, dR(p, q) can be set to some unimportant

constant value.
In order to create a search engine, we also need to consider the input of the user
looking for some web page.111 If U is the set of possible user inputs, we can 111 The rank of a Wikipedia page about ramen will be

lower when the user inputs “Genre Humaine” than
when they input “Ramen_Lord”.

define d′′R(p, p) to depend on U and T, so that (P, d′′R) is a [0, 1]U×T-space.

While the categories BSpa, [0, 1]Spa and [0, ∞]Spa are interesting on their own,
they contain subcategories which are more widely studied. For instance, the cate-
gory Poset of posets and monotone maps is a full subcategory of BSpa where we
only keep B-spaces (X, d) where the binary relation corresponding to d is reflex-
ive, transitive and antisymmetric. Similarly, a [0, ∞]-space (X, d) where the distance
function satisfies the triangle inequality d(x, z) ≤ d(x, y) + d(y, z) and reflexivity
d(x, x) ≤ 0 is known as a Lawvere metric space [Law02].

The next section lays out the language we will use to state conditions as those
above on L-spaces. It implicitly relies on the following equivalent definition of L-
spaces.

Definition 78 (L-structure). Given a complete lattice L, an L-structure112 is a set X
112 We borrow the name “structure” from the very
abstract notion of relational structure used in
[FMS21, ?, ?].

equipped with a family of binary relations Rε ⊆ X× X indexed by ε ∈ L satisfying

• monotonicity in the sense that if ε ≤ ε′, then Rε ⊆ Rε′ , and

• continuity in the sense that for any I-indexed family of elements εi ∈ L,113 113 By monotonicity, Rδ ⊆ Rεi so the inclusion Rδ ⊆
∩i∈I Rεi always holds.

A consequence of continuity (take I = ∅) is that
R⊤ is the full binary relation X× X.

⋂
i∈I

Rεi = Rδ, where δ = inf
i∈I

εi.

Intuitively114 (x, y) ∈ Rε should be interpreted as bounding the distance from x to 114 The proof of Proposition 79 will shed more light
on these objects by equating them with L-spaces.y above by ε. Then, monotonicity means the points that are at a distance below ε

are also at a distance below ε′ when ε ≤ ε′. Continuity means the points that are at
a distance below a bunch of bounds εi are also at a distance below the infimum of
those bounds infi∈I εi.

The names for these conditions come from yet another equivalent definition.115 115 This time more directly equivalent.

Organising the data of an L-structure into a function R : L→ P(X×X) sending ε to
Rε, we can recover monotonicity and continuity by seeing P(X × X) as a complete
lattice like in Example 68. Indeed, monotonicity is equivalent to R being a monotone
function between the posets (L,≤) and (P(X×X),⊆), and continuity is equivalent
to R preserving infimums. Seeing L and P(X × X) as posetal categories, we can
simply say that R is a continuous functor.116 116 Limits in a posetal category are always computed

by taking the infimum of all the points in the dia-
gram, so preserving limits and preserving infimums
is the same thing.

A morphism between two L-structures (X, {Rε}) and (Y, {Sε}) is a function f :
X → Y satisfying

∀ε ∈ L, ∀x, x′ ∈ X, (x, x′) ∈ Rε =⇒ ( f (x), f (x′)) ∈ Sε. (51)

This should feel similar to nonexpansive maps.117 Let us call LStr the category of 117 In words, (51) reads as: if x and x′ are at a dis-
tance below ε’ then so are f (x) and f (x′).L-structures.

Proposition 79. For any complete lattice L, the categories LSpa and LStr are isomor-
phic.118 118 This result is a stripped down version of [MPP17,

Theorem 4.3]

https://en.wikipedia.org/wiki/Ramen
https://www.youtube.com/watch?v=Y2hWi0fo97M
https://www.reddit.com/user/Ramen_Lord/


categorical foundations of quantitative algebraic reasoning 37

Proof. Given an L-relation (X, d), we define the binary relations Rd
ε ⊆ X× X by

(x, x′) ∈ Rd
ε ⇐⇒ d(x, x′) ≤ ε. (52)

This family satisfies monotonicity because for any ε ≤ ε′ we have

(x, x′) ∈ Rd
ε

(52)⇐⇒ d(x, x′) ≤ ε =⇒ d(x, x′) ≤ ε′
(52)⇐⇒ (x, x′) ∈ Rd

ε′ .

It also satisfies continuity because if (x, x′) ∈ Rεi for all i ∈ I, then d(x, x′) ≤ εi

for all i ∈ I. By defintion of infimum, we must have d(x, x′) ≤ infi∈I εi, hence
(x, x′) ∈ Rinfi∈I εi

. We conclude the forward inclusion (⊆) of continuity holds, the
converse (⊇) follows from monotonicity. Taking L = B, Proposition 79 gives back our inter-

pretation of BSpa as the category 2Rel from Ex-
amples 74. Indeed, a B-structure is just a set X
equipped with a binary relation R⊥ ⊆ X × X (be-
cause R⊤ is required to equal X × X), and mor-
phisms of B-structures are functions that preserve
that binary relation. This also justifies our weird
choice of d(x, y) = ⊥ meaning x and y are related.

Any nonexpansive map f : (X, d)→ (Y, ∆) in LSpa is also a morphism between
the L-structures (X, {Rd

ε }) and (Y, {R∆
ε }) because for all ε ∈ L and x, x′ ∈ X, we

have

(x, x′) ∈ Rd
ε

(52)⇐⇒ d(x, x′) ≤ ε
(50)
=⇒ ∆( f (x), f (x′)) ≤ ε

(52)⇐⇒ ( f (x), f (x′)) ∈ R∆
ε .

It follows that the assignment (X, d) 7→ (X, {Rd
ε }) is a functor F : LSpa → LStr

acting trivially on morphisms.
Given an L-structure (X, {Rε}), we define the function dR : X× X → L by

dR(x, x′) = inf
{

ε ∈ L | (x, x′) ∈ Rε

}
.

