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Preface

The study of higher dimensional categories has mostly been developed in
the globular form of 2-categories, n-categories, w-categories and their weak
versions. Here we study a different form: double categories, n-tuple cate-
gories and multiple categories, with their weak and lax versions.

We want to show the advantages of this form for the theory of adjunctions
and limits. Furthermore, this form is much simpler in higher dimension,
starting with dimension three where weak 3-categories (also called tricate-
gories) are already quite complicated, much more than weak or lax triple
categories.

This book can be used as a textbook for graduate and postgraduate
studies, and as a basis for self-study and research. Notions are presented
in a ‘concrete’ way, with examples and exercises; the latter are endowed
with a solution or hints. Part I, devoted to double categories, starts at
basic category theory and is kept at a relatively simple level. Part II, on
multiple categories, can be used independently by a reader acquainted with
2-dimensional categories.
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Introduction

0.1 Strict and weak double categories

The first part of this study of higher dimensional categories presents the
2-dimensional case of double categories.

Double categories, in the strict sense, were introduced by C. Ehresmann,
in 1962 [Eh1]. Weak double categories, also called pseudo double categories,
began to be studied much later, in our series [GP1]-[GP4] (with R. Paré,
as many other joint papers cited below). Other references are given below,
and in Chapter 3.

We outline below some advantages of weak double categories, with re-
spect to the better-known (and more particular) structure of bicategories,
in the domain of adjunctions and limits. This requires some elementary
notions of ordinary category theory, and the beginning of 2-dimensional
categorical structures.

Essentially, we shall see that in a general adjunction of dimension 2, the
left adjoint is colax and the right one is lax: they cannot be composed,
but can be viewed as a vertical and a horizontal arrow in a suitable double
category, where their adjunction lives.

0.2 A problem with adjunctions

Working for simplicity in the category Ab of abelian groups, let us start
from the exponential law for a fixed abelian group A. It is a well-known
adjunction, between two endofunctors F,G coming from the symmetric
monoidal closed structure of Ab

F: Ab = Ab : G, FX)=X®A, GY)=Hom(4,Y), (0.1)

n: 1 — GF, nX: X - Hom(A, X ® A), (nX(z))(a) =z ®a,
e: FG — 1, eY: Hom(A,Y)® A—=Y, (¢Y)(h®a)=h(a).
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The left adjoint F' preserves all colimits (and is right exact) while the
right adjoint G preserves all limits (and is left exact).

The reader probably knows that the category Ab can be embedded in a
larger category RelAb, of abelian groups and relations, extensively used in
Homological Algebra (and reviewed in Section 2.1). A relation u: A~ B of
abelian groups is a subgroup of the cartesian product Ax B, and will often
be denoted by a dot-marked arrow. A homomorphism A — B is identified
with the relation formed by its graph in A x B.

This category of relations has an elementary structure of (locally or-
dered) 2-category, where a 2-cell u < u’ between two relations u,u’': A< B
amounts to an inclusion of subgroups of Ax B.

We shall see (in Section A4 of Appendix A) that the functors F, G can be
extended to the 2-category of relations, obtaining — respectively — a colaz
functor and a lax functor RelAb — RelAb

F' =Rel(F) (colazx), G' = Rel(G) (lax). (0.2)

This means that the composition of relations is only preserved up to
comparisons, which here are just inequalities

F'(vu) < F'(v).F'(u), G’ (v).G'(u) < G'(vu). (0.3)

Composing F’ and G’ would destroy their comparisons, and extending
the previous adjunction makes problems.

(Let us note that F” is a functor if and only if F is exact, which means
that A is torsion free. Similarly G’ is a functor if and only if G is exact,
which means that A is a free abelian group.)

0.3 The extension

This problem can be overcome if we ‘amalgamate’ Ab and RelAb in a
two-dimensional structure, the double category RelAb of abelian groups,
homomorphisms and relations (note the different notation for Rel), which
has:

- the same objects as these two categories (namely the abelian groups),

- horizontal arrows as in Ab, with its identities and composition,

- vertical arrows as in RelAb, with its identities and composition,

- double cells a: (u § v) as below

/

!/

A
iv gu < vf. (0.4)
B
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(This structure is flat, i.e. each double cell is determined by its bound-
ary. This has the advantage of simplicity and the drawback of not being
‘representative’ of general double categories, in the same way as the sim-
ple 2-categorical structure of RelAb given by the ordering u < v is not
representative of general 2-categories.)

Double cells have a horizontal composition « | S, determined by compo-

sition in Ab, and a vertical composition — , determined by composition in

RelAb. Both laws are categorical, and relzted by the interchange property.
The 2-category RelAb is ‘vertically’ embedded in the double category, as
the substructure whose horizontal arrows are identities.

Now the functors F,G can be extended to the double categories of re-
lations, obtaining — respectively — a colax and a lax double functor (which
also extend the previous F’,G")

F" = Rel(F): RelAb — RelAb (colax),

0.5
G" = Rel(G): RelAb — RelAb (laz). (05)

This means that the horizontal composition (of homomorphisms) is pre-
served, while the vertical composition (of relations) is preserved up to com-
parisons, as above, in (0.3). We still cannot (reasonably) compose lax and
colax double functors, because their comparisons have conflicting direc-
tions.

Yet the whole adjunction can be extended, within the theory of double
categories: the unit 7 and counit € of the extended adjunction are double
cells (with X = A = RelAb)

ledd

X —— X A9 x
SR N N
A —>X A—— A
GII

which — leaving apart obvious set-theoretical problems of size — live in a
crucial (strict) double category Dbl of weak double categories, with lax
double functors as horizontal arrows, colax double functors as vertical ar-
rows and suitably defined double cells (see Section 4.2). The triangular
equations take the form

= 1lpr,  eln = egn,

where the double cell 1 is a horizontal identity, and e a vertical one.
Double adjunctions compose, by pasting units and counits in Dbl. For
F 4 G and H 4 K, the unit and the counit of the composed adjunction
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are obtained as follows

X = X =— X B X~ A %X
SRR I B
A =— A -¢= X B -k> A — A (0.7)
A B B L
H H H
v © S A

g

Moving to a different subject, it is also interesting to note that the double
category RelAb has all (horizontal) double limits and colimits (see Chap-
ter 5), while the 2-category RelAb even lacks products and a terminal
object.

As an elementary example, every family of relations u;: A;< B; (i € I)
has an obvious cartesian product

u: I_LAz —-> HiBi,

(0.8)
u={((a;), (b;)) ] (as, b;) € u;, for all i € I}.
Its projections m; are double cells
A —Psoq, A =114,
ui < iu (0.9)
B —— B B =1LB,

qi

and satisfy the adequate universal property with respect to the horizontal
composition of double cells. The reader will note that the vertical arrows
are playing a role of higher dimensional objects, with morphisms 7;: u — w;
given by double cells.

As we shall see in Chapter 4, the existence of functorial double products
in RelAb essentially means that:

- the ordinary category of horizontal arrows (i.e. Ab) has products,

- the ordinary category of vertical arrows and double cells (with horizontal
composition) has products,

- the two procedures agree with respect to vertical domain, codomain and
identities.

Loosely speaking, the sense of what we are doing by replacing a 2-
category of relations with the corresponding double category can be
outlined as follows: arrows which are too relazed (like relations, spans,
profunctors, ...) or too strict (like adjoint pairs) to have good universal
properties can be studied in a (possibly weak) double category, correlating
them with more ordinary ‘main’ arrows: those ‘which preserve the struc-
ture’. We use thus the main direction to study the secondary one.
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0.4 Other examples

For a reader acquainted with the bicategories SpanSet and CospSet, of
spans or cospans of sets, we can outline another example of an adjunction
which only makes sense within weak double categories. It will be dealt
with in 4.5.6.

First, we amalgamate the category Set with the bicategory SpanSet,
forming a weak double category SpanSet.

Objects, horizontal arrows and their composition are as in Set. A vertical
arrow u: X - Y isaspan X <~ U — Y of sets. Acella: (u g v) is a natural
transformation u — v of these diagrams and amounts to the commutative
right diagram below (in Set), with a middle arrow ma: U — V completing
the boundary (note that this structure is not flat)

X o X/
f /
X — X u ,
'y ' /ma /v
) o v U —V (010)

Y — Y’ SpanSet

The horizontal composition «|8 of o with a second cell f: v — w is a
composition of natural transformations. The vertical composition of spans
is computed with pullbacks, as in the bicategory SpanSet, and keeps its
comparisons (as double cells with trivial horizontal arrows); this composi-
tion is extended to double cells, in the obvious way.

Similarly we amalgamate the category Set with the bicategory CospSet,
forming a weak double category CospSet, with the following double cells

; x L. x
X — X' W\ N\

Woa v Uty (0.11)
Y — Y w A S
Y —— Y’ CospSet

Now, there is a pair of ‘double functors’ which are the identity on objects
and horizontal arrows

F: SpanSet = CospSet : G. (0.12)

F acts on spans by pushout, and is colax; G acts on cospans by pullback,
and is lax. Again we do not want to compose them, but we do have a colax-
lax adjunction, whose unit and counit are double cells in Dbl, as in (0.6).

If we come back to the bicategories SpanSet and CospSet, we can view
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them as ‘vertical’ weak double categories, with trivial horizontal arrows.
The previous adjunction can be restricted, because its unit and counit are
trivial on the objects, but still lives in the double category Dbl, and cannot
be interpreted in an n-category, strict or weak: any globular structure, of
any dimension, can only have one sort of arrows.

Also here the weak double categories SpanSet and CospSet have all
double limits and colimits, while the bicategories SpanSet and CospSet
lack most limits and colimits.

0.5 Higher dimensional categories

The rest of this introduction is more technical and addressed to readers
with some knowledge of higher category theory.

Weak double categories can be extended to weak multiple categories,
keeping one strict direction, now called the transversal direction, or di-
rection 0, and allowing infinitely many weak ones, called the geometric
directions, indexed by an integer ¢ > 0. The 2-dimensional truncation of a
weak multiple category is a weak double category, with a strict direction
i = 0 and one geometric direction ¢ = 1.

Let us recall that the (more studied) globular form of 2-categories, n-
categories and w-categories is based on a (possibly truncated) globular set.
This is a system X of sets X,, and mappings, called faces (9%, with o = +)
and degeneracies (e)

o o o«
Xo = X1 = X, ... Xo1 = X, .. (0.13)
€ e e
that satisfy the globular relations: 0%9~ = 9%0%, 9% = id.

Here we are interested in a different, more general setting, that was in-
troduced by Charles Ehresmann before the globular one and studied with
Andrée C. Ehresmann [Eh2, BaE, EE]: the multiple form of double cate-
gories, n-tuple categories and multiple categories, based on a multiple set.

The latter is a system X of sets X;, ;,, . 4,, indexed by multi-indices
i={i1,...,4,} C N. It has faces and degeneracies, fori; < ... <1i; < ... <1,
and a =+

o0~ X,

15

teein. T Kip i esia

(0.14)
€51 X. z e 4 Xil,...,inv

J D1 yeenylgyennsin

that satisfy the multiple relations (see 6.2.2). A multiple category has
categorical compositions in each direction ¢ > 0

r+iy  (v,y€ X i€i, 0fx=0;y), (0.15)
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and units e;(x) (for x € X; and i ¢ i).

This structure has been generalised to weak and lax multiple categories
in [GP6]-[GP10]. The transversal direction ¢ = 0 still has a categorical
composition, but the geometric directions ¢ > 0 are only assumed to have
a weakly categorical composition, up to invertible transversal cells (see
Section 6.4). In the partially lax case of a chiral multiple category (see
6.4.8) the geometric composition laws in directions ¢ < j have a directed
interchange x;; which is not assumed to be invertible.

An important 3-dimensional example is the chiral triple category SC(Set)
= 5:Ci(Set) of spans and cospans of sets (in Section 6.6), where:

- O-directed arrows are mappings, 1-directed arrows are spans of sets, 2-
directed arrows are cospans,

- 12-cells are spans of cospans, or — equivalently — cospans of spans,
- 012-cells are natural transformations of the latter.

More generally, for a category C with pullbacks and pushouts, we have
a chiral n-tuple category S,C,(C) for p,¢ > 0 and n = p+ ¢ + 1: its
geometric i-directed arrows are spans of C for 0 < ¢ < p and cospans of
C for p < i < p+ ¢q. There are various infinite-dimensional extensions,
like the ‘unbounded’ chiral multiple category S_,,Cs(C), with indices in
Z (see 6.6.4).

Other examples can be found in Section 6.4: for instance the weak mul-
tiple category Span(C) of cubical spans over a category C with pullbacks,
or the weak multiple category Cosp(C) of cubical cospans over a category
C with pushouts (see 6.4.6).

Let us remark that the weak forms of multiple categories are much sim-
pler than the globular ones, because here all the weak composition laws are
associative, unitary and interchangeable up to invertible cells in the strict
0-indexed direction; the latter are strictly coherent. This aspect has been
discussed in [GP5], where we showed how the ‘simple’ comparisons of a
weak triple category (of cubical type) produce — via some associated cells
— the ‘complicated’ ones of a tricategory.

Cubical categories can be viewed as a particular case of multiple cate-
gories, based on the geometry of cubical sets, well-known from Algebraic
Topology; see 6.2.3, 6.3.1 and Appendix B.

0.6 Outline

Each chapter has its own introduction; here we only give a brief synopsis.
The first chapter is a review of the theory of ordinary (1-dimensional)
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categories. Chapter 2 briefly introduces 2-dimensional categorical struc-
tures, from ordered categories to 2-categories and bicategories (the weak
version of 2-categories).

Chapter 3 deals with the general 2-dimensional categorical structures,
namely strict and weak double categories, together with their ‘functors’
and ‘transformations’. Various examples are given.

Chapters 4 and 5 are about adjunctions and limits for weak double cat-
egories, and are based on [GP1, GP2].

In Chapter 6 we define weak and lax multiple categories; our main form,
partially lax, is called a chiral multiple category. Various examples are
given. We also consider intercategories, a laxer form of multiple cate-
gory introduced in [GP6, GP7] that comprises, besides weak and chiral
multiple categories, other 3-dimensional structures studied in the litera-
ture, like duoidal categories, Gray categories, Verity double bicategories
and monoidal double categories.

Chapter 7, about adjunctions in chiral multiple categories, is essentially
based on [GP11]. Chapter 8 deals with monads and algebras in the same
context, and is mostly new. The main non-standard results deal with the
idempotent case. Multiple limits are only considered here in particular
cases; the reader is referred to [GP10], for a general study.

Appendix A is about applications of weak double categories in Homo-
logical Algebra (from [G8]), and Algebraic Topology (from [G2]-[G4]).

Appendix B is about symmetries in cubical sets and weak cubical cate-
gories, from [G2, G3, G5]. It also gives a detailed construction of Cosp(C)
as a weak cubical category, in Section B4.

Finally, Appendix C contains solutions or hints for the exercises of the
text. However, the solution can follow the exercise when it is important in
itself or to be used later on.

0.7 Literature

Higher dimensional category theory began with (strict) double and multiple
categories, introduced and studied by C. Ehresmann and A.C. Ehresmann
[Eh1, Eh2, Eh3, Eh4, BaE, EE], since 1962.

Higher category theory in globular form is studied in many papers and
books; we only cite: Bénabou [Bel] for bicategories; Gordon, Power and
Street [GPS] for tricategories; Leinster [Le] for weak w-categories.

Infinite dimensional weak and lax multiple categories have been intro-
duced in [GP8]-[GP10]; some of their variations (possibly of cubical type)
have also been treated in the following papers (among others):
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- Gray categories: [Gral],

- Verity double bicategories: [Ve],

- weak double categories: [GP1, GP2, GP3, GP4, GP11, GP13],

- strict cubical categories: [AIBS],

- weak and lax cubical categories: [G2]-[G6], [G10],

- duoidal (or 2-monoidal) categories: [AM, BKkS, St5],

- monoidal double categories: [Shu],

- weak triple categories and 3-dimensional intercategories: [GP6, GP7],

- links between the cubical and the globular setting, in the strict case:
[BroM, AIBS],

- the same in the weak 3-dimensional case: [GP5].

0.8 Notation and conventions

The symbol C denotes weak inclusion. For an n-tuple (i1, ..., 45 ), the symbol
(i1, ...,ij, ...;4n) means that the term i; has been taken out.

As usual, the symbols N, Z, R, C denote the sets of natural, integral, real
or complex numbers; N* is the subset of the positive integers.

Categories, 2-categories and bicategories are generally denoted as A, B...;
double categories as A,B...; multiple categories (of dimension three or
higher) as A, B...

A section, subsection or part marked with * deals with some topic out
of the main line of this book, and is generally addressed to readers having
some knowledge of the subject.
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1

A review of basic category theory

This review of the basic notions of category theory is also meant to fix our
terminology and notation for this domain — including ordered sets in 1.1.6
and Section 1.4. Other points are deferred to Chapter 2, when dealing with
‘globular’ 2-dimensional aspects, or to Appendix A, for abelian categories
and their generalisations.

This chapter is elementary and reasonably self-contained, but rather
compressed for a beginner in category theory. A reader of this book will
probably have some knowledge and practice of this domain; with a good
knowledge one can skip this chapter altogether and only check the termi-
nology when necessary. Some proofs are referred to books devoted to this
field, like those of Mac Lane [M4], Borceux [Bol, Bo2], Addmek, Herrlich
and Strecker [AHS], or the author [G11].

The foundational setting we use is based on standard set theory, as-
suming the existence of Grothendieck universes. This aspect, presented in
1.1.3, will be mostly left as understood.

1.1 Categories

Categories were introduced by Eilenberg and Mac Lane [EiM] in 1945,
together with the other basic terms of category theory.

1.1.1 Some examples

Loosely speaking, a category C consists of objects and morphisms to-
gether with a (partial) composition law: given two ‘consecutive’ morphisms
f: X > Y and g: Y — Z we have a composed morphism ¢gf: X — Z.
This partial operation is associative (whenever composition is legitimate)
and every object X has a unit, written as 1x or idX, which acts as an
identity for legitimate compositions.

13



14 A review of basic category theory

The prime example is the category Set of sets (and mappings), where:
- an object is a set,

- the morphisms f: X — Y between two given sets X and Y are the
(set-theoretical) mappings from X to Y,

- the composition law is the usual composition of mappings.
The following categories of structured sets and structure-preserving map-
pings (with the usual composition) will often be used and analysed:
- the category Top of topological spaces (and continuous mappings),
- the category Ab of abelian groups (and their homomorphisms),
- the category Gp of groups (and homomorphisms),
- the category Mon of monoids, i.e. unitary semigroups (and homomor-
phisms),
- the category Rng of rings, understood to be associative and unitary (and
homomorphisms),
- the category CRng of commutative rings (and homomorphisms),

- the category RMod of left modules on a fixed unitary ring R (and ho-
momorphisms),

- the category Ord of ordered sets (and monotone mappings),
- the category pOrd of preordered sets (and monotone mappings),
- the category Set, of pointed sets (and pointed mappings),

- the category Top, of pointed topological spaces (and pointed continuous
mappings),
- the category Ban of Banach spaces and continuous linear mappings,

- the category Ban; of Banach spaces and linear weak contractions (with
norm < 1).

A homomorphism of a ‘unitary’ algebraic structure, like a monoid or a
unitary ring, is always assumed to preserve units.

For Set, we recall that a pointed set is a pair (X, zg) consisting of a set X
and a base-element zy € X, while a pointed mapping f: (X,z0) = (Y, y0)
is a mapping f: X — Y such that f(x¢) = yo. Similarly, a pointed topo-
logical space (X,xg) is a space with a base-point, and a pointed map
f: (X,z9) = (Y,yo) is a continuous mapping from X to Y such that
f(xo) = yo. The reader may know that the category Top, is important
in Algebraic Topology: for instance, the fundamental group 71 (X, xg) is
defined for a pointed topological space.

For the category Ban (and Ban;) it is understood that we have chosen



1.1 Categories 15

either the real or the complex field; when using both one can write RBan
and CBan.

When a category is named after its objects alone (e.g. the ‘category of
groups’), this means that the morphisms are understood to be the obvious
ones (in this case the homomorphisms of groups), with the obvious com-
position law. Different categories with the same objects are given different
names, like Ban and Ban;.

1.1.2 Definition
A category C consists of the following data:
(a) a set ObC, whose elements are called objects of C,

(b) for every pair X,Y of objects, a set C(X,Y) (called a hom-set) whose
elements are called morphisms (or maps, or arrows) of C from X to Y and
denoted as f: X —» Y,

(c) for every triple X, Y, Z of objects of C, a mapping of composition
C(X,Y)xC(Y,Z) = C(X, 2), (f,9) =~ gf,

where gf is also written as g.f.
These data must satisfy the following axioms.

(i) Associativity. Given three consecutive arrows, f: X - Y, g: Y — Z
and h: Z — W, one has: h(gf) = (hg)f.

(ii) Identities. Given an object X, there exists an endomap e: X — X
which acts as an identity whenever composition makes sense; in other words
if f: X' — X and g: X — X", one has: ef = f and ge = g. One shows,
in the usual way, that e is determined by X it is called the identity of X
and written as 1x or idX.

We generally assume that the following condition is also satisfied.

(iii) Separation. For X, X' Y, Y’ objects of C, if C(X,Y)NC(X",Y') # 0
then X = X’ and Y =Y.

In other words, every map f: X — Y has a well-determined domain
Dom f = X and codomain Cod f = Y. Concretely, when constructing a
category, one can forget about condition (iii), since one can always satisfy
it by redefining a morphism f: X — Y as a triple (X,Y; f) where f is a
morphism from X to Y in the original sense (possibly not satisfying the
Separation axiom).

MorC denotes the set of all the morphisms of C, which is the disjoint
union of all hom-sets. Two morphisms f,g are said to be parallel when
they have the same domain and the same codomain.
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If C is a category, the opposite (or dual) category, written as C°P, has
the same objects as C, reversed arrows and reversed composition g * f

CP(X,Y)=C(Y,X), g*f=fg idPX=idX.  (L.1)

Every topic of category theory has a dual instance, which comes from the
opposite category (or categories). A dual notion is generally distinguished
by the prefix ‘co-’.

A set X can be viewed as a discrete category: its objects are the elements
of X, and the only arrows are their (formal) identities; here X°P = X.

As usual in category theory, the term graph will be used to denote a
simplified notion, with objects (or vertices) and morphisms (or arrows)
f:x — y, but no assigned composition nor identities. (This is called
a directed multigraph in graph theory.) A morphism of graphs preserves
objects, arrows, domain and codomain. A reflexive graph is an intermediate
notion, where every object x has an assigned endomorphism idz: z — x.

Every category has an underlying reflexive graph, and an underlying
graph.

1.1.3 Small and large categories

We will not insist on set-theoretical foundations. Yet some care is necessary,
to avoid speaking of ‘the set of all sets’, or requiring of a category properties
of completeness that are ‘too large for its size’ (as we shall see at the end
of 1.3.6).

We assume the existence of a (Grothendieck) universe U, which is fixed
throughout. Its axioms, listed in 1.1.9, say that we can perform inside it
the usual operations of set theory. Its elements are called small sets (or
U-small sets, if necessary).

A category is understood to have objects and arrows belonging to this
universe, and is said to be small if its set of morphisms belongs to U, large
if it does not (and is just a subset of /). Note that in a small category
the set of objects also belongs to U (since it is a subset of U in bijective
correspondence with an element of I/, namely the set of all identities). More
generally, a category C is said to have small hom-sets if all its sets C(X,Y")
are small; in this case C is small if and only if ObC is.

The ‘usual’ categories of structured sets are large categories with small
hom-sets, like the category Set of small sets, and all the examples listed in
1.1.1. In such cases we speak — as usual — of the ‘category of sets’, and so
on, leaving understood the term ‘small’ as referred to these structured sets.

*While developing the theory, one often needs a hierarchy of universes.
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For instance, Cat will denote the category of small categories and functors,
introduced in 1.2.1. In order to view the (large) categories Set, Top, Ab,
etc. as objects of a similar structure we should assume the existence of
a second universe V, with U € V, and use the category Caty of V-small
categories. In a more complex situation one may need a longer chain of
universes. Most of the time these points will be left as understood.*

1.1.4 Isomorphisms, monomorphisms and epimorphisms

In a category C a morphism f: X — Y is said to be invertible, or an
isomorphism, if it has an inverse, i.e. a morphism ¢g: ¥ — X such that
gf = 1x and fg = 1y. The latter is uniquely determined by f; it is called
the inverse of f and written as f~'. In the categories listed in 1.1.1 this
definition gives the usual isomorphisms of the various structures — called
‘homeomorphisms’ in the case of topological spaces.

The isomorphism relation X =Y between objects of C (meaning that
there exists an isomorphism X — Y) is an equivalence relation.

A morphism f: X — Y is said to be a monomorphism, or mono, or
monic, if it satisfies the following cancellation property: for every pair
of maps u,v: X’ — X such that fu = fv one has u = v. Dually, the
morphism f: X — Y is said to be an epimorphism, or epi, or epic, if it
satisfies the dual cancellation property: for every pair of maps u,v: ¥ — Y’
such that uf = vf one has u = v.

An arrow — always denotes a monomorphism, while —» stands for an
epimorphism. (Subobjects and quotients will be dealt with below.)

Every isomorphism is mono and epi. A category is said to be balanced
if the converse holds: every morphism which is mono and epi is invertible.
For instance, Set (resp. Ab) is a balanced category: it is easy to verify
that monos, epis and isos coincide with the injective, surjective and bijec-
tive mappings (resp. homomorphisms). Top is not balanced: its monos,
epis and isos coincide with the injective maps, or surjective maps, or home-
omorphisms. Mon is not balanced, as proved by the inclusion N — Z
(of additive monoids), which is mono and epi. In fact epimorphisms in
Mon have no elementary characterisation, and ‘regular epimorphisms’ are
more important (see 1.3.2); on the other hand, in the ‘usual categories of
structured sets’ the monomorphisms ‘generally’ coincide with the injective
morphisms (see 1.2.9 for a precise result in this sense).

A groupoid is a category where every map is invertible; it is interesting
to recall that this structure was introduced before categories, by H. Brandt
in 1927 [Bra]. *The fundamental groupoid of a space X is an important
structure, that contains all the fundamental groups 7 (X, x), for x € X.*
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Suppose now that we have, in a category C, two maps m: A — X and
p: X — A such that pm = idA. It follows that m is a monomorphism
(called a section, or a split monomorphism), while p is an epimorphism
(called a retraction, or a split epimorphism); A is said to be a retract of X.

In Set a retract of a set X # () is any non-empty subset — a statement
equivalent to the axiom of choice. In Ab retracts coincide with direct
summands. There is no elementary characterisation of retracts in Top (see
1.2.3).

Let f: X = Y and g: Y — Z be consecutive maps in a category. The
following facts are well known, and easy to prove (with (a*) dual to (a),
and so on):

(a) if f and g are both mono, gf is also mono; if gf is mono, f is also,
(a*) if f and g are both epi, gf is also epi; if gf is epi, g is also,

(b) if f and ¢ are both split mono, gf is also; if gf is a split mono, f is
also,

(b*) if f and g are both split epi, gf is also; if gf is a split epi, g is also,
(c) if f is a split mono and an epi, then it is invertible,

(c¢*) if f is a split epi and a mono, then it is invertible.

A family of morphisms f;: X — Y; (¢ € I) with the same domain is
said to be jointly mono if for every pair of maps u,v: X’ — X such that
fiu = f;v (for all indices i) one has u = v. Dually a family f;: X; - Y
is jointly epi if for all u,v: Y — Y such that uf; = vf; (for all 7) one has
U= .

1.1.5 Subcategories, quotients and products of categories
(a) Let C be a category. A subcategory D is defined by assigning:
- a subset ObD C ObC, whose elements are called objects of D,

- for every pair of objects X, Y of D, a subset D(X,Y) C C(X,Y), whose
elements are called morphisms of D from X to Y,

so that the following conditions hold:

(i) for every pair of consecutive morphisms of D, their composite in C
belongs to D,

(ii) for every object of D, its identity in C belongs to D.

D, equipped with the induced composition law, is then a category.

One says that D is a full subcategory of C if, for every pair of objects
X,Y of D, we have D(X,Y) = C(X,Y), so that D is determined by
assigning its subset of objects. One says that D is a wide subcategory of C
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if it has the same objects, so that D is determined by assigning its subset
of morphisms (closed under composition and identities). For instance, Ab
is a full subcategory of Gp while Ban; is a wide subcategory of Ban. The
only full and wide subcategory of a category is the total one.

(b) A congruence R = (Rxy) in a category C consists of a family of equiv-
alence relations Rxy in each set of morphisms C(X,Y’), that is consistent
with composition:

(iii) if f Rxy f' and gRyz ¢, then gf Rxz¢'f’.

The quotient category D = C/R has the same objects of C and D(X,Y)
= C(X,Y)/Rxy; in other words, a morphism [f]: X — Y in D is an
equivalence class of morphisms X — Y in C. The composition is induced
by that of C, which is legitimate because of condition (iii): [g].[f] = [9f]-

For instance, the homotopy relation f ~ f’ in Top is a congruence of cat-
egories (examined in Section A5). The quotient category hoTop = Top/ ~
is called the homotopy category of topological spaces, and is important in
Algebraic Topology. Plainly, a continuous mapping f: X — Y is a homo-
topy equivalence (i.e. there exists a continuous mapping g: ¥ — X such
that gf ~ idX and fg ~ idY) if and only if its homotopy class [f] is an
isomorphism of hoTop.

(c) If C and D are categories, one defines the product category CxD. An
object is a pair (X,Y) where X is in C and Y in D. A morphism is a pair
of morphisms

(f,9): (X,Y) = (X"Y'), (feC(X,X'), geD(Y)Y")), (1.2)

and its composition with (f/,¢"): (X', Y’) = (X", Y"”) is component-wise:
(f'.9")-(f,9)=(f"f.d'9)

Similarly one defines the product [I C; of a family of categories indexed
by a small set.

1.1.6 Preorders and categories

We use the following terminology for orderings. A preorder relation x < x’
is reflexive and transitive. An order relation, generally written as x < a2/,
is also anti-symmetric: if x < 2’ < z then z = 2.

The category of ordered sets and increasing mappings (the order preserv-
ing ones, also called monotone) will be written as Ord, while we write as
pOrd the category of preordered sets and monotone mappings.

An order relation is said to be total if for all x,2’ we have z < 2’ or

2’ < x. (An ordered set is often called a ‘partially ordered set’, abbreviated
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to ‘poset’, to mean that its order is not assumed to be total. Accordingly,
the reader can find the notation Pos instead of Ord.)

A preordered set X has an associated equivalence relation x ~ z’ defined
by the conjunction: < z’ and 2’ < x. The quotient X/~ has an induced
order: [z] < [z]if z < 2.

If X is a preordered set, X°P is the opposite one (with reversed preorder).
If a € X, the symbols | a and Ta denote the downward and upward closed
subsets of X generated by a

la={ze X |z <a}, ta={z e Xl|a <z} (1.3)

In a preordered set, the greatest lower bound (resp. least upper bound)
of a subset A is written as inf A or A A (resp. sup A or VA). The same
notation is used for an indexed family (x;).

A preordered set X will often be viewed as a category, where the objects
are the elements of X and the set X (x,2’) contains precisely one (formal)
arrow if © < 2’ (which can be written as (z,2’): * — 2’), and no arrow
otherwise. Composition and units are (necessarily)

(2, 2").(z,2) = (x,2"), ide = (z,x).

All diagrams in these categories commute. Two elements x,z’ are iso-
morphic objects if and only if z ~ 2.

In particular, each ordinal defines a category, written as 0,1, 2, ... Thus, 0
is the empty category; 1 is the singleton category, i.e. the discrete category
on one object 0; 2 is the arrow category, with two objects and precisely one
non-identity arrow, 0 — 1.

We are also interested in the formal-span category V and the formal-
cospan category A = VP  which are also defined by (partially) ordered
sets

V: 01—1 A 00—+ 1. (1.4)

Every hom-set Ord(X,Y) is canonically ordered by the pointwise order
relation, defined as follows for f,g: X - Y

f<g ifforall z € X we have f(z) < g(z) inY. (1.5)

1.1.7 Subobject and quotients

Let A be an object of the category C. A subobject of A is defined as an
equivalence class of monomorphisms, or better as a selected representative
of such a class.
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(The first definition, as an equivalence class, is common in category the-
ory, but the second is what is normally used in concrete categories of struc-
tured sets. Moreover, when working with the restriction of morphisms to
subobjects, one is forced to shift to the second setting — even in the abstract
theory.)

More precisely, given two monos m, n with values in A, we say that m < n
if there is a (uniquely determined) morphism u such that m = nu. We say
that m and n are equivalent, or m ~ n, if m < n < m, which amounts to
the existence of a (unique) isomorphism u such that m = nu.

In every class of equivalent monos with codomain A, precisely one is
selected and called a subobject of A; in the class of isomorphisms we always
choose the identity 1 4. The subobjects of A in C form the (possibly large)
ordered set Sub(A), with maximum 14; here, the induced order m < n is
also written as m < n. (Equalisers and kernels will always be chosen as
subobjects, see 1.3.1 and 1.8.2.)

Set, Ab, Gp have a canonical choice of subobjects, based on the inclu-
sion mappings m: X C A of subsets and subgroups; for Top we are more
interested in ‘regular subobjects’, see 1.3.1.

Epimorphisms with a fixed domain A are dealt with in a dual way. Their
preorder and equivalence relation are also written as p < ¢ (meaning that p
factorises through ¢) and p ~ q. A quotient of A is a selected representative
of an equivalence class of epimorphisms with domain A; they form the
ordered set Quo(A), with maximum 14; again the induced order is also
written as p < ¢. (Coequalisers and cokernels will always be chosen as
quotients.)

The category C is said to be well powered (resp. well copowered) if all its
sets Sub(A) (resp. Quo(A)) are small, as is often the case with categories
of (small) structured sets.

Duality of categories turns subobjects of C into quotients of C°P, pre-
serving their order.

1.1.8 A digression on mathematical structures and categories

When studying a mathematical structure with the help of category theory,
it is crucial to choose the ‘right’ kind of structure and the ‘right’ kind of
morphisms, so that the result is sufficiently general and ‘natural’ to have
good properties with respect to the goals of our study — even if we are
interested in more particular situations.

The following remarks use some elementary notions that will be reviewed
later, but are generally well known.
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(a) A first point to be kept in mind is that the isomorphisms of the cate-
gory (i.e. its invertible arrows) should indeed preserve the structure we are
interested in, or we risk of studying something different from our purpose.

As a trivial example, the category T of topological spaces and all map-
pings between them has little to do with Topology: an isomorphism of T
is any bijection between topological spaces. Indeed T is equivalent to the
category of sets (as we shall see in 1.2.5), and is a modified way of looking
at the latter.

Less trivially, the category M of metric spaces and continuous mappings
misses crucial properties of metric spaces, since its invertible morphisms
need not preserve completeness: e.g. the real line is homeomorphic to any
non-empty open interval. In fact M is equivalent to the category of metris-
able topological spaces and continuous mappings, and can be replaced with
the latter. A ‘reasonable’ category of metric spaces should be based on
Lipschitz maps, or — more particularly — on weak contractions, so that its
isomorphisms (bi-Lipschitz or isometric bijections, respectively) do preserve
metric properties, like being complete or bounded.

(b) Other points will become clearer below. For instance, the category Top
of topological spaces and continuous mappings is a classical framework
for studying topology. Among its good properties there is the fact that
all categorical limits and colimits (studied in Section 1.3) exist, and are
computed as in Set, then equipped with a suitable topology determined
by the structural maps. (As we shall see, this is a consequence of the
fact that the forgetful functor Top — Set has a left and a right adjoint,
corresponding to discrete and chaotic topologies.) Hausdorff spaces are
certainly important, but it is ‘often’ better to view them in Top, as their
category is less well behaved: colimits exist, but are not computed as in
Set.

*(c) Many category theorists would agree with Mac Lane, saying that even
Top is not sufficiently good (cf. [M4], Section VIL8), because it is not
a cartesian closed category (see 2.2.4), and prefer — for instance — the
category of compactly generated spaces; however, researchers interested in
Homotopy Theory and Algebraic Topology might be satisfied with the fact
that the standard interval [0, 1] (with its cartesian powers) is exponentiable
in Top.*

(d) It is a common feature of Mathematics to look for the natural framework
where certain properties should be studied: for instance, many properties of
ordinary polynomials with real coefficients can be examined in general poly-
nomial rings, or in more general algebras. Besides yielding more general
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results, the natural framework gives a deeper comprehension of what we
are studying.

Category theory makes a further step in this sense. For instance, cate-
gories of modules are certainly important, but — since Buchsbaum’s
Appendiz [Bu2] and Grothendieck’s paper [Gt] — a consistent part of Ho-
mological Algebra finds its natural framework in abelian categories and
their generalisations (see Appendix A). Similarly, the categories of struc-
tured sets can be viewed as (particular) concrete categories (see 1.2.3), and
categories of algebras as monadic categories (see 1.6.5).

In other words, when studying a certain ‘class’ of categories, we can look
for a structural definition including this class and abstracting its crucial
properties, instead of some more or less general way of constructing the
important examples we want to study.

(e) Artificial exclusions ‘most of the time’ give categories of little interest
and poor properties, like the category of non-abelian groups, or non-empty
semigroups. The latter case needs some further comment.

The reader may know that, in Universal Algebra, a ‘variety of algebras’
includes all the algebraic structures of a given signature, satisfying a given
set of equational axioms (under universal quantifiers): e.g. all groups, or
all rings; but not all fields, because multiplicative inverses for non-zero
elements cannot be given by a ‘general’ unary operation satisfying some
universal equations.

Here a variety of algebras will mean a category of objects defined in this
way, with their homomorphisms. We do not follow the convention that
the underlying set should be non empty, as commonly assumed in Univer-
sal Algebra (cf. Gritzer [Grl]) — with a few exceptions like Cohn’s book
[Coh]. This convention has unlucky consequences for any theory without
constants (or zeroary operations), like that of semigroups: for instance, two
subalgebras of an algebra need not have a meet (as subalgebras).

For a reader with some knowledge of categorical limits and colimits, dealt
with in Section 1.3, we can add that a variety of algebras (in the present
sense) has all limits and colimits, while the category of non-empty semi-
groups lacks pullbacks and an initial object, precisely because we have ar-
tificially taken out some solutions. Other comments about free semigroups
and monadicity can be found in 1.6.6(e).

(f) Finally, the solution of a universal problem, like categorical products
and sums, completely depends on the category where we are considering
it, as the following examples — and many others — make evident.

- The categorical sum Z + Z in Ab is the direct sum Z&Z, i.e. the free
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abelian group on two generators. In Gp we get the free product Z x Z,
which is the free group on two generators.

- The categorical product {*}x{*} in Set is the singleton. We shall see that
in the category RelSet of sets and relations this product has two elements
(Exercise 2.1.4(c)), while in the category S of sets and partial mappings it
has three elements (by (2.10)).

1.1.9 *Grothendieck universes

For the interested reader, we recall the definition of a universe as given
n [M4], Section 1.6. It is a set U satisfying the following (redundant)
properties:

(i) x € uw € U implies x € U,

(ii) w,v € U implies that the sets {u, v}, (u,v), uxv belong to U,

(iii) z € U implies that Px and Ux belong to U,

(iv) the set N of finite ordinals belongs to i,

(v) if f: z — y is a surjective mapping with x € i and y C U, then y € U.
Here Pz is the set of subsets of z and Uz = {y |y € 2 for some z € }.

1.2 Functors and natural transformations

Well-behaved mappings F': C — D between categories are called ‘functors’.
Given two parallel functors F,G: C — D (between the same categories)
there can be ‘second-order arrows’ ¢: F' — G, called ‘natural transforma-
tions’ (and functorial isomorphisms when they are invertible).

‘Category’, ‘functor’ and ‘natural transformation’ are the three basic
terms of category theory, since the very beginning of the theory in [EiM].
It is interesting to note that only the last term is taken from the common
language: one can say that Eilenberg and Mac Lane introduced categories
and functors because they wanted to formalise the natural transformations
that they were encountering in algebra and algebraic topology (as remarked
in [M4], at the end of Section 1.6). Much in the same way as a general
theory of continuity (a familiar term for a familiar notion) requires the
introduction of topological spaces (a theoretical term for a more abstract
notion).

A reader acquainted with basic homotopy theory can take advantage
of a formal parallelism, where spaces correspond to categories, continuous
mappings to functors, homotopies of mappings to invertible natural trans-
formations, and homotopy equivalence of spaces to equivalence of categories.
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This analogy is even deeper in the domain of Directed Algebraic Topology,
where directed homotopies need not be reversible and correspond to natural
transformations; see [G7).

1.2.1 Functors
A (covariant) functor F': C — D consists of the following data:

(a) a mapping Fy: ObC — ObD, whose action is generally written as
X — F(X),

(b) for every pair of objects X, X’ in C, a mapping
Fxx: C(X,X') = D(F(X), F(X')),

whose action is generally written as f — F(f).
Composition and identities must be preserved. In other words:
(i) if f, g are consecutive maps of C then F(gf) = F(g).F(f),
(ii) if X is an object of C then F(idX) = id(F(X)).
Given a second functor G: D — E, one defines in the obvious way the

composed functor GF: C — E. This composition is associative and has
identities: the identity functor of each category

idC: C — C, X=X fef (1.6)

An isomorphism of categories is a functor F': C — D which is invertible,
i.e. it admits an inverse G: D — C; this means a functor such that GF =
idC and F'G = idD. Obviously, the functor F' is an isomorphism if and
only if all the mappings Fy and F'x x+ considered above are bijective. Being
isomorphic categories is an equivalence relation, written as C = D.

Categories linked by an obvious isomorphism are often perceived as ‘the
same thing’. For instance, Ab is isomorphic to the category ZMod of
modules on the ring of integers; the various equivalent ways of defining
topological spaces give rise to isomorphic categories that are nearly never
distinguished.

A functor between two preordered sets, viewed as categories (see 1.1.6),
is the same as a (weakly) increasing function, i.e. a preorder-preserving
mapping.

A contravariant functor F: C --» D can be defined as a covariant functor
C° — D.

A functor on two variables is an ordinary functor F': CxD — E defined
on the product of two categories. Fixing an object Xy in C we have a
functor F(Xg,—): D — E; and symmetrically.
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Cat will denote the category of small categories and their functors. (Its
2-dimensional structure, including the natural transformations, will be ex-
amined in 1.2.4 and Section 2.3.)

A functor 1 — C amounts to an object of C, while a functor 2 — C ‘is’
a morphism of C. A functor 2x2 — C is a commutative square in C. A
functor V — C (see 1.1.6) is a span X + U = Y (from X to Y); a functor
AN—=Cisacospan X - U <Y, from X toY.

More generally, a diagram in C can be formally defined as a functor
S — C defined on a small category, the ‘shape’ of the diagram. Every
diagram defined on a preordered set is commutative.

1.2.2 Forgetful and structural functors
(a) Forgetting structure, or part of it, yields various examples of functors
between categories of structured sets, like the following obvious instances

Top — Set, Rng — Ab — Set. (1.7)

These are called forgetful functors, and often denoted by the letter U,
which refers to the underlying set, or underlying abelian group, and so on.

(b) A subcategory D of C yields an inclusion functor D — C, which we
also write as D C C. For instance, Ab C Gp and Ban; C Ban. These
functors forget properties, rather than structure.

(¢) A congruence R in a category C yields a projection functor P: C —
C/R, which is the identity on objects and sends a morphism f to its
equivalence class [f]. For instance we have the projection functor Top —
hoTop = Top/ ~.

(d) A product category C = I1C; has projection functors P;: C — C;.
(e) If C has small hom-sets (see 1.1.3), there is a functor of morphisms, or
hom-functor:
Mor: C°?x C — Set,
g-—.f: C(X,Y) - C(X',Y"), U guf,

for f: X'’ > X andg: Y — Y’ in C.

Fixing one of these variables one gets a ‘representable functor’ (covariant
or contravariant on C), see 1.2.7.
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1.2.3 Faithful and full functors

For a functor F: C — D let us consider again the mappings (of sets,
possibly large):

Fxx: C(X,X') — D(F(X), F(X")), f—=F(f). (1.9)

F is said to be faithful if all these mappings are injective (for X, X’ in
C). F is said to be full if all of them are surjective.

An isomorphism of categories is always full and faithful (and bijective on
objects). The inclusion functor D — C of a subcategory is always faithful;
it is full if and only if D is a full subcategory of C. A projection functor
P: C — C/R is always full (and bijective on objects).

There are some obvious preservation and reflection properties of functors:

(a) every functor preserves commutative diagrams, isomorphisms, retracts,
split monos and split epis,

(b) a faithful functor reflects monos and epis (i.e. if F(f) is mono or epi,
then f is also) and commutative diagrams,

(c) a full and faithful functor reflects isomorphisms, split monos and split
epis.

Applying point (a), a common way of proving that a topological subspace
A C X is not a retract (in Top) is to find a functor F': Top — Ab such
that the associated homomorphism F(A) — F(X) is not a split mono in
Ab. In this way, any homology functor H,, can be used to prove that the
n-sphere S™ is not a retract of the euclidean space R™t1.

As a formal alternative to the notion of ‘category of structured sets’ (ei-
ther vague or formalised in different, complicated ways) a concrete category
is defined as a category A equipped with a faithful functor U: A — Set,
called its forgetful functor. As a consequence U reflects monos and epis,
but need not preserve them. Concrete categories are extensively studied in
[AHS].

Even Set°P can be made concrete over Set (by the contravariant functor
of subsets, see 1.4.5). But it is interesting to note that the homotopy
category hoTop cannot be made concrete, as was proved by P. Freyd [Fr2,
Fr3].

More generally, a category A equipped with a faithful functor U: A — C
is said to be concrete over C.
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1.2.4 Natural transformations

Given two functors F,G: C — D between the same categories, a natural
transformation ¢: F — G (or ¢: F — G: C — D) consists of the following
data:

- for each object X of C a morphism ¢X: FX — GX in D (called the
component of p on X and also written as px),

so that, for every arrow f: X — X’ in C, we have a commutative square
in D (naturality condition of ¢ on f)

rx 25 ax

o) os PXLE(f) = GUNwX = ¢/, (110)

FX — GX'
eX'

whose diagonal will be written as ¢(f), when useful (see (2.25)).

In particular, the identity of a functor F: C — D is the natural trans-
formation idF': F' — F, with components (idF)X = id(FX).

For instance if F': RMod — R Mod is the identity functor, every scalar
A in the centre of the (unitary) ring R gives a natural transformation
A: F — F whose component AA: A — A on the left module A is the
multiplication by A. It is easy to prove that every natural transformation
F — F is of this type (working on its component on R, as a module).
This bijective correspondence shows that the category R Mod determines
the centre of the ring R, in a structural way, and leads to considering the
relation of Morita equivalence of rings (see 1.2.6).

A natural transformation ¢: F' — G often comes out of a ‘canonical
choice’ of a family (pX: FX — GX)x of morphisms, but these two aspects
should not be confused. There are canonical choices of such families that
are not natural, and natural transformations deduced from the axiom of
choice.

Natural transformations have a vertical composition, written as ¥y (or

(UR%)
cC-—*.D () (X) = vX.pX: FX — HX. (1.11)

There is also a whisker composition, or reduced horizontal composition, of
natural transformations with functors, written as Ko H (or KopoH, when
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useful to distinguish compositions)

F
c 2. c » D LD (1.12)
G

KoH: KFH — KGH,  (KoH)(X') = K(o(HX")).

An isomorphism of functors, or natural isomorphism, or functorial iso-
morphism, is a natural transformation ¢: F — G which is invertible with
respect to vertical composition. It is easy to see that this happens if and
only if all the components X are invertible in D. The inverse is written
as ¢~ 1: G — F. Isomorphism of (parallel) functors is an equivalence rela-
tion, written as F' = G. (The old term ‘natural equivalence’, for a functorial
isomorphism, can be confusing and will not be used.)

This 2-dimensional structure of Cat, where natural transformations play
the role of 2-dimensional arrows between functors, will be further analysed
in Section 2.3 (including the full horizontal composition of natural trans-
formations, which extends the reduced one).

Replacing the category C with a graph I' (see 1.1.2), one can consider
a natural transformation ¢: F — G: T' — D between two morphisms of
graphs defined on I', with values in a category.

1.2.5 Equivalence of categories

Isomorphisms of categories have been recalled in 1.2.1. More generally, an
equivalence of categories is a functor F': C — D which is invertible up to
functorial isomorphism, i.e. there exists a functor G: D — C such that
GF 2idC and FG =idD. The functor G can be called a quasi inverse of
F.

An adjoint equivalence of categories is a coherent version of this notion;
namely it is a four-tuple (F,G,n,¢€) where
-F:C— D and G: D — C are functors,
-n:1dC — GF and €: FG — idD are isomorphisms of functors,
-Fn=(eF)"': F - FGF, nG = (Ge)™': G — GFG.

(The direction of n and ¢ is written above as in the general case of an
adjunction F' - G, where these transformations need not be invertible and
their direction is substantial: see Section 1.5.)

The following conditions on a functor F': C — D are equivalent, forming
a very useful characterisation of the equivalence of categories:

(i) F is an equivalence of categories,
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(ii) F' can be completed to an adjoint equivalence of categories (F,G,n,¢),
(iii) F is faithful, full and essentially surjective on objects.

The last property means that: for every object Y of D there exists some
object X in C such that F(X) is isomorphic to Y in D. The proof of the
equivalence of these three conditions requires the axiom of choice: see [M4],
Section V.4, or [G11], Theorem 1.5.8.

One says that the categories C,D are equivalent, written as C ~ D, if
there exists an equivalence of categories between them (or, equivalently, an
adjoint equivalence of categories). This is indeed an equivalence relation,
as can be easily proved (directly or from the previous characterisation).

1.2.6 Ezxercises and complements (Equivalences and skeletons)

Equivalences of categories play an important role in the theory of cate-
gories, as highlighted by the following points. We recall that solutions and
hints for the exercises can be found in Appendix C, excluding the obvious
ones and some of the exercises marked with a *.

(a) Prove that the category of finite sets (and mappings between them)
is equivalent to its full subcategory of finite cardinals, which is small and
therefore cannot be isomorphic to the former.

(b) Prove that a category C is equivalent to the singleton category 1 if
and only if it is non-empty and indiscrete, i.e. each hom-set C(X,Y") has
precisely one element.

(c¢) Prove that Top is a subcategory of a category equivalent to Set.

(d) Extending point (c), prove that any category A concrete over C (by
a faithful functor U: A — C) can be embedded as a subcategory of a
suitable category equivalent to C.

*(e) The reader may know that two rings are said to be Morita equivalent
if their categories of modules are equivalent. This is an important notion
in ring theory, that becomes trivial in the domain of commutative rings:
in fact, if two rings are Morita equivalent one can easily prove that their
centres are isomorphic (using what we have seen in 1.2.4); but — quite inter-
estingly — commutative rings can be Morita equivalent to non-commutative
ones, like their rings of square matrices. Thus, studying left modules on
any matrix ring M, (R) is equivalent to studying real vector spaces.

(f) A category is said to be skeletal if it has no pair of distinct isomorphic
objects. Prove that every category has a skeleton, i.e. an equivalent skeletal
category. The latter can be obtained by choosing precisely one object in
every class of isomorphic objects.
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(g) We have described above a skeleton of the category of finite sets that
can be constructed without any choice, even though we do need the axiom
of choice to prove that the inclusion of this skeleton has a quasi inverse.
In a different way, a preordered set X has a natural skeleton formed by
a quotient, the associated ordered set X/~ (see 1.1.6); again we need the
axiom of choice to prove that the projection X — X/~ has a quasi inverse.

(h) Prove that two categories are equivalent if and only if they have iso-
morphic skeletons. Loosely speaking, this says that an equivalence of cat-
egories amounts to multiplying or deleting isomorphic copies of objects,
even though there may be no canonical way of doing this.

(i) Modifying functors. Starting from a functor F': C — D and an arbitrary
family of isomorphisms px: F(X) — G(X) in D (for X in C), prove that
there is precisely one way of extending these data to a functor G: C — D
and a natural transformation ¢: F' — G (obviously invertible).

1.2.7 Functor categories and categories of presheaves

Let S be a small category. For any category C we write as CS, or Cat (S, C),
the category whose objects are the functors F': S — C and whose mor-
phisms are the natural transformations ¢: F — G: S — C, with vertical
composition; it is called a functor category. (Writing Cat(S, C) is an abuse
of notation, unless C too is small.) More generally one can consider the
category CU of graph-morphisms F': I' — C, where I' is a small graph: see
1.2.4.

In particular the arrow category 2 (with one non-identity arrow 0 — 1)
gives the category of morphisms C? of C, where a map (fo, f1): u — v is
a commutative square of C; these are composed by pasting squares, as in
the right diagram below

fi fo

Ap LS By Ay — By %, Co
ul \Lv ui \Lv lw (1.13)
Al flz Bl A1 Hfl Bl *>91 Cl

A natural transformation ¢: F' — G: C — D can be viewed as a functor
Cx2 — D or equivalently as a functor C — D?2. (This accounts for the
notation ¢(f) in (1.10).)

We now assume that the category C has small hom-sets. (Note that this
is also true of CS.)

A functor F': C — Set is said to be representable if it is isomorphic to
a functor C(Xp,—): C — Set, for some object Xy in C. This object is
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said to represent F', via an isomorphism C(Xg, —) — F. In such a case the
Yoneda Lemma describes the natural transformations F© — G, for every
functor G: C — Set, and proves that the object X is determined by F,
up to isomorphism (see 1.2.8). It is easy to verify that a representable
functor F': C — Set preserves monomorphisms.

A functor S°? — C, defined on the opposite category S°P, is also called
a presheaf of C on the (small) category S. They form the presheaf category
Psh(S,C) = C5™, and S is called the site of the latter.

S is canonically embedded in Psh(S, C), by the Yoneda embedding

Y:S— CS”, Y (i) = S(—,i): S°P — Set, (1.14)

which sends every object i to the corresponding representable presheaf Y (7).

Taking as S the category A of finite positive ordinals (and increasing
maps), one gets the category SmpC = CA™ of simplicial objects in C,
and — in particular — the well-known category SmpSet of simplicial sets.
Here the Yoneda embedding sends the positive ordinal {0,...,n} to the
simplicial set A™, freely generated by one simplex of dimension n. Multiple
sets will be studied in Chapter 6, cubical sets in Appendix B.

A reader interested in categories of sheaves is referred to [MaM, Bo3].

1.2.8 Yoneda Lemma

(a) Let F,G: C — Set be two functors, with F' = C(Xg, —). The canonical
mapping

y: Nat(F,G) — G(Xo), y(p) = (pXo)(idXo), (1.15)
from the set of natural transformations ¢: F — G to the set G(Xy) is a
bijection.
(b) The functor G: C — Set is represented by the object Xy of C if and
only if there exists some xo € G(Xo) such that:

(*) for every X in C and every x € G(X) there is a unique morphism
f: Xo = X such that G(f)(xo) = x.

This morphism f is an isomorphism if and only if G is also represented
by X, via z € G(X).

Proof The crucial point is that, for every natural transformation ¢: F' — G
and every morphism f: Xy — X, the naturality of ¢ on f gives

(@X)(f) = G(N(y(p)) € GX). (1.16)
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(a) One constructs the mapping
vy G(Xo) — Nat(F,G),

(1.17)
(¥'(2))x: C(Xo, X) = GX,  (f: Xo—= X) = (Gf)(2),

and verifies that the mappings y,y’ are inverse to each other, using (1.16).

(b) Giving a natural transformation ¢: F' — G is equivalent to giving an
element o € G(Xj), linked by the previous bijection: zy = y(¢) and
© = y'(x9). Moreover ¢ is an isomorphism if and only if each component
pX: FX — GX is a bijection of sets, which amounts to condition (*),
taking into account formula (1.16). O

1.2.9 Unaversal arrows

There is a general way of formalising ‘universal properties’, based on a
functor U: A — X and an object X of X.

A universal arrow from the object X to the functor U is a pair (A,n: X —
UA) counsisting of an object A of A and an arrow 1 of X, which is universal,
in the sense that every similar pair (B, f: X — UB) factorises uniquely
through (A, 7n): namely, there exists a unique map g: A — B in A such
that the following triangle commutes in X

X 15 UA

X lUg Ugn=f. (1.18)

UB

The pair (A,n) is then determined up to a unique isomorphism A — A’
of A.

Dually, a universal arrow from the functor U to the object X is a pair
(A,e: UA — X) consisting of an object A of A and an arrow ¢ of X
such that every similar pair (B, f: UB — X) factorises uniquely through
(A, ¢e): there exists a unique g: B — A in A such that the following triangle
commutes in X

UA —=> X

UgT / elUg=f. (1.19)

UB

A reader who is not familiar with this notion might begin by constructing
the universal arrow from a set X to the forgetful functor R Mod — Set,
using the free module A = @, ¢ x R generated by X. Or the universal arrow
from a set X to the forgetful functor Mon — Set, using the free monoid
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A =2, en X" of finite words on the alphabet X. Or, quite easily, from a
set X to the forgetful functor U: Set, — Set.

More generally, if U: A — Set is a concrete category (see 1.2.3), a
universal arrow (A,7n: X — UA) from the set X to the forgetful functor U
gives — by definition — the free A-object over X (which may exist or not,
of course). One can extend this terminology to any functor U: A — X
which is viewed, in a given context, as a ‘forgetful functor’, even if it is not
faithful.

In particular a functor U: A — Set is representable (see 1.2.7) if and
only if the singleton {*} has a free object A in A, so that

U = Set({+},U(-)) = A(4,-).

This property often holds in a concrete category, and ensures that U pre-
serves monomorphisms (and reflects them, if it is faithful).

Universal arrows compose: for a composed functor UV: B - A — X,
given
- a universal arrow (A,7: X — UA) from an object X to U,
- a universal arrow (B,(: A — V B) from the previous object A to V,

it is easy to verify that we have a universal arrow from X to UV constructed
as follows

(B,UCn: X — UA — UV(B)). (1.20)

As an example one can think of the composed forgetful functor Rng —
Mon — Set. The free ring on the set X can be constructed in two steps:
first the free monoid A on X (by finite words on this alphabet, or ‘non-
commutative monomials’, where zyx # z2y), and then the free ring on
this monoid (by Z-linear combinations of these monomials); the result is
the ring of ‘non-commutative polynomials’ with variables in X and integral
coefficients (like 2+ zyx — 322%y). A different (less effective) construction of
the ‘same’ ring can be obtained from the factorisation Rng — Ab — Set.
Ordinary polynomials can be similarly obtained working with categories of
commutative rings or commutative R-algebras.

Universal arrows for ‘two-dimensional categories’ are considered in 2.3.5.

1.3 Limits and colimits

The general notion of limit of a functor includes cartesian products and
equalisers (see 1.3.1), pullbacks (see 1.3.4) and the classical ‘projective
limits’. Dually, colimits comprise sums, coequalisers (see 1.3.2), pushouts
(see 1.3.4) and the classical ‘inductive limits’ (see [M4], Chapter IX).
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The construction of limits from products and equalisers is dealt with in
1.3.6; their description as universal arrows or by representable functors in
1.3.8. Their relationship with adjoints will be seen in 1.5.4(d), (e), with
terminal objects of comma categories in 1.5.7(b).

1.3.1 Products and equalisers

The simplest case of a limit, in a category C, is the product of a family
(X;)ier of objects, indexed by a small set I.

This is defined as an object X equipped with a family of morphisms
pi: X — X; (i € I), called (cartesian) projections, which satisfies the
following universal property

R lpi (1.21)

(i) for every object Y and every family of morphisms f;: Y — X, there
exists a unique morphism f:Y — X such that, foralli € I, p;f = f.

The map f is often written as (f;), by its components.

The product of a family need not exist. If it does, it is determined up to
a unique coherent isomorphism, in the sense that if Y is also a product of
the family (X;);e; with projections ¢;: ¥ — X, then the unique morphism
f: X — Y which commutes with all projections (i.e. ¢; f = p;, for all indices
i) is invertible. This follows easily from the fact that there is also a unique
morphism g: Y — X such that p;g = ¢;; moreover gf = idX (because
pi(gf) = pi(idX), for all 4) and fg =idY.

Therefore one speaks of the product of the family (X;), denoted as I1; X;,
or X;x..xX, in a finite case.

We say that a category C has products (resp. finite products) if every
family of objects indexed by a small set (resp. by a finite set) has a product
in C.

In particular the product of the empty family of objects ) — ObC means
an object X such that for every object Y there is a unique morphism
Y — X. The solution, if it exists, is called the terminal object of C and
can be written as T.

In Set, Top, Ab and Ord all products exist and are the usual cartesian
ones; the terminal object is the singleton (with the appropriate structure).
In the category X associated to a preordered set, the categorical product of
a family of points ; € X amounts to the greatest lower bound inf z;, while
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the terminal object amounts to the greatest element of X; notice that they
are determined up to the equivalence relation associated to our preorder,
and uniquely determined if X is an ordered set.

It is easy to prove that a category has finite products if and only if it
has binary products X7 x X5 and a terminal object. (Note that the unary
product of an object X always exists and is X; this is a trivial example of
an absolute limit, preserved by any functor.)

Products are a basic instance of a much more general concept recalled
below, the limit of a functor. Another basic instance is the equaliser of a
pair f,g: X — Y of parallel maps of C; this is (an object E with) a map
m: FE — X such that fm = gm and the following universal property holds:

m f
E > X — Y mze(l(fvg)v
AN Th I (1.22)
w N
AN
Z

(ii) every map h: Z — X such that fh = gh factorises uniquely through
m (i.e. there exists a unique map w: Z — E such that mw = h).

The equaliser morphism is necessarily a monomorphism, and is called
a reqular monomorphism. It is determined up to the equivalence relation
of monos with values in X (see 1.1.7). We will always choose the strictly
unique subobject that satisfies the given property (if it exists, of course).

A regular subobject is, by definition, an equaliser (of some pair of maps).
In Set (resp. Top, Ab), the equaliser of two parallel maps f,g: X — Y is
the embedding in X of the whole subset (resp. subspace, subgroup) of X
on which they coincide. It follows that in Set and Ab all subobjects are
regular (and can be identified with subsets or subgroups, respectively). In
Top the regular subobjects amount to inclusion of subspaces, while every
injective continuous mapping is a mono; here the ‘general subobjects’ are
less important than the regular ones. In the category X associated to a
preordered set two parallel maps z — 2’ always coincide and their equaliser
is the identity 1,.

The reader may also be interested to know that all subgroups are regular
subobjects in Gp (a non-trivial fact, see [AHS], Exercise TH), while a
subsemigroup need not be a regular subobject ([AHS], Exercise 71); in the
categories of algebraic structures the general subobjects are more important
than the regular ones.

Products in Cat have been considered in 1.1.5(c); the terminal object
is the singleton category 1. The equaliser of two functors F,G: C — D is
the subcategory of the items of C on which they coincide.
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1.3.2 Sums and coequalisers

As already mentioned in Section 1.1, every notion of category theory has
a dual notion.

The sum, or coproduct, of a family (X;);cr of objects of C is dual to their
product. Explicitly, it is an object X equipped with a family of morphisms
u;: X; — X (i € I), called injections, which satisfies the following universal

property:

x-Iovy
uT / (1.23)

Xi

(i) for every object Y and every family of morphisms f;: X; — Y, there
exists a unique morphism f: X — Y such that, for all i € I, fu; = f;.

The map f will be written as [f;], by its co-components.

Again, if the sum of the family (X;) exists, it is determined up to a
unique coherent isomorphism, and denoted as >-; X;, or X; + ...+ X, in a
finite case. The sum of the empty family is the initial object L: this means
that every object X has precisely one map 1 — X.

Sums in Set and Top are realised as disjoint unions, for instance as
follows

> X = U X;x{i}, (1.24)

(with open subsets given by arbitrary unions of open subsets of the sum-
mands, in the second case); the initial object is the empty set or space.

In Ab and RMod categorical sums are realised as ‘direct sums’ and
the initial object is the zero module. In the category X associated to a
preordered set the categorical sum of a family of points x; € X amounts to
the least upper bound sup z;, while the initial object amounts to the least
element of X. The initial object in Rng and CRng is the ring of integers.
*In Gp categorical sums are classically known as ‘free products’; in CRng
they are realised as tensor products over Z; in Rng the construction is
more complex.*

The coequaliser of a pair f,g: X — Y of parallel maps of C is a map
p: Y — C such that pf = pg and:

X — Y > C p:coeq(f,g),
g9 s
hJ« - (1.25)
P w
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(ii) every map h: Y — Z such that hf = hg factorises uniquely through p
(i.e. there exists a unique map w: C' — Z such that wp = h).

A coequaliser morphism is necessarily an epimorphism, and is called a
reqular epimorphism. Sums and coequalisers are particular instances of the
colimit of a functor (see 1.3.3).

A regular quotient is defined as a coequaliser (of some pair of maps); its
choice is determined by the choice of quotients (see 1.1.7). A regular quo-
tient in Set or Ab is the same as an ordinary quotient. In Top a regular
quotient amounts to the projection on a quotient space, while every sur-
jective continuous mapping is an epi. Regular quotients are the important
notion in Top, as well as in each variety of algebras.

In Cat a sum 2 C; of categories is their obvious disjoint union and the
initial object is the empty category 0. *The coequaliser of two functors
F,G: C — D is the quotient of D modulo the generalised congruence gen-
erated by this pair; the latter, as defined in [BBP], also involves equivalent
objects. One can avoid giving a ‘construction’ of the coequaliser category
(necessarily complicated) and just prove its existence by the Adjoint Func-
tor Theorem, that will be recalled in 1.5.4.*

A zero object of a category, often written as 0, is both initial and terminal.
This exists in R Mod, Gp, Set,, Top,,... but not in Set, Top, Cat,
Rng... (see 1.8.1). A category with zero object is said to be pointed.

1.3.3 Limats and colimits
Let T be a small category and X: 1 — C a functor, written in ‘index
notation’:

XlI—)C, Z*—>XZ, an—>(Xa:Xl-—>Xj), (126)

forieI=0bland a:i— jin L
A cone of X is an object A of C with a family of maps (f;: A — X,)ier
in C such that the following triangles commute, for a: ¢ — j in I

AT ox, Xo.fi = fi.
k iX“ (1.27)

X;

The limit of X: I — C is a universal cone (L, (u;: L — X;);es). This
means a cone of X such that every cone (A4, (f;: A — X;)icr) factorises
uniquely through the former; in other words, there is a unique map f: A —
L such that, for all i € I, u;f = f;. The solution need not exist; when it



1.8 Limits and colimits 39

does, it is determined up to a unique coherent isomorphism and the limit
object L is denoted as Lim (X).

The uniqueness part of the universal property amounts to saying that
the family u;: L — X; (i € I) is jointly mono (see 1.1.4). A cone of X that
satisfies the existence part of the universal property is called a weak limit;
of course such a cone is constrained in a weak way.

Dually, a cocone (A, (fi: X; — A)ier) of X satisfies the condition f;.X,
= f; for every a: i — j in I. The colimit of the functor X is a universal
cocone (L', (u;: X; — L')icr): the universal property says now that for
every cocone (A, (f;)) of X there exists a unique map f: L' — A such
that fu; = f; (for all 7). The colimit object is denoted as Colim (X'). The
uniqueness part of the universal property means that the family u;: X; —
L' is jointly epi. A cocone that satisfies the existence part of the universal
property is called a weak colimit.

As an interesting exercise, the reader can prove that the limit of any
functor I — Set exists, and can be constructed as the set of its cones with
vertex at the singleton set {x}.

1.3.4 Particular cases, pullbacks and pushouts

(a) The product I X; of a family (X;);c; of objects of C is the limit of the
corresponding functor X : I — C, defined on the discrete category whose
objects are the elements ¢ € I (and whose morphisms reduce to the formal
identities of the objects). The sum 2 X is the colimit of this functor X. In
particular the terminal (resp. initial) object of C is the limit (resp. colimit)
of the empty functor 0 — C.

We recall that the family of cartesian projections (p;) of a product is
jointly mono. These projections are ‘often’ epi but not necessarily: in Set
this fails whenever some of the factors X; are empty and others are not.
But the reader can easily show that, if C has a zero object (see 1.3.2), all
cartesian projections are split epi.

(b) The equaliser in C of a pair of parallel morphisms f, g: Xo — X7 is the
limit of the obvious functor defined on the category 0 = 1. The coequaliser
is the colimit of this functor.

(c) The pullback of a pair of morphisms f: Xg — X <+ X; :g with the
same codomain is the limit of the corresponding functor (defined on the
formal-cospan category 0 — ¢ < 1). This amounts to the usual definition:
an object A equipped with a span u;: A — X; (¢ = 0,1) which forms a
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commutative square with f and g, in a universal way:
f
% NG
B Zu-~ ) X (1.28)
u
A

that is, fup = gui, and for every span (B, vg, v1) such that fvg = gv; there
exists a unique map w: B — A such that upw = vg, uyw = v1. The span
(up,u1) is jointly mono.The pullback-object A is also called a fibred product
over X and written as Xg X x X1, or X0>.< X;. A pullback diagram is often
marked as above.

In the ordered set X the pullback of the diagram xy — x < x7 is the
meet xg A x1. Saying that X has pullbacks means that every upper-bounded
pair of elements has a meet.

In Set (resp. Top, Ab) the pullback-object can be realised as a subset
(resp. subspace, subgroup) of the product Xox X;:

A= {(20,71) € Xox X1 | f(z0) = g(21)}.

Generalising this construction, it is easy to prove that a category that
has binary products and equalisers also has pullbacks: A is constructed as
the equaliser of the maps fpg, gp1: Xgx X7 — X. On the other hand, the
product X x X; amounts to the pullback of Xy and X; over the terminal
object, when the latter exists.

If f = g, the pullback of the diagram (f, f) = (X — X < Xp) is called
the kernel pair of f. In Set, it can be realised as

{(z,2") € XoxXo| f(z) = f(a)},

and amounts to the equivalence relation associated to f. (But note that,
in any category, the equaliser of f and f is the identity of its domain.)

(d) Dually, the pushout of a span (f,g) = (Xo + X — X1) is the colimit of
the corresponding functor defined on the formal-span category 0 < ¢ — 1.
This amounts to an object A equipped with a cospan u;: X; — A (i =0,1)
which forms a commutative square with f and g, in a universal way:

X, —w: (1.29)

V
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that is, upf = w1g, and for every triple (B,vg,v1) such that vof = v1g
there exists a unique map w: A — B such that wug = vg, wu; = vy.

A category that has binary sums and coequalisers also has pushouts: A
is the coequaliser of two maps X — X; — Xy + X;.

The pushout-object A is also called a pasting over X and written as
Xo +x Xi. In Set this means a quotient of the sum Xy + X; modulo the
equivalence relation generated by identifying all pairs f(x), g(x) for x € X.
In Top a pasting X+ x X is constructed as in Set and equipped with the
quotient topology of the sum — a useful way of constructing constructing
or describing spaces (see Exercise 1.3.5(j)).

*The well known Seifert—van Kampen Theorem exhibits the fundamental
group of a space as a pushout of groups. R. Brown’s version generalises
this result, using fundamental groupoids [Brol, Bro2].*

1.3.5 Ezercises and complements (Pullbacks and pushouts)
The following facts are important and will often be used.

(a) Characterising monos. Prove that the following conditions on a mor-
phism f: X — Y are equivalent
(i) f is mono,
(ii) the left square below is a pullback (i.e. the kernel pair of f is (1,1)),
(iii) if the right square below is a pullback, then h = k,
(iv) if the right square below is a pullback, then h = k is invertible

f f

x Loy R S
ﬁ . j{f h"[ . Tf (1.30)

Note that these characterisations do not require the existence of pull-
backs in our category.
(b) Preimages. If the following square is a pullback and n is mono, so is m

x Loy
mT Tn (1.31)

o« —>> o

The latter is determined up to equivalence of monomorphisms (see 1.1.7):
it is called the preimage of n along f and written as f*(n). When we work
with subobjects, f*(n) can be determined by their choice. In particular it
will be useful to follow the following convention:
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(*) The unit constraint for pullbacks. The pullback of an identity mor-
phism along any morphism (always exists and) is chosen to be an identity:
f(ly) = 1x.

(¢) Symmetry. If (P,u,v) is a pullback of (f,g), then (P,v,u) is — obvi-
ously — a pullback of (g, f). However, in a category with pullbacks, one
cannot assume the existence of a strictly symmetric choice of them.

(d) Pasting property. If the two squares below are pullbacks, so is their
‘pasting’, i.e. the outer rectangle

¢« —> e —> o

b 0

.Hoﬁg-

(e) Depasting property. If in the commutative diagram above the outer
rectangle is a pullback and the pair (f,g) is jointly mono then the left
square is a pullback.

The hypothesis on the pair (f, g) is automatically satisfied in two cases,
frequently used: when the right square is a pullback or one of the mor-
phisms f, g is mono.

(f) Pushouts have dual properties; we shall generally follow the unit con-
straint for pushouts.

(¢) In Set, if X = Xy U X1, then X is the pushout of Xy and X; over
Xy N X;. Extend this fact to Top, under convenient hypotheses on the
subspaces X; C X.

*(h) In an abelian category pullbacks and pushouts are characterised by
exactness properties of an associated sequence of morphisms: see A3.9.

*(i) Prove that a category with pullbacks and terminal object has equalis-
ers, and therefore all finite limits.

*(j) In Top, the euclidean sphere S? can be presented as a pushout, the
cokernel pair of the embedding S' — D? of the circle as the boundary of the
compact disc; concretely, we are pasting two discs along their boundary.
The reader will see (or already know) that this fact can be extended to any
dimension, starting with S' as the pasting of two compact intervals over
S°. The homology of all spheres is computed, inductively, on this basis.

1.8.6 Complete categories and the preservation of limits

A category C is said to be I-complete if it has a limit for every functor
I — C. It is said to be complete (resp. finitely complete) if this holds for



1.8 Limits and colimits 43

every small (resp. finite) category I. The smallness requirement is explained
in a remark below.
One says that a functor F': C — D preserves the limit

(L, (Uz'i L— Xi)iel)

of a functor X: I — C if the cone (FL,(Fu;: FL — FX;);cr) is the limit
of the composed functor FF X : I — D. One says that F' preserves limits if it
preserves all the limits which exist in C. Analogously for the preservation
of products, equalisers, etc.

A representable functor preserves all (the existing) limits. A functor
which preserves pullbacks also preserves monomorphisms, by 1.3.5(a).

One proves, by a constructive argument, that a category is complete
(resp. finitely complete) if and only if it has equalisers and products (resp.
finite products). Moreover, if C is complete (resp. finitely complete), a
functor F': C — D preserves all limits (resp. all finite limits) if and only if
it preserves equalisers and products (resp. finite products).

As a sketch of the proof, given a functor X: I — C defined over a
small category and written in index notation as in 1.3.3, we consider the
products [, X; (for i € ObI) and I1,X;(,) (for a: i(a) — j(a) in Morl),
with projections (p;) and (gq), respectively. A cone of X amounts to a map
f: A —IL;X; that equalises the following two maps u, v

u,v: HiXi — Han(a),
_ o (1.33)
Qa¥ = Dj(a),  a?¥ = Xa-Di(a) (for a: i(a) — j(a) in I),

and the limit of X in C is obtained as the equaliser of u,v. (See [M4],
Section V.2, Theorem 1.)

Dual results hold for colimits and cocompleteness. For instance, a cate-
gory is cocomplete (resp. finitely cocomplete) if and only if it has coequalis-
ers and sums (resp. finite sums).

The categories Set, Top, Ab are complete and cocomplete; the forgetful
functor Top — Set preserves limits and colimits, while Ab — Set only
preserves limits.

One can easily see that, if the category C is I-complete, so is the functor
category CS (for any small category S), with I-limits computed pointwise
on each object of S. The same holds for colimits. The proof is straightfor-
ward, and can be written down as an exercise; but a more formal and far
quicker proof will be given in 1.5.4(f), using adjunctions.

The category associated to a preordered set X is complete if and only if
the latter has all inf; since this fact is (well known to be) equivalent to the
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existence of all sup, X is complete if and only if it is cocomplete. In the
ordered case this means that X is a complete lattice.

*More precisely one speaks of a small-complete category. Of course we
cannot expect Set to have products indexed by a large set, or limits for
functors I — Set defined over a large category. In other words, the basis I
should be of a ‘smaller size’ than the category C where we construct limits,
or we force C to be just a preordered set (where products are infima, and
are not influenced by the size of the set of indices).

The question is settled by a neat result of P. Freyd, which is also easy
to prove: a small category C has the limit of every functor defined on a
small category (if and) only if it is a preordered set with all infima (see
[M4], Section V.2, Proposition 3 or [G11], 2.2.5(f)). This is precisely why,
in an arbitrary category, the existence of all (small) limits does not imply
the existence of colimits, as is the case for preordered sets. In fact, the
initial object of C is the colimit of the (small) functor 0 — C; it can also
be viewed as the limit of the identity functor C — C, but the latter is not
a small functor, generally.*

1.8.7 The creation of limits

There is another interesting property, related to preservation of limits;
again, it does not assume their existence.

One says that a functor F': C — D creates limits for a functor X : I — C
if:
(i) for every limit cone (L', (v;: L' — FX;);er) of the composed functor
FX:1 — D, there is precisely one cone (L, (u;: L — X;);er) of X in C
taken by F to (L', (v;)),

(ii) the latter is a limit of X in C (preserved by F)).

For instance the forgetful functor U: Ab — Set creates all small limits
(which do exist). Indeed, a limit of abelian groups can be constructed by
taking the limit L’ of the underlying sets and putting on it the unique
structure that makes the mappings v; into homomorphisms. The same
happens for all varieties of algebras. Note that these forgetful functors do
not create colimits: they do not even preserve them, generally.

On the other hand the forgetful functor Top — Set preserves all limits
but does not create them: for instance the product topology is the coarsest
topology on the product set that makes all cartesian projections continuous,
but is not the only one having this outcome — generally.

The relations between creating, preserving and reflecting limits are ex-
amined in [G11], Exercises 2.2.9.
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1.3.8 Limits as universal arrows or representative objects

Consider the category C! of functors I — C and their natural transforma-
tions, for a small category I (see 1.2.7). The diagonal functor

A:C— CL (AA); = A, (AA), =idA, (1.34)

sends an object A to the constant functor at A, and a morphism f: A — B
to the natural transformation Af: AA — AB: I — C whose components
are constant at f.

Let a functor X : I — C be given. A natural transformation f: AA — X
is the same as a cone of X of vertex A.

The limit of X in C is the same as a universal arrow (L,e: AL — X)
from the functor A to the object X of C! (see 1.2.9). Dually, the colimit of
X in C is the same as a universal arrow (L', n: X — AL’) from the object
X of CI to the functor A.

As another characterisation, assuming that C has small hom-sets, con-
sider the contravariant functor G of sets of cones of X

G: C° — Set, G(A) = CY(AA, X). (1.35)

Then, by the Yoneda Lemma 1.2.8(b), X has a limit (L, ¢) if and only if
the functor G is representable, with representative object Xg = L, via the
element zg = ¢ € G(L).

Dually, the existence of a colimit (L', n) of X is equivalent to saying that
the covariant functor G’(A) = C}(X, AA) is representable, with represen-
tative object L', via the element n € G'(L’).

1.3.9 Coends

A reader unacquainted with this tool of category theory can skip it until
it is needed.

A functor F: X°? x X — C is given. Its coend is an object C of C
equipped with a family of morphisms ux: F(X,X) — C indexed by the
objects of X. This family must be:

(i) coherent, in the sense that for every morphism f: X — Y in X we have
ux . F(f,1)=uy.FQ1, f): F(Y,X) — C,

(ii) universal, in the sense that each coherent family (vx: F(X,X) — C')x
factorises uniquely through the former: there exists precisely one morphism
c: C — C’ such that c.ux = vy, for all X.

The coend of F is written as [~ F(X, X).

If X is small and C is cocomplete, the coend of F exists and can be
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obtained as the coequalizer of the two morphisms
wv: (Zrxoy F,X)) = (2xF(X, X)),

where the the first sum is indexed by all the morphisms of X, and the
co-component uy (resp. vy) on the morphism f: X — Y comes from
F(f,1): F(Y,X) = F(X,X) (resp. from F(1, f): F(Y,X) = F(Y,Y)).
*There is a classical example from Algebraic Topology. Let S be a sim-
plicial set, i.e. a functor S: A°® — Set defined on the opposite of the
category A of finite positive ordinals (see 1.2.7). The geometric realisation
of S can be viewed as the coend [*DS(n)x A", where D: Set — Top
equips any set with the discrete topology and A: A — Top realises the
positive ordinal n = {0, ...,n} of A as the standard simplex A™ C R*+1.*

The dual notion, called an end, is related to limits.

1.4 Lattices and Galois connections

We recall now some basic facts about the theory of lattices; the interested
reader is referred to the classical texts of Birkhoff and Gréatzer [Bi, Gr2].
We also review Galois connections between ordered sets.

1.4.1 Lattices

Classically, a lattice is defined as a (partially) ordered set X such that every
pair x, 2" of elements has a join x v’ (the least element of X greater than
both) and a meet x A2’ (the greatest element of X smaller than both).

Here we follow a slightly different terminology, usual in category theory:
lattice will always mean an ordered set with finite joins and meets (called a
‘bounded lattice’ in Lattice Theory). Thus, besides binary joins and meets,
we are also assuming the existence of the least element 0 = V() (the empty
join) and the greatest element 1 = AQ (the empty meet). These bounds
are equal in the one-point lattice {*}, and only there.

Consistently with this terminology, a lattice homomorphism has to pre-
serve finite joins and meets; a sublattice of a lattice X is closed under these
operations (and has the same bounds as X). The category of lattices and
homomorphisms will be written as Lth.

Occasionally we speak of a quasi lattice when we only assume the exis-
tence of binary joins and meets; a homomorphism of quasi lattices only has
to preserve them. A quasi sublattice Y of a quasi lattice X is closed under
binary joins and meets in X; when X is a lattice, Y may have different
bounds, or lack one of them, or both.
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For instance, if X is a lattice and a € X, the downward and upward
closed subsets | a, Ta of X generated by a (see 1.1.6) are quasi sublattices
of X, and lattices in their own right.

1.4.2 Distributive and modular lattices

A lattice is said to be distributive if the meet operation distributes over the
join operation, or equivalently if the join distributes over the meet. In fact,
if we assume that meets distribute over joins, we have:

(xvy)n@vz) = ((@vy) am) v ((wvy)az)

=zv(zrz)v(ysz)=zv(yaz).

A boolean algebra is a distributive (bounded) lattice where every element
z has a complement x’, defined and determined by the properties: z Az’ =
0, zva’ = 1.

The subsets of a set X form the classical boolean algebra PX. The lattice
SubA of subgroups of an abelian group (or submodules of a module) is not
distributive, generally; but one can easily check that it always satisfies a
weaker, restricted form of distributivity, called modularity.

Namely, a lattice is said to be modular if it satisfies the following selfdual
property (for all elements x,y, z)

(*)if x < z then (xvy)rz =z v (ynAz).

The category of modular (resp. distributive) lattices and their homomor-
phisms will be written as Mlh (resp. Dlh).

*By Birkhoff’s representation theorem ([Bi] III.5, Theorem 5) the free
distributive lattice on n generators is finite and isomorphic to a lattice of
subsets. The reader may also be interested to know that the free modular
lattice on three elements is finite and (obviously!) not distributive (see [Bi],
I11.6, Fig. 10), while four generators already give an infinite free modular
lattice (see the final Remark in [Bi], IT1.6).*

1.4.3 Galois connections

A covariant Galois connection is an adjunction between (partially) ordered
sets, viewed as categories; this simple notion can serve as an introduction
to general adjunctions, dealt with in the next section.

Given a pair X,Y of ordered sets, a (covariant) Galois connection be-
tween them can be presented in the following ways, whose equivalence can
be easily verified.
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(i) We assign two increasing mappings f: X — Y and ¢g: Y — X such
that, for allz € X and y € Y:

fz)<LyinY & 2<g(y)in X.

(ii) We assign an increasing mapping g: ¥ — X such that, for every z € X
there exists in Y:

f(x) =min{y € Y|z < g(y)}.

(ii*) We assign an increasing mapping f: X — Y such that, for every
y €Y, there exists in X:

9(y) = max{zr € X | f(z) < y}.

(iii) We assign two increasing mappings f: X — Y and g: ¥ — X such
that idX < gf and fg <idY.

By these formulas g determines f (called its left adjoint) and f deter-
mines g (its right adjoint). One writes f - ¢ (as in the general notation of
adjoints in category theory). The relations idX < gf and fg < idY imply
that f = fgf and g = gfg.

Of course an isomorphism of ordered sets is, at the same time, left and
right adjoint to its inverse. More generally, an increasing mapping may
have one or both adjoints, which can be viewed as ‘best approximations’
to an inverse, of different kinds.

For instance, the embedding of ordered sets i: Z — R has a well-known
right adjoint, the integral-part function, or floor function

-]: R—Z, [#] = max{k € Z|k < z}. (1.36)
The left adjoint also exists: it is the ceiling function
min{k € Z|k > 2} = —[—=z],

related (here) to the right adjoint by the anti-isomorphism = +— (—z) of
the real and integral lines.

On the other hand the embedding @ — R of the rational numbers has
neither a right nor a left adjoint: an irrational number has no ‘best’ rational
approximation, lower or upper.

1.4.4 Properties
Let us come back to a general Galois connection f - g between ordered
sets X,Y.
The mapping f preserves all the existing joins, while g preserves all the
existing meets. In fact, if x = Va; in X then f(x;) < f(x) (for all indices
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i). Supposing that f(z;) <y in Y (for all 7), it follows that z; < g(y) (for
all i); but then z < g(y) and f(z) < y.

From the relations f = fgf and g = gfg it follows that:
(a) gf =id & f is injective < f is a split mono & g is surjective <
g is a split epi < f reflects the order relation,
(a*) fg=1id & f issurjective < f is a split epi < g is injective & ¢
is a split mono < g reflects the order relation.

Moreover the connection restricts to an isomorphism (of ordered sets)
between the sets of closed elements of X and Y

g¥V)={rve X|z=gf(2)}, f(X)={yeYl|y=r9(y)} (137

An adjunction f - g will also be written as an arrow (f, g): X =Y, often
dot-marked and conventionally directed as the left adjoint f: X — Y. Such
arrows have an obvious composition

(f,9)(fr9)=(f'f,99")  (for (f',g'): Y= 2), (1.38)

and form the category AdjOrd of ordered sets and Galois connections; it
is a selfdual category (see 2.1.1).

Each hom-set AdjOrd(X,Y) is canonically ordered: for two adjunctions
(f,9),(f,9): X=Y we let (f,9) < (f,¢') if the following equivalent
conditions hold

f<f, g <y, (1.39)

since f < f' gives ¢’ <gfg' <gf'g' <y

The relationship between AdjOrd and the usual category Ord (on the
same objects) will become clearer in Chapter 3, where we shall amalgamate
them to form a double category AdjOrd, with horizontal arrows in Ord
and vertical arrows in AdjOrd (see 3.1.7). Other similar double categories
of lattices will also be of interest (see 3.1.7 and Section Al).

1.4.5 Direct and inverse images of subsets

The transfer of subobjects along morphisms is an important feature, that
we examine here in Set and will be developed in Appendix A in other
frameworks related to Homological Algebra.

Every set A has an ordered set SubA = PA of subsets, which actually
is a complete boolean algebra (as recalled in 1.4.2). A mapping f: A — B
gives two increasing mappings, of direct and inverse image

fx: SubA = SubB : f*,

(1.40)
LX) =f(X), fO)=f'Y) (XCAYCD).
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These mappings form a Galois connection f, - f*, since
XcfifuX), LY)=YN[(A4)CY, (1.41)

which implies, in particular, that f, preserves unions and f* preserves
intersections. (In fact f* is a homomorphism of complete boolean algebras
and also has a right adjoint, related to the universal quantifier, while f, is
related to the existential one; we shall not use these facts.)

All this defines a transfer functor for subobjects of Set

Sub: Set — AdjOrd, Sub(f)= (f«, f*): SubA—~>SubB, (1.42)

with values in the category of ordered sets and Galois connections defined
above.

In particular we have a (faithful) contravariant functor of subsets P*:
Set --» Set, that takes the mapping f: A — B to f*: PB — PA.

1.4.6 The graph of a Galois connection
The graph of the adjunction (f,g): X - will be the set

G(f,9) ={(z,y) € XxY | f(x) <y}
={(z,y) € XxY |2z < g(y)},

with the order induced by the cartesian product X xY (that is a categorical
product in Ord, of course).
The given adjunction has a canonical factorisation in two adjunctions

(1.43)

f/ fl/
X == Glfg) == Y (1.44)
g g9

flx)=(z, f(x), ¢ (z,y)=2,  f(z,y)=vy, ") = (9)y).

*This forms a natural weak factorisation system in AdjOrd, in the sense
of [GT], and the factorisation is mono-epi. In fact (f’,¢’) is a monomor-
phism of AdjOrd (f’ is an injective mapping, because ¢'f’ = id) while
(f",g") is an epimorphism (f” is surjective, because f”¢"” = id).*

1.4.7 *Ezercises and complements (Chains of adjunctions)

Long chains of Galois connections between two ordered sets X,Y

...f_g = f_1 — fo = f1 = fg fgii Xa2Y ZfQH_l, (145)

seem not to be frequent, ‘in nature’, leaving apart the trivial case given by
an isomorphism f = fy; of ordered sets and its inverse g = fo;41 (i € Z).
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Yet, a Galois connection Z = Z on the integral ordered line always
produces an unbounded chain of adjunctions, and there are chains where
all maps are different. Replacing Z with the ordered real line R, any non
trivial chain has length < 3.

The reader might like to investigate this situation and study other cases,
based on different ordered sets. Many results can be found in [G11], Sec-
tions 1.7.7 and 5.3.6, and in the article [Boo].

1.5 Adjoint functors

Adjunctions, a crucial step in category theory, were introduced by Kan in
1958 [K3]. They extend Galois connections (defined above, in 1.4.3) from
ordered sets to general categories.

1.5.1 Main definitions

An adjunction F' 4 G, with a functor F': C — D left adjoint to a functor
G: D — C, can be equivalently presented in four main forms.

(i) We assign two functors F: C — D and G: D — C together with a
family of bijections

exy: D(FX,Y) - C(X,GY) (X in C, Y in D),

which is natural in X and Y. More formally, the family (¢xy) is a func-
torial isomorphism

¢: D(F(-),=) = C(—,G(=)): C’xD — Set.

(ii) We assign a functor G: D — C and, for every object X in C, a universal
arrow (see 1.2.9)

(FoX,nX: X — GFyX) from the object X to the functor G.

(ii*) We assign a functor F: C — D and, for every object ¥ in D, a
universal arrow

(GoY,eY: FGyY —Y) from the functor F' to the object Y.

(iii) We assign two functors F': C — D and G: D — C, together with two
natural transformations

n:1dC — GF (the unit), e: FG — idD (the counit),

which satisfy the triangular equations:

eF.Fn=idF, GenG =idG (1.46)
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Fn eF TIG Ge
F — FGF — F G — GFG — G
-_— -_— @
idF idG

A proof of the equivalence can be found in [M4], Section IV.1, Theorem 2,
or in [G11], Theorem 3.1.5. Essentially:

- given (i) one defines
nX = oxrx(lrx): X = GFX,
eY = (¢avy) 'lay): FGY =Y,

- given (ii) one defines F(X) = FyX, the morphism F(f: X — X’) by
the universal property of nX’ and the morphism pxy(g9: FX — Y) as
GgnX: X — GY,

- given (iii) one defines the mapping ¢ xy: D(F(X),Y) = C(X,G(Y)) as
above, a backward mapping ¥ xy (f: X — GY) = eY.Ff, and proves that
they are inverse to each other by the triangular equations.

1.5.2 Comments and complements

(a) The previous forms have different features.

Form (i) is the classical definition of an adjunction, and is at the origin
of the name, by analogy with adjoint maps of Hilbert spaces.

Form (ii) is used when we start from a given functor G and want to
construct its left adjoint (possibly less easy to define). Form (ii*) is used
in a dual way.

The ‘algebraic’ form (iii) is adequate to the formal theory of adjunctions,
as it makes sense in an abstract 2-category (see 2.3.2).

(b) Let S be a small category. A functor F: C — D has a canonical

‘extension’ to functor categories on S, by composing a functor X: S — C
with F

FS.C® - DS  FS5X)=FX:S—D. (1.47)

A natural transformation ¢: F' — G: C — D can be similarly extended

©S: FS - GS: CS - DS,
(1.48)
WS(X)=¢pX: FX -GX:S—D.

These extensions preserve all compositions, of functors and natural trans-
formations.

(¢c) Functor categories and adjunctions. It follows that an adjunction (7, €):
F -+ @G has a canonical extension to an adjunction

(n5,€5): FS 4 G5, (1.49)
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just using the form (iii) of Definition 1.5.1.

1.5.3 Ezxercises and complements

(a) An adjoint equivalence (F,G,n,¢), defined in 1.2.5, amounts to an ad-
junction where the unit and counit are invertible, so that FF 4 G - F.

(b) For a ‘forgetful functor’ U: A — X the existence of the left adjoint
F -+ U means that every object X of X has a free object (FX,n: X —
UFX) in A (as defined in 1.2.9).

Using what we have already seen, one can easily construct the left adjoint
to the following forgetful functors (and many others):

Mon — Set, RMod — Set, Ab — Set, (150)
Rng — Mon, Rng — Set, Set, — Set. .

*One can prove that the forgetful functor U: A — Set of any variety of
algebras (in the sense of 1.1.8(e)) always has a left adjoint F': Set — A,
the free-algebra functor for A. See, for instance, [M4, Bo2, G11].*

(¢) The forgetful functor U: Top — Set has both adjoints D 4 U - C.
The cylinder-cocylinder adjunction in Top will be examined in A5.1.

(d) The forgetful functor U: pOrd — Set of the category of preordered
sets has a chain of adjunctions 19 4 D 4 U - C.

(e) The (non-faithful) functor Ob: Cat — Set has a similar chain 79 <4 D -
Ob - C, that extends the previous one. A category C is said to be connected
if mo(C) is the singleton, a property that can be easily characterised. (This
excludes the empty category.) Every category is the sum of its connected
components (i.e. its maximal connected subcategories).

(f) The embedding U: pOrd — Cat has a left adjoint po: Cat — pOrd,
where po(S) is the set ObS with an obvious preorder. A diagram X: S — C
is commutative if and only if it factorises through the canonical projection
n: S — po(S).

(g) Prove that a left adjoint preserves (the existing) colimits; dually, a right
adjoint preserves limits.

(h) Prove that the chain D 4 U 4 C in (c) cannot be extended.

(i) Prove that no functor in the list (1.50) has a right adjoint.
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1.5.4 Main properties of adjunctions

(a) Uniqueness and existence. Given a functor, its left adjoint is uniquely
determined up to isomorphism: this follows from the uniqueness property
of universal arrows, in 1.2.9.

A crucial theorem for proving the existence (under suitable hypothesis)
is the Adjoint Functor Theorem of P. Freyd: see [M4], Section V.6, Theo-

rem 2, or [G11], Section 3.5.
(b) Composing adjunctions. As a consequence of the composition of uni-
versal arrows, in (1.20), two consecutive adjunctions
F:C2D:G, n:1—GF, e FG—1, (151)
H:DZ2E:K, p:1—-KH, o:HK —1,

give a composed adjunction from the first to the third category
HF: C=E:GK,
GpFn:1— GF - GK.HF, (1.52)
0.HeK: HF.GK — HK — 1.

There is thus a category AdjCat of small categories and adjunctions,
with morphisms written in one of the following forms, and conventionally
directed as the left adjoint

(F,G,n,e): C=D, F 4 G:C=-D.

We also write (n,e): F - G, but one should not view this as an arrow
from F' to G in some category.

(¢) Involution. Duality of categories interchanges left and right adjoint,
unit and counit. AdjCat is thus a category with involution (as defined
below, in 2.1.1)

C — C°P,

1.53
((F,G,n,e): C=D) — ((G°P, F°P £ n°P): DP - CP), ( )

(d) Preserving limits and colimits. We have already seen that a left adjoint
preserves colimits, while a right adjoint preserves limits (Exercise 1.5.3(g)).

For a covariant Galois connection f - ¢, this amounts to saying that
f preserves the existing joins and g the existing meets, as already shown
in 1.4.4. We also know that an equivalence F': C — D can always be
completed to an adjoint equivalence, with G - F -+ GG therefore F
preserves limits and colimits.

(e) Limit functor as a right adjoint. The description of the limit of a
functor X: I — C as a universal arrow (LX,ex: A(LX) — X) from the
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diagonal functor A: C — CI to the object X of CI (in 1.3.8) shows that
the existence of all I-limits in C amounts to the existence of a right adjoint
to A, the limit functor L: C' — C, with counit e: AL — idC. Dually, a
colimit functor L': C — C is left adjoint to A, and the unit n: idC — AL’
gives the universal cocone nx: X — A(L'X) of X.

(f) Limits in functor categories. One can now give a brief, synthetic proof
of a result already stated in 1.3.6: if C has all I-limits, the same holds in
any functor category CS, with limits computed pointwise on S. The same
applies to colimits.

In fact, we are assuming that the diagonal functor A: C — C! has a
(say) right adjoint L: C! — C, with counit e: AL — 1. By 1.5.2(c), the
extension AS: CS — (C)S has right adjoint LS: (C")S — CS, with counit
€S, and the canonical isomorphisms (C1)S = C™S = (CS)! show that LS
is right adjoint to the diagonal CS — (CS)!, with counit 5.

(g) Faithful and full adjoints. Suppose we have an adjunction (n,e): F 4 G.
As proved in [M4], Section IV.3, Theorem 1, or [G11], Theorem 3.2.5:

i) G is faithful if and only if all the components €Y are epi,

ii) G is full if and only if all the components €Y are split mono,

1k

i*) F is faithful if and only if all the components nX are mono,

coxk

(
(
(iii) G is full and faithful if and only if the counit € is invertible,
(
(ii*) F is full if and only if all the components nX are split epi,
(

iii*) F is full and faithful if and only if the unit n is invertible.

1.5.5 Reflective and coreflective subcategories

A subcategory D C C is said to be reflective if the inclusion functor
U: D — C has a left adjoint, and coreflective if U has a right adjoint.

For a full reflective subcategory the counit ¢ is invertible (by 1.5.4(g)).
One can always choose the reflector ' 4 U so that F'U = idD and € = id.
(In fact, one can constrain the unit n: 1 — UF so that nU = id, and
construct the reflector F' from the constrained unit. Then Ues = id and
e=1id.)

For instance Ab is reflective in Gp, with reflector (—)*: Gp — Ab
sending a group G to the abelianised group G*® = G/[G,G]. The unit
nG: G — G2 is given by the canonical projection, and the counit eA: A —
A/[A, A] is invertible. (It is actually the identity, if the trivial quotient
A/[A, A] is realised as A, according to our general convention on quotients.)

In Ab the full subcategory tAb formed by all torsion abelian groups
is coreflective; the counit €¢A: tA — A is the embedding of the torsion
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subgroup of an abelian group. On the other hand the full subcategory
tfAb formed by all torsion-free abelian groups is reflective in Ab, with
unit the canonical projection nA: A — A/tA.

In the real ordered line R, the ordered subset Z is reflective and coreflec-
tive, while the subset of rational numbers is neither (see 1.4.3).

1.5.6 Comma categories and slice categories

We now introduce an important construction. For functors F': X — Z
and G: Y — Z with the same codomain one constructs a comma category
F |G equipped with functors P, @ and a natural transformation 7

et
FlG ) m: FP — GQ. (1.54)
Q\

™

Q\ /’1

(The original notation was (F,G), whence the name.) The objects of
F | G are the triples (X,Y,z: FX — GY) formed of an object of X, an
object of Y and a morphism of Z. A morphism

(f,9): (X,Y,z2: FX - GY) = (XY, 2': FX' — GY'),
comes from a pair of maps f: X — X', g: Y — Y’ that form a commutative

square in Z, namely 2'.Ff = Gg.z.
Composition and identities come from those of X XY

(f'.9)-(f,9)=(f'f.9'9),  1d(XY,2) = (idX,idY).

There is an obvious universal property, that makes the triple (P,Q, )
a sort of directed 2-dimensional pullback: for every category C equipped
with similar data P': C -+ X, Q': C - Y and 7’: FP' — GQ’, there is
precisely one functor W: C — F' | G which commutes with the structural
data

W(C)=(P'C,QC,«C), Wi(c: C — C'") = (P'c,Q'c),
PW =P, QW =qQ’, W =qx'.
As a matter of notation, one writes: F' | idZ as F' | Z and idZ | G
as Z | G. Moreover on object Z; of the category Z can be viewed as
a functor Zy: 1 — Z; therefore the comma category F' | Zy has objects

(X,z: FX — Zy), while Zy | G has objects (Y, z: Zy — GY).
In particular we have the slice categories

(1.55)

Zo LZ =7\ 2o, 7\ Zy=7/7,, (1.56)
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of objects (Z,z: Zy — Z) below Zy and objects (Z,z: Z — Zy) above Zy,
respectively.

Note that Set, and Top, can be identified with the slice categories
Set\{*} and Top\{*} of objects under the singleton.

*Less trivially the category Rng’ of ‘associative rings’ (not assumed to
have a unit) is equivalent to the category Rng/Z of copointed unitary rings,
or rings over the initial object Z, as the interested reader can prove.*

1.5.7 Comma categories, adjunctions and limits

(a) As an extension of the case of Galois connections in 1.4.6, the graph of
the adjunction (F,G,n,e): X-Y will be the comma category

G(F,.G)=FlY, (1.57)
with objects (X,Y,c: FX — Y) and morphisms
(f,9): (X,)Y,c: FX =Y)—= (X, Y',J: FX'=Y'"), d.Ff=g.c

The adjunction F' - G has a graph factorisation in AdjCat

F/ 1"
X — G(FG — Y (1.58)
Gl G//

FI(X) = (X,FX,1px), G'(X,Y.c)=X, /X =1y,
F/(X,Y,c) =Y, G'(Y)=(GY,Y,eY: FG(Y)=Y), €'Y =1ly.

As in 1.4.6, this forms a natural weak factorisation system in AdjCat, in
the sense of [GT], which is mono-epi (because G'F’ and F"'G" are identi-
ties).

One can replace G(F, G) with the comma category G'(F,G) = X | G,
which is isomorphic to the former because of the adjunction (and coincides
with it when X and Y are order categories). One can also consider a
factorisation in three adjunctions, through the isomorphism G(F,G) &
G/(F,G), as we shall do in 4.3.8.

(b) Limits and colimits in the category C can be viewed as terminal or
initial objects in comma categories of the diagonal functor A: C — C!
(defined in 1.3.8). In fact a cone (A, (fi: A — X;)) of X: I — C is the
same as an object of the comma category A | X and the limit of X is the
same as the terminal object of A | X. Dually a cocone (or the colimit)
(A, (fi: X; = A)) of X is an object (or the initial object) of the comma
category X | A.
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1.5.8 Ezxercises and complements

(a) As we know from a remark in 1.3.3, the limit of a functor X: I —
Set defined on a small category can be computed as the set of its cones
with vertices at the singleton. This can now be quickly proved, using an
adjunction.

(b) Study the adjoints of the diagonal functor A: C — C? of a category C
into the product Cx C.

(¢) In particular, for C = R Mod, we have a periodic chain of adjunctions
.. B4 A 4B -4 A .., where B(X,Y) =Xe@aY is the direct sum, also
called a biproduct.

A general definition of biproduct in a pointed category will be given
in 1.8.4.

(Let us note that, in Ord, a relation f - g - f trivially forces f and ¢
to be inverse to each other.)

(d) Prove that, for a given n € N, the endofunctor F'(X) = X™ of RMod is
adjoint to itself. Prove that, for any small set I, the endofunctor G(Y) =
Y7 has a left adjoint; extend this fact to a category C, under suitable
hypotheses.

(e) Chains of Galois connections between ordered sets X and Y, even un-
bounded, have been considered in 1.4.7. Each of them can be transformed
into a chain of adjunctions between the categories CX and CY, for any
category C. Other periodic chains of adjunctions can be seen in [G11],
Section 3.2.8.

(f) Prove that the category Mon of monoids is coreflective in Gp.

*(g) Prove that it is also reflective.

1.6 Monads and algebras

Monads and their algebras give a wide formalisation of the ‘algebraic char-
acter’ of a category over another, typically used over the category of sets
but also of interest in many other cases.

We follow the classical terminology and notation of Mac Lane [M4],
Chapter VI. Monads are also called ‘triples’ or ‘dual standard construc-
tions’ in other texts, e.g. [BaB, Be, Du].

1.6.1 Monads

A monad on the category X is a triple (T,n, ) where T: X — X is an
endofunctor, while n: 1 — T and u: T? — T are natural transformations
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(called the unit and multiplication of the monad) that make the following
diagrams commute

nT Tn T

T X2 T T3t 2
\ jift/ uTJL iﬂ (1.59)

These axioms are called unitarity and associativity. (In fact they are a
rewriting of the diagrammatic presentation of a monoid 7" in Set, as we
shall see in 2.2.6(e).)

1.6.2 From adjunctions to monads

It is easy to verify that an adjunction
F: X2 A:G, n:1—GF, e:FG—1, (1.60)

yields a monad (7,7, 1) on X (the domain of the left adjoint), where T =
GF: X — X, the transformation n: 1 — T is the unit of the adjunction
and p = Gel': GF.GF — GF.

Typically, a variety of algebras A has an associated monad T' = UF':
Set — Set produced by the forgetful functor U: A — Set and its left
adjoint F': Set — A, the free-algebra functor (see 1.5.3(b)).

1.6.3 FEilenberg—Moore algebras

The other way round, from monads to adjunctions, there are two main
constructions; we begin from the more important one.

Given a monad (T, n, 1) on X one defines the category X* of T-algebras,
or FEilenberg-Moore algebras for T: these are pairs (X,a: TX — X) con-
sisting of an object X of X and a map a (called the algebraic structure)
satisfying two coherence axioms:

anX =1x, aTa=apX, (1.61)
x " rx r2x T% Tx
\ la qu/ \La
X X — X

A morphism of T-algebras f: (X,a) — (Y,b) is a morphism f: X —» Y
of X which preserves the algebraic structures, in the sense that f.a = 0.Tf.
They compose as in X.
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XT is thus a full subcategory of the comma category T | X.

One can find the category X written as Alg(7), but we prefer to follow
Mac Lane’s notation. We shall reserve the symbol Alg(T') for the category
of algebraic objects of an idempotent monad, which is isomorphic to XT
(see Section 1.7).

For an ordered set X, viewed as a category, a monad T: X — X is
just an increasing function which is inflationary (1x < T) and idempotent
(T? = T); this is also called a closure operator on X. An algebra for T is
a closed element: x = T'x.

Obvious examples come from the topological closure PS — PS of a
topological space S (which, moreover, has to preserve finite unions). Idem-
potent monads on arbitrary categories will be studied in Section 1.7.

1.6.4 From monads to adjunctions and back

Given a monad (T,n, ) on X, we can construct an adjunction with the
category X7 of T-algebras

FT: X2 XT:G7,

(1.62)
nf'=n:1—-GTFT, el FTGT — 1,
so that the associated monad coincides with the given one.
First we have an obvious (faithful) forgetful functor
GT: XT 5 X,
(1.63)

GT(X,a) =X,  GT(f: (X,a) = (V,b) = (f: X > ).
Backwards we have the functor giving the free T-algebra on an object X
of X
FT: X — XT,
FI(X)=(TX, uX:T?X - TX), (1.64)
FI(f: X —=Y) = Tf: (TX,uX) = (TY,puY).
Now GTFT = T: X — X. The unit of the adjunction is n” =n: 1 — T,

while the counit is defined as follows (and the triangular equations of 1.5.1
are satisfied)

el FTGT -1, ef(X,a) = a: (TX,uX) = (X,a). (1.65)

It is now easy to see that the monad associated to this adjunction is
the original one, because the new multiplication also coincides with the old
one: GTeTFT(X) = GTeT(TX, uX) = pX.
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1.6.5 Monadicity

On the other hand, if we start from an adjunction (F,G,n,e): X< A as
in 1.6.2, form the associated monad (T, 7, 1) and then the associated ad-
junction (FT,GT n,eT): X+ X7 we get a comparison between the two
adjunctions which may be an isomorphism or not; if it is the case we think
of A as a ‘category of algebras’ over X.

In fact there is a comparison functor:

K:A—=XT,  K(A) =(GA,GeA: GFGA — GA),

(1.66)
K(f: A— B) = Gf: (GA,GeA) - (GB,GeB).

K links the two adjunctions (which share the unit), in the sense that, as
one can easily verify

X*>A KF =FT, G'K =G,
)
X *> XT eTK = Ke (T =n).

Now a functor G: A — X is said to be monadic (or algebraic), or to
make A monadic over X, if it has a left adjoint F': X — A and moreover
the comparison functor K: A — X7 defined above is an isomorphism of
categories (see 1.6.6(d)).

*There are various ‘monadicity theorems’ (also called ‘tripleability the-
orems’) that give sufficient (or necessary and sufficient) conditions for a
functor to be monadic: the interested reader can see [M4], Section VI.8,
[Bo2], Section 4.4, and [Be, Du].*

1.6.6 Exercises, comments and complements

(a) Present Set, as a category of T-algebras over Set. Similarly for the
category of semigroups.

*(b) One can prove that the forgetful functor U: A — Set of any variety
of algebras is monadic (see [M4], Section VI.8). But the present formali-
sation of the algebraic character of a category is much wider: for instance
the category of compact Hausdorff spaces is monadic over Set (see [M4],
Section VI.9), and this monadicity depends on the closure operator of such
spaces, a sort of ‘infinitary operation’.

(¢) (Limits of algebras). Let (T, 7, 1) be a monad on a complete category
X. Prove that X7 is also complete, with limits created by the forgetful
functor GT: XT — X (see 1.3.7).
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(d) We are following Mac Lane ([M4], Section VI.3) in defining monadicity
in a strong sense, up to isomorphism of categories, because concrete exam-
ples, based on structured sets, generally fall in this case. On the other hand
[Bo2], in Section 4.4, and various other texts only ask that the comparison
K be an equivalence of categories.

The difference can be appreciated at the light of this example. As we
have already seen, the category Set, of pointed sets is a variety of al-
gebras, produced by a single zeroary operation under no axioms, and is
thus monadic over Set, via its forgetful functor U. The equivalent cate-
gory S of sets and partial mappings (see 2.1.6) inherits a composed functor
S — Set, — Set, and the associated comparison is now an equivalence of
categories. We prefer to view S as ‘weakly algebraic’ over Set, rather than
as ‘algebraic’.

(e) We also note that the free semigroup on the empty set is empty: the
category of ‘non-empty semigroups’, discussed in 1.1.8(e), lacks such a free
object and is not monadic over Set.

(f) Prove that the covariant endofunctor P of subsets forms a monad

P: Set — Set,
X —PX, (f: X =>Y)— (f.: PX - PY), (1.68)
n:1—P, nx(z) = {x}, ‘

,LL:'PZ%P, ,th(.A):UAGAA (A CPX).

(g) Prove that its category of algebras is isomorphic to the category C of
complete lattices and mappings that preserve arbitrary joins. Note that we
are using an infinitary operation (arbitrary joins), as in the case recalled
in (b).

(h) The last two exercises can be reorganised in an alternative way: we
start from the forgetful functor U: C — Set, and construct its left adjoint
F: Set — C so that the associated monad (UF,n, u) is the previous one;
then we prove that U is monadic.

1.6.7 Kleisli algebras and their adjunction

The second construction of an adjunction from a monad (7,7, 1) on X is
based on Kleisli algebras for T' and their category Xrp.

An object of X7 is an object of X, viewed as the basis of a free T-algebra.
A morphism f#: X -+Y of Xr is ‘represented by’ an arbitrary morphism
f: X = TY of X (which tells us as f* acts on the basis).

By definition, the composite g% f# of f# with g%: Y =+ Z is represented by
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the morphism
wZTg.f: X - TY - T°Z - TZ, (1.69)
while the identity idX : X <> X is represented by the morphism nX: X —

TX. The axioms of unitarity and associativity for X are easily proved.
The forgetful functor of Kleisli algebras and its left adjoint are now:
Gr: Xr — X, Gr(X)=TX,
Gr(ft: X=Y)=uY.Tf: TX = TY,
Fr:X =Xy,  Fr(X)=X, (170)
Fr(f: X —=Y) = (nY.f)f: X=Y.
Again GpFpr =T. The unit and counit of the adjunction Fpr - G are
nr=mn:1—-T=Grkr, (L71)
er(X) = (Irx)*: FrGr(X) =TX - X.

Also here the monad associated to this adjunction is the original one,
since the new multiplication coincides with the previous one:

(GT.ET.FT)(X) = GT((lTx)u) = /,LX

If we start from an adjunction (F,G,n,e): X~ A, as in 1.6.2, form the
associated monad (7,7, 1) and then the Kleisli adjunction

(Fr,Gr,n,er): X=X,
there is — again — a comparison functor which links the two adjunctions
H:Xp — A H(X)=FX,
H(f*: X=Y)=eFY.Ff: FX — FY, (1.72)
HFr=F, GH=Gr, Hepr=c¢cH.

1.6.8 Exercises and complements

(a) For the monad T' = FU associated to the forgetful functor U: Ab —
Set, a morphism ff: XY of the Kleisli category Setr can be viewed
as a Z-weighted mapping between sets. Compute the composition of these
weighted mappings.

(b) (Kleisli algebras as free T-algebras). A monad (T, 7, ) gives a canonical
functor L: Xp — X7T

L(X)=(TX,uX), L(f*: X~Y) = puY.Tf: LX - LY. (L73)

Prove that X is equivalent to the full subcategory of X” containing its
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free algebras, namely (by definition) each algebra isomorphic to an algebra
(TX, uX).

(c) We shall see in Exercise 2.1.4(d) that the category RelSet of sets and
relations can be presented as a category of Kleisli algebras over Set.

1.6.9 Comonads and coalgebras

Dually a comonad on the category A is a triple (S,e,0) formed of an end-
ofunctor S: A — A with natural transformations €: S — 1 (counit) and
§: S — S? (comultiplication), which make the following diagrams commute

S s %L g2
/ \Lg\ 5i itss (1.74)
S <— §2 — § S22 — g3
eS Se Sé

The category “A of S-coalgebras (A,c: A — SA) is also defined by du-
ality.

An adjunction (F,G,n,e): X~ A, as in 1.6.2, gives a comonad (5, ¢, J)
on A (the domain of the right adjoint), where S = FG: A — A, ¢ is the
counit of the adjunction and 6 = FnG: FG — FG.FG.

1.7 Idempotent monads and adjunctions

The theory of idempotent monads and idempotent adjunctions is well
known within category theory, but it may be difficult to find it in a single
text. The following exposition is based on [G11], Section 3.8. An adjunc-
tion is always ‘equipped’ with the associated monad (see 1.6.2).

We end by examining the strictly idempotent case, which will be useful
in the infinite-dimensional extension.

1.7.1 Idempotent monads

A monad T = (T,7n,u) on the category X is said to be idempotent if
the natural transformation p: 72 — T is invertible. The inverse of p is
Tn=nT:T — T2

Equivalently one can define an idempotent monad on X as a pair (7', 7)
formed of a functor 7: X — X and a natural transformation n: 1 — T
such that Tn = nT: T — T? is invertible.

In this approach one defines p = (Tn)~!: T? — T. The first axiom
wnT = 1 = p.Tn obviously holds; for the second it suffices to cancel
T?n = TnT from the relation (pu.Tw). 7%y = p = (u.puT).TnT.
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1.7.2 Theorem and Definition (Idempotent adjunctions)
Let F 4 G be an ordinary adjunction of categories (or more generally an
adjunction in a 2-category, see 2.3.2)
F: X=A:G, n: 1x = GF, ¢e: FG — 14,

(1.75)
eF.Fn=1p, Ge.nG = 1g.

The following conditions are equivalent:
(i) one of the four natural transformations which appear in the triangle
equations (namely Fn, eF, nG and Ge) is invertible,
(ii) all of them are invertible, i.e. Fn.eF = lpgr and nG.Ge = lgra,
(iii) the associated monad T' = GF: X — X is idempotent, i.e. its multipli-
cation = GeF: T? — T is invertible (and then Tn = nT is its inverse),
(iv) Ty = GFn is invertible,
(v) nT = nGF is invertible,
(i5*) the associated comonad S = FG: A — A is idempotent, i.e. its
comultiplication § = FnG: S — S? is invertible (and then Se = €S is its
inverse),
(iv*) eS = eFG is invertible,
(v*) Se = FGe is invertible.

When these conditions hold we say that the adjunction is idempotent.
The same is true of G°P 4 F°P.

Proof First, the triangle equations show that F'n is invertible if and only
if eF is; the same holds for nG and Ge. Moreover (iii) < (iv) & (v).

The main point is proving that (v) implies that F'n and eF are invertible,
i.e. Fn.eF = lpgr. The natural transformation Fn.eF forms the upper
row of the following commutative diagram

eF Fn

FGF F FGF
FGFn\L an iFGFn (1.76)
FGFGF FGF FGFGF
eFGF FnGF

The lower row FnGF.eFGF = (Fn.eF)GF is the identity, because
FnGF is invertible by hypothesis and the ‘reversed composite’ (e F.Fn)GF
is the identity, by (1.75). Therefore FGFn.(Fn.cF) = FGFn and we get
the conclusion by cancelling the transformation FGFn, which is invertible
by hypothesis (in the equivalent form (iv)).

Adding an obvious implication we have:
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- (nG and Ge are invertible) = (v) = (Fp and ¢F are invertible).
By duality all the properties of the statement are equivalent. U

1.7.8 Theorem and Definition (Algebraic objects)

Let (T, n) be an idempotent monad on X as defined in 1.7.1: Tn=nT: T —
T? is invertible and p = (Tn)~1: T? = T.
(a) The following conditions on an object X of X are equivalent, and we
say that X is an algebraic object (with respect to T') when they hold:

(i) nX is invertible,

(i) there exists a morphism h: TX — X such that h.nX = 1x,

(iii) there exists an (Eilenberg—Moore) T-algebra (X, h) over X,

(iv) nX is invertible and (X, (nX)™1) is the unique T-algebra over X,

(v) X is isomorphic to TX in X.

In, this case the algebra X = (X, (nX)™1) is isomorphic to the free T-
algebra (TX,uX) on X. (See the last point below.)
(b) An arrow of T-algebras f: X 5 Y is an ordinary X-arrow f: X —
Y where X and Y satisfy the equivalent conditions above. The forgetful
functor GT: XT — X of the category of T-algebras is thus a full embedding

GT(X)=X, GUf:X=Y)=(f: X =Y), (1.77)

and makes XT isomorphic to the full reflective subcategory Alg(T) C X of

algebraic objects defined above. The counit €7 is invertible.

(c) Using this isomorphism the adjunction FT 4 GT associated to T can
be rewritten in the following equivalent form, where G' is a full embedding
with reflector F'

F':X=Alg(T): G, n":1—-GF =T, &:FG —1,
FI(X)=TX, F'(f:X>Y)=Tf:TX >TY, (1.78)
n =n, g(X)=nX)"1: FFG'(X)=TX — X.

If T is the monad of an adjunction F -4 G: X-> A, the comparison
K: A — X7 can be rewritten as K': A — Alg(T), a codomain-restriction
of G: A = X, so that G = G'K’. If G is full, then K' is also (and K as
well).

(d) The following composed functor, from XT' to the category Xt of Kleisli
algebras

FrG7: XT -5 X — X7, FrGT(X,(nX)™") = X, (1.79)
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is an equivalence of categories (not an isomorphism, generally).

Proof (a) The implications (i) = (ii) and (iv) = (v) are obvious.
(ii) = (iii) If h.nX = 1x then (X, h) is a T-algebra because the second

axiom is here a consequence:

hThInX =h=h.uX.TnX.

(iii) = (iv) The naturality of 1 on the morphism h and the property Tn =
n1 give

nX.h=ThnTX =ThTnX =T(hnX) = 1rx,

so that nX and h are inverses.
(v) = (i) The existence of an isomorphism i: X — TX gives Ti.nX =
nT'X.i1, whence nX is invertible.

The last assertion follows from the isomorphism

nX: (X, (nX)"") = (TX, uX).

(b) and (c). It is an obvious consequence of (a), applying the naturality of
7.
(d) As in 1.6.7 we write as f*: X -+Y the Xg-arrow represented by the
X-morphism f: X — TY; recall that id(X) = (nX)* and the composite of
ft with g*: Y < Z is represented by uZ.Tg.f: X — TZ.

The functor FrG7T: X7 — X1 sends the arrow f: X =Y to

(nY.f): X =Y.

Since 7Y is invertible, this mapping X7 (X,Y) — Xz (X,Y) is bijective.
It is now sufficient to prove that FrG7 is essentially surjective on objects.

Let us take an object X of Xp, i.e. an arbitrary object of X, and consider
the T-algebra (T'X, uX); for an arbitrary monad this is the free T-algebra
on X, with FrGT(TX, uX) = TX. Here X and TX are isomorphic objects
in X7 (not in X, generally), by the inverse morphisms

(TnXnX): X -TX, (1x)*: TX - X,
since
(uX.T1x.TnXnX)* = (nX)* =id(X),
(WTX.T*nX.TnX.1x)} = (WITX.TnTX.TnX)* = (nTX)* =id(TX).
U
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1.7.4 Idempotent comonads and coalgebras

An idempotent comonad (S, ) on the category A has a dual characterisa-
tion, as an endofunctor S: A — A with a natural transformatione: S — 1
such that Se = &S: §? — S is invertible; the comultiplication §: S — S2
is the inverse of the latter.

Now an S-coalgebra amounts to a coalgebraic object A of A, characterised
by the following equivalent conditions:
(i) €A is invertible,
(ii) there exists a morphism k: A — SA such that cA.k = 14,
(iii) there exists an S-coalgebra (A, k: A — SA) over A,
(iv) A is invertible and A = (A, (A)~1) is the unique S-coalgebra over A,
(v) A is isomorphic to SA in A.

In this case A = (A, (eA)~!) is isomorphic to the cofree S-coalgebra
(SA,0A) on A. The category of S-coalgebras “A is related to the full
coreflective subcategory Coalg(S) C A of coalgebraic objects, by the iso-
morphism

U: SA — Coalg(S), U(Ak)=A,

(1.80)
U(f: (A, k)= (B,K)=f: A— B.
The adjunction associated to S
SF: %A = A %G,
(1.81)

il — GSF, %e=¢e:F%G —1,
is computed as follows:
SE(A k) = A, SE(f: (Ak) = (B,K))=f: A— B,
SG(A) = (SA,5: SA — S%A),
SG(f: A— B) = Sf: “G(A) — %G(B),
M(A k) =k: (A k) = (SA,5: SA — S?A).

It can be rewritten in the following equivalent form, where F” is a full
embedding with coreflector G”

F": Coalg(S) = A :G",
Wil G, =i FIGY 1,
(1.82)
G'"(A) = SA, G'(f:A— B)=Sf: SA— SB,

n"(A) = (eA)"1: A — SA, e’(A) =eA: SA — A
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1.7.5 Full reflective subcategories

(a) Let A be a full reflective subcategory of X which is replete in X: any
isomorphism i: A — X of X that involves an object of A belongs to A. In
these hypotheses the embedding G: A C X has a left adjoint F 4 G, the
adjunction is idempotent, A coincides with Alg(GF) and G is monadic.

In fact we already know that the counit e: FG — 1 is invertible (see
1.5.4(g)), which implies that the adjunction is idempotent. Moreover every
A € ObA is an algebraic object of X (because n(GA) is invertible), and
conversely an algebraic object X 2 GF(X) belongs to A.

In particular we have seen (in 1.5.5) that Ab is full reflective in Gp, and
obviously replete. The associated abelianisation monad is idempotent

T: Gp — Gp, nX: X - TX =X =X/[X, X], (1.83)

and the groups which are algebraic for T are precisely the abelian ones.
Similar facts hold for many embeddings of algebraic varieties, like Gp C
Mon or CRng C Rng; and also for the (full) embedding of Hausdorff
spaces in Top.

(b) Dually the inclusion functor U: A — X of a full, replete and coreflec-
tive subcategory has a left adjoint G: X — A with invertible unit . We
have now an idempotent comonad S = GU: A — A; the category of coal-
gebras SA is isomorphic to the full reflective subcategory Coalg(S) C A of
coalgebraic objects, namely the objects A of A such that €A is invertible.

As an example we have seen in 1.5.5 the subcategory tAb C Ab, with
counit €A: tA — A given by the embedding of the torsion subgroup of
A (see 1.5.5); the abelian groups which are coalgebraic for the associated
comonad t: Ab — Ab are precisely the torsion ones.

1.7.6 Ezxercises and complements

(a) Prove that any adjunction X -+ A from an ordered set X to an arbitrary
category is idempotent. By duality this also holds for every adjunction
A= X.

(b) The idempotent monad of a full reflective subcategory has already been
considered in 1.7.5. The reader can easily prove the following more general
result.

We have an adjunction F' 4 G where the functor G is full and faithful
(whence ¢: F'G — 1 is invertible and the adjunction is idempotent). Then
the comparison K: A — X7 is an equivalence of categories, with quasi
inverse FGT: XT — A, and G is monadic in the weak sense mentioned in
1.6.6(d).
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(c) Study the embedding Rng C Rng’ (see 1.5.6) and the associated
monad. Or, similarly, the embedding of Mon into the category of semi-
groups.

(d) Study the monads and comonads produced by the forgetful functor
U: Top — Set with its adjoints D 4 U - C (see Exercise 1.5.3(c)).

(e) For the abelianisation monad T, in (1.83), consider the equivalence
Gp” — Gpy of 1.7.3(d).

1.7.7 Idempotent adjunctions, algebras and coalgebras

Let us start now from an idempotent adjunction (F,G,n,e): X- A, with
associated idempotent monad (7',n) and associated idempotent comonad
(S,e), where T=GF: X - X and S = FG: A — A.

Rewriting the category of T-algebras as the full reflective subcategory
Alg(T) € X (as in 1.7.3) and the category of S-coalgebras as the full
coreflective subcategory Coalg(S) C A (as in 1.7.4), the given adjunction
can be factorised as follows up to isomorphism

F' Ft F"
X —= Alg(T) ——= Coalg(S) —/= A (1.84)
el Gu leld

(a) First, the reflective adjunction (n,¢’): F' 4 G’ is described in (1.78).
G’ is the full embedding of algebraic objects, with reflector F'(X) = TX
and invertible counit &'(X) = (nX)~!. The comparison functor K is now
computed as G

K:A— Alg(T), K(A) =GA, K(f: A— B)=GYf,

) ) ) (1.85)
KF=F, GK=G, Ke=¢K.

(b) In the third position, the coreflective adjunction (n”,e"”): F” - G”
is described in (1.82). F” is the full embedding of coalgebraic objects,
with coreflector G”(A) = SA and invertible unit n”(A) = (¢A)~!. The
comparison functor H is computed as F

H:X - Coalg(S), H(X)=FX, H(f:X—Y)=Ff,

1.86
HG=G", F'H=F, Hn=nH. (1.86)

(c) In the central position, the given adjunction restricts to an adjunction
between our full subcategories

(nf,ef): F* 4 G*: Alg(T)~ Coalg(S),

(1.87)
FiX = FX, G'A = GA,
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because, for every X in X, F'X is a coalgebraic object of A (with structure
FnX: FX — SFX), and dually. This is actually an adjoint equivalence,
because nf X = nX is invertible for every algebraic object X, and dually.
It is even an isomorphism if 7" is the identity over all algebraic objects and
S is the identity over all the coalgebraic ones.

(d) Composing the three adjunctions above we get ' F*F' = FGF, iso-
morphic to F (by Fn = (¢F)™!) and G'G*G” = GF@, isomorphic to G
(by nG = (Ge)™1).

1.7.8 The strict case

An idempotent monad can be easily replaced with a strict one, up to iso-
morphism (as we prove in 1.7.9). Concretely, this is so obvious that we tend
to make no difference between these notions. Theoretically, the distinction
seems to be of little interest and pedantic. Yet the strict case will be useful
in the infinite-dimensional extension of Chapter 8, where working in the
general idempotent case would quickly become complicated.

The theoretical part is an obvious simplification of the previous one. We
say that a monad T = (T, n, u) on the category X is strictly idempotent if
u = 17 (and therefore T = T?); or equivalently T = 17, or also nT = 1p.
Again, one can define a strictly idempotent monad on X as a pair (7, 7)
formed of a functor 7: X — X and a natural transformation n: 1 — T
such that Tn = 10 = nT (to which we add p = 17).

An adjunction (F,G,n,e): X< A, as in (1.75), will be said to be left
strict if nG = 1g, or equivalently Ge = 1¢ (which implies GFG = G).
Then the adjunction is idempotent and the associated monad (T, 7, 1) is
strictly idempotent, because nT' = nGF = lgp.

On the other hand, given a strictly idempotent monad (T, 7) on X, we
let Alg,(T) be the full subcategory of strictly algebraic objects, namely
the objects X of X such that TX = X, or equivalently nX = 1x (from
TX = X it follows that nX = nTX = 1px = lx), or equivalently the
objects of form TY. Let us note that Alg,(T) is a full subcategory of
Alg(T), equivalent to the latter (by 1.2.5) since any algebraic object X is
isomorphic to T'X, which is strictly algebraic.

The inclusion G’: Alg, (T) — X has a left inverse F’, which is a restric-
tion of T" on its codomain

F':X = Alg,(T), F'(X)=TX, F(f)=Tf (F'G'=1). (1.88)
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Moreover G'F' = T: X — X and we have an adjunction
F':X=Alg (T):G,

’ 17 ’ ¥l (1'89)
n=n1l-—GF, eg=1:FG —1,

which is left strict (since ¢’ = 1) and gives back the original monad (7', 7).

The other way round, if we start from a left strict adjunction (F,G,n,¢):
X > A, form the associated strictly idempotent monad (T,7) on X (with
T = GF) and the associated adjunction (1.89), we have a comparison
functor, which is a codomain-restriction of G (since nG = 1)

K:A— Alg,(T), K(A)=GA, K(f)=Gf. (1.90)

1.7.9 Proposition

An idempotent monad (T,n) on the category X has an associated strictly
idempotent monad (S,n’) on X, with an isomorphism ¢: T — S such that
n=pn:1->8.

The strictly algebraic objects of S are precisely the algebraic objects of
T.

Proof We apply Exercise 1.2.6(i) to the functor T': X — X and the family
px: TX — SX defined as follows:

- if nX is invertible, we let S(X) = X and px = (nX)~': TX — SX,
- otherwise we let S(X)=TX and px = lrx.

We extend all this to a functor S: X — X and a functorial isomorphism
@: T — 5. Plainly (S,en) is still an idempotent monad. It is strictly
idempotent because pnS = 1g

(enS)x = px.nx = 1x = 1gx, if nX is invertible,
(enS)x = erxnrx = lrx = lsx, otherwise.

Now SX = X if nX is invertible; otherwise SX = T'X is not isomorphic
to X (by 1.7.3) and cannot be X. (If one defines S(X) = X only for the
objects X of type TY, everything works as above except this last point —
of course.) O

1.8 Introducing abelian categories and exact functors

The beginning of category theory, in the 1950’s, was focused on the study
of abelian categories, which provided an extension of the categories of mod-
ules with two crucial advantages: the theory is self-dual and includes all
categories of sheaves of modules on a given ring.
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Here we briefly review the definition of abelian categories and exact func-
tors. A more detailed study of exactness properties will be given in Ap-
pendix A.

1.8.1 Pointed categories

The notions of exactness considered here are based on kernels and cokernels.
To define the latter, we assume that we are working in a pointed category
E. As already said in 1.3.2, this means that there is a zero object 0, that
is both initial and terminal in E: for every object A there is precisely one
morphism 0 — A and precisely one morphism A — 0. The zero object is
determined up to isomorphism; as usual, one of them is chosen.

For instance Ab, R Mod, Gp, Set,, Top,, Rng’ are pointed categories,
with zero object given by the singleton with the adequate structure.

Given two objects A, B in E, the composite A — 0 — B is called the
zero morphism from A to B, and written as 04p: A — B, or also as 0 when
the context identifies it.

The morphism 0 — A is plainly a monomorphism, also written as
04:0— A and called the zero subobject of A; dually the morphism A — 0
is necessarily an epimorphism, written as 04: A — 0 and called the zero
quotient of A.

1.8.2 Kernels and cokernels

In the pointed category E the kernel of a morphism f: A — B is defined
as a limit, namely the equaliser of f and Oap: A — B.
This means a morphism ker f: Ker f — A such that

(i) f.(ker f) = 0, and for every map h such that fh = 0 there exists a
unique morphism u such that h = (ker f)u
Kerf 2L 4 1. p
> s h (1.91)
> [

We shall choose the (regular) subobject that satisfies the given property,
if it exists. (The existence of kernels does not require the existence of all
equalisers, as many examples in A2.3 will show.)

More generally, a normal monomorphism is a kernel of some arrow f,
i.e. a monomorphism equivalent to the normal subobject ker f. Thus in
Ab the natural ‘kernel-object’ is the usual subgroup Ker f, and ker f is its
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embedding in the domain of f; however, if u: K — Ker f is an isomorphism,
also the composite (ker f)u: K — A is a kernel of f.

Dually, the cokernel of f is the coequaliser of f and the zero morphism
A — B, namely a morphism cok f: B — Cok f such that
(i*) (cok f).f = 0, and for every map h such that hf = 0 there exists a
unique morphism u such that h = u(cok f)

A Lo B L ook

hl - g (1.92)

A normal epimorphism is any cokernel of a morphism, and is always a
regular epimorphism.

1.8.3 Ezxercises and complements

(a) Compute kernels and cokernels in R Mod, Gp, Set,, Top, and Rng/,
characterising the normal subobjects and quotients.

(b) Let us note that in R Mod the image f(A) is determined as Ker (cok f),
i.e. the kernel-object of the morphism cok f, while Cok (ker f) = A/Ker f
gives the (isomorphic) coimage of f. The other categories of point (a) do
not behave in this ‘simple’ way, that will be used below in axiom (ab.2).

1.8.4 Biproducts
We have considered biproducts in R Mod, in 1.5.8. In a pointed category,
we define the biproduct of two objects A, B as an object C' equipped with
four maps u, v,p, q

A . ) B
\ . /
PN

A B

(1.93)

so that
-pu=1idA, quv=1idB, qu=10, pv=0,
- (C,p, q) is the product of A, B and (C, u,v) is their sum.
The object C' is often written as A @ B; the maps p, ¢ are called projec-
tions while u, v are called injections.

Similarly one defines the biproduct €;A; of any family of objects; the
biproduct of the empty family is the zero object. A morphism C' — €;A4;
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will often be written as (f;), by its components f;: C — A;, while a mor-
phism €; A; — D can be written as [f;], by its co-components f;: A; — D
(as in our notation for products and coproducts, in 1.3.1 and 1.3.2).

All categories of modules and the category Abm of abelian monoids have
finite biproducts. Other examples can be found in A3.6, including cases
where arbitrary biproducts exist (like RelSet). The relationship of finite
biproducts with additive categories is deferred to Section A3.

1.8.5 Abelian categories

An abelian category A is a category satisfying the following three (redun-
dant) self-dual axioms:

(ab.1) A is a pointed and every morphism f: A — B has a kernel and a
cokernel,

(ab.2) in the canonical factorisation of a morphism f through its coimage
and its image

Kerf — > A B —Ss Cokf

qi In (1.94)

Coim f —,> Im f

Coim f = Cok (ker f), Im f = Ker (cok f),
q = coim f = cok (ker f), n =im f = ker (cok f),

the unique morphism g such that f = ngq is an isomorphism,
(ab.3) A has finite products and finite sums.

A finer analysis will be given in Sections A2 and A3. In particular,
a category satisfying the first two axioms above is called Puppe-exact, or
exact in the sense of Puppe—Mitchell. We shall see that such a category has
finite products if and only if it has finite sums, which are then biproducts:
then the category has finite limits and colimits, and a (unique) additive
structure.

Every category RMod is abelian. *Every category of sheaves of R-
modules on a topological space is abelian. More generally, this holds for
sheaves with values in any abelian category [Bo3].*
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1.8.6 Ezxact functors

A functor between abelian categories is left exact (resp. right exact) if it
preserves kernels (resp. cokernels), in the usual sense of preserving limits
or colimits. It is exact if it is left and right exact.

A right adjoint functor between abelian categories is (obviously) left
exact. We shall see in Appendix A that a left exact functor preserves all
finite limits and the additive structure. Exact sequences of morphisms are
also considered there.
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Introducing two-dimensional category theory

Two-dimensional aspects have already appeared in various categories, like
the order relation f < g in Ord (in (1.5)) or — in a less elementary way —
the second-order arrows ¢: F — G in Cat (in 1.2.4). Here we begin
to study 2-dimensional categorical structures, from ordered categories to
bicategories.

The general 2-dimensional case, namely weak double categories, will be
dealt with in Chapters 3 to 5.

2.1 Categories of relations and partial mappings

We review the construction of some ordered categories of relations and
partial mappings, in concrete situations.

Relations and partial mappings will often (but not necessarily) be writ-
ten as dot-marked arrows X <Y, to distinguish them from ordinary mor-
phisms. The categories of partial mappings will usually be denoted by
calligraphic letters.

Relations will be extended to regular categories in Section 2.5, and to
other generalisations of abelian categories in Appendix A. Double cate-
gories based on relations and partial maps will be studied in Chapters 3
and 5.

2.1.1 Categories and involutions

We begin by fixing our terminology for involutive endofunctors, starting
from two examples related to ordered sets.

(i) The category Ord, of ordered sets and increasing mappings, has an
involutive covariant endofunctor:

X X%, (f: X 5 Y) e (fP: XP = Y°P), (2.1)

7
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where X°P has reversed order and f°P is the ‘same mapping’ as f.

(ii) The category AdjOrd, of ordered sets and Galois connections (intro-
duced in 1.4.4), has an involutive contravariant endofunctor:

X XP (ur X=Y) = (uP: VP X°P), (2:2)

where u°P = (¢°P, f°P), if u = (f,g) with f 4 g.

This situation will become clearer in the domain of double categories:
the two procedures (i) and (ii) — which have the same action on the ob-
jects — will be combined to give a vertical involution of the double category
AdjOrd, horizontally covariant (on increasing mappings) and vertically
contravariant (on adjunctions); see 3.2.2.

We shall use the following terms.

(a) A category with reversor will be a category C equipped with an involu-
tive covariant endofunctor R: C — C, often denoted as in (2.1), and said
to be trivial when R = idC.

Obvious non-trivial examples are Ord and Cat. The name of ‘reversor’
is taken from Directed Algebraic Topology [G7], where the categories of ‘di-
rected spaces’ in some sense (like preordered topological spaces, ‘d-spaces’,
and small categories) have such an endofunctor, that turns a directed struc-
ture into the opposite one. In the trivial case, when R = idC, we go back
to classical, non-directed ‘spaces’.

(b) A category with involution will be a category C equipped with an invo-
lutive contravariant endofunctor J: C --» C. It follows that C is selfdual,
i.e. isomorphic to C°P.

Obvious examples are AdjOrd and AdjCat.

(¢) More particularly, an involutive category will be a category C equipped
with a (contravariant) involution which is the identity on objects. In other
words every morphism f: X — Y has an associated opposite morphism
%Y — X so that

(gf)* = f'g", (1x)* = 1x. (2.3)

Classical examples are the categories of relations reviewed below.

The involution is said to be regular (in the sense of von Neumann) if
ffif = f (for all maps f), as happens with relations of groups. In this
case all the semigroups of endomorphisms C(X, X) are regular, in the well-
known sense of semigroup theory. This has nothing to do with the notion
of ‘regular category’, that will be recalled in Section 2.5.
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2.1.2 Ordered categories

An ordered category will be a category C equipped with an order relation
f < g between parallel morphisms, which is consistent with composition:
for f,g: X Y and f,¢:Y = Z

(i) if f < gand f/ < ¢ then f'f <¢g'g.

(This notion is related to ‘enrichment’, see 2.4.2; a different ‘internal’
notion is recalled in 2.4.5.)

A functor F': C — D between ordered categories is increasing, or mono-
tone, if it preserves the order relation. Any subcategory of an ordered
category inherits an ordering.

For instance the category Ord of ordered sets is canonically ordered by
the pointwise order f < g, defined in (1.5). This ordering is inherited
by the subcategories Lth, Mlh and Dlh of lattices, modular lattices and
distributive lattices (see 1.4.1, 1.4.2).

Also AdjOrd has a canonical order, defined in (1.39).

2.1.3 Relations of sets

The category RelSet of sets and relations (or correspondences) is well
known.

A relation u: X =Y is a subset of the cartesian product X xY', and will
often be denoted by a dot-marked arrow. It can be viewed as a ‘partially
defined, multi-valued mapping’, that sends an element x € X to the subset
{y €Y |(x,y) € u} of Y. (This aspect is analysed below, in 2.1.4(d).)

The identity relations and the composite of u with v: Y - Z are

idX ={(z,z) |z € X},
(2.4)
vu={(z,2) e XxZ|3yeY: (z,y) €uand (y,2) € v}.

It is easy to verify that RelSet is a category. It is actually an involutive
ordered category, in the following sense. First it is an involutive category as
defined in 2.1.1: the opposite relation u*: Y -+ X is obtained by reversing
pairs. Second, it is an ordered category, in the sense of 2.1.2: given two
parallel relations u,u’: X -Y we say that v < v’ if u C v’ as subsets of
X xY. Third, these structures are consistent: if u < v then uf < v! (and
conversely, as a consequence).

The category Set is embedded in the category of relations RelSet, iden-
tifying a mapping f: X — Y with its graph {(z,y) € X xY |y = f(z)};
the condition f < g for parallel mappings amounts to f = g.
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2.1.4 Ezercises and complements

(a) A relation f: X =Y of sets is a mapping if and only if it is everywhere
defined and single-valued: for every z € X there exists precisely one y € Y
such that (x,y) belongs to (the graph of) f. Prove that these conditions
are characterised as follows

i >idX, 4 <idy. (2.5)

*(This means that f 4 f* in the ordered category RelSet, viewed as a
2-category: see 2.3.2.)*

(b) Prove that the involution of RelSet is not regular, in the sense of 2.1.1.

(c) Prove that RelSet has arbitrary products and sums, that are biproducts
(see 1.8.4).

(d) RelSet can be viewed as a category of Kleisli algebras over Set, for the
monad P of Exercise 1.6.6(f).

(e) For the same monad, compute the canonical functor L: Setp — Set”
of Exercise 1.6.8(b).

(f) Show that the embedding Set — RelSet has a right adjoint.

2.1.5 Relations of abelian groups and modules

One proceeds in a similar way for abelian groups and their relations, also
called additive relations or correspondences. The use of these categories in
Homological Algebra goes back, at least, to Mac Lane and Hilton [M1, M2,
Hi].

A relation of abelian groupsu: X =Y is now a subgroup of the cartesian
product X xY. Composition, order and involution are defined as above,
and give the involutive ordered category RelAb. Ab is embedded in the
former as the category of everywhere defined, single-valued relations.

The involution of RelAb is regular, i.e.

wufu = u, for all u in RelAb. (2.6)

In fact the inclusion u < uwufu is obvious (and also holds for relations of
sets). The other way round, if (z,y), (z/,y) and (a/,y’) are in u, we have

(a?,y’) = (ac,y) - (x’,y) + (J)/, y/) € u. (27)

Let us note that RelAb lacks products (and sums), including the terminal
object.

More generally for any ring R we have the involutive ordered category
Rel(RMod) of left R-modules, where a relation is a submodule of the
cartesian product.
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We also have the involutive ordered category RelGp of groups, where a
relation is a subgroup of the cartesian product. The involution is still reg-
ular, with the same proof as in (2.7), where the commutativity of addition
is not used.

In all these cases the original morphisms are characterised among rela-
tions by the conditions (2.5). The other points in 2.1.4 cannot be extended
to the categories of relations listed here.

2.1.6 Partial mappings

A partial mapping of sets f: X =Y is a mapping Def f — Y defined on a
subset of X, its definition subset. Equivalently, it is a single-valued relation
(characterised by ff* <idY).

Their composition is obvious (as in the well-known case of partially de-
fined real functions R R):

Def (9f) = f'(Defg), (9f)(z) =g(f(x)) (= €Def(gf)). (2.8)

We have thus the category S of sets and partial mappings, a wide sub-
category of RelSet that contains Set. In the induced order of S, f/ < f
means that f’ is a restriction of f to a smaller subset of X.

The category S should not be viewed as essentially different from the
usual categories of structured sets and ‘total’ mappings, since it is equiva-
lent to the category Set, of pointed sets, via the functor

R: Set, — S, (X, z0) = X\ {z0}, (2.9)
that sends a pointed mapping f: (X, z9) — (Y, yo) to its restriction
R(f): X\ {zo} =Y\ {yo},  Def (R(f)) = f~1 (Y {wo})-

In fact this functor is plainly full, faithful and surjective on objects (see
1.2.5). A quasi inverse adjoint S: & — Set, is obtained by choosing, for
every set X, a pointed set S(X) = (X U {zo},zo) where zo ¢ X, and
defining S on partial mappings in the obvious (and unique) way that gives
RS = 1. (Set theory can give a canonical — if ‘confusing’ — choice, letting
xo = X, since X ¢ X.)

The equivalence proves that S has all limits and colimits. Limits are
easily constructed ‘along the equivalence’: for instance the product in S of
a family (X;) of sets can be computed as

R(IL; S(Xy)) = (IL(X5 U{zi}) {(w:)}, (2.10)

first adding a base point z; ¢ X; to each factor, then taking their cartesian
product in Set, and deleting the single base point (z;) of the product.
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(Thus 1x1 in S has three elements, and 2x 3 has eleven.) Sums in S can
also be constructed in this way, but they simply amount to disjoint unions
of sets (as in Set and Rel(Set)).

It is easy to see that S and Set, are not isomorphic categories: the first
has one initial object, the empty set, while Set, has a large set of them,
all the singletons.

2.1.7 Partial byjections

More particularly a partial bijection (or partial isomorphism) of sets f:
X <Y is a bijection between a subset Def f of X and a subset Val f of Y,
or equivalently a single-valued, injective relation.

Partial bijections form a selfdual wide subcategory of S and RelSet, writ-
ten as Z in [G8], where it is used as a basic tool for graphic representations
of spectral sequences. We shall see in A2.3 that it is a pointed category
with good exactness properties, but lacks products and sums.

2.1.8 Exercises and complements (Partial mappings)

In various cases we may want to consider partial morphisms defined on sub-
objects of a particular kind. For topological spaces, for instance, partial
continuous mappings should be ‘reasonably’ defined on subspaces, i.e. regu-
lar subobjects, rather than arbitrary subobjects; but in fact the important
structures of partial continuous mappings are even more restricted.

(a) Let us first consider the category T of topological spaces and partial
continuous mappings, each defined on a subspace of its domain. The func-
tor R: Set, — S of (2.9) can be extended to a functor defined on the
category Top, of pointed topological spaces

R: Top, — T, R(X,z9) = X \{z0}, (2.11)

where X\ {zo} has the topology induced by X.
Prove that R is not an equivalence of categories.

*(b) While studying topological manifolds, it can be useful to use the cate-
gory C of spaces and partial continuous mappings defined on open subspaces,
together with its subcategory of spaces and partial homeomorphisms be-
tween open subspaces (see [G1]).

Prove that C is equivalent to a full subcategory Top, C Top, consisting
of those objects (X, zp) where the base point z is closed and adherent to
every other point (i.e. the only open subset containing x is the total space
X).
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*(c) The quotient of the topological space R™ modulo the equivalence re-
lation xzRy:

there exists some scalar A # 0 such that z = Ay, (2.12)

is a topological space, which we consider as pointed at the singleton class
[0]; the latter is closed and adherent to every other point. Taking out the
base point, we get the real projective space P*~!, which has the advantage
of being a topological manifold.

The reader is invited to note that the simplest way to define the category
R Prj; of real projective spaces (of finite dimension) and linear projective
mappings is to take the quotient of the (abelian) category R Mods of finite-
dimensional real vector spaces, modulo the congruence fRg defined as in
(2.12). (The quotient is not abelian, but Puppe-exact: see A2.3(f).)

This category can be made concrete over Top, by sending a finite-
dimensional real vector space X (with the unique consistent topology) to
the topological space X/R, pointed as above. Obviously, R Prj; is also
concrete over C, taking out each base point: in this way the objects are
represented by the usual projective manifolds, but the linear projective
mappings are represented by partial maps.

*(d) Prove that the category of topological spaces and partial continuous
mappings defined on closed subspaces is equivalent to the full subcategory
Top. of Top, formed by the objects (X,zq) where the base point zg is
open and dense (i.e. the only closed subspace containing z( is X).

2.2 Monoidal categories and exponentials

The ‘weak’ structures that we mention here and in the next section, like
monoidal categories and bicategories, are only sketched. They are particu-
lar cases of weak double categories, that will be introduced in Chapter 3.

2.2.1 A classical example from multilinear algebra

Let us consider the category RMod of modules on a commutative unitary
ring R. Their tensor product and Hom-functor form a classical instance
of a ‘symmetric monoidal closed’ structure, which we briefly recall now as
an introduction to these structures. Further information on the present
topic can be found in any text on multilinear algebra or homological al-
gebra, for instance in [M2]; tensor products of bimodules over possibly
non-commutative rings will be briefly examined in 3.4.5.
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(a) The tensor product A ®pr B of two modules A, B is equipped with
an R-bilinear mapping ¢: Ax B — A ®g B (linear in each variable), and
characterised up to isomorphism by the following universal property: every
bilinear mapping 1: Ax B — C factorises through ¢ by a unique homo-
morphism h

AxB — > C© U(A)xU(B) —2~ U(C)
| 2 g e

A ®r B U(A ®r B)

(Note that this diagram lives in Set; to be more precise — or perhaps
pedantic — one can rewrite it as at the right, where U = |—|: RMod — Set
is the forgetful functor.)

The existence of the solution is proved by constructing a quotient of
the free R-module F(]A| % |B]), so to force the embedding of the basis
|A|x|B| — F(]A|x|B]) to become an R-bilinear mapping. Its uniqueness
up to isomorphism is granted from the start. Fixing a solution, one writes
a®b=y(a,b), foraec A, be B.

We form thus a functor in two variables, with an obvious action on a
pair of homomorphisms

— ®—: RModx RMod — RMod,
(A,B) » A®pg B, (f,9) = f®g.

This ‘product’ has well-known properties of unitarity, associativity and
commutativity, up to canonical, natural isomorphisms. The unit object is
R as a module on itself: AQR RYXAX R®pg A.

(b) The category RMod has an ‘internal’ hom-functor in two variables,
contravariant in the first

(2.14)

Homp: RMod® x RMod — RMod. (2.15)

Here Homp (A, B) is the set of homomorphisms R Mod(A, B) equipped
with the pointwise sum and scalar product:
(u+v)(@) =u(@) +v(@),  (w)(a) = \u(a).
On the morphisms we have the usual action: Homg(f,g) =g. — .f.

(c) These two functors are linked by a family of adjunctions. For a fixed
R-module A, there is a natural family of isomorphisms

pxy: Homp(X ®r A,Y) — Hompg(X,Hompg(A,Y)),

oxy(w)(z) =u(z®—): A=Y, (2.16)
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foru: X g A — Y and z € X. The underlying bijections
vxy: RMod(X ®r A,Y) - RMod(X,Homp(A,Y)),
give an adjunction F' 4 G (depending on the parameter A)

F: RMod = RMod : G,
F(X)=X®rA,  F(f)=[f®id4, (2.17)
G(Y) =Hompg(A,Y),  G(g) =Homp(4,9) =g. —.
In particular, F = —®p A preserves all colimits, while G = Hompg(A4, —)
preserves limits.
With this structure R Mod is a symmetric monoidal closed category.

The unit and counit of the adjunction at A are obvious, and the counit is

called evaluation
nx: X — Homg(A4, X ®g A), nx(z): a— x® a, (2.18)
evy: Homg(A,Y)®r A =Y, evy (f ®a) = f(a). .

In particular, this holds for Ab, viewed as the category of Z-modules. (Here
one can simplify things, since the action of the scalars is determined by the
additive structure, and bilinear just means additive in each variable.)

2.2.2 Monoidal categories

A monoidal category (C,®, E, Kk, \, p) is a category equipped with a functor
in two variables, often called a tensor product

CxC— C, (A,B) — A® B, (2.19)

and an object F, called the unit. This operation is assumed to be associa-
tive up to a functorial isomorphism x of components

k(A,B,C): A (B®C)—= (A®B)®C (associator),
and the object F is assumed to be an identity, up to functorial isomorphisms
MA):E®A— A, p(A): AR E— A (unitors).

Without entering into details (that will be analysed in the more gen-
eral frameworks of bicategories and weak double categories), these isomor-
phisms must satify two coherence axioms (see 2.3.6) and — as a
consequence — form a ‘coherent system’ (see 2.2.7 or [M4, Kel, EiK, Ke2]).
With an abuse of notation, this allows us to ‘forget’ them and write

A (B®(C)=(A® B)® C, E®@A=A=AQE.
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The case of a strict monoidal category, where these comparison isomor-
phisms are indeed identities, is less frequent but has important examples:
see 2.4.2(d) and 2.4.3.

A symmetric monoidal category is further equipped with a symmetry
isomorphism, coherent with the other ones:

s(A,B): A® B— B® A. (2.20)

The latter cannot be omitted: note that s(A4,4): A® A - A® A is not
the identity, in general.

A category C with finite products has a symmetric monoidal structure
given by the categorical product; this structure is called cartesian. The
category RMod also has the (more important) tensor product reviewed
above (for a commutative R). The smash product of Set, and Top, will
be recalled in 6.8.6.

2.2.3 Exponentiable objects and internal homs

In a symmetric monoidal category C an object A is said to be exponen-
tiable if the functor — ® A: C — C has a right adjoint, often written as
Hom(A,—): C — C or (—)*, and called an internal hom.

There is thus a family of bijections, natural in the variables X and Y

Py C(X®A,Y) = C(X,Hom(4,Y)) (X,Y in C), (2.21)
whose counit is called evaluation at A
evy: Hom(A,Y)® A = Y. (2.22)

Since adjunctions compose, all the tensor powers A®" = A® ... ® A are
also exponentiable, with

Hom(A®", —) = (Hom(A4, —))". (2.23)

A symmetric monoidal category is said to be closed if all its objects are
exponentiable. In the non-symmetric case one should consider a left and a
right hom-functor, as is the case with cubical sets (see Appendix B).

A category C with finite products is said to be cartesian closed if all the
objects are exponentiable for the cartesian monoidal structure.
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2.2.4 Ezercises and complements

(a) Set is cartesian closed, with internal hom Y4 = Set(4,Y). The natural
bijection
XY : Set(X X A, Y) — Set(X, YA)

(2.24)
(f: XxA—=Y)=(g: X = Y4,

is expressed by the relation f(z,a) = g(x)(a). It is also called the exponen-
tial law in Set, as it can be written in the form: Y4 = (Y4)X. Compute

unit and counit of this adjunction; the latter is called evaluation.

(b) The category Ord of ordered sets is cartesian closed, with internal hom
Ord(A,Y) equipped with the pointwise order (see (1.5)).

(¢c) The category Cat of small categories is cartesian closed, with the
internal hom Cat(S,C) = CS described in 1.2.7. For a fixed S, we
have used in 1.5.2(b) an extension of the representable covariant functor
Cat(S,—): Cat — Cat, acting on categories which are not assumed to be
small.

The counit of the adjunction, the evaluation functor

ev: C5xS = C,  ev(F,X)=F(X), ev(p f)=o(f), (2.25)

evaluates a natural transformation ¢: F' — G: S — C on a morphism f of
S, as in (1.10).
(d) The category Ab of abelian groups is not cartesian closed.

(e) Prove more generally that a cartesian closed category C with zero object
is equivalent to the singleton category 1.

(f) We have already recalled that R Mod (for a commutative unitary ring
R) is symmetric monoidal closed, with respect to the usual tensor product
and hom-functor. This includes Ab = Z Mod.

(g) The category Abm of abelian monoids (or semimodules on the semir-
ing N) is also a symmetric monoidal closed category, with tensor product
and hom-functor essentially defined as in Ab. *(This can be extended to
semimodules on a commutative semiring.)*

(h) Top is not cartesian closed, but it is well known (and not difficult to
prove) that every locally compact Hausdorff space A is exponentiable: Y4
is the set of maps Top(A4,Y") endowed with the compact-open topology (for
an arbitrary space Y).

In particular the standard euclidean interval [0, 1] is exponentiable, with
all its cartesian powers. This is a crucial fact in homotopy theory, as we
shall recall in A5.1.

*(As a partial converse, every exponentiable space A which is Hausdorff
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must be locally compact, because the product —x A preserves coequalisers
only in this case; see [Mic|, Theorem 2.1 and footnote (5)*.

(i) The category Rng of rings is symmetric monoidal, with a tensor prod-
uct R ® S given by the tensor product of the underlying abelian groups,
equipped with a natural multiplication. This can be extended to the cate-
gory of algebras over a commutative ring.

(j) Restricting to the full subcategory CRng of commutative rings, R ® S
is a categorical sum and the monoidal structure is cocartesian. The tensor
product Z[X] ® Z[Y] of (commutative) polynomial rings on two sets of
variables X,Y is easily computed.

The categorical sum in Rng is more complex. For the polynomial ring
R = Z]x] on one variable, compute the categorical sum R+ R in Rng and
CRng.

*(k) Every category of presheaves of sets (see 1.2.7) is cartesian closed: see
[MaM].

2.2.5 Internal monoids

Let X = (X, ®, E) be a monoidal category.

An internal monoid in X is a triple (M, e, m) consisting of an object M
and two morphisms e: E — M, m: M®? — M of X, called the unit and
multiplication, which make the following diagrams commute

M e M M®2 M®e M M®3 M®m M®2
\ lm/ m@Ml \Lm (2.26)

These axioms are called unitarity and associativity.

2.2.6 Ezxercises and complements

(a) A monoid in Set (resp. Top or Ord), with respect to the cartesian
product, is an ordinary monoid (resp. a topological or ordered monoid).

(b) A monoid in Ab (resp. RMod), with respect to the usual tensor prod-
uct, is a Z-algebra (resp. an R-algebra).

(¢) In the cartesian case X = (X,X, T), define an internal group G in
X by adding to the structure of internal monoid an inversion morphism
i: G — G satisfying suitable axioms.
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(d) An internal group in Top is a topological group. But an ordered group
is mot an internal group in Ord.

(e) Verify that the category End(C) of endofunctors of the category C
(with their natural transformations), has a strict, non-symmetric monoidal
structure given by the composition of endofunctors. A monad on C is the
same as a monoid in the category End(C).

*(f) An internal group in the category of differentiable manifolds is a Lie
group.

2.2.7 Introducing Coherence Theorems

Mac Lane’s Coherence Theorem of monoidal categories, the prototype of
all coherence theorems in category theory, was first proved in 1961 [M3].
It can also be found in [M4], Section VII.2, in a more precise form.

Loosely speaking, the theorem says that, in a monoidal category C =
(C,®,E, kK, A, p), any ‘natural diagram’ made up by tensoring instances of
the comparisons \, p, k, their inverses X', p/, x’ and identities, is commuta-
tive.

For instance, the following diagram always commute

p®1

(A®E)® (B®C) A® (B C)
”l l“ (2.27)
(AeB)eB)©C ——> (AeB)aC

The tricky problem is a precise formulation of these ‘well formed dia-
grams’, because we have to get rid of possible coincidences between iterated
tensor products, which might occur in C.

This can be made by replacing actual tensor products by ‘formulas for
them’; as in Mac Lane’s [M4]. The interested reader can see, in Section 2.6,
the extension of this approach to bicategories, following Mac Lane — Paré

[MaP].

2.3 From sesquicategories to 2-categories and bicategories

The category Cat, equipped with the natural transformations ¢: F — G
as second-order arrows (or 2-cells), is the prime example of a 2-category.
We present it with the operations already examined in 1.2.4, the vertical
composition and the whisker composition with functors, which determine
the horizontal composition of 2-cells.
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2.3.1 Sesquicategories

As a preliminary notion, a sesquicategory [St2] is a category C equipped
with:

(a) for each pair of parallel morphisms f,g: X — Y, a set of 2-cells, or
homotopies, Co(f,g) whose elements are written as p: f — g (or ¢: f —
g: X = Y), so that each map f has an identity endocell idf: f — f,

(b) a concatenation, or vertical composition of 2-cells, written as 1y or ¢.¢

f

—
X .y Vo f o h X Y. (2.28)
W

h

(¢c) a whisker composition for 2-cells and maps, or reduced horizontal com-
position, written as koh (or kepoh, when useful to distinguish it)

f
X s x oy Ay (2.29)
g

koh: kfh — kgh: X' —Y'.

These data must satisfy the following axioms (for associativities, identities
and distributivity of the whisker composition):

xX(We) = (x¥)e, k' (kph)h' = (K'k)p(hh'),
pidf = =1idg., lycpelx =¢, keidfoh =id(kfh), (2.30)
k()b = (kph).(kph).

(Equivalently, one can use two one-sided whisker compositions: @oh =
lyopoh and kep = kowolx.) Note that each set Cy(f,g) is a category,
under vertical composition.

*The category Top equipped with homotopies ¢: f — g: X — Y does
not become a sesquicategory, because the vertical composition of homo-
topies is not associative and has no identities: we have a 2-dimensional
categorical structure of a more complicated nature: see [G7] and its refer-
ences. (One can form a sesquicategory by replacing standard homotopies
with Moore homotopies, parametrised over compact euclidean intervals,
but this approach is generally less interesting than the standard one.)

On the other hand it is easy to see that chain complexes, chain mor-

phisms and homotopies, over an additive category A, form a sesquicategory
Ch.(A).*
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2.3.2 Definition

A 2-category can be defined as a sesquicategory C which satisfies the fol-
lowing reduced interchange property:

f
X e Y i 4 (0g).(hp) = (kg).(of).  (2:31)
9 k

(This approach is essentially followed in [EiK], Chapter 1.) Then one
defines the horizontal composition of 2-cells p, o which are horizontally
consecutive, as in diagram (2.31), using the previous equation:

oop = (0g).(hp) = (kp).(cf): hf = kg: X — Z. (2.32)

Note that the domain and codomain of ¢ for the new composition are
objects of C instead of arrows; this can be expressed writing ¢: X =Y.

We can now recover the usual definition of 2-categories [Bel, KeS], based
on the vertical and horizontal composition of 2-cells: the horizontal com-
position is proved to be associative, to have identities id(1x) (the identity
cells of identity arrows) and to satisfy the interchange laws with the vertical

composition:
(T.0)o(h.p) = (To9).(000), Ipely = 1ny, (2.33)
—_— e
X Y%JZ x Loy oz
W T

(The first is called middle-four interchange.) As a prime example of such
a structure, Cat will also denote the 2-category of small categories, their
functors and their natural transformations. A set Nat(F,G) of natural
transformations F' — G can now be written as Catq(F, G).

There are sesquicategories where the reduced interchange property does
not hold (and one does not define a full horizontal composition): for in-
stance, the sesquicategory Ch,(A) of chain complexes, recalled above.

An ordered category C, as defined in 2.1.2, is the same as a 2-category
where each category Cs(f,g) is an ordered set; it is also called a locally
ordered 2-category.

The categories of relations or partial morphisms belong to this case: see
Section 2.1.

A 2-functor F': C — D between 2-categories sends objects to objects,
arrows to arrows and cells to cells, strictly preserving the whole structure:
(co)domains, units and compositions. (Lax versions can be found in [Bel,
KeS]; here they will be defined for weak double categories, in the next
chapter.)
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A 2-natural transformation p: F — G: C — D has components ¢X :
FX — GX (for X in C), as a natural transformation, but is also natural
on every cell a: X =Y, which means that pY.Fa = Ga.pX.

A 2-adjunction (F,G,n,e): C-D is defined as in 1.5.1(iii); it involves
2-categories, 2-functors and 2-natural transformations.

2.3.3 Natural transformations and mates
Let us suppose that we have two adjunctions (between ordinary categories)
F: X2Y:G, n: 1 — GF, e: FG— 1, ( )
2.34

F':X2Y:G, n:1=GF, &:FG -1,

and two functors H: X - X', K: Y —-Y'.
As shown in [KeS], Section 2.2, there is a bijection between sets of natural
transformations:

Nat(F'H,KF) — Nat(HG,G'K), © 1,
=G Ke.G'oG HG: HG — G'F'HG — G'KFG — G'K,  (2.35)
o= KF.F'WF.F Hy: F'H — FFHGF — F/G'KF — KF,

x "A.x ' .x x_t.x 7. x
V EY 1o F\w /G/ P\in/G ) G'/is,\,
Y Y Y’ Y Y’ Y’
1 K K 1

The natural transformations ¢, are said to be mates under the given

data; or under the given adjunctions when H and K are identities.
All this holds true for internal adjunctions in any 2-category (see 2.3.8).

2.3.4 The 2-category of adjoint functors

The category AdjCat of small categories and adjunctions (F,G,n,¢):
C -+ D has been introduced in 1.5.4. We show now that it has a natural
2-categorical structure, that extends the 2-categorical structure of AdjOrd
(given by its order, see 2.3.2).

Given two adjunctions between the same categories

(F,G,n,e): C-D, (F',G',n,¢'): C= D, (2.36)
a 2-cell of AdjCat
(p,0): (F,G,n,e) = (F',G',n',¢'): C=D, (2.37)
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is defined as a pair of mate natural transformations (under the adjunctions
F 4 G and F' 4 G’), so that each of them determines the other:

p: F—F:C— D, v: G = G: D — C,
Y =(Ge'.GpG' nG": G - GFG' — GF'G' — G), (2.38)
o= (eF.FYF' . Fry: F - FG'F' — FGF' — F').
The vertical composition of (¢, ) with a 2-cell
(@ ¢): (F',G") = (F",G"): C+D
comes from the vertical composition of natural transformations
(", 9")-(p, ) = (¥, ). (2.39)
The whisker composition of (p, 1) with two adjunctions
(H,K,p,0): C'=C, (H' K',p,0'): DD/,
is given by two whisker compositions of natural transformations
HoH: HFH - HF'H: C' - D/,
KyK': KG'K' — KGK': D' — C'.

(One verifies that H'oH and K¢ K’ are mate under KFFH 4 KGH.) Fi-
nally the (contravariant) involution of (1.53) can be extended (covariantly)
to 2-cells

(2.40)

(—)°P: AdjCat — AdjCat,  C — C°P,
((F,G,n,e): C=»D) — ((GP, F°P P p°P): DOP =5 COP),

((p,9): (F,G,n,e) = (F',G', 7€) —
((1p0p7 S001;)): (Gop’ ‘Fop7 50p7 nop) — (G/op, _Flop7 Z_:/op’ n/op)).

(2.41)

In the same way (except for the involution) one can construct a 2-
category AdjC of internal adjunctions in an arbitrary 2-category C.

2.3.5 Two-dimenstional universal arrows

Let U: A — X be a 2-functor between 2-categories, as defined in 2.3.2.
Universal arrows (see 1.2.9) have a strict and a weak extension to the 2-
dimensional case.

(a) A 2-universal arrow from an object X of X to the 2-functor U: A — X
is a pair (Ag,h: X — UAp) which gives an isomorphism of categories (of
arrows and cells, with vertical composition):

A(Ag, A) = X(X,UA), g~ Ug.h. (2.42)



94 Introducing two-dimensional category theory

This amounts to saying that the functor (2.42) is bijective on objects,
full and faithful, i.e.

(i) for every A in A and every f: X — UA in X there exists a unique
g: Ag — A in A such that f = Ug.h,

(ii) for every pair of arrows g, ¢": Ag — A in A and every cell p: Ug.h —
Ug'.h in X, there is a unique cell ¢: g — ¢’ in A such that ¢ = Uv.h.

(Equivalently, one can use a global universal property: for every cell
o: f— '+ X -5 UA in X, there is a unique cell ¢): g — ¢’ in A such that
@ = Uw.h. This implies that f = Ug.h and f' =Ug'.h.)

The solution of a 2-universal problem is determined up to isomorphism.
Limits in 2-categories will be considered in Section 5.6.

*(b) More generally, a biuniversal arrow from X to U: A — X is a pair
(Ao, h: X — UAy) so that the functor (2.42) is an equivalence of categories.
This can be rephrased saying that the functor (2.42) is essentially surjective
on objects, full and faithful (by 1.2.5). In other words, we replace (i) with
a weaker property (and keep (ii) as it is)

(i) for every A in A and every f: X — UA in X there exists some
g: Ap — A in A such that f = Ug.h (isomorphic objects in the category
X(X,UA)).

The solution of a biuniversal problem is determined up to equivalence
(in a 2-category). In concrete situations one can often use the stronger
property of surjectivity on objects, intermediate between (i) and (i’)

(i) for every A in A and every f: X — UA in X there exists some
g: Ag — A in A such that f = Ug.h.

2.3.6 Bicategories

A bicategory is a weak version of a 2-category, introduced by Bénabou
[Bel]. Here we briefly describe this structure; later, in Chapter 3, the more
general structure of a weak double category will be studied in a detailed
way.

Essentially, a bicategory is a weak version of a 2-category, where the hor-
izontal composition is associative and has units up to (coherent) vertically
invertible cells. It can also be viewed as a many-object generalisation of
a weak monoidal category, and we shall adapt notation to this viewpoint,
writing the weak composition as a tensor product, in diagrammatic order.

A bicategory A has objects A, B, ..., arrows u: A-> B, ... and 2-cells
p:u — v: A= B. Fixing the objects A, B, these cells form a category
A, (A, B), with vertical composition p: u — w (for ¥: v — w) and iden-
tities 1,.
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There is also a horizontal composition of arrows and 2-cells, written as

u@u': A= C, pRouu svev: A= C, (2.43)

’
u

u
A L. B lo. C
? H]-
v

with identities eq: A=+ A and 1., : e4 — e4. The compositions satisfy the
interchange laws (as in (2.33))

Yo@T10 =W RT)(P®0), 1y ® 1y = Lyugu - (2.44)

The horizontal composition of arrows is categorical up to comparison
isocells (vertically invertible)

- for an arrow u: A-> B we have a left unitor Au: e4 ® u — u and a right

unitor pu: u ® eg — u, natural on a cell p: u > v: A= B

(Av)(ef @ p) = p.(\u): ea @ u — v, (2.45)
(pv)(p ®eg) = p.(pu): u@ep — v.

- for three consecutive arrows u: A-» B, v: B-~»C and w: C - D we have
an associator k(u,v,w): u® (v @ w) — (u ®v) ® w, natural on a triple of
cells p: u — v, x:v =, Y:w—w

k(w0 w'). (e @ (x @) = (¢ @ x) @) (k(u, v, w)). (2.46)

The following diagrams of comparison cells must commute under vertical
composition.
(a) Coherence pentagon of the associator k, on four consecutive arrows

‘T’ y? Z’t

(z®y)®(21)
@ (YR (2®1)) (z@y)@z)t  (2.47)

1R ((Y2)@t) — (2@ (yQ2)) @t
(b) Coherence condition for the unitors, for x: A~ B and y: B C

r®(epRyY) —— (r®ep)QyY

2.48
1@* pR1 ( )

TRy
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A monoidal (resp. strict monoidal) category A is the same as a bicategory
(resp. 2-category) on one formal object . The arrows x: % ->* are the
objects of A, the cells p: x — y: x <> are the maps of A, the vertical
composition is that of A, the horizontal one is tensor product.

2.3.7 Ezxercises and complements

(a) (Spans) For a category C with (a fixed choice) of pullbacks, the inter-
ested reader can construct now the bicategory SpanC of spans of C, which
will be analysed in 3.4.1 in the extended form of a weak double category.

The objects of the bicategory SpanC are those of C. An arrow u: X Y
is a span V — C from X to Y (see 1.2.1), i.e. a diagram u = (uv/,u”) =
(X« U —Y). An identity is a pair ex = (1x,1x): X~ X. One goes on
defining 2-cells, the required compositions and comparisons.

(b) (Cospans) Dually, for a category C with (a fixed choice) of pushouts,
one can construct a bicategory CospC of cospans of C, where an arrow
u: XY isacospan u: A — C from X to Y, i.e. adiagram X — U « Y
in C.

(c) Prove that the two mappings defined in (2.35) are inverse to each other.

*(d) The following result was proved by Kelly [Kel] for monoidal cate-
gories; its extension to bicategories is straightforward. In a bicategory C
we have the following commutative diagrams and identity, for z: A-» B
and y: B C

eAa® (zRy) > (ea®Rz)RYy 2R (yYRec)—> $®y)®€c

N /m I

TRY TRy (2.49)

Aea) = plea): ea®en — ea.

2.3.8 Internal adjunctions and monads in a 2-category

Let C be a 2-category.

Extending what we have seen in Cat, adjunctions, monads, equivalences
and adjoint equivalences can be easily defined inside C. Of course, for an
adjunction one should use the ‘algebraic’ form (iii) of Definition 1.5.1.

Every adjunction (F,G,n,e): X<+ A in C has an associated monad
(X,T) = (X,T,n,u) on the object X, constructed in the usual way

T=GF: X — X, n:l1—=T, pu=GeF:T*=T. (2.50)
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*On the other hand, introducing the object of algebras for a monad, and
the property of monadicity, is not obvious. We briefly review how this can
be made, following Street’s paper [St1]. This will only be used in 8.7.3.

Monads in C form a 2-category Mnd(C). An object is a monad (X,T") =
(X,T,n,1). A morphism (F,p): (X,T) — (Y,T") is a morphism F: X —
Y of C with a cell p: TF — FT’ that ‘commutes’ with units and multi-
plications. A cell a: (F,¢) — (G,¢): (X,T) —» (Y, T') is a cell a: F —
G: X — Y of C which ‘commutes’ with ¢ and .

The forgetful 2-functor

U: Mnd(C) — C,

(2.51)
UX,T)=X, U(F,¢)=F, U(a) = a,

has an obvious right 2-adjoint (see 2.3.2)
I:C— Mnd(C), I(X)=(X,1x) (eX:UI(X) = X). (2.52)

One says that the 2-category C admits the construction of algebras if 1
has a right 2-adjoint, which will be written as

Alg: Mnd(C) — C,

Alg(X,T)=XT, X =(GT,y): (XT,1) — (X, T). (2:53)

(When C is Cat, X7 is the category of T-algebras (z,a: Tax — ) on
the category X, GT: XT — X is the forgetful functor, and the natural
transformation v: TGT — GT has components v(z,a) = a: Tx — z.)

Assume that this holds. For every adjunction (F,G,n,e): X A in C
we have the associated monad (X,T) as in (2.50), and then its object of
algebras Alg(X,T) = XT.

There is a comparison morphism, determined by the universal property
of the counit ¥

K:A— X' T I(K)=(G,Ge): (A4,1) = (X,T). (2.54)

The object A is said to be (strongly) monadic over X, via the morphism
G, when K is an isomorphism.*

2.4 Enriched, internal and ordered categories

The classical references for these subjects are Eilenberg—Kelly [EiK], Kelly
[Ke2] and Street [St3, St4].
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2.4.1 Enriched categories

Let V = (V,®, E) be a symmetric monoidal category, whose comparisons
will be left understood. A V-enriched category C, or V-category, consists

of:

a) a set ObC of objects,

b) for every pair X, Y € ObC, a V-object of morphisms C(X,Y),

c) for every X € ObC, a V-morphism of identity idx: E — C(X, X),
d) for every triple X,Y, Z € ObC, a V-morphism of composition

(
(
(
(

k: C(X,Y)® C(Y, Z) = C(X, 2),

(whose action will be written as (f,g) — ¢f when V is a category of
structured sets).

These data are to satisfy three axioms of unitarity and associativity: the
following diagrams must commute, for all X,Y, Z, U € ObC

E®C(X,Y) % C(X,X)®C(X,Y)

— (2.55)

C(X,Y)

CX,V)oE “2¢ ¢(X,Y)® C(Y,Y)

\ | (2.56)

C(X,Y)

CX,Y)®C(Y,2)® C(Z,U) “2£ ¢(Xx,Y)® C(Y,U)

k®1l/ ik (2.57)
CX,2)®C(Z2,U) ———— C(X,U)

An enriched category C has an underlying category U(C), constructed
by means of the canonical forgetful functor V(E,—): V — Set. The latter
need not be faithful.

A V-functor F: C — D between V-categories consists of:

(e) a mapping Fy: ObC — ObD whose action is written as X — F(X),
(f) for every pair X,Y in ObC, a V-morphism
Fxy: C(X,Y) = D(FX, FY)

(which will be written as f — F(f) when V is a category of structured
sets).
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The following diagrams are assumed to commute, for all X,Y, Z € ObC

E 4. X, X)

k = (2.58)

D(FX,FX)

C(X,Y)®C(Y,Z) —E = C(X,2)
ror | (2.59)
D(FX,FY) @ D(FY,FZ) —> D(FX,FZ)

A V-transformation p: F — G: C — D between V-functors consists of
a family of V-morphisms

¢X: E — D(FX,GX) (X € ObC),

making the following diagrams commutative

E®CX,Y) 2228 D(FX,GX) @ D(GX,GY) % D(FX,GY)

C(X,Y)® E ———>D(FX,FY) ® D(FY,GY) - D(FX,GY)

Appropriate compositions give the 2-category V Cat of V-categories (see
[Ke2]). There is a forgetful 2-functor

U: VCat — Cat. (2.60)

2.4.2 Examples and complements

The following examples of enriched categories are based on the cartesian
structure of the categories Set, Cat, Ord, 2, and the symmetric monoidal
structure of the categories Ab and RMod. In each case the enriched
functors and their transformations are the obvious ones.

(a) A Set-enriched category is the same as an ordinary category with small
hom-sets.

(b) A Cat-enriched category is the same as a 2-category with small hom-
categories.

(¢) An Ord-enriched category is an ordered category, as defined in 2.1.2,
with small hom-sets. (A different notion of ‘ordered category’ will be re-
called in 2.4.5.)

(d) A 2-enriched category is a preordered set, possibly large.
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(e) A preadditive category is a category C where every hom-set C(A, B) is
equipped with a structure of abelian group, generally written as f + g, so
that composition is additive in each variable

(f+9)h=fh+gh,  k(f+g)=kf+kg. (2.61)

If C has small hom-sets, this amounts to saying that C is Ab-enriched.
A preadditive small category on one object is the same as a (unitary) ring.

An additive functor F': C — D between preadditive categories preserves
the sum of morphisms.

(f) More generally we can consider R-linear categories and enrichment on
RMod. For instance, the category Ban is linear on its scalar field — the
real or the complex one.

2.4.3 Lawvere metric spaces

The strict monoidal category Ry was introduced by Lawvere [Law] to for-
malise generalised metric spaces as enriched categories. An object of Ry is
an ‘extended’ positive real number A\ € [0, 00], an arrow A — u is given by
the order relation A > u; the tensor product is given by the sum A + \'.
An object of the category Mtr = R Cat, called a (Lawvere) generalised
metric space X, or L-metric space, is thus a set X equipped with a distance

d making it an R -enriched category. This amounts to the following axioms
d(z,y) € |0,00],
(@9) € ] (2.62)
d(z,x) =0,  d(z,y)+d(y,z) > d(z,2).

A morphism is a (weak) contraction f: X — X', satisfying d(z,y) >
d(fz, fy) for all z,y € X.

*All this leads to the notion of Cauchy-completeness of enriched cate-
gories, see [Law].*

2.4.4 Internal categories

(a) Let us begin by remarking that a small category C can be described as
a diagram in Set having the form of a 3-truncated simplicial set

9; . <
CO I Cl o — CQ Cg . (263)
eo — €;

Here Cy = ObC is the (small) set of objects of C, C7; = MorC is the set
of morphisms, Cs (resp. Cs) is the set of consecutive pairs (resp. triples)
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of morphisms. The faces 0; and the degeneracies e; are defined as follows
(letting t denote the triple (f, g, h)):

eo(X) =idx, 9o(f) =Dom (f), (f) = Cod(f),
eo(f) = (f;1), er(f)=(1,f)

(f.9) = f, a(f,9)=gf, (f.9) =g,
eo(f,9) = (f,9,1), eilf.9)=(f,1,9), exf.9)=(1, 1 9),
(t) = (f,9), O1(t) = (f, hg), 9a(t) = (9f,h),

= (g’ h’)

The simplicial relations hold, so that (2.63) is indeed a 3-truncated sim-
plicial set:

8i8j = 8j_18i for i < 7, €je; = €;€e5_1 for i < 7
3iej = €j_16i for i < j, 8iej = ejc’)i_l for ¢ > j + 1, (264)
Oiej =id for i =j,7 + 1.

Finally, the following two squares are pullbacks (in Set)

Cy — (O C3 ——= (y
02 i/ lt% 33\L/ \Laz (265)
C, —— (O Cy —=
o o

(b) Replacing Set with an arbitrary category X, an internal category C
in X, or a category object in C, consists of a diagram (2.63) in X where
Cy = ObC is called the object of objects of C, C; = MorC is called the
object of morphisms and Cy is called the object of consecutive pairs of
morphisms. The morphism m = 0y: Co — C1 is called the composition
morphism of C, or partial multiplication.

The following (redundant) axioms must be satisfied:

(i) the simplicial identities (2.64) hold, so that (2.63) is a 3-truncated
simplicial object in X,

(ii) the square diagrams of (2.65) are pullbacks in X.

(The category X is not required to have all pullbacks.) In a category with
finite products, an internal monoid with respect to the cartesian structure
(as defined in 2.2.5) is the same as an internal category C where ObC is
the terminal object.

(¢) An internal functor F: C — D between internal categories in X is
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defined as a morphism of 3-simplicial objects. In other words we have four
arrows

F,: C, — D, (n=0,..,3), (2.66)

that commute with faces and degeneracies. The components F,, F3 are
determined by the pullback condition, so that for X = Set we simply have

Fa(f,9) = (F1f, Fig), Fs5(f,9,h) = (F1f, F1g, F1h).
The composition of internal functors is obvious.
(d) An internal transformation ¢: F — G: C — D between internal func-
tors in X is given (or represented) by an X-morphism ¢ satisfying the
following conditions
¢: Co — Da, 0. = ko, 01.6 = G,

(2.67)
m.<F1, ¢81> = m.<¢80, G1>

For the last condition (of naturality), m = 01: Dy — D; is the partial
multiplication of D. The morphisms

(F1,p01): C1 — D, (¢0o, G1): C1 = Do,
with values in the pullback D5 are well defined because

The interested reader can verify that there is a 2-category Cat(X) of in-
ternal categories, internal functors and internal transformations in X. The
vertical composition of internal transformations and their whisker compo-

sition with internal functors are defined as follows
Vo) =m.(p,10): Cy — Dy,
(V) (,9): Co 1 (2.68)
(ML) = My.$.Lo: C) — D,

forYy:G—-H:C—Dand L:C' - C, M:D — D’.

2.4.5 Examples and complements
(a) We have already seen that an internal category in Set is a small cate-
gory.
(b) An internal category in Cat is a small double category, studied in Chap-
ter 3. Internal functors are the double functors; internal transformations
are the horizontal ones (or the vertical ones, according to the way we are
‘presenting’ the double category, see 3.2.3).