Note that monotonicity and continuity of the family {Rε} imply119 119 The converse implication (⇐) is by definition of
infimum. For (⇒), continuity says that

RdR(x,x′) =
⋂

ε∈L,(x,x′)∈Rε

Rε,

so RdR(x,x′) contains (x, x′), then by monotonicity,
dR(x, x′) ≤ ε implies Rε also contains (x, x′).

dR(x, x′) ≤ ε⇐⇒ (x, x′) ∈ Rε. (53)

This allows us to prove that a morphism f : (X, {Rε})→ (Y, {Sε}) is nonexpansive
from (X, dR) to (Y, dS) because for all ε ∈ L and x, x′ ∈ X, we have

dR(x, x′) ≤ ε
(53)⇐⇒ (x, x′) ∈ Rε

(51)
=⇒ ( f (x), f (x′)) ∈ Sε

(53)⇐⇒ dS( f (x), f (x′)) ≤ ε,

hence putting ε = d(x, x′), we obtain dS( f (x), f (x′)) ≤ dR(x, x′). It follows that the
assignment (X, {Rε}) 7→ (X, dR) is a functor G : LStr → LSpa acting trivially on
morphisms.

Observe that (52) and (53) together say that RdR
ε = Rε and dRd = d, so F and G

are inverses to each other on objects. Since both functors do nothing to morphisms,
we conclude that F and G are inverses to each other, and that LSpa ∼= LStr.

2.2 Equational Constraints

It is often the case one wants to impose conditions on the L-spaces they consider.
For instance, recall that when L is [0, 1] or [0, ∞], L-spaces are sets with a notion
of distance between points. Starting from our intuition on the distance between
points of the space we live in, people have come up with several abstract condi-
tions they enforce on distance functions. For example, we can restate (with a slight
modification120) the axioms defining metric spaces. 120 The separation axiom is now divided in two, (55)

and (56).
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First, symmetry says that the distance from x to y is the same as the distance
from y to x:

∀x, y ∈ X, d(x, y) = d(y, x). (54)

Reflexivity, also called indiscernibility of identicals, says that the distance between
x and itself is 0 (i.e. the smallest distance possible):

∀x ∈ X, d(x, x) = 0. (55)

Identity of indiscernibles, also called Leibniz’s law, says that if two points x and y
are at distance 0, then x and y must be the same:

∀x, y ∈ X, d(x, y) = 0 =⇒ x = y. (56)

Finally, the triangle inequality says that the distance from x to z is always smaller
than the sum of the distances from x to y and from y to z:

∀x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z). (57)

There are also very famous axioms on B-spaces (X, d) that arise from viewing
the binary relation corresponding to d as some kind of order on elements of X.

First, reflexivity says that any element x is related to itself.121 Translating back 121 We abstract orders that look like the “smaller or
equal” order ≤ on say real numbers rather than the
strict order <.

to the B-relation, this is equivalent to:

∀x ∈ X, d(x, x) = ⊥. (58)

Antisymmetry says that if both (x, y) and (y, x) are in the order relation, then they
must be equal:

∀x, y ∈ X, d(x, y) = ⊥ = d(y, x) =⇒ x = y. (59)

Finally, transitivity says that if (x, y) and (y, z) belong to the order relation, then so
does (x, z):

∀x, y, z ∈ X, d(x, y) = ⊥ = d(y, z) =⇒ d(x, z) = ⊥. (60)

We can immediately notice that all the axioms (54)–(60) start with a universal
quantification of variables. A harder thing to see is that we never actually need to
talk about equality between distances. For instance, the equation d(x, y) = d(y, x)
in the axiom of symmetry (54) can be replaced by two inequations d(x, y) ≤ d(y, x)
and d(y, x) ≤ d(x, y), and moreover since x and y are universally quantified, only
one of these inequations is necessary:

∀x, y ∈ X, d(x, y) ≤ d(y, x). (61)

If we rely on the equivalence between L-spaces and L-structures (Proposition 79),
we can transform (61) into a family of implications indexed by all ε ∈ L:122 122 Recall that (x, y) ∈ Rd

ε is the same thing as
d(x, y) ≤ ε. Hence, (61) and (62) are equivalent be-
cause requiring d(x, y) to be smaller than d(y, x) is
equivalent to requiring all upper bounds of d(y, x)
(in particular d(y, x) itself) to also be upper bounds
of d(x, y).

∀x, y ∈ X, (y, x) ∈ Rd
ε =⇒ (x, y) ∈ Rd

ε . (62)
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Starting from the triangle inequality (57) and applying the same transformations
that got us from (54) to (62), we obtain a family of implications indexed by two
values ε, δ ∈ L:123 123 You can try to prove how (57) and (63) are equiv-

alent if the process of going from the former to the
latter was not clear to you.∀x, y, z ∈ X, (x, y) ∈ Rd

ε and (y, z) ∈ Rd
δ =⇒ (x, z) ∈ Rd

ε+δ. (63)

The last conceptual step is to make the L.H.S. of the implication part of the
universal quantification. That is, instead of saying “for all x and y, if P then Q”,
we say “for all x and y such that P, Q”. We do this by introducing a syntax very
similar to the equations of universal algebra. We fix a complete lattice (L,≤), but as
mentionned before, you can keep in mind the examples L = [0, 1] and L = [0, ∞].

Definition 80 (Quantitative equation). A quantitative equation (over L) is a tuple
comprising an L-space X called the context, two elements x, y ∈ X and optionally
an element ε ∈ L. We write these as X ⊢ x = y when no ε is given or X ⊢ x =ε y
when it is given.

An L-space A satisfies a quantitative equation

• X ⊢ x = y if for any nonexpansive assignment ι : X→ A, ι(x) = ι(y).

• X ⊢ x =ε y if for any nonexpansive assignment ι : X→ A, dA(ι(x), ι(y)) ≤ ε.

We use ϕ and ψ to refer to a quantitative equation, and we write A ⊨ ϕ when A
satisfies ϕ.124 We will also write A ⊨ι ϕ when the equality ι(x) = ι(y) or the bound 124 Of course, satisfaction generalizes straightfor-

wardly to sets of quantitative equations, i.e. if E is
a set of quantitative equations, A ⊨ E means A ⊨ ϕ
for all ϕ ∈ E.

dA(ι(x), ι(y)) ≤ ε holds for a particular assignment ι : X→ A.125

125 and not necessarily for all assignments.
Example 81 (Symmetry). With L = [0, 1] or L = [0, ∞], we want to translate (62)
into a quantitative equation. A first approximation would be replacing the relation
Rd

ε with our new syntax =ε to obtain something like

x, y ⊢ y =ε x =⇒ x =ε y.