*(c) We say that a category C is internally ordered when the sets ObC and
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MorC are equipped with consistent order relations (respected by domain,
codomain, identity and composition). If C is small, this the same as an
internal category in Ord. (An internally ordered category with a discrete
order on the set of objects is the same as an ordered category in the enriched
sense of 2.1.2.)

This notion was extensively used by C. Ehresmann for his theory of
‘pseudogroups’ in Differential Geometry. In fact, an ordered category in
the sense of Ehresmann is an internally ordered category such that the
order induced on each hom-set C(X,Y) is discrete (see [Eh5], p. 711).

The main example of such a structure is the category Set ordered by
(weak) inclusion, of objects (X C X’) and morphisms: the mapping f:
X > Yisidncludedin f': X' - Y' if X C X', Y CY' and f(z) = f'(2)
for all z € X. (When X = X’ and Y =Y, this does imply f = f'.)

This structure rests heavily on set theory. One can replace it by the cat-
egory S of sets and partial mappings, ordered in the present sense, where
inclusion is only used between subsets of given sets. Similarly, the ordered
category C of partial continuous mappings defined on open subspaces (see
2.1.8(b)) can be used in the theory of topological manifolds, and its dif-
ferential analogues for differentiable manifolds. The interested reader is
referred to [G1].

2.4.6 Exercises

(a) Compute the forgetful functor Ry — Set associated to the monoidal
structure of R, in 2.4.3.

(b) Compute the forgetful functor Mtr — Cat associated to the enriched
structure of Mtr.

2.5 Relations for regular categories

Categories of relations will give interesting examples of double categories;
the present extension covers all the cases we have considered in Section 2.1.

We begin by reviewing the ordered category RelSet, as a locally ordered
2-category. Regular categories are briefly introduced, in 2.5.2. Then we
extend the construction of RelSet to a regular category C: this gives the
ordered category of relations RelC, where a relation X - Y is a subobject
of the product X xY (as in [Grt, Bo2]).

Marginally, we sketch a second approach to relations (followed for in-
stance in [Me]), where a relation X =Y is a any monomorphism with val-
ues in X xY. In this way one gets a weaker structure, a locally preordered
bicategory, which is written here as Rel’C.
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2.5.1 Cartesian relations and locally ordered 2-categories

Let us recall that R = RelSet has been constructed in 2.1.3, as an involu-
tive ordered category.

A relation r: X =Y is a subset 7 C X xY, and will be called a cartesian
relation when we want to distinguish it from the similar item of 2.5.7 (a
monomorphism 7: R — X xY). Their composition has been recalled in
(2.4). Given two parallel relations r,s: X <Y the ordering r < s means
that r C s as subsets of X xY’; it agrees with composition.

In this way, each hom-set R(X,Y") is the ordered set P(X xY), and the
relation r: X -+Y can be represented as in the diagram below, where the
vertical map is the inclusion of a subset

X <L xxy Loy
T (2.69)

r

We have also seen, in 2.3.2, that this ordered category is viewed as a
locally ordered 2-category, turning the relationship r < s into a 2-cell
r — s. The operations of vertical composition and whisker composition
are determined by domains and codomains

g _r.
X — Y X ‘s X LY Y (2.70)
N .
— T s

The vertical composition of r — s with s — ¢ is thus the (unique) 2-cell
r — t, and the whisker composition above, at the right, is the (unique)
2-cell vru — vsu. The coherence axioms of a 2-category are automatically
satisfied, because of the uniqueness of a 2-cell between two given arrows.

2.5.2 Regular categories

Let C be a regular category. This means a category with finite limits,
where the kernel pair R = A of every map f: A — B (see 1.3.4) has a
coequaliser; moreover, the pullback of any regular epi (see 1.3.2) along any
arrow must be a regular epi.

(Some texts give a more general definition, where the only limits assumed
to exist are the kernel pairs and the pullback of any regular epi along any
arrow [Ba, Bo2]; but this extension is presented in [Bo2] as “essentially a
matter of personal taste”.)

As a consequence every map [ has a canonical factorisation f = mp
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formed of a regular epimorphism p (the coequaliser of its kernel pair) and
a monomorphism m (see [Bo2], Theorem 2.1.3, or [G11], Theorem 4.2.2).

A reader interested in regular categories is referred to [Bo2], Chapter 2,
or [Ba, Grt]. It is easy to prove that Set and every variety of algebras are
regular categories. Moreover, every abelian category is regular, as will also
be seen in Exercise A3.9(d).

Extending Subsection 2.5.1, we want to construct an involutive ordered
category R = Rel(C) of relations on C, in the ‘cartesian form’.

For this goal, we assume that C is equipped with a choice of binary
products and subobjects. (In the usual concrete categories these selections
can be made without using the axiom of choice, by cartesian products and
subsets in Set, via a forgetful functor U: C — Set.)

Now every morphism f: X — Y has precisely one factorisation f = mp
where p is a regular epi and m is a subobject of Y, and we shall write

f=mp, m=imf:Imf — Y. (2.71)

2.5.3 Constructing the category of relations

For every pair of objects X,Y we let R(X,Y) be the ordered set of subob-
jects of the product X xY.
Given two consecutive relations

r=("r"): R — XxY, s=(s,8"): S —YxZ,

their composite s.r = w is a subobject of X xZ, determined by a construc-
tion based on a pullback P of (r”,s), and the strict factorisation (2.71),
where p is a regular epi and w is a subobject

X LY Z
R
R S

Y;\K (2.72)

P o W 2% XxZ
—_— @ @O _—

(’I‘I’U./ ,s”u”)

sor=im (r'u’,s"u"): W— XX Z. (2.73)

The reader will note that any choice of the pullback gives the same
subobject of X x Z. The identity 1x is the subobject associated to the
diagonal monomorphism

Ix =im((1,1): X — X xX) = (u,u): Ax — X xX, (2.74)
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where u is an isomorphism. The involution sends a subobject r: R — XXY
to the opposite relation

r =im(ir: R— XxY — Y xX), (2.75)

where ¢ = (p2,p1): X XY — Y x X is the canonical symmetry of the
cartesian product.
For two parallel relations r,r’: X -+Y, the order relation

r<r (2.76)

has already been defined, as the canonical order of the subobjects of X xY".

2.5.4 Theorem and Definition

These definitions produce an involutive ordered category R = Rel(C), called
the category of (cartesian) relations over the reqular category C.

The embedding C — Rel(C) is the identity on the objects and sends the
morphism f: X — Y to its graph, namely the subobject associated to the
monomorphism (1, f): X - X xY.

The category R has small hom-sets if and only if every object of C has
a small set of subobjects.

Proof First, the associativity of the composition law, for three relations
r: XY s: Y Z t: Z- U, is proved by the following diagram

4
T

g

T (2.77)

Z U

U

r s AN /
R w S
\ T\< }
7/
’ p ’
u / n
7/ 1"
p " N

M

At the lower level we have a symmetric construction, based on three
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pullbacks (P,u/,u"), (Q,v',v") and (M, m’,m"). At the upper level we
first compute

sr=1im (r'u/, s"u") = (v, w"): W — XX Z,

then the pullback (N, n’,n”) of (w”,t"), so that ¢(sr) = im (N — X xU).

Now, the square pm’ = n'p’ is a pullback, by Lemma 2.5.9 (below), and
p is a regular epi, whence p’ is also. But then im (N — X xU) coincides
with im (M — X xU), and this subobject of X xU is determined by the
symmetric construction of the lower level. By symmetry, (¢s)r too coincides
with this subobject.

Second, the identity-relation 1x: Ax — X x X gives rlxy =r

X Y

u X T/
u\ / \ /_///

Ax R 7 (2.78)
5~ R 7

because v is an isomorphism and we can take R itself as the pullback of
(u,r"); therefore the image of

(wo,7".1) = (r',r"): R — X xY

is precisely the relation r. Symmetrically, 1y s = s.

The remaining points are obvious:

- the involution defined in (2.75) is consistent with the composition (in a
contravariant way),

- the order defined in (2.76) is consistent with composition and involution,
- the embedding C — Rel(C) is a functor,

including the last statement about smallness. U

2.5.5 FEzxercises and complements

(a) Extending 2.1.4(a), prove that every morphism f of C is left adjoint to
f%in the 2-category Rel(C), i.e. 1 < fif and ff* < 1.
(b) Tt follows that the order of R(X,Y) restricted to the morphisms of C

is discrete.

*(c) Conversely, any relation f satisfying the conditions above is a mor-
phism of C.
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2.5.6 FExact squares and bicommutative squares

(a) C is always a regular category. Using the previous results, it is easy to
see that a square of morphisms of C

X—f>

g (2.79)

N~

B ——=
k

is commutative if and only if we have
gf* <k*n inRel(C) (& fg* <hk).

In fact

hf=kg = gf* <k'kgf®=khff*<kin,
gft <k'h = kg<kgfif <kk'hf<hf = kg=hf.

We say that the square (2.79) is v-ezact in C if it becomes bicommutative
in Rel(C), i.e. if it satisfies the stronger condition

(i) gft = k*h: A= B (& fg* = hlk: B= A),

which means that the original square of C commutes in Rel(C) when we
‘reverse’ two parallel edges.

Now, the relation kfh: A B is computed by the pullback (P, f’,g’) of
the cospan (h, k), and we conclude that property (i) is equivalent to each
of the following ones:

(ii) the canonical morphism p: X — P, determined by the following
commutative diagram, is epi

§

X o> P > (2.80)

\
/

!

(iii) the span (f, g) and the pullback of (h, k) have the same commuting
cospans (or the same pushout, provided it exists).

These conditions can be easily interpreted in Set and R Mod, see 2.5.8.
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2.5.7 Jointly monic relations

We sketch here a slightly different construction, that will only be used

in Chapter 8. It gives a preordered structure, which we shall write as

R/ = Rel'(C). It is not a category, but a locally preordered bicategory.
The essential differences are:

- a hom-set R'(X,Y") is now a preordered set (and generally a large one),

- the composition of arrows is ‘weakly associative’ and has ‘weak identities’,
up to the equivalence relation associated to the preorder.

A jointly monic relation r = (r',r"”): XY is a jointly monic pair of
morphisms of C, as in the left diagram below, with an arbitrary domain
R. Tt is also called a jointly monic span, from X to Y

! 1"
X <L .2

X Y Y
S~ ST (2:81)
T R T T r

R/(X,Y) is the preordered set of such spans, with a 2-cell r < s if there
exists a (unique) mapping u that makes the right diagram above commute.
Equivalently, R'(X,Y") is the set of all monomorphisms r: « — X XY, with
their canonical preorder (see 1.1.7); the previous R(X,Y’) can be identified
with the associated ordered set R/(X,Y")/~.

For a consecutive jointly monic relation s: Y - Z, the composition w =
sr is obtained much as in (2.72):

- choosing a pullback (P,u’,u”) of the pair (r”,s’),

- then replacing the mapping (r'u’, s"u”): P — X x Z with an associated

jointly monic span, i.e. any monomorphism w: W — X x Z of the factori-

sation regular epi-mono (r'v’, s”u”) = wp in C.

Then one defines the vertical composition and the whisker composition
of 2-cells. We only remark that the vertical composition is associated to a
preorder, and is therefore strictly associative, with strict identities; on the
other hand, the composition of morphisms is weakly associative and has
weak identities, up to the equivalence relation associated to the preorder
(as follows readily from the first approach). In this way, one gets a locally
preordered bicategory R = Rel’(C).

The latter gives back the locally ordered 2-category R, by identifying its
arrows up to the equivalence relation associated to the preorder. Moreover,
defining R as this quotient gives an ordered category that is independent of
any choice.



110 Introducing two-dimensional category theory

2.5.8 Exercises and complements (Exact squares)

Let us come back to the commutative square hf = kg of (2.79), in a regular
category C.

(a) In Set this square is v-exact if and only if it satisfies the following
equivalent conditions:

(iv) for all (a,b) € AxB, we have h(a) = k(b) if and only if there is some
x € X such that f(x) =a, g(x) =0,

(v) the square is a weak pullback in Set (see 1.3.3),
but the equivalence of (v) depends on the axiom of choice.
(b) In RMod and in Gp the characterisation (iv) still holds.

*(c) Tt is easy to verify that Set is also coregular, i.e. Set®P is regular. This
gives the involutive category CorSet = Rel(Set°P) of corelations, briefly
examined in [G11], Section 1.8: they can be constructed as quotients of the
sum of domain and codomain. The square hf = kg is v*-exact in Set if
it is bicommutative in CorSet, if and only if it satisfies a property dual to
2.5.6(ii): the canonical map from the pushout of (f,g) to Y is mono.

One can easily find in Set a v-exact square which is not v*-exact, and
vice versa.

(d) We will see that, in any abelian category, v-exact and v*-exact squares
coincide and are characterised by an exact sequence due to Hilton (in A3.9).

2.5.9 Lemma

In a category C we suppose that the following diagram is commutative and
the two lateral squares are pullbacks (with vertices P, P’'). Then the front
square is a pullback

A | (2.82)
o=

7
P

Proof (This lemma has been used above.) The pasting of the front and
right squares coincides with the left square and is a pullback; but the right
square is also, whence the front square is a pullback (by 1.3.5(e)). U
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2.6 *Coherence and strictification of bicategories

The Coherence Theorem of monoidal categories of Mac Lane [M3, M4] has
been recalled in 2.2.7.

Dealing with the same problem, in the more general framework of bicate-
gories, we follow the clear approach of Mac Lane and Paré [MaP], based on
an equivalent bicategory M (A) where ‘tensor products determine their fac-
tors’ and occasional coincidences cannot occur: a construction introduced
by Laplaza [La].

In a bicategory A = (A,®,E,k,\,p) a composite u ® v is written in
the order of composition (as in 2.3.6). The inverses of the invertible 2-cells
K, A\, p are written as &', N, p’. Taking out all 2-cells we get a ‘possibly
non-associative, possibly non-unitary category’, which we call a magmoid.

The exposition below is more elementary and detailed than the original
one in [MaP], but the proof of the main theorem 2.6.6 is only referred to: an
interested reader can see [MaP)], and complete some points with [M3, M4].

2.6.1 Magmoids

A magmoid A = (Agy, A1,0F, e, ®) will be a reflexive graph (see 1.1.2) with
a composition law u ® v of consecutive arrows (0Tu = 0~ v)

Of: A 2= Agce, 9 e=idAg = dte,

(2.83)
- QR —: A1XAOA1 *)Al.

It is a category if and only if the composition is associative and admits
all units e, as partial units.

Mgd will denote the category of magmoids and their functors (which
preserve the whole structure). The magmoid A has an underlying reflexive
graph |A|, forgetting its composition.

The free magmoid M (X) on a reflexive graph X has the same vertices,
with arrows that can be expressed by (dichotomically) branched strings of
consecutive arrows of X7, like the following ones

u uv (wv) (wt) ((wv)w)t (2.84)
_u /.\ v /-/.\\ v
It \./ w w
I t

The arrows of M (X) are defined by recursion (together with their faces):
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if u: x — y belongs to X; then (u):  — y is a branched string; if u: © — y
and v: y — z are (consecutive) branched strings then (u)(v):  — z is also.
Parentheses around a single term of X; are omitted, as in (2.84).

The composition of consecutive branched strings u, v is by branched con-
catenation u ® v = (u)(v). The unit of the object x is the string e,.

The crucial fact is that any branched string of length greater than 1 is a
concatenation u ® v of two determined strings, so that we can reconstruct
backwards its branching tree.

If A is a magmoid, the component of the counit of the adjunction M = |—|
at A

p: M|A]— A (evaluation functor), (2.85)

sends a branched string to an actual iterated composition in A. Thus
p((wv)(wt)) = (u®v) ® (w®t), if the composition in A is written by ®.

2.6.2 Arity and standard form

The free magmoid M(X) on a reflexive graph X is graded, by the arity
ar(u) of its arrows: this is the number of occurrences of old arrows which

are not units
ar(e;) =0, ar(u) =1 (u € X1\e(Xo)), (2.86)
ar(u ® v) = ar(u) + ar(v).

Moreover, there is a graded idempotent endomorphism of reflexive graphs
St: M(X) - M(X) (standard form), (2.87)

that is the identity on all vertices. On a branched string, it takes all
parentheses to the left and removes all occurrences of units, unless the
string consists of one unit. For instance the branched word ((uv)e)(wt) has
standard form ((uv)w)t, provided that none of w, v, w,t is a unit.

This endomorphism is not a functor, but we have the following property

St(u ® v) = St(St(u) ® St(v)). (2.88)

2.6.3 Expanding a bicategory

A bicategory A has an underlying magmoid MgdA, formed of its objects
and arrows, with their composition and units.

A functor of magmoids p: M — MgdA can be extended to a strict
functor of bicategories, full and faithful on 2-cells

p:B— A (expansion of A by the functor p), (2.89)
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as follows. The underlying magmoid of B is M. For every pair arrows
u,u': A — B in B, a new 2-cell p: u — u’ is represented by an old cell
pe: pu — pu’ (in A); their vertical composition and the identities 1,, are
lifted from those of A.

As to the horizontal composition, we already have a composition u®wv of
arrows in the magmoid M (preserved by p), and we define the horizontal
composition ¢ ® 1 of new cells by lifting the old one

ple ® ) = pp @ py. (2.90)
The new comparison isocells

Ku,v,w): u® (v @w) = (L®v) ®w,
(2.91)
Au: 1l ®@u — u, pu:u®1l — u,

are also represented by the old ones: pk(u,v,w) = k(pu, pv, pw), etc.

2.6.4 The bicategory of branched words

Starting from the bicategory A, and using the previous points, we construct
a bicategory M (A) where a composite u ® v determines its factors u and
.

The magmoid of M(A) is the free magmoid M = M (|A]) generated by
the underlying reflexive graph of A: it has the same objects, and the new
arrows are branched strings of consecutive arrows of A, as in (2.84). This
magmoid is graded by arity: the number of items in a string which are not
units of A. The counit of the adjunction gives a functor of magmoids

p: M — A (evaluation of branched strings), (2.92)

which, for instance, realises the branched string v = u(vw) as the arrow
pu=u® (v®w) of A.

The expansion of the monoidal category A by this functor of magmoids
gives a bicategory M (A), called the bicategory of branched words of A. It
is equipped with a strict functor of bicategories, full and faithful on cells

p: M(A) — A (evaluation), (2.93)

which will be proved to be an equivalence of bicategories (with a quasi-
inverse pseudo functor).
Therefore, a cell ¢: u — v of M(A) is represented by a cell pp: pu — pv
of A. These cells are composed and tensored as their representatives in A.
The comparison isocells of M(A) are defined as in (2.91). Each of them
can be given an arity: the common arity of its two faces in the graded
magmoid M underlying M (A).
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2.6.5 Canonical isocells
We form a sub-bicategory C(A) C M(A), defined as the smallest sub-
bicategory containing all the objects and arrows of M(A), all the compar-
ison isocells (see (2.91)) and their inverses.

The cells of C(A) are generated by the previous ones under vertical
composition and tensor composition in M (A). They are invertible, and
will be called the canonical isocells of M(A).

The bicategory C(A) is graded by arity, as M(A). The embedding
J: C(A) — M(A) gives a strict functor of bicategories pJ: C(A) — A.

2.6.6 Theorem (Standard form and canonical isocells [MaP])

Let A be a bicategory and M(A) its bicategory of branched words, with
canonical isocells in C'(A).
For every branched word w in M(A) there is a unique canonical isocell

ou: u — St(u). (2.94)

Two words u,v are connected in C(A) if and only if they have the same
standard form, and then there is a unique canonical isocell u — v, namely
(ov)~Lou.

Proof See [MaP], Section 2. O

2.6.7 Corollary (Coherence Theorem for bicategories)

Let A be a bicategory. Every diagram of canonical isocells of M(A) com-
mutes.

Proof A straightforward consequence of the previous theorem. |

2.6.8 Proposition

Every bicategory A is equivalent to the bicategory M(A), by means of the
strict functor p: M(A) — A and a pseudo functor i: A — M(A), with
pi=1 and ip=1.

Proof The embedding i: A — M(A) is obvious: we send any object to
itself, any arrow and any cell to the corresponding unary branched string.
It preserves the tensor product up to comparison isocells

i(u,v): (u,v) > 4w, (2.95)
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represented by the identity of the old composite p(u,v) = p(u ® v) =
u ® v in A. The coherence of these comparisons follows from the previous
Coherence Theorem.

Finally pi = 1, while ip is isomorphic to the identity of M(A), by the
isomorphism hu: ip(u) — u represented by the identity of pu, for each
branched string u. O

2.6.9 Strictification Theorem

Every bicategory A has an associated 2-category F(A), equivalent to it by
means of pseudo functors p: F(A) — A and i: A — F(A), with pi =1
and ip = 1.

Every pseudo functor S: A — B can be similarly replaced by a 2-functor
S’: F(A) — F(B).

Proof We shall give a proof of the corresponding, more general statement
for weak double categories: see 3.5.8. ]



3

Double categories

Extending 2-categories (resp. bicategories), a strict (resp. weak) double
category has horizontal arrows f: X — X', vertical arrows u: X -Y and
double cells with a boundary as below

x Lo x
“\t « iv (3.1)
Y —=Y

which can be composed horizontally and vertically.

The main definitions about double categories, double functors and their
transformations are given in Sections 3.1-3.2 (for the strict case) and 3.3
3.5 (for the weak one). Another important cleavage is presented in 3.2.5 and
3.2.6, between transpositive (strict) double categories, where the horizontal
and vertical structure can be interchanged up to isomorphism, and polarised
double categories (possibly weak) where such a symmetry does not exist.

As already mentioned in the general Introduction, in a polarised dou-
ble category we use the main direction (written horizontally) to study the
secondary one. Arrows which are too relazed or too strict to have good
universal properties are thus correlated with more ordinary arrows, typi-
cally the structure-preserving ones, through double cells. (The setting of
‘2-equipments’, introduced by Carboni, Kelly, Verity and Wood [CaKVW],
is a different approach to a similar goal.)

Most of our examples, in Sections 3.1 and 3.4, are polarised. Neverthe-
less, Section 4.2 will introduce a crucial transpositive structure, the double
category Dbl of (small) weak double categories, with lax and colax double
functors and suitable cells: double adjunctions will live inside this structure
(forgetting size).

Weak double categories are a common generalisation of Ehresmann’s

116
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double categories and Bénabou’s bicategories. Besides the references men-
tioned in the general Introduction, weak double categories are also studied
in various articles, like [BroM, BruMM, Da, DaP1, DaP2, DaPP1, DaPP2,
Fi, FGK1, FGK2, Ga, Hr, Kol, Ko2, Ni, Pa3, Pad4, Paj].

Part of the theory of double categories might be deduced from the
theory of internal categories (cf. Street [St3]) or indexed categories (see
Paré—Schumacher [PaS]), but we want to give this subject an independent
treatment, founded on basic category theory.

Double categories will generally be denoted as A, B, .. ..

3.1 Introducing double categories

Historically, strict double categories were the first 2-dimensional categori-
cal structure, introduced by C. Ehresmann [Eh1]-[Eh4] since 1962. After
defining them, we present here various examples.

Relations and adjunctions form ‘unusual categories’, with few limits and
colimits. Combining them with the corresponding ‘usual categories’ of
mappings and functors, we form double categories which will be seen to
have all horizontal double limits and colimits.

In all these cases the double structure gives a better understanding of
the 2-category of its vertical arrows.

3.1.1 Definition
A (strict) double category A consists of the following structure.
(a) A set ObA of objects of A.

(b) Horizontal morphisms f: X — Y between the previous objects; they
form the category HorgA of the objects and horizontal maps of A, with
composition written as ¢gf and identities 1x: X — X.

(c) Vertical morphisms u: X -Y (often denoted by a dot-marked arrow)
between the same objects; they form the category VergA of the objects and
vertical maps of A, with composition written as v ® v, in diagrammatic
order (or vu when convenient) and identities written as ey : X - X.

(d) (Double) cells with a boundary formed of two vertical arrows w, v and
two horizontal arrows f, g

x 1o x
"i o) iv a: (ufv): (§ X). (3.2)

V —= Y
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Writing a: (X  v) or a: (e ; v) we mean that f = 1x and u = ex. The
cell « is also written as a: u — v (with respect to its horizontal domain
and codomain, which are vertical arrows) or as «: f-=g (with respect to
its vertical domain and codomain, which are horizontal arrows).

We refer now to the following diagrams of cells, where the first is called

a consistent matriz (* ) of cells

v 6
ul lv lw 1 f /
\L @ i/ B J/ X — X X — X
R TIET
w vy V' 5 L’”’ Y=Y X —= X
Z - Z/T "

(e) Cells have a horizontal composition, consistent with the horizontal com-
position of arrows and written as « | 8: (u g,g w); this composition gives
the category Hori1 A of vertical arrows and cells a: u — v of A, with iden-
tities 1o (u § u).

(f) Cells have also a vertical composition, consistent with the vertical com-

o . « .

position of arrows and written as —: (u ® v’ £ v®v'), or @ ®~y; this com-
position gives the category Veri A of horizontal arrows and cells a: f->g
of A, with identities ey : (e ch e).

(g) The two compositions satisfy the interchange laws (for binary and ze-
roary compositions), which means that we have:

alp a | B 1

0 — — | = 1u®u’a

ylo v 10 Ly (3.4)
erley = epy, lex = e1y-

The first condition says that a consistent matrix has a precise pasting;
the last says that an object X has an identity cell Ux = 1., = e1,. The
expressions « | f' and f| S will stand for o | ey and ey | 5, when this makes
sense (i.e. when X' =Y’ and v = ex/, in diagram (3.3)).

The pasting of double cells satisfies a general associativity property, es-
tablished in [DaP1].

The dualities of double categories will be examined in the next section,
but we already have in the examples below various instances of a vertical
involution A --» A, contravariant in the vertical direction (see 3.2.2). We
also use from now the obvious notion of double subcategory.
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3.1.2 Relations of sets

The category RelSet of sets and relations has been reviewed in 2.1.3: a
relation u: X <Y is a subset of the cartesian product X xY.

RelSet is an involutive ordered category, and contains Set as the sub-
category of everywhere defined, single-valued relations, characterised as
follows in RelSet

fif > idX, fE < idy. (3.5)

We now amalgamate the ordinary categories Set and RelSet to form
the double category RelSet of sets, mappings and relations (notice the
different notation of Rel). It has horizontal arrows in Set and vertical
arrows in RelSet.

A double cell (f,g): u — v is determined by its boundary, and exists
when the following condition holds (the condition in parenthesis is equiva-
lent, by (3.5))

x . x
i < i gu<of (fuf<oig).  (36)
Y ? Y/

We express this fact saying that RelSet is a flat double category. Ac-
cordingly, the horizontal and vertical composition of double cells are deter-
mined by those of the arrows, and we only have to verify that the cells are
closed under pasting in both directions, as verified below for the horizontal
composition

f/

X X/ X//
“i < i” < iw ggu<gvf <wf'f. (3.7)
Y Y Y

The axioms of associativity, unitarity and interchange are automatically
satisfied.

RelSet has an obvious vertical involution, that extends the involution
u + u' of relations and sends the cell (f, g): u — v to the vertically
opposite cell (g, f): uf — vf.
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3.1.3 Other double categories of relations

(a) The involutive ordered category RelAb of abelian groups and (additive)
relations has been reviewed in 2.1.5: a relation of abelian groups u: X Y
is a subgroup of the cartesian product XxY. Ab is embedded in the former
as the category of everywhere defined, single-valued relations.

The double category RelAb of abelian groups, homomorphisms and re-
lations has horizontal arrows in Ab and vertical arrows in RelAb. Double
cells are defined as in 3.1.2 and give a flat structure with a regular vertical
involution.

(b) More generally for any (unitary) ring R we have the involutive or-
dered category Rel(RMod) of left R-modules, and the flat double cate-
gory Rel(R Mod) of modules, homomorphisms and relations, with a regular
vertical involution.

(c) More generally again, we can amalgamate any regular category C with
Rel(C) (see Section 2.5) and form the flat double category Rel(C) of objects,
morphisms and relations of C; also called the double category of relations
of C, for short.

Other double categories of relations will be examined in Appendix A.

3.1.4 Double categories of quintets

(a) A 2-category C determines a double category QC of quintets of C
(as named by C. Ehresmann), whose horizontal and vertical maps are the
morphisms of C. Double cells are formed with 2-cells of C

x Lo x
“i</oz l” a:vf = gu: X =Y. (3.8)

Y — Y’
g

The horizontal and vertical composition of cells is obvious (see Exer-
cise 3.1.8(a)).

If C is an ordinary category (viewed as a 2-category with trivial 2-cells),
QC is the (flat) double category of commutative squares of C.

(b) Inside the double category QCat of quintets of the 2-category Cat, we
have the cell-wise full double subcategory LCCat of small categories, with
limit-preserving functors f, g, ... as horizontal arrows and colimit-preserving
functors u, v, ... as vertical arrows.

(¢c) We write LRAc for the cell-wise full double subcategory of QCat
formed by small abelian categories (Section 1.8), with left exact functors
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fsg,... (that preserve finite limits) as horizontal arrows and right exact
functors u, v, ... as vertical arrows.

These double categories can be embedded in triple categories, adding
‘strong arrows’ in a new direction 0 (see 6.1.7): namely the functors which
preserve limits and colimits in case (b), and exact functors (that preserve
finite limits and colimits) in case (c).

3.1.5 Double categories of adjunctions

From a 2-category C we can construct another important prototype, the
double category AdjC of adjunctions in C, by a suitable amalgamation of
C with the 2-category AdjC of internal adjunctions in C (introduced in
2.3.4). (This double category can be also found in [KeS], Section 2.2, in a
slightly different form.)

The objects are those of C. In a general cell

x Lo x
ui la i (3.9)
YV =V
a horizontal arrow is a morphism of C, while a vertical arrow is an internal
adjunction in C directed as its left adjoint

u=(u,,u",n,e): XY, (u: X—=>Y) 4 (v:Y —X),
n: 1x — uu,, e: uut — ly, (3.10)
eu,.un = id(u,), ute.nu® = id(u®).
Finally the double cell a = (o, ,*) is a pair of mate 2-cells (see 2.3.3),

each of them determining the other via the units and counits of the two
adjunctions

a,: v f = gu,, a*: fu*t — vy,
a* = (fu* = v (v, flu® — v*(gu.)u® — v°g), (3.11)
a, = (v f = v, (fut)u, = v, (vV°g)u, = gu,).
The vertical composition of adjunctions is defined as in 1.5.4(b).
The horizontal and vertical compositions of cells is defined on the co-
variant parts (marked with lower dots) as in the double category QC of
quintets inC. The axioms of double category are automatically satisfied.

(Working with the contravariant parts gives an equivalent result, see Ex-
ercise 3.1.8(d).)
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There is thus a forgetful double functor (preserving the whole structure)

(—).: AdjC — QC

3.12
=1 U= U, o a,. (3.12)

We are also interested in the flat double subcategory Adj,C C AdjC
of adjunctions in C and bicommutative cells. It has the same objects,
horizontal arrows and vertical arrows, with double cells (3.9) reduced to
the bicommutative ones, where both a, and a* are identities

v.f = gu., fu® =g (3.13)

3.1.6 A double category of adjoint functors

An important case is the double category AdjCat of (small) categories,
functors and adjunctions, where a vertical arrow u = (u,,u®,n,): X =Y
is an adjunction of small categories and a double cell « = (a,,a*) is a pair
of mate natural transformations, as above.

In AdjCat there is a vertical involution, produced by opposite categories

op

g9

X S S X/ Yop Y/op
"i la iv — ui L acp ivw (3.14)
Y T_ Y/ Xop f? X/op
u®P = (u®,u,): YOP - XP
(a°P), = a*°P: v*g — fu®, (a°P)* = a,°P: gu, = v, f.

Let us note that the coherence of this involution with horizontal compo-
sition depends on a remark in 3.1.5, to be dealt with in Exercise 3.1.8(d).

3.1.7 Double categories of ordered sets

(a) The double category AdjOrd of (small) ordered sets, increasing func-
tions and Galois connections is a double subcategory of AdjCat, closed
under vertical involution. It amalgamates the usual category Ord of or-
dered sets and increasing mappings with the category AdjOrd of Galois
connections, described in 1.4.4.

AdjOrd is flat, since a cell @ as above (in (3.11)) exists if and only if
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v.f < gu., and is then determined by its boundary

x o x
o nf<gu. (& fur <vg). (3.15)

Y — Y’
g

(b) The double subcategory Adj,Ord, with the same objects and arrows,
but bicommutative cells

x 1o x

W= wf=gu fu=vy (3.16)

Y ? Y/
will also be important: in Adj,Ord we shall single out double subcate-
gories of lattices, homomorphisms and adjunctions that are of interest in
Homological Algebra, see Al.5.

3.1.8 FEzxercises and complements

(a) Define the horizontal and vertical composition of double cells in the
double category QC of quintets of C (in 3.1.4).

(b) Examine the double category Adj(RelSet), built over the 2-category
RelSet, and its relationship with the double category RelSet.

*(c) Extend the previous point, replacing Set with a regular category.

*(d) For a 2-category C, prove that the horizontal composition of double
cells in AdjC (see 3.1.5) is consistent with mating. More explicitly, for a
horizontal composite ¢ = a| 3, one should compute ¢, and prove that its
mate ¢* coincides with the obvious pasting of a® and (5°.

*(e) A reader interested in abelian categories or topos theory can consider
the following structures, derived from AdjCat, and marginally used below.

AdjAc will denote the cellwise-full double subcategory of AdjCat formed
by abelian categories, their exact functors and general adjunctions (where
the left adjoint is right exact, and symmetrically).

AdjTp will be the cellwise-full double subcategory of AdjCat” (vertically
reversed), consisting of toposes, their logical morphisms (functors which
preserve the topos structure) and geometric morphisms (adjunctions whose
left adjoint preserves finite limits). The latter are now directed according
to the right adjoint, as convenient in topos theory.
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3.1.9 Double categories of partial morphisms

(a) In the double category RelSet of sets, mappings and relations we have
a double subcategory Pmap(Set) of sets, mappings and partial mappings:
the vertical arrows belong now to the category S of partial mappings (see
2.1.6).

This can be easily extended to form a double category Pmap(C) over a
category C with pullbacks of monomorphisms along arbitrary morphisms
(see 1.3.5(b)). For the sake of simplicity, we assume that C has a choice of
subobjects, stable under composition; preimages of subobjects are (chosen
to be) subobjects, and therefore uniquely determined.

A partial map (u,h): X-Y of C will be a span X «< U — Y where u
is a subobject of X in C. Their composition — by preimages — is obvious,
and is strictly categorical

N (3.17)
h*(V)

The double category Pmap(C) of partial morphisms of C has double cells
given by commutative diagrams

~

<>

(3.18)

<

<

T

and obvious operations; it is flat. (When all pullbacks exist, general spans
will produce a weak double category, see 3.4.1.)

(b) Similarly, if the category C has pullbacks of monos along monos (in
C), and a choice of subobjects stable under composition, there is a double
category Piso(C) of partial isomorphisms, constructed with the spans where
the first map is a subobject and the second a monomorphism.

3.2 Double categories and their dualities

This section deals with with the basic structure of double categories, includ-
ing their dualities, in the symmetry group of the square. This gives rise
to the opposition between transpositive and polarised double categories,
examined in 3.2.5 and 3.2.6.
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3.2.1 Basic notions

(a) Let us recall that a double category is said to be flat if its cells are
determined by their domains and codomains.

(b) The following notions are obvious:

- products of double categories,

- double subcategory,

- totally full double subcategory (determined by a subset of objects),

- horizontally full double subcategory (determined by a subcategory of ver-
tical maps),

- cellwise full double subcategory (determined by a subcategory of horizon-
tal maps and a subcategory of vertical maps with the same objects).

(¢) A (double) functor F': A — B between double categories strictly pre-
serves the whole structure: objects, horizontal and vertical arrows, double
cells, domains and codomains, units and compositions. Double functors
have an associative composition and identities. The lax and colax versions
will be dealt with in Section 3.5. Horizontally full and faithful double
functors are considered in 3.5.3.

(d) An isomorphism of double categories is an invertible double functor.
It amounts to a double functor which is bijective on objects, horizontal
arrows, vertical arrows and double cells.

(e) We write as 0 the empty double category, and as 1 the singleton double
category. The latter has one object, say 0, with the required identities 1,
eo and .

The horizontal-arrow double category 2 has a non-trivial horizontal ar-
row 0 — 1 and the required identities. Similarly, the vertical-arrow double
category 2% has a non-trivial vertical arrow 0->1. (It is the transpose of
2, as defined in 3.2.2.)

(f) A double graph has objects, arrows, cells, domains and codomains as
above, without assigned compositions and identities. Morphisms of double
graphs are obvious.

Let us note that, since there are no identity arrows, each term in the
boundary (u _3; v) of a cell can be an object.

3.2.2 Dwualities

The 8-element symmetry group of the square acts on a double category A.
There is thus the horizontal opposite AP (reversing the horizontal direc-
tion), the wvertical opposite AV (reversing the vertical direction) and the
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transpose A® (interchanging the horizontal and vertical structures), under
the (redundant) relations

hh=vv=tt=1, hv=vh, ht=tv, vt=th. (3.19)

The prefix ‘co’, as in colimit, coequaliser or colax double functor, will
generally refer to horizontal duality; thus — for instance — coequalisers in
Set will become coequalisers in the double category RelSet. Exceptionally
this prefix can refer to the vertical direction, when the latter is viewed as
the main one: this only happens in a few points, like 5.4.6, 5.4.7 and A2.7,
where we consider vertical limits and colimits. (The prefix ‘op’ is not used
in this book.)

We speak of a horizontally contravariant, or vertically contravariant, or
t-contravariant double functor A --» B to mean a double functor A" — B,
or AV — B, or At — B, respectively.

We say that a double category A is horizontally selfdual, or vertically
selfdual, or t-selfdual, if it is isomorphic to A", or AV, or A', respectively.
These isomorphisms are typically given by involutions.

A wertical involution is an isomorphism V: AV — A whose inverse is
VV: A — AY. More simply, V can be considered as an involutive, verti-
cally contravariant double functor A --» A. We have already seen various
examples in the previous section, for all double categories of relations and
some double categories of adjunctions. Transpositive involutions will be
examined in 3.2.5.

3.2.3 Double categories as internal categories

A double category A can be viewed as a 3 x 3 array of sets connected by
functions

22
/Y| U S A

VergA =— Ver{A =— VersA

Each row forms a category Hor,A; leaving apart — as usual — the prob-
lems of size, the right column presents A as a category object in Cat (see
2.4.4(b)). Explicitly
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- in degree 0, HorgA is the category of objects (in Agop = ObA) and hori-
zontal maps (in Agy) of A,

- in degree 1, Horj A is the category of vertical maps (in A1) and cells
a:u— v (in A1), with horizontal composition,

- HorsA is the analogous category whose objects are the composable pairs
of vertical maps (in Agg),

- vertical faces (domain and codomain) and degeneracy (or identity) give
three functors

07,0": Hor A S HorpA :e. (3.21)

Similarly, each column is a category Ver,A = Hor, (A') and the bottom
row gives a second presentation of A as a category object in Cat. Giving
priority to the horizontal composition, we consider the first presentation as
the main one.

We say that A has small horizontal hom-sets if the categories HorgA and
Hor; A have small hom-sets. A double functor F': A — B determines three
ordinary functors

F,, = Hor,, F': Hor,,A — Hor,,B. (3.22)

3.2.4 Double categories and 2-categories
A double category A has two associated 2-categories.

(a) The horizontal 2-category HorA of A is the category HorgA equipped
with 2-cells ¢: f — ¢ provided by the double cells ¢: (e g e) of A whose
vertical arrows are identities. These are called globular cells, and globular
1socells when they are vertically invertible

f
X ? X/ (3.23)
—

A double category A whose vertical arrows are identities will be called a
horizontal double category, and identified with the corresponding 2-category
A = HorA. In particular we have the horizontal double category 2 (see
3.2.1).

(b) The wvertical 2-category VerA = Hor(A?) of A has 2-cells a: u — v

coming from the double cells a: (u 1 v) of A whose horizontal arrows are
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identities
X

[o)
ut @ty (3.24)
\/

These are called special cells, and special isocells when they are horizon-
tally invertible. In some cases it will be convenient to replace VerA with
the 2-category Ver®A having reversed 2-cells a: u — v (coming from the
double cells a: (v 1 u) of A).

A double category A whose horizontal arrows are identities will be called
a vertical double category, and viewed as a 2-category VerA written verti-
cally. In particular we have the vertical double category 2! (see 3.2.1).

(c) The other way round, we have already seen in 3.1.4 that a 2-category
C determines the Ehresmann double category QC of quintets of C, with
double cells

x L x
“l</a l“ a:vf = gu: X =Y. (3.25)
Yy >V

Let us note that Hor(QC) and Ver*(QC) both give back the 2-category
C.

(d) In a flat double category A the horizontal 2-category HorA is a pre-
ordered category, with f < g when there exists a (unique) cell (e g; e) in A;
the same holds in VerA. We say that the double category A is witraflat if
it is flat and both HorA and VerA are ordered categories; in other words
the second condition means that each vertically invertible cell (e 5 e) and
each horizontally invertible cell (u } v) are identities.

For instance, QOrd is ultraflat, while the double category of quintets on
the 2-category of preordered sets is just flat. The double category RelC
(in 3.1.2, 3.1.3) is ultraflat. The same holds for AdjOrd (in 3.1.7): the 2-
categories Ord = Hor(AdjOrd) and AdjOrd = Ver*(AdjOrd) are locally
ordered by the relation f < g (as in (1.5)) and u, < v, (as in (1.39)).

3.2.5 Transpositive double categories

As already seen in 3.2.2, in a t-selfdual double category the horizontal and
vertical structure can be interchanged.

In particular a transpositive double category A is equipped with a trans-
position isomorphism T = (—)': A® — A whose inverse is T": A — A"
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More simply, T' can be considered as a t-contravariant involution A --» A
(as defined in 3.2.2).
With the notation of 3.2.3, this amounts to:

(a) an involution (—)*: Agg — Ago on the set of objects,

(b) two inverse mappings (—)': Ag; — Ay and (—)': Ajp — Ao1 that
interchange horizontal and vertical arrows,

(c) an involution (—)': A1; — Ay1 on the set of double cells,

so that faces, units and compositions are preserved, interchanging the hor-
izontal and vertical issues.

For instance, the double category A = QCat of quintets of the 2-category
Cat is transpositive, with transposition A --» A given by the involution
(—)°P of categories, functors and natural transformations. This acts as
follows on the general double cell (3.25), inhabited by a natural transfor-
mation a: vf — gu: A — D

4 LB Aor 2 cop
ul a iv — f”pi/a‘)p igop (3.26)
C —> D B® —s Do

If C is a category, the double category QC of commutative squares of C
coincides with its transpose, and is thus transpositive in a strict sense.

The transpositive double category Dbl, crucial for our analysis of double
adjunctions, will be studied in Section 4.2.

3.2.6 Polarised double categories

We say that a double category A is polarised if it is not t-selfdual, i.e. not
isomorphic to the transposed double category A'.

In such a double category it is often convenient to adopt a different termi-
nology (ready to be extended to higher dimensional multiple categories, in
Chapter 6): the horizontal direction is also called transversal, and viewed
as the ‘dynamic’ direction, while the vertical direction is viewed as the
‘static’ or geometric one. Thus:

- objects and vertical arrows are viewed as objects of degree 0 and 1, re-
spectively,

- horizontal arrows are viewed as transversal 0-maps, or maps of degree
0; they form, with the objects, the transversal category tv,A = HorgA of
degree 0,

- double cells a: (u g v) are viewed as transversal 1-maps a: u — v, or
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maps of degree 1; they form, with the 1-dimensional objects, the transversal
category tvi A = Hor1 A of degree 1.

We have seen in Section 3.1 various examples of polarised double cate-
gories, based on relations or adjunctions. In all these cases a vertical arrow
is something more complex than a mapping, its direction is conventional
and the vertical composition looks as a sort of concatenation, or pasting, or
tensor product. (All this will appear even more clearly in the weak double
category Rng of rings, homomorphisms and bimodules, in 3.4.5.)

3.2.7 Transformations and modifications

(a) A horizontal transformation of double functors h: F — G: X — A can
be defined as a double functor h: Xx2 — A, with F' = h.(—x0) and
G = h.(—x1).

The transformation A amounts thus to giving two double functors F, G,
with additional data:

- a horizontal arrow hX: FX — GX of A for every object X of X,
- a double cell hu: (Fu ¥ Gu) of A for every vertical map u: X =Y of X,

satisfying the following axioms of naturality and coherence:
F¢lhv=hu|GE, hlex)=enx, h(u®v)=hu® hv, (3.27)
for every double cell &: (u ;7; v), every object X and every pair u,v of

consecutive vertical arrows, in X.

(b) By transversal duality, a wvertical transformation of double functors
r: F-+G: X — A comes from a double functor r: Xx 2% — A. It assigns:

- a vertical arrow rX : F X -+ GX of A, to every object X of X,

-adouble cell rf: (rX g; rY’) of A, to every horizontal map f: X — Y of
X

)

satisfying the following axioms:
FEorg=rfeGE r(lx)=1x, r(gf)=rf|rg, (3.28)

for every double cell &: (u g v), every object X and every pair f,g of
consecutive horizontal arrows, in X.

(c) Given, in the diagram below, two horizontal transformations h, k and
two vertical transformations r, s between four double functors X — A, a
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modification p: (r 1 s)

F s F
l i
A (3.29)
G — G
k
assigns to any object X of X a cell uX: (rX fo sX) of A so that:
(mod.1) for every horizontal arrow f: X — Y in X,
pX|sf = rflpy, (3.30)
Fx % px L py Fx L Fpy M. py
rXi uX isX sf \tsY = rXi 'rf irY MY isY
GX — X — GY GX — GY — GY
kX G'f Gf kY

(mod.2) for every vertical arrow u: X =Y in X
uX ® ku = hu @ uY.

If X is small, we have constructed the double category A* of double
functors X — A. The horizontal and vertical morphisms are given by
the horizontal and vertical transformations, respectively; a double cell is a
modification. The compositions of morphisms and cells are obvious.

3.2.8 Exercises and complements (Exponential)

(a) Define the double functor of evaluation, for double categories
ev: ASxX = A, (3.31)

and prove the universal property of the exponential: for every double func-
tor L: BxX — A there is precisely one double functor M: B — A* such
that ev.(M xX) = L. In particular, the category of small double categories
and double functors is cartesian closed, see 2.2.3.

(b) A horizontal transformation h: Xx2 — A can thus be viewed as a
double functor X — AZ2. Describe the objects, arrows and double cells of
A2

(c) Describe the items of the double category AX, where X is a small
ordinary category (viewed as a horizontal double category).
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3.3 Weak double categories

Weak double categories, also called pseudo double categories, were intro-
duced in [GP1]. The strict case, defined in Section 3.1, is modified so that
the horizontal composition is still strict but the vertical one is unitary and
associative up to comparison double cells, invertible for horizontal compo-
sition. The terminology of the strict case is extended, as far as it applies.

3.3.1 Definition
A weak double category A consists of the following structure.
(a) A set ObA of objects of A.

(b) Horizontal morphisms f: X — Y between the previous objects; they
form the category HorgA of the objects and horizontal maps of A, with
composition written as gf and identities 1x: X — X.

(¢) Vertical morphisms u: X -»Y between the same objects, with a com-
position written as u ® v and identities ex : X - X, whose properties are
analysed below.

(d) (Double) cells a: (u } v) as in (3.2), also written as a: u — v in the
horizontal direction or a: f -+ g in the vertical one.

We refer now to the diagrams of cells of (3.3).

(e) Cells have a horizontal composition, consistent with the horizontal com-
position of arrows and written as «|5: (u g, g w); this composition gives

the category Hori1 A of vertical arrows and cells a: u — v of A, with iden-
1

tities 1,: (u 1 w). Special cells a: (u ] v) and special isocells are defined as

in the strict case (in 3.2.4).

(f) Cells have also a vertical composition, consistent with the vertical com-
a

position of arrows and written as —: (u ® u’ BU® v'), or a @ y; there are
v

identities ef: (e ; e).

(g) The compositions satisfy the interchange laws (3.4). Again the identity
cell of the object X is written as OUx = 1., = e1.

(h) For u: X <Y there are special isocells
Aut ex @ u— u, puU U ey — U (left, right unitor),
which are natural: for a cell a: (u £ v) we have

g

(ef ® )| Av = Au|a, (a®eg)|pv=pula, (3.32)
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X — X =— X — X
ed be ed

Vo

X —X 2 | = X M [ a
Uia ¢U ’U,‘ \L

Y — Y —Y' Y =—Y — Y
X — X — X' X =— X — X'
’U,L ‘U uL

pe L
Y — Y w voo= Y pu Y« v
el le el

Voo b

Y — Y =—Y' Y =—Y — Y’

(i) For three consecutive vertical arrows u, v, w there is a special isocell
Kk(u,v,w): u® (VW) = (L V) W (associator),

which is natural: for three vertically consecutive double cells a: (u £ u'),
B:(v¥ ) and vy: (w w'), we have

(@® (B@7) kW, v, w') = k(u,v,0) | ((a®B) ®7), (3.33)
« —> . . « —>
u a o' u'®v’ u u@ur g B tuev
« —> K . = . K « — >
Rws  BRy  tvew w’ vQw w ~ w’
o« —> . . « —>

(j) Finally, as for bicategories (in 2.3.6), there are coherence conditions for
the comparisons, which we write below in 3.3.2.

Again, vertical faces and vertical degeneracy give three functors

d~,8%: Hory (A) & Horg(A) :e. (3.34)

A weak double category has a horizontal opposite AP (reversing the hor-
izontal direction) and a wvertical opposite AV (reversing the vertical direc-
tion). The transpose A* can only be considered in the strict case. Again,
the prefix ‘co’ refers to horizontal duality, unless differently specified.

*In the light of 3.2.3, a small weak double category can be viewed as a
pseudo category object in Cat (as defined in [Mar]).*
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3.3.2 Coherence conditions
The following diagrams of comparison special isocells must commute under
horizontal composition.

(a) Coherence pentagon of the associator k, on four consecutive vertical
arrows x,y, 2, t

(zRyYy)R(zx1t)
2R (YR (21)) (z@y)@z)@t  (3.35)

1®n\ A;l

1@ (y@2)0t) —> (2@ (Y 2) Ot
(b) Coherence condition for the unitors, for x: X =Y and y: Y- Z

T®(ey ®y) —— (zQey) @y

o e (3.36)

TRy

After assuming, in 3.3.1, that the associator and unitors are natural on
all cells, the coherence conditions live in the structure VerA of special
cells, and amount to saying that this structure is a bicategory (see 2.3.6).
Therefore the Coherence Theorem of bicategories applies, and says that all
‘well-formed diagrams’ of comparison cells commute. (A precise formula-
tion was given in Section 2.6.)

In particular we have the following commutative diagrams and the fol-
lowing identity:

eR(@®Y) "> (e®r)0y R (YRe) >0y e

N e o

TRY TRY (3.37)

AMex) =plex): ex ®ex — ex.

In the flat case, where double cells are determined by their domains and
codomains, the coherence conditions are automatically satisfied.

3.3.3 Unaitarity

A strict double category is the same as a weak one where all comparisons
A, p, k are identities.
More generally we say that a weak double category A is unitary if its
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unitors A, p are identities. The vertical composite of three arrows is then
well-defined whenever one of them is an identity: in fact, in this case the
associativity isocell k(u,v,w) is an identity, because of the coherence con-
ditions (3.36) and (3.37).

As a consequence, the wertical composite of three cells is well-defined
whenever each of their two triples of vertical arrows falls in the previous
situation: both associativity isocells are identities (even if the unit vertical
arrows are in different positions). We shall refer to this situation as a
normal ternary (vertical) composition, of vertical arrows or cells.

As a much weaker condition we say that A is preunitary if the double
cell

AMex) =plex):ex Qex — ex (3.38)

is an identity, for all objects X. Then also k(ex,ex,ex) must be an
identity.

Unitarity (or preunitarity) will often be assumed below, to avoid ‘useless’
complications. In our main examples the composition of the vertical arrows
(typically spans, cospans, profunctors...) is settled by choice, and can be
made unitary by obvious constraints on the latter.

3.3.4 Special cells

In the weak double category A we are particularly interested in the special
cells and in the globular cells.

We already said that a cell a: u — v is special if its horizontal arrows
are identities
1

X — X X
1o Ao (3:39)
Y — Y Y

Restricting A to these cells we obtain a wvertical weak double category
VerA, which consists of the objects of A, its horizontal identities, its ver-
tical arrows and the special cells a: © — v. It is the same as a bicategory
written vertically, with arrows and weak composition in the vertical direc-
tion and strict composition in the horizontal one, as in the right diagram
above.

In particular, a monoidal category C can be viewed as a vertical weak
double category A on one formal object, letting HorgA = 1 and Hor; A = C.
The non-trivial items of A are thus the vertical arrows X (which are objects
of C) and the special double cells f: X — X’ (which are morphisms of C).
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The vertical operations and their comparisons come from the monoidal
structure (®, E, A\, p, k) of C.

3.3.5 Globular cells

On the other hand, a cell ¢: f-> g is said to be globular if its vertical arrows
are identities

x Lo x

| | SN

i ¢ ¢ X 1o X/ (3.40)
T

X ? X/

If A is preunitary (see 3.3.3), it contains a horizontal 2-category HorA
formed by the category HorgA enriched with 2-cells ¢: f-> g provided by
the globular cells of A, as in the right diagram above.

(Without assuming preunitarity, we should here modify the vertical com-
position of these cells, and HorA could not be embedded in A. This would
leave us with two vertical compositions, which might result in misunder-
standings.)

This cell ¢ is vertically invertible, or a globular isocell, if it has a vertical
inverse in the 2-category HorA, written as ¢™: g f

PR =ey, 0 R Y =e,. (3.41)

Then the arrows f, g are said to be wvertically isomorphic. A wvertically
invertible cell will always be a globular one. (A general notion of ‘vertically
invertible cell’ in a weak double category would be ill-founded, in the same
way as to speak of ‘invertible spans’ or ‘invertible profunctors’, in a strict
sense. )

A double category whose vertical arrows are identities will be called a
horizontal double category. It is the same as a 2-category (horizontally
written, as usual).

3.3.6 Ezxercises and complements

(a) Let X be a set equipped with two operations z |y and x ® y that have
the same identity e and satisfy the middle-four interchange property (as in
(2.33)):

(zly) © (z]t) = (x@2)[(y@1). (3.42)

Then these operations coincide and are commutative. (Note that the
associativity of the given operations is not assumed.)
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*(Classically, this simple algebraic result is used to prove that all homo-
topy groups of degree 2 or higher are commutative, using the concatenation
of homotopy classes of singular cubes in two different directions.*

(b) For a unitary weak double category A, apply this result to the set of
cells a: (ex 1 ex) whose boundary consists of identities of a fixed object
X. We obtain thus a commutative monoid.

*(c) For a weak double category A define the exponential AX, where X is
a small ordinary category, extending what we have seen in 3.2.8(c) for a
strict A.

3.4 Examples of weak double categories

Spans on a category C with pullbacks form the well-known bicategory
SpanC (already sketched in Exercise 2.3.7(a)), which has few limits and
colimits. Combining these spans with the ordinary arrows of C we get a
weak double category SpanC, which will be proved to have all double limits
and colimits.

Another important weak double category, written as Cat, is obtained by
amalgamating the category Cat with the bicategory of profunctors, also
called distributors or bimodules (see Bénabou [Be2], Lawvere [Law]).

The enriched case gives profunctors between additive categories, or pre-
ordered sets, or generalised (Lawvere) metric spaces. Bimodules between
rings also belong to this framework.

3.4.1 Spans

Let C be a category with (a fixed choice of) pullbacks. The weak double
category SpanC of spans over C will play an important, ‘representative’
role in the theory of weak double categories (as we will see in Section 3.6
and Subsection 5.4.7).

Objects, horizontal arrows and their composition come from C, so that
Hory(SpanC) = C.

A vertical arrow u: X <»Y is a span from X to Y. This is a diagram
X+ U =Y inC,ora functor u = (v/,u”): V — C defined on the formal-
span category 0 < ¢ — 1. A vertical identity is a pair ex = (1x, 1x).

A cell a: (u ! v) is a natural transformation u — v of such functors

g
and amounts to the commutative left diagram below, with a middle arrow
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ma: U — V completing the boundary (note that this structure is not flat)

x s x X —» X' — > X"

E NS T R

U mey U ey My (3.43)
’U/// iv” ’U,//\L ’U” iu)”

Y — Y’ Y — Y —Y”

The horizontal composition « |8 of o with a second cell : v — w is a
composition of natural transformations as in the right diagram above; it
gives the category

Hor (SpanC) = Cat(V, C).

In particular, a special isocell u — v: X -+Y is given by an isomorphism
1: U =V witho'i =/, v"i=1u".

The vertical composition u ® v of spans is computed with pullbacks in
C, by the fixed choice of pullbacks that we have assumed

X Y z
~N T 7

U %
T 7

w

W =UxyV. (3.44)

This is extended to double cells, in the obvious way. The comparisons
A, p, k are determined by the universal property of pullbacks. Actually the
unit constraint for pullbacks, specified in 1.3.5, makes SpanC unitary.

Reversing spans gives a weak vertical involution in SpanC, which is a
pseudo double functor (see 3.5.1): we have already seen in 1.3.5(c) that
one cannot adopt a (strict) ‘symmetry constraint’ for pullbacks.

3.4.2 Cospans

Dually, for a category C with (a fixed choice of) pushouts there is a unitary
weak double category CospC of cospans over C, that is horizontally dual
to Span(C°P).

We have now

Hor(CospC) = C,
(3.45)
Hor; (CospC) = Cat(A, C),

where A = VP is the formal-cospan category 0 — ¢ < 1.

A vertical arrow u = (u/,u”): A — C is now a cospan, i.e. a diagram
X U+ YinC, and a cell a: u — v is a natural transformation of such
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diagrams. Their vertical composition is computed with (the fixed choice
of) pushouts in C.

3.4.3 Profunctors

Another important prototype is the weak double category Cat of (small)
categories, functors and profunctors. In a general cell

X—f>X’

i o I (3.46)

—

Y —— Y

an object is a category, a horizontal arrow is a functor, a vertical arrow
u: X =Y is a profunctor, i.e. a functor X°? xY — Set. The cell ‘is’ a
natural transformation

a:u—v.(fPxg): XPxY — Set.

The vertical composition of u with u': Y= Z is given by (choosing) a
coend in Set (see 1.3.9)

(weu)(x,z) = /yu(sc,y) xu'(y,2), ex(z,z')=X(z,2). (3.47)

Its comparison cells for unitarity and associativity derive from the uni-
versal property of coends. The horizontal composition of double cells is
obvious, the vertical one is computed by coends.

All this can be interpreted in a more elementary way.

In a profunctor u: X -+ Y it is useful to view the elements \ € u(z,y) as
new arrows \:  --+ y from the objects of X to those of Y. Together with
the disjoint union of the objects and arrows of X and Y, we form thus a
new category X +, Y known as the gluing, or collage, of X and Y along
u. (This category will be shown to be a double colimit, the cotabulator of
u in Cat, in 3.7.4.)

The whisker composition between ‘old’ and new arrows is determined by
the action of u on the old ones

nAE = u(&,n)(N) (foré: 2’ zinXandn:y—9y inY). (3.48)

The profunctor u amounts thus to a category U = X +, Y containing
the disjoint union X + Y and new arrows from objects of X to objects of
Y (possibly none). More formally, U is a category over 2, i.e. an object
U — 2 of Cat/2 = Cat | 2 (see (1.56)), whose fibres over 0 and 1 are X
and Y, respectively.
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For the vertical composite u ® uv’': X - Z, an element of (u ® u')(x, z)
is an equivalence class po \: x --» z, for A: x --» y and pu: y --» z; the
equivalence relation is generated by

A
r — >y
N N
NS NS (4m) o XA~ o (1), (3.49)
Q
y -z

Finally the cell a in (3.46) corresponds to a functor over 2 that restricts
to f and g over 0 and 1

a: X+, Y X' +,Y,
Az -->y) = (a(A): fo--> gy).
The horizontal composition of cells is the composition of these functors,

so that Hor;Cat = Cat/2. In a vertical composite a ® f: u®@u' — v @ v’
the equivalence class po A: z --» z of X 4+, Z is sent to the equivalence
class f(u) o a(N): a(z) --+ B(2).

Also here there is a weak vertical involution (see 3.5.1), produced by
opposite categories

(3.50)

X 4f> X’ y<>13940p> y’op

ui a i . u\lL a’® i (3.51)

Y - o Y/ Xop PN X/Op
g for
To simplify things we assume that Cat is unitary (by a constraint on the
choices involved in vertical composition).
*Tt is also possible to replace the weak double category Cat with a strict
one (up to special equivalence, see 3.5.5) by letting a profunctor u: X Y
be defined as a functor @ that preserves colimits

i: Set™ — SetY, W(®)(y) = /wu(x,y) xd(x), (3.52)

in the same way as a relation r: X =Y of sets can be defined as a sup-
preserving mapping 7: 2% — 2Y (see 2.1.4(e)). However we shall stay in
the usual setting, where computing is simpler.*

3.4.4 *Enriched profunctors

Let a symmetric monoidal closed category V be given.
V-categories, V-functors and V-transformations have been reviewed in



3.4 Examples of weak double categories 141

2.4.1. Under suitable hypotheses on V, one can define a V-profunctor
u: X -Y between V-categories, and form a bicategory with such mor-
phisms, as shown in Street’s paper [St4]. The prototype Cat considered
above can thus be generalised, forming the weak double category VCat
of V-categories, V-functors and V-profunctors: leaving aside questions
of size, Cat is obtained in this way from the cartesian closed category
V = Set.

The general case is left to an interested reader. We work out directly
some interesting cases, adapting what we have seen for the weak double
category Cat. Again, all questions of size are left out.

3.4.5 Additive profunctors and bimodules

(a) The monoidal category V = Ab (with the usual tensor product) gives
the weak double category AbCat of preadditive categories, additive functors
and additive profunctors (see 2.4.2(e)).

A vertical arrow u: X - Y is now an additive functor u: X°PxY — Ab.
Equivalently, it can be presented as a preadditive category U = X 4, Y in
Cat/2, whose fibres over 0 and 1 are X and Y, respectively; we have thus
new arrows \: z --» y (for  in X and y in Y) that form a preadditive
category with the old ones.

The remaining points are described as in 3.4.3, replacing the cartesian
closed category Set with the symmetric monoidal closed category Ab.

(b) Restricting AbCat to the totally full substructure of preadditive cate-
gories having one object we obtain the weak double category Rug of (uni-
tary) rings, homomorphisms and bimodules.

Now a vertical arrow X: R—-> S is an (R, S)-bimodule, i.e. a left-R and
right-S module, with coherent multiplications by scalars

(rx)s = r(xs) (forre R,z € X, s€).

Its composite with Y : S—+ T is the tensor product Xs®gY : R—>T. This
is the quotient of the abelian group X ®Y that forces zs®y = z® sy (for all
x,y, s), with the obvious structure of (R, T)-bimodule: r.(x®y).t = re®yt.
The vertical identity er is R as a bimodule on itself.

A double cell h: (X J X') is an (R, S)-homomorphism h: X — X'
(where the structure of X’ comes from the ring-homomorphisms f: R —
R’ and g: S — S’, which means that r.z’.s = f(r).2’.g(s)). Horizontal
composition of cells is obvious and the vertical one is tensoring, namely
hk: X s®sY — X' s®gY’. The comparison isocells are obvious.

Interesting extensions of the weak double category Rng, related to quan-
tum field theory, are studied in [Pa6].
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3.4.6 Preorder profunctors

The ordinal category V = 2 (with cartesian product) gives the (strict)
double category pOrd of preordered sets, increasing functions and preorder
profunctors.

A vertical arrow u: X -+ Y is an increasing mapping u: X°PxY — 2. It
can be identified with the corresponding subset of X xY

{(z,y) € XXY |u(z,y) =1} C X XY, (3.53)

as a relation u: X <Y down-closed in X and up-closed in Y'; this is also
called an order ideal of X°PxY . Preorder profunctors compose as relations.
A cell with boundary (u g v) exists if and only if u < v(f°Pxg), which
means that (z,y) € u implies (fz, gy) € v, and is equivalent to give a cell
with the same boundary in RelSet.
There is thus a totally full embedding

D: RelSet — pOrd, (3.54)

that identifies sets with discrete preordered sets. Also pOrd is ultraflat (see
3.2.4(d)).

The profunctor u: X <Y can also be viewed as a new preordered set,
namely the collage X +, Y, giving to the set | X |+ |Y| some preorder that
coincides with the original preorders on X and Y, under the condition that
no element of Y precedes an element of X. In this preorder, x < y means
that u(x,y) = 1.

3.4.7 Metric profunctors

The Lawvere strict monoidal category Ry = [0, 00|, with arrows A > p and

tensor product A + p, has been recalled in 2.4.3. Extending the category

Mtr = R, Cat we have now the (strict) double category Mtr = R, Cat.
As we have already seen, an object is an L-metric space X with a distance

d satisfying the axioms
d(xz,y) € [0, ],
(z,y) € [0,09] (3.55)
dw,0) =0, dlz,y)+dy,2) > d, ).

A horizontal arrow is a weak contraction f: X — X’  satisfying d(z,y) >
d(fz, fy). A vertical arrow is a metric profunctor u: X <Y, represented
by an R, -functor

u: XPxY — Ry,

(3.56)
u(z,y) +dy,y') > u(z,y'),  dlz,z’)+ul@,y) > u(z,y).
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Their composition is defined by a coend, strictly determined as a greatest
lower bound in [0, o0

(u®v)(z, z) = infy (u(z,y) + v(y, 2)). (3.57)

Also here u(z,y) can be viewed as the distance from a point of X to
a point of Y, defining a new L-metric space, the collage X +, Y (with
d(y,x) = 00). Again Mitr is ultraflat, since a cell u — v. (f°Pxg) corresponds
to the following inequalities

f

X — X
ui Z iv u(z,y) = v(fx,gy) (reX,ycY). (3.58)

Y —= Y

The embedding of strict monoidal categories
2 >Ry, 0 o0, 10, (3.59)

gives an embedding of double categories (that will be seen to be reflective
and lax coreflective in 4.5.1)

M : pOrd — Mitr,
(3.60)
dyx(z,2’) =0 (oroo) <&  xz=<12' (otherwise).
This embedding identifies pOrd with the double subcategory of Mitr con-
sisting of those L-metric spaces whose distance takes values in {0, 0o}, their
weak contractions and their profunctors with values in {0, 0o}

Mu: XxY — {0,000}, Mu(z,y) =0 < (x,y) € u. (3.61)

An L-metric space X can thus be viewed as a preordered set equipped
with a finer information d(z, z") € [0, 0o], not reduced to the boolean values
0 (here meaning ‘yes’: x < z’) and oo (meaning ‘no’: one cannot go from
x to z').

The embedding M is horizontally full. Taking into account the totally
full embedding D of (3.54), we have a composed embedding

MD : RelSet — pOrd — Mitr. (3.62)

In this way RelSet is identified with a horizontally full double subcate-
gory of Mitr, consisting of all discrete L-metric spaces (with d(z,z’) = 0 if
x = 2’ and oo otherwise), together with their weak contractions and their
profunctors with values in {0, 00}.
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3.4.8 Ezxercise

As a variation on the weak double category Rng, in 3.4.5(b), one can study
the restriction of Cat to the totally full substructure of categories having
one object.

3.5 Lax functors and horizontal equivalence
We deal now with lax functors, their horizontal transformations and hori-
zontal equivalences of weak double categories. (More general transforma-
tions will be seen in the next section.)
We end this section by proving a Strictification Theorem: every weak
double category is ‘specially equivalent’ to a strict one.

3.5.1 Definition (Lax functors)
A laz (double) functor F': X — A between weak double categories amounts
to assigning:

(a) two functors F,, = Hor, F': Hor,X — Hor,A for n = 0,1 (see 3.3.1),
consistent with the vertical faces (domain and codomain)

HOI‘1X — HOI‘lA HOI‘1X — HorlA
A
HorgX —= HorgA HorgX —= HorgA

(b) for any object X in X a special cell, the identity comparison
E(X) erx — Fex: FX—‘-)FX,

(c) for any vertical composite u ® v: X =Y - Z in X a special cell, the
composition comparison
F(u,v): Fu Fv - F(u®v): FX- FZ.
The following axioms must be satisfied.

(1df.1) (Naturality of identity comparisons) For a horizontal morphism f:
X — X' in X we have

6Ff|EXI=EX|F6f,

FX —— FX' =— FX' FX — FX —— FX'
ei epy ie I iFe = ei F iFe Fer \tFe

FX —— FX' = FX' FX =— FX —— FX'
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(1df.2) (Naturality of composition comparisons) For a vertical composite of
cells a ® B we have

(Fa® FB)|E(u,v') = E(u,v)|Fla®p),

FX — FX' — FX' FX —= FX — FX'
) i, {

Fu¢/ Fa ¢Fu Fu¢ Fugv) Fu'@v)

FY — FY' F = FYy F

vl l v’ Ul

R ™l F(a®p)

F7 —— FZ' — FZ' FZ — FZ7 FZ

(1df.3) (Coherence with unitors) For a vertical map u: X -»Y the following
diagrams of special cells are commutative:

A(Fu Fu
e(FX)® Fu EGON Fu Fu®e(FY) SO Fu
EX®1L TF(/\U) 1®Eyi TF(pu)
F6X®FuﬁF(ex®u) Fu® Fey ﬁF(.’L‘@@y)

(1df.4) (Coherence with associators) For consecutive vertical arrows u, v, w
in X the following diagram of special cells is commutative

KF

Fu® (Fv® Fw) — (Fu® Fv) ® Fw
1®Ei iE@l
Fu® F(v®w) Flu®v)® Fw

£ |z

Flu® (v®w)) — ((u®v) @w)

Lax double functors compose, in a categorical way: for G: A — B the

composite GF' has the following comparisons:
QF(X)Z(Q(FXHGE(X))iGGFX*>GF€X7 (363)
GF(u,v) = (G(Fu, Fv) | GE(u,v)): GFu® GFv — GF(u ®v). '

A colax (double) functor F': X — A has comparison cells in the opposite
direction

FX: Fex — epx, F(u,v): Flu®v) > Fu® Fu, (3.64)

under horizontally dual axioms (cdf.1-4).
A pseudo (double) functor is a lax functor whose comparisons are in-
vertible; it is made colax by the inverse comparisons. More particularly,
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a strict (double) functor is a lax functor whose comparisons are identities;
this amounts to strictly preserving the whole structure: faces, identities,
compositions, unitors and associators.

For instance, if C is a category with pullbacks, the inclusion Pmap(C) —
SpanC of the double category of partial maps in the weak double category
of spans is a pseudo functor, with comparisons determined by the choice of
pullbacks.

A pseudo functor with values in an ultraflat double category (see 3.2.4(d))
is necessarily strict.

As in the examples of Section 3.4, a weak vertical involution for the weak
double category A is a pseudo functor V: AV — A with inverse V.

3.5.2 Unitary lax functors

The lax or colax functor F is said to be unitary if all its unit comparisons
F(X) are identities. Then F'(ex) = epx, and axiom (1df.3) proves that all
comparisons F (e, u) and F(u,e) are identities. (The reader can verify that
a pseudo unitary lax functor can always be made unitary.)

Unitarity of functors is essentially different from unitarity of weak double
categories. The interest of the latter is ‘practical’ and a matter of taste:
it simply allows us to simplify many points, at little cost. On the other
hand, the importance of unitarity for lax or colax functors is structural,
and will clearly appear when dealing with limits and their relationship
with adjunctions (see 4.5.2(c), 5.1.1 and Section 5.5).

Basically, an object of A ‘is’ a strict functor A: 1 — A defined on the
singleton double category; composing this functor with a unitary lax (or
colax) functor A — B we get an object of B, but composing it with a
general lax functor we get a vertical monad in B (see Exercise 3.8.6(b)).

3.5.83 Full and faithful double functors

Let F': X — A be alax or colax double functor. The main notions of fullness
and faithfulness we are interested in are of a horizontal kind, related to the
notions of equivalence that we shall see in 3.5.5 and Section 4.4. (Of course
in the transpositive case the vertical analogues are of the same interest.)

(a) We say that F is horizontally full if both of the ordinary functors
Fy: HorgX — HorgA, Fy: Hor; X — Hor A, (3.65)

are full.
If F is unitary it is easy to see that the second condition implies the first:
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for a horizontal morphism g: F(X) — F(X’) there is a cell a: ex — exs
such that F'(a) = e, and both of its horizontal arrows f;: X — X’ satisfy
F(fi)=g.

(b) We say that F' is horizontally faithful if both of the ordinary functors
HorgF' and Hory F' are faithful. Again, if F' is unitary the second condition
implies the first.

(¢) A weak double subcategory X C A is horizontally full if the inclusion
double functor is. X is then determined by any set of vertical arrows of A
closed with respect to vertical identities (of domains and codomains) and
vertical composition.

3.5.4 Horizontal transformations

A horizontal transformation of lax double functors h: FF — G: X — A can
be defined as a lax double functor h: Xx2 — A with F' = h.(—x0) and
G = h.(—x1).

The transformation h amounts thus to giving two lax double functors
F, G with additional data:

(a) a horizontal map hX: FX — GX in A, for each object X in X|
(b) a cell hu: (Fu ¥ Gu) in A, for each vertical map u: X =Y in X,
which must satisfy the following conditions.

(ht.1) (Naturality)

Fa|hv=hu|Ga, foracell a:u— vin X

(ht.2) (Coherence with vertical identities)
FX|h(ex)=enx|GX, foran object X in X.

(ht.3) (Coherence with vertical composition)
F(u,v) | hw = (hu ® hv) | G(u,v), forw=u®vin X.
The naturality condition comprises its level of degree 0
hX' Ff =Gf.hX, for f: X — X'inX. (3.66)

These transformations have obvious vertical composition and whisker
composition. First, for a horizontal transformation k: G — H: X — A,
the transformation kh: F' — H has components:

(kh)X = kX.hX: FX — HX,
(3.67)

kh)X
(khyu = (hu|ku): (Fu ()5 Hu).
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Secondly, for two lax functors L: X’ — X and M: A — A’ the transfor-
mation MhL: MFL — MGL has components:

(MhL)X' = M(h(LX")): MFLX' — MGLX',

(3.68)
(MhL)u' = M(h(Lu')).

We have now the 2-category LxDbl of weak double categories, lax func-
tors and horizontal transformations. Similarly we have the 2-categories
CxDbl, PsDbl and StDbl for colax, pseudo and strict functors.

A horizontal transformation of lax double functors h: F — G is said to
be:

- a horizontal isomorphism of lax double functors if it has an inverse h™1:
G — F, which amounts to saying that all components hu (and hX) are
horizontally invertible in X (then we write F' = G),

- special if all cells hu: Fu — Gu are special, i.e. all morphisms hX are
identities (equivalently, the natural transformation Horg(h) is an identity),
- a special isomorphism of lax double functors if both conditions above are
satisfied, i.e. all cells hu: F'u — Gu are special isocells.

3.5.5 Horizontal equivalences of weak double categories

A (horizontal) equivalence of weak double categories will be a pseudo func-
tor F': X — A that has a quasi-inverse G: A — X, i.e. a pseudo functor
with horizontal isomorphisms h: GF — idX and k: FG — idA. (The
adjoint case will be considered in 4.4.4.)

We speak of a special equivalence when both h and k can be chosen to be
special isomorphisms, so that F' and G give inverse isomorphisms between
HorpX and HorgA. In many examples of this kind, F' and G even reduce
to the identity on Horo(X) = Horp(A).

3.5.6 Relations of sets as profunctors and spans

The double category RelSet of sets, mappings and relations (see 3.1.2) can
be embedded in various others.

(a) We have already seen, in 3.4.6 and 3.4.7, the canonical embeddings
RelSet — pOrd — Mitr, (3.69)

where the first is totally full, while the second is horizontally full.

(b) There is also a laz embedding S in the weak double category of spans,
with a strict retraction

S': RelSet — SpanSet, R: SpanSet — RelSet (RS =1). (3.70)
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Here R is the obvious double functor taking a span to the associated
relation, while S is the lax double functor that takes a relation u C XxY to
the jointly monic span Su = (X < u — Y') whose mappings are restrictions
of cartesian projections; its comparison cell (Su) ® (Sv) — S(u ® v) goes
from a span to the jointly monic span defining the same relation.

We shall see that the lax functor S is produced by a limit, the tabulator
of a relation (in 3.7.1), and is right adjoint to R (in 4.5.3).

3.5.7 Ezxercises and complements (Spans as discrete profunctors)

(a) Prove that SpanSet is specially equivalent (in the sense of 3.5.5) to the
totally full substructure of Cat determined by all discrete small categories.

(b) The discrete embedding D: SpanSet — Cat is a double functor. At
level Horg, the functor Dy: Set — Cat has a left adjoint mp: Cat — Set
that associates to a category its set of connected components, and to a
functor the induced mapping (Exercise 1.5.3(e)).

The theory of adjoints for double functors, developed in the next chapter,
will give to the double functor D a colaz left adjoint my: Cat — SpanSet
(see Exercise 4.5.2(a)).

3.5.8 Strictification Theorem

FEvery weak double category X has an associated double category A, specially
equivalent to it (see 3.5.5), by means of pseudo double functors F': X — A
and G: A — X with GF =1, FG =1 (horizontally isomorphic).

Every pseudo double functor S: X — Y can be similarly replaced by a
strict double functor S': A — B.

Note. Here a weak double category is not assumed to be unitary.

Proof Let us recall that the weak double category X has a vertical bicate-
gory VerX (see 3.3.4) whose 2-cells a: u — v are given by the special cells
a: (u 1 v) of X; its unit and associativity comparisons \, p, k are those of
X. We shall repeatedly use the Coherence Theorem for bicategories (see
2.6.7).

First we replace VerX with the free category V on the graph of the old
vertical arrows. A new vertical arrow u = (uq,...,up): X =Y is thus a

string of consecutive old vertical arrows
X=Xp=X1= .. =X,=%,

including an empty string ex : X <+ X for each object; their composition is
by concatenation.
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The free category V comes with an evaluation morphism of reflexive
graphs (—)": V — VerX that takes the string u to

and ey to the original weak unit ex. It is actually a unitary pseudo functor
of bicategories (defined on a category), with comparison

Y(u,0): 100 = (L) X7, (3.71)

obtained by vertical composition of instances of k£ (or of A and p if w or v is
a new vertical identity). The coherence theorem for the bicategory VerX
says that we get the same result, no matter how this composition is done,
and that (3.71) is indeed coherent with the associativity isocells x of VerX
(and the trivial ones for V)

1@ (D) —— (1®9) W
199 fuwer
1®(v®w) (L) @b (3.72)
wi P
uvew) — WRuvew)

Now we construct the double category A. It coincides with X at the level
Hory, i.e. for objects, horizontal arrows and their composition. The vertical
arrows of A are the previous strings in V. A new double cell a: u — v, as
in the left diagram below, is represented by an old double cell &: (@ g D)

X*f>)f’ X — X X*f>)f’
BEDEDE
Y — > Y Y —— v X —— X

In particular the horizontal identity 1, of a new vertical arrow is repre-
sented by 15, and the vertical identity e, of a horizontal arrow is represented
by Ef.

Horizontal composition of double cells in A is like in X, and forms a
category. The vertical composition a® 3 of new double cells is represented
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by the following old cell (a ® 5)°

¥ J (v®v’)" (3.74)

To prove that A is a double category, the main point is vertical associa-
tivity:

a®(Bey)=(a®p)®7.

These new cells are expressed in X as the composites of the following
diagrams, where uf = (v ® v’ ® v”)" and v* = (V@ V' ® V")

. . @ — > & ——— e —— o
1 & 1

¢ ———> o ———— o

o (3.75)

ut Yl B " o (3.76)

(It is understood that in diagram (3.75) we first compose 3 ® 4, while in
diagram (3.76) we first compose & ® 3.)

These cells do coincide. Actually, one can form a three dimensional
diagram inserting two associativity isocells of X

k@ (U @u") = (AQu)@u", k@ W V") = (1) V",
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In this way the central prism commutes (by definition of weak double cat-
egory). The left-hand part of the new diagram, involving the first instance
of k and the left-hand part of the diagrams (3.75) and (3.76), commutes
by (3.72); similarly for the right-hand part.

The interchange law in A is obvious once it is written out (a cell ¥ cancels
with a cell »~1). The identity laws are left to the reader.

The unitary pseudo double functor G: A — X has already been con-
structed:

G(u) =1, G(a) =&, G(w,v) =Y(w,v): 100 = ().

The embedding F': X — A is obvious: a vertical arrow is sent to the
corresponding string of length 1. It preserves vertical identities and com-
position up to special new isocells F(X): ex — ex (represented by the
double identity Ox) and F(u,v): Fu® Fv — F(u®wv) (represented by the
horizontal identity of the old composite u ® v).

It follows that GF' = 1, while F'G is horizontally isomorphic to the iden-
tity on A, by special isocells hu: (FG(u) 1 u) represented by the horizontal
identity of u, for each string w.

Finally, given a pseudo double functor S: X — Y, with special isocells
SX:esx — S(ex) and S(u,v): Su® Sv — S(u®wv), the strictified double
functor S”: A — B has

S (ugy ey ) = (Sup, ooy Stup ),
S'(ex) = esx, S'(a): (S'u 51 8),

where the cell S’(«) is represented by a modified version of S(&)

S st (8'w)"

e <——0o— o
e <——e0o— o

_—
St Sé& So
_—

—
«Q
S
=
>
¢ <——0o— o
o< o— o

with generalised isocells S (well defined, by the coherence theorem of bi-
categories). Let us note that this procedure needs invertible comparisons
S, and cannot be applied to lax or colax functors. |

3.6 Tabulators and span representations

For a vertical arrow u in a weak double category A, the tabulator Tu, or cell
representer of u, is a basic limit which will play a relevant role in Chapter 5.
The dual notion is called cotabulator, or cell corepresenter Lu.

Here we begin by introducing their 1-dimensional universal property.
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Then we study how to represent weak double categories by spans (or co-
spans), when all 1-dimensional tabulators (or cotabulators) exist. (This
topic is based on the paper [GP11].)

Tabulators and cotabulators often describe important, well-known con-
structions and clarify the structure we are examining — as we have already
seen while introducing the weak double category Cat of categories, func-
tors and profunctors, in 3.4.3. In a 2-category, viewed as a horizontal
double category, we get the basic cotensors and tensors Texy = 2 M X,
lex =2® X (see Exercise 3.6.7(b)).

The 1-dimensional tabulator in a (strict) double category A was intro-
duced in [BaE], p. 260, as an ‘A-wise limit’, and called a ‘representation’.

3.6.1 Tabulators

Let u: X =Y be a vertical arrow in the weak double category A. The 1-
dimensional tabulator, or cell representer of u, will be an object T = Tu
equipped with a cell 7: ey — w (written as m, when useful)

T 2. X
eTi - iu (3.77)
T

— s Y
q

such that the pair (T,7: er — u) is a universal arrow from the functor
e: HorgA — Hor; A to the object u of Hori A. Explicitly, this means that

(tab.1) for every object A and every cell p: e4 — wu there is a unique
horizontal map h: A — T such that ¢ =ep, |7

Ao x Ao P x
A S AU R e
A—>Y A—sT —>Y

We say that A has 1-dimensional tabulators if all these exist, which means
that the ordinary functor e: HorgA — Hor; A has a right adjoint

T: Hor; A — HorgA, e T. (3.79)

If this is the case, the functor e preserves all colimits. Moreover, we shall
try to represent A as a weak double category of spans, over the category
HOI‘O (A)

Dually we define the 1-dimensional cotabulator, or cell corepresenter of
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u, as an object C' = lu equipped with a universal cell ¢t: u — e

X - C
| |

uJ/ L VC (3.80)

Y — C
A has 1-dimensional cotabulators if and only if the functor e: HorgA —
Hor; A has a left adjoint; then e preserves limits and one can try to represent
A as a weak double category of cospans.
The 2-dimensional property of tabulators and cotabulators will be con-
sidered in Section 5.3. In this chapter the terms tabulator and cotabulator
always refer to the 1-dimensional aspect.

3.6.2 Ezxercises and complements

Computing tabulators is mostly deferred to the next section, but the fol-
lowing elementary facts can already give some concrete intuition about
them.

(a) For a relation u: X <Y in RelSet, prove that the tabulator Tu C XxY
is the graph or ‘tabulation’ of the relation u, whereas the cotabulator Lu
is a quotient of X + Y, namely the pushout of any span representing the
relation.

(b) Extend these facts to RelAb and RelGp.

3.6.3 Diagonal morphisms

We suppose that the weak double category A has all tabulators. The
following ‘diagonal maps’ will be used for the comparisons of the span
representation, in Theorem 3.6.4, and also in the proof of the Construction
Theorem of double limits.

(The present computations are clearer without assuming that A is uni-
tary.)

(a) The tabulator TX = Tex of the object X has a canonical diagonal
morphism dX, provided by the identity cell of X

dX: X - TX, dX |mx = Oyx. (3.81)

(b) For a vertical composite w = u ® v: X =Y = Z, suppose that there
is in HorgA the pullback P = T(u,v) = Tu Xy Tv, represented in the
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parallelogram below. Then the diagonal morphism d,,, is defined as follows,
by the universal property of Tw (using the cell o = (Ae)™! = (pe)™1)

dyv: T(u,v) = Tw, Ay | T = 0 Puv :Wu, (3.82)
QUU ﬂ-e
P——P 2% 1y 25 X
I
wv Pw u
P Tw X puw . TU Qu
| | | . = T~
w e V Tw iw = c P ) Y
P — Tw o Z e Twv
e ie Ty
P =——P Tv Z
Quw v

The theory of double limits, in Chapter 5, will show that T (u,v) is the
limit in A of the diagram formed by the consecutive vertical arrows u,v.
Note also that one cannot apply interchange to (Puy | Tu) ® (quo | T0)-

3.6.4 Theorem and Definition (Span representation)
Let A be a weak double category. We suppose that:
(a) A has tabulators,

(b) the ordinary category C = Horp(A) of objects and horizontal arrows
has pullbacks.

Then there is a canonical lax functor, which is trivial in degree zero
S: A — Span(C), Horg(S) = 1dC, (3.83)
and takes a vertical arrow u: X <Y of A to the span
Su=(p,q): X=Y

determined by the tabulator Twu, with its projections p: Tu — X and
q: Tu—Y.

The laz functor S will be called the span representation of A.

Note. Related results can be found in the paper [Ni].

Proof The action of S on a cell a: (u g v) of A is described by the following
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diagram

x L x
b by
VoY
Y - Y’

Double categories

(3.84)

where the cell Sa: (Su g Sv) is a morphism of spans whose central compo-

nent is the morphism Ta: Tu — Tv determined by the universal property
of the universal cell 7, of the tabulator Twv

Ta|m, =7, |«

Tu To
Tu To
Ta 4

(P . Ta=fp, ¢ Ta=gq),

X' Tu X
Lo L
by ™
Y’ Tu Y

q

(3.85)

To define the laxity comparisons, an object X of A gives a special cell
S(X): ex — Sex whose central component is the diagonal morphism de-
fined in (3.81)

dx: X—)TX, dx|7TX = Ux. (386)

Similarly, for a vertical composite w = u®v: X =Y - Z, the comparison
S(u,v): Su® Sv — Sw is a special cell whose central component is the
diagonal morphism d,,,, defined in (3.82)

dyp: TuxyTv — Tw,

Puv | Tu (3.87)

dyy |TW = © .
Guov |7Te

As to the coherence conditions of 3.5.1, we write down the verification
of axiom (1df.3), for the right unitor. For a vertical map u: X =Y and
w = u ® ey we have to check the commutativity of the following diagram
in C (where the pullback TuxyY is realised as Tu):

TuxyY Tu
(l,dy)l TT(pu)

Tuxy Tey — Tw

ue

(3.88)
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Equivalently, by applying the (cancellable) universal cell m, and the
isocell p = p(eTy), we show that

(Pl (L, dy) | due | T(pu) [Tu) = p|my.
In fact, writing r = py. and s = gy, we have

(01 (1) [ de | T(p) | 72) = (o (1) | due | | )
= (1) o1 22 ) = (9000 )
(Tt o) = (2210) = Glera) I

eq| Oy
The main computations are represented below, from the fourth term to
the sixth, with P = Tuxy Tey and d = dy

r|m

(3.89)

u
s|me

Tu L% p Ty P X ——— X
. e e, \te Ty
r Tu q
(1,d) 7 T
— P ) Y  pu
e e TBY p
i Y
e s Ie e
.d) S Tey P Y Y
Tu Ty 2> X =— X
- e e x— x
u
Tu q ie Tu iu
/ S~ q
Tu ) Y pu  fu Tu — Y pu ju
Ty, — Lo i
e J/ eq \Le
l Y
¢ | Ov Tu —> Y =Y

3.6.5 Span and cospan representability
Let A be a weak double category.
(a) We say that A is span representable if:
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- it has tabulators,
- the ordinary category C = Horg(A) has pullbacks,

- the span-representation lax functor S: A — Span(C) of (3.83) is horizon-
tally faithful (see 3.5.3).

The last condition is trivially satisfied when A is flat.

This property will be studied in Sections 3.7 and 5.4, together with
the computation of tabulators. We can remark as of now that, for every
category C with pullbacks, the weak double category Span(C) is span
representable, in a strict sense: the functor S: Span(C) — Span(C) is an
isomorphism, and even the identity for the natural choice of the tabulator
of a span, namely its central object.

(a*) By horizontal duality, if A has cotabulators and C = Horg(A) has
pushouts we form a canonical colax functor, called cospan representation

of A
C: A — Cosp(C), Hory(C') = idC, (3.90)

that takes a vertical arrow u: X =Y of A to the cospan Cu = (i,7): X =Y
determined by the tabulator lwu and its structural maps i: X — lu,
7Y — lu.

In these hypotheses, we say that A is cospan representable if the colax
functor C is horizontally faithful. Now, for a category C with pushouts,
Cosp(C) is ‘strictly’ cospan representable.

3.6.6 Cell representers in 2-categories

Let C be a 2-category. ‘Weighted limits’ in C will be briefly considered in
Section 5.6, where they can be usefully related to double limits. However,
we introduce here the basic weighted limit that cannot be obtained as a
‘conical limit’ (i.e. the limit of a 2-functor with values in C).

In a 2-category C the cell representer, or path object, PX of an object
X is an object equipped with a 2-cell 7: p — ¢: PX — X, which is 2-
universal for all 2-cells A = X. In other words, it satisfies the following
1-dimensional and 2-dimensional universal properties:

(i) for every cell a: A = X there exists a unique arrow h: A — PX such
that a = mh,

(ii) for every commutative square o = B¢ of cells A = X (as in the left
diagram below) there exists a unique cell A: A = PX such that:

a=mh, B=rk, ©=DpX\, P =g\, (3.91)
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2]

f——1
h p
_— _
al - ig A A PX L X (3.92)

/
g T> g
In the theory of weighted limits the cell representer PX is usually writ-
ten as 2 h X and called the cotensor of X by the category 2 (according
to a more general notion of cotensoring by a small category, deferred to
5.6.2(b)).
The dual notion gives the cell corepresenter, or cylinder object, more
usually called the tensor 2® X of the object X by the category 2. It comes
equipped with a 2-universal cell X = 2 ® X.

3.6.7 Ezxercises and complements

(a) Prove that, in the 2-category Cat, the cell representer of the small
category X is the category of morphisms PX = X2, while the cell corep-
resenter is the cartesian product IX = 2x X. (In an obvious comparison
with homotopy theory, the category 2 is playing the role of the standard
topological interval.)

(b) Let A be a 2-category, viewed as a horizontal double category. Prove
that the tabulator TX = Tex is the cell representer, or cotensor product
2 M X defined in 3.6.6. As of now, the reader will only consider the 1-
dimensional universal property of the latter, while the 2-dimensional one is
deferred to Exercise 5.6.2(c). Dually, the cotabulator LX amounts to the
tensor product 2 ® X.