We are not allowed to use implications like this, so we have implement the last step
mentionned above by putting the premise y =ε x into the context. This means we
need to quantify over variables x and y with a bound ε on the distance from y to x.

Note that when defining satisfaction of a quantitative equation, the quantification
happens at the level of assignments ι : X → A. Hence, we have to find a context X
such that nonexpansive assignments X→ A correspond to choices of two elements
in A with the same bound ε on their distance.

Let the context Xε be the L-space with two elements x and y such that dXε(y, x) =
ε and all other distances are ⊤ (⊤ is either 1 or ∞). A nonexpansive assignment
ι : Xε → A is just a choice of two elements ι(x), ι(y) ∈ A satisfying dA(ι(y), ι(x)) ≤
ε.126 For all of these, we have to impose the condition dA(ι(x), ι(y)) ≤ ε. Therefore, 126 Indeed, since ⊤ is the top element of L, the other

values of dX being ⊤ means that they impose no
further condition on dA.

our quantitative equation is
Xε ⊢ x =ε y. (64)

For a fixed ε ∈ L, an L-space A satisfies (64) if and only if it satisfies (62). Hence,127 127 Recall our argument in Footnote 122.

if A satisfies that quantitative equation for all ε ∈ L, then it satisfies (54), i.e. the
distance dA is symmetric.
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In practice, defining the context like this is more cumbersome than need be, so
we will define some syntactic sugar to remedy this. Before that, we take the time to
do another example.

Example 82 (Triangle inequality). Again with L = [0, 1] or L = [0, ∞], let the context
Xε,δ be the L-space with three elements x, y and z such that dXε,δ(x, y) = ε and
dXε,δ(y, z) = δ, and all other distances are ⊤. A nonexpansive assignment ι : Xε,δ →
A is just a choice of three elements a = ι(x), b = ι(y), c = ι(z) ∈ A such that
dA(a, b) ≤ ε and dA(b, c) ≤ δ. Hence, if A satisfies

Xε,δ ⊢ x =ε+δ z, (65)

it means that for any such assignment, dA(a, c) ≤ ε + δ also holds. We conclude
that A satisifes (63). If A satisfies Xε,δ ⊢ x =ε+δ z for all ε, δ ∈ L, then A satisfies the
triangle inequality (57).

Notice that in the contexts Xε and Xε,δ, we only needed to set one or two distances
and all the others where the maximum they could be ⊤. In our syntactic sugar for
quantitative equations, we will only write the distances that are important (using
the syntax =ε), and we understand the underspecified distances to be as high as
they can be. For instance, (64) will be written128 128 We can understand this syntax as putting back

the information in the context into an implication.
For instance, you can read (66) as “if the distance
from y to x is bounded above by ε, then so is the
distance from x to y”.

y =ε x ⊢ x =ε y, (66)

and (65) will be written
x =ε y, y =δ z ⊢ x =ε+δ z. (67)

In this syntax, we call premises everything on the left of the turnstile ⊢ and conclu-
sion what is on the right.

More generally, when we write {xi =εi yi}i∈I ⊢ x =ε y (resp. {xi =εi yi}i∈I ⊢ x =

y), it corresponds to the quantitative equation X ⊢ x =ε y (resp. X ⊢ x = y), where
the context X contains the variables in129 129 Note that the xis, yis, x and y need not be distinct.

In fact, x and y almost always appear in the xis and
yis.X = {x, y} ∪ {xi | i ∈ I} ∪ {yi | i ∈ I},

and the L-relation is defined for u, v ∈ X by130 130 In words, the distance from u to v is the smallest
value ε such that u =ε v was a premise. It is rare
that u and v appear several times, but our definition
allows it.

dX(u, v) = inf{ε | u =ε v ∈ {xi =ε yi}i∈I}.

Here are some more translations:

• (55) becomes ⊢ x =0 x,131 131 We write nothing to the left of the turnstile ⊢ in-
stead of writing ∅.

• (56) becomes x =0 y ⊢ x = y,

• (58) becomes ⊢ x =⊥ x,

• (59) becomes x =⊥ y, y =⊥ x ⊢ x = y, and

• (60) becomes x =⊥ y, y =⊥ z ⊢ x =⊥ z.
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Remark 83. The translations of (55) and (58) look very close. In fact, noting that 0 is
the bottom element of [0, 1] and [0, ∞], the quantitative equation ⊢ x =⊥ x can state
the reflexivity of a distance in [0, 1] or [0, ∞] or the reflexivity of a binary relation.

Similarly, in the translation of the triangle inequality (67), if we let ε and δ range
over B and interpret + as an OR, we get three vacuous quantitative equations132 132 When either ε or δ equals ⊤, ε + δ = ⊤, but when

the conclusion of a quantitative equation is x =⊤ z,
it must be satisfied because ⊤ is an upper bound on
all distances by definition.

and the translation of (60) above. So transitivity and triangle inequality are the
same under this abstract point of view.133

133 These observations were probably folkloric since
at least the original publication of [Law02] in 1973.

Let us continue this list of examples for a while, just in case it helps a reader
that is looking to translate an axiom into a quantitative equation. We will also give
some results later which could imply that reader’s axiom cannot be translated in
this language.

Examples 84. Let L = [0, 1] or L = [0, ∞].

1. The strong triangle inequality states that d(x, z) ≤ max{d(x, y), d(y, z)}, it is
equivalent to the satisfaction of the following family of quantitative equations

∀ε, δ ∈ L, x =ε y, y =δ z ⊢ x =max{ε,δ} z. (68)

Let L = B.

1. A binary relation R on X× X is said to be functional if there are no two distinct
y, y′ ∈ X such that (x, y) ∈ R and (x, y′) ∈ R for a single x ∈ X. This is equivalent
to satisfying

x =⊥ y, x =⊥ y′ ⊢ y = y′. (69)

2. We say R ⊆ X × X is injective if there are no two distinct x, x′ ∈ X such that
(x, y) ∈ R and (x′, y) ∈ R for a single y ∈ X.134 This is equivalent to satisfying 134 Equivalently, the opposite (or converse) of R is

functional.

x =⊥ y, x′ =⊥ y ⊢ x = x′. (70)

You may try to formulate totality or surjectivity of a
binary relation with quantitative equations, but you
will find that difficult. We show in Examples 95 that
it is not possible.