*(c) Define the 2-limit of a 2-functor I — C, by a 2-universal property.
Prove that, if C has all cell corepresenters, then the ordinary limit of any
2-functor with values in C is automatically a 2-limit.

3.7 Computing tabulators and span representations

Tabulators and cotabulators are meant in the 1-dimensional sense, as above.
Most of the strict or weak double categories we are considering have them,
and are representable by spans or cospans.

On the other hand, the weak double category Rng of rings, homomor-
phisms and bimodules lacks tabulators — a fact related to an anomalous
behaviour of colimits, as we shall see in 5.4.8.

After computing some cases, many others are presented as exercises, with
solution or hints in Appendix C.
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3.7.1 Metric spaces, posets and relations

The double categories
RelSet C pOrd C Mitr,

are described in 3.1.2, 3.4.6 and 3.4.7. In these embeddings a set is viewed
as a discrete ordered set, while a preordered set X is given a ‘distance’ with
two possible values, 0 or co, and d(z,z’') = 0 means that x < ’.

We compute now their tabulators and cotabulators, showing that they
exist and how they are related. Since these double categories are flat, they
are automatically span and cospan representable.

(a) Beginning from Mtr, which contains the other structures, the tabulator
of a metric profunctor u: X -»Y is a sort of ‘graph’ of w in X xY (viewing
u(z,y) as a distance, as in 3.4.7)

Tu={(z,y) € XxY |u(z,y) = 0},

(3.93)
d((z,y), (2',y")) = d(z,2) vd(y,y"),

p

Tlu )f f f )f
e u € u
7 7
TuT>Y ZT)Y

In fact for every cell (f,g): e — u, as in the right diagram above, we
have u(fz,gz) < d(z,z) =0 and a mapping Z — Tu of components (f, g).

The cotabulator Lu is the collage X +, Y (see 3.4.7), with d(z,y) =
u(z,y) and d(y,z) = oo forz € X,y €Y.

(b) Recalling the description of a preorder-profunctor u: X°°?xY — 2 as a
preordered set X +, Y, in 3.4.6, we have

Tu={(z,y) |z <yin X +,Y}, lu=X+,Y, (3.94)

where Twu has the preorder induced by X xY . pOrd is closed in Mtr under
both constructions, with respect to the embedding M: pOrd — Mtr (in
(3.60)).

(c) We have already seen that in RelSet the tabulator Tu C X xY is the
graph of the relation u, whereas the cotabulator Lu is a quotient of the
sum X + Y, namely the pushout of any span representing the relation (see
3.6.2).

RelSet is closed in pOrd (and therefore in Mtr) under tabulators. On
the other hand, the cotabulator of a relation u: X -+ Y is the quotient of its
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cotabulator in Mtr (or in pOrd) that identifies two elements x, y whenever
d(z,y) =0 (or z < y).

3.7.2 Ezercises with adjoint pairs

(a) Prove that the double categories AdjCat and AdjOrd, defined in 3.1.6
and 3.1.7, are span representable.

(b) Prove that they are also cospan representable.

*(c) A reader interested in abelian categories and toposes can also consider
the representability of the double categories AdjAc and AdjTp of 3.1.8(e).

3.7.3 Exercises with spans and cospans

(a) For the weak double category Span(C), defined in 3.4.1, consider tabu-
lators, cotabulators and representability, completing what we have seen in
3.6.5.

(b) Prove that SpanSet is not cospan representable. How can one extend
this fact?

(c) Prove that CospSet is not span representable.

(d) For a preordered set X, examine the cospan representability of Span(X).

3.7.4 FEzxercises with profunctors

Study the weak double category Cat of profunctors, keeping in mind the
results of 3.7.1. It may be convenient to prove things in the following order.

(a) Cat has cotabulators.
(b) Cat has tabulators.

(c) Cat is span and cospan representable. (The cospan representation
Cat — CospCat will be further analysed in 4.5.5 and 8.6.7, showing that
Cat is comonadic over CospCat.)

3.7.5 Ezxercises on extending functors

The following exercises deal with extending ordinary functors to lax or colax
double functors on double categories of spans, or cospans, or relations.

(a) Show that the construction SpanC can be completed to a 2-functor
Span: Catp, — CxDbl, C — SpanC, (3.95)

defined on the full sub-2-category of Cat containing all categories with (a
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fixed choice of) pullbacks, with values in the 2-category of weak double
categories, colaz functors and their horizontal transformations (see 3.5.4).

(b) Dually we have a 2-functor
Cosp: Catp, — LxDbl, C +— CospC = Span(C°P)", (3.96)

defined on the full sub-2-category of Cat containing all categories with (a
choice of) pushouts, with values in the 2-category of weak double categories,
lax functors and their horizontal transformations.

(c) Let A be a regular category. If X has pullbacks, every functor F': X —
A has a unitary colaz extension (written as F' for simplicity)

F: SpanX — RelA, F(/',u") = (Fu')* @ Fu'. (3.97)

When is this extension a strict double functor?

*(d) If X has pushouts, every functor F': X — Ab has a unitary laz
extension

F: CospX — RelAb,  F(u',u") = Fu' @ (Fu")*. (3.98)

3.8 Transformations and modifications

We end this chapter with an extension of previous notions, to be used in
Chapter 5 for our study of double limits.

We fix two (unitary) weak double categories I and A, of which the for-
mer is small. We define a weak double category Lxps(I, A) of lax functors
I — A, pseudo horizontal transformations, pseudo vertical transformations
and modifications. Strict horizontal transformations and pseudo vertical
transformations form a weak double subcategory Lx(I, A).

3.8.1 Definition (Pseudo horizontal transformations)
Generalising 3.5.4, a pseudo horizontal transformation h: F — G: 1 — A
of lax functors has the following components:

(a) for every object ¢ in I, a horizontal map hi: Fi — Gi in A,
(b) for every vertical map u: i~ 7 in I, a cell hu: (Fu Z; Gu) in A,
(c) for every horizontal arrow a: i — i in I, a globular isocell ha in A, the

naturality comparison

Fi Mo g G5 g

i ha i (3.99)

Fi — Fi{ — G
Fa hi’
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The following five axioms must be satisfied.

(pht.1) (Naturality on a cell) For a cell a: (u § v): (¢ “Yin 1

Jj g’
Fi Mo oG —C%s G Fi —Mo g -S4 Gy
! ! ! ! }
u\L hu ¢Gu Ga ¢G7) e¢ ha ¢e
Fj —hi> Gj —acv> Gj’ = Fi —Fa> Fi' -n'> Gj'
el/ hb \te Fui Fa iFU hv \th
. . . , , .
Fj = Fi' = G Fj = B3 = G

(pht.2) (Coherence with vertical identities) For 4 in I

Fi — > i Mo gy Fi Mo oG s Gi
ei Fi iFe he iGe = ei €hi \Le Gi J/Ge
Fi —> Fi —> Gi Fi Gi Gi

(pht.3) (Coherence with vertical composition) For a vertical composite w =
URuU:i=j=>minl

Fi — i MGy Fi s Ggi —1 > Gi
Fj F” l Fui o icu

Fj  F(uw) hw Gw = Fj -hj> Gj Guwv) |Gw
S S
Fm N Fm P Gm Fm e Gm Gm

(pht.4) (Coherence with horizontal identities) For 4 in I
Fi M Gi > Gi

G\L hl; ie = €hi-

(pht.5) (Coherence with horizontal composition) For a horizontal composite
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ba:i— 1 — i’

Fi Mo oqi G g S G
el . 4 L
v ¢ v
Fi - Fa> Fi' -ni'> Gi' —cv> Gi”’ = h(ba).

el le le

oo " |

Fi — Fi —> Fi" —— Gi"
Fa Fb i

A horizontal transformation h is a pseudo horizontal transformation
where all the comparison cells ht are identities. Then these cells become the
(redundant) naturality condition (3.66), while (pht.1-3) give the axioms of
3.5.4, and (pht.4, 5) are vacuous.

3.8.2 Definition (Pseudo vertical transformations)

Similarly, a pseudo vertical transformation r: F - G: 1 — A of lax double
functors consists of the following components:

(a) for every object ¢ in I, a vertical arrow ri: Fi- Gi in A,
(b) for every a: i — 4" in I, a cell ra: (ri £2 ri’) in A,

(c) for every u: i—> j in I, a special isocell ru: Fu®rj = ri@Gu: Fi-» Gj,
the naturality comparison.

The following axioms must be satisfied.

(pvt.1) (Naturality on a cell) For a cell a: (u§ v) in I

Fi s Fi —Ls Fi Fi ——> Fi 25 Py
l l i, l y) i,
Fu\b Fa ¢/Fv ¢m Fu\L \L ra J/m
F] — Fb > Fj/ TV G]/ = Fj U Gi — Ga > Gj/
! i, 4 ! l 4
TJ\L rb i/r] \LG’U TJ\L Gu\L Ga J/Gv
Gj Gy’ Gy’ Gj Gj Gy’

Gb Gb

pvt.2) (Coherence with horizontal identities) For ¢ in I, r(1;) = 1,,.

(
(pvt.3) (Coherence with horizontal composition) For ¢ = ba: i — i"” in I,
r(c) = (ra|rb).
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(pvt.4) (Coherence with vertical identities) For 4 in I

1

7'il 1 iri ﬁl Fi lFe iT'i
v ' v v
Gi —1> Gi - Fi —1> Fi re; Gi
l } l § l l
poe e b I°
Gi — Gi Gi —— Gi — Gi

(pvt.5) (Coherence with vertical composition) For w =u @ v: i< j->m in
I, the following pasting, where ' = !

Fi . Fi
Fu 1 Fu Fu i ri 1 ri
Fu®Fv ! ru o " G1
Fuv rj rj Gu G
Fm v . Gu®Gv Gw
rm rm Gv Gv 1 Gv
Gm . Gm

coincides with (F(u,v) ® l.m) | rw.

For a consecutive pseudo vertical transformation s: G- H, the vertical
composition ¢ = r®s has obvious components i and ¢ f, and special isocells
tu obtained by pasting the ones of r and s by means of the associativity
isocells k of A, as shown in the diagram below:

ti=ri®si: Fi~ Hi,  tf =rf®sf: (ti iy ti'),

(3.100)
tu: Fu®tj — ti @ Hu: Fi- Hj,
Fi . . . Fi
Fu Fu ri ri 1 ri
F] Ii/ ° Tuw ° ° ti
tu = Tj Gu Gu s
tj . . . SU Hi
sj 1 sj sj Hu Hu
HJ 3 3 3 Hj
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A wertical transformation r: F-»G is a pseudo vertical transformation
where all the special isocells ru: Fu®rj — ri®Gu are horizontal identities.

Let us note that, for a pseudo vertical transformation r: F' <> G between
unitary lax functors, we have re; = 1,;, by (pvt.4), and we can forget about
these comparisons (for all ¢ in I).

3.8.3 Definition (Modifications)

A modification p: (r ? s): (5 L), where h, k are pseudo horizontal trans-
formations and r, s are pseudo vertical transformations (of lax functors of
weak double categories), has components pi in A, for every ¢ in I
. hi /-
Fi —— F'i

M N

\L i isz wiz (ript st) (3.101)

7

They must satisfy two conditions.

(mod.1) (Horizontal coherence) For every a: i — i’ we have

hi F'a hi F'a

Fi F'y 'y Fi Fi Y
| l ! o b,
e\l/ ha i/e TZ\L we ¢S74 sa J/S’L
Fi -Fa > Fi' —pi'> F'j’ = Gi —ki> G'i -¢'a> G
m’i \tm” 4 i i’ e\t k \te
ra wi st a
G Gi’ G'i’ Gi G’ G'i’
Ga ki’ Ga ki’
(mod.2) (Vertical coherence) For every w: i~ j we have
Fi — = Fi s Fi s i s F
} l l | l b
Fu i 7 St Fu hu F'u St
| oo | | |
Fj ru Gi — ki > G/Z = F] — hj > F/] su G/l
| l | | . L,
Tj\L Gui/ ku l/G’u Tj\L wi \Lsy J/G u
Gj Gj — G'j Gj — G'j G'j
1 kj kj 1

Modifications compose horizontally and vertically, by the compositions of
cells in A.
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3.8.4 Theorem

For weak double categories 1 and A (the former is small) we have a weak
double category Lxps(L, A): its objects are the lax functors T — A, its arrows
are pseudo horizontal transformations and pseudo vertical transformations,
its double cells are modifications.

We also have a weak double subcategory Lx(I, A) by restricting the hor-
izontal arrows to the strict horizontal transformations, but keeping all the
vertical arrows and all modifications whose horizontal arrows are strict.

The associated 2-categories

Lxps(I, A) = Hor Lx,s (I, A),

(3.102)
Lx(I,A) = Hor Lx(I, A),
have trivial vertical arrows and globular modifications ¢: (ep I eg).
Proof By straightforward verification. ]

3.8.5 Diagonalisation

An object A of the unitary weak double category A determines a strict
double functor constant at A, and denoted by the same letter (or by AA
when useful)

A1 A (3.103)

Let us note that this strictness depends on the preunitarity of A, oth-
erwise we would have a unitary pseudo double functor with an invertible
comparison AA(r,s) = Aea) = p(ea): ea ® e4 — ea, for all consecutive
vertical arrows r, s in I.

This provides a diagonal double functor

A: A — Lx(IA) C Lxps(LL A). (3.104)

The horizontal arrow f: A — A’ goes to the constant horizontal transfor-
mation Af: AA — AA’. The vertical arrow u: A-> B goes to the constant
vertical transformation Au: AA- AB, according to which:

- an object X in A is sent to u: A~ B,
- a horizontal arrow h: X — X’ in A is sent to the cell 1,: (u I u),

- a vertical arrow r: X =Y in A is sent to the special isocell 1,,: e4 @ u —
u®ep: A= B.

Finally a cell a: (u / v) in A is sent to the constant modification

Aa: (Au 25 Awv), whose component on each object X of A is « itself.
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It is also useful to note that a wunitary lax functor S: A — B preserves
diagonalisation, in the sense that S.AA = A(SA); for a general lax functor
S one should proceed in a more complex way: see 5.5.1 and 5.5.7.

3.8.6 Ezxercises and complements

(a) The double categories 0 and 1 are defined in 3.2.1. Prove that
Lxps(0,A) = Lx(0,A) = 1.

(b) A unitary lax functor 1 — A is automatically strict and amounts to an
object A = F'(0). Prove that a lax functor F': 1 — A amounts to a monad
in the vertical bicategory VerA, that will be called a vertical monad in A.

(¢) Describe the weak double category Lx(1,A) of vertical monads, hori-
zontal transformations, pseudo vertical transformations and modifications.

3.8.7 The structure of 2-categories

A 2-category is generally viewed here as a horizontal double category, i.e.
a double category with trivial vertical arrows. Their functors, transforma-
tions and modifications are particular cases of the corresponding items for
double categories.

More precisely, a 2-functor F': C — D is a double functor between hori-
zontal double categories, and strictly preserves all units and compositions.

A 2-natural (resp. pseudo natural) transformation h: F' — G: C — D is
the same as a horizontal (resp. pseudo horizontal) transformation of such
double functors (see 3.8.1). In the strict case h has components hX : FX —
GX in D, for every X in C, that satisfy

Ga.hX = hY.Fa (for a:a—b: X - Y in C). (3.105)
In the pseudo case there are also invertible comparisons
ha: Ga.hX — hX' Fa: FX — GX'

for every a: X — X’ in C, under the axioms (pht.1, 4, 5) of 3.8.1.

A modification p: h — k: F — G: C — D of pseudo (or strict) natural
transformations is the same as a modification p: (er ? eg) of horizontal
double categories (see 3.8.3), where er and e are the vertical identity of
the 2-functors. It has components pX: hX — kX: FX — GX in D (for
X in C), that satisfy condition (mod.1) of 3.8.3.

*The reader may know that 2-categories, 2-functors, 2-natural transfor-

mations and their modifications form a 3-category, or want to analyse this
fact.*
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Double adjunctions

We deal with (horizontal double) adjunctions F' - G between weak double
categories, introduced and studied in [GP2]. Their universal property is
based on the main composition, the horizontal one.

As already discussed in the Introduction, the general form is a ‘colax-lax
adjunction’, where F' is a colaz functor and G a lax one. It will be defined
as an orthogonal adjunction (see Section 4.1) in the double category Dbl
of weak double categories, lax and colax double functors (introduced in
Section 4.2). (One should use a version of Dbl based on a universe V to
which the ground universe U belongs; but also here we do not insist on
problems of size.)

It is important to note that these adjunctions cannot be viewed in a 2-
category: a globular structure, of any dimension, can only have one sort
of arrows. The same holds for general adjunctions between bicategories,
which still are of the colax-lax type.

The last section of this chapter briefly studies pseudo algebras for a
2-monad, and shows that weak double categories can be seen as normal
pseudo algebras for an obvious 2-monad on the 2-category of graphs of
categories.

Kan extensions in or for weak double categories form a complex topic,
that will not be covered here. It was introduced in [GP3, GP4] and studied
also in [Kol, Ko2].

The components of degree n = 0,1 of a weak double category A, or a
(co)lax functor F, or a horizontal transformation h are written as A, =
Hor,(A), F,, = Hor,,(F), h, = Hor,,(h). The infinite dimensional extension
of Part II, freely working on degree n > 0, will be simpler and clearer. Also
because of this, the study of monads in weak double categories is deferred
to the infinite dimensional case, in Chapter 8.

169
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4.1 Companions and adjoints in a weak double category

This section studies the connections between horizontal and vertical mor-
phisms in a weak double category: horizontal morphisms can have ver-
tical companions and vertical adjoints. Such phenomena, introduced in
[GP1, GP2], are interesting in themselves and typical of double categories.
Later, orthogonal adjoints will be used to define adjunctions between weak
double categories.

A is always a unitary weak double category. VerA denotes its vertical
bicategory of objects, vertical arrows and special cells (u 1 v), introduced
in 3.3.4.

4.1.1 Orthogonal companions

In the unitary weak double category A the horizontal morphism f: A — B
and the vertical morphism u: A-> B are made companions by assigning
a pair (n,¢) of cells as below, called the unit and counit, that satisfy the
equations n|e =ef and n®e =1,

A—— A Ao B
T N
A—B B —— B

(Without assuming unitarity, the equation n®e = 1,, should be corrected
with the unit comparisons of u.)

Given f, this is equivalent to saying that the pair (u,e) satisfies the
following universal property:
(a) for every cell &’: (u' [ B) there is a unique cell ¢: (u/ 2 u) such that
g =ople

—
i\,
™

—
b

S
<
™
<
o
I
<

(4.2)

-

f
_—
e

lml AS)
Sy

In fact, given (n,e), we can (and must) take ¢ = n ® &’; on the other
hand, given (a), we define n: (A ‘Jf-‘ u) by the equation 7| e = ey and deduce
that n® e =1, because (n®¢)|e = (n|e) ®e =¢ = (1,]e).

Similarly the pair (u,n) is characterised by a universal property:

(b) for every cell ': (A % u’) there is a unique cell ¢: (u % u') such that
n' =nl.
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Therefore, if f has a vertical companion, this is determined up to a unique
special isocell, and will often be written as f.. Companions compose in the
obvious (covariant) way: if g: B — C also has a companion g, (via n’,¢’)
then g, fi«: A-> C is companion to gf: A — C, with unit

(25) 4 s 0t (43)

eln
Companionship is preserved by unitary lax or colax double functors.
We say that A has vertical companions if every horizontal arrow has
a vertical companion. For instance, in Cat the vertical companion to a
functor f: X — Y is the profunctor

fi: XY, fe(zy) =Y (f(2),y). (4.4)

4.1.2 Orthogonal adjoints

Transforming companionship by vertical (or horizontal) duality, the arrows
f+ A — B and v: B~ A are made orthogonal adjoints by a pair (o, 7) of
cells as below

Ao B B —— B
ei o iv ”i T ie (4.5)
A—— A A——B

with 0|7 = ef and 7 ® 0 = 1,. (Let us recall that A is assumed to be
unitary.)

Here f is called the horizontal adjoint and v the vertical one.

Again, given f these relations can be described by universal properties
for (v,7) or (v,0)

(a) for every cell 7': (v' § B) there is a unique cell ¢: (v" 4 v) such that
T =l
(b) for every cell o’: (A g v') there is a unique cell ¢: (v F v') such that
o' =ol.

The vertical adjoint of f is determined up to a special isocell and will
often be written as f*; vertical adjoints compose, contravariantly: (gf)*
can be constructed as f*g*.

We say that A has vertical adjoints if every horizontal arrow has a vertical
adjoint. For instance, in Cat the vertical adjoint to a functor f: X — Y is
the profunctor

[Y =X, [y, ) =Yy, f(2)). (4.6)
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4.1.3 Exercises

Study vertical companions and vertical adjoints in the strict or weak double
categories of Sections 3.1 and 3.4.

4.1.4 Proposition

Let f: A — B be a horizontal arrow in the weak double category A. The
following conditions are equivalent:

(a) f has a vertical companion w: A-~» B and a vertical adjoint v: B-> A,
(b) f has a vertical companion u: A~ B and u = v in the bicategory VerA,

(¢) f has a vertical adjoint v: B=» A and u < v in the bicategory VerA.

Proof To prove the equivalence of (a) and (b), let us have two cells 7,e
as in 4.1.1. An orthogonal adjunction (o, 7) as in 4.1.2 is equivalent to an
internal adjunction (n’,&’): « 4 v in the 2-category VerA, by the following
formulas

n=n®cies—>uxv, &=7Rec:v®u-—>ep (inVerd), (4.7)

o=1n"](e®1,), =01, ®¢) |7 (in A). (4.8)

The equivalence of (a) and (c¢) follows by horizontal duality. O

4.1.5 Proposition

Let f: A — B be a horizontal isomorphism in the weak double category A,
with g = f~1.

If f has a vertical companion u: A-> B, then its unit and counit are also
horizontally invertible and determine each other:

(elegln) =n®e =1y,

o o (4.9)

N =cley, el =eqg|m.
Conversely, the existence of a horizontally invertible cell n: (A ’}‘ u)

implies that f is horizontally invertible, with companion u and counit € =

n ey
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Proof For the first part one can rewrite (¢|eg4|n) as follows and apply
middle-four interchange

A—1spB 2.4 A
el le le b
v ey T
A —f—- B —9> A —f—> B
ul le le le
2 T A A
B—DB — A —— B
9 !

This implies that n and e have the inverse cells specified above. The
converse is obvious. 0

4.1.6 Theorem and Definition (Sesqui-isomorphism)

Let f: A — B be a horizontal isomorphism in the weak double category A,
with g = f~': B — A.
The following conditions are equivalent:

(a) there exist four horizontally invertible cells n,o,e, T

A=—A B B
el iu ’Ul T le
R ¥ |
—f> B A —f> B
el o lfu ul e Le
v v v b
A=—A B B
satisfying the following relations:
—1 —1
E=T €r, n=erlie -,
ley £l (4.10)
T=0"'ey, o=es|T7L,

(b) there exist two horizontally invertible cells n,o as in the left diagram
above,

(c) there exist two horizontally invertible cells ,7 as in the right diagram
above,

(d) f has a vertical companion u: A-> B with unitn: (A Jf-‘ u) and a vertical
adjoint v: B-» A with o: (A f; v),

(e) [ has a vertical companion u: A~ B with unit n: (A ]‘? u) while g has
a vertical companion v: B-» A with unit 7=': (B 5 ).
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We say that f (or the triple (f,u,v)) is a sesqui-isomorphism when these
conditions hold.

Note. Here f: A — B is a horizontal isomorphism, while the pair (u, v) is
a vertical adjoint equivalence between A and B, i.e. an adjoint equivalence
in the vertical bicategory VerA.

Proof By 4.1.5 and horizontal duality. ]

4.1.7 Theorem and Definition (Horizontal invariance)

We say that the weak double category A is horizontally invariant if it sat-
isfies the following equivalent conditions:

(a) vertical arrows are transferable along horizontal isomorphisms: given
two horizontal isomorphisms h,k and a vertical morphism = arranged as
below, there always is a horizontally invertible cell ¢ (a ‘filler’, as in the
well-known Kan extension property)

A
[
v ©
—_—
k

\
X

(4.11)

W<
8

(b) every horizontal isomorphism in A has a vertical companion,
(c) every horizontal isomorphism in A has a vertical adjoint,

(d) every horizontal isomorphism in A is a sesqui-isomorphism (as defined
in 4.1.6).

Proof First (d) implies (b), by 4.1.6. Conversely, if two inverse horizontal
isomorphisms f, g have companions v = f, and v = g,, we know that all
their units and counits are horizontally invertible (by 4.1.5); f and g are
easily seen to be sesqui-isomorphisms.

By horizontal duality, (c¢) also is equivalent to (d).

Finally, the equivalent properties (b) and (c) imply (a), because the filler
(o can be obtained as a vertical composite of three horizontally invertible
cells, namely e: (v A), 1, and 7: (v B B), where u: A’ A is companion
to h and v: B-+ B’ is vertical adjoint to k.

Conversely, assuming (a), each horizontal iso f: A — B has two hor-
izontally invertible cells e: (u é B), 7: (v § B), whence it is a sesqui-
isomorphism. |
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4.1.8 Exercises, comments and complements

(a) The condition of horizontal invariance is horizontally and vertically
selfdual. If it holds, two objects A, B horizontally isomorphic are always
sesqui-isomorphic, hence vertically equivalent (i.e. equivalent in the vertical
bicategory of our weak double category).

(b) Verify that all the examples of Sections 3.1 and 3.4 are horizontally
invariant.

(c) This property should be expected of every ‘well formed’ weak double
category. If it fails, the relation of being horizontally isomorphic objects
can be poorly related to vertical ‘similarity’.

The reader is invited to consider the ‘anomalous behaviour’ of the flat
double category Tg of topological groups, with algebraic homomorphisms
as horizontal maps, continuous mappings as vertical maps and commutative
squares (of the underlying mappings) as double cells.

(The theorem below shows that a horizontally invariant weak double
category cannot present similar ‘anomalies’.)

4.1.9 Theorem

If the weak double category A is horizontally invariant, two lax double func-
tors F,G: 1 — A which are horizontally isomorphic are also ‘vertically
equivalent’.

More precisely, a horizontal isomorphism h: F' — G produces a pseudo
vertical transformation r: F-» G (see 3.8.2) whose general component ri:
Fi- Gi is a vertical equivalence, vertical companion to hi: Fi = Gi, and
determined as such up to special isocells.

Note. In fact, we prove more: F and G are sesqui-isomorphic objects in
the weak double category of lax double functors Lx(I, A) introduced in
Section 3.8.

Proof We choose, for every object ¢ in I, a sesqui-isomorphism extending
hi

Fi ——= Fi
4o b
Fi —hi> Gi
Gi —— (i

with horizontally invertible cells Ai¢, ui. Now, the family of vertical
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equivalences 1¢ can be canonically extended to a pseudo vertical trans-
formation of lax double functors r: F'-+ GG, as we verify below. Similarly
we form a pseudo vertical transformation s: G- F’; all this makes A and
1 into horizontally invertible modifications.

To complete 7, let rf: (ri g; ri’) (for f: 4 — ¢ in I) be the composed
cell

A A Hw
M\L (/\,L)—l l/6 e \Le A’Ll i/m

Gi Fi Fi G’
(hi)~?t Ff hi'

For a vertical u: i< j, the comparison special isocell
ru: Fu®rj - ri® Gu: Fi-Gj

is defined as the following normal composite, with A*j = (A\j) ™! | ep; (see
3.3.3)

Fi —— Fi
e by ri
Fi —ni— Gi
Fu hu Gu
Fj —hji—> Gj
rj A .

Gj

4.2 The double category Dbl and double commas

The strict double category Dbl is a crucial structure, first introduced in
[GP2], where double adjunctions will live. It consists of weak double cat-
egories, with lax and colax double functors and suitable cells. It con-
tains a double category Mnc of monoidal categories, with monoidal and
comonoidal functors.

Comma weak double categories U || F' are defined in 4.2.4, when U is
colax and F' is lax.

Limits and span representation in Dbl will be studied in 5.4.6, 5.4.7.
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4.2.1 The double category Dbl

We do not want to compose lax and colax double functors, as this would
destroy their comparisons. But they can be organised in a strict double
category Dbl, where orthogonal adjunctions will provide our general no-
tion of double adjunction (in the next section), while companion pairs will
amount to pseudo double functors (Theorem 4.4.1).

The objects of Dbl are the (small) weak double categories A, B, ... (not
assumed to be unitary). Its horizontal arrows are the laz (double) functors
F,G...; its vertical arrows are the colax functors U, V... A cell 7

F

A —— B A/—>IB3
Ui T iv Ui/ﬂ iv (4.12)
C ——=D C —=D

is — loosely speaking — a ‘horizontal transformation’ 7: VF --» GU, and
can be marked with an arrow as at the right, above. Note, however, that —
generally — the composites VF and GU are neither lax nor colax (just
morphisms of double graphs that respect the horizontal structure): the
coherence conditions of 7 are based on the four ‘functors’ F,G,U,V and
all their comparison cells.

Precisely, the cell 7 consists of the following data:

(a) a lax functor F' with comparison special cells F' (indexed by the objects
A and pairs (u,v) of consecutive vertical arrows of A) and a lax functor G
with comparison special cells G (similarly indexed by C)

F:A—B, F(A):epa— Flea), F(u,v): Fu® Fv— Flu®wv),
G:C—D, GO):egc— Glew), G(u,v): Gu® Gv — G(u®v),

(b) two colax functors U,V with comparison special cells U,V (similarly
indexed by A and B)

U:A—>C, U(A):U(ea) »>eva, Ulu,v): Ulu®v) = Uu® Uv,
V:B—>D, V(B):V(es) —evp, V(u,v):V(u®v)—=VueVy,
(c) horizontal maps 7A: VFA — GUA and cells mu: VFu — GUu in D

(for A and u: A= A" in A)
TA
VFA GUA
VF"i ™ iGUu (4.13)
VFA GUA’

’
T
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These data must satisfy the naturality conditions (c.0), (c.1) (the former
is redundant, being implied by the latter) and the coherence conditions
(c.2), (c.3)

(c.0) GUfrA=nA'VFf (for f: A— A’ in A),
(c.1) mu|GUa =VFa|mv (for a: (uf v) in A),
(c.2) (VEA|mea|GUA)= (VFA|era|GUA) (for A in A),
(c.3) (VE(u,v)|nw|GU (u,v))

= (V(Fu, Fv) | (ru @ mv) | G(Uu,Uv)) (for w =u® v in A),

VFA —— VFA —— GUA —— GUA

V(Fu®Fv)i VFE iVFw T GUwi GU iG(UU@Uu)
VFA" —— VFA" GUA" — GUA”
VFA —— VFA GUA —— GUA
\tVF“ g GUui

V(Fu®Fwv) VF VEFA GUA’ QU G(UuUw)
| T i

VFA" —= VFA" GUA" — GUA"

The horizontal and vertical composition of double cells are both defined
using the horizontal composition of the weak double category D. Namely,
for a consistent matrix of double cells

o —G=> o —G'> o (414)

H H
we let:
(| p)(u) = pFu|G'ru, (r@o)(u)=V'ru|oUu, (4.15)
WFFA —= G'VFA — G'GUA V'VFA —> V/GUA —> HU'UA
| | | | | |

i/ pFu \L G'mu \L ¢ V'7u J/ ocUu ¢

WF'FA" — G'VFA' — G'GUA’ V'VFA" — V'GUA" — HU'UA’
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4.2.2 Theorem
With these definitions Dbl is a strict double category.

Proof (a) To show that the formulas (4.15) do define two cells of Dbl, we
write down the verification of condition (c.3) for 7 |p, with respect to a
vertical composite w = u ® v in A.

Writing a cell as an arrow between its vertical arrows (the horizontal
domain and codomain), our property amounts to the commutativity of the
outer diagram below, in Hor;ID

WFFw —"" o GVvFw — ™ G'GUw
WF'F G'VF G'GU
p(Fu®Fv)

WF'(Fu® Fv) ——— G'V(Fu® Fv) G'G(Uu® Uv)
WE'F G'VF G'GU
W(F'Fu® F'Fv) &' (VFue VFy) " o (U @ GU)
WF'F G'VF felelis
WF'Fu® WF'Fu SFuBeF G'VFu® G'VFv e G'GUu® G'GUv

In fact the two hexagons commute by condition (c.3) on the double cells
7 and p. The upper rectangle commutes by naturality of p on the cell
F(u,v), and the lower one by naturality of G’ on the cells 7u,7v (see
(1df.2) in 3.5.1).

(b) The composition laws of cells are strictly associative and unitary, be-
cause they are both computed with the horizontal composition of cells in
D.

(c) Finally, to verify the interchange law on the four double cells of dia-
gram (4.14), we compute (7|p) ® (o|7) and (7 ® 0| p ® 7) on the vertical
arrow u: A-» A’ of A, and we obtain two cells WWF' Fu — H'V'GUu,
corresponding to the upper or lower path in the following diagram

wwE Fu Y wev ey VR warGUu
TVFU\L J/TGUU
HV'VFy —> H'V'GUu — H'HU'Uu
H'Vintu H'oUu

These two composites coincide because the square commutes: a conse-
quence of axiom (c.1) on the Dbl-cell 7, namely its naturality on the cell
mu: VFu— GUu. OJ
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4.2.3 Exercises and complements

(a) Verify that Dbl is a transpositive double category (see 3.2.5), by the
t-contravariant involution (—)® that turns a weak double category A into
its horizontal dual A", exchanging lax and colax functors and transposing
double cells
(—)": Dbl --» Db, A — Ab,
) (4.16)
T (UEV) — ot (FM T, GM).

(b) If the colax functors U,V are pseudo functors, prove that a Dbl-cell
m: (U g V) is inhabited by a horizontal transformation of lax functors
m: VF — GU (see 3.5.4). Then the arrow mark of a cell, in (4.12), is fully
justified.

In particular, restricting Dbl to trivial vertical arrows and globular cells
(1 E 1), as in 3.2.4, we get the strict 2-category Hor(Dbl) = LxDbl of
weak double categories, lax double functors and horizontal transformations
introduced in 3.5.4.

F

(c) Similarly if F,G are pseudo functors, a cell m: (U [ V) contains a
horizontal transformation of colax functors m: VF — GU, and again the
arrow mark of a cell has a formal meaning.

In particular we have the 2-category Ver”(Dbl) = CxDbl of weak double
categories, colax double functors and horizontal transformations.

(d) Viewing bicategories in LxDbl, as vertical weak double categories, we
have a 2-category of bicategories, lax functors and special transformations
m: F — G, whose components are identity morphisms and special cells

TA=1: FA— GA, mu: (Fu 54, Gu), (4.17)

which is only possible if F' and G coincide on the objects. This agrees
with the 2-category considered by Carboni and Rosebrugh to define lax
monads of bicategories ([CaR], Prop. 2.1). Note, on the other hand, that
lax functors and lax transformations of bicategories (or 2-categories) do
not form a bicategory.

(e) Tt is interesting, even unexpected, to note that a double cell 7: (U ¥ 1)
gives a notion of horizontal transformation w: F --» U: A — B from a lax
to a colax functor, while a double cell 7: (1 é V') gives a notion of horizontal
transformation m: V --» G: A — B from a colax to a lax functor.

For a fixed pair A, B of weak double categories, all the horizontal trans-
formations between lax and colax functors (of the four possible kinds) com-
pose, forming a category HV (A, B) whose objects are the lax and the colax
functors A — B. (This construction can be extended from Dbl to any
double category, see Exercise 4.2.8(a).)
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(f) The totally full double subcategory of Dbl determined by the discrete
double categories can be identified with the double category QSet, whose
cells are commutative squares of mappings.

4.2.4 Double commas

Given a colax double functor U and a lax double functor F' with the same
codomain, we can construct the comma weak double category U || F', where
the projections P and @) are strict double functors, and 7 is a cell of Dbl

UWF —2 = A

Qi ™ iU (4.18)
X

C

An object is a triple (A, X;c: UA — FX). A horizontal map (a,z):
(A, X;c) = (A, X';¢) comes from a commutative square of C

UA ——= FX
Uai = lFx (4.19)
UA — FX'
Their composition is obvious. A vertical arrow
(u,v;7): (4, X;¢)= (B, Y;d)
comes from a cell v of C
UA —s FX
o i ) im
UB — FY

Their vertical composition (u,v;y)® (u',v’;0) is defined using a colaxity
comparison of U and a laxity comparison of F’

[
d—> f F(v,v')  tFeey) (490
e
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A cell (7, &) with the boundary represented below comes from a pair of

cells m: (u § u'), §: (v v') (in A and X, respectively) such that the cells

Ur and F¢ are coherent with 7,7’ in C

(A7 X7 C) ﬂ) (A/a X/; C/)

(u,v;'y)i (ﬂ', 6) \t(u’,v';'y') Ur | ’y/ =7 | FE¢. (4.21)

(B,Y;d) ——— (B,Y";d')
(by)

Their horizontal and vertical compositions are obvious.

The associativity isocell for three consecutive vertical arrows (u,v;~),
(u',v';0), (u”,v";¢e) is the pair (k(w),x(v)) of associativity isocells of A
and X for the triples u = (u, v, u"), v = (v,v’,v")

(r(w), £(v)): (u,v;7) @ ((u',0';0) @ (u”,v";€)) —
((u,v;37) @ (u',0';9)) @ (u”,v";¢), (4.22)

k(u): uy — ug, K(v): v1 — Vg,

where u; = 4 ® (v @ u”), us = (u®u') @ v” and similarly for vy, vo.

To prove its coherence, let us denote by ® and ®’ the pasted cells of the
two diagrams below

. . « ———> o . .
| | | }
Uu 1y vy 1py Fv
Uuq U(u,u'®@u’") % 4/ —d—> :L % F(v,o'@v"") Fuy
‘( U(ul®u”)i Uu',u'") i S®e i F(v' ") \lLF(U/@)UN) L
. . « ———> o . .
g
c
o o ¢« ———> o . .
| N | N ‘
U(u®u') U(u,u’) Y®4 F(v,v") F(U(X)'u/)
Uuz | U(u®u',u’) % 4/ — f — O\L \OL F(v@v' ") | Fo
‘/ Uu”i L i € i Ly iFU” J/
. . « ———> o . .

Now the coherence of the previous cell (4.22) is expressed by the equality
(Uk(u) | ®") = (®| Fr(v)): Uuy — Fua,

which follows from the coherence axioms on U, F' and C.
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Finally, the strict functors P and () are projections. The components of

7 on the objects and vertical arrows are:

(A, X;¢)=c: UA— FX, w(u,v;y) =v: (Uu g Fv). (4.23)

4.2.5 Theorem (Universal properties of commas)

(a) (The horizontal universal property) For a pair of lax double functors
G,H and a cell & as below (in Dbl) there is a unique lax double functor
L:D—UJF such that G=PL, H=QL and{ =p|7

G

T T
D — X — C D X C
H F H F

where the cell p is defined by the identity 1: QL — H (a horizontal trans-
formation of lax double functors).
Moreover, L is pseudo if and only if both of G and H are.

(b) (The vertical universal property) A similar property holds for a pair of
colax double functors V,W and a cell &': (V L. UW).

Proof Tt is sufficient to prove (a), since Dbl is transpositive (by Exer-
cise 4.2.3(a)). L is defined as follows on the items of D: an object D, a
horizontal arrow f, a vertical arrow u: D D', a cell ¢

L(D) = (GD,HD;¢D: UGD — FHD),  L(f) = (Gf, Hf),
L(u) = (Gu, Hu;éu): LD~ LD’ L) = (Gp,Hp).

The laxity special cells L, for D and w = v ® v: D= D" in D, are
constructed with the laxity cells G and H (and are invertible if and only if
the latter are)

L(D) = (G(D),H(D)): epa — L(ea),

L(u,v) = (G(u,v), H(u,v)): Lu® Lv — L(u®v): LD~ LD".
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Here the vertical arrow Lu ® Lv of U || F' is produced by the cell below

UGD —— UGD —2 - FHD ——— FHD

UGui éu \tGUu

FHD' FH lLF(Hu(@H’U)

U(Gu®Gv) QG UGD’
UGvi ng \tGUu
UGD” _— UGD” W FHDH _— FHD”

while L(u ® v) is produced by &w.
The coherence condition on L(u,v) = (G(u,v), H(u,v))

Lu® Lv | FH(u,v) = UG(u,v)|&w,
follows from the coherence condition of £: (D & U) as a cell in Dbl
(U(Gu, Gv) [§u @ Ev | EH(u,v)) = (UG(u,v) [Ew).

Uniqueness is obvious. 0

4.2.6 A double category of monoidal categories

The strict double category Dbl has a totally full double subcategory Mnc
of monoidal categories.

As we have seen in 3.3.4, a monoidal category A is viewed as a vertical
weak double category on one formal object *, with vertical arrows A: * - %
and cells a: A — A’; the horizontal composition is the ordinary one, the
vertical composition is the tensor product, with identity E = e,.

A horizontal arrow of Mnc is a monoidal functor F' (lax with respect
to tensor product), with comparison arrows F = F(x): E — FE and
F(AA): FA@ FA' — F(A® A’). A vertical arrow is a comonoidal
functor, which is colax.

Acell m: (U £ V) as in (4.12) associates to every object A in A an arrow
mA: VFA — GUA in D, satisfying the conditions (c.1-3) of 4.2.1. These
conditions amount to the commutativity of the diagrams below

TE

VFA ™4 quA VFE GUE
VFa\L iGUa VET iGQ (4.25)
VFA — GUA' VE — EF — GFE
A’ v G
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VE(AoA) 22 aras A
VET i/GQ

V(FA® FA') GUA®UA) (4.26)
vr) fev

The horizontal and vertical composition are defined in (4.15)
(m|p)(A) = (G'TrA).(pFA): WF'FA— G'VFA — G'GUA,

4.27
(r ®0)(A) = (cUA).(V'TA): V'VFA - V'GUA — HU'UA. (4.27)

4.2.7 *Exercise (Internal monoids)

For this double category Mnc, prove that there is a lax double functor
Mon: Mnc — Cat that sends a (small) monoidal category A to the category
Mon(A) of its internal monoids.

4.2.8 *Ezercises and complements

(a) (Unexpected categories within a double category) The construction of
the category HV(A,B) in Exercise 4.2.3(e) can be extended, replacing Dbl
with any double category D. We fix two objects A, B in D and want to
construct a category HVp (A, B), whose set of objects is the disjoint union
of the set of horizontal and vertical arrows of D.

One should now define the new morphisms and their composition, and
prove that they do form a category.

(b) We have already seen the particular case where D = Dbl. The interested
reader can work out the case D = AdjCat, and prove the following general
result: the horizontal arrow f: A — B and the vertical arrow u: A< B
are companions in D (see 41.1) if and only if they are isomorphic objects
of HVp(A, B).

4.3 Main definitions

We define the general colax-lax adjunctions between weak double cate-
gories, as internal adjunctions in Dbl. Corollary 4.3.7 essentially says that
a colax double functor can only have a lax right adjoint.

Most of the proofs of this section are deferred to their infinite-dimensional
extension, in Section 7.3, where induction on degree works freely.
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4.3.1 Double adjunctions

A (colaz-laz) adjunction (n,e): F 4 G between weak double categories is
defined as an orthogonal adjunction in the double category Dbl (of 4.2.1),
between the horizontal arrow G and the vertical arrow F'; a situation which
occurs naturally in various situations.

Thus the left adjoint F': X — A is a colax functor between weak double
categories, the right adjoint G: A — X is lax, and we have two Dbl-cells
7, €, called unit and counit, that satisfy the triangle equations

A -9 X n®e=1p,
Fi n e iF (4.28)

A—> A == A eln=eq.

All this will be analysed below. (Also here the arrow of a colax double
functor is marked with a dot when displayed vertically, in a diagram of
Dbl.)

We speak of a pseudo-laz (resp. a colaz-pseudo) adjunction when the
left (resp. right) adjoint is pseudo, and of a pseudo adjunction when both
adjoints are pseudo; the term pseudo is replaced with strict if it is the case.

From general properties of adjoint arrows (in 4.1.2), we already know that
the left adjoint of a lax double functor G is determined up to horizontal
isomorphism (a special isocell between vertical arrows in Dbl) and that left
adjoints compose, contravariantly with respect to their right adjoints.

By an abuse of notation, we may write n: 1 --» GF and ¢: FG --+ 1,
as in 4.2.1. But let us recall once more that there are no composites GF
and FG in Dbl: the coherence conditions of n and ¢ are based on the
comparison cells of F' and G. A general colax-lax adjunction cannot be
presented as an internal adjunction in some 2-category, but we shall see in
the next section that this is possible in the pseudo-lax or the colax-pseudo
case.

4.3.2 A description

A colax-lax adjunction (n,e): F' 4 G between the weak double categories
X and A consists thus of:

(a) a colax double functor F': X — A, with comparison cells
FX: F(ex) — erx, Fu,v'): Flu®u') - Fu® Fu'),
(b) a lax double functor G: A — X, with comparison cells
GA: ega — Glea), G(v,v"): Gve Gv' — Glv @),
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(¢) two ordinary adjunctions in degree n = 0,1, consistent under domain
and codomain and coherent with the comparisons of F' and G

Mt 1 = GpoFy: X, = Xy, en: F,G, —1: A, —> A,
entn - Fonn =1p,, GnenmnGn = 1g,,-

Explicitly, point (c¢) means that we are assigning the following compo-
nents

- horizontal maps nX : X — GFX and cells nu: (u Z? GFu) in X,
- horizontal maps eA: FGA — A and cells ev: (FGv 4, v) in A,

under the axioms below (naturality and triangular equations are stated in
degree n = 1, which is sufficient).

(ad.1) (Naturality) For &: (u ;, u') in X and a: (v, v') in A
Elnu’ =nu| GFE, FGalev' =ev]a.
(ad.2) (Triangle equations) For u in X and v in A

Fnu|eFu = 1p,, nGv | Gev = 1.

(ad.3) (Coherence with vertical identities) For X in X and A in A

nex |GFX =e,x |GFX, (4.29)

FGA|eepa =FGAlea. (4.30)

(ad.4) (Coherence with vertical composition) For v’ = u ® v’ in X and
v =v®v in A

' | GF(u,u') = (nuenu') | G(Fu, Fu'), (4.31)

X — GFX = GFX

X — GFX = GFX ui nu iGFu
u”\t nu'’ i GF i = X' — GFX' GF G(Fu®Fu')
X" >~ GFX" — GFX" u,\t ' iGF“/ l

X" — GFX" = GFX"

FG(v,v")|ev” = F(Gv,Gv")|(ev @ ev'), (4.32)
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FGA — FGA — A

FGA — FGA — A l FGv\t o i
F(Gv®Gv’)i FG i ev’”! iv” = FG FCI'A’ — Tl’
FGA" — FGA" — A" l Fov| e v

FGA" = FGA" — A"

4.3.3 Exercises and complements

(a) (Composition) Prove that two consecutive adjunctions can be com-
posed, by a suitable pasting of cells in Dbl.

(b) In the colax-lax adjunction F' 4 G the comparison cells of G and the
unit 1 determine the comparison cells of F'.

(¢) (Unitarity) We say that the adjunction is unitary if the ‘functors’ F
and G are. Prove that:

(1) if G is unitary, then F is unitary if and only if nex = e, x (for all X
in X),

(i*) if F' is unitary, then G is unitary if and only if ee4 = e 4 (for all A
in A).

4.3.4 Theorem (Characterisation by hom-sets)

An adjunction (n,e): F 4 G can equivalently be given by a colaz double
functor F: X — A, a lax double functor G: A — X and two functorial
isomorphisms Lo and Ly

Lot An(Fr—,) = Xo(=,Gn): XPxA, > Set  (n=0,1), (4.33)

whose components are consistent with domain, codomain and the vertical
structure (through the comparison cells of F and G), i.e. satisfy the follow-
ing conditions:

(adh.0) Lo has components L(X, A): Ag(FX,A) = Xo(X,GA),

(adh.1) Ly has components L(u,v): Ai(Fu,v) = X;i(u,Gv), that take a
cell a: (Fuj, v) to a cell La: (u ILJg, Gv),

(adh.2) L(FX |ey) =erg| GA,

Fex¢/ FX i/eFX €g i/eA exi €Lg i/eGA GA i/Geg
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(adh.3) L(F(u,u')|a® o) = (La® La') | G(v,v'),

o —/——— o ——> o e —> o ——— o
iFu a iv u\t La in l
F(u®u/)l F(u,u’) I —_— I I E— I G(v') | G(v@v")
Fu' o v’ u’ Lo’ Gv'
o ——— % _— {l % _— {l .
Proof See the infinite-dimensional extension of this result, in 7.3.4. |

4.8.5 Corollary (Characterisation by commas)

An adjunction amounts to an isomorphism L of weak double categories,
over the product AxB

F B

AJlG

. L (4.34)
AxB

Proof 1t is a straightforward consequence of the previous theorem. |

4.8.6 Theorem (Right adjoint by universal properties)

Given o colax double functor F: X — A, the existence (and choice) of a
right adjoint laz double functor G amounts to two conditions (rad.0, 1)
(including two choices):

(rad.0) for every object A in A there is a universal arrow
(GA,eA: FGA — A)

from the functor Fy to the object A (and we choose one),

(rad.1) for every vertical map v: A~> A’ in A there is a universal arrow
(Gu, ev), Gv: GA- GA', ev: (FGv ¥4, v),

from the functor Fy to the object v of A1 (and we choose one, consistently

with the previous choice).

FEzxplicitly, these universal properties mean that:

(i) for each X in X and g: FX — A there is a unique f: X — GA such
that g=cA.Ff: FX — A,
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(i) for each u: X = X' in X and each cell a: (Fu j, v) in A there is a
unique cell &: (u ;, Gv) in X such that o = F¢ | ev.
The comparison special cells of G
G(A): ega — Glea), G(v,v"): Gva Gv' — Gv @),
are thus determined by those of F, as the unique solution of the equations
(4.30) and (4.32), respectively
FQA|E€A = EGA|€EA,
(4.35)
FG(v,v") |ev” = F(Gv,GV")|(ev ® ev’).

Proof See 7.3.6. |

4.3.7 Corollary (Right adjoint by components)

A colax double functor F': X — A has a laz right adjoint if and only if each
component F,: Hor,(X) — Hor,(A) (n = 0,1) has an (ordinary) right
adjoint Gy: Horp(A) — Hor,(X), consistently with vertical domain and
codomain:

Gi(v): GA=- GA', forv: A= A" in A, (436)
4.36
Gi(a): (Ghv gz, G1v'), for oz (v, o) in A.

Note. Loosely speaking, we are saying that a colax double functor can only
have a lax right adjoint.

Proof A straightforward consequence of the previous theorem. |

4.3.8 Theorem (Graph factorisation of adjunctions)

Let F 4 G be a colaz-lax adjunction between X and A. Using the isomor-
phism of double categories L: F [LA — X LG (of Corollary 4.3.5) we can
factorise the adjunction as a composite of three adjunctions:

F’ L Q
X = FlUA —=X|IG_—A (4.37)
P L=t G’
F=QLF, G=PrL ¢,

- a coreflective colaz-strict adjunction F' = P (with unit PF' =1),

- an isomorphism L 4 L1,
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- a reflective strict-lax adjunction @ 4 G’ (with counit QG' = 1),

where the comma-projections P and @ are strict double functors.

Proof See 7.3.8. U

4.4 Double adjunctions and pseudo double functors

We now consider adjunctions where the left or right adjoint is pseudo, and
we introduce adjoint equivalences of weak double categories.

Again the proofs are deferred to their infinite-dimensional extension, in
Section 7.4.

4.4.1 Theorem (Companions in Dbl)

A lax double functor G has an orthogonal companion F in Dbl if and only
if it is pseudo. Then one can define F = G, as the colax double functor
which coincides with G except for comparison cells F = G, horizontally
inverse to those of G.

Proof See 7.4.2. |

4.4.2 Particular double adjunctions

(a) As defined in 4.3.1, a pseudo-lax adjunction F' - G is a colax-lax ad-
junction between weak double categories where the left adjoint F' is pseudo.
The comparison cells of F' are then horizontally invertible and the compos-
ites GF and F'G are lax double functors, while the unit and counit are
horizontal transformations of such functors (as remarked in 4.2.3(b)).

Therefore, a pseudo-lax adjunction gives an adjunction in the 2-category
LxDbl of weak double categories, lax double functors and horizontal trans-
formations; we shall prove that these two facts are actually equivalent (The-
orem 4.4.3).

(b) Dually, a colaz-pseudo adjunction, where the right adjoint G is pseudo,
will amount to an adjunction in the 2-category CxDbl of pseudo double
categories, colax double functors and horizontal transformations.

(c) Finally, a pseudo adjunction, where both F' and G are pseudo, will be
the same as an adjunction within the 2-category PsDbl whose arrows are
the pseudo double functors.
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4.4.3 Theorem

(a) (Pseudo-lax adjunctions) For every adjunction F < G in the 2-category
LxDDbl the functor F' is pseudo and we have a pseudo-lax double adjunction,
in the sense of 4.3.1 and 4.4.2.

(b) (Colax-pseudo adjunctions) For every adjunction F - G in the 2-
category CxDDbl the functor G is pseudo and we have a colaz-pseudo double
adjunction, in the sense of 4.3.1 and 4.4.2.

Note. More formally, (a) can be rewritten saying that, in Dbl, if the hori-
zontal arrow G: A — X has a ‘horizontal left adjoint’ H: X — A (within
the horizontal 2-category HorDbl = LxDbl), then it also has an orthogonal
adjoint F': X~ A (colax). (Applying Proposition 4.1.4, it would follow that
H and F are companions, whence H is pseudo, by 4.4.1, and isomorphic
to F.)

Proof See 7.4.3. O

4.4.4 Equivalences of weak double categories

An adjoint equivalence between two weak double categories X and A is
defined as a pseudo adjunction (n,¢): F' 4 G where the horizontal trans-
formations n7: 1x — GF and €: FG — 14 are invertible.

Adjoint equivalences are characterised below. We recall, from 3.5.3, that
a pseudo functor F': X — A is horizontally full (resp. faithful) if and only
if Hory F' is full (resp. faithful): this implies that HorgF is also.

Moreover we say that F' is essentially surjective on vertical arrows if
Hor F is essentially surjective on objects: for every vertical arrow v: A—-» A’
in A there is some u: X - X’ in X and some cell F(u) — v, horizontally in-
vertible in A. It follows that HorgF' is also essentially surjective on objects
(because F' is pseudo).

4.4.5 Theorem (Characterisations of equivalences)

Let F': X — A be a pseudo double functor between two horizontally invari-
ant weak double categories. The following conditions are equivalent:

(i) F: X = A belongs to an adjoint equivalence of weak double categories,
(i) F: X — A is an equivalence of weak double categories (see 3.5.5),

(#i) F is horizontally full and faithful, and essentially surjective on vertical
arrows (see 4.4.4),

(iv) the ordinary functors HorgF and Hor1 F' are equivalences of categories,
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(v) the ordinary functor Hor1 F' is an equivalence of categories.

Proof Conditions (i) to (iv) are proved to be equivalent in Theorem 7.4.5,
the infinite-dimensional extension of this result. Conditions (iv) and (v)
are equivalent by 1.2.5 and 4.4.4. ]

4.5 Computing double adjunctions

The (strict or weak) double categories of Sections 3.1 and 3.4 are connected
by various adjunctions. Many of them are presented here as exercises. The
non-obvious solutions can be found in Appendix C, or here when they are
to be used in the next chapters.

The ‘pushout-pullback adjunction’ between the weak double categories of
spans and cospans is an interesting example, studied in detail in 4.5.6-4.5.7;
it will be extended to infinite dimension in Section 7.1, and reconsidered
in Section 8.5.

4.5.1 Exercises on preordered sets and L-metric spaces
We have seen in Section 3.4 the double categories
- pOrd of preordered sets, increasing mappings and preorder profunctors,
- Mtr = R Cat of L-metric spaces, weak contractions and profunctors.

The canonical embedding M : pOrd — Mtr identifies a preordered set
with an L-metric space having distance in {0,00}; similarly a preorder
profunctor u: X -+ Y becomes a profunctor of L-metric spaces with values
in {0, 00}.

Prove that this embedding is reflective and lax coreflective, i.e. has a strict
left adjoint P (the reflector) and a lax right adjoint @ (the lax coreflector)

M: pOrd £ Mitr: P,Q, PH4MHQ. (4.38)

4.5.2 Exercises on profunctors and spans

We have seen in 1.5.3(e) that in dimension one there is a chain of ordinary
adjunctions between Cat and Set

F=0b:Cat »Set, m 4D -F-C. (4.39)

(a) The reader will extend part of this chain to double adjunctions between
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the weak double categories Cat (of categories, functors and profunctors)
and SpanSet (of sets, mappings and spans)

F: Cat — SpanSet, m 1 D 4 F (4.40)

(b) Show that F' cannot have a right adjoint.

(c) Show that the strict double functor D (a left adjoint!) does not preserve
cotabulators (which are colimits). Show that the lax functor F' is not pseudo
unitary.

We shall see, in Theorem 5.5.6, that these two facts are linked; on the
other hand, unitary adjunctions are well related to double limits (by The-
orem 5.5.5).

4.5.3 Exercises on relations and spans

We have already seen in (3.70) the split laz embedding S
S: RelSet — SpanSet, R: SpanSet — RelSet (RS =1). (4.41)

S is the lax double functor that takes a relation u C X xY to the jointly
monic span Su = (X «+ u — Y). In fact, Su is the span associated to
the tabulator of u, so that the lax functor S is the span representation of
RelSet (see 3.7.1). R is the obvious (strict) functor taking a span to the
associated relation.

The reader will verify that this pair forms a strict-lax adjunction R - S,
trivial on the objects, with counit € = 1: RS — 1 and the obvious unit
linking a span to the associated jointly monic span

n: id(SpanSet) — SR, nX =1x, nu:u— SRu. (4.42)

The (idempotent) lax monad T' = SR will be extended in Section 8.5
to the weak double category SpanC of spans over a regular category C,
yielding Rel(C) as its double category of ‘strictly algebraic’ spans.

4.5.4 Exercises on order profunctors and profunctors

Prove that the adjunction (po, U): Cat-» pOrd of 1.5.3(f) can be extended
to a double adjunction between the weak double categories Cat and pOrd.
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4.5.5 Exercises on profunctors and cospans

We have seen in Exercise 3.7.4(a) that Cat is cospan representable, by a
colax functor C' which is the identity in degree 0 and essentially defined by
the cotabulator Lp of a profunctor p: X =Y, in degree 1

C': Cat — CospCat, C(p)=(X =>X+,Y «Y). (4.43)

The reader can describe the colaxity comparisons of C, and prove that
C has a right adjoint. The solution will be used in the next chapters, and
is given here.

Solution. We recall that Lp = X +,Y is the collage of X and Y along
p, with additional maps A: x --+ y in the set p(x,y). The profunctor p is
represented as a cospan of categories and functors

x Luv oy (U=X+,Y), (4.44)

of a particular kind, characterised by the following conditions:

(i) p/,p" are disjoint embeddings of full subcategories that cover all the
objects of U,

(ii) U has no arrows from an object of p”(Y") to an object of p/(X).
For a composed profunctor m = p® q: X =Y - Z, the central object of
the composed cospan C(p) ® C(q) is the pushout
W=(X+,Y)+y (Y +, 2),

while the central object X +,, Z of the composed profunctor m is the full
subcategory of W determined by Ob(X)UOb(Z). The colaxity comparison
‘is’ the embedding of this subcategory

C(p,q): Clp®q) — C(p) ® C(q),

(4.45)
X+mZ =X+, Y)+v Y +,2),

and the associator for ternary compositions is a restriction of the associator
of cospans.

C has a (lax) right adjoint P, which is trivial again in degree 0 and
defined as follows, on a cospan of categories u = (v/,u”) = (X - U« Y)
and a cell (f,h,g): (v, u") = (v, 0")

P: CospCat — Cat,
Pu) =UW/'(-),u"(=)): X°PxY — Set, (4.46)
P(f,h,9): P(u) = P(v), P(f,h,g)(@,y)(A) = h(N).



196 Double adjunctions

Take a composed cospan w = u® v: X — Y — Z, computed by the
pushout category W

/ w "
.U 14 1
V u/\ /:/ V W' = m"".
X Y Z

Here the comparison P works as follows, on formal arrows A: x --+ y
and p:y --» z (le. A: v/ (z) = o’(y) in U and p: v'(y) = 0"”(2) in V):
P(u,v): P(u) ® P(v) — P(w),
(4.47)
A@u:x--+2z) = (m"(p).m'(A): w(x) --+» w'(2)).

Now the composite PC' is the identity of Cat, since
PC(p) = (X +, Y)(i'(-),i"(=)) = p.
The unit of the adjunction is id: 1 — PC': Cat — Cat. The counit ¢ is
trivial in degree zero and defined as follows on a cospan u = (v, u")
e: CP — 1: CospCat — CospCat,
eu=(1x,64,1ly): (X > X+, YY) > (X U <+ Y), (4.48)
eulx =, euly =u”, eu(Aix--vy)=A

The (strictly idempotent) colax comonad S = C'P will be dealt with in
Section 8.6; it determines profunctors as ‘strictly coalgebraic’ cospans.

4.5.6 Ezercises and complements (Pushout-pullback adjunction)

Let C be a category with pullbacks and pushouts. Extending an example
sketched in Section 0.4 of the general Introduction, the reader can prove
that the weak double categories SpanC and CospC of spans and cospans
over C are connected by a colax-lax adjunction, computed by pushouts and
pullbacks

F': SpanC = CospC : G, n:1--»GF, ¢e: FG--»1, (4.49)

It will be called the pushout-pullback adjunction of C. The adjunction is
unitary and trivial in degree zero. The solution is below, for future use.

Solution. By Theorem 3.6.4 we have a lax functor G, namely the span
representation of cospans, and a colax functor F', the cospan representation
of spans. (Generally such functors do not give representability, as we have
seen in 3.7.3.)
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In degree 0 (for sets and mappings), everything is an identity. In degree
1 (for vertical arrows and cells), F' operates by pushout over spans and
cells, and G by pullbacks. The special cell nu: uw — GFu comes from the
universal property of the pullback G(Fu), as in the left diagram below

The counit ev: FGv — v turns up in a dual way, as in the right diagram
above.

The comparison cell F(u,v): F(u®v) — Fu® Fv is given by the natural
morphism from the pushout W of u ® v = (uv'2/,v"”2"”) to the vertex W’

of the cospan Fu ® Fv

X
UV ™ X
W/; “\Y <\W' W/ ?%W’ (4.51)
MUONS s e
o~

Since we agreed to follow the unitarity constraint for the choice of pull-
backs and pushouts in C, the adjunction is unitary, in the sense that this
property holds for the weak double categories SpanC, CospC and the colax-
lax functors F, G.

Now, it is easy to see, in the diagram below, that the spans v and GFu
have the same cocones (i.e. the same commuting cospans)

X

TR

U Zmus o > < . > (4.52)

In fact, if the cospan (w’,w”) commutes with the span GFu, then it
obviously commutes with w; conversely, if it commutes with w, then it
factorises through its pushout Fu, and commutes with the pullback GFu
of the latter.
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It follows that the spans u and GFu have the same pushout, and F'(nu)
is invertible. It will be useful to describe this fact saying that two spans u, u
between the same objects are equivalent when they have the same cocones,
i.e. the same pushout; then any special cell v — u is made invertible by
F. Similarly we speak of equivalent cospans v,v when they have the same
pullback.

Thus the ordinary adjunction of degree 1 is idempotent (see Section 1.7).
More precisely, the double adjunction ' 4 G: SpanC ~» CospC is idempo-
tent, following the definition of Section 8.4. (This double adjunction will
be extended to an infinite-dimensional multiple adjunction between cubical
spans and cospans, in 7.1.2.)

4.5.7 Spans, cospans and bispans

Still working on the previous adjunction (in (4.49)), it is interesting to note
that its graph factorisation (see (4.37)) can be realised replacing the two
double commas with an (isomorphic) weak double category BispC

F' Q
SpanC —— BispC —_ CospC (4.53)
P ey

F=QF, G=PaG.

Its category of objects and horizontal morphisms is C, while a vertical
arrow X =Y is a bispan, or diamond u: ¢ — C, defined on the ‘formal
diamond’ below

. (4.54)

In fact, the category ¢ is isomorphic to the formal square 2 x 2, but we
are using its structure as a formal interval, with faces 0,1: {x} — ¢ that
determine the domain and codomain of a bispan. A vertical composition
X =Y - Z is computed by a pullback and a pushout, as in the right dia-
gram above. Finally, F’ acts by pushout, G’ by pullback, while P and Q
are projections.

Of course, BispC has little to do with the double category QC of com-
mutative squares of C.
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4.5.8 Extending adjunctions

(a) We start from an adjunction F' - G between ordinary categories
F: X2 A:G, n:1—GF, e:FG—1. (4.55)

If X and A have (a fixed choice of) pullbacks, this adjunction can be
extended in a natural way to a unitary colaz-pseudo adjunction between
the weak double categories of spans

Span(F'): Span(X) = Span(A) : Span(G), (4.56)

by applying to (4.55) the 2-functor Span: Cat,, — CxDbl of 3.7.5.

(b) Similarly, starting from the adjunction (4.55) and supposing that X
and A have pushouts, one can apply the 2-functor Cosp: Cat,, — LxDbl
of 3.7.5, to obtain a pseudo-lar adjunction of weak double categories

Cosp(F): Cosp(X) = Cosp(A) : Cosp(G). (4.57)

(c) Generalising another example sketched at the beginning of the general
Introduction, we shall prove in A4.6 that an adjunction ' 4 G between
abelian categories, or more generally Puppe-exact categories, can be ex-
tended to a colax-lax adjunction RelFF - RelG between double categories
of relations. Moreover RelF (resp. RelG) is a double functor if and only if
the functor F (resp. G) is exact.

This can be applied to the exponential-law adjunction in the category
A = RMod of modules on a commutative ring, for a fixed R-module A
(see 2.2.1(c))

F:A=2A:G, F(X)=X®rA4, GY)=Homg(AY). (4.58)

*Here the functor F is exact when A is a flat R-module, while G is exact
when A is projective. In Ab, flat means torsion-free, while projective is
equivalent to free (as an abelian group). All this can be found in any text
on Homological Algebra, e.g. in [M2].*

4.5.9 *The cocomma-comma adjunction

Let C be a 2-category with pullbacks, pushouts, comma and cocomma
squares (defined by the universal property mentioned in 1.5.6 and its dual).
The weak double categories SpanC and CospC are defined as usual (and
only depend on the 1-dimensional structure of C).

There is now a second colax-lax adjunction, computed by cocommas and
commas

H: SpanC = CospC : K, n:1--»KH, e:HK --»1, (4.59)
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where neither H nor K is unitary.

In degree 0 (for objects and morphisms of C), everything is an identity.
In degree 1 (for vertical arrows and cells), H operates by cocommas (1)
over spans and cells, and K by commas (k) over cospans; the special cells
nu and v are determined by the equations nu|x =¥ and ¥ |ev = &’

U”//;Q\ /)Q\*\;V (4.60)
T N |

The reader can check that H is a colax double functor (while K is lax),
with comparison cells H (u,v) for vertical composition given by the natural
morphism from the cocomma H (u'z’,v"2") to the cospan Hu ® Hv

H(u,v): Hu®v) - Hu® Hv,

(4.61)
H(u,v) 9z v"2") = (y Juz’) @ (y" dv.a”),
, U ﬁu(\ ®
' 7 AN !
AN
W > . . (4.62)
! 7

The factorisation (4.37) can be realised much as above, in 4.5.7, replacing
commutative squares with quintets, in the vertical arrows of the central
weak double category. Again this structure has little to do with the double
category QC of quintets of C (defined in 3.1.4).

4.6 *Weak double categories as pseudo algebras

For a 2-monad T on a 2-category C we build a double category of pseudo
T-algebras, with lax and colax morphisms as horizontal and vertical arrows.
Then we show how strict and weak double categories can be seen, respec-
tively, as algebras and normal pseudo algebras for an obvious 2-monad on
graphs of categories.

Algebras and pseudo algebras for a 2-monad are studied, for instance, in
[Bur, BIKP, Fi].
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4.6.1 Pseudo algebras for a 2-monad

We have a 2-monad T = (T, h,m) on the 2-category C. This means a 2-
functor T' C — C with 2-natural transformations h: 1 — T and m: T? —
T satisfying the usual axioms.

A pseudo algebra in C is a quadruple (A, a,w, k) consisting of an object
Aof C, amap a: TA — A (the structure) and two vertically invertible
cells (the comparisons)

w:ly —ahA (the normaliser),
(4.63)
k:a.Ta— amA (the extended associator),
A % Ta 724 120 7q
rE oA
A TA ——— A
These data have to satisfy three conditions of coherence:
aTw® kThA =1, =wa® k.hTA,
(4.64)
k.T%a @ kmTA=aTk®k.TmA,
wa 2 k.T?a 2
a — a.hA.a = a.Ta.hTA a.TaTa —= a.mAT?a
a.Twl/ ln.hTA a.Tm\L H
a.Ta.ThA ! a.mA.hKT A a.Ta.TmA a.Ta.mTA
n.ThAl/ H.TmA\L J{n.mTA
amAThA ——————— «a a.mATmA = a.mA.mTA

A (strict) morphism of pseudo algebras f: (A,a,w,k) — (B,b,w, k) is
a morphism f: A — B of C which preserves the structure (note that the
comparisons of pseudo algebras are always denoted by the same letters, w
and k):

b.Tf = f.a, wf = fw, kT?f = fk. (4.65)

We write as Psa(T) the category of pseudo algebras and their strict
morphisms.

(Obviously, an algebra for 7' is a pseudo algebra whose comparisons are
identities.)
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4.6.2 Normal pseudo algebras

We say that a pseudo algebra (A, a,w, k) is normal if the normaliser w is
the identity, and therefore a.hA = 14.

Normal pseudo algebras are important, and should not be called ‘uni-
tary’, as the following example shows. We consider the 2-monad 7': Cat —
Cat, where T'(A) is the free strict monoidal category over the category A;
its objects are the finite families (21, ..., z,) of objects of A.

A strict monoidal structure a: TA — A over a (small) category A

a(xy, ..., r,) = Quy, (4.66)

gives all finite tensor products in A; the identity object E = a(e) comes
from the empty family e.

A normal pseudo algebra (A, a, k) amounts here to an unbiased monoidal
category, with a trivial unary tensor @z = x (of single objects of A);
the two unitors and the binary associator all come from the extended (or
unbiased) associator k, that operates on finite tensor products

R (Qe, Bz) — Qu, R (Qz,Qe) — O,
Q (Rz,B(y,2)) — Q(x,y,2) + & (B(z,y),Qz).

In a general pseudo algebra each object x has an associated object &z,

(4.67)

isomorphic to z; when the procedure is idempotent, @z can be viewed as
a ‘normal form’ of x.

4.6.3 Lax and colax morphism

Let us come back to a 2-monad T' = (T, h,m) on the 2-category C and its
pseudo algebras.

(a) A lax morphism of pseudo algebras
f=(f,0):(4,aw k)= (B,buwk)
is a morphism f: A — B of C with a comparison cell ¢ such that:

p:bTf— fa, wf ®p.hA = fuw,

(4.68)
kT2 f @ pmA = bTo® p.Ta® fk.
F =1 tana bT0.T2f 228 v 1fTa YL faTa

' fl T¢.hA w1y | i i

b.hB.f == bTfhA bmB.T?f = b.Tf.mA by fa.mA
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For a consecutive lax morphism (g,7v): (B,b,w, k) = (C, ¢, w, k) we let
(9:7)-(f,¢) = (9firTf®gp), +Tf@ge:cT(gf) = gfa.  (4.69)
We have thus a category LxPsa(T), with identities
id(A, a,w, k) = (idA, 1,).

A pseudo morphism is a lax morphism (f, p) where the cell ¢ is vertically
invertible.

(b) A colax morphism of pseudo algebras
r = (T7p): (A’a7w7li) % (B7b7w7 I{)
is a morphism r: A — B of C with a comparison cell p such that:

p:r.a— bTr, rw® p.hA = wr,

(4.70)
rk @ p.mA = p.Ta®bTp® k.T?r,
r — > ra.hA raTa 225 bTrTa Ty b.Tb.T?r
wrl lp.hA T/@\L \LK.TQT
b.hB.r = b.Tr.hA ra.mA m b.Tr.mA =— b.mB.T?r

Given a second colax morphism (s,0): (B,b,w,k) = (C,c,w, k), we let:
(s,0).(r,p) = (sr,0.Tr @ sp), o.Tr®sp: sra— c.T(sr). (4.71)

This gives a category CxPsa(T), with identities as above.

4.6.4 A double category of pseudo algebras

We form now a double category Psa(T) of pseudo algebras of T, with lax
morphisms (horizontally) and colax morphisms (vertically). The construc-
tion is similar to that of Dbl in Section 4.2, and we will see that it extends
it.

Its objects are the pseudo T-algebras A = (A, a,w, k), B = (B,b,w, k), ...;
its horizontal arrows are the lax morphisms f = (f,¢), g = (g,7),...; its
vertical arrows are the colaz morphisms r = (r, p), s = (s,0), ....

A double cell 7: (r £ s) consists of four morphisms as above together

g
with a 2-cell 7: sf — gr: A — D in C (under a coherence condition)

f . B A1 B
i x i i</w l (4.72)

C—>D C —= D
g g
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fiA—=B, @:bTf— fa, g:C—D, v:dTg— g.c,
r:A—=>C, p:ra—cTr, s:B—D, o:s5b—dTs.
Let us note that sf and gr are morphisms of C (not of algebras), and that
m: (r g s) lives in the double category QC of quintets over the 2-category

C (see 3.1.4).
These data must satisfy this coherence condition, in the 2-category C

(coh) sp@ma®gp=0TfdTr®~Tr,

o B -~ B o TB—);B

a/)’: / \ / T\‘\

*); ) = TA )TW - ™D “ =D
TC—C>C TC —~ C

The horizontal and vertical composition of double cells are defined using
the corresponding operations in QC. Namely, for a consistent matrix of
double cells

O L,
! o
I —8 > I —g'> I (4.73)
SRR R

|

h’

7| ¢ and 7 ® ¢ are represented by the corresponding composites of double
cells in QC. The latter are computed by vertical composition of 2-cells of

C

7|9 =9f®gn, % =s'T®(r (4.74)
The coherence of these cells is the subject of an exercise below. It follows
that these composition laws are strictly associative and unitary. More-
over, they satisfy the middle-four interchange law because this holds in the
double category QC.

We have thus a forgetful double functor, which is cellwise faithful
U: Psa(T) — QC, U(A) = A,
(4.75)
Uf)=f, Ur)=r, U(w)=m.

We write as Psax (7') the totally full double subcategory of normal pseudo
algebras of T'.
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4.6.5 Exercises
(a) Prove that the double cells defined in (4.74) satisfy the coherence axiom
(coh).
(b) Prove that a lax morphism of pseudo algebras which is invertible in the
category LxPsa(T) is necessarily a pseudo morphism.

4.6.6 Graphs of categories
To examine double categories in the present framework, we let C = GphCat
be the 2-category of graphs A = (4;,0%) in Cat
8“: A1 = Ao, (476)

where a 2-cell ¢: F' — G: A — B is a pair of natural transformations of
ordinary functors, consistent with the faces

Qi F,— GZ AZ — Bi7 80‘4,01 = @080‘ (Z = 0, 1, a = :|:) (477)

A double category D has an underlying graph U(D) = (Hor;(ID), 9%),
formed by the category Hor(ID) of objects and horizontal arrows and the
category Hory (D) of vertical arrows and double cells (both with horizontal
composition), linked by two ordinary functors, the vertical faces 9%.

We have a forgetful 2-functor

U: Dbl — GphCat = C, (4.78)

on the 2-category of (small) double categories, double functors and hori-
zontal transformations.

4.6.7 Theorem (Strict double categories as algebras)

The 2-functor U defined above is 2-monadic: it gives a comparison 2-
isomorphism K: Dbl — Alg(T) with the 2-category of T-algebras for the
associated 2-monad.

Proof A graph of categories A = (A4;,0%) generates a free double category
DA, described as follows.

(a) Horg(DA) is the category Ay.

(b) Verg(DA) is the free category generated by the graph of sets ObA =
(ObA;, 0%); its arrows give the vertical arrows (u1, ..., u,) of DA, including
the vertical unit e(xz) on an object x of Ay (the empty path at x).

(c) Very(DA) is the free category generated by the graph of sets MorA =
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(MorA;, 9%); its arrows give the double cells (a1, ...,a,) of DA, including
the vertical unit e(f) on a morphism f of Ay

fo

e ——> o €T $ y
o ——> o €T ? y

In

(d) The horizontal composition of these double cells is a concatenation of
compositions in Ay, which we write as a; | b;

(@1, an) [ (b, s bn) = ((a1|b1), -+, (@n | bn)) -

The obvious embedding hA: A — UDA gives the 2-universal arrow from
A to U. This gives the left 2-adjoint D: C — Dbl and the associated
2-monad (T, h,m) on C, with T'=UD.

The comparison K is plainly an isomorphism of 2-categories. |

4.6.8 Theorem (Weak double categories as normal pseudo algebras)

The double categories Psan(T') and Dbl are correlated by an adjoint equiv-
alence of double categories (see 4.4.4)

V: Psan(T) = Dbl : J,
(4.80)
Vi=1, &e:JV =1, Ve=1, eJ=1.

Proof (a) A normal pseudo algebra A = (A, ¢, k) for T is a graph of
categories A = (A;,0%) with an assigned vertical composition of finite
paths of vertical arrows and cells

UL ® oo @ Uy = (U, eey Up),s a1 R ... @ an = c(ay, ..., an),
ez = c(e(x)), ey = c(e(f)),

and an (invertible) extended associator k: c¢.Dc — c.mA.

(4.81)

As a first consequence of normality, the unary vertical composition is
trivial: ¢(u) = u and c(a) = a, for all items of the category A;. Second, A
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is trivial in degree 0, in the sense that (T'A)g = Horg(DA) = Ap, while the
functor ¢y and the natural transformation kg

Co: (TA)Q — Ao, Ko Co.DCQ — Co.(mA)OZ (T2A)0 — Ao, (482)

are identities: this follows easily from the coherence conditions (4.64),
where wA, (hA)g and (mA)g are identities.

(b) A can be viewed as an ‘unbiased’ weak double category, where all finite
vertical compositions are assigned. The fact that k¢ is trivial says that
the comparison cells of the unbiased associator k; are special, i.e. their
horizontal arrows are identities — as required in the axioms of weak double
categories for the binary associator and the unitors.

The normal pseudo algebra A has un underlying weak double category
V(A), obtained by extracting the binary and zeroary vertical operations
and their comparisons. We get a canonical double functor V', that sends:

- a lax or colax morphism of normal pseudo algebras to the corresponding
lax or colax functor of weak double categories, reducing the unbiased com-
parisons of finite vertical composition to the ‘biased ones’, of binary and
zeroary composition,

- a double cell 7 to the corresponding double cell in Dbl, with the same
components on objects and vertical arrows.

(¢c) The other way round, we construct a double functor J such that V.J = 1,
by choosing a ‘bracketing’ of n-ary compositions. Namely, a weak double
category D can be extended to a normal pseudo algebra J(ID) by defining
the n-ary vertical composition (of vertical arrows or cells) as

21 Q.. @y = (..((x1 @ T2) @ X3)... ® Tp), (4.83)

and extending the comparisons. A lax or colax double functor becomes
a lax or colax morphism, by extending its comparisons. For a double
cell we just note that its coherence with the unbiased comparisons implies
coherence with the biased ones.

(d) Finally, a normal pseudo algebra A = (A4,c¢, x) produces an object
JV(A) = (A, , k") with modified unbiased vertical operations and modi-
fied unbiased comparisons. The identity idA of the underlying graph ex-
tends to an invertible pseudo morphism eA: JV(A) — A satisfying the
triangular conditions, in (4.80). O



5
Double limits

This chapter is about limits in weak double categories, and is based on
[GP1]. Unless differently specified, limit means ‘horizontal double limit’:
the structural ‘arrows’ are horizontal morphisms and double cells, universal
by horizontal composition.

Limits in weak double categories are defined in Sections 5.1 and 5.2.
The Construction Theorem, in 5.3.6, proves that all double limits can be
constructed from products, equalisers and tabulators.

If C is a 2-category, viewed as a horizontal double category, we will see
in Sections 5.6 and 5.7 that weighted limits in C are the same as double
limits.

Marginally, wvertical double limits are also considered in strict double
categories (see 5.2.4), but we have few instances of them. Transpositive
double limits make sense in a transpositive double category, and are even
more exceptional among our examples (see 5.4.6, 5.4.7).

For a strict double category A, Bastiani-Ehresmann [BaE] considered
‘A-wise limits’, which would be called here 1-dimensional limits for double
functors F': V — A defined on a vertical double category. Our construc-
tion of double limits, restricted to this case, coincides with the construc-
tion of A-wise limits given in [BaE] (p. 265, Proposition 3), by means of
one-dimensional tabulators (called ‘representations’) and limits of ordinary
functors in the category HorgA of objects and horizontal arrows of A.

Notation. T and A are always unitary weak double categories, and I is
small. Lx(I, A) is the weak double category of lax functors I — A, with
strict horizontal transformations, pseudo vertical transformations and mod-
ifications (see 3.8.4). The diagonal double functor A: A — Lx(I,A) was
introduced in 3.8.5. The structural functors of vertical faces and degener-
acy of A are always written as 0% : Hor; A g HorpA :e.

208
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5.1 Functorial limits

We begin by a global approach to limits: the lax limit functor of A over I is
defined as a unitary right adjoint L: Lx(I, A) — A to the diagonal double
functor A: A — Lx(T, A).

5.1.1 The importance of unitarity

Limits and colimits are well related to unitary lax (or colax) functors, and
to unitary adjunctions.

A basic reason was already suggested in 3.5.2. An object of the weak
double category A can be viewed as a (strict) functor A: 1 — A, and a
horizontal arrow as a functor 2 — A. All this is preserved by composing
with a unitary lax (or colax) functor S: A — B.

The interest of requiring the lax limit functor L: Lx(I,A) — A to be
unitary already appears in 5.1.5: the terminal object of a double category
is defined by means of a unitary right adjoint of the terminal double functor
A — 1. A non-unitary right adjoint gives a ‘terminal pair’ with the struc-
ture of a vertical monad (see 5.1.6(d)); it is better treated as an exception,
both from the theoretical and the concrete point of view.

Unitarity is even more crucial in the relationship of limits with adjunc-
tions, dealt with in Section 5.5. We have already encountered the strict
double functor D: SpanSet — Cat which does not preserve cotabulators,
even though it has a lax right adjoint F' (see 4.5.2(c)). We shall see that
this can only happen because F' is not unitary (in Theorem 5.5.6).

5.1.2 Definition

We say that A has lax functorial I-limits if the diagonal double functor
A: A — Lx(IA) of 3.8.5 has a unitary right adjoint, called the lax limit
functor of A over I

L: Lx(I,A) — A, A AL

(5.1)
p: AL — 1: Lx(I,A) — Lx(L, A),

where we write as p the counit of the adjunction.
We say that A has pseudo functorial I-limits when L is pseudo, and we
speak of strict functorial I-limits when there exists a strict limit functor L.
The lax limit functor is determined up to horizontal isomorphism. If A
is horizontally invariant, its values LF are also determined up to sesqui-
isomorphism in A (see Section 4.1).
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5.1.3 Functorial limits by components

Applying Corollary 4.3.7 on double adjunctions, the existence of lax func-
torial limits over I amounts to saying that:

(a) each component A, : Hor,(A) — Hor, (Lx(I,A)), for n = 0,1, has a
right adjoint

L, : Hor, (Lx(I, A)) — Hor,,(A),

(b) one can fix two functors Lg, Ly strictly preserved by the faces 07 :
Hor; — Horg and the degeneracy e: Hory — Hor;.

The last condition means that:
(i) Lr: LF- LG, L&: (Lr Bl Ly (coherence with faces),
(ii) L(er) =erp, L(ep) =erp (unitarity),

for every pseudo vertical transformation r: F - G of lax functors I — A,
every modification £: (r } r’) and every horizontal transformation h: F —
F.

We shall see in 5.2.7 that, when A is horizontally invariant, these strict
preservation properties are equivalent to the corresponding weak ones.

5.1.4 Functorial limits by universal properties

Applying Theorem 4.3.6, the existence in A of lax functorial limits over I
amounts to the following two conditions:

(1f1.0) for every lax functor F': I — A there is a universal arrow (LF,pF':
ALF — F) from the functor Ag to the object F' of Horg(Lx(I, A)),

(1i.1) for every pseudo vertical transformation r: F<-G: T — A of lax
functors there is a universal arrow (Lr,pr: ALr — r) from the functor A
to the object r of Hory (Lx(I, A)), consistently with the previous choice (as
specified in 5.1.3(i), (ii)).

More explicitly, the universal properties of the components pF and pr

mean that:

(i) for each object A in A and each horizontal transformation h: AA —
F: 1T — A, there is a unique horizontal arrow f: A — LF in A such that
h=pFAf: AA— F,

(ii) for each vertical arrow u: A=+ B in A and each modification £: (Au I 1),
there is a unique cell a: (u § Lr) in A such that & = (Aa|pr): Ar — 7.
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5.1.5 Terminal pairs and terminal objects

The significance of unitary limits is evident while considering the terminal
object.

We are taking I = 0, the empty double category, so that Lx(I,A) =1 is
the singleton double category and A: A — 1 is the (unique) double functor
with values in 1.

Now, a lax right adjoint 1 — A to A is a terminal pair (T,t), formed of
an object T and a vertical arrow ¢t: T'<» T such that

(ter.0) for every object A there is precisely one map t: A — T (also written
asta),

(tp-1) for every vertical map u: A-> B there is precisely one cell 7: u — ¢
(also written as 7,)

A—tsT
Ui T it (5.2)
B — T

The object T is said to be a terminal object if (T, er) is a terminal pair,
which means that the double functor A — 1 has a unitary lax right adjoint.
Now T satisfies (ter.0) and

(ter.1) for every vertical map u: A-= B there is precisely one cell 7: u — er.

Property (ter.0) means that 7" is a terminal object of the ordinary cate-
gory HorpA, and will be expressed saying that T is a 1-dimensional terminal
object of A.

Property (ter.1) means that the vertical identity ep is a terminal object
of the ordinary category Hor; A, and implies (ter.0), by applying it to the
vertical identity e4. As a partial converse, if A has I-dimensional cotab-
ulators (see Section 3.6), then the ordinary functor e: HorpA — Hor; A
preserves limits, and (ter.0) implies (ter.1).

Since cotabulators exist in all our structures of real interest, a terminal
pair which is not a terminal object is a rare phenomenon: see the examples
of 5.4.5 and 5.4.8.

5.1.6 FExercises and complements
(a) Find the terminal object of the double categories AdjCat and RelC,
for a regular category C.

(b) Find the terminal object of the following weak (or strict) double cat-
egories, defined in Section 3.4: SpanSet, CospSet, Cat, pOrd, Mtr. Con-
sider also SpanC and CospC, under suitable conditions on C.
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(¢) We know that the terminal object of a horizontally invariant weak
double category is determined up to sesqui-isomorphism, and therefore up
to horizontal isomorphism and vertical equivalence.

In fact, the terminal object of the non-invariant double category Tg of
4.1.8(c) is also vertically determined, but the reader can easily see that this
fails for general products (i.e. double limits over discrete categories).

(d) For a terminal pair (T,t), use the properties (ter.0) and (tp.1) of 5.1.5
to construct directly a lax functor F': 1 — A, i.e. a vertical monad in A
(see 3.8.6).

5.2 Double cones and double limits

After the global approach of the previous section we examine now the local
aspects: the limit of a lax functor F': I — A and the limit of a pseudo
vertical transformation r: FF — G: 1 — A. We have already seen that we
need both to construct lax functorial I-limits.
We also define pseudo limits, that will be used in Sections 5.6 and 5.7.
I and A are always unitary weak double categories, and I is small.

5.2.1 Cones and pseudo cones

The weak double categories Cone(F') and PsCone(F'), of cones and pseudo
cones of F, are defined as the following two double commas A || F (see
4.2.4)

Cone(F) —— A PsCone(F) ——
T
1 — Lx(I, A) 1 — Lxps(I, A)

Dually, the weak double categories Cocone(F') and PsCocone(F), of co-
cones and pseudo cocones of F, are defined as double commas F' || A

Cocone(F) —— 1 PsCocone(F) —— 1
= e
A —— Lx(I, A) A —— Lxps (I, A)

5.2.2 Cones, arrows and cells

We give now an explicit description of PsCone(F'), and then of Cone(F) as
a substructure of the former.
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(a) A (horizontal) pseudo cone of the lax functor F: I — A is a pair
(A,h: A — F) comprising an object A of A (the vertex of the cone) and a
pseudo horizontal transformation of lax functors h: A — F: 1T — A.

As defined in 3.8.1, h is defined by the following components in A:

- a horizontal map hi: A — F'i for every object 7 in I,
-acell hu: (A Z; Fu) for every vertical arrow u: - j in I,

- a globular isocell ha for every horizontal arrow a: ¢ — 4’ in I,

A DM Ry L L 7
e l el !
i’ hu \LFu ¢/ ha \Le (5.5)
A— > Fj A Py
hj hi’

under the axioms (pht.1-5) of naturality and coherence.

It is a cone when all the comparison cells ha are vertical identities.
(b) A horizontal morphism f: (A,h) — (A’ k) of pseudo cones of F: I —
A is a horizontal arrow f: A — A’ in A that commutes with the cone
elements, as follows:

(i)  for every i in I: hi=ki.f: A— Fi,
(ii) for every u: i—>j: hu = (ef | ku): ea — Fu,
(iii) for every a:i — i': ha = (ef|ka): es — epyr,
Al p ALk
ei hu iFu = "‘i ef iFu ku iFu
A — j A ; A = Fj
AL g £ opy Ao a op P oy
ei ha i@ = ei ey ie ka iﬁ
A — Fi' A ; A P Fi'

Horizontal morphisms compose, forming a category.

(c) A wvertical morphism (u,§): (A, h)=> (B, k) of pseudo cones of F: T — A
comprises a vertical arrow u: A-> B (that gives a vertical transformation
Au: AA- AB, constant at u) and a modification £: (Au ! er), also writ-
ten as £: (u 'l ep).

We have thus, for every i in I, a cell &i: (u ¢ Fi) in A that satisfies the
conditions (mod.1, 2) of Definition 3.8.3.
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(d) A double cell of pseudo cones

(An) —I= (A", 1)
(u,z)i a jeo (5.6)
(B.K) —> (B'.K)

‘s’ a cell a: (ug v) in A such that, for every i in I, £ = «| (i

A Mo gy A Lo o Mip
oLl Y
J & | = |o@ | Ci | (5.7)

They compose ‘as’ in A. This concludes the definition of PsCone(F).

The weak double category Cone(F’) of cones of F' is the totally full sub-
structure of PsCone(F") determined by the strict cones, i.e. the horizontal
transformations A — F. Note that a vertical morphism (u, £) still contains
a pseudo vertical transformation wu.

5.2.3 Limits and pseudo limits

A (horizontal) double limit of a lax functor F': I — A is defined as a terminal
object (see 5.1.5) of the weak double category Cone(F'), while a pseudo limit
of F is a terminal object of PsCone(F).

Explicitly, leaving A understood, we have a strict (resp. pseudo) cone
(L,p: L — F) such that:
(dl.1) for every strict (resp. pseudo) cone (A, h: A — F') there is a unique
horizontal morphism f: A — L in A such that h = pf: A - L — F, in
the weak double category Lx(I, A),
(dl.2) for every vertical arrow (u,&): (A,h: A - F)~ (B,k: B — F) of
strict (resp. pseudo) cones of F there is a unique cell a: (u ] L) in A such
that £ = (a]ep): u— ep

A M Ry Ao P
Ui &i ie = ui « ie e ie (7 in T). (5.8)
ki g pi

In the strict case, axiom (dl.1) means that (L,p) is a universal ar-
row from Ag: HorgA — HorgLx(I,A) to the object F, or equivalently
that L represents the contravariant functor (A(—),F): HorgA --» Set,
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via p: L — F. Axiom (dl.2) means that (er,ep) is a universal arrow
from A;: Hor;A — Hor;Lx(I, A) to the object (u,&), or equivalently that
ey, represents the contravariant functor (A(—),F): Hor;A --+ Set via
ep:er — F.

When u is a vertical identity, one can easily verify that the globular cell
£ is vertically invertible if and only if « is.

Dually the colimit and the pseudo colimit of a lax functor F': I — A are
defined as an initial object of Cocone(F') or PsCocone(F').

We mostly deal with strict limits and colimits. We shall prove in Sec-
tion 5.3 that all limits in a weak double category can be constructed from
products, equalisers (of pairs of horizontal arrows) and tabulators; the 1-
dimensional version of the latter has already been introduced in Section 3.6.

5.2.4 Comments and complements

(a) The conditions (dl.1, 2) will be called, respectively, the 1-dimensional
and the 2-dimensional universal property of the limit. We speak of a 1-
dimensional limit when only the first is assumed. Also here (dl.2) implies

(dL1).

(b) More generally, a limit pair (L,1: L—-» L) of F will be a terminal pair of
Cone(F'), as defined in 5.1.5. It is a limit when | = ey. Limit pairs which
are not limits rarely occur.

(¢) If F and G have a limit, a horizontal transformation h: FF — G: T — A
determines a horizontal arrow Lim h: Lim FF — Lim GG. Vertical transfor-
mations are considered below.

(d) In a strict double category A we also consider vertical limits, defined
as horizontal limits in the transpose double category A'. Examples will be
given in 5.4.6, 5.4.7, A2.7.

5.2.5 Vertical functoriality

The limit of a pseudo vertical transformationr: F'- G: 1T — A is defined as
a pair (u, 7: Au — r), universal with respect to the horizontal composition
of modifications, in the weak double category Lx(I, A).

In other words, we have a vertical arrow w: L-> M and a modification
7: (Au b r) such that every modification £: (Av Z r) factorises uniquely as
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Ap|m
A M Ry AL "Ry
| b | l b .
w & Vz = U\L ) ¢u i Vz (7 in T). (5.9)

The solution 7 is unique up to horizontal composition with a horizontally
invertible cell ¢. The latter is necessarily special, if we restrict to the
solutions 7 whose horizontal arrows p: AL — F, q: AM — G are two
fized (even one-dimensional) double limits of F' and G.

The universal property (dl.2) amounts to saying that the vertical identity
of the 1-dimensional limit of F' is the limit of the vertical identity ep.

5.2.6 Proposition
The weak double category A has functorial I-limits if and only if:
(a) every lax double functor F: 1 — A has a 1-dimensional limit (LF,pF),

(b) every pseudo vertical transformation r: F-» G: 1 — A has a limit
Lr: LF - LG, pr: (ALr bg 1), (5.10)

consistently with the previous choice: the conditions (i) and (ii) of 5.1.8
are satisfied.

Note. Because of the unitarity condition 5.1.3(ii), each limit cone (LF, pF’)
is a limit, in the full 2-dimensional sense.

Proof This statement is a rewriting of 5.1.3 and 5.1.4, based on the defi-
nitions of local limits in this section. ]

5.2.7 Theorem (Limits and horizontal invariance)
Let the weak double category A be horizontally invariant.

(a) The existing I-limits of vertical transformations are also horizontally
invariant, in the sense that we can modify their domain and codomain up
to horizontal isomorphism.

More precisely, let a pseudo vertical transformation r: F-G: 1 — A be
given, with double limits (L, p) of F and (M, q) of G, and a consistent limit
(u,7) of r, with w: L= M and 7: (Au? r). If also (L', h) and (M’ k) are
double limits of F and G, there is a limit (v, p) of r consistent with them.



5.2 Double cones and double limits 217

(b) If A has all the I-limits specified in Proposition 5.2.6 (in (a) and (b))
and these are preserved as limits by the structural functors

0% : Hor A <E>> HorpA :e,

then A has functorial I-limits.

Proof (a) It is sufficient to prove that, in the limit of =, the given limit
(M, q) of G can be replaced by any other limit (M’ k); similarly, one can
modify (L, p).

First, there is a unique horizontal iso m: M — M’ such that ¢ = Am | k.
By horizontal invariance, this m can be embedded in a cell A, horizontally
invertible, with inverse )\

P

L Fi
ui ™ ‘LM
M —m> M -ki> Gi (5.11)
B I, .
oA e
M’ M’ — (i
1 ki

As shown above, we have cells Ai = \|eg; and pi = 1 @ Mi: u®y — ri.
The latter form a modification p: (A(u®y) § r).

We want to prove that u ® y: L-» M’ is a limit of r, with projections
(pi). Take a cone ai: x — i, with factorisation ai = | mi

fi f pi

X —— Fj X — L —= Fj
l . IS wl lu . i
oo i = A (5.12)
XI/ —_— Gl XN ? M ——— GZ
gt qr

There is a unique cell p such that e, = p|Ai (for all 7), that is p =
Emg | N

X" 2 G X' LM T G
ei e ie = ei u iy i ie (5.13)
X” ?‘ GZ XU ?g M/ ? GZ

Now the vertical pasting of the diagrams (5.12) and (5.13) provides the
solution of our problem, namely (o ® p): * — u ® y. Its uniqueness is
similarly proved.

Finally, after (a), point (b) is a rewriting of Proposition 5.2.6. O
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5.3 The Construction Theorem

We prove now that all double limits can be constructed with products,
equalisers and tabulators.

5.3.1 Level limits

We begin from the elementary case of a horizontal double category I, asso-
ciated to an ordinary small category I.

Here, a (strict) double functor F': I — A is the same as an ordinary func-
tor Iy = HorgF': I — A = HorgA, and a pseudo vertical transformation
r: FF'— G:1— A is the same as an ordinary functor I — Hor; A (because
r(e;) = 1,; for all objects ¢ in I, as remarked at the end of 3.8.2).

(a) A double cone (A,h: A — F) of F is the same as an ordinary cone
of Fy, and the first universal property (dl.1) for Lim F' = (A,p: A — F)
amounts to saying that (A, p) = Lim Fy. When all these exist we say that
A has 1-dimensional level I-limits.

(b) A double limit of F is an ordinary limit of Fy which also satisfies (dl.2),
i.e. is preserved by the functor e: HorpA — Hor;A. (This is automatically
true when A has 1-dimensional cotabulators.) When all these exist we say
that A has level I-limits.

(c) Finally A has laz functorial level I-limits if:

(1ll) the categories HorpA and Hor; A have (ordinary) I-limits, preserved
by the three structural functors 9% : HorgA <E>> Hor A :e.

5.3.2 Products and equalisers

(a) In particular, consider the ordinary product in HorgA, of a (small)
family (X;);cr of objects of A (our base double category I is discrete).
The cone (X, (pi: X — X;);) is the (double) product of the family in A
if and only if:
(dp.2) given two cones (A, (hi)), (B, (ki)), a vertical arrow u: A-» B and a
family of cells &i: (u 1% eX;), there is precisely one cell ¢ such that £ = ¢| e,
A My, Ao x ok,
Vo | | | :
u\L &i ¢e = w ® r e ¢e (i el). (5.14)
ki g9 pi
Spelling out the condition for the existence of lax functorial products in
A is also easy.
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(b) Consider now the ordinary equaliser p: L — X in HorpA of a pair of
horizontal maps f,g: X = Y. Then (L, p) is the (double) equaliser of these
maps in A if and only if

(de.2) for every cell £: (u j ex) of A which equalises f and g (i.e. {|f =

& g) there is precisely one cell p: u — ey, such that £ = ¢|e,.
The existence and functoriality of (co)products and (co)equalisers in our
main structures will be studied in the exercises of the next two sections.

5.3.3 Proposition (Level limits)

The weak double category A has all small (resp. finite) level limits if and
only if it has all small (resp. finite) products and equalisers; the construction
1s the standard one.

If A has lax (resp. pseudo, strict) functorial products and lax (resp.
pseudo, strict) functorial equalisers, this construction provides a similar
functor of level I-limits, for every small category I.

Proof 1t is a straightforward consequence of the construction and preser-
vation theorem for ordinary limits, taking into account 5.3.1. |

5.3.4 Two-dimensional tabulators

We have already studied 1-dimensional tabulators, in Sections 3.6 and 3.7.
The (double) tabulator of a vertical arrow u: Xo-> X3 is defined as the
limit of the associated double functor u: 2 — A (which is strict because
A is unitary).

The double limit is thus an object T' = Twu equipped with two horizontal
maps pi: T — X; (1=0,1) and a cell 7: (ep Z? u) satisfying the following
conditions:

(dt.1) for every object A and every cell ¢: e4 — u there is a unique hori-
zontal map f: A — T such that ¢ =ef |7

A h0 X, A f T p0 X,
! l l | {
E\L © i/u = ei/ ef \Le T ¢/u (515)
A X, AT =X
h1 f pl

(dt.2) (the tetrahedron property) for every vertical arrow

(@,8): (A, 0)= (B, ¢)

of cones, i.e. for every vertical arrow x: A-+ B and every modification
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& (z 1 u) (with & |9 = ¢| &) there is a unique cell a: (z _ﬂ; T) in A such
that

@:€f|ﬂ-7 77[}:69‘77-7 fi:a‘epi (Z:()a l)a (516)
A - ho ALor P0 X,
mjl/ / l ) fi ) i@\\\/ iu
PO~ T~
—" B T — S x
k1 g pl

A has lax functorial tabulators if and only if:
(i) it has 1-dimensional tabulators of vertical arrows,

(ii) it has the limit of every pseudo vertical transformation of vertical ar-
rows, consistently with the previous 1-dimensional limits, with respect to
vertical faces and degeneracy.

5.3.5 Remarks

Taking into account a remark at the end of 3.8.2, a pseudo vertical trans-
formation u—-+v: 2 — A amounts to two vertical arrows r;: X; - Y; and
a special isocell r (the naturality comparison on the vertical arrow of 2)

Xo o

N\
uJ{ Yo (ro,r1,7): u=sv: 28 — A,

r (5.17)
X4 lv rru®r, —>rog®uv: Xg-= Y.

N\

Y,

Thus (dt.2) says that:

- for every vertical morphism (z,&): (4, p)—~> (B,v) of cones of u: 2* — A
there is a unique cell a: (z ;7; er) in A such that £ = a|e,

A4>X0 AL " X
I N I ‘ e
N © N NN T
B%—XO e B Xo
KO 1y, ! 'y
hi \ € A € \
A7777>X1 u A—-—->T ——|—- - X3 u
e \ e e
33 &1 \\ x\ « N \§
B%‘Xl B T X1
k1 g ol

In other words, the limit of the vertical identity of u: 2® — A is the
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vertical identity of the 1-dimensional tabulator m: er — u (viewed as a
horizontal transformation er — u: 2° — A).

5.3.6 Theorem (The Construction Theorem of double limits)

(i) The weak double category A has all small (resp. finite) limits if and
only if it has small (resp. finite) products, equalisers and tabulators. The
construction is explicitly described in the proof.

(i) If A has lax (or pseudo, strict) functorial limits of these basic kinds
(i.e. products, equalisers and tabulators), our construction provides a lax
(or pseudo, strict) functor of I-limits, for any small 1.

Proof See 5.3.7 and 5.3.8. U]

5.3.7 Proof of the Construction Theorem, Part I

(The double limit of a double diagram.) Of course we have only to prove the
‘sufficiency part’ of the statement, for a lax double functor F': T — A. We
consider first the ‘free case’, which is considerably simpler, contains various
interesting non-level cases and allows a more economical algorithm.

We assume thus that I is just a double graph (or, equivalently, that I
is the free double category generated by a double graph). In this case,
the cones h: AA — F are just subject to one naturality condition (ht.1),
namely the naturality on a cell, which simplifies the problem.

The solution is based on the following steps: we construct an ordinary
graph S and the associated horizontal double graph S, then we turn F
into a morphism of double graphs G: S — A, and we take its limit. The
procedure is similar to computing the end of a functor H: C°?xC — D as
the limit of an associated functor based on Kan’s subdivision category of C
(see [K3], Section 1.10, or [M4], Section IX.5).

(A) We form the graph S, called the horizontal subdivision of I, by replacing
every vertical arrow of I with a new object, that simulates its tabulator.
Precisely, S is formed by the following objects and arrows (and is finite
whenever I is):

(a) all the objects and horizontal arrows of I,

(b) for every vertical map w: i, —~>j, of I, a new formal object u”, also
written as u, together with two new arrows, p,: u~ — i, and q,: U~ — Jq,

(c) for every cell a: (u } v) of I, a new arrow a”: u” — v", also written as

Q.
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(B) Viewing S as a horizontal double graph S with no vertical arrows, we
extend F': I — A to a morphism G: S — A.

(a) G coincides with F' on the objects and horizontal arrows of I.

(b) For every vertical map u: i, - j,, of I, we set
Gu = T(Fu), (5.18)

while Gp,: Gu = Gi, and Gq,: Gu — Gj, are the structural arrows of
T(Fu) in A; these morphisms will again be written as p, and g,,, while we
write as 7, : (e b Fu) the structural cell of the tabulator.

(c) For every cell a: (u ] v) of I, Ga is the horizontal map of A such that
Ga: T(FU) - T(F'U), Ga|77v :7TU|FQ, (519)

according to the universal property of .

The limit of this horizontal diagram G: S — A exists, by hypotheses and
the previous Proposition 5.3.3. We want to prove that it gives the limit
of F; in fact, we construct an isomorphism between the double categories
of cones A || F and A’ || G, whose terminal objects yield our two limits.
Here, A’: A — Lx(S, A) is the new diagonal double functor.

(C) The canonical double functor A [L FF — A’ || G.

(a) Let (A, h: AA — F) be a double cone of F. Its ‘ordinary part’ (A, (hi);)
can be extended to an ordinary cone (A, h': A’A — G) of G, using the non-
ordinary part (hu),: we define h'u: A — T(Fu) as the horizontal map of
A determined by the cell hu, via the tabulator-property

ehry | Ty = hu. (5.20)

Now A’ is indeed a cone, as it is coherent with the new arrows p,, q.,

Ga:
puh’u = h(iy), quh/v = h(jy), Ga.h'u = h'v, (5.21)

where the first two properties follow from (5.20), and the third from the
cancellation property of ,

(Wu|Ga|my) = (Wu|m, | Fa) = hu| Fa = hv = h'v|7,. (5.22)

(b) A horizontal map f: (4,h: AA — F) = (B,k: AB — F) of A [ F
determines a horizontal map f: (4,h) = (B,k’) of A’ [} G, since

(f|K'u|my) = flku=hu=hu|m,. (5.23)

(c) A vertical map (r,&): (A,h: AA — F)= (B,k: AB — F) of A || F,
where r: A= B is vertical in A and &: (Ar ! ep) is an X-cell, determines a



5.3 The Construction Theorem 223

vertical map (r,&'): (A,h') — (B, k) of A’ || G; here the cell £ is extended
to & (A'r Zf eq), where &'u satisfies the following relation (letting nu =
&y @ ku=hu® &jy)

Ry, h'u Pu

A —> Fi, A ———= T(Fu) ——> Fi,
| | N S | |
TJ/ nu J/Fu = TJ/ &'u V Ty iFu (5.24)

(d) Finally, it follows that a cell of A || F' determines one of A’ || G.

(D) In the opposite direction, one constructs a canonical double functor
A’ [l G — A || F inverse to the former, by similar arguments.
We just specify its action on the objects. Given a cone of G

(A, (hi: A — Fi);, (Wu: A — Gu)y),

one forms a double cone (A, h: AA — F) of F by letting

hu = h'u| 7y, (5.25)
which satisfies (ht.1) since, for a: (u g v)in I
hu|Fa = (h'u|m, |Fa) = (Wu|Ga|m,) = hv|m, = ho. (5.26)

(E) To verify the statement 5.3.6(ii) we assume that A has lax (or pseudo,
strict) functorial limits for the basic cases, and we construct a similar func-
tor for I-limits; by Proposition 5.2.6, this can be reduced (both on hypothe-
ses and conclusion) to two more elementary choices.

The first choice is given by the ‘one-dimensional part’ of what we have
already proven. As to the second, a pseudo vertical transformation

r=((ri),(rf),(ru)): F=F:1— A

has a natural extension to a pseudo vertical transformation r: G-+ G’:
S — A, which is defined on the new objects u” through the fact that
tabulators have been assigned a choice of limits of pseudo vertical trans-
formations

r(u): T(Fu)—=T(F'u) (for u vertical in T), (5.27)

so that also the value on the new arrows o”: ©~ — v” is uniquely determined.
But this pseudo vertical transformation of horizontal functors r: G-+ G’
has an assigned limit, because of 5.3.3. Finally, since both steps respect
the structural functors 8+ and e, so does their result.
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5.3.8 Proof of the Construction Theorem, Part IT

(The general case.) Now let I be an arbitrary weak double category. The
previous construction of the graph S (step (A) of 5.3.7), of the morphism
G (step (B)) and of the isomorphism A || FF =2 A’ || G (steps (C) and (D))
is supplemented as follows.

(A) S has some supplementary objects and arrows:

- for every i in [, a new arrow d;: i — ¢;” (simulating the diagonal map of
3.6.3(a)),

- for every vertical composition w = u ® v in I, a new object (u,v) and
three arrows

Puv: (4,0) = u”, Guv: (U, v) = V7, dyp: (u,0) = W',

(simulating the object T (u,v) of 3.6.3(b) and its arrows).

(B) G is extended to these objects and arrows, by the objects and maps of
A that they simulate:

- G(d;) is the diagonal map dFi: Fi — TFi = G(e;") (in 3.6.3(a)); again,
for the sake of simplicity, we write G(d;) as d;, and 7; for the structural
cell of the tabulator T (F4) (i.e. m, for u = ¢;),

- Gyy = T(Fu,Fv) = TFuX p; TFv is the limit of the composable pair
Fu, Fv (in 3.6.3(b)); the arrows puy, quu, duy of S are taken by G to the
projections and the diagonal of G, which we simply write as

Duv: Guy = G, Guv: Gy — G, dyo: Guo — G(u b2 'U)~

Note that (Guw, Puvs Guv) is the pullback of (g, p,) in HorpA.
(C) Given a double cone (A,h: AA — F), we extend our previous h':
A'A — G (of 5.3.7(C)) to the new objects (u,v) by letting hl,,: A — Gy
be defined by the pullback-property of G,

Puv-hly = hu: A — Gu, Quo-hlyy = h'v: A — Gu. (5.28)

In order to prove that the new h’ is a cone, it suffices to prove its co-
herence with the new arrows d;, puv, Guv, duv; two conditions hold by
definition (5.28) above, the remaining two follow from the definition of the
diagonal maps d;, d,, and the structural cells m;, m, (together with their
usual cancellation property). In the first case we have

(D) Given an ordinary cone (A,h': A’A — G), we have to prove that

the old associated double cone (A,h: AA — F), defined by letting hu =
huw|my, is indeed a double cone for the new situation, i.e. satisfies also the
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conditions (ht.2, 3) concerning the vertical composition in I. This proceeds
much as above (letting w = v ® v, in the second case)

€hi = (hl | di |7Tz) = h/(ei) |7Ti = h(ei)7 (530)
hu h’u|7Tu Puv|7Tu
o | L wv) = F u,v) = h;v F u,v
hv 7( ) h'v | Ty 7( ) Quv ‘ Ty 7( ) (531)
= (h;u) | duv | 7T'w) = hw | Tw = hw.

(E) For the lax functoriality part, take a pseudo vertical transformation
r = ((ri), (rf),(ru)): F=>F': I — A. The extended r: G G’': S — A is
defined on the new objects (u,v)

r(u,v): T(Fu, Fv)=T(F'u, F'v), (5.32)

by the limit of pseudo vertical transformations of tabulators and pullbacks.
Again, the extension to the new arrows

divi— e, puw: (U,0) 2 U, Quot (U,0) 207, dyy: (u,0) = W',

is uniquely determined.

5.4 Computing limits and colimits

The following exercises and examples deal with the limits and colimits of
the strict or weak double categories of Sections 3.1 and 3.4. Solutions or
hints are given in Appendix C.

Lax functoriality of limits and colax functoriality of colimits are obviously
important, also because they imply the 2-dimensional property.

In some cases we also examine their pseudo functoriality, but this prop-
erty is not of much interest here; more complete results on this point can
be found in [GP1], Section 6.

5.4.1 Ezxercises on enriched profunctors

Study the flat double categories Mtr O pOrd O RelSet of enriched pro-
functors (see 3.1.2, 3.4.6, 3.4.7), proving that all of them have lax functorial
limits and colax functorial colimits.

More precisely:

- the double category Mtr of L-metric spaces has functorial sums and cotab-
ulators,

- the double subcategory pOrd of preordered sets (identified with L-metric
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spaces with distance in {0, c0}) is closed in Mtr under limits and colimits;
it has functorial products, sums and cotabulators,

- the double subcategory RelSet (where a set has distance d(z,z’) = 0

!, and oo otherwise) is closed in both under limits, sums and

ifx ==z
coequalisers, while cotabulators are quotients of the corresponding ones in

Mtr and pOrd; products and sums are functorial.

5.4.2 Ezxercises on adjoint functors

Study limits and colimits in the double category AdjCat of categories, func-
tors and adjunctions and in the double subcategories AdjOrd and Adj,Ord
(see 3.1.6 and 3.1.7).

5.4.3 Ezxercises on spans and cospans

(a) Study limits and colimits in the weak double category Span(C), where
C is a category with pullbacks.

(a*) Dual results hold in Cosp(C), for a category C with pushouts.

5.4.4 FEzxercises on profunctors

Study the weak double category Cat of categories, functors and profunctors
(introduced in 3.4.3), proving that it has lax functorial limits and colax
functorial colimits.

5.4.5 Examples of non-unitary limits

We have seen in 5.1.5 that the existence of non-unitary limits requires the
failure of cotabulators.

Let us take, for instance, a monoidal category C = (C, ®, E), consider it
as a bicategory on one object, and then as a (vertical) weak double category
D. The latter has one object * and one horizontal arrow 1,; its vertical
arrows X : % —>x are the objects of C, with vertical identity e, = F; its
double cells f: X — Y are the morphisms of C; its comparisons are those
of C.

It is easy to see — and can be proved as an exercise — that the unique
object * is a double terminal object in D if and only if the tensor unit E is
a terminal object in C (as happens, for instance, in the cartesian case), if
and only if D has cotabulators.

(In fact * is trivially a 1-dimensional terminal object; but a terminal
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vertical arrow of D is the same as a terminal object of C. The object x
is thus a terminal object of D if and only if the tensor unit E is terminal
in C. This is equivalent to the existence of cotabulators in I: indeed a
vertical arrow X : * —-»x admits the only object * as a cotabulator if and
only if there is a unique map X — E in C.)

Dually * is a double initial object if and only if E is initial in C, if
and only if D has tabulators. For instance it is the case in the monoidal
category Rng of rings, with the usual tensor product and tensor unit Z,
examined in Exercises 2.2.4 (i), (j). As remarked there, this structure is
not cocartesian, unless we restrict to commutative rings.

5.4.6 Ezxercises on level limits in Dbl

The transpositive double category Dbl (see 4.2.3) has some horizontal level
limits: all products and some equalisers.

It is important to note that these limits can be transposed to vertical
limits. These ‘transpositive limits’ will be further investigated in a more
adequate framework: the triple category StcDbl (see Section 6.1) where we
add the strict double functors in an additional ‘transversal direction’. This
embedding can be generalised (see 6.1.7) and can be thought to give the
right way of studying transpositive limits.

5.4.7 Ezxercises on tabulators in Dbl
(a) Compute horizontal tabulators in Dbl.
(b) Prove that Dbl is horizontally span-representable.

(c) Compute vertical tabulators and show that Dbl is vertically span-
representable.

5.4.8 Ezxercises on bimodules

The weak double category Rng of (unitary) rings, homomorphisms and
bimodules (see 3.4.5) presents a defective situation, with all level limits
and cotabulators, but few level colimits and tabulators.

(a) Prove the existence of level limits and cotabulators in Rng.

(b) Prove that there is an initial pair and no initial object, in the full 2-
dimensional sense. Colimits of rings give 1-dimensional level colimits in
Rng, which are not 2-dimensional colimits, generally.

(¢c) Prove that Rng cannot have all tabulators, even in the 1-dimensional
sense.
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(d) Give a similar study of the weak double category of monoids, homo-
morphisms and bimodules, introduced in 3.4.8.

5.4.9 *Complements on bimodules

For a bimodule X: R—- S, we constructed in [GP1], Section 5.3, a ring T'
of triangular matrices ({; T), with obvious sum and ‘matrix product’ (for

r,r' €R, s, €8, x,2' € X)

r oz rx rr’ rx’ +xs
(0 s><0 5’> B <0 ss' ) (5:33)

This ring was wrongly presented as the tabulator of X, which cannot be
(as we have seen that all of them cannot exist, in 5.4.8(c)). In fact, we do
have two obvious ring homomorphisms

p: T — R, q:T— 85, (5.34)

but the projection T — X does not form with them a homomorphism of
bimodules.

In order ‘to make sense’ of this construction, we can replace the vertical
identity T': T'=T with the vertical endomorphism X : T - T, where the
abelian group X has the obvious structure of (T, T)-bimodule

/ / 1 1
<7£) i,) T <TO i,,) = r'as’. (5.35)

Now the identity of X gives a homomorphism of bimodules (T, X,T) —
(R, X,S),ie acelnw

p

R

P ix (5.36)
__ . g
q

N<——9

o i ro "o
x

G 2)x(y %) — s =p@ L).xql ).

We can characterise the pair ((T, X, T), ) as the universal cell 7: « —
(R, X, S) whose domain is a vertical endomorphism. In fact, for every cell
v: (AY,A) —» (R, X,S) with f: A — R, g: A — S there is a unique cell
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¥ such that ¢ |7 =¢

Ao PR
yi v xi T ix (5.37)
A — T — §
h q
h(a) = (5 £9), D(y) = o),

Y(aydb) = p(ayd) = fa.py.gb = ha.py.ha = ha.ypy.ha.

More formally, we are replacing the degeneracy embedding e: HorgA —
Hor; A with the embedding

U: VeA — Hor A, (5.38)

of the full subcategory of vertical endomorphisms.

For A = Rng, the pair ((T, X,T), ) is a universal arrow from this em-
bedding to the ‘object’ (R, X,.S) of Hor;Rng, and we have constructed the
right adjoint

HoriRng — VeRng, (R, X,S)— (T, X,T), (5.39)

with counit 7.

5.5 Adjunctions, limits and unitarity

We prove that the right adjoint G: A — X of a unitary colax-lax adjunction
F + @G preserves limits (Theorem 5.5.5). When F' is not unitary, this can
fail even for a strict G. (But it is still true that G must preserve level
limits, see 5.5.7.)

We are given a lax functor T: I — A between unitary weak double
categories. We begin by reformulating the definition of cones and limit of
T in terms of cells in Dbl, whose vertical arrows are strict functors; such a
cell is inhabited by a horizontal transformation of lax functors (as remarked
in 4.2.3(b)), that will be marked by an arrow — here fully justified.

5.5.1 Transforming cones

Let G: A — X be a lax functor, and consider the diagonal functors

A: A = Tx(T,A), A X — Lx(I, X). (5.40)
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‘We have a horizontal transformation
v: A(GA) - G.AA: T =X,

(5.41)
vi=1lga: GA— GA, yu=G(A): ega — G(ea),
which produces a lax functor of cones
G': Cone(T) — Cone(GT),
(5.42)

(A,h: AA—=T) — (GA,Gh.y: A'(GA) — GT).

When G is a unitary lax functor, v is the identity and G preserves diag-
onalisation: G.AA = A’(GA), as we have already seen in 3.8.5. Then the
associated lax functor G on cones acts simply as:

(A,h: AA = T) — (GA,Gh: A (GA) — GT). (5.43)

We say that the lax functor G preserves (the existing) I-limits if
(i) whenever (A, h) is the limit cone of a lax functor T': T — A, then G(A, h)
is the limit cone of GT,
(ii) a similar property holds for the limit of a pseudo vertical transformation
r:T-S:1T— A

We begin by treating the unitary case, because of two main reasons.

First, we have already seen in 4.5.2(c) that the discrete embedding
D: SpanSet — Cat, viewing a span as a set-profunctor, has a non-unitary
right adjoint and does not preserve cotabulators.

Second, a lax functor G takes an object to a vertical monad, and a family
of objects A; (i € I) to a family of vertical monads G.A; = (G(A;), i, i, i)
If we say that G ‘preserves products’, it is not clear whether we mean that
it takes a product-object A =II A4;

- to a product-object X = [1G(4;),
- or to the limit of the family of vertical monads G.A;.

The general case will only be dealt with at the end of this section, in 5.5.6
and 5.5.7, as a marginal topic. In particular, 5.5.7 is precisely concerned
with the preservation of products.

5.5.2 Theorem (Cones as cells)
(a) A cone (A,h: AA — T) of T amounts to a cell in Dbl

A
1l</h i/A (5.44)
I — A
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i.e. a horizontal transformation h: AQ — T of lax functors (because A:
1 — A is strict).

(b) A wvertical morphism (u,&): (Ao, ho) — (A1,h1) of cones of T amounts
to a cell £ in Dbl, as in the left diagram below, that satisfies the following
condition, for n =0,1

I 1
=
Ix2 — @ 2t = 1i</hn iAn (5.45)
PJ/(/ lu I — A
I A

where Hy, and K, denote the obvious embeddings at the level (—,n) of
—x2% and \,: K,Q = Q'"H,, is a trivial cell.

Proof (a) Obvious, because AA = AQ: 1 — A.
(b) We rewrite (A, ho) and (Ay, h1) as (A’, k') and (A", k"), respectively.

As defined in 5.2.2, a vertical morphism (u,&): (A", h')=> (A", h") of
cones of T comprises a vertical arrow u: A’ - A” (that gives a verti-
cal transformation Au: AA'- AA”, constant at u) and a modification
&: (Au Z:, er).

The latter means two horizontal transformations h': A'Q % T and
R": A"Q — T of lax functors and, for every i in I, a cell &i: (u? h,, er;) in
A that satisfies the conditions (mod.1, 2) of Definition 3.8.3.

Here (mod.1) says that & |Ta = &/, for every a: i — ' in I; (mod.2)
says that

SR r=nre¢; (for r: i—=>j in I). (5.46)

On the other hand the cell £ in (5.45) ‘is’ a horizontal transformation
&: u@' — TP. This gives the horizontal transformations h’, h” (obtained
as above), together with a family of cells in A

Ei: (u ol ers) (for ¢ in I), (5.47)

that corresponds to the vertical arrow (4,2): (4,0)- (4,1), given by the
vertical arrow z: 0> 1 of 2°.

Computing the horizontal transformation £: u@’ — TP on the vertical
arrow (r,z): (i,0)=> (4, 1) we have, taking into account that (i, z)® (r,1) =

(T’Z) = (T,O)@( Js )
§i@h'r=¢(r,z) =h'r®¢j,
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which is condition (5.46). The remaining points are straightforward.  [J

5.5.3 A remark
When we pre-compose a cone (A,h: AA — T) with a horizontal arrow
f+ A" — A we get a cone (A, h.Af: AA" — T) which is expressed as the
pasting h | f of cells in Dbl

I 4Q> 1 1
1j/</h A\L</f \LA/ (5.48)
I — A A

The horizontal composition h| f appears thus in reverse order with re-
spect to the composition AA” — AA — T of horizontal transformations,
which may be confusing. Marking the cells of Dbl with an arrow will help
us to manage this drawback.

5.5.4 Limits as universal cells

As we have seen, a cone (A,h: A — T) is a cell of Dbl, as in the left
diagram below

1—2 .1 Ix2t —25 20
1l</h \LA pl</5 lu (5.49)
[ —— A I —— A
T T
and a vertical morphism of cones is a cell as in the right diagram above
(whose faces are computed as in (5.45)).

Now, a cone (L, p) is the 1-dimensional limit of T if and only if (i) holds:

(i) for every object A in A, the mapping f — h = p|f (a horizontal
composition of cells, in Dbl) gives a bijection between A-horizontal arrows
f+ A— L and cones (A, h) of T

I —Q> 1 1
1l</p Ll</f |4 (5.50)
I — A A

(L,p) is the double limit if and only if (ii) also holds:

(ii) for every vertical arrow u: A’~+ A” in A, the mapping

T E=0A®p)|T
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gives a bijection between A-cells 7: u — ey, and Dbl-cells £ whose boundary
is the outer perimeter of the following diagram (where A is the obvious
‘commutative cell’)

Ix2t —» 2t 2t

i

I — -1 u (5.51)
=

I — A A

5.5.5 Theorem (Limits and unitary adjunctions)

Let (n,e): F 4 G be a unitary colaz-lax adjunction. Then the lax functor
G: A — X preserves all the (existing) limits of lax double functors with
values in A.

Proof Take a lax double functor T': T — A, and suppose that (A4, h: AQ —
T) is a limit of T. To prove that G(A,h) = (GA,Gh): (GA)Q — GT
is a limit of GT', we follow the standard procedure, for the 1-dimensional
property, as rewritten above, in 5.5.4(i).

Given a cone (X, k: XQ — GT) of GT, the pasting h' of Dbl-cells dis-
played at the left

Q

Q

1
U
A

1
l/FX (5.52)
F I —— A

- 1

H—>A

gives a cone (FX, h': FX.Q — T) of T (by the unitarity of F). Therefore,
there is a unique g: F X — A such that ' = (h|g): FX.Q — T. Now, the
adjoint morphism f = Gg.nX: X - GFX — GA is the unique horizontal
arrow of X such that &k = (h|f): XQ — GT (as one sees pasting the
Dbl-cell n: (F' ¢ 1) at the right of both diagrams above).

For the 2-dimensional property we are given a vertical arrow (v,¢):
(X', k)= (X", K") of cones of GT. The pasting &’ of Dbl-cells displayed at
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the left
Q

Ix2" ——— 2¢

Pl</f lv ]I><2t — 2!
I T a G x _ l l/ l (5.53)
== | | — 4
I ——> A=— A

gives a vertical arrow (Fv,£"): (FX',h') — (FX" k") of T (by the uni-
tarity of F'). Therefore, there is a unique a: Fv — ey such that & =
(en|a): Fv.QQ — TP.

Now, the adjoint cell p = (nv|Ga): v = GFv — Gey is the unique cell
of X such that £ = (¢ |Gep): vQ — GT. O

5.5.6 Theorem (Tabulators, adjunctions and unitarity)

All tabulators are meant in the 1-dimensional sense. Let us have a general
colax-lax adjunction between weak double categories

F:X=2A:G, (n,e): F 4 G. (5.54)

(a) If F is pseudo unitary, then G preserves all the existing tabulators of
A, in the following sense: given a vertical arrow v: A—-s A’ having tabulator
(V72 (V 2 w)) in A, the object GV is the tabulator-object of Guv in X, via
the obvious cell m from egy to Gu

m=(G(V)|GT): (eqv § G). (5.55)

(b) Take X in X and assume thatv = F(ex): FX - FX has a tabulator in
A, preserved by G; then the colaxity cell FX: Fex — epx has a horizontal
retraction (: epx — F(ex), with FX | =1.

Notes. In (a), taking F' strictly unitary gives a less clear argument in the
proof. In (b), one cannot prove F'X to be invertible; to wit, the terminal
double functor Rng — 1 trivially preserves all the existing tabulators, but
we have seen in 5.4.8(b) that it has a colax left adjoint which is not pseudo
unitary.

Proof (a) Assume that the comparison cell £X has a horizontal inverse
¢; we want to prove that GV is the tabulator of Gv via w. Take an X-cell
&: (ex § Gu), and its adjoint cell ¢’ = (F¢|ev): (Fex 5/ v) in A. There is
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precisely one k: FX — V in A such that
kT =(C1€): (erx } v), (5.56)
Its adjoint h = Gk.nX: X — GV satisfies the condition i |7 = £ in X

him=(h|GV|GT) = X |Gk |GV |GT) = (nX |GFX | Gey | GT)
= (n(ex) |G(EX) | GC| GE') = nlex) |GE' =&,

X " gV —— v —" . qa
Ei en Ei GV Jl/Ge Gt in (5.57)
X — > GV —— GV —— GA’

h Gq

Conversely, if h|m = £, then the adjoint map k = eV.Fh: FX — V
gives, in A
(EXJex|m) = (EX|epn|ecv |T) = (Fen | FG(V) | ecv | T)
= (Fen |FGV |eey |1) = (Fey, | FGV | FGT | ev)
= (Fep | Fr|ev) =F¢|ev=¢.
This means that the cell FX | ey is uniquely determined by £. Since FX
is invertible, k is uniquely determined as well.

(b) Take an object X in X. Recall that the colaxity cell F = FX: F(ex) —
erx corresponds to F' = e,x | GFX (by 4.3.3(b)). In diagram (5.57), let
A=A"=FX and v = F(ex): FX= FX, with tabulator (V,7: (V 7 v))
preserved by G: GV is the tabulator of Gv via 7 = GV | GT.

The unit of the adjunction yields a cell

£ = (L) =nlex): (ex Jx GF(ex)),

whence one map h: X — GV in X such that e, |7 = n(ex). The map
h corresponds to k: FX — V and it suffices to verify that the cell { =
(ex |7): (FX 2: v): epx — v is a retraction of F:
(Elex|) = (F'|Ger | GT) = (enx | GFX | Gey, | GT)
= (enx lear |GV |GT) = en | m = n(ex) = (1,)".
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5.5.7 Ezxercises and complements

(a) (Level limits and adjunctions) Given a colax-lax double adjunction
F 4 @G, the lax functor G preserves level limits, while the colax func-
tor F' preserves level colimits (independently of the unitarity of F or G).

(b) (Extending unary products) Study the limit of a strict or lax functor
F:1 — A, as described in Exercise 3.8.6(b).

(c) Prove that a lax functor S: A — B always preserves the limit of a strict
functor A: 1 — A, in a suitable sense.

5.6 *Weighted limits in 2-categories as double limits

This section is addressed to a reader with some knowledge of the theory of
2-categories.

After reviewing the definition of weighted limits in a 2-category C, we
prove that a W-weighted limit in C, for a given 2-functor W: I — Cat,
is the same as a double limit based over a suitable double category E1(W)
(introduced in [Pal, GP14]). Using the construction theorem of double
limits, it follows that weighted limits in C amount to double limits in C,
viewed as a horizontal double category.

In this section I is always a small 2-category equipped with a 2-functor
W:1 — Cat, its weight. We write as [I, Cat] (resp. [I, Cat],s) the 2-
category of 2-functors I — Cat, their 2-natural (resp. pseudo natural)
transformations, and modifications (see 3.8.7).

A reader interested in the theory of weighted limits (also called indexed
limits) is referred to [St2, Gra2, Ke2, Ke3, BKPS].

5.6.1 Weighted limits

The limit of a 2-functor F': I — C can be defined by a 2-universal property
(see 2.3.5), but something more general is needed, to include important
universal constructions as the cell representer 2 M X (see 3.6.6), and others
recalled below.

The W-weighted pseudo limit (L,p), or pseudo W-limit, of a 2-functor
F: 1 — C with respect to the 2-functor W: I — Cat, is an object L =
psLim y, F' of C equipped with a pseudo natural transformation

p: W — C(L,F(—)): I — Cat, (5.58)
that gives, for every A in C, an isomorphism of categories

C(A, L) = [L, Cat],s (W, C(A, F)). (5.59)
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This means that the following 1-dimensional and 2-dimensional universal
properties are satisfied:
(i) for every similar pair (A, h: W — C(A, F)) there is a unique morphism
f: A— L in C such that:

h=C(L, f)p: W — C(L, F) — C(A, F), (5.60)

(ii) for every modification £: h — k: W — C(A, F') there is a unique 2-cell
a: f—g: A— L in C such that:

¢§E=C(L,a)p: W = C(L,F) = C(A, F). (5.61)

The (strict) W-limit of F, written as Lim w F, is similarly defined, re-
placing ‘pseudo natural’ by 2-natural and [I, Cat],s by [I, Cat].

The 2-category C is said to be 2-complete if it has all weighted limits.
(Then it also has all weighted pseudo limits, as proved in [BKPS].)

5.6.2 Ezxercises and complements
We examine now the basic cases of weighted limit in the 2-category C.

(a) The trivial weight W: I — Cat, constant at the terminal category 1,
gives the ordinary 2-limit of the 2-functor F': I — C, also called a conical
limit in the general theory of weighted limits. This is a 2-universal cone
(A,h: A— F) (see 2.3.5).

The reader can write its 1-dimensional and 2-dimensional universal prop-
erties and prove that all conical limits in C can be constructed from 2-
products and 2-equalisers.

(b) Another important weighted limit is the cotensor S M X, where X is
an object of C: this is defined as the limit L of the functor X: 1 — C
weighted by a small category S: 1 — Cat, and comes equipped with a
functor p: S — C(L, X). The reader can write the universal properties of
(S M X,p), for a small category S, and verify that 2 m X coincides with
the cell representer defined in 3.6.6.

(c¢) Prove that the cotensor 2 h X is the same as the tabulator Tex in
C, viewed as a horizontal double category. (The 1-dimensional aspect has
already been considered, in Exercise 3.6.7(b).)

(d) In Cat the cotensor S h X can be realised as a category of functors.

5.6.3 From weighted 2-categories to double categories

For a fixed 2-functor W: I — Cat, the double category El(W) of elements
of W is defined as the following double comma 1 [ W (see 4.2.4), of strict
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functors of horizontal double categories

E(W) —£= 1
Qi</7r lu (5.62)

I —— Cat
w

Concretely, an object of EI(W) is a pair (i, X) where 4 is in I and X is
an object of the category W (i) (viewed as a functor X: 1 — W (7)).

A horizontal arrow a = (a,X): (4,X) — (i, X’) comes from an I-
morphism a: ¢ — ¢’ such that (Wa)(X) = X’; these arrows compose as in
I. A vertical arrow x = (i,z): (i, X) > (¢,Y) comes from a W (i)-morphism
x: X — Y; they compose as in the category W (7).

A double cell &: (z § y)

(i, X) < (i, X")
I (5.63)
(i,Y) — (#,Y")

comes from a 2-cell £:a — b: i — ¢/ of I such that (W¢)(x) = y, where
(W) (x): (Wa)X — (Wb)Y is the diagonal of the commutative square

wayx WL wrx

Wae | | ws (5.64)

(Wa)Y ——— (W)Y
WeY

A 2-functor F': I — C between 2-categories has an associated double
functor F'(W) with values in the horizontal double category C

F(W): E(W) — C,
(i,X)— Fi,  (a:(i,X) = (i',X')) — Fa: Fi — Fi, (5.65)
(z: (1, X)= (1,Y)) = epi, (& (z§y) m (FE: (Fi g Fi')).

5.6.4 Cones and limits

The double category PsCone(F(W)) of the pseudo cones of the double
functor F(W): El(W) — C has been defined in 5.2.1 as the double comma
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A L F(W) of the diagonal functor A

PsCone(F(W)) —F . c
l/ A (5.66)

1 o Lx,s(EL(W), A)

It can be analysed as follows.
(a) A pseudo cone (A, h: A — F(W)) is an object A of C equipped with:
-amap h(i, X): A — Fi, for every ¢ in I and every X € W (i),
- a 2-cell h(i,x): h(i, X) — h(:,Y): A — Fi, for every ¢ in I and every
z: X =Y in W(4),
- an invertible 2-cell h(a, X), for every a: i — j in I and every X € W(4)

Fa.h(i,X)
A 7 hex) . Fj (5.67)
—
h(j, Wa(X))

under the axioms (pht.1-5) of naturality and coherence (in 3.8.1).
It is a cone when all the comparison cells h(a, X) are vertical identities.
Speaking of a W-pair (i, X), or (i,x), or (a,X), below, we mean a pair
as above.

(b) A horizontal morphism f: (A, h) — (A’, k') of pseudo cones is a hor-
izontal arrow f: A — A’ in C that commutes with the cone elements, as

follows
i) h6,X)=n(i,X).f: A— Fi, for every W-pair (i, X),
(ii) h(i,z) =W (i,x).f: A= Fi, for every W-pair (i, x),
(iii) h(a,X)=h(a,X).f: A= Fj, for every W-pair (a, X).

Horizontal morphisms compose, forming a category.

(c) A vertical morphism &: (A, h) - (A, k) of pseudo cones is a modification
(AR F(W)).

We have thus, for every W-pair (i, X), a 2-cell in C
(4, X): h(i,X) = k(i,X): A — Fi,

that satisfies the conditions (mod.1, 2) of 3.2.7.
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(d) A double cell of cones
(A,h) —Ls (a7, 1)
gi @ ic (5.68)
(Aa k) T> (Alvk/)

isa2-cell a: f — g: A— A" in C such that, for every W-pair (i, X)

f h'(i,X)
—_ —_
A e A KEx) Fioo= £, X). (5.69)
—_ P
9 K (4,X)

Spelling out the conditions of 5.2.3, for a pseudo cone (L, p) of F(W) to
be the pseudo limit of the latter, we have:

(dl.1) for every pseudo cone (A, h: A — F(W)) there is a unique morphism

f+A— L in C such that
h(i,X)=p(i,X).f: A— Fi (for ¢ in I, X in W74), (5.70)
h(i,z) =p(i,x).f: A=Fi (foriinl, x: X =Y in Wi), .

(d1.2) for every vertical morphism &: (A, h)—> (A, k) of pseudo cones there
is a unique 2-cell a: f — g: A — L in C such that, for ¢ in I and X in W4

f .
A e Xm0 e x). (5.71)
S

5.6.5 Theorem (From weighted 2-limits to double limits)

For every 2-functor F: I — C, the weighted limit (Lim y F, p) is the same
as the double limit of the associated double functor F(W): E(W) — C
(i.e. they solve the same universal problem).

Similarly the weighted pseudo limit (psLim y, F,p) is the same as the
pseudo limit of F(W).

Proof The analytic descriptions of these ‘limits’, in 5.6.1 and 5.6.4, amount
to the same thing. 0

5.6.6 Theorem

(a) The existence of all weighted limits in a 2-category C amounts to that
of all double limits in the associated horizontal double category.
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(b) All weighted limits in C can be constructed from conical limits and
cotensors 2 X.

Note. Point (b) is well known in the theory of weighted limits: see [St2],
Theorem 10.

Proof (a) If C has all weighted limits, then it has all conical limits and
cotensors 2 M X, which means all level double limits and all tabulators
Tex, whence all double limits by Theorem 5.3.6. The converse follows
from Theorem 5.6.5. Point (b) is proved in the same way. O

5.6.7 Definition (Weighted cones)

Theorem 5.6.5 allows us to define the double categories of W-weighted cones
and pseudo cones of the 2-functor F': I — C as

Coneyy (F) = Cone(F(W)),

(5.72)
PsConeyw (F') = PsCone(F(W)).

The terminal objects of these double categories give the W-weighted limit
of F, strict or pseudo, respectively.

Note that one cannot express the 2-dimensional universal property of
weighted (strict or pseudo) limits by terminality in a 2-category. This
is probably why weighted cones are rarely considered in the theory of 2-
categories.

5.6.8 A direct construction of weighted cones
Let V be the 2-functor
V:C — [I,Cat], V(A) = C(A, F(-)). (5.73)

Without going through El(W) and F(W), the double categories of
weighted cones and pseudo cones can be constructed, up to isomorphism,
as the following double commas

Conew (F) —= 1 PsConew (F) —— 1
ié/ﬂ lw jf_/ﬁ lw (5.74)
C — [I, Cat] C [I, Cat],s

In fact all the items (including compositions) of these double categories
amount to the corresponding ones in the double categories analysed in
5.6.4.
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It would be interesting to consider whether any double limit in C, based
on a double category I, can be obtained as a single weighted limit for an
associated weight W: I — Cat (defined on an associated 2-category).

5.6.9 Ezxercises and complements
We consider here some elementary weighted limits in 2-categories, and the

corresponding double limits in weak double categories.

(a) Given two arrows f: X’ = Y and g: X” — Y in the 2-category C, the
comma-object [ | g is the W-limit of the 2-functor (f,g): I — C, where
I is the cospan-category represented at the left, below (with trivial cells)

and the functor W: I — Cat takes the values shown at the right:
a: 0 —1+0":b 1-2+1
(5.75)
Wi(a): 00, W(b): 0+ 1.

Describe the 1-dimensional universal property of the comma object, con-
struct the double category E1(W) and interpret the limits that it produces
in a weak double category.

(b) Same exercise for the inserter of two parallel arrows f,g: X — Y,
defined by the following weight
a,b:0=21 1=2

(5.76)
Wi(a): 00, W(b): 0 1.

(c) Same exercise for the equifier of two 2-cells p,¢: f — ¢g: X — Y,
defined by the weight W represented below

/a—x /aN
0 allp 1 1 1 2 (5.77)
— > —_—
b b’

W(a)=d:00, WOo)=b:01  W(a)=W().

(d) The 2-category C is 2-complete if and only if the associated double
category QC of quintets (see 3.1.4) has all limits. In this case the double
category QC is span representable.

5.7 *Hints at persistent double limits

Persistent double limits where first presented in a talk by Paré [Pal]; they
are related to flexible weighted limits in 2-categories, introduced in [BKPS].
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The following is a brief review, without proofs, of a part of our study in
[GP13, GP14].
I is small weak double category.

5.7.1 Persistent limits

Persistent double limits are defined in [GP13], Definition 6.1, after a com-
plex analysis of invariance properties. Here we follow a shortcut, using a
characterisation proved in [GP13], Theorem 6.6.

We say that the weak double category I parametrises persistent limits,
or that I-limits are persistent if, for every weak double category A and
every double functor F': I — A having a limit (4,h: A — F) and a pseudo
limit (A’, h’': A" — F), the canonical morphism f: A — A’ (determined by
h = h'f) is a horizontal equivalence.

If this happens for a given weak double category A, we say that I-limits
are persistent in A.

5.7.2 Grounded double categories

The general property of persistence can be characterised by a sort of initial-
ity property. Namely, we say that the weak double category I is grounded
if every connected component of the ordinary category Horgl has a natural
weak initial object.

By this we mean a functor ®: Horol — Horgl which is trivial on every
horizontal arrow a: i — 4’ of I, and is equipped with a natural transforma-
tion ¢: & — 1.

In elementary terms, for every object i there is an object ®i and a mor-
phism @i: ®i — i such that, for every a: ¢ — i’ in I we have:

bi = i, i’ = a.pi, (5.78)

. pi .
P ——= 1

e

,Z:/

Note that the first condition in (5.78) is redundant.

Note also that each object ®i comes equipped with an idempotent endo-
morphism p; = ¢(®i): ®i — Pi. (This is the identity if and only if ®i is
the initial object of its connected component in Horgl, if and only if such
an object exists.)
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5.7.3 Persistence Theorem
The following conditions on the weak double category 1 are equivalent:
(i) I-limits are persistent,
(i) T-limits are persistent in the weak double category Cat of categories,
functors and profunctors,
(iii) I is grounded,
(i) for every double functor F: 1 — A, every pseudo cone (A h: A —

F) is wvertically isomorphic to a strict cone, in the weak double category

PsCone(F).

Proof See [GP13], Theorems 6.4 and 6.6. O

5.7.4 Theorem (Persistent double limits and flexible 2-limits)

A 2-functor W: 1 — Cat is a flexible weight [BKPS] if and only if the
double category EI(W) is grounded, if and only if it parametrises persistent
limits in Cat (or equivalently in Cat, or in every weak double category).

Proof See [GP14], Theorem 3.2. O

5.7.5 A partial converse

Verity’s thesis [Ve] gives a partial converse to the dual of this result.

As proved in Theorem 2.7.1 therein, the class of persistent weighted
colimits in the 2-category Cat is closed (in the sense of [AK]) and generated
by sums, coinserters, coequifiers and idempotent-splittings. It coincides
thus with the so-called closed class of (PIES)*-colimits, which precisely
amounts to the class of flexible colimits in Cat, as proved in [BKPS].
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6

Weak and lax multiple categories

The second part of this book is devoted to the study of multiple categories,
that extend double categories to higher dimension, with one strict compo-
sition in direction 0 and various — possibly weak — compositions in positive
directions.

In this chapter we start from a simple example, a triple category built
on the double category Dbl of weak double categories (Section 6.1). In
Sections 6.2 to 6.5 we define strict, weak and lax multiple categories of
infinite dimension, their functors and transformations. Our main structure,
a chiral, or x-laz, multiple category (introduced in 6.4.8) is partially lax, in
the sense that the weak composition laws in directions ¢, 7 have a directed
interchanger x;; (for ¢ < j) which need not be invertible. The even laxer
notion of intercategory is examined in Sections 6.8 and 6.9.

These lax structures come in two forms, transversally dual to each other,
according to the direction of interchangers; these forms are named ‘left’
and ‘right’, respectively, as explained in 6.4.8. We mainly work in the
right-hand case.

Various 3-dimensional or infinite-dimensional examples are presented in
Sections 6.1, 6.3, 6.4 and 6.6. Some of them are ‘of cubical type’, which —
loosely speaking — means that the positive directions are interchangeable
(see 6.3.1, 6.4.5). In most of these structures we compute tabulators, de-
fined in Section 6.7 after a preliminary analysis in Section 6.1.

Chiral multiple categories can be organised in a multiple category, as we
shall see in Section 7.5.

As always, N is the ordered set of natural numbers, and N* the subset of
the positive ones. Multiple categories, of any kind of laxity, are denoted as
A,B.... The boolean variables «, 3 take values in the cardinal set 2 = {0, 1},
also written as {—, +}.

247
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The formal span and cospan categories are always written as in (1.4)
Vi 0<1—1 AN 0=+ 1

Again, solutions and hints to the exercises can be found in Apendix C.

6.1 Some examples of triple categories

Formally, a double category is a category object in Cat, and a triple cat-
egory is a category object in the category of double categories and double
functors. An explicit definition of multiple categories of any dimension will
be given in Section 6.2.

This introductory section constructs some simple triple categories, and
gives a first motivation for studying them and their limits.

6.1.1 An augmented triple category

We start from the (strict) double category Dbl of weak double categories,
lax and colax double functors (see Section 4.2) and we embed it in a triple
category S = StcDbl, by adding new arrows, namely the strict double
functors, in an additional transversal direction.

(a) The set S, of objects of S, consists of the (small) weak double categories
AB, ...

(b) The set S; of i-arrows, or i-directed arrows A —; B (for i = 0,1,2) has
the following elements:

- a O-arrow, or transversal arrow, is a (strict double) functor,
- a I-arrow is a lax functor,
- a Z-arrow is a colax functor.

FEach set S; has a degeneracy and two faces

e;: Sy — SZ‘, GZ(A) = ld"%7
05 S; — Sa, 0; = Dom, 8i+:Cod.

7

(6.1)

(c¢) The sets S12, So1, Soz of double cell of S consist of the following items:

-a 12-cell m: (U £ V) is an arbitrary double cell of Dbl (see 4.2.1), with
lax (resp. colax) functors in direction 1 (resp. 2) and components

7A: VF(A) —» GU(A), mu: VF(u) = GU(u),
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« ——> o « =1

Ul ™ lv b2 (6.2)

- a 01-cell, as shown in the left diagram below, is a double cell of Dbl with
lax functors in direction 1, strict functors in direction 0 and a horizontal
transformation ¢: QF — GP (of lax functors)

L 'y{ .
S
G 1%

AN

- a 02-cell, as shown in the right diagram above, is a double cell of Dbl with
strict functors in direction 0, colax functors in direction 2 and a horizontal
transformation w: VP — QU (of colax functors).

Each set S;; (for 0 < i < j < 2) has two degeneracies and four faces,
that are obvious

e Sj—>Sij, €;: Si—>Sij,

(6.4)
8?: Sij — Sj, 8;-“: Sij — Sz

Thus ey : Sy — Sp2 assigns to a 2-arrow U the identity cell e; (U) of the
original double category for the 1-directed (i.e. horizontal) composition,
while the i-faces 7w of the 12-cell 7 are its domain and codomain for the
i-directed composition (and are j-directed arrows, with j # i)

Oy (m)=U, of(m)=V, 0y(n)=F, 85 (r)=G. (6.5)
(d) Finally Spio is the set of t¢riple cells of StcDbl: such an item II is a

‘commutative cube’ determined by its six faces; the latter are double cells
of the previous three types

I AT s . >

L .“"Gb. l . Xl\. PN
lv y . H%ocly (66)
.—> R\-w—SEB
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The commutativity condition means the following equality of pasted dou-
ble cells in Dbl (the non-labelled ones are inhabited by horizontal transfor-
mations that are identities):

1 F F 1

A—s A —— . A ——s o ——> &
1 P @) Q 1 1 Q
A —P> ¢ —G=> A —F>o¢—Q> .
U w v p Yy = U ™ x ( Y (6.7)
e —R> o — K> B e —H> o« —S> B
R 1 1 R P S 1
T x B o B B

More explicitly, the commutativity condition amounts to the following
equality of components (horizontal composites of double cells in the weak
double category B):

YQFu 2% varu 22 KvPu B KRUW)

— (YOQFu LY sXFu 5™ sHUW Y% KRUW),

where v is any vertical arrow in the weak double category A.

(e) All composition laws are derived from those of Dbl, using the fact that
the additional O-directed structure is a particular case of the 1- and 2-
directed ones. Therefore all these laws are strictly associative and unitary,
and each pair of them satisfies the interchange law.

The fact that any triple cell of StcDbl is determined by its boundary
(i.e. its six faces) can be expressed saying that the triple category StcDbl
is boz-like.

6.1.2 Comments

Embedding the double category Dbl into the triple category StcDbl can be
motivated by the fact that:

(a) the horizontal and vertical limits existing in Dbl remain as transversal
limits in StcDbl, where their projections are duly recognised as strict double
functors,

(b) (more interestingly) new transversal limits appear in StcDbl, for which
there is ‘no sufficient room’ in the original double category.
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We anticipate now a sketch of tabulators, studied in Section 6.7, showing
point (a) in 6.1.3, 6.1.4 and point (b) in 6.1.5, 6.1.6.

6.1.3 Horizontal tabulators in Dbl

As we have seen in 5.4.7, in the double category Dbl every vertical ar-
row U: A-B has a horizontal tabulator (T, P,Q, ), with a horizontally
universal cell 7 as in the left diagram below

T — 25 A S T A
el i ei el l
poT ¢U [ ¢U (6.9)
T — B S T B
Q F Q

The weak double category T = U || B has objects
(A,B,b: UA — B),

with A in A and b horizontal in B. The universal property says that every
similar double cell 7/: (eg 51 U) factorises as 7/ = ep |7, by a unique
horizontal arrow F': S — T, as in the right diagram above: the lax functor

F is defined on the objects as
F(S) = (P'(5),Q'(S), 'S: UP'(S) — Q'(9)),

and is strict whenever P’ and Q' are.

Since P and @ are strict double functors, this construction also gives the
tabulator, or ea-tabulator, of the 2-arrow U of StcDbl: it will be defined in
6.7.1 as an object ToU with a universal 02-cell 7: ea(TU) —¢ U.

Now the universal property says that every 02-cell 7': eo(S) —¢ U fac-
torises as 7/ = T.e2(F'), by a unique 0-arrow F': S —¢ T. (Note that now
7' (e2S 5; U) is a double cell whose horizontal arrows P’,Q’ are strict
functors, so that F' is strict as well.)

6.1.4 Vertical tabulators in Dbl

Similarly we have seen in 5.4.7 that every horizontal arrow F': A — B has
a wvertical tabulator (T, P,Q,T), providing a vertically universal cell 7 as
below

Q (6.10)

B <o 3
B <o 3

1

T
—_—

F
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Now, the weak double category T = B || F' has objects (A, B,b: B —
FA), with A in A and b a horizontal arrow of B.

Again, P and @ are strict double functors, and this construction also
gives the tabulator, or ej-tabulator, of the 1l-arrow F' of StcDbl: it will be
defined in 6.7.1 as an object T1 F with a universal 01-cell 7: e1(T1F) —¢ F.

6.1.5 Exercises and complements (Higher tabulators, 1)
We deal now with a double cell 7 of Dbl
A—L-B
v t m i‘/ (6.11)
C ——=1D
G
viewed as a 12-cell of the triple category StcDbl.
In the latter the reader can construct the total tabulator, or e1s-tabulator,

of w. This is defined as an object T = Tw = T1om with a universal 012-cell
II: e12(T) —o m, where e15 = e1e2 = eseq

T——T , T—X—>T , o

i\ ® N l J{\ 2¢\0
1|1P A—Fr—DB 1 er2T 1 B

w ¢ (6.12)
T U v T—1—T Vv

N N Y g\

R C———=D R D

G G

6.1.6 Exercises and complements (Higher tabulators, IT)

We conclude this topic considering two other higher tabulators T;7 of a
12-cell in StcDbl: the solutions are now I-dimensional cells — a lax and a
colax double functor — instead of an object as above.

(a) Prove that 7 has an ej-tabulator, defined as a 2-arrow Tim with a
universal 012-cell eq(Tiw) —o 7. (Note that the ej-tabulator of 7 is 2-
directed, like the 1-faces of =.)

(b) Prove that m has an es-tabulator, defined as a l-arrow Tom with a
universal 012-cell ea(Tam) —o 7.

(¢) Tabulators are preserved by faces and degeneracies
O (Tym) =T;(07m), TjleX)=e(T;X) (i #]) (6.13)

(d) By composing universal arrows, the total ejs-tabulator of 7 can be
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obtained as
Tlgﬂ' = T2T17T = T1T27T. (614)

6.1.7 An extension

(a) Generalising the construction of StcDbl, let D be a (strict) double cate-
gory whose arrows are displayed in directions 1 (horizontal) and 2 (vertical).

Furthermore we have an assigned category S of so-called strong arrows
embedded as a subcategory in HorgD and VergD, and every strong arrow
p comes with a pair (7, ¢) of cells as below, its unit and counit

A—— A A-—L2- B
ei n ip l’i € ie (6.15)

AT>B B —= B

that satisfy the equations n|e = e, and n® ¢ = 1,,. In other words p, as a
horizontal arrow, is companion to itself as a vertical one (see 4.1.1).

(b) We now embed D in a triple category S = StgD (or StggD)) with the
same objects, adding the strong arrows in the transversal direction. So far,
degeneracies of objects and faces of arrows derive from the original ones

8? Si — S*, €;: S, — Sz (616)

(c) The sets S12, So1, So2 of double cells of S consist of the following items:
- a 12-cell is an arbitrary double cell of I,

- a 0l-cell, as shown in the left diagram below, is a double cell ¢: (p _g q)
of D whose arrows p, ¢ (vertical in D) are strong

- a 02-cell, as shown in the right diagram above, is a double cell w: (u ? v)
of D whose arrows p, ¢ (horizontal in D) are strong.

Each S;; (for 0 < i < j < 2) has four faces, evident from the diagrams
above, and two obvious degeneracies

6?1 Sij — Sj, 8;-15 Sij — Si,

(6.18)
€;: Sjg)Sija ej:Si%Sij.
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For instance e; : Sy — Sp1 assigns to a transversal arrow p the horizontal
identity cell 1,: (p | p) of the original double category.

(d) Finally Spi2 is the set of triple cells of StgD: such an item II is a
‘commutative cube’ determined by its six faces; the latter are double cells
of the previous three types

A ., R , . L
lp\ I N
‘wi | R N (6.19)
. B N S\B

The commutativity condition means the following equality of pasted dou-
ble cells in D

A 1 A f . A / . 1 .
e n p %) q e ef e M q
A —pP=> ¢ —g— o A —f—=> o —a—>
u w p vy o= u T z ¢ y (6.20)
e — 7> o —k—> B o — h—> o —s> B
e el e e vl s e e
-~ B *—% - B—/85

(e) All composition laws are derived from those of D, using the fact that the
additional 0-directed structure is a particular case of the 1- and 2-directed
ones. Therefore all these laws are strictly associative, unitary and satisfy
interchange.

Again the triple category StgD is box-like.

(f) Applying this procedure to Dbl and choosing as strong arrows the strict
functors, we recover the previous construction StcDbl. Another possible
choice is the pseudo functors: this would give a larger triple category.

Applying our procedure to the double category LCCat (resp. LRACc)
defined in 3.1.4, we would choose as strong arrows the functors that preserve
limits and colimits (resp. the exact functors).

6.1.8 Some triple categories of cubical type

We end this section with some examples where the positive indices, 1 and
2, ‘can be interchanged’, in a sense that will be made precise in 6.3.1.
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(a) Starting from a double category A one can always form a triple category
Cubgz(A), in a way different from the previous one.

The objects are those of A. The transversal arrows f,g, ..., displayed
horizontally in the diagram below, are the horizontal maps of A, while the
1-directed and 2-directed arrows are the vertical maps of A.

A general triple cell is a diagram in A as below, with p @ p =71 ®@ ¥

. % . . % . . &
q q
l\ PR i . zl\. 2N
- - (6.21)
. v 14 Yy 0 h — e Yy
NN SN
. T . . T— .

As evident from this diagram, 01-cells and 02-cells are double cells of A,
while 12-cells are commutative squares of vertical arrows. Composition in
direction 0 (in dimension 1, 2, or 3) works with the horizontal composition
of A (of arrows or double cells); composition in direction 1 or 2 works
with the vertical composition of A. All these laws are strictly associative,
unitary and satisfy interchange.

The triple category Cubg(A) is of interest when the horizontal arrows of
A ‘preserve the structure of the objects’; or — more formally — when A has
all horizontal limit and colimits. This is not the case of Dbl, for which we
used a different procedure.

(b) Starting from a 2-category C one can form a triple category Qs(C) of
quintets, based on the double category QC of 3.1.4.

The objects and arrows are those of C (and QC). The 2-dimensional
cells are quintets, i.e. double cells of QC. A triple cell is a ‘commutative
cube’ of quintets, with w| (¢ ® p) = (T @) |

f f 0
opTo q cf-u q 2-%
PN D N

NS N

k k

All compositions are derived from those of QC. The triple category
Q3(C) is also box-like.

Let us note that the triple category Cubs(QC) is a substructure of Qz(C),
where all 12-cells are commutative quintets.
(¢) If C is an ordinary category, QC is the double category of commu-
tative squares of C. Both previous constructions give the triple category



256 Weak and lax multiple categories

Cubs(QC) = Q3(C) of commutative 3-cubes of C, where a triple cell is
precisely such a diagram in C.

6.2 Strict multiple categories

We give now an explicit definition of a (strict) multiple category.

A reader having some knowledge of cubical categories can think of an
extension of this notion where all the directions are of different sorts, rep-
resented by indices ¢ € N.

6.2.1 Hinting at the geometry

An index ¢ € N will represent a sort or direction of our structure, including
the transversal direction ¢ = 0 (that will be treated differently, from 6.2.5
on).

Basically, a multiple category A (to be defined below) will have:
- a set A, of objects,
- a set A; of i-arrows, or i-directed arrows, for every index i > 0 (with faces
in A,),
- a set A;; of 2-dimensional ij-cells, for indices ¢ < j (with faces in A; and
Aj)’
- and generally a set A; = A;,4,.., of n-dimensional i-cells, for every multi-
index i of n natural indices

0<in <ig < ... <1y (n>0),

with faces in each set Ail. 4

gt
- together with categorical composition laws, with respect to these faces,
that satisfy interchange ‘by pairs’.

6.2.2 Multiple sets

A multi-index 1 is a finite subset of N, possibly empty. Writing i C N it will
be understood that i is finite; writing i = {i1, ..., i, } we always mean that
i has n distinct elements, written in the natural order i7 < is < ... < ip;
the integer n > 0 is called the dimension of i.

We shall use the following notation

ij=ji=1U{j} (for j € N\ i),
il =i\ {j} (for j €1), (6.23)
n=1{0,...,.n—1}, [n]={1,..,n}, (for n > 0).
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A multiple set is a system of sets and mappings X = ((Xi), (0%), (e;)),
under the following two assumptions.

(mls.1) For every multi-index i = {41, ...,4, }, Xj is a set whose elements are
called i-cells of X and said to be of dimension n. For the sake of simplicity,
we write X, X;, Xjj;... for Xy, X¢sy, Xy 5y, ... Thus X, is of dimension 0
while Xy, X1, ... are of dimension 1.

(mls.2) For i € i and o = 4 we have mappings, called faces and degeneracies
of Xi

8?: X;— Xi‘,;, (7 Xi\i — Xi, (6.24)
that satisfy the multiple relations

0000 = 9708 (i #j), cie; =eje; (i#7),

(6.25)
8?.63' = ej.Bf‘ (Z 75 j), 6?.61‘ =id.

Faces commute and degeneracies commute, but 95 and e; only commute
for i # j. These relations look much simpler than the cubical ones because
here an index ¢ stands for a particular sort, instead of a mere position, and
is never ‘shifted’.

Note also that 95 acts on Xj if ¢ belongs to the multi-index i (and cancels
i), while e; acts on Xj if ¢ does not belong to i (and inserts ¢); therefore
the composites 8?.6;-6 , and e;.e; make no sense, here: one cannot cancel or
insert twice the same index.

If i = jUk is a disjoint union and & = (o, ..., ;) is a mapping a: k =
{k1,.... k. } = {—, 4}, we have an iterated face and an iterated degeneracy
(both independent of the order of composition)

81? = 8?11... 8,‘;‘; X — Xj, €k = €k, ...Ck,. * Xj — Xj. (626)

There are thus, in particular, 2™ total i-faces, or vertices, and one total
i-degeneracy

o =05t 0y Xy — X, e =€, ..., Xo = Xi. (6.27)

A morphism f: X — Y of multiple sets is a family of mappings f;: X; —
Y; (its components) that commute with faces and degeneracies.

(To be pedantic, let us note that a face 95': X; — Xj); also depends on
the multi-index i. It could be written in a more complete form, e.g. as
Ol but generally there will be no need of this. The same can be said of
degeneracies.)
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6.2.3 Cubical sets and multiple sets

Cubical sets form a presheaf category Set!” (that will be analysed more
completely in Appendix B).

The cubical site I C Set [GM, G2] has for objects the powers 2™ of the
cardinal 2 = {0,1} (for n > 0), with elements ¢t = (t1,...,t,): [n] = 2.

A morphism 2™ — 2" takes out some coordinates and inserts some 0’s
or 1’s, without modifying the order of the remaining coordinates. Such
morphisms are generated by the following cofaces and codegeneracies (for
l1<i<nand a€?2):

o 2n=1 — omn, ej: 2m — 271,
O (t1yeestn_1) = (t1, s tiot, @ tiy e tn_1), (6.28)

ei(tl, ceey tn) = (tl, ceey ti, ceey tn),
under the cocubical relations

00.08 =0%,.00 (j<i),  eie;=eje (<), (6.25)
€j.a? = 8?71.63' (] < i), 61‘.81-04 =1, €j.8? = 8?.6]'_1 (j > Z)
Modifying all this, the multiple site M has an object 2! = Set(i,2) for

every multi-index i C N, with elements ¢: i — 2. The category M C Set is

generated by the following mappings (for ¢ € i and « € 2)

o 21 =21 (9t)(5) = t(7), O =a (j#1),
eir 2021 (eit)(5) = () (G # 1),
under the comultiple relations, dual to the multiple relations of (6.25).
(Since all commutativity conditions stay the same, the only comultiple

relation different from the previous ones is: ;0 = 1.)
The category of multiple sets is thus the presheaf category SetM™.

(6.30)

There is a canonical (covariant) functor
F:M—1 F(21) = 2n,
F(8g: 21 — 21) = g2 2n= 1 — 27, (6.31)
Fe;: 2t — 21l = ej: 2" — 2n—h
where i = {i1,...,%5,...,In}.
F associates to a cubical set K: I°? — Set a multiple set K F°P: M°P —
Set.
We say that the multiple set X is of cubical type if it can be obtained
in this way, which happens if and only if it is ‘invariant under renaming

indices, in the same order’.
Precisely, X has to satisfy the following relations, where the multi-index
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i = {i1,....45,...,9n} C N is replaced with the ‘normalised’ multi-index
[n] ={1,...,4,...,n} (for n > 0)

X; ZX[n],
(afj X; — Xil.. I ) = (8;‘ X[n] — X[n]lj)a (6.32)

Tjeln
(eij:X. in %Xi)Z(ej:X[n]‘j%X[n]).

01l

This notion is equivalent to the classical notion of a cubical set, by a
rewriting of multi-indices. In fact, normalising the multi-index [n]|j =
{1, s ..,n} to [n — 1], the multiple relations become cubical relations
and our multiple set of cubical type becomes a cubical set, of components
Xn = X

Here we prefer to avoid such rewritings and stay within multiple sets.

More generally, we have a multiple site M(N) based on any set N, and N-
indexed multiple objects X : M(N) — C in any category C; a multi-index is
now a finite subset i C N. We shall generally use a totally ordered pointed
set N = (N,0), together with the associated ordered set N* = N\ {0}.
Besides N, we shall frequently use the ordinal n and the ordered set Z of
all integers.

6.2.4 Multiple categories
We are now ready for a formal definition of our main strict structure.

(mlt.1) A multiple category A is, first of all, a multiple set of components
Aj; whose elements will be called i-cells. As above i is any multi-index, i.e.
any finite subset of N, and we write A., A;, Aij, ... for Ag, Apy, Agigy, -

(mlt.2) Given two i-cells z,y which are i-consecutive (i.e. 3] x = 9; y, with
i € i), the i-composite x +; y € A; is defined, satisfying the following
relations with faces and degeneracies

0; (x+iy) = 0; @, 07 (x +iy) = 0y,

 (6.33)
Of(x+iy) =07z +: 05y,  ei(x+iy) =ew+iey  (J#1)

(mlt.3) For j ¢ i these data form a category cat; ;(A) with objects in A;,
arrows in Aj;, faces 8;1, identities e; and composition +;.
(mlt.4) For i < j we have

(z+iy)+j (z+iu) = (x+;2)+i (y+ju) (binary ij-interchange), (6.34)

whenever these composites make sense.

Let us note that the lower interchanges are already expressed above:
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the last condition of (6.33) is interchange between i-composition and j-
identities, while the zeroary interchange is already written in the axioms
of multiple sets: e;e; = eje;, for j # 4.

Again, we can more generally consider N-indexed multiple categories,
where N is a totally ordered set, pointed at 0. If IV is the ordinal n =
{0,...,n — 1} we obtain the n-dimensional version of a multiple category,
called an n-tuple category. The 0-, 1- and 2-dimensional versions amount —
respectively — to a set, a category or a double category.

We have already studied some triple categories in Section 6.1. Infinite
dimensional examples of cubical type will be seen in Section 6.3. In Sec-
tion 7.7 we shall construct the exponential of multiple categories.

6.2.5 Transversal categories

The transversal direction, corresponding to the index ¢ = 0, plays a special
role. It will be used for the transformations of multiple functors and for
the structural arrows of limits and colimits; its composition will stay strict,
in all the weak or lax extensions we shall consider. We think of it as the
‘dynamic’ or ‘structural’ direction, along which ‘transformation occurs’,
while the positive directions are viewed as the ‘static’ or ‘geometric’ ones
(like the vertical direction of polarised double categories, in 3.2.6).

A positive multi-index i = {iy, ..., 4, } C N* (with n > 0 positive indices)
has an ‘augmented’ multi-index 0i = {0, 41, ..., i, }. The transversal category
of i-cubes of A

Ai = tVi(A) = Catiyo(A)7 (635)

- has objects in Aj, called i-cubes and viewed as n-dimensional objects of
type i,

- has arrows f: z —g 2’ (or f: z — o) in Agy, called i-maps, with faces
9 (f) =, 95 (f) =,

- has identities 1, = idz = ep(x):  —¢  and composition gf = f +¢ g.

All these items, including i and 01i, are said to be of degree n (while their
dimension is either n or n + 1): the degree always refers to the number
of positive indices. A transversal isomorphism is an isomorphism in a
transversal category.

In all of our ‘concrete’ examples, the 0-composition gf = f +¢ ¢ is
realised by the usual composition of mappings, while the geometric com-
positions (also called concatenations) of cubes = +; y and of transversal
maps f +; g are often (but not always!) computed by means of operations
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(sums, products, tensor products, pushouts, pullbacks...) where reversing
the order of the operands would have no motivation.

The unique positive multi-index of degree 0, namely (), gives the category
tvi(A) of objects of A (i.e. x-cells) and their transversal maps (i.e. *-maps,
or 0-cells). A 1-dimensional {i}-cube is also called an i-arrow.

Faces and degeneracies give (ordinary) functors, for ¢ € i and o = &

07 tvi(A) — tvy(A), ei: tvii(A) = tvi(A). (6.36)

Forgetting the positive compositions, a multiple category A has an un-
derlying premultiple category |Al, i.e. a multiple object in Cat, indexed by
the (non-pointed) set N*.

More generally, for an N-indexed multiple (or premultiple) category a
‘positive’ multi-index i should be understood as a finite subset i C N* =
N {0}.

6.2.6 Multiple functors and transversal transformations

A multiple functor F': A — B between multiple categories is a morphism of
multiple sets F' = (F;: A; — Bj) that preserves all the composition laws.
Its transversal i-component, from A; = tvi(A) to B; = tvi(B)

F =tvi(F): A; - B; (ic N9, (6.37)

is an ordinary functor. Its action on an i-map f: x —¢ y is written as
F(f): F(x) =0 F(y), or Fi(f): Fi(z) =0 Fiy). X

(The functor Fj is determined by the mappings F; and Fp;; we generally
work with the transversal components Fj and do not use the components
F; and Fp;, pertaining to multiple sets.)

A transversal transformation ¢: F' — G: A — B between multiple func-
tors consists of a family of i-maps in B, for every i C N* and every i-cube
z in A, that agrees with positive faces

or: Fr —y Gr (piz: Fi(x) —o Gi(x)), (6.38)
p(09) = 02 () (i€icN). '
The following axioms of naturality and coherence are assumed:

(trt.1) for all f: & —¢ y in A, we have a commutative diagram of transversal
maps in B

Fr 2% Gr

Ffl in

FyWGy
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(trt.2) ¢ commutes with positive degeneracies and compositions:

p(eit) = ei(pt), p(x+iy) = pr +i gy,
where i € i C N*, ¢ is an i|i-cube,  and y are i-consecutive i-cubes.

Again, ¢ has transversal components
pi = tvi(p): F} = Gi: A; — B; (ic N*), (6.39)

which are natural transformations of ordinary functors (this fact comprises
axiom (trt.1)).

6.2.7 Multiple categories and duality

Given two multiple categories A, B, we have thus the category Mlt(A, B)
of their multiple functors and transversal transformations. All these form
the 2-category Mlt, in an obvious way.

Multiple categories have dualities, generated by reversing each direction
i and permuting directions; they form an infinite-dimensional hyperocta-
hedral group.

We are mainly interested in the transversal dual A'* that reverses all
transversal faces 9 and all transversal compositions, so that tv;(A') =
(tvi(A))°P; for two i-maps f: z —¢ 2’ and g: 2’ —¢ 2" in A, we have
corresponding maps f*, ¢* in A" with

ffra =z, g =N (6.40)

The prefix co- always refers to transversal duality. This corresponds to
ordinary duality in dimension 1 (for categories) and horizontal duality in
dimension 2 (for double categories).

Similarly one defines the 2-category pMlIt of premultiple categories, pre-
multiple functors and transversal transformations, with a forgetful 2-functor

| — | Mt — pMIt, (6.41)

whose action on the objects has been introduced at the end of 6.2.5.

More generally for a totally ordered pointed set N = (N,0) we have
the 2-categories Mlty and pMlty of N-indexed multiple, or premultiple,
categories.

6.2.8 Truncation and triple categories

As we already remarked, restricting all indices to the subsets of the ordinal
set n = {0,...,n — 1} we obtain an n-dimensional version of a multiple cat-
egory, called an n-tuple category, or n-multiple category, where the highest
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cells have dimension n. The 0-, 1- and 2-dimensional versions amount —
respectively — to a set, or a category, or a double category.

There is thus a truncation 2-functor with values in the 2-category Mlt,
of n-tuples categories, which has both adjoints

tre, : Mlt — Mlt,,, sk, -1 tre, - cosk,. (6.42)

The left adjoint (called skeleton) adds degenerate items of all missing
types i ¢ n. The right adjoint (called coskeleton) is more complex: for in-
stance, if C is a category and i a positive multi-index, an i-cube of cosk; (C)
is a functor : 2! — C where 2 = {0, 1} is discrete (so that x is a family of
objects of C indexed by the set 2!); an i-map is a natural transformation
of these functors.

We are particularly interested in the 3-dimensional notion, called a triple
category, already explored in Section 6.1. Its cells, corresponding to multi-
indices i C {0, 1,2}, are:

- objects, of one sort (for i = (),

- arrows of three sorts, in directions 0 (transversal), 1 and 2,

- 2-dimensional cells of three sorts, in directions 01, 02 and 12,
- 3-dimensional cells of one sort, in direction 012.

Other kinds of truncation, by degree or dimension, will be mentioned in
6.3.4 and 6.3.5.

6.3 Multiple categories of cubical type

Cubical categories are here viewed as multiple categories of cubical type.
An independent definition will be given in Appendix B.

The notion of cubical category which we use here was defined in [G2, G4]:
it includes transversal maps, which can be of a different sort from the other
arrows, and are crucial for the weak and lax extensions. It differs on this

point from the notion of [AIBS], that was called a ‘reduced cubical category’
in [G2, G4].

6.3.1 The cubical type

We say that the multiple category A is of cubical type if its components,
faces, degeneracies and compositions are invariant under renaming positive
indices, in the same order.
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In other words, for all i = {iy,...,7,} C N*

tvi(A) = tv []( ),
(05 Ai = Aypi;) = (05 Ay = Apyj),
(ei;: Ajji; = Ai) = (€51 Apyjj — Apy),
(i, 0 Aix A = A;) = (45 A[n]>.< Apy = Ay,

(6.43)

where — X — denotes the appropriate composition pullback.

(With respect to multiple sets (in 6.2.3), we are using here a different
form of normalised multi-index, that only intervenes on positive indices
and preserves both dimension and degree. In other words, a component
Ap; of i-transversal maps is normalised as Agj,), not as Ap,41.)

A multiple category of cubical type is equivalent to a cubical category, as
defined in [G2, G4] and Appendix B. Generally, we shall make no difference
between these two notions.

In a multiple category of cubical type an i-cube x € A; = A, is also
called an n-cube, and an i-map f: x — y (belonging to Ag; = Agpy)) is also
called an n-map.

In the truncated case the previous invariance condition is trivially satis-
fied up to dimension 2 (corresponding to sets, categories and double cate-
gories), since a subset i C {0, 1} is automatically normalised in the present
sense; on the other hand, a triple category can be of cubical type or not: for
instance the examples of 6.1.8 are of this type, while the structure StcDbl
of 6.1.1 is not, since its 1- and 2-arrows are of different kinds.

*Infinite-dimensional globular categories, usually called w-categories, can
be analysed as cubical categories of a globular type: see [AIBS] and [GP5],
Section 2.*

6.3.2 Symmetries

As we shall soon see, many of our examples of cubical categories are of an
even more particular, ‘symmetric’ kind — with positive faces, degeneracies
and compositions related by symmetries — so that the structure in direction
1, for instance, determines all the positive ones. Again, symmetric cubical
categories, in their own right, will be dealt in Appendix B; here they can
be viewed as follows.

A multiple category of symmetric cubical type is a multiple category of
cubical type A (as defined above) with an assigned action of the symmetric
group S, on each transversal category tvy,)(A), generated by transposition



6.3 Multiple categories of cubical type 265

functors
Sit tVip) (A) — tVin (A), i=1,...,n—1 (n>2). (6.44)

These transpositions satisfy the well-known Moore relations of the sym-
metric group (see (B.26)). Moreover s; exchanges the i-indexed structure
with the (i+1)-indexed one, leaving the rest unchanged. This will be made
precise in Appendix B.

In the truncated case the symmetric structure, that only works on pos-
itive indices, is trivial up to dimension 2: for sets, categories and double
categories as well. (One should not confuse this notion with the transpos-
itive property of strict double categories, that works on the indices 0, 1;
see 3.2.5.) On the other hand, a triple category of cubical type A is made
symmetric (if this is possible) by assigning two involutions s1: Ajg — Ajs
and s1: Agio — Agi2 that satisfy the axioms above.

6.3.3 Commutative cubes on a category

The simplest example is the symmetric cubical category Cub(C) of com-
mutative cubes of a category C, that extends the 3-dimensional structure
of 6.1.8(a).

An n-cube is a functor z: 2™ — C (n > 0), where 2 is the arrow category.
An n-map f: x — y is a natural transformation of these functors, and can
be seen as a functor f: 2"x2 — C (this is the same as a cube of dimension
n + 1: transversal maps are here redundant).

Without using the cubical framework, an i-cube is a functor z: 21 —
C, where i is a subset ¢; < ... < i, of N*; it can be viewed as an n-
cube ‘displayed’ in n directions i1, ..., %,, which need not be the standard
directions 1, ...,n of i = [n]. The difference is formal, but the machinery of
faces and degeneracies is different.

Applications of this multiple category (and its truncations) to algebraic
K-theory can be found in Shimakawa [Sh].

6.3.4 Cubes on a double category

More generally, we start now from a double category A and construct a
multiple category Cub(A) that extends the double category itself and the
triple category Cubs(A) of 6.1.8(a). It is of symmetric cubical type, and
gives the previous Cub(C) when applied to the double category QC of
commutative squares of the category C.

For a positive multi-index i = {i1,...,4,} C N*  an i-cube of Cub(A) is
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a functor z: 21 — Verg(A), i.e. a commutative n-cube of vertical arrows of
A, displayed in the directions i1, ..., %;,.

Ani-map f: x — yis a functor f: 21 — Ver;(A), i.e. an n-cube of double
cells of A, commutative under vertical composition.

Thus, in degree 2 (and dimension 3), a Oij-cell (for 0 < ¢ < j) is a
diagram in A as in (6.21), with p @ p =7 Q1

! s .o
q q
u p\o ’ 9\0 u i x \o ]¢\Z
_ _ (6.45)
. v P Y . h—>= o Y
NN SN

—_— o —> o
k k

The transversal composition of these cells works with the horizontal com-
position in A; all the geometric compositions work with the vertical com-
position in A.

Every transversal map of degree n — 1 > 3 is an n-dimensional cubical
diagram whose iterated faces in direction 0ij (of degree 2) are as above.

*Note. The last step is a coskeletal extension ‘by degree’, right adjoint to
a kind of truncation that, in a multiple category, keeps all the items of
degree < 3. The ‘stronger’ truncation trcg: Mlt — Mlts that we have
considered in (6.42) only keeps the i-cells with i C {0,1,2}, and gives a
different coskeletal extension.*

6.3.5 Higher quintets on a 2-category

We start now from a 2-category C and construct a multiple category
M = Q(C) of (higher) quintets over C, extending the double category
QC of quintets, see 3.1.4, and the triple category Qs(C) of 6.1.8(b). It
is of symmetric cubical type, in a strong sense because here everything is
invariant under renaming all indices, in the same order; the transversal
direction plays no special role.

(a) The objects of M are those of C; in every direction ¢ > 0, an i-cell
f+ A —; Bis a C-morphism. They form the category cat;(M), underlying
the 2-category C (and independent of 7).

(b) In dimension 2, an ij-cell (for 0 < @ < j) is a quintet of C, consisting
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of four morphisms and a 2-cell ¢

Ao x . i

lq p:qf = gp: A— D. j¢ (6.46)
D

p

N\

¢ g

These cells have two obvious composition laws, in directions ¢ and j, and
form a double category dbl,;(M); it is the same as the double category QC,
‘displayed’ in directions 4 and j.

(c) In dimension 3 an ijk-cell (for 0 < ¢ < j < k) is a ‘commutative cube’
II of quintets
! i

f
u ”\M g\i ur/w L \q kNI
l‘j A </< J{ i\ (6.47)

" f 027- )
NP TR
k k

More precisely, we have six quintets

w:qf — gp, P sh — kr (two ij-cells, the faces O91I),
m: xf — hu, p:yg — kv (two ik-cells, the faces 6;-11_[),

w: vp — ru, C:yq — sz (two jk-cells, the faces OP1I),
which must satisfy the following commutativity relation, in C
Yo R pp ® kw = (f @ sT @ Yu: yqf — kru. (6.48)

The compositions in directions 4, j, k amount to compositions of faces in
the double categories dbl;;(M), dbl;z(M) and dbl;z(M). We have thus a
triple category trp; ;;,(M).

(d) Every cell of dimension n > 3 is an n-dimensional cube whose 2-
dimensional faces are quintets, under the condition that each 3-dimensional
face in direction 75k be an ijk-cell, as defined above.

*Note. The last step is a coskeletal extension ‘by dimension’, right adjoint
to a kind of truncation that, in a multiple category, keeps all the items of
dimension < 3; then a 3-dimensional cube has no transversal maps, which
is not a problem in the strict case.
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6.3.6 Other examples

Extending the double categories of Section 3.1.9, we shall construct in 6.6.5:
- a symmetric cubical category Pmap(C) of cubical partial maps of C,

- a symmetric cubical category Piso(C) of cubical partial isomorphisms.

6.4 Weak and chiral multiple categories

We now extend multiple categories to the weak case. As in the strict case,
the basic structure of a weak multiple category A can be defined as a
multiple set of components Aj;, for i C N, or as a multiple object in Cat of
components A; = tvi(A), for i C N*. The former approach was followed
in [GP8]; here we follow the latter, that fits better with the theory of
adjunctions and monads developed below.

The prime examples are based on (cubical) spans and cospans, in 6.4.6;
they will allow to study many other structures by span or cospan repre-
sentability, in Section 6.7.

We end with a more general notion, partially lax: a chiral, or x-laz,
multiple category (see 6.4.8): it has the same structure of a weak multiple
category, except for the fact that the interchangers yx;; of the ¢- and j-
compositions (for 0 < ¢ < j) are not supposed to be invertible.

6.4.1 The basic structure

We begin by the basic framework; the comparisons for unitarity, asso-
ciativity and interchange will be introduced in 6.4.2 and their coherence
conditions in 6.4.3, 6.4.4.

(wme.1) A weak multiple category A is, first of all, a family of categories
A; = tvi(A), for i C N*, called the transversal categories, or transversal
components of A.

The objects of A; are called i-cubes (or i-cells) and form a set Aj; the
morphisms f: 2~ — a7 are called (transversal) i-maps (or Oi-cells) and
form a set M; = Api. The categorical structure has faces 95 (f) = z* (a =
+), identities eg(z) = id(z) = 1, and a composition law co(f,g) = f+og =
gf defined on the set of consecutive pairs (f, g) of i-maps (95 f = 9, g)

88‘: Mi E Ai Lep, Co: M,>.< Mi — Mi. (649)
(wmec.2) These categories form a premultiple category, i.e. a multiple object

in Cat, indexed by the finite subsets of N*. In other words, we have functors
of faces and degeneracies

07 tvi(A) = tvyi(A) rey (teic N, a=4), (6.50)
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that satisfy the multiple relations of 6.2.2. (We also have a multiple set
(4;) indexed by the finite subsets of N.)

(wme.3) Furthermore i-cubes and i-maps have, in every (positive) direction
i € i, a geometric i--composition written in additive notation and diagram-
matic order

T4y,  f+ig (0fz =0y, 0f f =0; g), (6.51)

which commutes with the transversal faces, degeneracies and composition
of (6.49). In other words it is a functor +;: A; x; A; — Aj;, defined on the
pullback-category of pairs of i-consecutive i-cubes (and i-maps).