3. We say R ⊆ X × X is circular if whenever (x, y) and (y, z) belong to R, then so
does (z, x) (compare with transitivity (60)). This is equivalent to satisfying

x =⊥ y, y =⊥ z ⊢ z =⊥ x. (71)

That is enough concrete examples. We now turn to the study of subcategories
of LSpa that are defined via (sets of) quantitative equations. The most notable
examples are the categories Poset of posets and Met of (extended) metric spaces:

• Poset is the full subcategory of BSpa with all B-spaces satisfying reflexivity,
antisymmetry and transitivity stated as quantitative equations:

EPoset = {⊢ x =⊥ x, x =⊥ y, y =⊥ x ⊢ x = y, x =⊥ y, y =⊥ z ⊢ x =⊥ z} .
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• Met is the full subcategory of [0, 1]Spa (taking [0, ∞] works just as well) with all
[0, 1]-spaces satisfying symmetry, reflexivity, identity of indiscernibles and trian-
gle inequality stated as quantitative equations: EMet contains all of the following

∀ε ∈ [0, 1], y =ε x ⊢ x =ε y

⊢ x =0 x

x =0 y ⊢ x = y

∀ε, δ ∈ [0, 1], x =ε y, y =δ z ⊢ x =ε+δ z.

Given a set E of quantitative equations, we can define a full subcategory of LSpa
that contains only those L-spaces that satisfy E, this is the category GMet(L, E)
whose objects we call generalized metric spaces or spaces for short. We also write
GMet(E) or GMet when the complete lattices L or the set E are fixed or irrelevant.
There is an evident forgetful functor U : GMet → Set which is the composition of
the inclusion functor GMet→ LSpa and U : LSpa→ Set.135 135 Recall that while we use the same symbol for both

forgetful functors, you can disambiguate them with
the hyperlinks.

2.3 The Categories GMet

In this section, we study various properties of the categories of generalized metric
spaces. We fix a complete lattice L and a set of quantitative equations E throughout,
and denote by GMet the category of L-spaces that satisfy E.

The goal here is mainly to become familiar with L-spaces and quantitative equa-
tions, so not all results will be useful later. This also means we will often avoid the
use of some abstract results (many will be proved later) that can (sometimes drasti-
cally) simplify some proofs.136 In order to keep all the information about GMet in 136 For instance, we will see that U : GMet → Set is

a right adjoint, so it has many nice properties which
we could use in this section.

the same place, we will quickly mention at the end some natural things that can be
derived via the big theorems of ??.

We also take some time to identify some (well-known) conditions on L-spaces
that cannot be expressed via quantitative equations.137 These proofs are always in 137 Unfortunately, we cannot make an exhaustive list

since the literature on different notions of metric
spaces is too vast.

the same vein, we know GMet has some property, we show the class of L-spaces
with a condition does not have that property, hence that condition is not expressible
as a set of quantitative equations.

Products

The category GMet has all products. We prove this in three steps. First, we find
the terminal object, second we show LSpa has all products, and third we show the
products of L-spaces which all satisfy some quantitative equation also satisfies that
quantitative equation.

Proposition 85. The category GMet has a terminal object.

Proof. The terminal object 1 in LSpa is relatively easy to find,138 it is a singleton 138 Again, many abstract results could help guide
our search, but it is enough to have a bit of intuition
about L-spaces.

{∗} with the L-relation d1 sending (∗, ∗) to ⊥. Indeed, for any L-space X, we have a
function ! : X → ∗ that sends any x to ∗, and because d1(∗, ∗) = ⊥ ≤ dX(x, x′) for
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any x, x′ ∈ X, ! is nonexpansive. We obtain a morphism ! : X → 1, and since any
other morphism X→ 1 must have the same underlying function139, ! is the unique 139 Because {∗} is terminal in Set.

morphism of this type.
Since GMet is a full subcategory of LSpa, it is enough to show 1 is in GMet to

conclude it is the terminal object in this subcategory. We can do this by showing
1 satisfies absolutely all quantitative equations, and in particular those of E.140 Let 140 Which defined GMet at the start of this section.

X be any L-space, x, y ∈ X and ε ∈ L. As we have seen above, there is only one
assignment ι : X→ 1, and it sends x and y to ∗. This means

ι(x) = ∗ = ι(y) and d1(ι(x), ι(y)) = d1(∗, ∗) = ⊥ ≤ ε.

Therefore 1 satisfies both X ⊢ x = y and X ⊢ x =ε y.

Proposition 86. The category LSpa has all products.

Proof. Let {Ai = (Ai, di) | i ∈ I} be a family of L-spaces indexed by I. We define the
L-space A = (A, d) with carrier A = ∏i∈I Ai (the Cartesian product of the carriers)
and L-relation d : A× A→ L defined by the following supremum:141 141 For a ∈ A, we write ai the ith coordinate of a.

∀a, b ∈ A, d(a, b) = sup
i∈I

di(ai, bi). (72)

For each i ∈ I, we have the evident projection πi : A→ Ai sending a ∈ A to ai ∈ Ai,
and it is nonexpansive because, by definition, for any a, b ∈ A,

di(ai, bi) ≤ sup
i∈I

di(ai, bi) = d(a, b).

We will show that A with these projections is the product ∏i∈I Ai.
Let X be some L-space and fi : X→ Ai be a family of nonexpansive maps. By the

universal property of the product in Set, there is a unique function ⟨ fi⟩ : X → A
satisfying πi ◦ ⟨ fi⟩ = fi for all i ∈ I. It remains to show ⟨ fi⟩ is nonexpansive from X
to A. For any x, x′ ∈ X, we have142 142 The equation holds because the ith coordinate of

⟨ fi⟩(x) is fi(x) by definition of ⟨ fi⟩, and the inequa-
tion holds because for all i ∈ I, di( fi(x), fi(x′)) ≤
dX(x, x′) by nonexpansiveness of fi .

d(⟨ fi⟩(x), ⟨ fi⟩(x′)) = sup
i∈I

di( fi(x), fi(x′)) ≤ dX(x, x′).

Note that a particular case of this construction for I being empty is the terminal
object 1 from Proposition 85. Indeed, the empty Cartesian product is the singleton,
and the empty supremum is the bottom element ⊥.

In order to show that satisfaction of a quantitative equation is preserved by the
product of L-spaces, we first prove a simple lemma.

Lemma 87. Let ϕ be a quantitative equation with context X. If f : A→ B is a nonexpan-
sive map and A ⊨ι ϕ for an assignment ι : X→ A, then B ⊨ f ◦ι ϕ.

Proof. There are two very similar cases. If ϕ is of the form X ⊢ x = y, we have143 143 The equivalences hold by definition of ⊨.

A ⊨ι ϕ⇐⇒ ι(x) = ι(y) =⇒ f ι(x) = f ι(y)⇐⇒ B ⊨ f ◦ι ϕ.

If ϕ is of the form X ⊢ x =ε y, we have144 144 The equivalences hold by definition of ⊨, and the
implication holds by nonexpansiveness of f .

A ⊨ι ϕ⇐⇒ dA(ι(x), ι(y)) ≤ ε =⇒ dB( f ι(x), f ι(y)) ≤ ε⇐⇒ B ⊨ f ◦ι ϕ.
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Proposition 88. If all L-spaces Ai satisfy a quantitative equation ϕ, then ∏i∈I Ai ⊨ ϕ.

Proof. Let A = ∏i∈I Ai and X be the context of ϕ. It is enough to show that for any
assignment ι : X→ A, the following equivalence holds:145 145 When I is empty, the L.H.S. of (73) is vacuously

true, and the R.H.S. is true since A is the termi-
nal object of L-space which we showed satisfies all
quantitative equations in Proposition 85.

(∀i ∈ I, Ai ⊨
πi◦ι ϕ)⇐⇒ A ⊨ι ϕ. (73)

The proposition follows because if Ai ⊨ ϕ for all i ∈ I, then the L.H.S. holds for any
ι, hence the R.H.S. does too, and we conclude A ⊨ ϕ. Let us prove (73).

(⇒) Consider the case ϕ = X ⊢ x = y. The satisfaction Ai ⊨ ϕ means πiι(x) =

πiι(y). If it is true for all i ∈ I, then we must have ι(x) = ι(y) by universality of the
product, thus we get A ⊨ι ϕ. In case ϕ = X ⊢ x =ε y, the satisfaction Ai ⊨ ϕ means
dAi (πiι(x), πiι(y)) ≤ ε. If it is true for all i ∈ I, we get A ⊨ ϕ because

dA(ι(x), ι(y)) = sup
i∈I

dAi (πiι(x), πiι(y)) ≤ ε.

(⇐) Apply Lemma 87 for all πi.

Corollary 89. The category GMet has all products, and they are computed like in LSpa.146 146 We showed that products in LSpa of objects in
GMet also belong to GMet, it follows that this is
also their products in GMet because the latter is a
full subcategory of LSpa.

Unfortunately, this means that the notion of metric space originally defined in
[Fré06], and incidentally what the majority of mathematicians calls metric spaces,
are not instances of generalized metric spaces as we defined them. Since they only
allow finite distances, some infinite products do not exist.147 In general, if one wants 147 For instance let An be the metric space with two

points {a, b} at distance n > 0 ∈N from each other.
Then A = ∏n>0∈N An exists in [0, ∞]Spa as we have
just proven, but

dA(a∗, b∗) = sup
n>0∈N

dAn (a, b) = sup
n>0∈N

n = ∞,

which means A is not a metric space in the sense of
[Fré06].

to bound the distance above by some B ∈ L, this can be done with the equation
⊢ x =B y, but the value B is still allowed as a distance. For instance [0, 1]Spa is the
full subcategory of [0, ∞]Spa defined by the equation ⊢ x =1 y.

Arguably, this is only a superficially negative result since it is already common in
parts of the literature [?] to allow infinite distances because the resulting category of
metric spaces has better properties (like having infinite products and coproducts).
There are some other conditions that one would like to impose on [0, ∞]-spaces
which are not even preserved under finite products. We give two examples arising
under the terminology partial metric.

Definition 90. An [0, ∞]-space (A, d) is called a partial metric space if it satisfies
the following condiditons [Mat94, Definition 3.1]:148 148 There is some ambiguity in what + and − means

when dealing with ∞ (the original paper supposes
distances are finite), but it is rather unimportant to∀a, b ∈ A, a = b⇐⇒ d(a, a) = d(a, b) = d(b, b) (74)

∀a, b ∈ A, d(a, a) ≤ d(a, b) (75)

∀a, b ∈ A, d(a, b) = d(b, a) (76)

∀a, b, c ∈ A, d(a, c) ≤ d(a, b) + d(b, c)− d(b, b) (77)

These conditions look similar to what we were able to translate into equations
before, but the first and last are problematic. We can translate (75) into x =ε y ⊢ x =ε

x, (76) is just symmetry which we can translate into y =ε x ⊢ x =ε y.
For (74), note that the forward implication is trivial, but for the converse, we

would need to compare three distances inside the context, which seems impossible
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because the context only bounds distances by above. For (77), the problem comes
from the minus operation on distances which will not interact well with our only
possibility of bounding by above. Indeed, if we tried something like x =ε1 y, y =ε2

z, y =ε3 y ⊢ x =ε1+ε2−ε3 z, we could always take ε3 really big (even ∞) and make the
distance between x and z as close to 0 as we would like.

These are just informal arguments, but thanks to Corollary 89, we can prove
formally that these conditions are not expressible as (sets of) quantitative equations.
Let A and B be the [0, ∞]-spaces pictured below (the distances are symmetric).149 149 The numbers on the lines indicate the distance

between the ends of the line, e.g. dA(a1, a1) = 0,
dA(a1, a3) = 1, and dB(b2, b3) = 10.

A =

a1

a2

a3

10

0

1

10

10

0

B = b1 b2 b3
10

0

15

10

5 0

We can verify (by exhaustive checks) that A and B are partial metric spaces. If
we take their product inside [0, ∞]Spa, we find the following [0, ∞]-space (some
distances are omitted) which does not satisfy (74) nor (77).150 150 For (74), the three points in the middle row

{a2b1, a2b2, a2b3} are all at distance from each other
and from themselves while not being equal. For (77),
we have

dA(a1b1, a3b3) = 15, and

dA(a1b1, a2b2) + dA(a2b2, a3b3)− dA(a2b2, a2b2) = 10,

but 15 > 10.