(wmec.4) Including the transversal composition, we have now a composition
law x +; y of consecutive i-cells x,y € A;, for i € i C N. The following in-
teractions with faces and degeneracies are assumed, for ¢ # j (even though
for i = 0 or j = 0 part of these relations follow from the previous axioms)

0; (x +iy) = 0; (), Of (z +iy) = 07 (),

(6.52)
O (x +iy) = 08 () +: 05 (y), ej(z+iy) = e;(x) +ie;(y).

For i-cells z,y € A;, when we write 02 or x +; y it is understood that
i €iand 0] x = 0; y; when we write e;x it is understood that i ¢ i. The
last condition in (6.52) is a strict interchange between i-composition and
j-identities.

For a positive multi-index i, a transversal i-map f: x —¢ y is said to
be i-special, or special in direction i € i, if its two i-faces are transversal
identities

Ot f = epdf'x = egOy (a = %). (6.53)

This, of course, implies that the i-cubes z, y have the same i-faces: 0f'z =
07y (in Aj);). We say that f is ij-special if it is special in both directions
i,].

For i = (iy,...,i,) we say that a transversal i-map f: z — y is special
on vertices (or special, for short) if all its total faces, namely the 2" maps
0pt...0;(f) of degree 0, are identities. Every i-special map is of this kind.

6.4.2 Comparisons

Now we require that the positive compositions in A are unitary, associa-
tive and satisfy interchange up to invertible transversal comparisons: left
unitors, right unitors, associators and interchangers. The letter i denotes a
positive multi-index, with ¢ € i. (In the diagrams below a line segment rep-
resents a cell and a double one represents a cell degenerate in the direction
of the line itself.)
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(wmec.5) For every i-cube x we have an invertible i-special i-map \;z, which
is natural on i-maps and has the following faces (for j # i in i)

Xiz: (0; ) +ix =0 x (left i-unitor),
(6.54)
I Nix = \i0f'x (08 Nz = epdfx),
o, x 0, x j
¢ — o 1 ¢ — o 1 . %O
e0d; x i
€;0; x \ . 1\ . 7\ . le \
0
*« — B:,L — e .
8;."5 T 8?1 8;r o a T 8;“5
*« — B:rz — e 1 .
1\ eoajz \ 1\
L] 7a+m L] L] 7B+x L]

[ i

The condition in parentheses says again that \;x is i-special; this rep-
etition will be omitted below. The naturality condition means that for
every i-map f: x —¢ 2’ the following square of i-maps commutes (in the
transversal category A;)

(e;0; ) +; x LA
(eid] f)+if i J{f (6.55)

(e;0; a’) +; o’ ~ x’

i

(wmc.6) For every i-cube x we have an invertible i-special i-map p;z, which
is natural on i-maps and has the following faces (for j # i in i)

piz: T +i (€;0] ) = x (right i-unitor), (6.56)
6.56
05 pix = p;0f .
o, x o, = j
. [ 1 [ o 1 ¢ —>
J' \ €00, x \ ll’ \?
0. x x o x . O x . .
’ J‘ oy x
*« — Bjrr — .
piajz pi(')j_z
eiaja: 8;:5 T otz
0, ’
¢ — 8:':1: — e 4 .
D eodTm N I
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(wme.7) For three i-consecutive i-cubes z,y,z we have an invertible i-
special i-map k;(x,y, z), which is natural on i-maps and has the following
faces (for j # 4 in i)

ki, y,2): x4+ (Y4 2) =0 (T4 y) +i 2 (i-associator),

(6.57)
a _ le% a «
aj Hi(xa Y, Z) - Hi(aj x, aj y7aj Z)
0; x 0, x j
3 ° 1 . . 1 ¢ —>
\ \ 00, @ \ Zi/ N)
Bj_z T 8;%1: . 8j_:v . O,y x— o
+ - +
6]- T 8]. T 8]- T
. . . . . T+;y .
9y oty ki 0F oty 9yy| 0y |05y oty
. Yy+iz . . . . .
_ + _
8]. z 8]. z aj z
s ——— ¢+ 4 8j+z . Bj z Z a;rz
+
1\ eo0; = \ N
L] —_— L] L] L]
otz 8F z

i i

(wme.8) For ¢ < j in i and a consistent matrix of i-cubes (¢ ¥) (with
i-consecutive rows and j-consecutive columns), we have an invertible ij-
special i-map x;;(z, y, z, u), the ij-interchanger, which is natural on i-maps
and has the following k-faces (for k # 4,7 in i)

Xij (T, 2,u): (€ +iy) +5 (2 i w) =o (@45 2) +i (y +5 ),

(6.58)
a]?Xij(1'7y,Z,U) = Xij(a]?xva]?y7agzaa]?u)v
6;z 9y 8;117 Iy i
. ° . . . . o —>
1 1
0 x z+iy \ 0] x \ €o \ j \L \\)
1
L] L) . L] L] L] L]
o7 2 ztiu € |9ty 97z| ¢o oty
. . . L . . e Ttz | Yyt,u e
1\ €o \ Bfu 1\\ 6l.+u
L] + L] + L] L] + L] L]
+
8]. z Bj u oF z 6]- u

(wmc.9) Finally these comparisons must satisfy conditions of coherence,
written below in 6.4.3, 6.4.4.

We say that A is unitary if all the comparisons A, p are identities, and
pre-unitary if every unitor of type A(e;z) = p(e;2): e;2 +; ;2 — €;z is an
identity (see (6.59)).



272 Weak and lax multiple categories

The transversal dual A¥ of a weak multiple category A reverses the
transversal faces and compositions (as in 6.2.7), and has inverted com-
parisons \f (z) = ((\iz)~1)*, ete.

As in 6.2.4, we also consider N-indexed weak multiple categories, where
the term positive multi-index means never 0. The truncated case is consid-
ered below, in 6.4.7.

6.4.3 Coherence conditions, 1

The coherence axiom (wmc.9) means that the comparisons satisfy various
conditions; for future reference we split them in two parts, deferring to the
next point 6.4.4 all the conditions involving the interchanger x;;.

The following diagrams of transversal maps must commute (assuming
that all the compositions and degeneracies in direction ¢ > 0 make sense).

(wmc.9.1) Coherence pentagon of the i-associator k = k;

(x+iy)+i (z +iw)
z+; (y+i (z+iu)) (x+iy) +i2) tiu

1+, K\ /K+7 1

c4i ((y+iz) tivw) —— (@+i(y+i2) +iu

(wme.9.ii) Coherence condition of the i-associator and i-unitors:

T+ (€0 y+iy) ——— (z+; €0 x) +iy

14 Al

T+ Yy

These conditions amount to asking that, for every positive multi-index
jand i ¢ j, the j-cubes of A form a weak double category dbl;;(A) with
horizontal arrows in Ag;, vertical arrows in Aj; and double cells in Agj;.

In particular, from (3.37), we have:

Ai(eiz) = pi(e;z): e;z+i ez = e;z. (6.59)

6.4.4 Coherence conditions, I

Finally we list the conditions involving the interchangers x;; (for 0 < ¢ < j).
The following diagrams of transversal maps must commute, for 0 < i <
j < k. All positive compositions are assumed to be legitimate.



6.4 Weak and chiral multiple categories 273

(wme.9.ili) Coherence hexagon of x = xi; and k;

KiTj K

(@ +i(y+i2)+; (@ +i (Y +i2") —— (@+iy) +iz) +; (@' +iy') +i 2')
X x
(i) +i ((y+i2) +5 (¥ +i2)) (@ +iy)+5 (2" +iy')) +i (245 2")
1+; X\L \LXJril

(@) +i((y+59) +i (245 2) —= ((@+52") +i(y+59)) +i (24, 2)

/

(wmc.9.iv) Coherence hexagon of x = xs; and k;

(w+ia') +5 (y+iy) 4 (24 2) — (@) +5 (y+iy)) + (241 2)
1+ Xi/ \Lx+j1
(@+;2")+; ((y+;2) +: (y +5 7)) ((@+jy)+i (@ +59) +; (24 2")
x| |x

(@45 (y+52) +i (@ +; (Y +;2) —= (@+jy)+;2) +i (2" +;9') +; 2)

KjTikKj

(wme.9.v) Coherence conditions of x = x;; with A= X; and p = p;

_ _ At A ptip
(e;0; x+; )+ (€0 y+iy) — x+; y <~ (x+; eiajx) +i(y+; elﬁjy)

x| |x

(€:0; x +j €0, y) +i (2 +5y) (w+;y) +i (€:0; x +; €:0;"y)

€il; (x+;y) +i(x+;y) TNy~ (z+;y) +iedf (x+59)

(wme.9.vi) Coherence conditions of x = xi; with A= X; and p = p;

_ A P
ej0; (x+iy)+j (x+iy) ——a+jy<—"(@+y)+; ejaf(l‘ +iY)

H H
(e;05 @ +ie;05y) +j (z +iy) (x+iy) 4 (0w +i ¢;0fy)
X\L ix

(ejajfx +5T) 45 (ejajfy +5Y) Tt 5y . (x+; eja;rx) +; (Y +; ejﬁfy)
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(wme.9.vii) Coherence hexagon of the interchangers xij, Xjk and Xik

((z+iy)+j (z+iu) +i (2" + ") +5 (2 +i )
Xjkil
(@ +iy) +n (@' +5y") +5 (2 +iu) +5 (2" +iu')) Xij Tk Xij

Xik 15 Xik ((f +j Z) +i (y +j U)) +K ((1'/ +j Z/) +i (yl +j u/))

((Z'Jrk xl) +i (y Tk y’))+j ((Z +k Z/) +; (u+;€ u')) Xik

Xig | (@) 2) +r (@45 2)) +i (y +50) +r (Y +5 0))
\LXjk +i Xjk
(w+r @) +5 (241 2") +i (Y +Y') +5 (utp ')

6.4.5 Cubical type

Extending the definition of 6.3.1, we say that the weak multiple category
A is of cubical type if its components, faces, degeneracies, compositions and
comparisons are invariant under renaming positive indices, in the same
order, so that everything is determined by the n-cubes of Ay ., and the
n-maps of Ag 1, . n,ie. by the transversal components tv(,A.

Now the formulas (6.43) must be completed for the invariance of com-
parisons: for instance the left unitor

AT (618;1') +; T —0 X (LE € Ail ,,,,, in)’ (660)
where ¢ = 4; is the j-th index, must be the same as the left unitor
Ajz: (ej0;x) +j2 =0T

of the ‘normalised form’ z € 4, .

We speak of symmetric cubical type when we further have a left action
of the symmetric groups S, on A; ., and Ag1,. » as described in 6.3.2,
that is also coherent with the comparisons A, p;, 54, Xij. Namely, for every
permutation s: [n] — [n] that takes i to i’ and j to j' we have:

SN = Ai.S,  S.p; = pir.S, S.Kj = K., (6.61)
8.Xij = Xi'j’-S (i #7),

where we introduce x;; = (x;;) " for i < j.
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All this is better understood from the examples below. Again, we gen-
erally make no difference between a ‘weak multiple category of symmetric
cubical type’ and a ‘weak symmetric cubical category’.

6.4.6 Examples

(a) The weak symmetric cubical category Cosp(C) of cubical cospans over
a category C with (a fixed choice of) pushouts has been constructed in
[G2], to deal with higher-dimensional cobordism.

A detailed construction will be given in Section B4, taking advantage of
the cubical machinery developed in Appendix B, but the interested reader
can begin to work it out now, from the following inputs.

An n-cube is a functor z: A™ — C, where A is the formal-cospan cate-

gory

00 — 0 =— 10 o« —>
A R
0 — 1 <1 0L — ww <=— 1 (6.62)

(R

01 — 1 =— 11 A2

A transversal map of n-cubes is a natural transformation of these func-
tors. The transversal component of degree n of Cosp(C) is thus the category

Cosp,,(C) = Cat(A", C). (6.63)

The concatenation x +; y of two n-cubes which are i-consecutive (i.e.
9 (z) = 9; (y)) is computed in the obvious way, by 3"~! pushouts ‘along’
the common face. The comparisons come from the universal property of
the latter.

Concatenation can be given a formal definition. It is based on the model
of binary composition (for ordinary cospans), namely the category As dis-
played below, with one ‘marked square’

/\/\
a c (6.64)
SN SN
0 b 1

AY]

and equipped with the embedding k: A — Ay determined by the labelling
of the objects 0,¢,1 in Asg.
Now, given two consecutive cospans z,y in C, their concatenation is
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defined as

r+1y=[z,yl.k: A = Ay — C, (6.65)

using the obvious functor [z,y]: As — C that takes the marked square to
a distinguished pushout in C.

1-directed concatenation of n-cubes is based on the cartesian product
Ao x A" L represented below in dimension two

10
RN

00 — a0 =— b0 ——= 0 <— 10 .« —>

l i _ /l/ ’;\ l i lr" (6.66)

00 — at =— bL —+—= c <=— 11

[ I EEN

01 —= al == bl — > cl =— 11 poun

The 2-dimensional truncation Cospy(C) is the weak double category
CospC constructed in Section 3.4.

(b) Similarly we have the weak symmetric cubical category Span(C) of
cubical spans over a category C with (a fixed choice of) pullbacks. An n-
cube is a functor x: V* — C, where V = A°P is the formal-span category

00 =<— 0 — 10 o« —>
R
0 <— 1 —1 0L <— ww — 1 (6.67)
R
v 01 =<— (1 — 11 2

Again, a transversal map of n-cubes is a natural transformation of these
functors. Span(C) is transversally dual to Cosp(C°P), with positive com-
positions computed by pullbacks.

The 2-dimensional truncation Span,(C) is the weak double category
SpanC constructed in Section 3.4.

(c¢) The weak symmetric cubical category of cubical bispans, or cubical dia-
monds Bisp(C), over a category C with pullbacks and pushouts, is similarly
constructed over the formal diamond category of (4.54). The 2-dimensional
truncation Bisp,(C) is the weak double category Bisp(C) described in 4.5.7.

(d) Multiple structures of cubical relations and partial mappings will be
introduced in Section 6.6.
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6.4.7 Weak n-tuple categories

As in the strict case (in 6.2.8), the n-dimensional structure of a weak n-
multiple category, or weak n-tuple category, is obtained by restricting all
multi-indices to the subsets of the ordinal n = {0,1,...,n — 1}.

The 0- and 1-dimensional versions still amount to a set or a category,
but the 2-dimensional notion is now a weak double category. We are par-
ticularly interested in the 3-dimensional case, a weak triple category.

Starting from an (unbounded) weak multiple category A, its truncation
with multi-indices i C n gives a weak n-tuple category trc, A, also written
as Ap.

Thus Spang(C) is the weak triple category of 2-cubical spans (over a
category with pullbacks), where the highest-dimensional ‘objects’ are 2-
cubes x: V2 — C, i.e. spans of spans, and their transversal maps are
3-dimensional.

Similarly we have the weak n-tuple categories Span,, (C), Cosp,, (C) and
Bisp,, (C) of (n — 1)-dimensional cubical spans, cospans and bispans (with
their n-dimensional transformations).

6.4.8 Chiral multiple categories

A chiral multiple category, or x-lax multiple category, or cm-category, is a
partially lax generalisation of a weak multiple category. (The term ‘chiral’
refers to something that — generally — cannot be superposed to its mirror
image.)

This notion is no longer transversally selfdual and has two instances. A
right chiral multiple category has the same structure and satisfies the same
axioms considered above in the weak multiple case, except for the fact that
the ij-interchanger, for 0 < i < j

Xij (@, Y, z,u): (x4 ) +5 (2 u) =0 (245 2) +i (y +5 ), (6.68)

is mo longer supposed to be invertible.
By transversal duality, a left chiral multiple category has an ¢j-interchange
comparison directed the other way round, for 0 < ¢ < j

Xij (@, y, z,u): (x4 2) +i (y+5u) =0 (@ +iy) +5 (24 w), (6.69)

with the obvious modification of the coherence axioms.
Both structures still have the strict degenerate interchanges mentioned
in 6.2.4 and 6.4.1, which it will be useful to write in the following form, for
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0<i<y:

ejei(r) = eiej(x), (6.70)
e +j ey = ei(z +; y), ej(z +iy) = e;(x) +i e (y).

We generally work in the right chiral case, that will just be called ‘chiral’.

In the truncated n-dimensional case every left chiral n-tuple category
can be turned into a right chiral one just by reversing the positive indices,
i — n—i; in this way we avoid resorting to transversal duality, which would
turn transversal limits into colimits. In the infinite dimensional case this
also works if we replace the natural indices with the integral ones, or with
any (infinite) selfdual totally ordered pointed set.

A chiral triple category is the 3-dimensional truncated notion, with multi-
indices i C {0,1,2}. Our main example of this kind is the (right) chiral
triple category SC(C) = S1C1(C) of spans and cospans over a category C
(with pushouts and pullbacks), that will be described in Section 6.6, to-
gether with other structures of higher dimension, including the unbounded
chiral multiple category S_o.Coo(C), indexed by the ordered set Z of inte-
gers. These examples motivate our terminology for the alternative right /left:
in the right-hand case the lower composition laws use limits (i.e. right ad-
joints), and come before the upper ones that use colimits: for instance,
pullbacks before pushouts in SC(C).

In Section 6.8 we shall briefly sketch intercategories, a further generalisa-
tion of chiral multiple categories introduced in [GP6, GP7], where not only
X but also the three strict interchanges listed above, in (6.70), are laxified.

6.4.9 Theorem and Definition (The flat case)
(a) Extending the 2-dimensional case, a chiral multiple category A is said
to be (transversally) flat if it satisfies the following equivalent conditions:

(i) for every positive multi-index i of degree n > 1, each i-map f is
determined by the family of its faces 05 f, for i € 0i,

(i) for every positive multi-index i = {iy,...,in} of any degree n > 1,
each i-map f: x — y is determined by its O-faces x,y together with the
family of its total faces, the 2" transversal maps O;."...0;" f of degree 0.
(b) In the flat case two transversal maps f,g: * — y that are special on
vertices (see 6.4.1) always coincide.

(¢) In the flat case the coherence axiom (wmc.9) (of 6.4.3, 6.4.4) is redun-
dant and can be omitted.

Note. In (ii) one can equivalently add the value n = 0, which gives a void
condition: a x-map f: x — y has one total face, namely itself.
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Proof The proof is easy, and can be written as an exercise.

(a) Plainly (ii) = (i), because the faces 0%(f) determine the total faces
O;t ... 03 (f), which are supposed to be sufficient to determine f.

We prove the converse by induction on the degree n > 1. For n = 1 and
i = {i} both conditions say the same thing; therefore we suppose that (i)
holds in degree n > 2 and (ii) in degree n — 1, and prove that (ii) also holds
in degree n. Let us take two transversal i-maps f,g: * — y with the same
total i-faces. For every i € i, 0%(f) and 0% (g) are i|i-maps with the same
0-faces (namely 0% (z) and 92 (y)) and the same 2"~ ! total faces (namely
the total faces of f and g whose ‘exponent’ for the index i is o). Therefore
08 (f) = 0%(g), by (ii) in degree n — 1, and we conclude that f = g by (i)
in degree n.

(b) If n = 0, f and g coincide with their total faces and must be the
identity of x = y. The case n > 0 follows immediately from (a): if the
i-map f: x — y is special on vertices, all its total faces are transversal

identities of 0)"... 0; " (x) = O} ... ;" (v).

(c) Finally we assume that A satisfies the axioms (wme.1-8) and is flat;
point (b) still holds. Each coherence condition of 6.4.3, 6.4.4 is about the
coincidence of two transversal maps f, g with the same 0-faces; moreover
such maps are i-special in at least one positive direction ¢, whence they are
special on vertices and must coincide. ]

6.5 Lax functors and transversal transformations

We introduce lax, colax and pseudo multiple functors between chiral mul-
tiple categories, together with their transversal transformations.

More generally, we are also interested in the intermediate cases, dealt
with in 6.5.7-6.5.8, of mized-lazity functors, colax up to a certain degree and
lax above. (The opposite arrangement makes no sense.) These ‘functors’
were introduced in [GP6] for the 3-dimensional case and extended in [GP12]
to infinite dimension.

6.5.1 Strict multiple functors

Extending a previous definition (in 6.2.6), a (multiple) functor F: A — B
between chiral multiple categories is a morphism of multiple sets which
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preserves all the composition laws and all the comparisons (listed in 6.4.2):
F(Aix) = Ai(Fa), F(pix) = pi(Fz),
F(ki(x,y,2)) = ki(Fa, Fy, Fz), (6.71)
F(xij(z,y,2,u) = xij(Fz, Fy, Fz, Fu).

Again it is convenient to view F' as a morphism of multiple objects in
Cat, with transversal components that are ordinary functors

F; = tvi(F): tvi(A) — tvi(B) (ic N"). (6.72)

A transversal transformation ¢: F' — G: A — B between multiple func-
tors of chiral multiple categories is a face-consistent family of natural trans-
formations of ordinary functors

i = tvi(@): tvi(F) = tvi(G): tvi(A) — tvi(B) (ic N*), (6.73)
pr: Fx - Gz, p(07x) = O (), '

subject to the same axiom of coherence (trt.2) of the strict case (in 6.2.6).

Given two chiral multiple categories A and B we have thus the category
StCmc(A, B) of their strict multiple functors and transversal transforma-
tions. All these form the 2-category StCmc. An isomorphism of chiral
multiple categories is an invertible arrow in the latter: this means a multi-
ple functor F': A — B whose transversal components Fj: tvi(A) — tv;(B)
are ordinary isomorphisms.

6.5.2 Lax multiple functors
Basically, a laz (multiple) functor F': A — B between (right) chiral multiple
categories has components Fy = tvi(F): tvi(A) — tvi(B) (for all positive
multi-indices i) that are functors and agree with all faces, as in the strict
case.
Moreover F' is equipped with é-special comparison i-maps F;, for i € i C
N*, ¢ in A;); and i-consecutive cubes z,y in A;

Fi(t): e;F(t) —o F(est),
Fi(z,y): Fx+; Fy —o F(z +; y), (6.74)
O%F,(x) = Fy(0%x), O0%F,(x,y) = F,(0%2,0%y) (j #1).

These comparisons have to satisfy the following axioms of naturality and
coherence, again for ¢ € i C N*.
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(Imf.1) (Naturality of unit comparisons) For every i|i-map f: x —¢ y in A
we have:

Fei(f).Ei(x) = E;(y)-ei(Ff): eiF'x —o F(eiy).
(Imf.2) (Naturality of composition comparisons) For two i-consecutive i-
maps f:x —o x’ and g: y —o 3’ in A we have:
F(f +i9)-Fy(x,y) = Fi(a',y).(Ff +; Fg): Fo +; Fy —o F(2' +;¢/).
(Imf.3) (Coherence with unitors) For an i-cube = with i-faces 0; z = z and
O x = u (preserved by F) we have two commutative diagrams of i-maps:

e;(Fz)+; Fx BELL o Fz+;e;(Fu) SLLET

Eiz+i1l TF()\NL') 1+i£iul/ TF(PW)
F(eiz)+; Fx - F(eiz +; x) Fz +; F(e;u) - F(x +; eju)

(Imf.4) (Coherence with associators) For three i-consecutive i-cubes z,y, z
in A we have a commutative diagram of i-maps:
F
Fa+; (Fy+; Fz) = (Fz+; Fy) +; Fz
1+¢EZ¢ iﬂﬁ-il
Fa+; F(y+i 2) Fz+iy) +i Fz

; .

F(x+; (y+: 2)) T F((x+:y) +i 2)

(Imf.5) (Coherence with interchangers) For i < j in i and a consistent
matrix of i-cubes (% ¥) (with i-consecutive rows and j-consecutive columns)
we have a commutative diagram of i-maps:

ij

F
(Fz +; Fy) +; (Fz +; Fu) =2 (Fx +; F2) +; (Fy +; Fu)
F+;F, \L lﬁj +iE;
Flx+;y)+; F(z+iu) Fx+jy) +:i F(z+; u)

o |£.

Flz+iy) +5 (2 +iw) T F((z 45 2) +i (y +5 u))
ij
The lax multiple functor F' is said to be unitary if all its unit comparisons
F,(z) are transversal identities. As in the theory of double categories,
this unitarity condition is at a more basic level than unitarity of weak or
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chiral multiple categories: indeed only in this case F' commutes with all
degeneracies and is a morphism of multiple sets.

Lax multiple functors compose, in a categorical way, with the following
composed comparisons for GF'

GF,(x) =GE,(x).G,(Fx): e;(GFx) — GF(e;x),
GF,(x,y) = GE;(,y).G;(Fz, Fy): (6.75)
GFz +; GFy — GF(z +; y).

A colax (multiple) functor F has comparisons in the opposite direction
under axioms (cmf.1-5) transversally dual to the previous ones (see 6.4.2).
For instance:

(cmf.1) (Naturality of unit comparisons) For every ili-map f: x —¢ y in A
we have:

ei(Ff).Ei(x) = E;(y)-Fei(f): Fleix) —o e:(Fy). (6.77)

A pseudo (multiple) functor is a lax functor whose comparisons are in-
vertible; it is made colax by the inverse comparisons.

Full and faithful lax (or colax) multiple functors are defined in 7.4.4,
together with multiple equivalences.

6.5.3 Transversal transformations
A transversal transformation ¢: F — G: A — B between lax multiple
functors of chiral multiple categories is a face-consistent family of natural
transformations of ordinary functors
i = tvi(p): tvi(F) — tvi(g): tvi(A) — tvi(B) (ic N*),

(6.78)
pr: Fx —¢ G, p(08z) = 0% (px),

under an extended coherence axiom (trt.2L) that involves the comparison
maps of F' and G
(trt.2L) for a positive multi-index i, i € i, ¢ in A;; and z = x +; y in A;,

we have commutative diagrams in B:

ei(pt)
—

e;F(t) e;G(t) Fzx+; Fy Ranis Byem +; Gy
Ei(t)i \LQi(t) Eq,(xvy)i \LQm(%y)
. . - 3
F(e;t) D) G(e;t) Fz P Gz
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We have now the 2-category LxCmec of chiral multiple categories, lax
multiple functors and transversal transformations, with the sub-2-category
PsCmc of pseudo functors. A lax functor which is (transversally) isomor-
phic to a pseudo functor is pseudo as well.

Similarly one defines the 2-category CxCmc, for the colax case; the last
axiom above has now a transversally dual form (trt.2C), with reversed
vertical arrows.

The forgetful 2-functor

| — |: StCmc — pMlt, (6.79)

takes a chiral multiple category A to the associated premultiple category
|A| (see 6.2.7). The underlying premultiple ‘functors’ and transformations
will be written without marks: F' rather than |F|, and so on.

6.5.4 Proposition and Definition (Pseudo isomorphism)

An invertible arrow in LxCmc is the same as a pseudo functor F': A — B
between chiral multiple categories where all the components

F, =tvi(F): A; — B;

are invertible (i.e. isomorphisms of ordinary categories).

It will be called a pseudo isomorphism of chiral multiple categories.

F' is made colax by inverting its comparisons; this gives a general invert-
ible arrow in CxCmc.

Proof We suppose that the lax functor F has an inverse G: B — A in
LxCmc, and prove that F is a pseudo functor. In fact, for every pos-
itive multi-index i, Gj is inverse to Fj. Moreover, composing their unit
comparisons, as in (6.75), we get (for = in A;; and y in By;)

GE(r).G;(Fz) =id(eix),  FG,(y)-L;(Gy) = id(eiy). (6.80)

Applying the functor Fj to the first equation and computing the second
in y = Fz we get

F.(x).FG,(Fz) = id(Fe;x), FG,(Fz).F,(x) =id(e;Fz), (6.81)

so that F,(x): e;Fx —¢ F(e;x) is an invertible transversal map. The same
holds for the composition comparisons. The converse is obvious. U
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6.5.5 Transversal invariance
We now extend the notion of horizontal invariance of double categories (see
4.1.7), obtaining a property that — again — should be expected of any ‘well
formed’ multiple category.

We say that the chiral multiple category A is transversally invariant if
its cubes are ‘transferable’ along transversally invertible maps. Precisely:
(i) given an i-cube z of degree n and a family of 2n invertible transversal
maps f&: y® —o 0Pz (i € i, « = £) with consistent positive faces (and
otherwise arbitrary domains y¢)

o (f)) = a7 (f2) (i # j in i), (6.82)
L AN

S, (h=07(f7) =5 (£;"),

there exists an invertible i-map f:y —o « (a filler) with positive faces
02 f = f& (and therefore 08y = y2*).

Of course, this property can be equivalently stated for a family of invert-
ible maps g*: 0fx —o y§'.

6.5.6 Proposition (Transversal modification of a functor)
Let F: X — A be a lax functor of chiral multiple categories.

(a) Given a family of transversal isomorphisms gx: Fx — Gz in A, in-
dexed by the cubes of X, with consistent positive faces and degeneracies:
05 (piz) = pi):(05x), ei(pijiy) = wileiy) (6.83)
(i €1, z in Xj, y in Xy)), '
there is precisely one way of extending these data to a lax functor G: X — A
and a transversal isomorphism ¢: F — G.
(b) If A is transversally invariant, every family of *-isomorphisms px:
Fx — Gz in A, indexed by the objects of X, can be (non-uniquely) extended
to a family of transversal isomorphisms px: Fx — Gz in A, indezed by all
the cubes of X, that satisfies (6.83). (Then we can form a lax functor
G: X = A and a transversal isomorphism ¢: F — G.)
The same holds for colax functors, pseudo functors, unitary (co)lax func-
tors.



6.5 Lax functors and transversal transformations 285

Proof (a) This point is an obvious extension of Exercise 1.2.6(i). There
is precisely one way of extending G to all transversal maps f: x — y and
making the family ¢ natural:

Gf =y Ff.(px) " Gz — Fr — Fy — Gy. (6.84)

The comparisons of G are determined by those of F', as required by axiom
(trt.2L) of transversal transformations for the family ¢; their coherence
follows as well.

(b) We extend the given family (¢z) by induction on the degree of i-cubes
of X: degree 0 is given, and we suppose we have chosen iz for all cubes
of degree < n, fulfilling (6.83).

For an i-cube z of degree n we already have a family of transversal
isomorphisms in A
I = @ii(05x): Of (Fz) — G(of'xz) (1 €1, a = =), (6.85)

K2

with consistent faces, by hypothesis. By transversal invariance we can
choose an invertible filler

pix: Fr — Gz, 0 (pix) = @iﬁ(aqu)a (6.86)

which is thus coherent with faces.

This choice is easily made consistent with degeneracies: if x = e;y for
some i € i and y € Xj);, we take p;x = e;(y;9). If x is also j-degenerate,
then x = e;e;z = eje;z; therefore, by the inductive assumption, both
procedures give the same result:

ei(py) = eiej(pz) = ejei(pz) = ej(peiz).

6.5.7 Mized laxity functors

We have already considered two main kinds of functors between chiral
multiple categories, namely the lax functors and the colax ones (in 6.5.2).

Yet the theory will require the introduction of a countable family of
intermediate kinds, depending on an extended natural index p, for 1 < p <
0.

A p-mized functor F': A —, B between chiral multiple categories will be
a mized-laxity functor which is colax in all positive directions i < p (if any)
and lax in all finite directions ¢ > p (if any). In particular, this will be a
lax functor for p = 1 and a colax functor for p = co.
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Again, F' has components F; = tvi(F): A; — B, for all positive multi-
indices i, that are ordinary functors and commute with the faces: 0 F; =
Fy; 0F (for i € ).

Moreover F is equipped with i-special comparison i-maps F; (for t € Ay;
and z = x +; y in A;), either in the lax direction for p < i < oo

F,(t): eiF(t) —o Fleit),  Fi(z,y): Fo+; Fy —o Fz, (6.87)
or in the colax direction for 0 < i < p
F.(t): F(eit) —o e, F(t), F.(z,y): F(z) =0 Fx +; Fy. (6.88)

All these comparisons must commute with faces (for j # i in i)

G?Ei(t) = Ei(aft), aqui(xv y) = Ei(a}xxv 3;‘1‘/) (6.89)

Furthermore they have to satisfy the axioms of naturality and coherence
(see 6.5.2), either in the lax or in the colax form
- (lmf.1-4) for ¢ > p, - (cmf.1-4) for i < p.

Finally there is an axiom of coherence with the interchanger y;; (0 <

i < j), which has three forms: the first corresponds to (Imf.5), the last to
(cmf.5) and (b) is an intermediate case

(a) for p <@ < j (so that F is i- and j-lax), we have commutative diagrams
of transversal maps:

i; P
(Fz+; Fy) +; (Fz+; Fu) ~2> (Fz +; Fz) +; (Fy +; Fu)

F,+;F,; \L \LEJ'HEJ
Fx+;y)+; F(z +iu) F(x+;y)+i F(z+; u)
E,.j/ lEi
F((4i9) 45 (2 4iw) g Fl(ty2) i (g5 )

(b) for 0 < i < p < j (so that F is i-colax and j-lax), we have commutative
diagrams:

ij I
(Fz +; Fy) +; (Fz +; Fu) ~2> (Fz +; F2) +; (Fy +; Fu)
Flx+;y)+; F(z +i u) Flx+jy) +:i F(z+; u)

£ e,

F((z +iy) +j (2 +iu)) F((z+j 2) +i (y +5 u))

Fxij
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(c) for 0 < i < j < p (so that F' is i- and j-colax), we have commutative
diagrams as in (a), with vertical arrows reversed.

The composition of p-mixed functors is easily defined: their comparisons
are separately composed, as in (6.75) for all the lax directions and in the
dual way for the colax ones.

In the truncated n-dimensional case, for chiral n-tuple categories indexed
by the ordinal n = {0, ...,n — 1}, the p-mixed functors depend on an index
p€[n]={1,..,n}.

In dimension three there are thus three kinds: lax functors (for p = 1),
colax functors (for p = 3), and the intermediate case of colaz-laz functors,
called colax-lax morphisms in [GP6].

Let us note that the ‘lax-colax’ case makes no sense (in any dimension):
modifying the diagram in (a) by reversing all arrows E; would give a dia-
gram where no pairs of arrows compose.

6.5.8 Transversal transformations

A transversal transformation ¢: F — G: A — B of p-mixed functors
(between chiral multiple categories) consists of a face-consistent family of
transversal maps in B
o(x) = pi(z): Fx —¢ G, (for every i-cube z of A), (6.90)
6.90
O5 .1 = ;.05 (for i € i),
so that each component ¢;: F; — G;: A; — Bj is a natural transformation
of ordinary functors:

(nat) for all f: 2 =gy in A, Gf.ox = py.Ff.
Moreover ¢ has to satisfy the following two coherence conditions with

the comparisons of ' and G, for a degenerated cube e;(t) (with ¢ in A;);)
and a composite z = x +; y in A;.

(coh.a) If p < i (so that F' and G are both lax in direction i), we have
commutative diagrams:

e; F(t) M e;G(t) Fzr+; Fy sl Qe +; Gy
Ei(t)l lQi(t) Ei(xvy)l igi(%y)
F(eit) —= G(est) Fy — = Gz
oleit) vz

(coh.b) If i < p (so that F and G are colax in direction i), we have com-
mutative diagrams as above, with vertical arrows reversed.
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The operations of these transversal transformation, namely the transver-
sal composition and the whisker composition with p-mixed functors, are
defined componentwise for every positive multi-index i C N.

We have now a family of 2-categories Mx,Cmc of chiral multiple cate-
gories, p-mixed functors and transversal transformations. In particular

LxCmc = Mx; Cmc, CxCmc = Mx,,Cmec. (6.91)

In Chapter 7 we shall construct the double category Cmc of chiral mul-
tiple categories, with lax and colax multiple functors, and a larger multiple
category Cmc (indexed by the ordinal w + 1 = {0,1,...,00}), where the
arrows in a positive direction p are the p-mixed functors.

6.6 Examples of chiral and premultiple categories

In this section, C is a category equipped with a choice of pullbacks and
pushouts.

The weak double category SpanC, of arrows and spans of C, can be
‘amalgamated’ with the weak double category CospC, of arrows and co-
spans of C, to form a 3-dimensional structure: the chiral triple category
SC(C) of spans and cospans of C. It has been studied in [GP7], Subsec-
tion 6.4, with notation SpanCosp(C).

Interchanging the positive directions one gets the left chiral triple cat-
egory CS(C) of cospans and spans of C. Higher dimensional examples
are considered in 6.6.4. For the sake of simplicity, we assume that, in our
choices, the pullback or pushout of an identity along any map is an identity.
(Omitting this convention would simply give non-trivial invertible unitors
A and p for 1- and 2-composition.)

In the second part of this section we introduce some multiple categories
of partial maps, and a premultiple category RelSet of cubical relations.

A structure similar to SC(C), where C is the category of graphs, has
been used in papers on sequential and parallel composition: see [KaSW,
ChSW, GiKS] and their references.

6.6.1 A long exercise

We want to form a chiral triple category SC(C) of spans and cospans of C,
where the 0, 1- and 2-arrows are the arrows, spans and cospans of C. The
12-cubes will be functors 7: Vx A — C, and the highest dimensional cells
will be their natural transformations, so that:

tv125C(C) = Cat(\/ XN, C) (692)
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An interested reader can autonomously work out the details. The basic
part can be found below, in 6.6.2 and 6.6.3.

6.6.2 A triple set with compositions
We begin by constructing a triple set A enriched with composition laws.
(a) The set A, consists of the objects of C.

(b) The set Ap is formed of the maps of C, written as p: X —¢ Y or
p: X — Y; they compose as in C, forming the category tv.(A). This
composition will be written as gp, or ¢.p when useful.

(b’) The set A; consists of the spans of C, written as f: X —; Y or
(f', f"): (X + « = Y); their composition f 471 g works by pullback. For-
mally, f is a functor V — C defined on the formal-span category V (in
(6.64)).

(b”) The set A, consists of the cospans of C, written as u: X —9 Y
or (u',u"”): (X — « « Y); their composition u 45 v works by pushout.
Formally, u is a functor A — C defined on the formal-cospan category
N = VP,

Each set A; (for ¢ = 0,1,2) has two faces 9¢: A; — A, (implicitly used
in the previous composition laws) and a degeneracy e;: A, — A;.

(c) A 01-cell ¢ € Ap, as in the left diagram below, is a natural transforma-
tion ¢: f — g: V — C of spans, or equivalently a commutative diagram
of C as in the right diagram below

f/ f//

1
o —=> ¢ <—— o —> o

A
x X 0N pl lmw lq (6.93)

]
_— ¢ <—— o —> o
g ’ "

g9 g

Their 0-composition, written as ¢, is obvious (that of natural transfor-
mations) and gives the category tvy(A), with obvious units eg: A1 — Ao;.
Their 1-composition ¢ +7 1 is computed by two pullbacks in C.

(c') A 02-cell w € Agz, as in the left diagram below, is a natural trans-
formation w: u — v: A — C of cospans, or equivalently a commutative
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diagram of C as in the right diagram below

P

2

i ]

~
T Y )

Their 0-composition w’w is obvious again, and gives the category tva(A).
Their 2-composition w +3 ¢ is computed by two pushouts in C.
(¢") A 12-cell # € Ajq is a functor 7: VX A — C, or equivalently a
commutative diagram of C, as at the right below, with three spans in
direction 1 and three cospans in direction 2

f/ f//
¢ <— o —> o
! ! l ) l :
« ——> o * —=> u c v
Q\L s'mw ¢’ s
u T v ¢ <—— o —> o (695)
. p > o u//T o TUN

Their 1-composition, written as m +1 7/, is computed by three pullbacks
in C; their 2-composition, written as m +2 p, by three pushouts in C.
Each set A;; (for 0 < ¢ < j < 2) has two obvious degeneracies and four

obvious faces (already used in the composition laws described above)
eiiA'g)Ai‘, e':AiﬁAi'a
T ’ ’ (6.96)
61‘-1: Aij — A]'7 8}1: Aij — Al

(d) Finally an element of Ap12, i.e. a triple cell of A, is a natural transfor-
mation IT: 7 — p: VXA — C, or a functor II: VXAx2 — C

. % . . % . . $
q q
ulp\. ¢g>. ui T Tl\. 2\L\O
. v P Y . h—> e Yy
T\i Nv s\i
. ? L] L] ? .

Its boundary consists of two 12-cells 7, p (its O-faces), two 01-cells @,
and two 02-cells w, { with consistent boundaries. Moreover II has an addi-
tional transversal arrow mlIl: mm — mp between the central objects of 7
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and p, forming a commutative diagram in C (four cubes, joining the four
squares of 7, in (6.95), to those of w).

The set Ag12 has the six faces described above and three obvious degen-
eracies

8?: Az — Ag‘i, (7 A3\z — As. (698)

The 0-composition of such cells, written as II'TI, is that of natural trans-
formations and gives the category tvia(A). Their 1-composition is com-
puted by six pullbacks in C and written as II 4+ II’; their 2-composition,
computed by six pushouts in C, is written as IT +4 IT'.

(e) These sets A;, with the faces and degeneracies considered above, form
a triple set (i.e. a 3-dimensional truncated multiple set), equipped with
composition laws organised by its faces.

6.6.3 Comparisons

We have already remarked that the 0-directed composition in each set Ag;
is categorical, with units given by eg: A; — Ag;. It is also easy to see
that the 0O-directed composition has a strict interchange with all the other
compositions. Because of our assumption on the choice of pushouts and
pullbacks, all 1- or 2-directed composition laws are strictly unitary.

To complete the construction of the chiral triple category SC(C), there
are invertible comparisons for the associativity of 1- and 2-directed composi-
tion, and a directed comparison for their interchange. All these comparisons
are constructed in [GP7], Section 6, where their coherence is proved.

The comparisons for the 1-directed (resp. 2-directed) composition are
constructed as in the weak double category SpanC (resp. CospC). The
interchanger x = x12 is defined for a consistent matrix (7 ;‘,l ) of 12-cells,
and is a 12-special map, natural under 0-composition (and not invertible)

X(m, 7, p,p') s (1 7)) +2 (p 1 p') =0 (42 p) +1 (7' +2 7). (6.99)

In fact in our hypotheses the weak double category CospC (with vertical
composition ® computed by pushout) has double pullbacks, forming a lax
double functor F': (CospC)”™ — CospC, as any double limit (see 3.3.6 for
this exponential). Its comparison for composition gives our interchanger:

F(m,7") @ F(p,p') = F((m,7") @ (p,p')) = F(r @ p,7" ® p').  (6.100)

As in Section 6.1, a good way of exploring the chiral triple category
SC(C) is to show that it has all five kinds of tabulators and cotabulators:
this will be the subject of Exercise 6.7.3.
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6.6.4 Higher dimensional structures

More generally, one can form a chiral n-tuple category S,C,(C) for p, g > 0
andn=p+q+1.

Its i-directed arrows are morphisms of C for ¢ = 0, spans for 1 < i < p
and cospans for p+ 1 < i < p+ ¢. More generally an i-cube is a functor

:VIXAK 5 C, jc{l,.,p}, kCc{p+1,.,p+q},  (6.101)
where i = jUk, and
tvi(S,C,(C)) = Cat(VI x AK, C). (6.102)

Again, the 7j-interchanger y;; is not invertible whenever it involves both
spans and cospans, i.e. for i < p < j. Allowing the cases p =0 or ¢ = 0 we
would get the weak n-tuple categories

S0Cr—1(C) = Cosp,(C), Sn-1Co(C) = Span,(C). (6.103)

We also have the infinite-dimensional structure S,Cs (C), but it is more
interesting to consider the ‘unbounded’ chiral multiple category S_ o Coo (C)
indexed by the ordered set of integers, pointed at 0, where i-arrows are
spans for ¢ < 0, ordinary arrows for ¢ = 0 and cospans for ¢ > 0.

Similarly we have a left chiral n-tuple category C,S,(C) (see 6.4.8) whose
geometric i-arrows are cospans of C for 1 < ¢ < p and spans of C for
p+1<i<p+gq. Itis transversally dual to S,C,(C°P).

We also have the left chiral multiple category C_..Ss(C), transversally
dual to S_ooCoo (C°P).

6.6.5 Multiple categories of partial mappings and partial
bijections

(a) We have defined in 3.1.9 the double category Pmap(C) of morphisms
and partial maps, over a category C with pullbacks of monomorphisms
along arbitrary mappings. (The category C is supposed to have a choice
of subobjects, stable under composition; counterimages of subobjects are
determined by this choice.)

This construction has an obvious extension to a strict multiple cate-
gory Pmap(C) of cubical partial map. The n-cubes are the n-cubical spans
formed by the spans of C whose first arrow is a subobject, as shown below
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forn=1,2
1
¢ =< e —> o o —>
e i«ﬁ%i 2 (6.104)

The transversal maps are arbitrary morphisms of these cubical spans.
If C has all pullbacks, Pmap(C) has a transversally full pseudo embed-
ding in Span(C).

(b) Similarly, if the category C has pullbacks of monos along monos (in
C), and a choice of subobjects stable under composition, there is a strict
multiple category Piso(C) of cubical partial isomorphisms.

6.6.6 A premultiple category of cubical relations

One can form a structure RelSet of cubical relations, which is a flat pre-
multiple category with compositions: it satisfies all the axioms of a strict
symmetric cubical category except interchange, and has no interchanger,
either of left- or right-chiral type. (This corrects an error in [G2].)

Nevertheless RelSet is of interest here, as it contains various more ‘reg-
ular’ substructures, like the multiple categories Piso(Set) and Pmap(Set)
of 6.6.5. *RelSet should perhaps be reformulated in an ‘unbiased’ frame-
work, with multiple operations instead of binary ones; this is far out of our
current goals.*

The cubes of RelSet will be indexed by the three-element set {0,¢,1} and
its cartesian powers. A 1-cubical relation is an ordinary relation a: ag - ay
of sets, viewed as a subset a, C ag X ay; their composition will be written
in additive notation.

A 2-cubical relation a is indexed by {0,¢,1}? and consists of (see the
diagram below):

- a four-tuple of vertices (a;;): 2x2 — Set (where 2x2 = {0,1}? is a
discrete category on four objects),

- four (binary) relations on the sides of a square: a,; C ag; X a1; and
@i, C G0 X Qi1

- and one quaternary relation a,, C I1 a;; whose projection on each side is
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contained in the corresponding binary relation

Q, am%- a $
00 ® 10 .
2
ami Qu iah ¢ (Poj> p1j)(aw) C a, (6.105)
apr —*> a1l (pio, pi1) (@) C i,

where p;;: ago X ap1 Xai0X a1 —+ a;; denotes a cartesian projection.

The 1-concatenation ¢ = a +1 b is (of course) defined when the 2-cubes
a,b are consecutive in direction 1, i.e. a1, = bg,, and is computed below, at
the right

b.

a,o 0 €0
agy —*—> o > by agp —=— big

| [ A S
aml/ a,, \L b, \Lbu = aoL\L " \Lbu (6106)

Gor —3o7 T bi1 ao1

o— by
L1 ¢l

C
where the subset

C = Qy +1 bLL C ago X ap1 Xb10 an, (6107)

is an ordinary composition of relations, provided we view a,, and b,, as
binary relations ‘in direction 1’

a,, . app Xapl = aip Xaii, bu: b()oXbOl-’-)wabH. (6108)

This proves that 1-concatenation is strictly categorical, i.e. strictly as-
sociative, with strict units; the degeneracy ej(a) of an ordinary relation
a: ag—=rajp is

Qo L Qo
aLi (era),, im (era),, = a, xa,. (6.109)
ay

—— (1
id

2-concatenation can be defined in the symmetric way, or by the transpo-
sition s; (that permutes directions 1 and 2) and the previous operation:

a-+oa = si(s1a+1 s1a’). (6.110)

We proceed analogously in higher dimension: an n-cube is a family a =
(at), indexed by the n-tuples t = (¢1,...,t,) € {0,¢,1}™ and satisfying the
following conditions (i)—(iii).

(i) If ¢ € 2™, then a; is a set.
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(ii) Otherwise let w = [t| be its weight, defined as the number of ¢'s in the
n-tuple; then a, is a 2"-ary relation

ar C Ay = Hail...ina (6.111)

the cartesian product being indexed by those n-tuples i = (i1, ...,4,) € 2"
where i; coincides with ¢; when the latter is 0 or 1 (there are 2" such
n-tuples).

(iii) Finally, if ¢’ is a multi-index obtained by replacing one occurrence of
¢ in ¢ with 0 or 1 (of weight w’ = w — 1), the corresponding projection py
must send the 2%-ary relation a; into the 2“’/—ary relation ay

P Ay — Ay, P! (at) C ay. (6112)

We define now a transversal map f: a — b as a natural transformation
on the discrete category 2"

f=(i):a—b:2" — Set, fita; — b; (i e2m), (6.113)

which is ‘coherent’ with the ‘multiple’ relations inside a and b:

(*) for every n-tuple t € {0,¢,1}"™, the mapping f;: A; — By defined by
the cartesian product of the components f; singled out in (6.111) carries
the subset a; into b;.

Faces are defined using the cofaces
02: {0,1,1}" 1 — {04, 1},

(6.114)
(9;’“(751, ...,tnfl) = (t17 ceny Ot,ti, ~-~7tn71) (O( == O7 1)

The n-map f: a — b is determined by its 0-faces a,b together with its
2™ total faces, so that the structure RelSet is flat, according to condition
6.4.9(ii).

The definition of degeneracies extends (6.109).

There is no interchanger, as we show below: already in dimension three,
the truncated structure Relg(Set) of 2-cubical relations and their maps is
neither left-chiral nor right-chiral.

6.6.7 A counterexample

The computations below will be used in various points. We begin by work-
ing in the weak triple category Spang(Set), where we have an invertible
interchanger x. The cubes of Rels(Set) will be viewed inside this struc-
ture, as determined by jointly monic spans, and we write as r ®; y their
i-concatenation, namely the 12-cubical relation associated to the 12-cubical
span z +; y (for i = 1,2).
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A consistent matrix (£ ¥) of 12-cubes of Rels(Set) is shown in the left
diagram below, where 0, 1,2 are cardinal sets and the mappings 1 — 2 =
{0,1} are labelled by their image. First we compute the operations in

Spang(Set), where interchange works

-~

:

—

|e

(6.115)

(SRS

—_ < R < =
—_ < e <

le

H<s— R <>
—_<— <>
\Lo
—_—— N —> N <— DN —>
—_<~— R <—RR
—F<— 0O —0O0<—0O —>F
<<

’
!

In the right diagram above we compute a = x +1 y and b = 2z 4+ u. In
the left diagram below we have c=x +szand d=y +2 u

1l =—1—-1=<=1—1 1l <=—1—1
R bt
1l <~—1—-2=<1—1 1 <=—0—1 (6.116)
A S T A oo
] =—1 —=1=—1—1 1l =— 1 —1

Finally the right diagram above is the 12-cube a +2 b = c +1 d.

Note now that a,b and a +2 b already are 12-cubical relations, while ¢
and d (in the left diagram above) are not: the common vertical span of ¢
and d is not jointly monic. The associated 12-cubical relations ¢ = z Qs z
and d’ = y®s u are shown in the left diagram below, and their composition
¢ ®1d" at the right

l<=—1—1-<=—1—-1 1l <~—1-—1
[ | Pt
l<~—1—1=<=—1—1 1l <1 —1 (6117)
A T S Lo
l<~—1—1~<=—1—1 1l <=1 —1

Therefore there is no transversal map ¢ ®; d — a ®2 b and it is not
possible to define an interchanger

(x®22) @1 (Y D2 u) = (2 Q1Y) Q2 (2 @1 u).
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The other way round there can be no general interchanger either, by sym-
metry.

6.7 Multiple tabulators and span representations

Tabulators in the strict triple category StcDbl have already been examined
in Section 6.1. We study here these important multiple limits, which often
clarify the structure we are examining, and can lead to representing it
by cubical spans. This extends the span representation of weak double
categories, in Section 3.6.

We work in a chiral multiple category A. (The extension to intercate-
gories will be briefly considered in Section 6.9.)

6.7.1 Tabulators

Let i be a positive multi-index and j C i, with complement k = i\ j. Letting
i={s,., jr}, we consider the iterated degeneracy of A

€j: th(A) — tVi(A), €j = €j,... € . (6118)

The ej-tabulator of an i-cube x € A; is a k-cube T' = Tjx € Ax equipped
with a universal i-map t,: e;(T;x) —o « from the functor e; to the object .
The existence of all of them amounts to an ordinary functor Tj: tv;(A) —
tvi(A) right adjoint to e;.

The universal property of the pair (Tjz,t,) says that, for every k-cube
A and every i-map h: ej(A) —¢ x there is a unique k-map u such that

ej(u)

ej(4) — ¢(T) u: A—o T,
\ J{tr (6.119)
h
x ty.e5(u) = h.

An i-cube z of degree n can thus have (Z) tabulators of degree k, and
globally 2™ of them, including the trivial case Tyx = x, the tabulator of
degree n. On the other hand, the ej-tabulator Tz = Tjx is an object of
A (if it exists), and will be called a total tabulator, or a tabulator of degree
zero.

We say that the chiral multiple category A has all tabulators, or tabulators
of all degrees, if every i-cube z € A; has all ej-tabulators Tjz (for j C i).
We say that A has multiple tabulators if it has tabulators of all degrees,
preserved by faces and degeneracies.

In this case, if A is transversally invariant, one can always make a choice
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of multiple tabulators such that this preservation is strict (see a similar
proof in 7.6.4):
O (Tyz) = T3(07x),  Tjlei(y)) = ei(T;(y)), (6.120)

forjCi,i€i\j, x € Ajand y € Ay;.

Note that the conditions (6.120) are trivial if j = @) or j = i, whence for
all weak double categories, where there is only one positive index; this fact
is commented in 6.7.8(d).

6.7.2 Lemma (Basic properties of tabulators)
Let A be a chiral multiple category.

(a) For an i-cube x and a disjoint union j = j UJj”’ C i we have
Tjil? = Tj//Tj/(fE), (6121)

provided that Ty (z) and Ty Ty () exist.

(b) A has all tabulators if and only it has all elementary tabulators T;x
(for every positive multi-index i, every i € i and every i-cube x).

(c) For a fized i € 1i, the existence in A of all e;-tabulators of i-cubes
amounts to an ordinary adjunction

€ tVi‘iA = tViA ZTi7 €; = Tz (6122)

Then the degeneracy e;: tvi;A — tviA preserves colimits.

Proof Obvious, composing universal arrows of ordinary functors. |

6.7.3 Exercises and complements, I

Prove that the chiral triple category SC(C), over a category C with pull-
backs and pushouts (see Section 6.6), has multiple tabulators and cotabu-
lators.

6.7.4 Exercises and complements, IT

(a) Study tabulators and cotabulators in the weak multiple categories
Cub(C), Cosp(C), Span(C) and Bisp(C) of 6.3.3 and 6.4.6.

(b) Same exercises in the chiral multiple categories S,C4(C) and S_ocCoo (C)
of 6.6.4.

(c) Note that all these structures are transversally invariant — a property
whose interest was remarked in 6.7.1.
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6.7.5 Maps of tabulators

We now examine the relationship of tabulators of i-cubes with faces, de-
generacies and concatenation, in direction i € i.

(a) If the cube z € A; and its face z = 0z have total tabulators, the
projection p = pdx of Tx (= T,;x) will be the x-map of A determined by
the following condition

1| (p)

e T — e, T(97x) pix: Tx —o T(07),
J«tz (6.123)
;" (ta)
z =08z te-€ii(pfr) = Of (ta).

(b) If the degenerate i-cube x = e;z and the i|i-cube z have total tabulators
in A, they are linked by a diagonal transversal x-map d;z, defined as follows

i(di
e;i(T2) e(—i) ei(T(e;2)) diz: Tz =0 T(e;2),
t if (6.124)
T =e;z ty.ei(diz) = ei(ty).

This *-map d;z is a section of both projections p$*z (defined above) be-
cause

to.e5;(pia.diz) = 05 (ty).€5,(diz) = Of (to.ei(diz)) = 05 (ei(t.)) = t..

(¢) For a concatenation z = x +; y of i-cubes, the three total tabulators
of z,y,z are also related. The link goes through the ordinary pullback
Ti(x,y) of the objects Tx and Ty, over the tabulator Tw of the i|i-cube
w = J'z = 9; y (provided all these tabulators and this pullback exist)

V \ tw-eii(p; @) = 0] (ts),
> (6.125)
ql(m / tw-€iji(p; ¥) = 0; (ty)-

We now have a diagonal transversal x-map d;(z,y) given by the universal
property of Tz

di(ﬂj,y): Tl(xvy) 0 TZ7

(6.126)
tz-ei(di($7 y)) = t:v-eipi(x7 y) +i ty-eiqi(xa y)
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The i-composition above is legitimate, by construction

= tuw-€)i(p; @).e50i(x,y) = tw-€i)i(p; y)-€1:¢(x,y)
~(t

= 0; (ty).e5iqi(x,y) = 0; (ty.eiqi(w,y)).

*Defining general multiple limits as in [GP9], T;(x,y) is the limit of the
diagram formed by the i-consecutive i-cubes z, y.*

6.7.6 Theorem (Tabulators and cubical spans)
Let A be a chiral multiple category, and suppose that:
(a) A has all total tabulators,

(b) the ordinary category C = tv,.A of objects and transversal arrows has
pullbacks.

Then there is a canonical lax functor
T: A — Span(C), tvi(T) = idC, (6.127)

which is trivial in degree zero and takes:

(i) an i-cube x of A of degree n to an n-cubical span Tx: V" — C whose
central object is the total tabulator T;x,

(i) an n-map f:x — y in A to an n-map Tf: Tz — Ty whose central
component is Tif.

Proof For n =0 we take Tx = Tx = x. Having defined T up to degree
n —1, the faces of T'z are determined: 0 (Tx) = T'(97z). To complete the
n-cubical span Tz we add the central object Tjx equipped with a family
of C-maps (p$') defined as in (6.123)

P Tir — Ty(2),
(6.128)
to.e;i(pfx) = 0Pty ey Tiw — 2 (z = of'x).

In the 1-dimensional case, t, = 1, and the maps p$* = 9{*t, are the two
projections of the tabulator T;z of the i-arrow z (as in 3.6.4)

_ Py P
0 x =— Tz —= Ofa.
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The 2-dimensional case is shown in this diagram

i pi
3ij r <— Tzajm — 8ij T

T,00 1 <— Tyr —> T,00x (6.129)

The diagram commutes (and is a 2-cubical span), because
Pipe = 0]t py = 0] (ta.e(p0) = 0]07 (k)
_ HanBb — a8
= 0§ aj (tz) = ... = pip; .
Similarly, all the n-cubical spans Tz are well defined.

Using inductively the ordinary functors T;: A; — C, there is precisely
one extension of T' to transversal maps that satisfies condition (ii). The
comparisons of T are then constructed by an inductive procedure that
extends what we have seen in Theorem 3.6.4 for weak double categories.

O

6.7.7 Representability
Let A be a chiral multiple category.

(a) We say that A is span representable, or representable by cubical spans, if
it has total tabulators, the ordinary category C = tv,(A) has pullbacks and
moreover the lax functor T: A — Span(C) constructed above is transver-
sally faithful.

(a*) By transversal duality, assuming that A has total cotabulators and
C = tv.(A) has pushouts, we form a canonical colax functor

C: A — Cosp(C), tv.(C) =1dC, (6.130)

that takes an i-cube = of A of degree n to an n-cubical cospan Cx: A" — C
whose central object is the total cotabulator 1;x.

In this situation we say that A is cospan representable if this colax functor
is transversally faithful.

6.7.8 Ezxercises and complements

(a) Examine the span representability of Span(C).
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(b) Same question for the cubical categories Pmap(C) and Piso(C) of 6.6.5.
(¢) Same question for the chiral triple category SC(Set).

(d) Let A be a weak double category and let A be the associated weak
multiple category sko(A), obtained by adding degenerate items of all the
missing types (see 6.2.8).

In A the only non-trivial tabulators are the total tabulators of 1-cubes,
i.e. vertical arrows; we have already remarked in 6.7.1 that they are bound
by no conditions of coherence with faces and degeneracies. Therefore
the weak multiple category A has multiple tabulators if and only if A
has 1-dimensional tabulators. We are not considering in A any higher-
dimensional universal property.

6.8 A sketch of intercategories

Three-dimensional intercategories, introduced and studied in [GP6, GP7],
generalise the notion of chiral triple category by replacing all strict or weak
interchangers with laz interchangers of four types (7, u,d, x), which deal
with the four possible cases of zero-ary or binary composition in the positive
directions 1, 2.

The difference can be better appreciated noting that a 3-dimensional
intercategory is a pseudo category in the 2-category of weak double cate-
gories, lax double functors and horizontal transformations (see [GP6], Sec-
tion 2), while a chiral triple category is a unitary pseudo category in the
2-category of weak double categories, unitary lax double functors and hor-
izontal transformations.

Three-dimensional intercategories are extensively studied in [GP7], show-
ing that this notion encompasses a wide variety of structures from the
literature, like duoidal categories [AM, BhCZ, BkS], monoidal double cat-
egories [Shu], cubical bicategories [GaG], Verity’s double bicategories [Ve]
and Gray categories [Gral]. The general framework, besides providing an
effective unification of these three-dimensional structures, makes also pos-
sible to consider morphisms between them and study how they relate to
each other.

Here we present infinite-dimensional intercategories, introduced in [GP8],
and give a short synopsis of the results recalled above. Other examples of
3-dimensional intercategories can be found in Section 6.9 and [GP7].

6.8.1 Intercategories

An (infinite-dimensional, right) intercategory is a kind of lax multiple cat-
egory more general than a chiral multiple category: with respect to the
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latter we replace the three strict interchangers listed in (6.70) with lax
interchangers.

For any two positive directions ¢ < j we have thus the following families
of ij-special transversal maps (including y;;, already present in the chiral
case):

(a) 7ij(x): ejei(x) —o eiej(x) (zeroary ij-interchanger),

(b) pij(z,y): ei(@) +5 ei(y) —o ei(x +;5y)
(ij-interchanger for i-identities and j-composition),

(c) 0ij(w,y): ej(x +iy) —o ej(x) +iej(y)
(ij-interchanger for i-composition and j-identities),

(d) X3 (@, . 2,u): (2 +iy) +5 (245 w) —o (45 2) +i (y +5 )
(binary ij-interchanger),

where all compositions are assumed to be legitimate.

All these maps must be natural for transversal maps and commute with
the faces 05, for k # 4, j. The coherence axioms stated in 6.4.3 are required.
Furthermore there are coherence conditions for the interchangers, stated
below in 6.8.2 and 6.8.3.

The transversally dual notion of a left intercategory has interchangers in
the opposite direction.

With respect to the chiral case, let us note that an intercategory with
eie; # eje; is no longer a multiple set. Moreover a degeneracy e; (for ¢ > 0)
is now colaz with respect to every lower j-composition (for 0 < j < ¢, via
7j; and d;;) and laz with respect to every higher j-composition (for j > i,
via 7;; and ;).

6.8.2 Lower coherence arioms for the interchangers

We list here and in 6.8.3 the conditions involving the interchangers.

The following diagrams of transversal maps must commute for 0 < i < 7,
assuming that all compositions are legitimate. We let 7 = 755, u = g,
0 = 0ijs X = Xij-

(i) Coherence hexagon of x = Xi; and k;: see (wmec.9.iii) in 6.4.4.

(ii) Coherence hexagon of x = xi; and kj: see (wmc.9.iv).
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(iii) Coherence hexagon of § = 6;; and k;

€jkq

ej(x+i(y+i2)) ————— ej((x+iy)+i2)

5 Vo
ej(x)+ie;(y+iz) ej(x+;y)+ie;(2)
1+i5¢/ Whl
ej(x) +i(ej(y) +ie;(2)) —7 (ej(2) +ie;(y)) +ie;(2))

(iv) Coherence hexagon of u = p;; and k;

ei(@) 45 (ei(y) +jei(z)) —> (ei(@) +5ei(y)) + ei(2)

1+; ;Lj/ Whl
ei() +jei(y+; z) ei(z+;jy)+jei(z)
n, i
ei(r+j(y+;2)) ——F7— eil(z+;y) +;2)

€iRj

(v) Coherence laws of x, p with A; and p;

_ _ Aitj A pi Tjpi
(€i0; w+;x) +; (€;0; y+iy) —> x+; Yy < (@ +; €;,0; ) +; (y +; €;0] y)
J,x

xy
(ei0; x+;€;,0; y)+i(x+;y) (x+;y) +i (eﬁjx +5 eiajy)
i/l +ip

nt; 1¢/
€i0; (x+;y)+i(x+;y) T Y < (z+jy) +i 0 (x+;y)

vi) Coherence laws of x,6 with \; and p;
J j
_ Aj pPj
€0 (x+iy)+; (x+iy) — v +iy<— (T+iy) +; ejﬁ;.“(x +iY)
5451, yi+;o
(ejafx +; ejajfy) +i(x+iy) (x+iy)+; (ej(‘?fx +; eja;ry)
X

Xy
(07w +j1) +i (50 y+jy) —— x +y ~— (x+; ;0 x) +i (y +; €;0]y)
RYRERY pitip;

(vii) Coherence laws of §, T with \; and p;

e;((edra)+i3) —2im ejw) < ej(w i (0 7))

5y Vo
eje;0; (x)+iej(x) ej(z) +ieje;0; (x)
T+ 1\L \L1+i7

eid; ej(x) +iej(r) ——= ej(x) < ej(w) +ieidie;()
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(viii) Coherence laws of p, T with A\; and p;

)\jei Pj€i

ej0; ei(z) +jei(z) —— ei(r) <— ei(w)+je;0; ei(x)
T+ 1¢ ¢1 T
eiej0; (w) +; ei(x) ei(x) +j eie;0; ()

" "

ei((e]@j_m) +; ) o ei(x) <~ ei(z+; (ejaj_l’))

6.8.3 Higher coherence arioms

Finally we list the coherence conditions involving three interchangers and
three positive directions i < j < k at a time. These axioms vanish in
the 3-dimensional case, where we only have two positive indices. The first
condition is axiom (wmec.9.vii) of weak (and chiral) multiple categories, in
6.4.4; here it forms a guideline for the others.

The following diagrams of transversal maps must commute, assuming
that all the positive compositions make sense.

(i) (Case 2x2x2) Coherence hexagon of the interchangers Xi;, Xk and Xik,
for a 2x2x2 matrix of i-cubes

(@ +iy) +; (z+iw)) +x (@ +iy") +5 (2 +iw))
Xjk'\L
(@+iy) +r (@ +y) +5 ((z+iw) +5 (' +0") | xis +exis

xiw tixan | (@45 2) +i (y+5u) +r (@45 2") + (Y +5u))

(@4 2) i (Y +ry) 5 (211 2) +i (u b)) |

i | (@4 2) +i (245 2) +i ((y +5 u) +e (¥ +5 0))
J/Xjk' +i Xjk
(+ra’)+j (246 2") +i (Y +uy') +5 (w+pu'))

(ii) (Case 0x2x2) Coherence hexagon of the interchangers p;j, Xk, and
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ik, for a 2x2 matrix of i|i-cubes

Xjk€i
(eix +j eqy) +i (€2 +;5 eju) —— (e;x+k €2) +j (eiy +1 eu)
Hij T Miji, \Lﬂik +j ik
ei(r+jy) +rei(z+ju) ei(x+x 2) +j ei(y +x u)

#iki/ \LMU

ei((x+jy)+r (z2+5u)) ei((x+r2)+j (Yy+ru))

€iXjk

(iii) (Case 2x0x2) Coherence hexagon of the interchangers d;;, p;r and
Xik, for a 2x2 matrix of i|j-cubes

8:ij Tk 0i
ej(x+iy) +rej(z+iu) (ejx +; e;y) +i (2 +; e5u)

“J’C\L J{Xikej

ej((x+iy) +r (z+; u) (ejx +i e;2) +i (ejy +i eju)
erUc\L \Lﬂjk +i bk
ej((wtn2) +i (y+ju) ——5— ej(w+r2) tiej(y+5u))

J

(iv) (Case 2x2x0) Coherence hexagon of the interchangers xj, d;x and
dik for a 2x2 matrix of i|k-cubes

en((@+iy) +j (2 Hiw) — T e (x4 2) + (y +5u))

6jk\L \L(sik

ex(z +iy) +jex(z+iu) ex(w+; 2) +iep(y +5u)
Sik +j &,ki léjk +i 6k
(exx +; exy) +j (exz +i epu) g (exx +j exz) +i (epy +; exu)

(v) (Case 0x0x2) Coherence hexagon of the interchangers 7,5, p;r and [k
for a pair of cubes indexed by i\ {i,j}

Tij Tk Tij
€6+ €6y ———> €;6;T tf ;Y

ije'i\L ¢Hik€j

ej(ex +ey) ei(e;x +xejy)

ej/‘/ik\L \Leiﬂjk

ejei(r+rpy) ——— eiej(x+rYy)

Tij
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(vi) (Case 0x2x0) Coherence hexagon of the interchangers f;;, 61 and Tk

djkei
en(ex+jey) ———> epe;r+jepe;y
ek;ufi,j\L i/‘l’,k +j Tik
exei(x+;y) €ierT +j €Ly

Tik\L i//ii,jek

eier(x+;y) e ei(exx +; ery)
i0j

(vii) (Case 2x0x0) Coherence hexagon of the interchangers é;;, T and
dik

Tik
€k6j(33 +iy) — €j€k($ +iy)

ek&ij\L \Lej&;k,

ex(ejr +ie;y) ejer +iexy)

5ikej\L \Léijek

€Ke;T tj ey ———> €;CrT t+; e;eLy
Tik Ti Tik
(viii) (Case 0x0x0) Coherence hexagon of the interchangers T;;, Tjx and
Tik

Tjk€i
€LE ;€T —> €5ERE,T

EkTij\L \LGJT“C

€LEE;T €5€;CkT
Tik€j J/'rijek
€iCLE;T citin €;€;€LT

(The latter condition can be viewed as a Moore relation for transposi-
tions, in the symmetric group Ss; see (B.26).)

6.8.4 Dwuoidal categories as intercategories

We begin now to show how intercategories encompass a wide variety of
three-dimensional categorical structures. Full details and proofs for this
part can be found in [GP7].

Loosely speaking, a duoidal category A is a category equipped with two
tensor products related by interchange morphisms; it can be defined as a
‘pseudo monoid’ in the 2-category of monoidal categories and lax monoidal
functors. The interchangers express the fact that the second tensor is a
lax functor with respect to the first, or equivalently that the first tensor is
colax with respect to the second (as in the structure of a bialgebra).
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More explicitly, A is a category equipped with two monoidal structures
(+i, By, ki, Miy pi), for ¢ = 1,2, that are linked by four 12-interchangers (for
A, B,C, D objects of A)

(a) 7: By — F4 (zeroary interchanger),
(b) w: E1 42 E1 — E (interchanger for 1-identities and 2-product),
(c)0: Ey — Es+1 Fs (interchanger for 1-product and 2-identities),
(d) x(A,B,C,D): (A+1 B) +2 (C+1 D) = (A+2C)+1 (B+2 D)

(binary interchanger).

These interchangers must be natural and satisfy the coherence axioms
6.8.2, fori=1, j = 2.

This is the same as a three-dimensional intercategory on a single object
(written as a dot, and called the vertez), with trivial arrows in all directions
and trivial 01- and 02-cells. Its 12-cubes and 12-maps are the objects and
morphisms of A, respectively. The 12-map corresponding to the morphism
f: A — B will thus inhabit the following ‘general’ cube:

1

N e

(6.131)

N =N N

Let us note that there is precisely one 1-arrow and one 2-arrow, namely
e1(s) and ea(s), which in the diagrams above are only distinguished by their
direction. There are two degenerate 12-cubes, namely ejes(e) and ezeq (o),
which respectively correspond to the objects E; and Es of C (possibly
equal).

6.8.5 Some examples

(a) A category C with finite products and sums has a structure of duoidal
category Fps(C) = (C,x, T,+, L) given by (a choice of) these operations,
in this order. This gives an intercategory whose only non trivial cells are
the 12-cubes and their transversal maps, respectively corresponding to the
objects and morphisms of C.

The interchangers 7, u,d are the following morphisms of C, uniquely
determined

Tl T, wT4+T—oT, 61— 1xl, (6.132)

and x has the following components as a morphism with values in a product
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(pi, ¢; denote cartesian projections)

xaBcp: (AxB)+ (CxD) — (A+ C)x(B+ D),
p1+aqi: (AxB)+ (CxD)— A+C, (6.133)
p2+q2: (AxB)+ (CxD) — B+ D.

The morphism 7: 1 — T is invertible if and only if C has a zero object,
a case examined below.

We can also note that in the (non-chiral) duoidal category Fps(Set) the
interchanger §: ) — (< ( is trivial while the other interchangers are not
invertible: 7: ) — 1, u: 1+1 — 1, and x.

In Fps(Set°P) the interchanger §: L -+ L x_L is the previous (non invert-
ible) mapping p: 1+ 1 — 1. In Fps(Set x Set°P) all the four interchangers
are non invertible.

Assuming that C has finite limits and colimits, there are a lax and a
colax inclusion F,G: Fps(C) — SC(C) of intercategories (see Section 6.6).
F (resp. G) takes the 12-cube at A, displayed in the left diagram below, to
the span-cospan cube represented in the central (resp. right) diagram

1 = 1 1 T ~— 1 — T
=
A T <~— A — T T <~— A — T 6.134)
e
1l = 1 1 T =— 1 — T
F(A) G(A)

Furthermore F' is horizontally pseudo, while G is vertically pseudo: both
are thus colaz-lax functors (see 6.5.7).

If C has a zero object T = 0 = L, these inclusions coincide and Fps(C)
becomes a substructure of the chiral triple category SC(C); in this case
Fps(C) is chiral itself: 7,u,0 are identities. If C is semiadditive, finite
products and sums coincide and we simply have a monoidal structure on
C.

Tabulators and cotabulators of Fps(C) as an intercategory are examined
in 6.9.4.

(b) More generally a monoidal category (C, ®, F') with finite products has a
structure of duoidal category Fpt(C) = (C,%, T,®, E), as in Example 6.19
of [AM].

Here the comparisons 7: F — T and u: T ® T — T are determined by
the terminal object; 6: E — E X E is the diagonal and x has the following
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components
XaBcep: (AxXxB)® (CxD) = (A® C)x(B® D),
P1®q: (AxB)® (CxD) = A®C, (6.135)
P2 ®q2: (AXB)® (CxD)— B® D.

(¢) Dually if the monoidal category C has finite sums, we have a duoidal
category Fts(C) = (C,®, E,+, L) with obvious 7: L — E and ¢: L —
1 ®1; then u: E+ FE — E is the codiagonal and

xaBcp: (A®@ B)+(C® D) — (A+C)® (B+ D), (6.136)

is determined by obvious cocomponents.

6.8.6 Trioidal categories

Putting the previous structures together, a monoidal category (C,®, E)
with finite products and sums can be said to have a structure of ‘trioidal
category’

A = Fpts(C) = (C,x, T, ®, E, +, 1), (6.137)
with tV123(A) =C.

By a trioidal category we mean a 4-dimensional intercategory whose only
non-trivial items are the 123-cubes (the highest dimensional) and their
transversal maps. Note that now, after the coherence axioms of 6.8.2, we
also have to retain those of 6.8.3 for the positive multi-index {i,j,k} =
{1,2,3}.

The interchangers come from the partial duoidal structures

- the 12-interchangers from Fpt(C) = (C,x, T, ®, E)),
- the 23-interchangers from Fts(C) = (C,®, E, +, 1),
- the 13-interchangers from Fps(C) = (C,x, T,+, 1).
In particular:
T122E4)T, T232J_4)E, 7'13:T12.T23ZJ_*>T, (6138)
and the relation 713 = T12.703 is precisely axiom 6.8.3(viii), in the present
degenerate form.

(a) As a particular case one can take the monoidal category Set, of pointed
sets. Binary products and sums are constructed as follows:

(X, 20) % (Y,90) = (X XY, (z0,%0)),

(6.139)
(X,20) + (Yiyo) = (X x{yo} U{zo} XY, (z0,%0)),
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and there is a canonical morphism, given by the inclusion
u: (X, z0) + (Y,y0) = (X, 20) X (Y, 40), (6.140)

(that can be easily extended to any pointed category with binary products
and sums). The smash product defining our monoidal structure is the
cokernel of u (see 1.8.2), and is usually denoted as follows

(X, 20) A (Y, 90) = (X, 20) X (Y, 0)) / (X, 20) + (Y, 90))- (6.141)

Concretely, it is a quotient of the cartesian product X XY, where all
equivalence-classes are singletons except (generally) the following, which
gives the base-point of the smash product:

[(z0,90)] = X x{yo} U{zo}xY.

The identity is the cardinal 2 = {0, 1}, pointed at 0.

For the monoidal category Top, of pointed spaces one proceeds in the
same way, putting on the smash product the quotient topology of the carte-
sian product.

(b) As another example we have Fpts(Ord), where the tensor product
X ®Y is the ordinal sum of ordered sets: it extends the order relations of
X +Y by lettingz <y forallz€e X andyeY.

(c) Finally we also have a trioidal category Fpts(A) for every monoidal
semiadditive category A (see A3.4). Here the product and sum coincide
and are written A @ B; the 13-interchanger

(AeB)®(Ce®D)— (A C)® (Ba D)

is invertible.

6.8.7 *Monoidal double categories and locally cubical
bicategories

The rest of this chapter is more technical, and can be of interest for a reader
already acquainted with higher dimensional category theory.

(a) A monoidal double category of Shulman [Shu] can be defined as a pseudo
monoid in the 2-category PsDbl of weak double categories, pseudo functors
and horizontal transformations.

Shulman uses this notion to construct monoidal bicategories. The new
notion is effective and simpler, because its coherence morphisms are iso-
morphisms rather than equivalences and the coherence conditions are much
easier. Many examples are given.

As proved in [GP7], Subsection 3.1, this is the same as a 3-dimensional
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intercategory with one object, one 0-arrow, one 2-arrow and one 02-cell (all
identities of course); furthermore all interchangers are invertible.

Simple examples come from any weak double category with pseudo func-
torial finite products.

(b) More generally, a locally cubical bicategory of Garner and Gurski [GaG]
is a multiobject version of the previous structure. It can be defined as a
category weakly enriched on the monoidal (cartesian) 2-category PsDbl.

As proved in [GP7], Subsection 3.5, this is the same as an intercategory
in which all transversal arrows, 2-arrows and 02-cells are identities, with
invertible interchangers.

For two objects A, B the general 3-dimensional cells IT: eg2(A) —1 eg2(B)
are cells in a weak double category [A, B], where II has horizontal arrows
®, 1 in direction 0 and vertical arrows , p in direction 2

A4>B

Ty, N
M- S
;

(6.142)

B A4>B

V4

A

6.8.8 *Verity double bicategories and Gray categories

(a) Verity double bicategories have been introduced in [Ve], and used in a
study of higher cobordism, in [Mo].

As proved in [GP7], Theorem 4.1.1, they can be viewed as weak triple
categories whose transversal arrows and all interchangers are identities,
under an additional condition (*) too technical to be recalled here.

(b) Finally Gray categories [Gral] have been generalised in [GP7], Section 5,
under the name of ‘true Gray categories’; it is proved that the latter can
be viewed as intercategories (in three ways).

6.8.9 *Comments on lax multiple categories

We end this section by remarking that the term ‘lax multiple category’
can cover various ‘kinds’ of laxity, where — with respect to a weak multiple
category — some comparisons are still invertible while others (even some
strict ones!) acquire a particular direction depending on the kind we are
considering.

Thus, an intercategory is a particular type of ‘interchange-lax’ triple
category, which is not even a triple set: the positive degeneracies need not
commute.
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As another example, we can recall the ‘symmetric quasi cubical category’
COSP(Top) of higher cospans of topological spaces, constructed in [G4],
where the positive compositions work with homotopy pushouts. This is of
interest for higher cobordism, because homotopy pushouts are homotopy
invariant, while ordinary pushouts are not.

To give an idea of this structure, let us replace Top with a more regular
2-dimensional structure: a 2-category C with iso-pushouts (i.e. cocomma
squares with an invertible cell). Then we can modify the weak symmetric
cubical category Cosp(C) recalled in 6.4.6 by composing cubical cospans
with iso-pushouts. We obtain a kind of lax symmetric cubical category
COSP(C) where all comparisons are invertible except the unitors, directed
as

Ai(z): e (0] x) + 2 — x, pi(®): o +ie;(0f ) — 2. (6.143)

Dually, if the 2-category C has (a fixed choice of) iso-pullbacks, we can
form a structure SPAN(C) by composing cubical spans with iso-pullbacks;
we get a different kind of laxity, where unitors are directed the other way
round with respect to (6.143).

6.9 *Tabulators in intercategories

Tabulators can be easily extended to intercategories, and even acquire
richer forms when degeneracies do not commute.

Here we construct a 3-dimensional intercategory B with ejes # eseq,
where the ejes-tabulator and the esej-tabulator of a 12-cube always exist
and are different, generally. This example is rather artificial, but intercate-
gories having ejes # egeq and tabulators are not easy to build — seemingly.

Finally, in 6.9.4, we give a simpler case where e;ez- and ese;-tabulators
must still be distinguished, but only the second kind always exists.

6.9.1 Definition

In an intercategory A any composed degeneracy
€ = €j,€j,...€j, ' th(A) —>tVi(A) (k:i\{jl,...,jr}), (6144)

depends on the order of the r-tuple (ji,..., ), and gives a distinct notion
of e-tabulator (of degree k = n — r) of an i-cube z of degree n: it is an
object T = T;, ;i (x) with a universal transversal map t,: e(T) —o «
from the functor e to the object x.

In degree n — r there are thus (’;) .r! of them, that fall down to (:f) in
the chiral case.
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Below we only consider 3-dimensional intercategories, where we have
two total degeneracies tv,(A) — tvia(A). The ejes-tabulator of a 12-cube
x is thus defined as an object T" = Tisx with a universal transversal map
t,: erea(Tx) —o x from the functor ejes to the object x. Symmetrically,
we (can) have the egej-tabulator Togx.

Globally, adding the tabulators Tz (of 1-arrows and 12-cubes) and the
tabulators Tax (of 2-arrows and 12-cubes), there are six kinds of non-trivial
tabulators instead of the previous five.

6.9.2 An intercategory

We start from the chiral triple category of spans and cospans A = SC(C),
studied in Section 6.6, where the category C is equipped with a choice of
pullbacks and pushouts that preserves identities. We also assume that C
has a (chosen) initial object 0, and therefore all finite colimits (by 1.3.5(1));
furthermore, we assume that every morphism u: 0 — X is mono (which
holds in many concrete categories but fails in Rng, for instance) and the
chosen pullback of (u,u) is precisely 0.

We now restrict the items of A, so that the only remaining 1-arrows are
the ‘null spans’ X <+ 0 — Y. We can thus form an intercategory B that is
not a substructure of A and is no longer chiral: it has a different e; and its
interchangers 7, u are directed — while ¢ is still trivial.

(a) The sets B, By, B2 and Bgs coincide, respectively, with A,, Ag, As,
Ag2, and have the same composition laws in direction 0 and 2.

(b) The subset By C A; consists of the null spans (X + 0 = Y) of C,
also written as Oxy: X —1 Y. These new 1-cells compose as in A (by our
assumptions on the initial object) but have different identities (as the old
ones do not belong to By)

Oxy +10yz =0xz, el(X)ZOXX:(X<—0—>X).

This forms a category, isomorphic to the indiscrete category on the ob-
jects of C.

(c) A 01-cell (p,q) € Apr amounts to an arbitrary pair of morphisms of C

1

\ \ N (6.145)

/ Y/
OX/yI

Their 0-composition is obvious and gives a category isomorphic to CxC.
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Their 1-composition is that of the indiscrete category on the morphisms of
C: (pa q) +1 (qar) = (pa T)'
(C/) A 12-cell m € B1s C Apo

X 0 X/ *« —

ul Ly 2V 6.146
I | ( )
Y 0 Y’

is a cell of Aj5 whose boundary are null spans and arbitrary cospans, as in
the left diagram below (automatically commutative in C)

X =— 0 —Y X Y
ﬁgigi "ﬁf;'pf;']i”
A b e for
Z ~— 0 —U Z U

It amounts to a triple (u, f,v) containing two cospans, u and v, and a
span f as in the right diagram above. The 1- and 2-composition of these
12-cells are as in A (computed by pullbacks and pushouts, respectively),
with the same associators. In particular

(u,f,v) +1 (U7ng) = (U,f+1 g,’UJ) (6147)
The degeneracies e;: Bo — Bis and ex: By — Bis work as follows
e1(u) =e1(X 2 A+« Y)=(u,(1a,14),u),

(6.148)
eg(Oxy) = 62(X ~—0— Y) = ((1x, 1){),0)()/7 (1y, 1y)),

X X X Y
B PR f
A<— A — A X — 0 — Y
i e !
Y Y X Y

er(u) e2(0xy)

In particular, the second is the restriction of that of A, and sends a null
span Oxy to the obvious 12-cell with three degenerate cospans (on X, 0
and Y).

The binary interchanger y is the (non-invertible) restriction of that of A.
The lower interchangers are defined as follows. Firstly, d is trivial

0(0xy,0yz): ea(0xy +1 0yz) = e2(0xy) +1 e2(0y 2), (6.149)
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namely the identity of the 12-cell ((1x,1x),0xz(1x,1x))-
Secondly, p amounts to the canonical morphism h: A + B — C, where
A, B and C = A+y B are the central objects of the cospans u, v and u+sv,

respectively:

p(u,v): er(u) +2 e1(v) = er(u+2v),
e1(u) 42 e1(v) = (u+2 v, (h,h),u+2v), (6.150)
e1(u+2v) = (u+2v,(lo,1o),u +2v).

Thirdly, also 7 is not invertible (in general)

T(X): ege1(X) = erea(X), (6.151)
X X X X
| o
X =~—0— X X -— X — X
i I i I
X X X X
eger(X) erea(X)

(d) Finally By is the set of triple cells of A whose boundary 1-arrows are
null spans. They compose as in A.

6.9.3 Exercises

Let us suppose that, in the previous construction, the category C also has
a terminal object (and therefore all finite limits). Then one can prove that
the intercategory B has all (six kinds of) tabulators: the tabulator of a
l-arrow, the tabulator of a 2-arrow and four tabulators for the 12-cube
m = (u, f,v) of (6.146). These limits are not always preserved by faces and
degeneracies.

6.9.4 Tabulators and cotabulators for a duoidal category

We end with another case where ejes- and eseq-tabulators must be distin-
guished.

We have seen in 6.8.5 that a category C with finite products and sums
can be seen as a duoidal category Fps(C) = (C,x, T,+, 1), and as an
intercategory F whose only non trivial cells are the 12-cubes and their
transversal maps, respectively corresponding to the objects and morphisms
of C.
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F has precisely one object, the formal vertex «. Its totally degenerate
12-cells ejea(s) and egeq(e) correspond, respectively, to the unit-objects
E, =T and E3 = 1L of C (as remarked at the end of 6.8.4)

(6.152)

erez(e) ezeq ()

(a) Therefore every object A (as a 12-cube of F) admits the vertex « as its
eger-tabulator, via the unique transversal map egej(s) — A (given by the
unique morphism L — A of C). Dually every object A admits the vertex
. as its ejeg-cotabulator, via the unique transversal map A — ejea(s) = T.

The objects L and T of C are thus determined as follows, as 12-cubes
of F (for every A)

1= 6261(0) = €2€1(T21A), T = 6162(-) = 6162(J_12A). (6153)

(b) The symmetric cases, namely ejes-tabulators and eseq-cotabulators,
behave differently. In fact, an object A admits the vertex o as its ejes-
tabulator (resp. esej-cotabulator) if and only if there is precisely one mor-
phism T — A (resp. A — 1) in C.

This is always true if C is pointed. On the other hand, in Fps(Set) only
a singleton has ejes-tabulator and only the empty set has ese;i-cotabulator.



7
Multiple adjunctions

This chapter is devoted to adjunctions for chiral multiple categories, and
is based on [GP10].

Section 7.1 is an informal introduction to the subject of colax-lax ad-
junctions between chiral multiple categories.

In Section 7.2 we introduce the strict double category Cmc of chiral
multiple categories (or cm-categories), lax and colax functors, with suitable
double cells. Comma cm-categories are also considered. Both topics extend
notions of weak double categories developed in Section 4.2.

Sections 7.3 and 7.4 introduce and study multiple colax-lax adjunctions,
as adjoint arrows in the double category Cmc.

In Section 7.5 the double category Cmc is extended to a multiple category
Cmc where the arrows in each direction are mixed laxity functors (defined
in 6.5.7), varying from the lax functors to the colax ones.

In Section 7.6, we briefly examine level limits, a particular case of multi-
ple limits. The exponential AX of (strict) multiple categories is constructed
in Section 7.7.

7.1 Some basic examples of adjunctions

As an informal introduction to multiple adjunctions, we begin by recalling
examples of adjunctions for weak double categories, and explore their exten-
sion to weak multiple categories of cubical type. We derive from the latter
some instances of adjunctions between chiral multiple categories. Other
examples are given in 7.1.5-7.1.7.

318
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7.1.1 A double adjunction

Let C be a category with (a choice of) pullbacks and pushouts. For the sake
of simplicity we still assume that the distinguished pullback or pushout of
an identity along any map is an identity.

The weak double categories Span(C) and Cosp(C) of spans and cospans
of C are linked by an (idempotent) colax-lax adjunction described in 4.5.6
and called the pushout-pullback adjunction of C

F: Span(C) = Cosp(C) : G, (n,e): F 4 G, (7.1)

which is trivial in degree zero; in degree 1, F' acts by pushout on spans and
G acts by pullback on cospans.

7.1.2 The pushout-pullback multiple adjunction

The unitary colax double functor F': Span(C) — Cosp(C) can be extended
to a unitary colax multiple functor F': Span(C) — Cosp(C), between the
weak multiple categories of cubical type introduced in 6.4.6.

For instance, let us take a 2-dimensional span x € Span;(C) indexed by
i = {i,j}. In the notation of 6.4.6, this is a diagram z: V! — C

Too =<— Lo —> T10 s —
S S
Ty, =— Ty —> T1, (72)

I | |

Tor <— Ty —> T11

The 2-dimensional cospan F(x) = F;(x) is constructed in the following
diagram

Tog ——> F(aj_i]'])(L) <— X0 * —>

j ¢ Fo

F(0; z)(t) — Colim (z) =— F (0 x)(1)

? !

F(afx)(L) ~ 213

(7.3)

To1

with the pushouts F(9f'x), F(05'z) of the four faces and, in the central
vertex, the colimit of the whole diagram z: V! — C; the latter exists in C
and can be constructed as a pushout of pushouts. (A general characteri-

sation of the dual topic, limits ‘generated’ by pullbacks, can be found in
[Pa2].)



320 Multiple adjunctions

One proceeds by induction, defining F; for a positive multi-index i =
{i1, ..., } of degree n, after all instances of degree n — 1

05 (Fi(x)) = Fy;(05x) (for o = + and ¢ € i),

7.4
Fi(z)(r) = Colim (z), Y

where ¢ = (1, ..., 1) is the central vertex of Vi.

The definition of F on transversal i-maps is obvious. The comparison
cell for the i-directed concatenation F;(x,y): F(x+;y) — Fax+; Fy derives
from the universal properties of the colimits involved in the construction
of F(z +;y).

The unitary lax double functor G: Cosp(C) — Span(C) is similarly
extended, using limits instead of colimits, and gives a unitary lax multiple
functor G: Cosp(C) — Span(C).

One extends the unit n: 1 --+ GF by a similar inductive procedure:

o (mi(z)) = ms): (05 ) (for = £ and i € i),

(7.5)
(mz)(L): () = (GiFix)(r) = Lim (Fz),

where the map (m;2)(¢) is given by the universal property of Lim (Fiz) as
the limit of the cubical cospan Fyz: Al — C.
Analogously for the counit e: FG --» 1. The triangular equations hold.
Extending what we have already seen in 4.5.6, for ordinary spans and
cospans, one can prove that Finz is invertible (Exercise 7.1.3). We have
thus an idempotent colax-lax multiple adjunction F' 4 G (as defined in
8.4.1).