A× B =

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

10

0

10

15

10

10

5

10

0

10

10

10

10
10

10

10

10
10

10

0

10

5

10

0

We conclude that there is no set E of quantitative equations such that GMet([0, ∞], E)
is the full subcategory of [0, ∞]Spa containing all the partial metric spaces.151 151 It is still possible that the category of partial met-

rics and nonexpansive maps is identified with some
GMet. That would mean (infinite) products of par-
tial metrics exist but they are not computed with
supremums.

This result is a bit more damaging to our concept of generalized metric space
(especially since partial metric spaces were motivated by some considerations in
programming semantics), but we had to expect something like this would happen
with how much time mathematicians had to use and abuse the name metric.

Isometries

Since the forgetful functor U : LSpa → Set preserves isomorphisms, we know
that the underlying function of an isomorphism in LSpa is a bijection between the
carriers. What is more, we show in Proposition 92 it must preserve distances on the
nose, i.e. it is an isometry.
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Definition 91 (Isometry). A morphism f : X → Y of L-spaces is called an isometry
if152 152 The inequation in (50) was replaced by an equa-

tion.∀x, x′ ∈ X, dY( f (x), f (x′)) = dX(x, x′). (78)

If furthermore, f is injective, we call it an isometric embedding.153
153 If f : X → Y is an isometric embedding, we can
identify X with the subspace of Y containing all the
elements in the image of f . Conversely, the inclu-
sion of a subspace of Y in Y is always an isometric
embedding.

Proposition 92. In GMet, isomorphisms are precisely the bijective isometries.

Proof. We show a morphism f : X→ Y is has an inverse f−1 : Y→ X if and only if
it is a bijective isometry.

(⇒) Since the underlying functions of f and f−1 are inverses, they must be
bijections. Moreover, using (50) twice, we find that for any x, x′ ∈ X,154 154 This is a general argument showing that any non-

expansive function with a right inverse is an isome-
try, it is also an isometric embedding because a right
inverse in Set implies injectivity.

dX(x, x′) = dX( f−1 f (x), f−1 f (x′)) ≤ dY( f (x), f (x′)) ≤ dX(x, x′),

thus dX(x, x′) = dY( f (x), f (x′)), so f is an isometry.
(⇐) Since f is bijective, it has an inverse f−1 : Y → X in Set, but we have to

show f−1 is nonexpansive from Y to X. For any y, y′ ∈ Y, by surjectivity of f , there
are x, x′ ∈ X such that y = f (x) and y′ = f (x′), then we have

dX( f−1(y), f−1(y′)) = dX( f−1 f (x), f−1 f (x′)) = dX(x, x′) = dY( f (x), f (x′)) = dY(y, y′).

Hence f−1 is nonexpansive, it is even an isometry.

In particular, this means, as is expected, that isomorphisms preserve the satis-
faction of quantitative equations. We can show a stronger statement: any isometric
embedding reflects the satisfaction of quantitative equations.155 155 This is stronger because we have just shown the

inverse of an isomorphisms is an isometric embed-
ding.Proposition 93. Let f : Y → Z be an isometric embedding between L-spaces and ϕ a

quantitative equation, then
Z ⊨ ϕ =⇒ Y ⊨ ϕ. (79)

Proof. Let X be the context of ϕ. Any nonexpansive assignment ι : X → Y yields
an assignment f ◦ ι : X → Z. By hypothesis, we know that Z satisfies ϕ for this
particular assignment, namely,

Z ⊨ f ◦ι ϕ. (80)

We can use this and the fact that f is an isometric embedding to show X ⊨ι ϕ. There
are two very similar cases.

If ϕ = X ⊢ x = y, then we can show ι(x) = ι(y) because we know f ι(x) = f ι(x)
by (80) and f is injective.

If ϕ = X ⊢ x =ε y, then we have dY(ι(x), ι(y)) = dZ( f ι(x), f ι(y)) ≤ ε, where the
equation holds because f is an isometry and the inequation holds by (80).

Corollary 94. Let f : Y→ Z be an isometric embedding between L-spaces. If Z belongs to
GMet, then so does Y. In particular, all the subspaces of a generalized metric space are also
generalized metric spaces.156 156 Both parts are immediate. The first follows from

applying (79) to all ϕ in E, the set of quantitative
equations defining GMet. The second follows from
Footnote 153.

Examples 95. Corollary 94 can be useful to identify some properties of L-spaces that
cannot be modelled with quantitative equations. Here are a couple of examples.
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1. A binary relation R ⊆ X × X is called total if for every x ∈ X, there exists y ∈ X
such that (x, y) ∈ R. Let TotRel be the full subcategory of BSpa containing only
total relations, is TotRel equal to some GMet(B, E) for some E? The existential
quantification in the definition of total seems hard to simulate with a quantitative
equation, but this is not a guarantee that maybe several equations cannot interact
in such a counter-intuitive way.

In order to prove that no set E defines total relations (i.e. X ⊨ E if and only if
the relation corresponding to dX is total), we can exhibit an example of a B-space
that is total with a subspace that is not total. It follows that TotRel is not closed
under taking subspaces, so it is not a category of generalized metric spaces by
Corollary 94.157 157 Actually, we have only proven that TotRel cannot

be defined as a subcategory of BSpa with quantita-
tive equations. There may still be some convoluted
way that TotRel ∼= GMet(L, E) for some cleverly
picked L and E (L could even be equal to B).

Let N be the B-space with carrier N and B-relation dN(n, m) = ⊥ ⇔ m = n + 1
(the corresponding relation is the graph of the successor function). This space
satisfies totality, but the subspace obtained by removing 1 is not total because
dN(0, n) = ⊥ only when n = 1.

This same example works to show that surjectivity158 cannot be defined via 158 This condition is symmetric to totality: R ⊆ X ×
X is surjetive if for every y ∈ X, there exists x ∈ X
such that (x, y) ∈ R.

quantitative equations.

2. A very famous condition to impose on metric spaces is completeness (we do
not need to define it here). Just as famous is the fact that R with the Euclidean
distance from Examples 75 is complete but the subspace Q is not. Thus, com-
pleteness cannot be defined via quantitative equations.159 159 Still with the caveat that the category of complete

metric spaces might still be isomorphic to some
GMet.Since isometric embeddings correspond to subspaces, one might think that they

are the monomorphisms in GMet. Unfortunately, they are way more restrained.
Any nonexpansive map that is injective is a monomorphism. To prove this, we rely
on the existence of a space F1 that (informally) can pick elements.