7.1.3 Exercise

Prove that, in the previous adjunction, Finiz is always invertible.

7.1.4 Chiral examples

The colax-lax adjunction of weak triple categories
F': Spang(C) & Cosps(C) : G, (7.6)

can be factorised through the chiral triple category SC(C) of spans and
cospans of C, obtaining two colax-lax adjunctions of chiral triple categories
(no longer of cubical type)

’ 1"

Spans(C) == SC(C) = Cosps(C) (7.7)
G/ G//
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Here the functor F’: Spang(C) — SC(C) acts on a 12-cube z by pushout
on the three 2-directed spans of x, as the identity on the 1-directed bound-
ary spans 05 (z) and by induced morphisms on the middle 1-directed span.
On the other hand the functor G’': SC(C) — Spang(C) acts by pullback
on the three (2-directed) cospans of z, as the identity on the (1-directed)
boundary spans 0§ (z) and by induced morphisms on the middle span.
Similarly for F”" and G”.

One can also factorise the adjunction (7.6) through the left chiral triple
category CS(C) of cospans and spans, obtaining two colax-lax adjunctions
of left chiral triple categories.

Similarly, the multiple adjunction constructed in 7.1.2 can be factorised
through any right chiral multiple category S,Coo(C), or through any left
chiral multiple category C,So(C).

However, in infinite dimension, one may prefer to consider a more sym-
metric situation, starting from a colax-lax adjunction of weak multiple
categories indexed by the ordered set Z of integers (pointed at 0, see 6.2.3)

F': Spany(C) & Cosp(C) : G. (7.8)

This can be factorised through the chiral multiple category S_.Cuo(C)
defined in 6.4.8, obtaining two colax-lax adjunctions of ‘unbounded’ chiral
multiple categories

Span;(C) &2 S_Cx(C) &= Cospy(C). (7.9)

7.1.5 Extending ordinary adjunctions to cubical spans

As in the 2-dimensional extensions of 4.5.8, we start from an adjunction
F 4 G between ordinary categories

F: X2 A:G, n:1—-GF, e: FG— 1. (7.10)

If X and A have (a fixed choice of) pullbacks, this adjunction can be
extended in a natural way to a unitary colax-pseudo adjunction between
the weak multiple categories of higher spans

Span(F): Span(X) = Span(A) : Span(G). (7.11)
In fact there is an obvious 2-functor
Span: Cat,, — CxCmc, (7.12)

defined on the full sub-2-category of Cat containing all categories with
(a choice of) pullbacks, with values in the 2-category of chiral multiple
categories, colax functors and their transversal transformations (see 6.5.3).



322 Multiple adjunctions

It sends a category C with pullbacks to the chiral multiple category
Span(C) (actually a weak multiple category of symmetric cubical type).
For a functor F': X — A (between categories with pullbacks) Span(F'), also
written as F' for brevity, simply acts by computing F over the diagrams of X
that form i-cubes and i-maps; formally, over an i-map f: x — y: V" = X,
F(f): F(xz) — F(y) is the composite F.f: F.o — F.y: V" — A.

This extension is, in a natural way, a unitary colaxz functor, since iden-
tities of X go to identities of A and a composition z +; y of two spans
z,y: V — X (in any direction i > 0) gives rise to a diagram in X and a
diagram in A

FX,

FX, (7.13)

e

X3 FX3

VN S

where the comparison F,(x,y): F(x +; y) — F(z) +; F(y) is an i-special
transversal map given by the A-morphism a: FP — @ determined by the
universal property of the pullback Q). Similarly we define F;(x,y) for every
i-composition of i-cubes. Note that Span(F') is pseudo if (and only if)
F: X — A preserves pullbacks.

A natural transformation ¢: F — F': X — A yields a transversal trans-
formation

Span(p): Span(F) — Span(F"): Span(X) — Span(A), (7.14)

that again will often be written as ¢. On an i-cube z: V" — X, the
transversal map px: F(x) —¢ F’(z) is the whisker composite of the functor
xz: V" — X with the natural transformation p: FF — F': X — A. Con-
cretely, the transversal i-map px: F(z) —¢ F'(z) has components ¢(z(t)),
for every vertex t of V™.

Now, letting the 2-functor Span: Catp;, — CxCmec act on the adjunction
(7.10), we get a colaz-pseudo adjunction of weak multiple categories

F: Span(X) = Span(A) : G. (7.15)

This gives a colax endofunctor GF on Span(X) (and a colax multiple
monad, see Section 8.2).
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7.1.6 Extending ordinary adjunctions to cubical cospans

Dually, we consider now the full sub-2-category Cat,, of Cat containing
all categories with (a choice of) pushouts. There is now a 2-functor

Cosp: Cat,, — LxCme, Cosp(C) = (Span(C°P))"™, (7.16)

with values in the 2-category of chiral multiple categories, lax functors and
their transversal transformations.

The adjunction (7.10) yields thus a pseudo-lax adjunction of weak mul-
tiple categories

F': Cosp(X) = Cosp(A) : G. (7.17)

This gives a lax endofunctor GF' on Span(X) (and a lax multiple monad,
see Section 8.3).

7.1.7 Mixed extensions

Finally, we have a 2-functor
SC: Catpppo — Mxo(Cmcg), (7.18)

defined on the 2-category of small categories with a fixed choice of pullbacks
and pushouts, arbitrary functors and natural transformations. It takes
values in the 2-category of chiral triple categories, colax-lax functors (or
2-mixed functors) and transversal transformations, defined in 6.5.8.

The adjunction (7.10) yields now an adjunction of chiral triple categories

F': SC(X) = SC(A) : &, (7.19)

where F’' = SC(F') is a colax-pseudo functor (because F' preserves pushouts),
while G’ = SC(G) is a pseudo-lax functor (because G preserves pullbacks).
Their composites G'F’ = SC(GF) and F'G' = SC(FG) are colax-lax
functors (and we have a colax-lax monad G’'F’ on SC(X)).
Similarly, we have a 2-functor

SpCoo: Catpppo — Mx,p11(Cmc), (7.20)

and variations taking into account the cases 5,Cy and S_Cwo.

7.2 The double category of lax and colax multiple functors

In the 2-dimensional case, weak double categories, with lax and colax dou-
ble functors and suitable double cells, form the strict double category Dbl
(see Section 4.2). This construction is now extended, forming the strict
double category Cmc of chiral multiple categories, lax and colax multiple
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functors, that will be used below to define colax-lax adjunctions between
chiral multiple categories.

Comma chiral multiple categories are also considered, extending again
the case of double categories.

In Cmc we follow the notation for double categories used in Chapter 3:
the horizontal and vertical compositions of cells are written as 7 |p and

— =7m®o. Horizontal identities, of an object or a vertical arrow, are
o

written as 1a and 1y; vertical identities, of an object or a horizontal arrow,
as ep and ep.

7.2.1 The double category Cmc

As usual, we do not want to compose lax and colax multiple functors: they
give the horizontal and vertical arrows of a strict double category Cmc.

The objects of Cmc are the chiral multiple categories, or cm-categories,
A, B,C,...; its horizontal arrows are the laz functors F,G...; its vertical
arrows are the colax functors U, V... A cell 7

A . B
U \L T iV (7.21)

C — D
is — roughly speaking — a ‘transformation’ 7: VF --» GU. Again, the com-
posites VF and GU are neither lax nor colax, and the coherence conditions
of 7 require the individual knowledge of the four ‘functors’; including the

comparison cells of each of them.
Precisely, the double cell 7 consists of the following data:

(a) two lax multiple functors F': A — B, G: C — D with comparisons
Fi(z): ei(Fz) = Flex),  Fi(z,y): Fo+i Fy —o F(z +iy),
G, (2): e;(Gx) = G(e;x), Gi(z,y): Gz +; Gy =0 G(z +; y),

(b) two colax multiple functors U: A — C, V: B — D with comparisons
U;(z): Uleir) =0 ei(Uz),  Uy(w,y): Uz +iy) o Uz +i Uy,
Vi(x): V(e;z) = e;(Vx), Vi(x,y): V(e +;y) =0 Vo +; Vy,

(c) a family of i-maps wz: VFz —¢ GUz of D, for every i-cube z in A,
consistent with faces

m(0fx) = O (7). (7.22)
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These data have to satisfy the naturality condition (dec.1) and the co-
herence conditions (dc.2), (dc.3) (with respect to i-degeneracies and i-
composition, respectively)

(de.l) GUfrx =nyVFEf: VFx —¢ GUy (for f: x =g y in A;),
(de.2) GU,x.me;x.VE;x = G,Uz.e;mx.V,Fx (for = in Ay;),
VFx Te;x
Vei(Fr) —— V F(e;x) GU (e;x)

Zinl/ iGQiz
e;VFx e;GUx Ge;Uzx

G.Ux

i

(de.3) GU,(z,y).7z.VE,(x,y) = G;(Uz,Uy).(rx +; 7y).V,;(Fz, Fy)

(for z=2z+;y in Ay),

VEz (E,y) Tz
V(Fz+; Fy) ——— VFz — GUz
L(Fx’Fy)l ngi<x,y>

The horizontal composition 7 |p and the vertical composition 7 ® o of
double cells are both defined via the composition of transversal maps (for
x in A)

A L . L .
U\t T 14 p iW
o — G > e —G'> o (7‘23)

(m|p)(x) = Gre.pFx: WF' Fx —g G'VFx —9 G'GUx,

7.24
(r®o)(x) =oUzV're: V'VFx —¢ V'GUzx —¢ HU'Uz. (724

The fact that these compositions are well-defined, and satisfy the axioms
of a double category, will follow from Theorem 7.5.6 about the multiple
category Cmc: in fact Cmc amounts to the restriction of Cmc to the indices
1 and oco. (Alternatively, the reader can see a direct proof for Cmc in
[GP10], Theorem 2.3.)

Within Cmc, we have the strict 2-category LxCmc of cm-categories, lax
functors and transversal transformations: namely, LxCmc is the restriction
of Cmc to trivial vertical arrows. Symmetrically, Cmc also contains the
strict 2-category CxCmc, whose arrows are the colax functors.



326 Multiple adjunctions

As in 4.2.3 (for weak double categories), we note that a double cell
72 (U ¥ 1) gives a notion of transversal transformation7: F --»U: A — B
from a lax to a colaz functor, while a double cell 7: (1 ¢ V) gives a notion
of transversal transformation w: V --» G: A — B from a colaz to a lax
functor. Therefore, for a fixed pair A, B of chiral multiple categories, the
four possible kinds of transversal transformations between lax and colax
functors A — B compose forming the morphisms of a category HV(A, B).
(It is a consequence of Exercise 4.2.8(a), taking D = Cmc.)

7.2.2 Comma cm-categories

Comma double categories (see 4.2.4) also have a natural extension to chiral
multiple categories.

Given a colaz functor U: A — C and a laz functor F': X — C with the
same codomain, we can construct the comma cm-category U | F', where
the projections P and @ are strict functors and « is a cell of Cmc

|
% T ¢U (7.25)
C

An i-cube of U | F is a triple (a,x;c: Ua —¢ Fx) where a is an i-cube
of A, x is an i-cube of X and ¢ is an i-map of C. An i-map

(h’a f) : (CL, x; C) —0 (alv 37/; C/)
comes from a pair of i-maps h: a —¢ @’ (in A) and f: 2 —¢ 2’ (in X) that

give in C a commutative square of transversal maps

Ua -~ Fx
Uhi iFf Ffc=d.Uh. (7.26)

Ud — Fa'
C

Faces and transversal composition are obvious. The degeneracies are
defined using the fact that U is colaxr and F is laz:

ei(a,z;c: Ua =g Fa) = (eja, ;23 Fy(x).e;e.U;(a)). (7.27)
Similarly the i-concatenation is defined as follows
(a,z;¢: Ua — Fz)+; (byy;d: Ub — Fy) = (a+; b,z +; y;u),

(7.28)
u=F;(z,y).(c+id).Uya,b): Ula+ib) =o F(z +; y),
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QL(aub) c+id EL("EJJ)
Ula+;b) —— Ua+,;Ub Fr+;, Fy —— F(x+;y).

The associativity comparison for the i-composition of three i-consecutive
i-cubes of U | F'

(CL,;U;C), (a/’x/;c/)’ (a",x”;c”),

is given by the pair (k;(a), k;(z)) of associativity i-isomorphisms for our
two triples of i-cubes, namely a = (a,a’,a”) in A and = = (z,2’,2”) in X

(ria), ki(z)): (a,25¢) +i (@, 25 ¢) +i (a”, 275 ")) =0

7.29
((a,z5¢) +i (a', 2", ) +4 (a”, 25 7). (7:29)

The coherence of this i-map, as in diagram (7.26) above, is deferred to
Exercise 7.2.3.

Similarly one constructs the unitors \;, p; and the interchangers x;; of
U | F, using those of A and X.

Finally, the strict functors P and @ are projections, while the component
of the ‘transformation’ 7 on the i-cube (a,z;c) of U | F is the transversal
map

m(a,z;¢) = c: Ua —o F. (7.30)

7.2.3 Ezxercise
The pair (k;(a), xi(x)) in (7.29) is indeed an i-map of U | F.

7.2.4 Theorem (Universal properties of commas)

(a) For a pair of lax functors G, H and a cell ¢ as below (in Cmc) there
is a unique lax functor L: Z — U | F such that G = PL, H = QL
and ¢ = |7 where the cell ¥ is defined by the identity 1: QL — H (a
horizontal transformation of lax functors)

Z — % oA yAR § ) A N \
N le 4 Lo Lo
A A A (7.31)
Z — X — C VA X C
H F H F

Moreover, L is pseudo or strict if and only if both G and H are.

(b) A similar property holds for a pair of colax functorsV:Z — X, W: Z —
A and a double cell ¢': (V 1. UW).
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Proof (a) L is defined as follows on an i-cube z and an i-map f: z — 2/
of Z

L(z) = (Gx,Hz; px: UGr — FHzx), L(f) = (Gf,Hf). (7.32)

The comparison transversal maps L, are constructed with the laxity
transversal maps of G and H (for t in Z;; and z = x +; y in Z;), and are
invertible or degenerate if and only if the latter are

Lt = (G;t, H;t): e;(Lt) — Le;(t),

(7.33)
L,(z,y) = (G,(x,y),H,(x,y)): Lz +; Ly — Lz.

Here Lx 4, Ly is the i-cube defined as follows, applying (7.27)—(7.28)

Lz +; Ly = (Gx, Hx; px) +; (Gy, Hy; ¢y)

= (Gx +; Gy, Hz +; Hy; u),
u=F;(Hz, Hy).(px +; py).U;(Gz, Gy):

U(Gz +; Gy) — F(Hz +; Hy),

(7.34)

UGz +, Gy) —UGx +, UGy — FHx +; FHy — F(Hx +; Hy).

The coherence condition (7.26) on the transversal map L;(z,y) of U | F,
i.e. the commutativity of the square

U(Gz +; Gy) —*= F(Hz +; Hy)

Ug,i(x,wi lwm,y) (7.35)
UGz FHz

0z

follows from the coherence condition (dc.3) of ¢: (1 S U) as a double cell
in Cmec. In fact, this condition gives the commutative diagram

UG, (z,y)

UGz +; Gy) ——— UGz = Fit=
Qi(Gz,Gy)i/ RN R

UGz +,; UGy N '

Wﬂcpyi o RN

FHz +; FHy FXCENT F(Hz +; Hy) W FHz

where the lower row is the composed comparison of FH.
The uniqueness of L is obvious. ]
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7.3 Main definitions

We now define a colax-lax adjunction between chiral multiple categories,
a notion that occurs naturally in various situations — as we have already
seen in Section 7.1.

7.3.1 Multiple adjunctions

A multiple adjunction (n,e): F 4 G, or a colax-lax adjunction between
chiral multiple categories, will be an orthogonal adjunction in the double
category Cmc (as defined in 4.1.2).

The data amount thus to:

- a colax functor F': X — A, the left adjoint,
- a lax functor G: A — X, the right adjoint,

- two Cme-cells : 1x --+ GF and e: FG --» 15 (unit and counit) that
satisfy the triangle equalities:

P n

X
|
y

— X A‘>G X 77®€:1F7
A=—A

A = X eln=egq.

We speak of a pseudo-laz (resp. a colaz-pseudo) adjunction when the left
(resp. right) adjoint is pseudo, and of a pseudo (or strict) adjunction when
both adjoints are pseudo (or strict).

From general properties (see 4.1.2), we already know that the left adjoint
of a lax functor G is determined up to transversal isomorphism (which
amounts to a special invertible cell between vertical arrows in Cmc), and
that adjunctions can be composed.

As in 7.2.1, the arrow of a colax functor is marked with a dot when
displayed vertically, in a double cell of Cmc. Again, we may write unit and
counit as : 1 --» GF and ¢: FG --» 1, but we know that the coherence
conditions of these ‘transformations’ involve the comparison cells of F' and
G. As for double categories, in Chapter 4, a general colax-lax adjunction
cannot be seen as an adjunction in some 2-category; but this is possible
for a pseudo-lax or a colaz-pseudo adjunction, as we shall see in the next
section.

7.3.2 A description

A colax-lax adjunction (n,¢): F' 4 G between the cm-categories X and A
consists thus of the following items.
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(a) A colax functor F': X — A, with comparison transversal maps
Fi(z): F(eiz) —o ei(Fz), Fi(z,y): F(z +iy) —o Fz +; Fy.

(b) A lax functor G: A — X, with comparison transversal maps

G,

4

(a): e;(Ga) —o G(e;a), G, (a,b): Ga+; Gb —q G(a+; b).

(¢) An ordinary adjunction F; - Gj of the transversal components, for
every positive multi-index i

nitlﬁGiFiZXi—)Xi, EiZF‘iGi—)liAi—)Ah
el Finy = 1py, GiginiGi = lai.

Explicitly, point (¢) means that we are assigning:

- transversal maps mz: x —o GiFiz in X (for = in Xj), also written as
nxr: x —9 GFx,

- transversal maps g;a: FiGija —o a in A (for a in A;), also written as
eca: FGa —g a,

satisfying the naturality conditions (ad.1), for f: © —¢ y in X and h: a —¢
bin A, and the triangle equations (ad.2), for z in X and a in A

(ad.1) ny.f = GF fanz, eb.FGh = h.ca,
(ad.2) eFz.Fnx = 1p,, GeanGa = 1gq.-

(d) These families 7 = (1;) and € = (¢;) must be consistent with faces
(05 x) = 0 (nx), e(9i'a) = 9 (ea), (7.37)

and with the geometric compositions (with respect to the comparison maps
of F' and G):

(ad.3) (coherence of n and € with i-identities) for x in X and a in A:

GE,(2)n(e;x) = Gy(Fa).e;(ne), (7.38)

e(e;a).FG;(a) = ei(ea).F;(Ga), (7.39)

(ad.4) (coherence of  and £ with i-composition) for z = x +; y in X and
c=a+1bin A:

GF(v,y)mz = G,(Fz, Fy).(nx +: ny), (7.40)

ec.FG,(a,b) = (ea +; eb).F;(Ga, Gb), (7.41)
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nz FG,(a,b)
z GFz F(Ga+; Gb) —— FGc
nx-&-myl GE,;(zay)l lgi(Ga,Gb) \Lac
GFz +; GFy Qm) G(Fzx +; Fy) FGa+; FGb s ©

When F and G are unitary, (ad.3) amounts to: n(e;x) = e;(nz) and
ele;a) = ei(ea).

7.3.3 Lemma

(a) In a colaz-lax cm-adjunction (n,e): F - G the comparison maps of
G determine the comparison maps of F', through the ordinary adjunctions
Fi — Gi, as

F.(z) =ee;(Fz).FG;,(Fz).Fei(nx): Fe;(x) — e;Fux, (7.42)

Ei(v,y) =e(Fz +; Fy).FG,(Fx, Fy).F(nz +iny):

(7.43)
Flx+;y) = Fz +; Fy.

Dually, the comparison maps of F' determine the comparison maps of G,
through the ordinary adjunctions.

(b) If all the components of n, e are invertible, then G is pseudo if and only
if F is.

Note. Loosely speaking, point (a) says that a lax multiple functor can only
have a colax left adjoint (if any), and symmetrically; this fact will be made
precise in Corollary 7.3.7. Moreover Theorem 7.4.3 will show that if a lax
functor has a lax left adjoint, the latter is necessarily pseudo.

Proof (a) The first equation of (ad.3) says that the adjoint map of F;(x),
ie. (F;(z)) = GF,;(z).n(e;x), must be equal to f = G,(Fz).e;(nx). The
adjoint map of the latter gives F,(z) = f' = ee;(Fx).F(f). Similarly for
F,(x,y), from (ad.4).

(b) A straightforward consequence of the previous point and its dual. [

7.8.4 Theorem (Characterisation by transversal hom-sets)

A multiple adjunction (n,e): F 4 G can equivalently be given by a colax
functor F: X = A, a laz functor G: A — X and a family (L;) of isomor-
phisms of ordinary functors, indexed by the positive multi-indices i C N

Li: Ai(Fi—, :) — Xi(—,Gi :): (Xi)OpXAi — Set,

(7.44)
Li(z,a): Ai(Fz,a) — Xi(z,Ga).
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The components Li(x,a), also written as L(x,a) or just L, must be con-
sistent with faces and the positive operations (through the comparison maps
of F and G), i.e. must satisfy the following conditions:

(adh.1) L;(8%z,0%a) = 8% (Li(z, a)),
(adh.2) L(e;jzx,e;a)(e;h.F;x) = G,a.e;(Lh) (for h: Fz =0 a in Ay;),

F, eih e;(Lh) G,
Fejix —= e;Fx — e;a e;x —= e¢;Ga —> Gea,
(adh.3) L(z+;y,a+;b)((h+; k).F;(z,y)) = G,(a,b).(Lh +; Lk)
(for h: Fx —¢ a, k: Fy —o b in A;),

F.
Flz+;y) —> Fx+;Fy ——— a+;b

1T q Q'i
x+;y Ltk Ga+; Gb —— G(a+; ).
In this equivalence Li(x,a) is defined by the unit n as
Li(z,a)(h) = Gh.apx: x =9 Ga  (for h: Fx —q a in Ajy). (7.45)

The other way round, the component n;: 1 — GiFy: X3 — Xj of the unit
is defined by L as

ni(x) = Li(z, Fr)(idFx): © =9 GF(x) (for x in X;).  (7.46)

Proof We only have to verify the equivalence of the conditions (7.37)—(7.41)
with the conditions above.

This is straightforward. For instance, to show that (7.40) implies (adh.3),
let h: Fx — a and k: Fy — b be i-consecutive i-maps in A, and apply
L =L(z+;y,a+; a) as defined above, in (7.45):

L((h+; k).F;(z,y))
=G(h+i k).GE;(z,y).n(z +iy)

= G(h+i k).G;(Fz, Fy).(nz +i ny) (by (7.40))
=G,(a,b).(Gh +; Gk).(nx +; ny) (by axiom (Imf.2) in 6.5.2)
=G,(a,b).(Lh +; Lk).

O
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7.3.5 Corollary (Characterisation by multiple commas)

With the previous notation, a multiple adjunction amounts to an isomor-
phism of chiral multiple categories L: F | A — X | G over the product
XxA

F LA

X1lG

~ L (7.47)
XxA

Proof It is a straightforward consequence of the previous theorem. O

7.3.6 Theorem (Right adjoint by universal properties)
Let a colax functor F': X — A be given.
The existence and choice of a right adjoint laz functor G amounts to
a family (rad.i) of conditions and choices, indexed by the positive multi-
indices i:
(rad.i) for every i-cube a in A there is a universal arrow

(Ga,eia: F(Ga) —q a)

from the functor Fy: X; — A; to the object x, and we choose one, consis-
tently with faces.

Ezxplicitly, the universal property means that, for each i-cube x in X and
i-map h: Fx —q a in A there is a unique f: x —o Ga such that h =
ca.Ff: Fr —o F(Ga) —¢ a.

The comparison i-maps of G

G,(a): e;(Ga) —¢ G(e;a), G,(a,b): Ga+; Gb —o G(a+;b), (7.48)

are then given by the universal property of €, as the unique solution of the
equations (7.39), (7.41), respectively.

Proof The conditions (rad.i) are plainly necessary.

Conversely, each of them provides an ordinary adjunction (n;,e;): F;
G between the categories X; and A;, so that G, n and € are correctly
defined — as far as cubes, transversal maps, faces, transversal composition
and transversal identities are concerned.

Now, we define the comparison maps G, as specified in the statement, so
that the coherence properties of ¢, in (7.39) and (7.41), are satisfied. One
verifies easily the axioms of naturality and coherence for these comparisons
(see 6.5.2).
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Finally, we have to prove that n: 1 --» GF satisfies the coherence prop-
erty (7.40)
GE(x,y)nz = G;(Fz, Fy).(nz +i ny), (7.49)
for a composite z = x +; y of i-cubes in X (similarly one proves property

(7.38)).
Applying the universal property of ¢, it is sufficient to show that the

composite e(Fz +; F'y).F(—) takes the same value on both terms of (7.49).
In fact we get F';(x,y) in both cases:

e(Fx+; Fy).FGE,(x,y).Fnz = F,(x,y).eFz.Fnz = F;(x,y),

e(Fx +; Fy).FG,(Fz, Fy).F(nz +; ny)

= (eFz+;eFy).F,(GFz,GFy).F(nx +; ny) (by (7.41))
= (eFz +; eFy).(Fnx +; Fny).E,;(x,y) (by naturality of F;)
= (eFz.Fnx +; eFy.Fny).F,(z,y) (by Oi-interchange)
= (1ps +ilpy).Fi(z,y) = Fi(z,y).

O

7.3.7 Corollary (Right adjoint by transversal components)

A colax functor F: X — A has a lax right adjoint if and only if each
component Fy: X5 — Aj has an (ordinary) right adjoint Gi: Ay — Xj,
consistently with faces

8?Gi = Gi|i8ia (’L S i). (7.50)

Proof A straightforward consequence of the previous theorem. |

7.3.8 Theorem (Factorisation of adjunctions)

Let F - G be a colaz-lax adjunction between X and A. Using the iso-
morphism of ecm-categories L: F [ A — X |G (of Corollary 7.3.5), we can
factorise the adjunction

F’ L Q
X = F|A__—=X|G_—=A (7.51)
P L=t G’

as a composite of:

- a coreflective colax-strict adjunction F' — P (with unit PF' =1),
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- an isomorphism L - L1,
- a reflective strict-lax adjunction @ 4 G’ (with counit QG' = 1),

where the strict functors P and Q are comma-projections.

Proof We define the lax functor G’: A — X |G by the universal property
of commas 7.2.4(a), applied to G: A = X, 1: A — A and ¢ = eg, as in the
diagram below

A—% o x A9 xi6 o x
T e
A — A — X A A X

1 G 1 G

G'(a) = (Ga,a;1: Ga — Ga),
Gila) = (Gi(a),1): (eiGa, eia; G;a) — (Gleia), esa; 1),
Gl(a,b) = (Gy(a,0), 1):

(Ga+; Gb,a+; b;G,(a,b)) = (G(a+;b),a+; b; 1).

The colax functor F’: X — F' | A is defined by the dual property 7.2.4(b)

F'(z) = (x,Fz;1: Fx — Fzx),
Fi(z) = (1,F;(2): (e;z, Fe;x); 1) — (ejx, Fea; Fy(w)),

(7.53)
Fi(z,y) = ( Fi(z,y)):
(.T F(m—i_l )7 ) (UU‘H?J’FUU‘H FyaEz($7y)>
The coreflective adjunction F’ < P is obvious
ne=1,: v — PF'z,
(7.54)

e'(x,a;¢: Fr — a) = (1;,¢): (z, Fx; 1p,) — (2, a5¢),

as well as the reflective adjunction @ - G’, and the factorisation (7.51).
O

7.4 Multiple adjunctions and pseudo functors

We consider now cm-adjunctions where the left or right adjoint is a pseudo
functor, and we introduce adjoint equivalences of chiral multiple categories.
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7.4.1 Comments

Let us recall, from 7.3.1, that a pseudo-laz cm-adjunction F' 4 G is a mul-
tiple adjunction between cm-categories where the left adjoint F' is pseudo.

Here the comparison cells of F' are horizontally invertible and the com-
posites GF and FG are lax functors; it follows (from 7.2.1) that the unit
and counit are horizontal transformations of lax functors. Therefore a
pseudo-lax cm-adjunction gives an adjunction in the 2-category LxCmc
of cm-categories, lax functors and their transversal transformations (intro-
duced in 7.2.1); we shall prove that these two facts are actually equivalent
(Theorem 7.4.3).

7.4.2 Theorem (Companions in Cmc)

A lax functor G has an orthogonal companion F in the double category Cmc
if and only if it is pseudo; then one can define F = G, as the colax functor
which coincides with G except for comparison maps, that are transversally
inverse to those of G.

Proof We restrict to unitary cm-categories, for simplicity. If G is pseudo,

it is obvious that G, as defined above, is an orthogonal companion.
Conversely, suppose that the lax functor G: A — X has an orthogonal

companion F' (colax). There are thus two double cells 7, e in Cme

A—— A A - X
n iF Fi £ (7.55)

which satisfy the equations n|e =eg, n®e = 1p.
This means two ‘transformations’ n: F' --» G and £: G --» F, as defined
in 7.2.1; for every i-cube a in A, we have two transversal maps na and ea

in X
na: Fa — Ga, ea: Ga — Fa, (7.56)

consistently with faces. These maps are transversally inverse, because of
the previous equations (see (7.24))

na.eca = (nle)(a) = lga, cana=(ne)(a) =1p,. (7.57)

Applying now the coherence condition (dc.3) (of 7.2.1) for the
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transformations 7, € and a concatenation ¢ = a +; b in A we find
nec = G,(a,b).(na +; nb).F;(a,b): Fc— G,

(7.58)
ea+; b= F,(a,b).cc.G;(a,b): Ga+; Gb — Fa+; Fb.

Since all the components of 1 and ¢ are transversally invertible, this
proves that G,(a,b) has a right inverse and a left inverse transversal map,
whence it is invertible. Similarly for the comparisons of degeneracies.

Therefore G is pseudo and F' is transversally isomorphic to G.. |

7.4.3 Theorem

(a) (Pseudo-lazx adjunctions) For every adjunction F' 4 G in the 2-category
LxCmc, the functor F is pseudo and the adjunction is pseudo-lax, in the
sense of 7.3.1.

(b) (Colaz-pseudo adjunctions) For every adjunction F' - G in the 2-
category CxCmc, the functor G is pseudo and the adjunction is colax-
pseudo.

Proof Tt suffices to prove (a); again, we only deal with the comparisons of
a composition.

Let the lax structures of F': X — A and G: A — X be given by the
following comparison maps, where z =x +;y and c=a +; b

Xi(z,y): Fx +; Fy — Fz, G,(a,b): Ga+; Gb — Ge,

so that we have:

nz = GAi(z,y).G;(Fx, Fy).(nx +; ny): 2 — GFz,

7.59
ea+; b =ec.FG,(a,b).\i(Ga,Gb): FGa +; FGb — c. (7.59)

We construct a colax structure F for F', letting
F.(z,y) =e¢(Fx+; Fy).FG,(Fz,Fy).F(nz +;ny): Fz — Fz +; Fy.

Now it is sufficient to verify that F,(z,y) and \;(z,y) are transversally
inverse:
Ai(,y) Ly (x, y)
= Ai(z,y).e(Fz +; Fy). FG;(Fx, Fy).F(nx +i ny)
=eFz.FG\(x,y).FG,(Fz, Fy).F(nz +; ny) (by naturality of ¢)
eF(2).F(nz) = 1p- (by (7.59)),
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Ey(a,y)Ai(z, y)
= e(Fa +; Fy). FG;(Fz, Fy).F(ne +iny)-Ai(z, y)
=¢e(Fr+; Fy).FG,;(Fz, Fy).\i(GFz,GFy).(Fnx +; Fny)
(by naturality of \)
= (eFxz +;eFy).(Fnx +; Fny) (by (7.59))
= (eFz.Fnx) +; (eFy.Fny) (by Oi-interchange)

=1ps +ilry = lpey,ry-

More formally, (a) can be rewritten saying that, in the double category
Cmc, if the horizontal arrow G has a ‘horizontal left adjoint’ H (within
the horizontal 2-category HorCmc = LxCmc), then it also has an ortho-
gonal adjoint F' (colax). After this is proved as above, we apply Proposi-
tion 4.1.4 showing that H and F' are companions, whence H is pseudo, by
Theorem 7.4.2, and isomorphic to F'. ]

7.4.4 Equivalences of cm-categories

An equivalence between two cm-categories X and A will be a pseudo functor
F: X — A which has a weak inverse G: A — X, with GF =21 and FG = 1.

An adjoint equivalence will be a pseudo cm-adjunction (n,e): F - G
where the transversal transformations n: 1x — GF and €: FG — 1 are
invertible.

The following properties of a lax or colax functor F': X — A will allow
us (in the next theorem) to characterise the equivalence of cm-categories
in the usual way, under the mild restriction of transversal invariance.

(a) We say that F is (transversally) faithful if all the ordinary functors
F;: X; — A; (between the categories of i-cubes and their transversal maps)
are faithful: given two i-maps f,g: * —¢ y of X between the same i-cubes,
F(f) = F(g) implies f = g.

(b) Similarly, we say that F'is (transversally) full if all the ordinary functors
F;: X; — A; are full: for every i-map h: Fx —¢ Fy in A there is an i-map
f:x =0y in X such that F(f) = h.

(c) Finally, we say that F' is essentially surjective on cubes, or on ex-
tended objects, if every functor Fj is essentially surjective on objects: for
every i-cube a in A there is some i-cube x in X and some invertible i-map
h: F(z) =0 a in A.
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7.4.5 Theorem (Characterisations of equivalences)

Let F: X — A be a pseudo functor between two transversally invariant
cm-categories (see 6.5.5). The following conditions are equivalent:

(i) F: X = A belongs to an adjoint equivalence of cm-categories,

(i) F: X = A is an equivalence of cm-categories,

(ii) F is faithful, full and essentially surjective on cubes (see 7.4.4),
(i) every ordinary functor Fy: X; — Aj is an equivalence of categories.

Moreover, if F is unitary, one can make its ‘quasi-inverse’ unitary as
well.

Proof (Of course the proof depends on the axiom of choice.) By our
previous definitions in 7.4.4, conditions (iii) and (iv) are about the family
of ordinary functors (Fj) and are well known to be equivalent, see 1.2.5.
The implications (i) = (ii) = (iv) are obvious.

Conversely, let us assume that every Fj is an equivalence of ordinary
categories and let us extend the pseudo functor F' to an adjoint equivalence,
proceeding by induction on the degree n > 0 of the positive multi-index i.

First, Fi: tv.(X) — tv.(A) is an equivalence of categories and we begin
by choosing an adjoint quasi-inverse G..: tv.(A) — tv.(X).

In other words, we choose for every object a in A some G(a) in X and
some isomorphism ea: FG(a) — a in A; then a transversal map h: a — b
in A is sent to the unique X-map G(h): G(a) — G(b) coherent with the
previous choices (since F, is full and faithful). Finally the isomorphism
ne: x — GF(x) is determined by the triangle equations (for every s-cube
z of X).

We assume now that the components of G, € and 7 have been defined
up to degree n — 1 > 0, and define them for a multi-index i of degree n,
taking care that the new choices be consistent with the previous ones.

For every i-cube a in A we want to choose some i-cube G(a) in X and some
i-isomorphism ea: FG(a) — a in A, consistently with all faces 0 (i € 1).
We begin by choosing an i-cube x and an i-isomorphism w: F(z) — a. By
the inductive hypothesis, we have a family of 2n transversal isomorphisms
of A

v = 0¥ (uh).e(08a): FG(9{a) — 0fa — F(0%z) (i €1i, a=+),

which can be uniquely lifted as transversal isomorphisms ¢ of X, since F
is full and faithful

t&: G(05a) — Oz, vy = F(t).

K3
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The family (v) has consistent positive faces (see 6.5.5), because this
is true of the family (0%u~'); o, by commuting faces, and of the family
(e(0%a))i,a, by inductive assumption. It follows that also the family (¢&)
has consistent positive faces.

By transversal invariance in X we can fill this family (¢t%) with a (chosen)
transversal i-isomorphism ¢: y — x, and we define the i-cube G(a) and the
i-isomorphism ea as follows:

G(a) =y, ea =u.Ft: FG(a) = F(x) — a.
This choice is consistent with faces:

0 (ca) = (B5w). Fi = (07 u).vf" = (05 a).

Now, since F; is full and faithful, a transversal i-map h: a — b in A
is sent to the unique X-map G(h): G(a) — G(b) satistying the condition
eb.F(Gh) = h.ea (naturality of €).

Again, the i-isomorphism nz: x — GF(x) is determined by the triangle
equations, for every i-cube x of X.

The comparison i-maps G, are uniquely determined by their coherence
conditions (see 7.3.2)

ee;a.FG,(a) = e;(ea).F;(Ga) (for a € Ay;),
ec.FG,;(a,b) = (ea +; eb).F;(Ga, Gb) (for c=a+;bin A;).

Moreover G,(a) and G,(a,b) are invertible, because so are their images
by F', which is full and faithful.

The construction of G, € and 7 is now achieved. One ends by proving
that G is indeed a pseudo functor, and that e,n are coherent with the
comparison cells of F' and G.

Finally, let us assume that F is unitary: F,;(z): F(e;x) — e;(Fx) is
always an identity. To make G unitary we assume that — in the previous
inductive construction — the following constraint has been followed: for a
Jj-degenerate i-cube a = ejc we always choose the transversal isomorphism
u=-ej(ec): F(e;(Gc)) — ejc. It follows that each

v FG(0fejc) — F(0e;Ge)

is the identity; then t3: G(0ejc) — Ofe;Gce is the identity as well. We
choose to fill their family with the identity ¢: e;Gc — e;Ge, which gives

G(ejc) = e;Ge, e(ejc) = u.Ft =ej(ec).

If a is also j’-degenerate, the commutativity of degeneracies ensures that
both constructions give the same result. ]
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7.5 The multiple category of chiral multiple categories

In Section 7.2 we constructed the double category Cmc of chiral multiple
categories, with lax and colax multiple functors, and suitable ‘quintets’ for
double cells.

We extend now this structure, forming a (strict) multiple category Cmc
of chiral multiple categories, indexed by ‘extended’ multi-indices

p: {p7q)’r"'} C w+1 = {07 1’27"'700}’

where the p-directed arrows are the p-mixed functors of 6.5.7. The strict
functors give the 0-directed arrows, and are also called 0-mized functors.
The (small) chiral multiple categories A, B... forming the objects of Cmc
are still indexed by finite multi-indices i = {4, j, k...} Cw =N.

Similarly, the (n 4+ 1)-dimensional multiple category Cmc,, of chiral n-
tuple categories will be indexed by multi-indices p C n+ 1 ={0,1,...,n}.

Let us note that, if we restrict Cmc to the weak multiple categories of
cubical type (see 6.4.5), we still have a multiple category of non-cubical
type, with different kinds of arrows in each direction.

All this can be generalised to a multiple category Inc of intercategories
(indexed by w 4 1), and an (n + 1)-dimensional multiple category Incy, of
n-intercategories.

This section is based on [GP12], but we use here a wider structure with
a simpler construction, where all cells — including the transversal maps —
are given by ‘quintets’: see 7.5.5(d).

7.5.1 Low dimensional cells

We begin the construction of the multiple category Cmc.

In dimension 0, the objects of Cmc are the (small) chiral multiple cate-
gories.

In dimension 1 and direction p (for 0 < p < 00), a p-morphism F: A —,,
B between chiral multiple categories is a strict functor if p = 0, and a p-
mixed functor, as defined in 6.5.7, for p > 0: colax in all positive directions
i < p and lax in all directions ¢ > p. In particular, it is a lax functor when
p =1 and a colax functor when p = oo.

7.5.2 Two-dimenstional cells

To define a pg-cell (for 0 < p < ¢ < o0) we have to adapt the axioms of
transversal transformation in 6.5.8.

A pg-cell p: (U g V) is a ‘generalised quintet’ consisting of two p-
morphisms F, G, two g-morphisms U, V', together with, roughly speaking,
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a ‘transversal transformation’ ¢: VF --» GU

U v (7.60)

e <—

TW<—-o
)
<

F
]

©
—_—

G

Again this is an abuse of notation since, generally, there are no com-
posites VF and GU in our structure: the coherence conditions of ¢ are
based on the four mixed functors F, G, U, V and all their comparison maps.
Precisely, the cell ¢ consists of a face-consistent family of transversal maps
in B

o(x) = pi(z): VF(x) =¢ GU (), (for z in Ay),

(7.61)
O o1 = i) 05" (for i € 1),

so that each component o;: ViF; — GiUi: A; — Bj is a natural transfor-
mation of ordinary functors:

(nat) for all f: x —¢ y in A, we have a commutative diagram of transversal
maps in B
VFz > QU
VFfl lGUf (7.62)

Moreover ¢ has to satisfy the following coherence conditions (coh.a) —
(coh.c) with the comparisons of F,G,U,V for a degenerated cube e;(t),
with ¢ in Ay;, and a composite z = = +; y in A;. (Of course, if p =0 the
comparisons of F,G are identities.)

(coh.a) If p < ¢ < i, so that F,G,U,V are lax in direction i, we have
commutative diagrams:

ei(pt) pT+ipY

e VE(t) — e;GU(t) VFrx+;VFy —> GUz +; GUy
ZiF\L iQiU LFi iQiU
V(eiFt) Ge;U(t) V(Fz +; Fy) G(Uxz +; Uy)
ol ] o
VF(eit) o GU (e;t) VFz GUz

If p < i< g, sothat F,G are lax and U,V are colax in direction i, we have
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commutative diagrams (where the comparisons of U,V are reversed):

V() <YL cau) VFz+, VFy 222 GUz +, GUy
o el e
V(e;Ft) Ge;U(t) V(Fz +; Fy) GUzx+; Uy)
VF, l T GU, VE, J{ T GU;

V F(e;t) o GU (e;t) VFz GUz

p(eit

(coh.c) If i < p < g, so that F,G,U,V are colax in direction i, we have
commutative diagrams:

eVE@M) S qu VFe+, VFy 1% QU+, GUy
ZiFT TgiU LFT TQZU
V(e;Ft) Ge;U(t) V(Fx +; Fy) G(Uz +; Uy)
VEI.T TGQi VEiT TGL
VF(e;t) —— GU(e;t) VFz GUz

w(est)

The p- and g-composition of pg-cells are both defined using component-
wise the transversal composition of a chiral multiple category. Namely, for
a consistent matrix of pg-cells

i@

<— e
< |

S
\L@

<
e <—T— o

Q 6
¥
\
Q
\l

(7.63)

S
<
R
l .

=

T

(p+p ) (@) =(Fx) +0 G'(pz): WF'Fz — G'VFz — G'GUz, (7.64)
(p+q0)(@)=V'(pz)+00(Ux): V'VFz - V'GUz — HU'Uz. (7.65)

We prove below, in Theorem 7.5.6, that these composition laws are well-
defined, i.e. the cells above do satisfy the previous coherence conditions,
and satisfy the middle-four interchange law.

Moreover, they have been defined via the composition of transversal
maps, and therefore are strictly unitary and associative.
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7.5.3 Three-dimensional cells
A pgr-cell (for 0 < p < ¢ < r < o0) will be a ‘commutative cell’ II
determined by its six faces:
- two pg-cells ¢, 1 (the faces O1I),
- two pr-cells 7, p (the faces 9g'11),
- two gr-cells w, ¢ (the faces 9;11),

A%. v
NN x

MDA

<, . - .
. \er lw NN
U’ v’ v
* —> B ¢« —> B
G’ G’

.%
A
3
%

P <—— @
/-

o

.
B
’d

They must satisfy the following commutativity relation in B, for every
i-cube x of A

Gwx.pUz.Y'ox = pXa.V're.(Fx:

7.67
Y'VFr = GU' Xx. ( )

These cells are composed in direction p, g, or r, by pasting 2-dimensional
cells. Also here, these operations are associative, unitary and satisfy the
middle-four interchange by pairs.

7.5.4 Higher cells

Finally, we have the multiple category Cmc (indexed by the ordinal w+1),
where each cell of dimension > 4 is ‘coskeletally’ determined by a face-
consistent family of all its iterated faces of dimension 3. Compositions
work accordingly.

In the truncated case we have the (n + 1)-multiple category Cmc, of
(small) chiral n-tuple categories, where the objects are indexed by the
ordinal n = {0,...,n — 1}, while Cmcy, is indexed by n + 1 (the previous
index oo being replaced by n). Let us note that Cmcy, is not an ordinary
truncation of Cmc, as its objects too are truncated.

Cmc is a substructure of the — similarly defined — multiple category Inc
of small infinite-dimensional intercategories.
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7.5.5 Comments

These multiple categories are related to various double or triple categories
previously constructed.

(a) A chiral 1-dimensional multiple category is just a category, and Cmcy
is the double category of Q(Cat) of quintets on the 2-category Cat.

(b) A chiral 2-dimensional multiple category is a weak double category, and
Cmcy is ‘similar’ to the triple category StcDbl of weak double categories
(see 6.1.1): the two structures have the same arrows, but the quintets of
the 01-cells are reversed.

(¢) The quadruple category Incg of 3-dimensional intercategories is an ex-
tension of the triple category ICat of [GP6], Section 6, obtained by adding
strict functors in the new transversal direction.

(d) The structure Cmc studied in [GP12] is a substructure of the current
one, with the same cubes and restricted transversal maps.

7.5.6 Theorem

In Cmc the composition law @+, of pg-cells is well-defined by the following
formaula, in (7.64)

(¢ +p ¥)(2) = V(Fz) +0 G'(p2): (7.68)
WF Fx — G'GUx,

in the sense that this family of transversal maps does satisfy the conditions
(coh.a)—(coh.c) of 7.5.2.

Similarly the composition p—+40 is well defined in (7.65). Moreover these
laws satisfy the middle-four interchange law.

Proof The argument is an extension of a similar one for the double category
Dbl in Section 4.2, taking into account the mixed-laxity of the present
‘functors’. We prove the three coherence axioms with respect to a composed
cube z = = +; y in Aj;; one would work in a similar way for a degenerate
cube e;(t), with ¢ in Aj;.

First we prove (coh.a), letting p < ¢ < 4, so that all our functors
F F' G,G' U, V,W are lax in direction ¢. This amounts to the commuta-

tivity of the outer diagram below, formed of transversal maps (the index ¢
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is omitted in +;, in all comparisons F; etc.)

YFz G oz

WF'Fz G'VFz G'GUz
WF'F G'VF G'GUu
WF (Fe+ Fy) 22 oy (e + Fy) G'G(Ux + Uy)
WE'F G'VF G'QU
W (F'Fz + F'Fy) G (VFz+VEy) " nGue + GUy)
WF'F G'VF G'GU
WFE'Fz + WF’wamyG'VFx + G’VFyG,m@yG’GUx +G'GUy

Indeed, the two hexagons commute by (coh.a), applied to ¢ and v, re-
spectively. The upper square commutes by naturality of ¢ on F,(z,y).
The lower square commutes by axiom (Imf.2) of 6.5.2 on the lax func-
tor G’, with respect to the transversal i-maps x: VF(z) —¢ GU(z) and
ey: VF(y) =0 GU(y)

G'(pr+ipy).Gi(VFz,VFy) = Gi(GUx, GUy).(G' (px)+:G (py)). (7.69)

The proof of (coh.c) is transversally dual to the previous one.

To prove (coh.b) we let p < i < g, so that F, F',G, G’ are lax and U, V, W
are colax in direction i. After reversing the comparisons of U, V, W in the
diagram above, the two hexagons still commute, by (coh.b) on ¢ and %,
and the two squares are unchanged. (This part corresponds to part (a) of
the proof of Theorem 4.2.2.)

Finally, to verify the middle-four interchange law on the four double
cells of diagram (7.63), we compute the compositions (¢ +, 1) +4 (0 4+, T)
and (¢ +4 0) +p (¥ +4 7) on an i-cube x. This gives the two transversal
maps WWEF'Fx —o H HU'Uz of the upper or lower path in the following
diagram

W'y Fx W'G’ oz
—_— —_—

W'WEF'Fz W'G'VFx W'G'GUx

'rVFmJ/ l/'rGUz

HV'VFrx —— HV'GUrx —— H'HU'Ux
H'V'px H'oUx

The square commutes, by the naturality of the double cell 7 (with respect
to the transversal map pxz: VFz —¢ GUz), so that these two composites
coincide. U
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7.6 Multiple level limits

The general theory of multiple limits in a chiral multiple category A was
studied in [GP9]; we do not cover here the whole topic, which does not
completely agree with our theory of double limits and might perhaps be
improved.

Tabulators have already been considered in Sections 6.1, 6.7 and 6.9;
their relationship with the 2-dimensional case is discussed in 6.7.8(d). We
add here the elementary case of level limits, which are ordinary limits in a
transversal category tv;A.

Level limits can be extended to intercategories with the same definitions,
and minor modifications in some results (for instance in 7.6.4).

7.6.1 Products

We begin by examining various kinds of products in the chiral triple cate-
gory A = SC(C).

Supposing that C has products, the same is true of its functor categories
(by 1.5.4(f)), and (using the categories V and A recalled in 6.4.6), we have
four types of products in A (indexed by a small set X):

- of objects, in C = tv.(A): C=11,C,, ps:C—oCy,
f:Haffxv Pz [ =0 fa

u:Hmum, Pz U —0 Ug,

- of l-arrows, in CV = tv{(A):
- of 2-arrows, in C" = tva(A):
- of 12-cells, in CV*N = tvya(A): n=1l7ms, pa:m—0 7T

Faces and degeneracies preserve these products. Saying that the triple
category SC(C) has triple products we mean all this. This is a global
condition: we shall not define when, in a chiral triple category, a single
product of items should be called ‘a triple product’.

It is now simpler and clearer to work in a chiral multiple category A,
rather than in a truncated case, as above.

Let n > 0 and let i be a positive multi-index (possibly empty). An i-
product a = 11, a, will be an ordinary product in the transversal category
A; of i-cubes of A. It comes with a family p,: a —¢ a, of i-maps (i.e. cells
of Ap;) that satisfies the usual universal property.

We say that A:

(i) has i-products, or products of type i, if all these products exist (for an
arbitrary small set X),

(ii) has products if it has i-products for all positive multi-indices i,
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(iii) has multiple products if it has all products, and these are preserved by
faces and degeneracies, as ordinary functors

05 : Ay — Ay, e Ay — Ay 1€1, a=4%). 7.70
i | \

This preservation is meant in the usual sense, up to isomorphism (i.e.
invertible transversal maps); however, if this holds and A is transversally
invariant (see 6.5.5), one can construct a choice of products that is strictly
preserved by faces and degeneracies, starting from x-products and going
up. This will be proved in Theorem 7.6.4, for all level limits.

A x-product is also called a product of degree 0.

7.6.2 Level limits

We now let X be a small category and consider the ordinary functors
F: X — A; with values in the transversal category A; = tvi(A) of i-cubes
of A, for a fixed positive multi-index i.

The limit of the functor F, called an i-level limitin A, is an i-cube L € A;
equipped with a universal natural transformation t: DL — F: X — Aj,
where DL: X — A; is the constant functor at L. It is an i-product if X is
discrete and an i-equaliser if X is the category 0 = 1.

We say that A:
(i) has i-level limits on X if all the functors X — A; have a limit,
(ii) has level limits on X if it has such limits for all positive multi-indices i,

(iii) has level multiple limits on X if it has such level limits, and these are
preserved by faces and degeneracies (as limits),

(iv) has level multiple limits if the previous property holds for every small
category X.

In particular, a -level limit is a limit in the transversal category tv.(A),
associated to the multi-index @ of degree 0; it will also be called a level
limit of degree 0.

All this can be extended to intercategories, in the same way.

7.6.3 Remarks

(a) Obviously, the cm-category A has level multiple limits if and only if
it has multiple products and multiple equalisers. Finite level limits work
similarly, with finite multiple products.

(b) Given a colax-lax cm-adjunction F' 4 G, the lax functor G: B — A
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preserves all the (existing) level limits of functors X — tv;A, while the
colax functor F': A — B preserves all level colimits.

This simply depends on the ordinary adjunction F; - Gj, as for weak
double categories in Exercise 5.5.7(a).

(c) If the category C is complete, so are its functor categories. Therefore
the chiral triple category SC(C) has all level triple limits.

(d) Extending limit pairs in weak double categories (see 5.2.4(b)), one can
consider multiple limit pairs, where preservation by degeneracies can fail.
This cannot happen when our cm-category has all cotabulators — as was
proved in Lemma 6.7.2(c) for the dual case.

7.6.4 Theorem (Level limits and invariance)

Let X be a category and A a transversally invariant chiral multiple category
(see 6.5.5). If A has level multiple limits on X, one can find a strictly con-
sistent choice of such limits. More precisely, one can fix for every positive
multi-index i and every functor F': X — A; a limit of F

L(F) € A, t(F): DL(F) = F: X — Ay, (7.71)
so that these choices are strictly preserved by faces and degeneracies:
Of (L(F)) = L(O7F),  Of(H(F)) = t(O7F) (i €1), 77
ei(L(F)) = L(e; F), ei(t(F)) = t(e; F) (i ¢ 1).

Note. If A is a transversally invariant intercategory, the statement still
holds, omitting everything about degeneracies.

Proof We proceed by induction on the degree n of positive multi-indices,
following the same pattern of the proof of Proposition 6.5.6.

For n = 0 we just fix a choice (L(F),t(F)) of x-level limits on X, for all
F:X — tv.(A). For n > 1 we suppose to have a consistent choice for all
positive multi-indices of degree up to n—1 and extend this choice to degree
n, as follows.

For a functor F': X — A; of degree n, we already have a choice

(L(@2F), t00F))

of the limit of each of its faces. Let (L,t) be an arbitrary limit of F'; since
faces are supposed to preserve limits (in the usual, non-strict sense), there
is a unique family of transversal isomorphisms A{* coherent with the limit
cones (of degree n — 1)

he: L(OOF) —o 0°L, t(0°F) = (9°t).h% (i€, a==), (7.73)
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and this family has consistent faces (see (6.82)), as follows easily from their
coherence with the limit cones of a lower degree (when n > 2, otherwise
the consistency condition is void).

Now, because of transversal invariance, this family can be filled with a
transversal isomorphism h, yielding a choice for L(F) and t(F')

h: L(F) = L, t(F) =t.Dh: DL(F) — F. (7.74)

By construction this extension of L is strictly preserved by all faces.
To make it also consistent with degeneracies, we assume that — in the
previous construction — the following constraint has been followed: for
an i-degenerate functor F = ¢;G: X — A; we always choose the pair
(e;L(G),e;t(GQ)) as its limit (L,¢). This allows us to take h$ = id(L(Q))
(for all i € i and @ = 0,1), and finally h = id(L), that is

L(F) = e;L(G), t(F) = et(G): DL(F) — F. (7.75)

If F is also j-degenerate, then F' = e;e;H = eje; H; therefore, by the
inductive assumption, both procedures give the same result:

e;L(G) = e;e;L(H) = eje; L(H) = e;L(e; H).

In an intercategory with e;e; # e;e;, the last point fails — and only that.
O

7.6.5 Exercises and complements

(a) X is a small category. Construct the exponential AX of a chiral multiple
category A.

(b) Construct the diagonal functor D: A — AX.

*(c) Define the product —xX : StCmc — StCmc as an endofunctor of

the category of chiral multiple categories and strict functors.

*(d) Define a strict evaluation functor ev: AX xX — A so that (AX,ev) is
a universal arrow from the functor —x X to the object A.

7.6.6 Level limits as unitary lax functors

Taking into account this exponential AX, Theorem 7.6.4 shows that, if the
chiral multiple category A is transversally invariant and has level multiple
limits on the small category X, we can form a unitary lax functor L and a
transversal transformation ¢

L: AX S A, t: DL — 1: AX — AX, (7.76)
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such that, on every i-cube F', the pair (L(F),t(F)) is the level limit of the
functor F, as in (7.71). Then L is right adjoint to the diagonal functor
D: A — AX, with counit t.

Indeed, after defining L and ¢ on i-cubes by a consistent choice (which is
possible by Theorem 7.6.4), we define L(y) for every natural transformation
p: FF— G: X — A;. By the universal property of limits, there is precisely
one i-map L(p) such that

L(g): L(F) =0 L(G),  @.t(F) = t(G).DL(). (7.77)

This extension on i-maps is obviously the only one that makes the family
t(F): DL(F) — F into a transversal transformation DL — 1. The lax
comparison for i-composition (with ¢ € i)

L(F,G): LF +; LG = L(F +; G), t(F +; G).DL(F,G) = tF +; {G,

comes from the universal property of L(F +; G) as a limit.

In the hypotheses above we say that A has lax functorial level limits on
X. We say that A has pseudo (resp. strict) functorial level limits on X if
L is a pseudo functor (resp. can be chosen as a strict functor).

For limit pairs one adds a family of comparisons L, F': ¢,LF — L(e; F),
for i ¢ i.

7.6.7 Level limits in weak double categories

Let D be a weak double category, and let A be the associated weak multiple
category sko(DD), obtained by adding degenerate items of all the missing
types (see 6.2.8).

Level limits in A present slight differences in terminology with the level
limits in D, as defined in 5.3.1, essentially because the 2-dimensional uni-
versal property of double limits here is not required from the start but
comes out of a condition of preservation by degeneracies.

As a particular case of the definitions in 7.6.2, we have the following
cases for A, and a small category X

(i) A has *-level limits on X if all the functors X — tv,(A) have a limit.
All of them can be constructed from:

- small products [I 4, of objects,

- equalisers of pairs f,g: A — B of parallel horizontal arrows.

(") A has 1-level limits on X if all the functors X — tv;(A) have a limit.
All of them can be constructed from:

- small products Il u, of vertical arrows,
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- equalisers of pairs a,b: u — v of double cells (between the same vertical
arrows).

(ii) A has level limits on X if it has x- and 1-level limits on X.

(iii) A has level multiple limits on X if it has such level limits, preserved
by faces and degeneracies.

(iv) A has level multiple limits if the previous property holds for every small
category X; this is equivalent to the existence of small multiple products
and multiple equalisers.

In Chapter 5, case (i) is expressed saying that D has 1-dimensional limits
of horizontal functors on X, case (iii) saying that D has lax functorial level
limits on X, case (iv) saying that D has lax functorial level limits.

7.6.8 Exercises and complements
These exercises are entirely left to the reader. Many results can be found
in [GP9].
(a) Prove that the strict triple category StcDbl, defined in 6.1.1, has prod-

ucts.

*(b) Study level limits and colimits in the chiral multiple categories of
Sections 6.4 and 6.6.

7.7 *The exponential of strict multiple categories

The exponential AX of strict multiple categories can be constructed as an
extension of the exponential of double categories. This construction will not
be used elsewhere; it is shown here because of its interesting, non-obvious
machinery.

7.7.1 Reviewing the exponential of double categories

The exponential F = A¥ of strict double categories, where X is small, has
been defined in 3.2.7. We rewrite the definition in terms adapted to its
extension to multiple categories: in particular the horizontal and vertical
directions are now denoted by the index ¢ = 0 or 1.

(A) An object of F is a (double) functor F': X — A.

(B) A 0-directed arrow h: F' —( F’: X — A is a horizontal transformation.
It assigns

(a) to each object z of X a O-arrow hz: Fx —o F'z in A,
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(b) to each l-arrow u: z —1 y of X a 0l-cell hu: (Fu ,’:i F'u), as below
n (7.79), preserving vertical composition and identities and satisfying two
naturality conditions:

(i) h(u+1v) = hu+1 ho, h(eix) = ey (hx),
(ii) for each O-arrow f: x —¢ 2’ of X we have a commutative square of

O-arrows in A, whose diagonal will be written as h(f)

Fr Mo pig

Ff\L lm h(f) = ha +o F'f = Ff +oha!,  (7.78)

Fa! —— F'a/
hz'

(iii) for each 01-cell &: (u 5 v) of X we have a commutative square of
01-cells in A, composed in direction 0

hu 4o F'é€ = F¢€ +¢ hv, (7.79)
Fe s g ) F'a' Fx ikl Fa' ha! F'a'
Ful hu F'ul FI£ iF'v = Fu\L Ff iFU hv iF’U
F F/ F/ ! F F ! F/ /
y = Py v By o Yy

(B’) Symmetrically, a 1-directed arrow r: F —; G: X — A is a vertical
transformation, with data

re: Fa —1 Gu, rf: (ra B4 Gy T ", (7.80)

for each object x and each O-arrow f: x —¢ x’ of X, satisfying symmet-
ric conditions. In particular, for a l-arrow u: x —; y of X, we have a
commutative square of 1-arrows in A, whose diagonal will be written as

r(u) =rz+1 Gu = Fu+; ry. (7.81)

(C) A double cell ®: (r ! s) is a modification. It assigns to each object z of
X a double cell ®z: (r:n he gz) in A, which is natural for each f: x —q 2/
and each u: x —1 y of X

®x +osf =rx 4o P, ®x +1 ku = hx +, dy. (7.82)

(D) One defines, in a pointwise way, the horizontal and vertical operations
(compositions and identities), and A* is made into a double category.
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7.7.2 Evaluation and cartestan closedness

We prove now the statement of Exercise 3.2.8(a). The double functor of
evaluation is defined in the obvious way, for:

F, h: F— F/, r: F— G, D:(ris) in AX,
T, fix—od, U T —1 Y, f:(ugv) in X,
ev: AXxX — A, ev(F,z) = F(z),
ev(h, f) =h(f): Fo — F'2/,
ev(r,u) =r(u): Fx — Gy, (7.83)
Oz | sf h
ev(®,§) = k:u||G”§: (’"(U) kEQ S(U))a
Fo —M o prg T F'y
rml (I)x lsT Sf J{Sy
Gr —ke> Gz —c'f> Gy (7.84)
Gu l ku i ¢'u G'¢ \L G'v
! !,/
Gy ” G'y o G'y

Now the pair (A%, ev) satisfies the universal property of exponentiation:
for every double functor L: BxX — A there is precisely one double functor
M: B — A* such that ev.(M xX) = L. Given L, the double functor M is

defined as follows

M®)=L(b,—): X > A, Mb(z) = L(b,z),

(7.85)
Mb(f) = L(Lp, ), Mb(u) = L(ep,u),  Mb(E) = L(T0,E),
M(h:b—=ob'): L(b,—) = L(V/,—),
Mh(x) = L(h,1;): L(b,x) =0 L(V', x), (7.86)
Mh(u: x —1 y) = L(ep, 1,): (Mbu JAV/IIZZ Mb’u) ,
M(w:b—1c¢): L(b,—) =1 L(e,—),
Muv(xz) = L(v,e.): L(b,x) =1 L(c, x), (7.87)

Mu(f:x —o2') = L(1,,e5): (Mv:v %Z; Mv:r’),

M(B): (Mv¥h My,  MB(z) = L(3,0x). (7.88)
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For the following extension, it is important to note that M is computed
by the values of L on all pairs of B xX whose items have disjoint supports
i,j € {0,1}. These pairs fall in the following 9 cases, listed in the same
order as above, in (7.85)—(7.88):

(b,z) € B.xX., (b, f) € B.xXy, (byu) € B.xX1, (b,§) € BuxXo1,

(h7x)€BO><X*7 (h7u)€B0><Xla
(v,z) € B1x Xy, (v, f) € B1x X,
(B,JZ) € Bo1 X X,.
Conversely, given M one reconstructs L decomposing each pair of BxX by
pairs of this kind:
(h, /)= (h, 1) | (L, f) = (X, f) | (B, 1) for h: b —o ¥, f: @ —0 2/,

(v,u) = (v,e5) @ (ec,u) = (ep,u) @ (v, ey) forv:b—1c u:x—1y,

y v
bx ha b'x ! bz
J e [ o
(8,§) = e —we—> cx df— 1’
cui (eh/, ]-u) lc'u (Dc’,{) lc'u'
c C/ C/ /
Y 'y Yy s Yy

for B: (v v'): (2%) in B and €: (u? w'): (2 %) in X.

cc Yy

7.7.83 The infinite-dimensional extension

Inspired by the previous remarks, we extend this definition to strict multiple
categories, building the exponential F = AX where X is small. The 2-
dimensional case can be recovered restricting all items to the multi-indices
contained in 2 = {0, 1}.

An i-cell F of A* (for i C N) consists of a family of cells Fz € Aj;,
where the multi-index j is disjoint from i and = € Xj. These data must
satisfy the following conditions, whenever iNnj =0

(1) F(@;"x) = a]a(Fx) (for j €j, x € Xj),
(i) Fl(ejz) = e;(Fx) (for j €j, z € Xj);),
(i) F(r+;y)=Fz+; Fy (for j €, =,y € Xj),
(iv) Fz+; (0] F)(f) = (0 F)(f)+: Fy (foriei, f:x—;ye Xj).
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(This includes multiple functors X — A, their transformations, modifi-
cations and so on, as examined in the exercises below.) Our cells form a
multiple set, with the following faces and degeneracies:

(0XF)(x) = 02 (Fx) (foriei,ze Xj;,inj=0),

(7.89)
(e;F)(z) = e;(Fx) (fori¢i,zeXj;iinj=0).

AX is made into a multiple category by defining the i-directed operations
of i-cells in a pointwise way:

(F+;G)(z) = Fz+; Gz (for z € Xj5,iNj=0). (7.90)

Finally one verifies that the pair (AX,ev) satisfies the universal property
of exponentiation: for every double functor L: BxX — A there is precisely
one double functor M: B — AX such that ev.(M xX) = L. This can be
computed as follows

(MDb)(a) = L(e;sd, esx) (forbe By, z € Xj,iNj=0). (7.91)

7.7.4 Exercises and complements

Characterise the low dimensional cases of i-cells of the multiple category
AX for i= (), or {i}, or {i,5} (with i # 7).

Note that, in this context of strict multiple categories, the index 0 plays
no special role (as it was already the case in Section 6.2, up to 6.2.4): there
is no real reason of distinguishing transversal transformations among the
i-directed ones.
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Monads and algebras for multiple categories

Here we study lax and colax monads on chiral multiple categories and
their relationship with multiple adjunctions. Non-standard results deal
with ‘strong’ idempotent lax monads and their algebras. A more detailed
outline will be given in 8.1.2.

This chapter is mostly new. Unless otherwise specified, an ‘algebra’ is
an Eilenberg—Moore algebra for a monad.

8.1 Adjunctions, monads and comonads

This section is a brief presentation of the problems and results of the present
chapter.

8.1.1 The problem

Studying the monadicity of multiple adjunctions is not straightforward.
As we have seen in Chapter 7, a general adjunction

(F,G,n,e): XA, (8.1)

between chiral multiple categories consists of a colax functor F': X — A,
a lax functor G: A — X and two double cells 7, ¢ in the double category
Cmc.

We often write the unit as n: 1 --» GF (because it has components
nr: x — GFx), but — in general — there are no arrows of Cmc that can
be written as GF' (or F'G), and it is not evident how one should define an
associated monad (or comonad).

The next sections will deal with particular situations where one can form
a colax or a lax monad T'= GF, or more generally a p-mixed monad.

True, one can always view (8.1) as an adjunction in the 2-category pMIt
of premultiple functors (see 6.2.7), and T = GF as a premultiple monad

357
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on X, which leads to a notion of ‘transversal monadicity’, defined in 8.7.4.
This — at best — can allow us to reconstruct the underlying premultiple
category |A|, deprived of its ‘geometric’ structure. Finally, even though
this shortcut can give a general framework for the whole topic, the real
interest lies in the different ways of filling up the premultiple framework.

8.1.2 An outline of particular cases

We shall examine various particular cases of multiple adjunctions, with
forms of monadicity more effective than the transversal one.

(a) As we know, a colaz-pseudo adjunction (where the right adjoint G is a
pseudo functor) is the same as an adjunction in the 2-category CxCmc of
chiral multiple categories, colax functors and horizontal transformations;
it produces a colax monad T = GF and a colax comonad S = FG by the
usual 2-categorical procedure. On the other hand, given a colax monad
T over a chiral multiple category X, one can construct — in a standard
way — a chiral multiple category XT of Eilenberg-Moore algebras, with an
associated colaz-strict adjunction (see Section 8.2).

(b) Similarly, a pseudo-lax adjunction (where the left adjoint F is a pseudo
functor) is the same as an adjunction in the 2-category LxCmc of chiral
multiple categories, lax functors and horizontal transformations; it pro-
duces a lax monad T and a lax comonad S. Now, a lax monad has a
standard construction of Kleisli algebras and an associated strict-lax ad-
junction (in the Exercises of 8.3.3).

(c) As an extension of case (b), we introduce in 8.3.4 a ‘left-strong colax-lax
adjunction’ which still produces a lax monad.

In Section 8.4 we begin the less standard part of our analysis, about
strong idempotent lax monads and their links with left-strong idempotent
adjunctions. The interest of idempotence lies in the fact that it allows the
construction of a chiral multiple category of ‘algebraic cubes’. Actually,
we perform the construction in the (equivalent) strictly idempotent case,
to avoid complicated computations.

There are interesting examples of this kind, in dimension two. In Sec-
tion 8.5 we study the ‘jointly-monic monad’ on the weak double category
Span(C) of spans over a regular category. Its algebras form the weak double
category Rel’(C) of ‘jointly-monic relations’ (see 2.5.7), which is equivalent
to the double category Rel(C) of ‘cartesian relations’ — as we have seen in
Section 2.5.

We also consider the idempotent pushout-pullback adjunction F' -4 G:
Span(C)-» Cosp(C). If C is abelian, this adjunction is strong and gives
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the jointly-monic monad on Span(C); in this case the relations on C can
be equivalently presented as algebras (jointly-monic spans) or coalgebras
(jointly-epic cospans). On the other hand, for Set this adjunction is not
strong, and does not yield the jointly-monic monad on Span(Set).

In Section 8.6 we briefly consider idempotent comonads, dualising Sec-
tion 8.4; then we deal with the idempotent adjunction

C - P: Cat- CospCat

of 4.5.5, showing that it is comonadic: profunctors are the coalgebraic
cospans of the comonad CP.

Higher dimensional examples are considered in Section 8.7, together with
the notion of transversal monadicity mentioned above.

8.1.3 Elementary examples

Let us take the embedding U: Ab — Gp and its left adjoint, the abelian-
isation functor FI(X) = X* = X/[X, X]

F:Gp = Ab :U, F +HU. (8.2)

It gives the abelianisation monad T' = UF': Gp — Gp, which is idem-
potent (see 1.7.5). Its algebraic objects are the commutative groups.

It is easy to see that U does not preserve pushouts while F' does not
preserve pullbacks.

(For instance, the biproduct Z® Z in Ab is not a sum of groups. For the
second point, one can take a simple group X and the embedding f: A — X
of a non-trivial commutative subgroup, e.g. a cyclic one; then the kernel
pair of f is A, while the kernel pair of F(f): A—0is A® A.)

(a) Applying to this adjunction the 2-functor Span: Cat,, — CxCmc of
7.1.5, we get a colaz-pseudo adjunction F' 4 U’, which is not a pseudo ad-
junction, because of the previous remark. On Span(Gp) we have an idem-
potent colax monad U’F’, whose algebraic cubes (i.e. the cubical spans of
groups with invertible unit-component) are the cubical spans of commuta-
tive groups. This case will fit in Section 8.2, about the algebras of colax
monads.

(b) Applying the 2-functor Cosp: Cat,, — LxCmc (of 7.1.6) we get a
pseudo-laz adjunction F/ - U’ and an idempotent lax monad U’'F’ on
Cosp(Gp), whose algebraic cubes are the cubical cospans of commutative
groups. This case will fit in Section 8.4, about the algebras of idempotent
lax monads.

(c) Applying the 2-functor SC: Catpppo — Mxa(Cmcs) (of 7.1.7) we get
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an adjunction where F” is a colax-pseudo functor and U’ is a pseudo-lax
functor. We have an idempotent colax-lax triple monad U’'F’ on SC(Gp),
whose algebraic cubes VXA — Gp are the ‘spans of cospans’ of commuta-
tive groups.

8.2 Colax adjunctions and monads

We begin by working in the 2-category CxCmc of chiral multiple cate-
gories, colax functors and transversal transformations (see 6.5.3), studying
multiple adjunctions and monads of a colax type, correlated by Eilenberg—
Moore algebras.

X and A are always chiral multiple categories; i denotes a positive multi-
index of dimension n > 0 (possibly empty).

8.2.1 Colax monads

A colax monad T = (T, n, 1) on the chiral multiple category X is defined as
a monad in the 2-category CxCmc. Thus T: X — X is a colax endofunctor,
with comparison maps

T.(z): Tei(z) = e;(Tx), T(x,y): T(x+;y) = Tax+;Ty. (8.3)
It is equipped with transversal transformations of colax functors n: 1 —
T and p: T? — T, that satisfy the usual axioms: p.nT = 1 = p.Tn and

pwpl = p.Tp.
These axioms only concern the family of transversal categories X; =
tviX, where we have ordinary monads

Ti:Xs = X;, m:l1—=T, T8 =T (8.4)

On the other hand the coherence conditions of T',n, u (see 6.5.2, 6.5.3)
cannot be expressed within the transversal components: one needs all the
weak double and chiral triple categories ‘contained’ in X.

8.2.2 Adjunctions and monads, the colax case

As we have seen in Theorem 7.4.3, a colax-pseudo adjunction
(F,G,n,e): X=A

between chiral multiple categories is the same as an internal adjunction in
the 2-category CxCmc, consisting of two colax functors F': X — A and
G: A — X with transversal transformations n: 1 — GF and ¢: FG — 1
that satisfy the triangular equations: then G is automatically pseudo.
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By the usual 2-categorical procedure (in CxCmc), this colax-pseudo
adjunction produces a colax monad 7' = GF on the domain X of F, with
the same unit  and multiplication y = GeF'.

8.2.3 FEilenberg—Moore algebras for colar monads

Given a colax monad T' = (T, 7, 1) on X, the chiral multiple category XT
of (Eilenberg—Moore) T'-algebras can be constructed in a standard way,
as a substructure of the comma chiral multiple category T' | 1x (which is
legitimate, because T is colax, see 7.2.2): the i-cubes of the latter are triples
(z,2';h: Tz — '), and we take those for which z = 2’ and the axioms of
algebras are satisfied; we proceed in the same way for transversal maps.
More analytically, we have the following description.
(a) First, the transversal category tvi(X?) is constructed as the category
of algebras (X;)T}; in other words
- an i-cube (x,h: Tx — x) consists of an i-cube x and an i-map h in X (the
algebraic structure) satisfying the usual axioms:

hnr =1, h.Th = h.px: Tz — z,
-an i-map f: (z,h) = (y, k) comes from an i-map f: z — y in X such that
fh=kTf,
- their transversal composition is that of X; let us note that f: (z,h) —
(y, k) is invertible if and only if f: z — y is.
When convenient the symbol # may denote an algebra (z, h) of XT over
the i-cube z of X.

(b) The faces are obvious (for i € i):
o (x,h: Te — x) = (05'x,05h: TOfx — x), O (f) =08 f. (8.5)
(c) Degeneracies and compositions in a positive direction ¢ are constructed
with the colaxity comparisons of T’
ei(z,h: Te — x) = (e;x,e;h.T;(x): Tejx — e;x),

(8.6)
ei(f: (x,h) — (2',0") = eif: ei(x, h) = ei(z’, 1),

(x,h) +i (y, k) = (x +iy, (h+i k)T (2, y): T(x+iy) = =+ y),

(f: (@, h) = (', 1) +i (9: (v, k) = (Y, F) = f +i g

To verify that (8.6) is well defined it suffices to apply the definition and
axiom (cmf.1) of 6.5.2 for T

eif-eh.T;(x)=e;(fh).T;(x) =eh .e;Tf.T,(x) =eh.T;,(x').Te;f,

(8.7)
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while for (8.7) one applies (cmf.2).

(d) The i-associator of three i-consecutive i-cubes 2, ¢, 2 of X7 is given by
the associator k;(x,y, z) of the underlying cubes z,y, z of X, viewed as a
transversal map in X7

5i(2,9,2) = ki(2,y,2): £+ (§+i2) > (@ +:9) +i 2. (8.8)
Its coherence as a transversal map of X7 comes from Lemma 7.2.3, about
comma multiple categories. Its invertibility is proved below, in point (e).

Similarly the unitors and interchangers of X” come from those of X
Al(i‘) = )\il‘l ei(?;’(i") +;, T — i‘,
pi(%) = pix: & +; €,08(2) — I, (8.9)
Xij (‘%a .ﬁa 23 '&) = Xij (l’, Y, z, ’LL)

Note that if X is a weak (or strict) multiple category, so is X7

(e) Finally the coherence axioms for X trivially hold, because (under some
abuse of language) the forgetful (strict) multiple functor

GT: XT = X, GT(z,h) = =,

(8.10)
GT(f: (z,h) = (k) = f: 2 =y,

is faithful (which means that it gives faithful ordinary functors on the
transversal components, see 7.4.4).

We have already remarked above that it reflects invertible transversal
maps: this proves that the new unitors and associators are invertible, as
well as the interchangers in the weak case. GT also reflects identities, which
accounts for the strict case.

8.2.4 From colax monads to adjunctions and back

By extending the usual procedure (in 1.6.4), a colax monad T = (T, n, i)
on X produces a colaz-strict adjunction

FT. X=X .G7, (n*,e"): FT 4 G7T, (8.11)

whose associated monad is the given one.

As we have already seen, GT is the obvious (strict) forgetful functor
GT(x,h) = .

The free-algebra functor F7: X — X7 is colax, with comparisons derived
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from those of T’
FT(z) = (T, px: T?x — Tx),
FI(f:x—y)=Tf: Flo — FTy,
Fl(z)=T,(z): FT(e;z) — e;Fx,

Fl(z,y) =Ti(z,y): FT(z +;y) = FTa+; FTy.

(8.12)

Its coherence is proved by the fact that GTFT = T is coherent and GT
is faithful.
Unit and counit are defined as usual

' =n:1=G"'FT =T: X = X,
el FTGT — 1: XT — XTI, (8.13)
el(z,h) = h: FTGT(x,h) = (Tz, pz) — (z,h),
and the triangular equations hold, because they hold on transversal cate-

gories.

We have already seen that G FT = T and 7 = . The new multiplica-
tion also coincides with the old one: GTeT FT(x) = GTeT (Tx, pz) = px.

8.2.5 The comparison

The other way round, a colax-pseudo adjunction (n,e): I 4 G (with
F: X — A) has an associated colax monad T'= GF': X — X, which deter-
mines a chiral multiple category of algebras X” and its adjunction FT 4 GT
(as for ordinary categories, in 1.6.5).

The two adjunctions are linked by a comparison pseudo functor K, de-
fined in the usual way on cubes and transversal maps

K:A— XTI Ka=(Ga,Gea: TGa — Ga),
K(f:a—b)=Gf: Ka— Kb,
K,(a) =G,(a): ¢,Ka — K(e;a),

K,(a,b) =G,(a,b): Ka+; Kb — K(a+; ),

(8.14)

F
X _—A KF=FT,
G
| " |« esea
FT
X —= XTI eTK =Ke, nT=n.
GT

The coherence and invertibility of the comparisons of K comes from the
relation GT K = G and the faithfulness of G7.
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We say that the pseudo functor G: A — X is pseudo monadic if it has a
colax left adjoint and the comparison K is a pseudo isomorphism of chiral
multiple categories (see 6.5.4): this last point is equivalent to saying that
each transversal component Gi: A; — X; is monadic. More particularly,
we say that G is monadic, or algebraic, if K is an isomorphism, which
means that (moreover) its comparisons K, for units and compositions, are
identities.

8.2.6 Examples

As in 7.1.5, we start from an adjunction (n,e): FF 4 G between ordi-
nary categories with pullbacks, to which we add now the associated monad

(T,n, 1)
F: X2 A:G, n:1—GF, e FG—1,

(8.15)
T=GF:X—>X, n:1=T, u=GeF:T?>>T.

As we have already seen in 8.1.3(a), all this can be extended to the weak
multiple categories of cubical spans over X and A, using the 2-functor
constructed in 7.1.5

Span: Cat,, — CxCmc, C — Span(C), (8.16)

and defined on the full sub-2-category of Cat containing all categories with
(a fixed choice of) pullbacks.

In this way we obtain the unitary colaz-pseudo adjunction Span(F’) -
Span(G) already considered in 7.1.5, together with the associated unitary
colax monad Span(T)

Span(F): Span(X) = Span(A) : Span(G),

(8.17)
Span(T): Span(X) — Span(X).

We already know, from Exercise 1.6.6(c), that X7 inherits from X a
choice of pullbacks strictly preserved by the forgetful functor G*: X7 — X.

We prove below, in the next theorem, that the weak multiple category
of algebras of Span(7T) can be identified with Span(X7T); this identifica-
tion is coherent with the comparisons of the ordinary adjunction and the
associated multiple adjunction.

8.2.7 Theorem

An ordinary adjunction (n,e): F = G is given between categories with a
fized choice of pullbacks, as in (8.15).
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(a) There is a canonical isomorphism
J: Span(X)SP"(T) _, Span(X7T) (8.18)

which allows us to identify these two weak multiple categories.

(b) Under this identification the pseudo multiple functor
K : Span(A) — Span(X)Span(?)
defined in 8.2.5 is identified with
Span(K,): Span(A) — Span(X7T),

where K.: A — XT is the comparison of the ordinary adjunction.

Thus, if the latter is monadic, the adjunction Span(F) = Span(G) is
pseudo monadic; it is monadic if the given functor G: A — X strictly
preserves the choices of pullbacks.

Proof (a) We have already recalled, in 8.2.6, that XT has a choice of
pullbacks strictly preserved by the forgetful functor GT: X7 — X. The
colax endofunctor T" = Span(T’) acts on an n-cube z: V™ — X of Span(X),
by composition: T’z = T.xz: V" — X.

As defined in 8.2.3, an n-cube (2, h: T'z — z) of Span(X)”" is a functor
z: V" — X equipped with a natural transformation h: T.x — x satisfying
the usual axioms

x

vr s X vt — X hnx =1,,
O 19
vt —— X vt ——= X h.ux = h.Th.

On the other hand the category X is the full subcategory of the comma
category T' | X determined by the objects (x,h: Tx — x) satisfying the
‘same’ axioms in degree zero, with z: V% — X. An n-cube y of Span(XT)
is a functor y: V" — X7, or equivalently a functor y: V* — (T | X) that
satisfies the following axioms

X
27N Py =Qy,
vr % T X )W X Ty.nPy = 1p,, (8.20)
Q\ % my.uPy = pPy.T(uPy).
X

The canonical isomorphism Span(X)T/ = Span(XT) is now obvious: a
functor z: V" — X equipped with a natural transformation h: T.z — x
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is ‘the same’ as a functor y: V* — (T | X) such that Py = Qy: the
correspondence is given by the equations

Py =Qy=ux, my=h:T.x—z, (8.21)

under which the axioms of (8.19) correspond to the remaining axioms of
(8.20). The rest is obvious. O

8.2.8 An example

We start from the free-group adjunction and the associated monad, with
comparison isomorphism K

F:Set=Gp:U, n:1—=UF, €:FU—1,
T =UF: Set — Set, n:1—=T, p=UsF:T? =T, (8.22)
K: Gp — Set”, K(A) = (U(A),UcA: TUA — UA).

Applying the 2-functor Span, as in 8.2.6, all this is transformed into a
colax-pseudo adjunction, the associated colax monad and a comparison
isomorphism of weak multiple categories.

Note that Span(U) is even strict, if we let the relevant limits of groups
be constructed ‘as in’ Set; or, more precisely, created by the underlying-set
functor U and the choice in Set, see 1.3.7.

The same can be done replacing Gp with any variety of algebras (see
1.6.6(b)).

8.3 Lax adjunctions and monads

We now work in the 2-category LxCmc of chiral multiple categories, lax
functors and transversal transformations (see 6.5.3), studying multiple mon-
ads and adjunctions of a lax type.

Here the construction of Kleisli algebras is standard (see 8.3.3), but we
are more interested in Eilenberg-Moore algebras, which will be constructed
in the idempotent ‘strong’ case, in Section 8.4.

Again X and A are chiral multiple categories; i denotes a positive multi-
index of dimension n > 0.

8.3.1 Adjunctions and monads, the lax case

A lax monad T = (T, n, 1) over the chiral multiple category X is defined as
a monad in the 2-category LxCmec.
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Thus T: X — X is a lax endofunctor, with comparison maps

T,(x): e;(Tx) — T(ejx),

T

(8.23)
Ti(z,y): Te+; Ty — T(x +; y).
Furthermore we have two transversal transformations of lax functors
n:1— T and p: T? — T that satisfy the usual axioms:

unT =1=puTn, popd = p. T .

Again these axioms only concern the family of transversal categories Xj,
where we have ordinary monads (T3, i, 43), while the coherence conditions
of T, n, p (see 6.5.2, 6.5.3) cannot be expressed within the transversal com-
ponents.

As we have seen in Theorem 7.4.3, a pseudo-lax adjunction

(F,G,n,e): XA

between chiral multiple categories is the same as an internal adjunction
in this 2-category. By the usual 2-categorical procedure it produces a lax
monad T = GF on the domain of F, with the same unit n and yu = GeF.

8.3.2 Examples

Let us assume that the adjunction (n,e): F' 4 G and the associated monad
(T,n, 1) considered above, in (8.15), involve two categories X and A that
have pushouts.

We apply to these data the 2-functor

Cosp: Cat,, — LxCme,  Cosp(C) = (Span(C°P))"™, (8.24)

defined in 7.1.6.

We get now a unitary pseudo-lax adjunction (already considered in 7.1.6)
and a unitary lax monad of weak multiple categories that coincides with
the lax monad associated to the multiple adjunction (letting F' stand for

Cosp(F), etc.)
F: Cosp(X) &= Cosp(A) : G,
(X) (A) .
T = GF': Cosp(X) — Cosp(X).

The idempotent case will be studied in Section 8.7.

8.3.8 *Exercises and complements (Kleisli algebras)

(a) Construct the chiral multiple category X of Kleisli T-algebras, for a
lax monad (7,7, ;1) on a chiral multiple category X.
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(b) Define the associated strict-lax adjunction Fr - Up.

8.3.4 Definition (Left-strong adjunctions)

As a generalisation of a pseudo-lax adjunction, we say that a colax-lax ad-
junction (F,G,n,): X-> A between chiral multiple categories is left-strong
if:

(i) the comparison cells of F' are made invertible by applying G, i.e. all the
following transversal maps are invertible

GF,(z): GF(e;x) — G(e; Fx),
(8.26)
GFE,(z,y): GF(z +;y) — G(Fx +; Fy),

(ii) the premultiple functor T'= GF becomes a lax functor, when equipped
with the following comparison maps, derived from those of F' and G:

Ti(z) = (GE;(z)) " .G;(Fx): e;(Tx) = T(eix),

(8.27)
T,(z,y) = (GE;(2,y)) " .G;(Fx, Fy): T +; Ty — T(z +; y).
We prove below that, in these hypotheses, we still have an associated
lax monad (T,n, ) over X, whose transversal components form a face-
consistent family of ordinary monads

T’i = GiFiZ Xi — Xi7

(8.28)
ni: 1 —1Tj, wi = GieiFy: 1T — T4,

constructed in the usual way from the transversal components of the ad-
junction. We shall often write the terms Tiz, mx and p;x omitting the
multi-index i.

By transversal duality we say that our adjunction is right-strong if the
comparison cells of G are made invertible by applying F, and the premul-
tiple endofunctor S = F'G of A is colax, via the obvious comparison maps
derived from those of F' and G.

A strong colax-lax adjunction is left- and right-strong, by definition.

8.3.5 Theorem (From left-strong adjunctions to lax monads)

Let (F,G,n,e): XA be a left-strong colaz-laz adjunction between chiral
multiple categories. There is an associated lax monad (T,n,pn) over X,
constructed as specified above (in 8.3.4).
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Proof T is a lax endofunctor of X, by hypothesis.

To prove that 7 is a transversal transformation 1 — T of lax functors
it is now sufficient to consider the coherence conditions (7.38) and (7.40)
of n: 1 --» GF (as a double cell in Cmc), and invert the transversal maps
GF,(z) and GF,(z,y).

As to multiplication, the counit e (which is not a transversal transforma-
tion of lax functors, generally) does produce, under condition (i) in 8.3.4,
a transversal transformation of lax functors p: 72 — T with components
w(x) = G(e(F(x))) (even though GeF makes no sense, generally).

A direct proof would be complicated, but the machinery of the double
category Cmc makes it easy. We consider the double cell ¢ of Cmc, with
components tx = 1p,: Te — GFz, which is coherent precisely by defini-
tion (8.27) (this cell is a sort of ‘co-operative flipping’ of F' over G)

T T

=
Jun

er

F (8.29)

"

F

X
il
X 1

T
e
L
—_—
G

> <X

\
Q
v

— T =
L
—_—
G

Now we paste two copies of ¢ with ¢, as in the right diagram above,
getting a cell 7z: (F I X); informally 7z: 1.7% --» GF.

The coherence properties of this cell show that the family of transversal
arrows p(x) = GeF(z) is indeed a transversal transformation of lax func-
tors T? — T. More formally, there is precisely one double cell u: (X T X)
such that the vertical composite p ® ¢ coincides with .

Finally the monad axioms ‘live’ in the transversal components of X and
are satisfied. U

8.4 Strong idempotent lax monads

We define left-strong idempotent adjunctions and strong idempotent lax
monads for chiral multiple categories. Most of the theory will be devel-
oped in the strict version (extending the 1-dimensional case of 1.7.8), since
the geometric operations of the algebras of the monad have a simpler con-
struction in the strict case.

We shall consider examples that yield double categories of relations as
algebraic spans, in Section 8.5, and higher dimensional cases in Section 8.7.

The index 4 will often be omitted in large diagrams and long formulas.
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8.4.1 Definition (Left-strong idempotent adjunctions)

Let us start from a general colax-lax adjunction
(F,G,n,e): XA, (8.30)

between chiral multiple categories.
We say that the adjunction is idempotent if all the ordinary adjunctions

Fit Xi<:)Ai :Gi,

(8.31)
7i: 1— GiFi, Ei: FiGi — 1,

are idempotent, or equivalently all the natural transformations Fin;, €;Fj,
7;G; and Gje; are invertible, or equivalently this holds for one of these four
families.

We say that (8.30) is a left-strong idempotent adjunction if moreover:
(i) the adjunction is left-strong (see 8.3.4),
(ii) all the transversal maps F'G,;(Fz) and FG,;(Fz, F'y) are invertible,

(ii") all the transversal maps Fe;(nz) and F(nz +; ny) are invertible.

The conditions (ii) and (ii’) are here equivalent, as follows immediately
from the coherence conditions (7.38) and (7.41). In fact, from (7.38) we
have

FGF,(z).Fn(e;x) = FG,(Fz).Fe;(nz),

where the left term is invertible, by (i) and idempotence; therefore FG,(F'z)
is invertible if and only if Fe;(nz) is.

This notion is adequate to get a (strong) idempotent lax monad GF on
X, as we prove below (Theorem 8.4.4). By transversal duality, a right-
strong idempotent adjunction gives an idempotent colax comonad F'G on
A.

A pseudo-lax idempotent adjunction is always left-strong idempotent.
Indeed, condition (i) is obviously satisfied. To prove that FG,(Fx, Fy) is
always invertible it is sufficient to note that the functor FGF: X — A is
isomorphic to F (via F'n) and is pseudo as well; moreover its (invertible)
comparison factorises as

FGF,(x,y).FG,(Fx, Fy).F,(GFz,GFy):
FGFx+; FGFy —» F(GFx+;,GFy) » FG(Fx+; Fy) - FGF (v +;y),

where the first and third arrow are known to be invertible. Similarly
FG,(Fxz) is always invertible.