Proposition 96. There is a generalized metric space F1 on the set {∗} such that for any
other space X, any function f : {∗} → X is a nonexpansive map F1→ X.160 160 In category theory speak, F1 is a representing ob-

ject of the forgetful functor U : GMet→ Set.
Proof. In LSpa, F1 is also easy to find, its L-relation is defined by dF1(∗, ∗) = ⊤.
Indeed, any function f : {∗} → X is nonexpansive because ⊤ is the maximum
value dX can assign, so

dX( f (∗), f (∗)) ≤ ⊤ = dF1(∗, ∗).

Unfortunately, this L-space does not satisfy some quantitative equations (e.g. reflex-
ivity x ⊢ x =⊥ x), so we cannot guarantee it belongs to GMet.

Recall that 1 is a generalized metric space on the same set {∗}, but with d1(∗, ∗) =
⊥. However, in many cases, 1 is not the right candidate either because if every func-

tion f : {∗} → X is nonexpansive from 1 to X, it means dX(x, x) = ⊥ for all x ∈ X,
which is not always the case.161 161 It is equivalent to satisfying reflexivity.

We have two L-spaces at the extremes of a range of L-spaces {({∗}, dε)}ε∈L, where
the L-relation dε sends (∗, ∗) to ε. At one extreme, we are guaranteed to be in GMet,
but we are too restricted, and at the other extreme we might not belong to GMet.
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Getting inspiration from the intermediate value theorem, we can attempt to find a
middle ground, namely, a value ε ∈ L such that setting dF1(∗, ∗) = ε yields a space
that lives in GMet but is not too restricted.

One thing that could make sense is to take the biggest value (and hence the least
restricted space that is in GMet). Formally, let

dF1(∗, ∗) = sup {ε ∈ L | ({∗}, dε) ⊨ E} .

It remains to check that any function f : {∗} → X is nonexpansive from F1 to
X. Consider the image of f seen as a subspace of X. By Corollary 94, it belongs
to GMet and hence satisfies E. Moreover, it is clearly isomorphic to the L-space
({∗}, dε) with ε = dX( f (∗), f (∗))162, which means that L-space satisfies E as well 162 The isomorphism is the restriction of f to its im-

age.(by Corollary 94 again). We conclude that dX( f (∗), f (∗)) ≤ dF1(∗, ∗).
As a bonus, one could check that for any ε ∈ L that is smaller than dF1(∗, ∗),

({∗}, dε) also belongs to GMet.

Proposition 97. In GMet, monomorphisms are precisely the injective nonexpansive maps.

Proof. We show a morphism f : X→ Y is monic if and only if it is injective.
(⇒) Let x, x′ ∈ X be such that f (x) = f (x′), and identify these elements with

functions x, x′ : {∗} → X sending ∗ to x and x′ respectively. By Proposition 96,
we get two nonexpansive maps x, x′ : F1 → X. Post-composing by f , we find that
f ◦ x = f ◦ x′ because they both send ∗ to f (x) = f (x′). By monicity of f , we find
that x = x′ (as morphisms and hence as elements of X). We conclude that f is
injective.

(⇐) Suppose that f ◦ g = f ◦ h for some nonexpansive maps g, h : Z → X.
Applying the forgetful functor U : GMet→ Set, we wind that f ◦ g = f ◦ h also as
functions. Since U f is injective, Ug and Uh must be equal, and since U is faithful,
we obtain g = h.

It remains to give a categorical characterisation of isometric embeddings. This
will rely on a well-known163 abstract notion that we define here for completeness. 163 While it is well-known, especially to those famil-

iar with fibered category theory, it does not usually
fit in a basic category theory background.Definition 98 (Cartesian morphism). Let F : C → D be a functor, and f : A → B

be a morphism in D. We say f is a cartesian morphism if for every morphism
g : X → B and factorization Fg = F f ◦ u, there exists a unique morphism û : X → A
with Fû = u satisfying x = f ◦ û. This can be summarized (without the quantifiers)
in the diagram below.

X FX

A B FA FB

u

F f

Fg
û

f

g F

Example 99 (in GMet). Let us unroll this in the important case for us, when F is the
forgetful functor U : GMet → Set. A nonexpansive map f : A → B is a cartesian
morphism if for any nonexpansive map g : X → B, all functions u : X → A
satisfying g = f ◦ u are nonexpansive maps u : X→ A.164 164 We do not bother to write û as it is automati-

cally unique with underlying function u because U
is faithful.

https://en.wikipedia.org/wiki/Intermediate_value_theorem
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We can turn this around into an equivalent definition. The morphism f : A→ B
is cartesian if for all functions u : X → A, f ◦ u being nonexpansive from X to
B implies u is nonexpansive from X to A.165 In [AHS06, Definition 8.6], f is also 165 If f ◦ u is nonexpansive from X to B, then it is

equal to g for some g : X→ B which yields u : X→
A being nonexpansive.

called an initial morphism.

Proposition 100. A morphism f : A→ B in GMet is an isometric embedding if and only
if it is monic and cartesian.

Proof. By Proposition 97, being an isometric embedding is equivalent to being a
monomorphism (i.e. being injective) and being an isometry. Therefore, it is enough
to show that when f is injective, isometry⇐⇒ cartesian.

(⇒) Suppose f is an isometry, and let u : X → A be a function such that f ◦ u
is nonexpansive from X → B, we need to show u is nonexpansive from X → A.166 166 We use the definition of cartesian in Example 99.

This is true because

∀x, x′ ∈ X, dA(u(x), u(x′)) = dB( f u(x), f u(x′)) ≤ dX(x, x′),

where the equation follows from f being an isometry and the inequation from
nonexpansiveness of f ◦ u.

(⇐) Suppose f is cartesian. For any a, a′ ∈ A, we know that dB( f (a), f (a′)) ≤
dA(a, a′), but we still need to show the converse inequality. Let X be the subspace
of B containing only the image of a and a′ (its carrier is { f (a), f (a′)}), and g : X →
A be the function sending f (a) to a and f (a′) to a′.167 Notice that f ◦ g is the 167 We use the injectivity of f here.

inclusion of X in B which is nonexpansive. Because f is cartesian, g must then be
nonexpansive from X to A which implies

dA(a, a′) = dA(g( f (a)), g( f (a′))) ≤ dX( f (a), f (a′)) = dB( f (a), f (a′)).

We conclude that f is an isometry.

Corollary 101. If the composition A
f−→ B

g−→ C is an isometric embedding, then f is an
isometric embedding.168 168 With the characterisation of Proposition 100, this

abstractly follows from [AHS06, Proposition 8.9].
We give the concrete proof anyways.Proof. It is a standard result that if g ◦ f is monic then so is f . Even more standard

for injectivity. Now, if g ◦ f is an isometry, we have for any a, a′ ∈ X,169 169 The equation holds by hypothesis that g ◦ f is an
isometry and the two inequations hold by nonex-
pansiveness of g and f .dA(a, a′) = dC(g f (a), g f (a′)) ≤ dB( f (a), f (a′)) ≤ dA(a, a′),

and we conclude that dA(a, a′) = dB( f (a), f (a′)), hence f is an isometry.

The question of concretely characterizing epimorphisms is harder to settle. We
can do it for LSpa, but not for an arbitrary GMet.

Proposition 102. In LSpa, a morphism f : X→ A is epic if and only if it is surjective.

Proof. (⇒) Given any a ∈ A, we define the L-space Aa to be A with an additional
copy of a with all the same distances. Namely, the carrier is A + {∗a}, for any
a′ ∈ A, dAa(∗a, a′) = dA(a, a′) and dAa(a′, ∗a) = dA(a′, a), and all the other distances
are as in A.170 170 This construction is already impossible to do in

an arbitrary GMet. For instance, if A satisfies x =0
y ⊢ x = y, then Aa does not because dAa (a, ∗a) = 0.
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If f : X → A is not surjective, then pick a ∈ A that is not in the image of f , and
define two functions ga, g∗ : A → A + {∗a} that act as identity on all A except a
where ga(a) = a and g∗(a) = ∗a. By construction, both ga and g∗ are nonexpansive
from A to Aa and ga ◦ f = g∗ ◦ f . Since ga ̸= g∗, f cannot be epic, and we have
proven the contrapositive of the forward implication.

(⇐) Suppose that g, g′ : A → B are morphisms in LSpa such that g ◦ f = g′ ◦ f .
Apply the forgetful functor to get Ug ◦U f = Ug′ ◦U f , and since U is epic in Set,
we know Ug = Ug′. Since U is faithful, we conclude that g = g′.171 171 This direction works in an arbitrary GMet.

Proposition 103. Let f : A → B be a split epimorphism between L-spaces and ϕ a
quantitative equation, then

A ⊨ ϕ =⇒ B ⊨ ϕ. (81)

Proof. Let g : B→ A be the right inverse of f (i.e. f ◦ g = idB) and X be the context
of ϕ.172 Any nonexpansive assignment ι : X→ B yields an assignment g ◦ ι : X→ A. 172 Note that we already argued in Footnote 154 that

the right inverse implies g is an isometric embed-
ding. Then we could conclude by Corollary 94, and
the proof given is essentially the same.

By hypothesis, we know that A satisfies ϕ for this particular assignment, namely,

A ⊨g◦ι ϕ. (82)

Now, we can apply Lemma 87 with f : A → B to obtain B ⊨ f ◦g◦ι ϕ, and since
f ◦ g = idB, we conclude B ⊨ι ϕ.

Remark 104. It is not true in general that the image f (A) of a nonexpansive function
f : A→ B (seen as a subspace of B) satisfies the same equations as A. For instance,
let A contain two points {a, b} all at distance 1 ∈ [0, ∞] from each other (even from
themselves). The [0, ∞]-relation is symmetric so it satisfies for all ε ∈ [0, 1]. y =ε

x ⊢ x =ε y. If we define B with the same points and distances except dB(a, b) = 0.5,
then the identity function is nonexpansive from A to B, but its image is B in which
the distance is not symmetric.

Coproducts

Proposition 105. The category GMet has an initial object.

Proof. The initial object ∅ in LSpa is the empty set with the only possible L-relation
∅× ∅ → L (the empty function). The empty function f : ∅ → X is always nonex-
pansive from ∅ to X because (50) is vacuously satisfied.

Just as for the terminal object, since GMet is a full subcategory of LSpa, it suffices
to show ∅ is in GMet to conclude it is initial in this subcategory. We do this by
showing ∅ satisfies absolutely all quantitative equations, and in particular those of
E. This is easily done because when X is not empty,173 there are no assignments 173 The context of a quantitative equation cannot be

empty because the latter must come with some ele-
ments of the context.

X→ ∅, so ∅ vacuously satisfies X ⊢ x = y and X ⊢ x =ε y.

Proposition 106. The category LSpa has all coproducts.

Proof. We just showed the empty coproduct (i.e. the initial object) exists. Let {Ai =

(Ai, di) | i ∈ I} be a family of L-spaces indexed by a non-empty set I. We define the
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L-space A = (A, d) with carrier A = ⨿i∈I Ai (the disjoint union of the carriers) and
L-relation d : A× A→ L defined by:174 174 In words, A is the L-space with a copy of each Ai

where the L-relation sends two points in different
copies to ⊤ (intuitively, the copies are completely
unrelated inside A).∀a, b ∈ A, d(a, b) =

di(a, b) ∃i ∈ I, a, b ∈ Ai

⊤ otherwise
.

For each i ∈ I, we have the evident coprojection κi : Ai → A sending a ∈ Ai

to its copy in A, and it is nonexpansive because, by definition, for any a, b ∈ Ai,
d(a, b) = di(a, b).175 We show A with these coprojections is the coproduct ⨿i∈I Ai. 175 Each coprojection is even an isometric embed-

ding.Let X be some L-space and fi : Ai → X be a family of nonexpansive maps. By the
universal property of the coproduct in Set, there is a unique function [ fi] : A → X
satisfying [ fi] ◦ κi = fi for all i ∈ I. It remains to show [ fi] is nonexpansive from A
to X. For any a, b ∈ A, suppose a belongs to Ai and b to Aj for some i, j ∈ I, then
we have176 176 The first equation holds by definition of [ fi ] (it

applies fi to elements in the copy of Ai). The in-
equation follows by nonexpansiveness of fi which is
equal to f j when i = j. The second equation is by
definition of d.

dX([ fi](a), [ fi](b)) = dX( fi(a), f j(b)) ≤

di(a, b) i = j

⊤ otherwise
= d(a, b).