We say that (8.30) is a strong idempotent adjunction if it is idempotent
(as defined above) and a strong adjunction (as defined in 8.3.4). The last
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condition implies that all the transversal maps of type GF, and F'G; are
invertible, which also implies condition (ii) above, and its dual. In other
words, a colax-lax adjunction is strong idempotent if and only if it is both
left- and right-strong idempotent.

Finally we say that (8.30) is a left-strict idempotent adjunction if it is left-
strong and nG = 1¢, or equivalently Ge = 1¢; it follows that GFG = G.

8.4.2 Definition (Strong idempotent lax monads)

Let us recall that a lax monad (7,7, 1) over a chiral multiple category X
is a monad in the 2-category LxCmec (see 8.3.1), and induces transversal
monads of ordinary categories

Ti: X; — X;, ni: 1 — T, pi: TE — Ti. (8.32)

Our monad is said to be idempotent if it satisfies the following conditions,
equivalent because a transversal transformation is invertible if and only if
all its components are

(idm.1) all the ordinary monads in (8.32) are idempotent,

(idm.1’) the transversal transformation p: T2 — T is invertible, with in-
verse Tn=nT: T — T?,

(idm.1") T is invertible,

(idm.1") 0T is invertible.

Equivalently we shall write an idempotent lax monad over X as a pair
(T,n) where T: X — X is a lax endofunctor, n: 1 — T is a transversal
transformation and Tn = nT: T — T? is invertible (again the last condition
lives on transversal categories). One recovers p as the inverse of 1.

We also note that the components nz: x — T X give commutative dia-
grams:

Teir —2" o Te(Tx) T(x+sy) T(Tx +: Ty)

\ \LTIi \ l/TZZ_ (833)
Tn(e;x) Tn(z+iy)

T?¢,x T*(x +iy)

T(nz+iny)
_—

where the slanting arrows are invertible.

We say that the idempotent lax monad (T, 7) is strong if it satisfies the
following conditions, equivalent by the previous remark:

(idm.2) all the transversal maps TT,(z) and TT,(z,y) are invertible,

(idm.2’) all the following transversal maps are invertible

Tei(nx): T(eix) = T(eiTx), T(nx+iny): T(x+iy) = T(Tx +; Ty).
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In this situation we say that an i-cube x is algebraic if nx: x — Tz is
invertible, or equivalently if z is transversally isomorphic to Tz in X (by
Theorem 1.7.3).

More particularly, a strictly idempotent lax monad is a strong idempotent
lax monad (T,7n) where T = T? and Tn = T = 17. The cube z is said to
be strictly algebraic if Tx = x, or equivalently nx = 1, (from Tz = = we
get nx = nTx = 1r, = 1,). We shall see that, in this case, one can define
a chiral multiple category of algebras in a simple way.

Extending the 1-dimensional case of 1.7.9, and using Proposition 6.5.6,
one proves that every strong idempotent lax monad (7', n) over a transver-
sally invariant chiral multiple category can be replaced by an isomorphic
strictly idempotent one (U, ¢n), so that the algebraic objects of T' are pre-
cisely the strictly algebraic objects of U.

8.4.3 Proposition (Basic properties)

Let (T,n) be a strong idempotent lax monad on the chiral multiple category
X; let x,y, z,u be i-consecutive i-cubes of X; + denotes +;.

(a) The following transversal maps are invertible

T+ n+n): T+ (y+ (z+u)) = T(Tx+ (Ty+T(z+u))), (8.34)
T(m+n)+n):T(z+y)+2)+u) = T(T(x+y) +Tz) +Tu), (8.35)

T+ My +2)+n),  T((n+nly+2)+n) (8.36)

(b) The lazity comparisons of T form the dashed arrows of these commu-
tative diagrams

einT nx+ny

eix — e;(Tx) x4y ——— Tax+Ty
U\L e ln ni 7 - ln (8.37)
~ - Z ~
Te;x s Te;(Tx) T(x+y) T T(Tx+ Ty)

and are therefore determined by the components of n: 1 — T as follows:
T,(x) = (T(esnx))~tme;(Tx): e;(Tx) — T(eiw),

(8.38)
Ti(z,y) = (T(nz+ny) " n(Tx+Ty): Te+ Ty — T(x +y).
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Proof (a) Property (8.34) follows from the following commutative square,
where the other three arrows are invertible

T
T(x+ (y+ (2 + 1) — D) (T 4 (Ty + Tz + )
T(n+n) T (n+n)
T(Tx+T(y+ (2 +u))) EIYC T T(Tz+T(y+T(z+u)))

One verifies (8.35) and (8.36) in a similar way.
(b) The two upper triangles in (8.37) commute by axiom (trt.2L) of 6.5.3
on 7. For the lower triangles we verify the right-hand one.

This follows from the commutative diagram below, where the square
commutes by the naturality of 5, the triangle by (8.34) (since nT = T),
and TT,(z,y) is invertible

Ta+T
Tz +Ty _ Ty T(Tz+Ty)

Ti(wﬁy)l TTi(z,y)l
T(x
Tty — o 1224y |2
TT,(z,y)
T (nz+ny)
T(Tz+ Ty)

O

8.4.4 Theorem (From left-strong idempotent adjunctions to monads)

Let (F,G,n,e): X-> A be aleft-strong idempotent adjunction between chiral
multiple categories, as defined in 8.4.1.

Then the lax monad (T, n, 1) on X constructed in 8.3.4 is a strong idem-
potent lax monad, as defined in 8.4.2.

If F 4 G is a left-strict idempotent adjunction, then (T, n, p) is a strictly
idempotent lax monad.

Proof Applying Theorem 8.3.5 we know that (7,7, u) is indeed a lax
monad.

Now the condition that 5T be invertible lives in the transversal compo-
nents of X and is satisfied. The invertibility of the transversal maps T'T,;(x)
and TT,(x,y) follows immediately from the definition of the comparisons
of T in (8.27), using condition 8.4.1(ii) on the adjunction.

The strict case is obvious, because u = GeF' is now an identity. |
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8.4.5 Algebras of strictly idempotent lax monads

We go on examining the strict case, because working in the strong one
would make the geometric operations z o; y of algebraic cubes complicated,
and their comparisons even more.

Let (T,7n) be a strictly idempotent lax monad over the chiral multiple
category X. We want to construct the chiral multiple category Alg, (T")
of strictly algebraic cubes of X, extending the construction we have seen in
1.7.8 for ordinary categories. Note that Alg, (T') will have its own geometric
structure, with a lax embedding in X.

(a) For the transversal part of the construction we simply apply the ordi-
nary procedure (of 1.7.8) to each strictly idempotent monad (73, ;) on the
category X; = tv;X, getting a full subcategory Alg, (T;) C X;.

An object of Alg, (T}) is thus a strictly algebraic i-cube z of X (as defined
in 8.4.2): Tx = =z, or equivalently nz = 1,. The algebra & = (x,1;)
coincides with the free T;-algebra (T'z, ux) on .

A morphism f: x — y of Alg,(T;) is any transversal map of X between
strictly algebraic i-cubes. It satisfies T'f = f and gives an arrow of Tj-
algebras f: & — 9.

All this is consistent with faces: 0f*(Alg,(T3)) C Alg,(Tj;,) for i € i,
because the monads (T;, ;) are face-consistent.

(b) Now we extend this family Alg,(7;) to a chiral multiple category
Alg, (T), writing Tiz and nyx as Tx and nz.

First we define the new degeneracies and concatenations of strictly alge-

braic i-cubes and their maps as follows

ei(z) = Tei(w), es (f) =Tei(f) (i ¢1),
zo;y="T(z+:y), foig=T(f+i9) (i €1).

It should be noted that these cubes have the correct i-faces because
and y are strictly algebraic and T' does not modify the i-faces of e;(x) and
T+ Yy

(8.39)

0t (e3(x)) =T (0%ei(z)) =Tx = x,

; )
07 (xo,y)=T(0; (x +iy) =T(0; ) =90 Tx,= 0; =,

K2

O (xojy) = ... =0 y.

1
(Working with algebraic cubes one should ‘correct’ these definitions, as-
suming that X is transversally invariant; this can be done, but would lead
to complicated computations below.)

(¢) Secondly we define unitors, associators and interchangers for cubes
x,y, z,u in Alg, (T) so that they form the following commutative diagrams,
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where the upper maps are T-transformed comparisons of X, the vertical
maps are transversal isomorphisms by 8.4.2, and the lower (dashed) ar-
rows are the new comparisons we are defining for strict algebras (where
Nz = 1, @ — x, and so on)

T(e;0; x +; x) EELNA O e T(x +; (e:0; x))

T(n—&-l)i n iT(Hn)
8.40
T(Te; (0] )+ x) — 1T <5 T(x +; T(e;0; ) (8.40)
Il |
e;(0; x)ojw x 0; ¢ (9] x)
T(x+i (y+i 2)) ———> T((x+iy) +; 2)
T(1+n)l lT(nH)
8.41
T4+ T(y+iz) ———> T(T(x+;y) +i 2) (540
Il |
z 0 (yo; 2) (xojy)oiz
T ij
T((x+:iy) + (z 41 1)) ——Ls T((x +; 2) +4 (y +; u))
T(W"‘j”)l \LT(’VH‘J'”]) (8 42)

T(T(x+iy) +5 T(z+iu) —> T(T(x+;2) +: Ty +; u))
Il Il

(x 0iy)oj (z0iu) (z0j2) 0 (yoj u)

The coherence axioms are verified below, in Theorem 8.4.6.

Let us note that if X is a weak multiple category, its interchangers are
invertible and so are those of Alg,(T'); more precisely, the latter is a weak
multiple category if and only if T'(x;;(x,y,2,u)) is invertible, for every
consistent matrix of strictly algebraic cubes.

8.4.6 Theorem (Algebras of strictly idempotent lax monads)

If (T, n) is a strictly idempotent lax monad over X, the previous construction
gives a chiral multiple category Alg, (T).

Proof The verification of the coherence axioms is long. We write down a
complete proof for the pentagon-diagram of the i-associator ;, i.e. axiom
(wme.9.1) of 6.4.3. The proof of the other axioms follows the same pattern.

We start from the commutative pentagon of ; in X (omitting the index
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i, as we often do)

T+ (y+ (2 +u)) ((x+y)+2)+u (8.43)

1+n\ /raJrl

e+ ((y+2)+u) —— (@+({y+2)+u

K

Let z,y, z, u be strictly algebraic cubes. We want to show that the (com-
mutative) T-image of this diagram is related to the corresponding pentagon
for the operation o = o; by a coherent family of transversal isomorphisms
(even though we just need to cancel one of them, at the left).

For the T-image of the upper path of (8.43) we form the following com-
mutative diagram (recalling again that n, = 1,: ¢ — z, etc.). The solid
vertical arrows are invertible by Proposition 8.4.3; the dashed diagonal
T(n+;n) of the diamond is invertible by definition (while the upper slant-
ing arrows need not be)

T(z+(y+(24u))) —=s T((z+y)+(z+u)) ——s T(((z+y)+2)+u)
T(

l/T(l-‘r(H-n)) T(ly :
\
\

) T((n+1)+1)l

X1 H X2 77""77 X3 H X4
iT(1+n) T(nm L Aﬁ]) T(n+1)l
T(x+T(y+T (z+u))) = = = T(T(x+y)+T(2+u)) - - = T(T(T(v+y)+2)+u)

Xi=T+i(y+iT(z+iu), Xo=T((x+:y)+:iT(z+iuv)),
Xsg=T(T(z+iy)+i(z+iu),  Xa=T((T(z+iy)+iz)+iu).
For the T-image of the lower path of (8.43) we have a commutative

diagram (that should be symmetrically completed, at the right) where all
the vertical and slanting arrows are invertible

T(a+(y+(2+u))) 2 T+ (y+2) 1) — L5 T((a+(y+2))+u)

(1)) . Ttn) / \T(H(”H)) /()

Y —————Y Y3—>Y4

T(1+T(1+n))¢ T(1+T(n+1))\ /T (1+n) \T(nﬂ)

T (24T (y+T (z+u))) 1?’QT(az:+T(T(y+z)+u)) - —— = T(T(2+T(y+z))+u)

Vi=T(@+iT(y+i(z+iw)),  Yo=T(@+i T((y+i2)+iu),
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Since the left-most vertical arrow (through Y7) coincides with the pre-
vious one (through X;), and — symmetrically — the same happens for the
right-most vertical arrows, the conclusion follows. |

8.4.7 Theorem (From strictly idempotent monads to adjunctions)

Let (T,n) be again a strictly idempotent lax monad over X, with Alg, (T)
constructed as above. There is an associated strictly idempotent adjunction

(F',G',n,e"): X=> Alg, (T),
which is pseudo-lax and gives back the monad; moreover F'G' = 1 and
e’ = 1pig:. It is constructed as follows.
(a) The inclusion G': Alg, (T) — X is a full lax functor (where full means
transversally full, see 7.4.4), with comparisons derived from n
Gir:ei(G'r) — G'eS(x), Gix =neix: e;x — Tejx,
Gix,y): G'z +; Gy — G'(z 0 ), (8.44)
Gizy)=nx+iy):z+iy—T(x+iy).
(b) The pseudo functor F': X — Alg,(T) is a codomain-restriction of T,

with comparisons derived again from n (written below in the colax direction,
and invertible)

Floe =Tux, F'f=Tf,
Flx: Fl(e;x) — e (F'x),
Flo=T(emnz): T(e;x) — Tey(Tx), (8.45)
Fi(z,y): F'(x+iy) = F'zo; F'y,
Fi(z,y) =Tz +iny): T(x +iy) = T(Tz +; Ty).
(¢) The composite G'F' coincides with T (including comparisons, of course);
1 is a transversal transformation of lax functors 1 — G'F’ such that
G'F'n =nG'F' is the identity.
(d) The composite F'G": Alg,(T) — Alg,(T) is the identity, as well as the
counit €' F'G' — 1.
(e) The pseudo-lax adjunction F' < G’ is left-strict idempotent; its asso-
ciated lax idempotent monad is precisely (T,mn).

Proof (a) For G’ we only verify condition (lmf.1) on a transversal map
frx—yin Alg, (T)

G'e; ().Gi(x) = Tei(f)mei(x) = nei(y).ei(f) = Gi(y)-i(G'f),
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and the coherence condition (Imf.4) on three i-consecutive i-cubes z, y, z of
Alg, (T))

I{iG,

x4+ (y+2) (z+y)+z

1+V \n / V Xﬁ»l

x+T(y+z) T(x+(y+2)) _Ime T((x+y)+2) T(z+y)+z

N A(H—n) T(n+1)\« /7

T(z+T(y+2)) T(T(x+y)+2)

z0; (yoi 2) (z0iy) o; 2

!
G'k;

where all the quadrilaterals commute by naturality of n or by definition of
the new comparisons &, in (8.41).

(b) Similarly for F” we verify condition (cmf.1) on a transversal map f: = —
yin X

e; (F'f).Ei(x) = Te;(T fnx) = Tei(ny.f) = Fi(y)-F'ei(f),
and (cmf.4) on three i-consecutive i-cubes z,y, z of X

T(z+(y+2)) e T((x+y)+2)

T(n+ny Y(nﬂnﬂi)) - T((n+n)+n)/ Y(nﬂz)

T(Tx+T(y+2)) T(Tx+(Ty+Tz)) —=T(Tx+Ty)+Tz) T(T (z+y)+T2)

TOATE)N T TN T+

T(Tz+T(Ty+Tz)) T(T(Tz+Ty)+Tz))

Txo; (Tyo; Tz) (Tzo;Ty)o; Tz

Again all the quadrilaterals commute by naturality of n or by definition
of the new comparisons &; in (8.41).

(¢) The composite G'F’: X — X coincides with T" on cubes and transversal
maps. Its comparisons are derived from those of F’ and G’

(T(e;nz)) Ltmes(Tx): e;(Tx) — T(e;x),
(T(nz +iny) " (Ta +: Ty): T +; Ty — Tz +; y),
and coincide with those of T' by Proposition 8.4.3(b).

(d) The composite S = F'G": Alg, (T) — Alg,(T) is computed as T on
cubes and maps, which means the identity. This is also true of its compar-
isons: for instance for the i-degeneracy of the strictly algebraic cube x we
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have:
S,z =F'Gla.(F\G'z)™" = Tneix.(T(enz)) ™t = 1: ejx — e

(e) We already know that the adjunction is strictly idempotent, since &’
is the identity. Moreover F' is a pseudo functor and the transversal maps
F'G}(x) = Tne;(z) are invertible (and similarly for i-composition). Finally
T = GF has been proved above. ]

8.4.8 Theorem (The comparison functor of algebras)

On the other hand, let us start from a left-strict idempotent adjunction
(F,G,n,e): X=>A.

We have the associated strictly idempotent lax monad (T,n) (by Theo-
rem 8.4.4), its chiral multiple category Alg, (T) of strictly algebraic cubes
(by 8.4.5) and the associated left-strict pseudo-lax adjunction (n,e'): F' -
G’ constructed above (in 8.4.7), with G'F' =T and &' = 1pgr.

There is a comparison lax functor K: A — Alg, (T), defined as a restric-
tion of G: A — X on codomain; its comparison-maps are modified to be
coherent with the modified degeneracies and operations of Alg, (T), using
the fact that nG =1 (and GFG = G)

K:A— Alg,(T), Ka=Ga, K(f:a—0b)=GYf,
K,a= (nGe;a) " .GFG,a: e¢Ga — Gea, (8.46)
K,(a,b) = (nG(a+; b)) L.GFG,(a,b): Gao; Gb — G(a +; b).

Moreover we have

F
X __—A KF=1F",
G
|7 |« ox-a e
FI
X — XT Ke =1 =K.
G/

The relation KF = F' must be interpreted: the composite of F (co-
lax) with K (laz) is ‘naturally’ a pseudo functor (as F'), because all maps
K,(Fz,Fy) and KF,(z,y) are invertible. (The same holds for the com-
parisons of degeneracies.)

Proof The definition of K: A — Alg,(T") on cubes and transversal maps is
legitimate because all components nG(a) are identities.

We write down the verification of axiom (lmf.4), of coherence with as-
sociators, following the same pattern as in many previous verifications.
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This axiom, applied to the lax functor G, says that for three i-consecutive
i-cubes a, b, c in A we have a commutative diagram of i-maps:

Ga +; (Gb+; Ge) 2% (Ga +; Gb) +; Ge

1+7~,Q7~,J/ igml

Ga+;G(b+;¢) G(a+ib) +; Ge

o o

G(a+; (b+ic)) G((a+ib)+ic)

The T-image of the upper-right composite is linked to the corresponding
composite for K by a commutative diagram in which the vertical maps are
invertible (here A = (a +; b) +; ¢)

T(Gat+(Gb+Ge) T8 T((Garab)+Ge) " EEVT(Glarb)rae) TETGA
T(1tn)| Tt [ (nG)_ll
T(Ga+T(Gb+Ge)) - > T(T(Ga+Gb)+Gc) -> T(G(a+b)+Ge) — > GA

| H R
KA

Kao; (Kbo; Kc) (Kao; Kb)o; Kc K(a+b) o; Kc

In fact the left square commutes by definition of x in Alg, (7T) and the
right one by definition of K. Finally the central square commutes by defi-
nition of K and by naturality of #:

(K;(a,b) 0 1) . T (n(Ga +; Gb) +; 1)
=T (K, (a,b)+i1lge) . T (n(Ga+; Gb) +; 1gc)
=T ((nG(a+; b)) L.GFG,(a,b).n(Ga +; Gb) +; 1)
=T (G,;(a,b) +; 1ae) .

(Here nG = 1, but we only need its invertibility.) One deals similarly
with the left-lower path.

Finally the relations (8.47) are obvious on cubes and transversal maps.
In particular the third amounts to the relation Ge(a) = (nGa)~!, which
holds in every idempotent adjunction.

We check that the first of these relations, namely KF = F”, is also true
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for the comparisons of i-concatenation (as said in the statement)
KF,(z,y) = (K;(Fx, Fy) " . KF,(z,y)
= (TG,(Fx,Fy)) '.mG(Fx +; Fy).GF,(z,y)
= (TG,;,(Fz,Fy)) ' TGF,(z,y).nT(x +; y) (by naturality of 7)
= (TG,(Fx, Fy)) " TG,(Fx, Fy).T(nx +iny) (by Tn =nT and (7.38))
=T(nz +; ny) = Fi(z,y).

7

8.4.9 Theorem (Strong idempotent lax monads by basic data)

In order to assign a strong idempotent lax monad over a chiral multiple
category X it suffices to give the following data:

(i) a face-consistent family of idempotent ordinary monads, indexed by the
positive multi-indices i

TiZXi—>Xi, ’I’]i:1—>Ti,
o (Tz) =T(97x),  Of(nz)=n(0fw), (8.48)
Timy = mi1; s invertible,

(ii) where Te;(nx) and T(nx +; ny) are invertible transversal maps (when-
ever this makes sense).

All this can be uniquely completed, forming a lax functor T: X — X
and a transversal transformation n: 1 — T of lax functors with Tn = nT
invertible.

For the strict case one modifies (i) requiring each (T;,m;) to be a strictly
idempotent ordinary monad: Tin; = nT; is an identity.

Proof We (must) define the comparisons of T' as specified in (8.38)

T,(z) = (T(esnz)) Ltp(e;Tx): e;(Tx) — Te;i(z),

—1

(8.49)
Ti(z,y) = (T(nz+iny))  n(Tz+; Ty): Tx+; Ty = T(z+y).

Before checking that these comparisons make 7" a lax functor, it will be
useful to verify the following properties, corresponding to axiom (trt.2L)
forn:1—=1T

n(eix) = T;(x).ei(nz),

(8.50)
n(x+iy) =Li(z,y).(nz +iny).
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This follows from the following identities, cancelling the invertible maps

T(einx) and T(nz +i ny)
T(emx).n(ex) = n(eTx).ei(nx) = T(einx).Ly(x).e;(nz),
Tz +iny)n(x +iy) = n(Tx +i Ty).(nx +4 ny)
=Tz +iny).L;(z,y)-(nx +; ny).
We now verify that T is lax. First, the axioms (Imf.1, 2) on naturality of
comparisons say that:
TeifT,x=Ty.e,Tf:eTx— Te;y,

(8.51)
T(f +i9)Li(x,y) =Ty(«",y").(Tf +i Tg).

To prove the first identity it is sufficient to cancel the invertible map
T(e;ny) from the relation:
T(eny).Te;f T,x =Te;TfT(enx).T,x=T(eTf)n(eTx)
=n(eiTy).ei(Tf) = T(emy).Ly(y).ei(Tf),

that comes from applying (twice) the naturality of n and the definition of
T.

The definition of the comparisons T" and their naturality give the follow-
ing relations, that will be repeatedly used below, together with (8.50):

n(eiTx) = T(emz).L;(x) = T;(Tx).ei(Tnz),

(8.52)
N(Tx+; Ty) = T(nx +iny).L;(x,y) = T;(Tx, Ty).(Tnx +; Tny).

(Imf.3) (coherence with unitors) For an i-cube z with 9, x = z we have to
prove the commutativity of this diagram of i-maps (and similarly for the
right unitor p):

>\i Tx
e;(Tz)+; Tz SISO Tx

L-(z)ml lmm—l (8.53)

T(eiz) +; Tx T(ejz +; x)

- >
Zi(eiz7x)

Consider the following transversal isomorphism (the equality comes from
the first relation of (8.50)):

T(n(e;z) +inx)) = T(T;(2) +i 1rz).T(einz +; nx).
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Our goal follows from cancelling it:

=n(T(eiz) +i Tx).(T;z +i 11s)
=T(T;z 4 17z) (T (e;2) +; Tx),

T(n(eiz) +inx).Li(eiz, x).(L;iz +i lra)

T(T;z +i17.).T(enz +; nx).(Thix) "\ (Tx)
=T(L;z +; 1rg).(TNTz) L. Tnz\i(Tx)
=T(T;z +i 1) .(TANTz) L (TN Tx).n(T (e;2) +; Tx)
=T(L;z 4+ 17) m(T(e;z) +; Tx).

(Imf.4) (Coherence with associators) For three i-consecutive i-cubes z,y,
in X we have to prove the commutativity of the hexagon marked with a

question mark:

Tx+(Ty+Tz) o (Ta+Ty)+Tz ——> T(T(x+y)+Tz))
iy 7,41 T@i(z,y)ﬂ)i
Tax+T(y+z) ? T(z+y)+Tz — 7 5 T(T(x+y)+Tz)

|
T(x+(y+2)) — s T((w+y)+2) — e T(T(2y)+T2)
T (n+(n+n)) T ((n+n)+n) /@i(z’yr)ﬂ)

T(Tz+(Ty+T2)) 7 T((Tz+Ty)+Tz)

Consider now the transversal isomorphism appearing in the triangle

(which is commutative by (8.50))

T(n(x +iy) +inz) = T(T;(2,y) +i o). T((nx +i ny) +inz).

Again, the goal follows from cancelling it (writing &' = x;(2,y’, 2’))

iy) +inz) Lz +iy, 2)(Ls(2, y) +i 1).6
( +iy) +i Tz)(Ls(z,y) +i 1).6
x,y) +i D)n((Tx +; Ty) +: Tz).x
x,y) +; 1).T' n(Tx +; (Ty +: Tz)),

T(n(x +
n(T
7(
T(

T,
T,
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T(L;(2, y)+1).T((nz+ny)+nz). Tri(z, y, 2).T;(x, y+2).(1+L;(y, 2))
= T(L;(2,y)+1).Tr".T(na+(ny+nz)).Ls(z, y+2).(1+L;(y, 2))
= T(L;(z,y)+1).Tr"T;(Tx, T(y+2))-(Tna+T(ny+nz))-(1+L;(y, 2))
=T(T,(z,y)+1).TK' . T,(Tx, T(y+2)).(Tnz+n(Ty+Tz))
=T(L,(z,y)+1).T"T,(Tz,T(y+z)).(nTx+n(Ty+Tz))
=T(T,(z,y)+1).TK' . T,(Tx, T(y+z)).(nTx+n(Ty+Tz))
=T(T,(z,y)+1). Tk n(Tz+(Ty+T%)).

(Imf.5) (Coherence with interchangers) For 0 < ¢ < j we have to prove the
commutativity of this diagram of transversal maps

xi; T

(Tx+;Ty) +; (Tz+; Tu) — (Tx+;Tz)+; (Ty+; Tu)
Z,ﬁ-jlil \sz-‘rizj
T(x+iy)+,; T(z +iu) T(x+,y)+i T(z+;u) (8.54)

0| E

T@+iy) 45 (ziw) =g Tl@ 4y 2) i (y +50)
As above this is proved by cancelling the following transversal isomor-
phism (and again, the equality follows from (8.50))

T(n(ﬂ;‘ +; y) +; 77(Z +; u))
=T(L;(z,y) +; T;(2,u).T((nx +; ny) +i n(nz +; nu)).

8.5 The jointly-monic monad of relations

This section is about weak double categories, viewed as truncated weak
multiple categories, in order to apply the theory developed in the previous
section. Thus an n-cube is an object (for n = 0) or a vertical arrow (for
n = 1), and a transversal n-map is a horizontal arrow (for n = 0) or a
double cell (for n = 1); the transversal direction is the horizontal one.

For a regular category C, the double category Rel(C) has been introduced
in 3.1.3. It can now be obtained from the previous theory of algebras
applied to a strong idempotent lax monad T over the weak double category
Span(C).

This can be done in essentially two ways, obtaining a weak double cat-
egory Rel’ (C) of jointly-monic relations (as in 8.5.3) or a strict double
category Rel(C) of cartesian relations (as in 8.5.4). The monad T is trivial



8.5 The jointly-monic monad of relations 385

in degree zero, so that — in this truncated 2-dimensional case — there would
be no advantage in making T strictly idempotent (see 8.5.3).

Extending this approach to higher dimension only works in a defective
way (see 8.5.5), related to the premultiple category of cubical relations
examined in 6.6.6.

8.5.1 Constructing a 2-dimensional monad

We construct a lax monad T': Span(C) — Span(C), by unconditioned
choices.

Everything is trivial in degree zero: Horg(7T") = idC and Horg(n) = 1.

Working in degree 1 we note that a double cell y — x with values in a
jointly monic span x and boundary (y g; x) is determined by its horizontal
mappings f, g; thus every span y can have at most one special cell y — x.

Now an arbitrary span z: V — C amounts to a pair of maps u;: ©, — z;
(i = 0,1) and determines a map u: , — 2o X z1; choosing a canonical
factorisation w = wp in C, by a regular epi and a monomorphism, we get
a ‘factorisation’ u; = w;p of the given span (u;), by a regular epi p and a
jointly monic span Tx = (wp, w1)

g =——— Xo

P :
uo wo « —

z, P> z, v (8.55)
| ]

Ty ——— I1

The special cell nx: x — Tx is already shown above, with central map p.
Moreover, for every map f: x — y of spans there is a unique Tf: Tz — Ty
consistent with 7. We have thus defined a face-consistent family of ordinary
functors and a face-consistent family of natural transformations

T, : Hor, (Span(C)) — Hor,(Span(C)), n,:1—=1T, (n=0,1).

T could be easily made strictly idempotent, by a simple constraint on the
previous choice: if the span x is jointly monic we take p = 1 and Tx = x.
Later on, in 8.5.4, we shall be interested in stronger constraints.

8.5.2 Comparisons

It is now sufficient to verify the hypotheses of Theorem 8.4.9, to conclude
that these data can be completed to a unique strong idempotent lax monad
(T, n), with comparisons for T' defined as in (8.49).
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First the special cells T'(nx), n(Tz): Tx — T?x coincide because the span
T2z is jointly monic.

We now remark that a special cell f: z — y: V — C whose central
component is a regular epi of C gives an invertible cell Tf: Tx — Tvy.
Indeed the special map ny.f: © — Ty has a central component of this kind
and takes values in a jointly monic span; therefore Ty is isomorphic to T'x
and the unique map Tx — Ty is an isomorphism.

Since the components of the special cells nz and e(nz) are regular epis,
we already have that T'(nz) and T'(e(nz)) are invertible. (In fact the latter
is trivial, because = must be of degree 0.)

We further remark that a concatenation f ® g of special cells whose
central components f,, g, are regular epis is again of this type. Indeed this
concatenation is computed by the pullbacks of the two cospans represented
in the commutative diagram below, and the map induced between them is
a regular epi, by Lemma 2.5.9 applied in two steps

AN
P

Thus the central component of the special cell nz@ny: @y - Tx® Ty
is a regular epi and T'(nx ® ny) is invertible.

(8.56)

8.5.3 Algebraic spans

A T-algebra of degree 1 is thus any span z isomorphic to Tz, i.e. any jointly
monic span. The weak double category Alg(T) has vertical composition
defined as in (8.39)

zoy=T(x®y), fog=T(f®g) (8.57)

This is automatically consistent with faces (without making 7' strict)
because the faces of our spans (and cells) have degree zero, where T is
trivial:

O (woy) =T(0 (z®y)) =T(0 v) =0 x,
Of (xoy)=..=0"y.

For the same reason we can take e® = e. We interpret Alg(T) as the
weak double category Rel’(C) of jointly-monic relations.



8.5 The jointly-monic monad of relations 387

8.5.4 Cartesian choice and strict algebras

We now assume, as in 2.5.2, that C is equipped with a choice of binary
products and subobjects.

Pullbacks in C will now be chosen as subobjects of a binary product
(and the unit constraint of 1.3.5 is not followed). The lax endofunctor T
is also constructed by a conditioned choice: in the canonical factorisation
u = wp used in (8.55) the monomorphism w is required to be a subobject
of xgxxy. In this way T is strictly idempotent, with Tn = nT = 1p.

Its strictly algebraic spans, of the form Tz, are the cartesian relations and
form the substructure Alg, (T") = Rel(C); it is a ‘special horizontal skeleton’
of Alg(T), i.e. an equivalent structure (see 4.4.4) which has precisely one
span in any class of special isomorphism. Therefore it is a strict double
category.

8.5.5 A higher dimensional premultiple monad

The ‘obvious’ higher dimensional extension of the idempotent lax monad
T of Span(Set) studied above only works in a defective way.
In fact we get a family of strictly idempotent monads

T;: tvi(Span(Set)) — tvi(Span(Set)), i1 — Tj, (8.58)

that associates to any n-cubical span of sets an (obvious) n-cubical relation,
as defined in the premultiple category Rel(Set) described in 6.6.6.

Globally, the family (7;) preserves degeneracies but — in dimension three
or higher — cannot be made into a lax endofunctor of Span(Set), because
of the counterexample exposed in 6.6.7. (With the notation used there,
the 12-cube ¢ +1 d of Span(Set) has an empty central object, while T'c +
Td = ¢’ +1 d’ has a singleton in the central position; therefore there is no
transversal map Tc—+q Td — T(c+1 d) = c+1 d.)

Here we only get a strictly idempotent premultiple monad on the under-
lying premultiple category |Span(Set)|; its premultiple category of strictly
algebraic cubes is Rel(Set).

8.5.6 The pushout-pullback adjunction

We end this section coming back to the idempotent pushout-pullback ad-
junction, studied in 4.5.6

(F,G,n,¢e): Span(C)-» Cosp(C), (8.59)

between the weak double categories of spans and cospans, over a category
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C with pullbacks and pushouts. The colax functor F' is computed by
pushouts, the lax functor G by pullbacks. The adjunction reduces to the
identity in degree zero.

Depending on C, the adjunction can be strong or not.

8.5.7 Ezxercises and complements
(a) For C = Set the pushout-pullback adjunction is not strong.

(b) If C is an abelian category, the adjunction is strong and its algebras
are the relations on C.

(c) The following facts can be found in [Me].

For a regular category C, all pullback relations (determined by a span
which ‘is a pullback’) are regular (in the sense of von Neumann, also called
difunctional), i.e. satisfy the condition uoufou = u, where u! is the opposite
relation.

For Set, a relation is regular if and only if it is a pullback relation, but —
as we know — not all relations are regular.

For Gp, all relations are regular (as we have seen in 2.1.5), but not all
of them are pullback relations.

8.6 Idempotent colax comonads and profunctors

We briefly dualise Section 8.4, without writing down the strict case. In
8.6.6 we extend to infinite dimensional strong idempotent adjunctions the
equivalence between algebras and coalgebras proved in 1.7.7 for ordinary
categories.

Finally we show in 8.6.7 that Cat is comonadic over CospCat, for an
idempotent comonad: profunctors can be seen as coalgebraic cospans of
categories.

8.6.1 Definition (Strong idempotent colax comonads)

A colax comonad (5,¢,d) over a chiral multiple category A is a comonad
in the 2-category CxCmec, and induces transversal comonads of ordinary
categories

Sit Ay — A, £: 8 =1, 6&: S — SE. (8.60)
Our comonad is said to be idempotent if it satisfies the following equiv-
alent conditions:

(idc.1) all the ordinary comonads (8.60) are idempotent,
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(idc.1’) the transversal transformation 6: S — S is invertible, with inverse
Se=¢8: S — 52,
(ide.1”) Se is invertible,
(ide.1") &S is invertible.

An idempotent colax comonad over A will be written as a pair (5, ¢)
where S: A — A is a colax endofunctor, e: 1 — S is a transversal trans-
formation and Se = €9: S — S? is invertible. The comultiplication ¢ is
recovered as the inverse of Se.

We say that (S, €) is a strong idempotent colax comonad if it also satisfies
the following equivalent conditions:

(idc.2) the transversal maps SS;(a) and SS;(a,b) are invertible,

(ide.2’) the following transversal maps are invertible
Sei(ea): S(e;Sa) = S(eja), S(ea+;ea): S(Sa+; Sb) — S(a +;b).

In this situation we say that an i-cube a is coalgebraic if ea: Sa — a is
invertible, or equivalently if a is transversally isomorphic to Sa in A.

8.6.2 From right-strong idempotent adjunctions to comonads

Right-strong idempotent adjunctions between chiral multiple categories
have been defined in 8.4.1.

Dualising Theorem 8.4.4, if (F, G,n,¢): X-> A is of this kind, then the as-
sociated colax comonad (5, ) over A defined in 8.3.4 is strong idempotent.
Its transversal components are

Si = FiGit Ai — Ai, Ei: Si — 1, 5i = ﬂniGi: Si — SiSi. (861)

8.6.3 Coalgebras of idempotent comonads

Dualising 8.4.5 and Theorem 8.4.6, if (S,¢) is a strong idempotent colax
comonad over A we can form a chiral multiple category Coalg(S) of coal-
gebraic cubes.

First, an i-cube a of A is coalgebraic for (S,¢) if it satisfies the following
equivalent conditions:
i) ea is invertible,
ii) there exists a transversal map k: a — Sa such that ea.k = 1,,

(

(

(iii) there exists in A; an Sj-coalgebra (a, k) over a,

(iv) €A is invertible and @ = (a, (ea)™1) is the unique Sj-coalgebra over a,
(

v) a is transversally isomorphic to Sa.
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In this case @ = (a,(ea)™!) is transversally isomorphic to the cofree
S-coalgebra (Sa, da) on a.

Now Coalg(.S) consists of all these cubes of A and all transversal maps
between them. Faces are inherited from A, but positive degeneracies and
compositions are redefined as follows in Coalg(.S)

e;(a) = Se;(a), e; (f) = Sei(f), (8.62)
ao;b=S(a+;b), foig=S(f+ig)-

8.6.4 From idempotent comonads to adjunctions and back

Dualising Theorem 8.4.7, let (S, ) be a strong idempotent colax comonad
over A, with Coalg(S) constructed as above. There is an associated strong
idempotent adjunction (F”,G”,n",e): Coalg(S)-> A, which is colax-pseudo
and gives back the comonad. The construction is only sketched here.

(a) The inclusion F": Coalg(S) — A is a full colax functor, with compar-
isons constructed with €

F(a) =ee;(a): Se;(a) — eia),
Fi(a,b) =e(a+;b): S(a+ib) —»a+;b,

since Se;(a) = ef(a) = F"e3(a), e;(a) = e;(F"a), etc.

(b) The pseudo functor G”: A — Coalg(S) is a restriction of S, with com-

parisons constructed with € (and written below in the lax direction)

G//a - Sa7 G//f — Sf’
Q;/a = S(eisa): Sel(Sa) — S(eia), (864)
GY(a,b) = S(ea+; b): S(Sa+; Sb) — S(a+;b).

(8.63)

Now F”"G" = S (including comparisons).
The colax-pseudo adjunction is completed with the given transversal
transformation €: S — 1 and the invertible transversal transformation

n':1— G"F": Coalg(S) — Coalg(S), n"a=(ca)™':a— SA. (8.65)

8.6.5 The comparison functor of coalgebras

Dualising Theorem 8.4.8 we now start from a right-strong idempotent ad-
junction (F,G,n,e): X->A. We have the associated strong idempotent
colax comonad (.5, ¢) recalled in 8.6.2, its chiral multiple category Coalg(S)
of coalgebraic cubes (see 8.6.3) and the associated strong colax-pseudo ad-
junction (n”,e): F” 4 G” constructed above (in 8.6.4), with F"G" = S
and 1" invertible.
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The two adjunctions are correlated by a comparison colax functor H
H: X — Coalg(S), Hx=Fz, H(f:z—vy)=Ff,
H,x = FGF,(z).(eFe;x)™: F(e;x) — FGe;(Fx) = € (Fz),

(8.66)
H;(x,y) = FGE,(z,y).(eF(z +iy)) "
F(zx +;y) = FG(Fx +; Fy) = Fx o; Fy.
Moreover we have
HG =G", F'H=F, Hn=n'H. (8.67)

The first relation, where G” is a pseudo functor, must — again — be in-
terpreted: the composite of G (lax) with H (colax) is ‘naturally’ a pseudo
functor, because all maps H,(Gz,Gy) and HG,(x,y) are invertible (simi-
larly for the comparisons of degeneracies).

8.6.6 Strong idempotent adjunctions, algebras and coalgebras

Finally we start from a strong idempotent multiple adjunction
(F,G,n,e): XA,

with associated strong idempotent colax monad (T, n) and strong idempo-
tent lax comonad (S,e). We want to show that the chiral multiple cate-
gories Alg(T) (of algebraic cubes of X, defined in 8.4.5) and Coalg(S) (of
coalgebraic cubes of A, defined in 8.6.3) are equivalent, extending a similar
result for ordinary categories (see 1.7.7).

More precisely, we can factorise the given multiple adjunction as follows,
up to isomorphism

F’ rt F
X T Alg(T) ?u Coalg(5) T A. (8.68)
G

(a) The reflective pseudo-lax adjunction (n,e’): F' 4 G’ is described in
Theorem 8.4.7; G’ is the full embedding of algebraic objects, with reflector
F'z = Tz and invertible counit ¢’z = (nz)~!. The comparison lax functor
K: A — Alg(T) is defined in (8.46).

(b) The coreflective colax-pseudo adjunction (n”,e): F” 4 G” is described
in 8.6.4; F" is the full embedding of coalgebraic objects, with coreflector
G"a = Sa and invertible unit 7”a = (¢a)~!. The comparison colax functor
H: X — Coalg(S) is described in (8.66).

(c) There is a pseudo adjunction F* 4 G*. We write the comparisons of
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F* in the colax direction and those of G in the lax direction, because this
is useful below

(F* G* 0, e?): Alg(T)~» Coalg(S), (8.69)

F*: Alg(T) — Coalg(S), Ffx=Fx, F'f=Ff,
Fi(z,y) = FGF,(z,y): F(GF(z +;y)) = FG(Fx +; Fy),

G*: Coalg(9) — Alg(T), Gla=Ga, G'f=G,
G¥(a,b) = GFG,(a,b): GF(Ga +; Gb) — GFG(a+; b),

i1 — GHFE nb(z) = ne,

eh: FEGP - 1, £f(a) = ca.
(The comparison maps F*(z) and G¥(a) for unitarity are similar.) We
do not write down the long verifications of coherence. This adjunction is

an equivalence, because 1 and ¢ are invertible on algebraic and coalgebraic
cubes, respectively.

(d) Composing the three adjunctions above we get F”F!F’ = SF and
G'G*G" = TG, which are isomorphic to F and G, respectively (because
of the idempotence of FF 4 G). We only verify that the equality of lax
functors G'G!G" = TG does hold for comparisons of i-concatenation:

(G'GAG")s(a,b) = GG (a,b).G (Sa, Sb).G(GFGa, GFGb)

= GFG(ea +;eb).GFG,;(Sa, Sb).n(GFGa +; GFGb)

= GFG,(a,b).GF(Gea +; Geb).n(GFGa +; GFGY) (by naturality of G,)

= GFG,(a,b).n(Ga+; Gb).(Gea +; Geb) (by naturality of n)

= GFG,(a,b).(GF,;(Ga,Gb))"L.GF,(Ga, Gb).n(Ga +; Gb).(Gea +; Geb)

= GFG,(a,b).(GE,;(Ga,Gb))1.G,(FGa, FGb).(nGa+nGb).(Gea+Geb)
(by (7.38))

= GFG,(a,b).(GE,;(Ga,Gb))"1.G,(FGa, FGb) (by idempotence)

= TG, (a,b).T;(Ga, Gb) = TG, (a,b).

8.6.7 Profunctors as coalgebraic cospans

There is an important example in dimension 2. We have already seen in
4.5.5 the colax-lax adjunction

C 4 P: Cat— CospCat, (8.70)
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where the colax functor C' is the cospan representation of profunctors,
by cotabulators. This adjunction is trivial in degree zero and has unit
n=id: 1 - PC': Cat — Cat.

The adjunction gives a strictly idempotent colax comonad

S = CP: CospCat — CospCat, ¢e: 5 —1, (8.71)

whose counit ¢ is computed in (4.48).

The left adjoint C' is comonadic and Cat can be identified with the weak
double category Coalg, (C'P) formed by the strictly coalgebraic cospans in
CospCat, namely those of the form Cp for some profunctor p: this means a
cospan of categories satisfying the conditions (i), (ii) of 4.5.5. They must be
composed as in (8.62): CpoCq = C(Cp® Cq), where ® is the composition
of cospans.

8.7 *Complements

In 8.2.6 we have extended an ordinary monad to a colax monad of cubical
spans. Omne can similarly obtain a lax monad of cubical cospans. We
restrict to the idempotent case, to apply the previous theory of algebras as
algebraic cubes.

We end with a notion of transversal monadicity, already discussed in
8.1.1.

8.7.1 Idempotent lax monads of cubical cospans

We start from a strictly idempotent monad (7', n) over an ordinary category
C with pushouts; e.g. the abelianisation monad over the category of groups,
as in 8.1.3.

The associated idempotent adjunction will be written in the following
form, where G is a full embedding with reflector F' (a codomain-restriction
of T') and trivial counit (see 1.7.3(c))

F:C=Alg (T):G, nm1—->GF =T, e=1:FG—1,

(8.72)
FX=TX, F(f:X->Y)=Tf:TX—>TY.

The category Alg,(T) has pushouts (since a span in Alg,(T) has a
pushout in C, which is preserved by F'), and we can apply the 2-functor
Cosp: Cat,, — LxCmc, obtaining a pseudo-lax idempotent adjunction

F: Cosp(C) = Cosp(Alg,(T)):G, n:1—>GF, e=1:FG—1,
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and the associated idempotent lax monad
T: Cosp(C) — Cosp(C), n:1—=T (ITm=nT=1). (8.73)

The new adjunction is left-strong idempotent, as proved in 8.4.1, actually
left-strict because € = 1; its monad T is strictly idempotent.

The strictly algebraic n-cubes of this monad are the cubical spans V" —
C whose vertices are T-invariant, i.e. the cubical spans of Alg,(T'), and we
can identify their weak multiple categories

Alg,(T') = Cosp(Alg, (T)). (8.74)

8.7.2 A chiral triple category of spans and relations

There is a chiral triple category R with:
tvo1R = Span(Set), tvo2R = Rel’(Set),

that can be constructed as the structure of algebraic cubes of a ‘semi-strong’
lax idempotent monad T over the weak triple category Spang(Set).

Here we only sketch this topic, without proofs. A 12-cube of R is a
2-cubical span x: V? — Set where the three 2-directed spans are jointly
monic. (We use the notation of (6.67).)

The lax endofunctor T" of Spang(Set) is the identity on 1-directed arrows
and sends:

- a 2-directed arrow z: V — Set to the associated jointly monic pair, the
image of the mapping x, — xg X1,

- a 12-cube z: V2 — Set to the associated 12-cube of R, whose vertical
spans are the images of the mappings s — x40 X x4 (for ¢ = 0,¢,1).

The unit nz:  — Tx has canonical projections in each component. The
operations of the new 12-cubes are deduced from those of Spang(Set)

zory=T(z+1y), xogy=T(x +2y).
The interchanger
X(2,y, z,u): (xo1y) oz (z01u) = (x 0z 2) 01 (yogu)

is not invertible, generally. This can be seen on the consistent matrix of
12-cubes (£ ¥) shown in 6.6.7.

Note also that the central component of the transversal map
nc+ind:c+1d—Tec+1Td

is not surjective (being ) — 1), so that T'(nc 4+1 nd) is not invertible.
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8.7.3 Premultiple adjunctions and monads

Forgetting everything about geometric compositions, let us consider a pre-
multiple adjunction

(F,G,n,e): X< A, (8.75)

i.e. an adjunction in the 2-category C = pMIt of premultiple categories,
or multiple objects in Cat (see 6.2.7). For every positive multi-index i, its
component is an ordinary adjunction

(£, Gi,mis i) Xi= Ay, (8.76)

and the adjunction (8.75) is equivalent to giving the family of its compo-
nents, consistent with faces and degeneracies.

We have thus an associated premultiple monad T = GF: X — X, i.e. a
monad in pMIt (as already considered in 8.5.5). Again, this amounts to a
family T = (T;) of ordinary monads (for i C N*)

Ti = Giﬂt Xi — Xi, ni: 1— Ti, Hi = GiEiFi: Ti2 — Ti, (877)
consistent with faces and degeneracies:
8f‘T1 = T,‘lata 6le\z =Ti.e; (Z S i), (878)

and similarly for n = (;): 1 — T and p = (u3): T? — T.

It is easy to see that the 2-category C = pMIt of premultiple categories
admits the construction of algebras (in the sense of 2.3.8): for every pre-
multiple monad (7,7, 1) on X, the premultiple category of algebras X7 is

obtained as the family of categories (X;)%i, with obvious faces and degen-
eracies (for z in Xj, 7 €iand j ¢ i)

0 (xz, h: Tix — x) = (08, 0 h: Ty (O ) — Of'x), (8.79)
ej(x, h: Tix — x) = (ejz,ejh: Tij(ejx) — e;x). .

If the premultiple monad T derives from the premultiple adjunction
(8.75), the premultiple comparison functor K: A — X has components
given by the comparisons of the ordinary adjunctions (8.76)

Kii Ai — (Xi)Ti, KlA = (GiA, GiéiA: GiFiGiA — GlA) (880)

Finally, the premultiple adjunction is monadic (i.e. K is a premultiple
isomorphism) if and only if all its components (8.76) are ordinary monadic
adjunctions.
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8.7.4 Transversal monadicity

A unitary multiple adjunction (F,G,n,e): X-» A between chiral multi-
ple categories can be said to be transversally monadic if the associated
premultiple adjunction |X|-»|A| is monadic, and gives an isomorphism
K: |Al = |[X|T of premultiple categories. As we have seen, this simply
means that all the ordinary adjunctions F; 4 Gj are monadic.

Of course, if this is the case, there is precisely one structure of chiral
multiple category X7 on [X|? that makes K an isomorphism A — XT, but
this is of little help, since we need A for this construction, and we can
simply keep A as it is.



Appendix A

Applications in homological algebra and
algebraic topology

We give here some applications of double categories.

We begin, in Section Al, by working in categories of modules R Mod,
with the aid of suitable double categories of modular lattices or relations.
This approach can be extended to abelian categories, but the natural frame-
work is more general: Puppe-exact categories. In fact we need from the
very beginning a non-abelian category Mlc of this kind, and a related dou-
ble category Mlhc, to describe direct and inverse images of subobjects in
RMod (or in an abelian category, or more generally in a Puppe-exact one).

Puppe-exact and abelian categories are briefly dealt with in Sections A2-
A4, after the book [G8] devoted to homological algebra in Puppe-exact
categories. Generalisations of these subjects can be found in [G9] and
references therein.

Section A5, the last, deals with constructions based on the weak double
categories SpanTop and CospTop of topological spans or cospans. This
can be of interest in studying tangles, ribbons and cobordisms between
manifolds, including topological quantum field theories: see [KaRT, Kk,
Ye, G2, G3, G4] and their references.

For the sake of simplicity we often follow the common abuses of notation
for subobjects. Thus a subobject m: M »— A can be simply denoted by its
domain M; if M < N in SubA (i.e. we have a subobject n: N — A with
m < n), M can also denote the corresponding subobject of N, equivalent
to the monomorphism u: M ~— N such that m = nu.

A1 Double categories in basic homological algebra

This section is about Homological Algebra in an elementary context, the
category RMod of (left) modules on a (unitary) ring R. We show, in an
informal way, how double categories of lattices and double categories of
relations can be useful.

397
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This section is also a preparation for the next: the introduction of the
non-abelian category Mlc of modular lattices and modular connections,
together with the analysis of its exactness properties, will prepare the def-
inition of Puppe-exact categories in A2.2.

Al1.1 An outline

Direct and inverse images of subsets have been dealt with in 1.4.5. For the
category R Mod, images and preimages of submodules are analysed below,
according to the following outline.

We already know that, for every object A in RMod, the ordered set
SubA of its subobjects (i.e. submodules) is a modular lattice (see 1.4.2),
with maximum 14: A — A and minimum 04: 0 — A. For submodules
X, X' C A the meet is X A X' = X N X’ and the join is

XvX =X+X'={z+a'|zeX, o X'}

A homomorphism f: A — B gives two monotone mappings, called direct
and inverse image

f«: SubA = SubB : f*,

(A1)
LX) =f(X), f(Y)=f1(Y) (X CAYCB).

These mappings form a Galois connection f, < f*, as for sets in 1.4.5,
but here we have a stronger property

FRX) =XV 0p) DX, AFY)=YAfila)CY, (A.2)

which we describe saying that the pair (£, f*): SubA- SubB is a ‘modular
connection’. It is thus a morphism of the category Mlc of modular lattices
and modular connections, a subcategory of AdjOrd that will be studied in
A1.2 and Al.4. We recall that f, preserves joins and the minimum, while
f* preserve meets and maximum.

All this defines a transfer functor for subobjects of R Mod

Subgr: RMod — Mlec, (A.3)

which will be seen to be exact in Al.4, i.e. a functor which preserves kernels
and cokernels (or equivalently exact sequences, as defined in A2.4).

Now let F': RMod — S Mod be an exact functor, in the same sense.
We shall see (in A2.6) that it also preserves subobjects, their meets and
joins. For every R-module A we have thus a homomorphism of lattices,
which belongs to the category Mlh of 1.4.2 (not to Mlc)

(SubF)4: Subg(A) — Subg(FA), X — F(X). (A.4)
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We shall also see that F' preserves direct and inverse images along mor-
phisms: for a homomorphism f: A — B in RMod we have two commu-
tative squares (of increasing mappings)

(SubF) 4
_—

Subgr(A4) Subg(FA)
f*wf* Ff*HFf* (A.5)
SubR(B) m Subs(FB)
F(f.X) = (Ff)«(FX), F(fY) = (Ff)"(FY).

This diagram is a cell in the double category Adj,Ord of ordered sets,
increasing mappings (as horizontal arrows), Galois connections (as vertical
arrows) and bicommutative cells, defined in 3.1.7(b).

To express this interaction between lattice-homomorphisms and modular
connections we shall use — more precisely — a double subcategory Mlhc C
Adj,Ord introduced below (in A1.5) and consisting of: modular lattices,
homomorphisms, modular connections and bicommutative cells.

The transfer functor (A.3) can now be seen as a vertical functor

Subg: R Mod — Mihe, (A.6)

i.e. a double functor defined on the vertical double category R Mod (with
trivial horizontal arrows). For every exact functor F': RMod — S Mod
we have a horizontal transformation of vertical functors

Subg: Subgr — Subg.F: RMod — Mihc, (A7)
where Subg.F is the composite vertical functor

RMod — S Mod — Mihec.

A1.2 Modular lattices and modular connections

We begin now to study the framework of modular lattices and modular con-

nections, that we have seen to abstract the properties of direct and inverse

images for R Mod (and will similarly work for a wide class of categories).
An object is a modular lattice (with 0 and 1). A morphism

f=Uef): XY
is a pair where
(1) fo: X =Y and f*: Y — X are increasing mappings,
(@) fofu@)=avf0, f.fy)=ynfl (forzeX,yeY).
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As a consequence f°*f, > idX and f,f* <idY, and we have an adjunc-
tion f, 4 f* between ordered sets, i.e. a covariant Galois connection (see
1.4.3). As we have seen f, determines f*, and conversely

f(y) =max{zr € X | f.(z) <y},

S (A.8)
fo(z) =min{y € Y| f*(y) > z}.

Moreover f, preserves all the existing joins (including 0 = V{)), f* pre-
serves all the existing meets (including 1 = AQ), and

foffe=1Fe, U= (A.9)

Condition (ii) can be equivalently rewritten in a seemingly stronger form:

(ZZ/) f’(f.:cvy):xvf’y, f.(f’y/\ﬂf):yAf.:E (iEEX,yEY),

as proved in Exercise Al.3(a).

This rewriting shows that modular connections are closed under com-
position in the category AdjOrd of ordered sets and Galois connections
(introduced in 1.4.4), and form a subcategory Mlc of the latter

(90,9°)-(for f°) = (9o fus f°9°); (A.10)

whose isomorphisms are characterised in Exercise A1.3(b).
Mlc is selfdual: it inherits a (contravariant) involution from AdjOrd,
together with an order consistent with the involution (see (1.39))

X XP ((fo,f): X=Y) = ((f, f.): YOP— XOP)

(A.11)
f<g & f.<g. & [f =g

We are also interested in the full subcategory Dlc of Mlc determined by
distributive lattices. Its morphisms are analysed in Exercise A1.3(d).

A1.3 Exercises and complements

(a) Prove that, in A1.2, property (ii) implies (ii’). Deduce that modular
connections are closed under composition in AdjOrd.

(b) (Isomorphisms of lattices) Prove that the morphism (f,, f*): X =Y is
an isomorphism in Mlc if and only if the following equivalent conditions
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i)  ffo=1xand f,f* =1y,

ii) f*0=0and f,1=1,

iii)  f, is a bijective mapping,

iii*) f* is a bijective mapping,

iv)  f, is an isomorphism of ordered sets (hence of Mlh),

iv*)  f* is an isomorphism of ordered sets (hence of Mlh).

(c) As we have seen, the isomorphisms of the category Mlc correspond to
the isomorphisms of Mlh, i.e. the bijective homomorphisms of modular
lattices. Furthermore, the following (faithful) forgetful functor reflects the
isomorphisms (| X| denotes the underlying set of X)

U:Mlc — Set, X — |X|, (fo,f)— fo, (A.12)

as well as the functor Mlc — Set®P where (f,, f*) is sent to f°.

(d) A morphism (f,, f*): X — Y of Dlc is a modular connection between
distributive lattices. Prove that the mappings f, and f* are homomor-
phisms of quasi lattices (in the sense of 1.4.1): in other words, f, also
preserves binary meets (but need not preserve the maximum, of course),
while f* also preserves binary joins (but need not preserve the minimum).

A1l.4 Exactness properties

We prove now that the category Mlc of modular lattices and modular
connections satisfies exactness conditions that will make it Puppe-exact
(according to a definition made precise below, in A2.2), or p-exact for short.
The reader is warned that Mlc is not abelian, and cannot even be exactly
embedded in an abelian category (this is proved in [G8], Lemma 2.3.5).

First there is a zero object (both terminal and initial, see 1.3.2), namely
the one-point lattice {x}, since every object X has unique morphisms ¢ and
s

X —f {5} == X (t°(+) = 1, s.(x) = 0). (A.13)

The null morphism Oxy : X - {*} Y is defined by 2 — 0 and y — 1.
Every morphism f = (f,, f*): XY has a kernel ker f and a cokernel
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cok f (see 1.8.2)
m=kerf: | f0-= X, me(xz) =z, m*(x)=1znaf0,
p=cokf: Y= 1fl, p.y)=yvfl, py) =y

The verification of the universal property of m as an equaliser of f and
Oxy is a straightforward computation: essentially, if h = (h,,h*): Z- X
is annihilated by f, then for every z € Z we have:

f.O = f.foho(z) = h.(Z)\/f.O 2 ho(z)u

so that we can restrict the codomain of h, to | f*0. Dually for p.

As a consequence of these properties, the morphism f has a canonical
factorisation f = ngq through ¢ = cok (ker f) (the coimage of f) and
n = ker (cok f) (the image of f), that determines a precise morphism g

(A.14)

Lfo =2 X Y 1f.1
qi In (A.15)
10— LA
qo(x) =2V f*0, q'(v)=nu, n(y) =y, n°(y)=ynf.l,
go(z) = fo(2), g°(y) = f*(y).

Moreover g is an isomorphism of Mlc (as characterised in A1.3), because
9°9.(x) = f*f.(x) =2  (for z > f°0),
9.9°w) = fof () =y  (fory<f.1).

(This will mean that the category Mlc is Puppe-exact.)

We also note that every element a € X determines a subobject and a
quotient of X

m: La= X, m,(z') =12, m'(z)=znra, (A.16)

p: X ta, p(x)=xva, p(2)=2. (A.17)

The correspondence a +— m establishes an isomorphism between the
lattice X and the ordered set SubX of subobjects of X in Mlc, while the
correspondence a — p gives an anti-isomorphism of X with the ordered set
of quotients of X.

The subobject m and the quotient p determined by the element a € X
form a short exact sequence

la - X = 7Ta, m =Kkerp, p=cokm. (A.18)
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Conversely, every short exact sequence (m, p) in Mlc with central object
X is isomorphic to a unique sequence of this type, with a = m,1 = p*0.

Finally it is easy to see that the functor Subgr: R Mod — Mlc is exact,
i.e. preserves kernels and cokernels.

(Let us take an R-homomorphism h: A — B with kernel m: h=*{0} C A
and cokernel p: B — B/h(A). Then the embedding m.,: Sub(h=*{0}) —
SubA is the same as the inclusion | h*(0) C SubA, while the embedding
p*: Sub(B/h(A)) — SubB can be identified with the inclusion 1 h,(1) C
SubB.)

A1.5 Double categories of lattices

The double category Adj,Ord introduced in 3.1.7 has double subcategories
that are of interest here.

(a) First we have Mlhc C Adj,Ord, the cellwise-full double subcategory
formed of modular lattices, their homomorphisms and modular connec-
tions. It amalgamates the categories

Mlh = HorgMihc, Mlc = VergMihe, (A.19)

of modular lattices and homomorphisms, or modular lattices and modular
connections, respectively. The flat double cells are ‘bicommutative squares’,
as in (3.16)

/

>

u

<

f
— >
— Y

g

X
i“ vof = gu., fut=vg. (A.20)
Y

~

We have already seen above, in A1.1, that Mlhc comes out naturally when
we want to formalise direct and inverse images of subobjects for modules
(or abelian groups). The same will hold for all Puppe-exact categories,
including the abelian ones (see Section A2).

We also note that every horizontal isomorphism has a vertical companion,
and symmetrically (by Exercise A1.3(b)), so that the double category Mlhc
is horizontally and vertically invariant.

(b) We are also interested in a larger structure: Lthc C Adj,Ord, the
cellwise-full double subcategory formed of all lattices, their homomorphisms
and adjunctions. It amalgamates the categories

Lth = HorLthc, Ltc = VeroLthc, (A.21)
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of lattices and homomorphisms, or lattices and Galois connections, respec-
tively. The flat double cells are again ‘bicommutative squares’.

*The double category LLthe plays a role similar to that of Mlhc, in the
much more general contexts of ‘semiexact’ and ‘homological’ categories,
studied in [G9].*

*(c) One can form similar larger structures, cellwise-full in AdjOrd, so that
a cell (u g v) has only to satisfy the relation v, f < gu, (or, equivalently,
fu® <wv°g). This seems to be less interesting for the present applications.

A1.6 Double categories of additive relations

The rest of this section is only sketched. The interested reader can find
more information in Section A4 and [G8].

The (ultraflat) double category Rel(R Mod) of modules, homomorphisms
and relations has been briefly introduced in 3.1.3.

Let F: RMod — SMod be an exact functor between categories of
modules; it is well known that F' preserves finite limits (see A3.8). As a
consequence, F' can be extended to a (unique) functor

Rel(F): Rel(RMod) — Rel(S Mod), u— F(u),

that preserves order and involution, by sending a submodule © C AX B to
the submodule F(u) C FAx FB. Globally, we have a double functor

Rel(F): Rel(RMod) — Rel(S Mod), (A.22)

acting as F' on homomorphisms, as Rel(F") on relations, and preserving the
flat double cells.

If op: F — G: RMod — SMod is a natural transformation between
exact functors, the same components pA: FA — GA (which are homo-
morphisms) give, for a relation u: A-» B, a ‘lax-naturality square’ which
generally does not commute, but is a double cell in Rel(S Mod)

FA 2 ga A 4

GA
/
Ful < L Fu — pu —> Gu (A.23)
! ) ~ ~
FB —— GB FB —— GB
oB ¢B

This is shown by the right commutative diagram above, in S Mod, where
the slanting arrows are restrictions of cartesian projections: every pair

(z,y) € F(u) gives a pair (pa(z),p5(y)) € G(u).
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We have thus a horizontal transformation of double functors
Rel(¢p): Rel(F) — Rel(G): Rel(RMod) — Rel(S Mod). (A.24)

In Section A4 all this will be extended: Rel becomes a 2-functor from the
2-category of (small) Puppe-exact categories, exact functors and natural
transformations to the 2-category Dbl of double categories, double functors
and horizontal transformations.

A1.7 Subquotients and regular induction

The prime example of a ‘subquotient’ is the homology
H =Kerd/Imd

of a differential module (A, d), i.e. an R-module A equipped with an en-
domorphism d: A — A such that dd = 0, or equivalently Imd C Kerd.
A consistent part of Homological Algebra, from the homology of chain
complexes to the theory of spectral sequences, is about subquotients and
induced morphisms between them (see [M2, G8]).

In general, a subquotient S = M/N of a module A is a quotient of a
subobject (M) of A, or equivalently a subobject of a quotient (A/N) of
A. Tt is determined by a decreasing pair (M, N) of submodules of A, via a
commutative square

M =" A
p¢ iq Nc M, (A.25)
S >— A/N

where m and n denote inclusions of submodules, p and ¢ projections on
quotients. This square is bicartesian, i.e. pullback and pushout at the same
time (as can be easily verified, see A2.5(b)).

This bicartesian square determines one relation s = mp* = ¢fn: S A,
that sends the class [x] € M/N to all the elements of the lateral [x] =
x+ N C A. Tt is actually a monorelation, i.e. a monomorphism in the
category of relations, since sfs = id(S). (We shall see that, because of the
canonical factorisation (A.51) of a relation, every monorelation s: S’ - A is
of this type, up to isomorphism. The subquotients of the module A amount
thus to the subobjects of A in Rel(RMod).)

Now we consider induced homomorphisms between subquotients; we go
on in a diagrammatic way, so that everything can be readily extended to
more general categories.

A homomorphism f: A — B is given. If M and H are submodules of
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A and B respectively, and f(M) C H, we have a commutative diagram
with short exact rows, displaying the homomorphism f’ induced by f on
our subobjects, and the homomorphism f”” induced by f on the associated
quotients
M > A — A/M
7 s l (LM< H) (A.26)
H >— B — B/H

More generally, given two subquotients M/N of A and H/K of B, we
say that f has a regular induction from M/N to H/K whenever

f(M)cH and f(N)CK. (A.27)

In this situation we can obtain a homomorphism g: M/N — H/K regu-
larly induced by f. We begin by the commutative diagram below, applying
(A.26) in two different ways (on M, H and N, K)

M >—= A — A/N
f’l lf if” (LM <H, f.N<K).  (A28)
H > B — B/K
By epi-mono factorisation of these rows we get the diagram below, and
the induced homomorphism ¢g: M/N — H/K
M — M/N >— A/N
7 Js | (A2
H — H/K >— B/K

These data can be combined in a double cell fs < tg of Rel(RMod),
called a (regular) inductive square
M/N —~ H/K
S\t < it (A.30)

A—> B

where the vertical arrows are monorelations. These cells form a double
subcategory Ind(RMod) C Rel(RMod): see [G8], Subsection 2.6.9.
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A2 Puppe-exact categories

The theory of abelian categories, initiated by Buchsbaum and Grothendieck
[Bul, Bu2, Gt], was an important contribution to Homological Algebra. Yet
some aspects of the theory are better viewed in the more general context
of Puppe-exact categories [Pu, Mit], or p-exact categories for short.

After reviewing the main definitions, we are particularly interested in
the category Mlc of modular lattices and modular connections, already
introduced in Section A1l. We show now that this category, which is p-
exact and not abelian, abstracts the behaviour of direct and inverse images
of subobjects for all p-exact categories (including the abelian ones); p-exact
categories form thus the natural setting of this theory and its developments
(exposed in [G8]).

A2.1 Three forms of exactness

The term ‘exact category’ has assumed different meanings in category the-
ory, and at least three of them are still in use (listed as (b), (c), (d) below).

(a) It was first used in 1955-56 by Buchsbaum [Bul, Bu2], essentially
meaning what is now called an abelian category (even if the existence of
finite biproducts was seemingly deferred to an additional axiom). The
name subsisted — in this sense — in various papers of the 1950’s and 1960’s
(by Atiyah, Hilton, Heller, etc.), together with the term ‘abelian category’
used by Grothendieck in his Téhoku paper of 1957 [Gt]. Gradually the last
term was universally accepted, including the influential books by Freyd
[Fr1] (1964) and Mitchell [Mit] (1965), both focused on the embedding of
abelian categories in categories of modules.

(b) Meanwhile, in 1962, Puppe [Pu] had introduced a more general no-
tion, called a ‘quasi exact category’, still selfdual but not additive. This
framework was investigated by Tsalenko [T1, T2] (also transliterated as
‘Calenko’) in 1964 and 1967, for the construction of the category of rela-
tions, and by many researchers for diagram lemmas. This notion became an
‘exact category’ in Mitchell’s book [Mit] (1965), where abelian categories
are defined as additive exact categories; the new name was also used — in
this sense — in subsequent works by Brinkmann and Puppe [Bri, BriP], in
1969, and in the text by Herrlich and Strecker [HeS], in 1973. The books
[AHS, FrS] still use in 1990 the name of ‘exact category’ in the sense of
Puppe and Mitchell.

(c) In 1971 Barr [Ba] used the term ‘exact category’ for a different general-
isation of abelian categories, based on regular categories and not selfdual.
This setting, which also contains the categories of sets and groups (and,
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more generally, every variety of algebras in the sense recalled in 1.1.8(e)),
became popular in category theory and has been extended in various forms
(see [Boul, JaMT, BoB, Bo4, Bou2)).

(d) In 1973, a paper by Quillen [Qu] on higher K-theory introduced another
notion of ‘exact category’, as a full additive subcategory E of an abelian
category, closed under extensions; this means that, for every short exact
sequence A — C — B of the abelian category, if A and B are in E, so is
C. This notion can be defined intrinsically, without reference to an abelian
environment, as an additive category equipped with a class of ‘short exact
sequences’ satisfying some axioms.

We must thus distinguish Puppe-exact, Barr-exact and Quillen-ezact cat-
egories. It is often remarked that the first two notions both satisfy the
‘equation’: exact + additive = abelian; on the other hand, Quillen-exact
categories are additive. A Puppe-exact category is abelian if and only if it
has finite products, or equivalently finite sums (see Theorem A3.7). There-
fore the intersection of each pair of these three frameworks only contains
the abelian categories.

A2.2 Exact and abelian categories

Kernels and cokernels in pointed categories have been defined in Section 1.8.
A Puppe-ezact, or p-exact, category E is a category satisfying two selfdual
axioms (already considered in 1.8.5):

(pex.1) E is a pointed and every morphism f: A — B has a kernel and a
cokernel,

(pex.2) in the canonical factorisation of a morphism f through its coimage

and its image

Kerf —* > A —1 . B s Cokf

qi In (A.31)
Coim f —> Im f

Coim f = Cok (ker f), Im f = Ker (cok f),
q = coim f = cok (ker f), n = im f = ker (cok f),
the unique morphism g such that f = ngq is an isomorphism.

This formulation is redundant, but clearer and often simpler to check
than the more concise ones. For instance — as is easy to verify — it is
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sufficient to say that E is pointed and every morphism factorises as a normal
epi followed by a normal mono.

As an easy consequence of the axioms, each monomorphism is normal
(i.e. a kernel of some arrow) and each epimorphism is normal (i.e. a cok-
ernel). Every morphism has an essentially unique epi-mono factorisation,
the canonical one, as in diagram (A.31) — which motivates our names of
coimage and image, above. E is always a balanced category, i.e. epi and
mono implies iso.

Following the notation of 1.1.7, we write SubgA and QuogA for the
(possibly large) ordered sets of subobjects and quotients of an object A in
E, often shortened to SubA and QuoA. Cokernels and kernels give two
decreasing mappings

cok : SubgA = QuogA :ker (kernel duality), (A.32)

that are easily proved to be inverse to each other, using the fact that all
monos and epis are normal

ker (cokm) = m, cok (ker p) = p. (A.33)

(This should not be confused with the categorical duality between Subg A
and Quog.p A, which preserves the ordering.)

From now on we assume that a p-exact category is well powered (see
1.1.7), i.e. that all sets SubA (and QuoA, as a consequence) are small. We
shall see in A2.6 that SubA and QuoA are modular lattices, anti-isomorphic
by kernel duality.

A p-exact category is said to be trivial if all its objects are zero objects;
or, in other words, if it is equivalent to the singleton category 1.

As partially anticipated in 1.8.5, an abelian category can be defined as
a p-exact category having finite products, or equivalently finite sums, or
finite limits and colimits; this equivalence will be examined in detail in
Theorem A3.7, but we shall use from now the notion of abelian category,
much better known than that of p-exact category.

A2.3 Examples and exercises

The pointed categories Gp and Rng’ are not p-exact, since there are non-
normal monomorphisms; Set, is not p-exact, since there are non-normal
epimorphisms. The following examples of p-exact categories are taken from
[G8], Subsection 1.5.6. The reader can easily fill-in the omitted verifications
for many of them.

(a) Every abelian category is p-exact, by definition.
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(b) Every non-empty full subcategory of a p-exact category that is closed
under subobjects and quotients, is also p-exact. For instance, the categories
of:

- cyclic groups; finite cyclic groups,
- vector spaces on a fixed field, of dimension lower than a fixed integer,
- abelian groups of cardinality (or rank) lower than a fixed integer.

(Replacing a ‘fixed integer’ by a ‘fixed infinite cardinal’ in these examples
would just give an abelian subcategory.)

(c) We have already seen that the category Mlc of modular lattices and
modular connections is p-exact (see A1.2, A1.4). It abstracts the behaviour
of direct and inverse images of subobjects in (abelian or) p-exact categories
(as we shall see in A2.6). It is not abelian and cannot be exactly embedded
in an abelian category (cf. [G8], Lemma 2.3.5).

(d) Its full subcategory Dlc of distributive lattices (also defined in A1.2)
is p-exact, by (b), and plays the same role as Mlc for distributive p-exact
categories, i.e. those p-exact categories whose lattices of subobjects are dis-
tributive. The importance of distributive p-exact categories in Homologi-
cal Algebra, with respect to coherence of induction in complicated systems
like those produced by spectral sequences, is studied in [G8]. This theory
cannot be effectively developed within abelian categories, which are never
distributive except in the trivial case.

(e) The category Z of sets and partial bijections, analysed in [G8] (Sec-
tion 1.6), has been recalled in 2.1.7: a morphism f: XY in 7 is a
bijection between a subset of X and a subset of Y, or equivalently a single-
valued, injective relation; they compose as relations in Rel(Set).

T is selfdual; the zero object is (}, with Ker f = X \ Def (f) and Cok f =
Y\ Val(f). This category is distributive p-exact (with SubX = PX), and
‘universal’ in this domain, in the sense that every small category of this
kind has an exact embedding in Z (cf. [G8], 4.6.7(b)).

*(f) The projective category PrE associated to any p-exact category E is
defined as the quotient of E modulo the congruence that correlates two
morphisms f,g: A — B when f, = g. (or, equivalently, f* = ¢g*). It is
studied in [G8], Section 2.3.

In particular, if A = K Mod is the abelian category of vector spaces
over the commutative field K, Pr A ‘is’ the (p-exact) category of projec-
tive spaces and projective linear maps over K. Pr A cannot be exactly
embedded in an abelian category ([G8], Lemma 2.3.5), unless K is the 2-
element field, in which case Pr A = A is (isomorphic to) the category of
the abelian groups where 2z = 0 (for every element x).
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One can similarly work with the abelian category K Mod; of finite di-
mensional vector spaces; for A = RMod; we get the p-exact category
R Prj; of finite-dimensional real projective spaces, considered in 2.1.8(c).

*(g) The distributive expansion Dst E of any p-exact category E, defined
in [G8], Section 2.8, is a distributive p-exact category. It is never abelian —
unless E (and therefore Dst E) is trivial.

(h) If E is a p-exact category and S is a small category, one can easily see
that the category of functors ES is also p-exact.

A2.4 Exact functors and exact sequences

A functor F: E — E’ between p-exact categories is said to be exact if it
preserves kernels and cokernels, in the usual sense of preserving limits, that
is — in the present case — up to equivalence of monos and epis, respectively).
As a consequence it also preserves the zero object (that is the kernel and
cokernel of any identity), canonical factorisations and exact sequences.

The latter are defined in the usual way: in the p-exact category E the
sequence

4L 2o (A.34)

is said to be ezact (in B) if im f = ker g, or equivalently cok f = coimg. A
sequence of consecutive morphisms is said to be exact if it is in all locations
where the condition makes sense.

Short exact sequences are of particular interest. By definition, this is a
sequence of the following form, that is exact (in A, B,C)

00— A-2 B c_—o. (A.35)

Plainly, this means that the sequence satisfies the following equivalent
conditions:

(i) m is a monomorphism, p is an epimorphism and im m = ker p,
(ii) m ~ kerp (as a mono to B) and p ~ cokm (as an epi from B).

A functor between p-exact categories is left exact (resp. right exact) if it
preserves kernels (resp. cokernels), or equivalently exact sequences of the
form 0 - A - B — C (resp. A - B — C — 0). A functor is exact if
and only if it is left and right exact. A left adjoint functor between p-exact
categories is necessarily right exact.

We shall see in A3.8 that any left exact (or right exact) functor between
abelian categories preserves finite products and sums, and the additive
structure.
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A2.5 Lemma (Pullbacks and pushouts in p-exact categories)

A p-exact category E has pullbacks of monos and pushouts of epis along
arbitrary maps. The following points are a more detailed formulation.

(a) Along a map f, the pullback (or preimage) f*(n) of a monomorphism n
and the pushout (or direct image) fo(p) of an epimorphism p always exist,
and are computed as follows

f*(n) = ker ((cokn).f), fop) = cok (f.(kerp)),  (A.36)
R L AN L RPN N
A [
f(n)i ~N Tn pl ”(wo(p)
g g9

(b) In the same situation, if in the left diagram f is epi, so is g and the
square is also a pushout (a bicartesian square). Dually, if in the right
diagram f is mono, so is g and the square is also a pullback.

(¢) Given the following commutative diagram with (short) exact rows

A" B s C
u | fw (A.37)
A/ - - B/ s C/

n q

the left square is a pullback if and only if w is mono. The right square is a
pushout if and only if u is epi.

Proof The proof of (a) is an easy exercise. For the rest, see [G8],
Lemma 2.2.4. U

A2.6 Theorem and Definition (The transfer functor)

(a) In a p-exact category E all the ordered sets of subobjects SubA are
modular lattices. Moreover every morphism f: A — B gives rise to two
increasing mappings between ordered sets, called — respectively — direct and
inverse image of subobjects along f

f«: SubA — SubB, fe(m) =im (fm) = ker (cok (fm)),

(A.38)
f*: SubB — SubA, f*(n) = ker ((cokn).f),
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f f

TN

The left square is commutative and the right one is a pullback. The
pair (fi, f*) is a modular connection, i.e. a morphism of the category Mlc
studied in Section Al.

There is an exact functor (also because we have assumed that E is well-
powered, in A2.2)

—_—

Subg: E — Mlc,

(A.39)
Ars SubA,  f s Sub(f) = (f., f*).

It also reflects exactness: a sequence of E is exact if and only if its image
in Mlc is exact.

Subg will be called the transfer functor (for subobjects), or also the pro-
jective functor of E. (The name is motivated by the projective category
PrE associated to E, see A2.3(f).)

(b) The lattice operations and the ordering of SubA can be described as
follows, for m,n € SubA and p = cokm, q = cokn (the corresponding
quotients)

man =m,m*(n) =n.n*(m),  mvn=pp.n)=qq(m),

(A.40)
n<m < n*(m)=1L1

(¢) An exact functor F: E — E' preserves direct and inverse images of
subobjects, as well as their finite joins and meets. Therefore it induces a
homomorphism of lattices, for every A in E

SubpA: SubgA — Subg/ (FA), Subp(m) = im (Fm), (A.41)

(where im (F'm) is the subobject associated to the monomorphism Fm).

Proof The particular case E = R Mod has been partially studied in Al.1,
Al1.4. The general case is proved in [GS8], Subsection 2.2.5 and Theo-
rem 2.2.6. U

A2.7 Ezxercises and complements (Vertical limits for adjoints)

(a) Prove that the kernels and cokernels of Mlc = VergMlhe (resp. Ltc =
VeroLthc) become vertical double limits and colimits in Mlhc (resp. Lthc).

(b) The double category Milhc is wvertically Puppe-exact, in the following
sense:



414 Applications in homological algebra and algebraic topology

(i) the category VergMlhc = Mlc is p-exact,
(ii) the category Ver;Mlhc is p-exact,
(iil) the faces and degeneracy functors between them are exact.

(¢) The category Ltc = VergLthc has finite biproducts (see 1.8.4), which
become vertical double limits and colimits in Lthe. (Moreover they give
Ltc a semiadditive structure, see A3.6.)

*(d) One can prove that the double category Lthe is vertically p-homological,
extending as above the notion of a p-homological category, defined in [G9].

A3 Additive and abelian categories

Biproducts have been defined in pointed categories (see 1.8.4). After exam-
ining preadditive and additive categories, we characterise abelian categories
as p-exact categories satisfying additional conditions. Some proofs are only
referred to.

The reader can find further results in [M4, Bo2, Gt]. The embedding of
abelian categories in categories of modules is studied in [Frl, Mit]; it pro-
vides a metatheorem according to which many diagram lemmas in abelian
categories need only be proved in categories of modules.

A3.1 Preadditive categories

As recalled in 2.4.2(e), a preadditive, or Z-linear, category is a category
C where every hom-set C(A, B) is equipped with a structure of abelian
group, so that composition is bilinear over Z.

More generally, we are also interested in N-linear categories, where ev-
ery hom-set C(A, B) is equipped with a structure of abelian monoid, and
composition is bilinear over N. The zero element of C(A, B) is generally
written as Oap: A — B, or simply 0. If C has small hom-sets, this means
that C is enriched over Abm, the symmetric monoidal category of abelian
monoids (see Exercise 2.2.4(g)).

A3.2 An exercise (Zero object)

Let C be an N-linear category. Prove that the following conditions on an
object Z are equivalent:

(i) Z is terminal,
(i*) Z is initial,

(ii) Z is the zero object,
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(iii) C(Z, Z) is the trivial group,
(IV) idZ = Ozz.

A3.3 Lemma (Binary biproducts)

In the N-linear category C, consider a commutative diagram, as in (1.93)

A B
\"AC”/
PN

A B

Using the notation recalled at the end of 1.8.4, the following conditions
on (A.42) are equivalent:

(i) (C;p,q) is the product of A, B, and u = (idA,0), v = (0,idB),
(7*) (C;u,v) is the sum of A, B, and p = [idA, 0], ¢ = [0,idB],

(i) pu=1idA, quv=1idB, wup+ vqg=1dC,

(i) p,q are jointly mono, pu=idA, qu=1dB, pv=0, qu =0,

(A.42)

(iii* ) w,v are jointly epi, pu=1idA, qu=1idB, pv =0, qu=0.

Therefore in an N-linear category (a fortiori in a preadditive category),
the existence of finite products is equivalent to the existence of finite sums,
which are then biproducts.

Note. This is the binary counterpart of the previous exercise, and can also
be verified as an exercise.

Proof (i) = (iii) Obvious. (ili) = (ii) We have p(up + vq) = p and
q(up + vq) = ¢, whence up + vg = idC. (ii) = (i) The maps f: X — A
and g: X — B are given. If h: X — C satisfies ph = f and gh = g, then
h = (up+vq)h = uf + vg; conversely, the morphism h = uf +vg: X — C
does have f, g as components. O

A3.4 Theorem and Definition (Semiadditive categories)
Let C be a category.

(a) C is said to be semiadditive if it satisfies the following equivalent con-
ditions:

(i) C is an N-linear category with finite products,

() C is an N-linear category with finite sums,

(i) C has finite biproducts.
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When these conditions hold, the sum f + g of two maps f,g: A — B is
determined by the categorical structure

A 4. Ac A ﬁg Be B 9, B (A43)

f+g=0(feg)d,

where d = (1,1): A — Ao A is the diagonal of the product and 0 =
[1,1]: B® B — B is the codiagonal of the coproduct.

(b) A functor F: C — C’ between semiadditive categories is said to be
additive if it satisfies the following equivalent conditions:

(i) F preserves finite products,
(*) F preserves finite sums,
(ii) F preserves finite biproducts,

(iii) F preserves (finite) sums of parallel maps.

Proof (a) We already know, from the previous lemma, that (i) and (i*)
are equivalent. Furthermore, if they hold, C has finite biproducts and the
binary ones satisfy the conditions of A3.3.

Therefore, for f,g: A — B, the composition (A.43) is computed as fol-
lows (letting p’, ¢’ be the projections of B @ B):

INfegd= @ +qd)ufr+vgg)(u+v)=f+g.

Now suppose that C has finite biproducts (as defined in 1.8.4), and define
the sum of parallel maps as above, in (A.43). One verifies that this is indeed
an enrichment over Abm (see [M4], Section VIII.2, exercise 4a); moreover,
in diagram (A.42), the map up+wvg: C — C must be the identity, because:

p(up +vq) = pup + pvq = p, q(up +vq) = qup + quq = q.

(b) Tt is a straightforward consequence. O

A3.5 Definition (Additive categories)

As a consequence of the previous theorem, we can define an additive cat-
egory C as a preadditive category (i.e. a Z-linear category) with finite
products, or equivalently with finite sums.

It follows that C has finite biproducts; moreover the sum of parallel maps
is determined by the categorical structure, as in (A.43).

It is easy to see that a Z-linear category is finitely complete if and only if
it is additive and has kernels. In fact, in any category the existence of finite
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limits is equivalent to the existence of finite products and equalisers (see
1.3.6). Furthermore, if C is Z-linear, the equaliser of two maps f,g: A — B
amounts to the kernel of f—g, while the kernel of f amounts to the equaliser
of fand 04p.

A3.6 Ezercises and complements (Semiadditive categories)
(a) Abm is obviously a semiadditive category, and is not additive.

(b) A selfdual category with finite products is automatically semiadditive,
as in the following two cases.

(c) We have seen in (A2.7)(c) that the category Ltc of lattices and Galois
connections has finite biproducts, realised as cartesian products. It is thus
semiadditive; compute the sum f 4+ g of two Galois connections, and show
that the structure is not additive.

(d) We have seen in 2.1.4(c) that RelSet has arbitrary biproducts, re-
alised as disjoint unions. Compute the sum of a family of parallel relations
a;i: X=Y.

*(e) Ban is additive while Ban; is not.

A3.7 Theorem and definition (Abelian categories)
Let E be a Puppe-exact category. We say that E is abelian if it satisfies

the following equivalent properties:

(7) E has finite products,

(i*) E has finite sums,

(# E has finite biproducts (in the sense of 1.8.4),
(ii7)  E has pullbacks,

(#i7*)  E has pushouts,

(
(
(

<

i) E has finite limits,

w*)  E has finite colimits,

<

v E is additive.

~

The sum of parallel maps is then determined by the categorical structure,
as in (A.43).
Note. A preadditive Puppe-exact category need not be abelian: see the
examples of A2.3(b).

Proof See [G8], Theorem 2.1.5. The essential part of this result was stated
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in [HeS] and proved in [FrS]; in [Mit] there is a weaker result, based on the
existence of biproducts. 0

A3.8 Biproducts in abelian categories

We already know that, in any N-linear category C, the biproduct C' =
A@® B can be characterised by a diagram (A.42) satisfying the condition:

(iil) p, q are jointly mono, pu =idA, qv=idB, pv =0, qu=0.

It is now easy to see that, if C is preadditive (i.e. Z-linear) and p-ezact,
the biproduct can also be characterised by a diagram (A.42) satisfying:

(iv) the diagram is commutative, with (short) exact diagonals.

Indeed, if (iv) holds and a morphism f: X — C gives pf =0, ¢f = 0,
then it must factorise as f = vg, through v ~ kerp. It follows that g =
qug = qf = 0 and f = 0. For parallel morphisms f;: X — C on which
p, q coincide, take f = f1 — fa. Conversely, if (iii) is satisfied, let us prove
that v ~ kerp. Take f: X — C such that pf = 0; since we know that
idC = up 4 vq, it follows that f = (up + vq)f = vqf factorises through v
(that is mono).

Let F': E — E’ be a functor between abelian categories. As an immediate
consequence of the previous point, if F' is exact (in the previous sense, i.e. it
preserves kernels and cokernels), then it preserves biproducts, the additive
structure, all finite limits and finite colimits.

Preservation of biproducts and sums of maps also holds if F' is just left
(or right) exact because, in the diagonals of (A.42), all monos and epis
split so that the exactness of the diagonals can be simply expressed by a
kernel (or cokernel) condition.

A3.9 Exercises and complements (Exact squares)

Let us start from a commutative square in an abelian category E

!

X — A
gl lh (A.44)
B — Y
and form the sequence
0> x Y9 aep My g (A.45)

where composed morphisms are null, since hf — kg = 0.
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a) Prove that the square (A.44) is a pullback if and only if the sequence
A.45) is exact in X and Ae B.

(
(
(a*) Dually, the square (A.44) is a pushout if and only if the sequence
(A.45) is exact in Y and Ae B.

(b) More generally the square (A.44) is said to be exact in the sense of
Hilton [Hi] if the sequence (A.45) is exact in the central object A® B,
which means that

Im (f,g) = Ker [h, —k]. (A.46)

Prove that this condition is equivalent to each of the following ones:
(i) the span (f,g) and the pullback of (h, k) have the same pushout,
(i*) the cospan (h, k) and the pushout of (f,g) have the same pullback.

*(c) If the square (A.44) is a pullback and h is epi, so is g and the square
is also a pushout.

*(d) Every abelian category is regular.
*(e) The square (A.44) is exact (in the present sense) if and only if it is

v-exact (as defined in 2.5.6), if and only if it becomes bicommutative in the
category RelE constructed in Section 25.

A4 Relations for Puppe-exact and abelian categories

As we have mentioned in Section Al, categories of (additive) relations
are used in homological algebra to define induced morphisms in a wide
sense. This can already be found in Mac Lane’s book ‘Homology’ ([M2],
Section I1.6), and is well known for abelian categories.

The extension of relations to p-exact categories dates back to Tsalenko
[T1, T2] and Brinkmann-Puppe [BriP]; it can also be found in [G8]. Here
we briefly recall this construction. For abelian categories, it gives the same
result as the construction of Section 2.5, in a form more adapted to the
study of subquotients.

Then we show how an adjunction between p-exact categories can always
be extended to a colax-lax adjunction between their double categories of
relations, coming back to a problem mentioned since the beginning of the
general Introduction.

A4.1 Relations of abelian groups

The category RelAb of relations between abelian groups has been reviewed
in 2.1.5; we give now a more detailed analysis to prepare the construction
of relations for all p-exact categories.
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A relation u: A-» B is a subgroup of the direct sum A B. It can be
viewed as a ‘partially defined, multi-valued homomorphism’, that sends an
element x € A to the subset {y € B|(z,y) € u} of B. The composite of u
with v: B C'is

vu={(z,2) € AeC |3y € B: (x,y) € v and (y,2) € v}.

RelAb is an involutive ordered category. For two parallel relations
u,u': A=» B, u < v means that u C u’ as subgroups of A@ B. The op-
posite relation of u: A-+ B is obtained by reversing pairs, and written as
uf: B-» A. The involution u — u! is regular in the sense of von Neumann,
i.e. uufu = u for all relations u.

As a consequence, a monorelation, i.e. a monomorphism in the category
RelAb, is characterised by the condition ufu = 1 (and is a split mono); an
epirelation by the dual condition uu! = 1.

The category Ab is embedded in the category of relations RelAb, iden-
tifying a homomorphism f: A — B with its graph.

A relation u: A- B determines two subgroups of A, called definition
and annihilator

Defu={z € A|dy € B: (z,y) € u},

(A.47)
Annu = {z € A|(z,0) € u},
and two subgroups of B, called values and indeterminacy
Valu={y € B|3z € A: (z,y) € u} = Defuf,
{ (z,y) € u} (A.48)

Indu = {y € B|(0,y) € u} = Annu’.

A4.2 Exercises and complements
The following properties in RelAb can be easily verified.

(a) A relation u: A-» B is a homomorphism if and only if it is everywhere
defined (i.e. Defu = A) and single-valued (i.e. Indu = 0), in which case
annihilator and values coincide with kernel and image, respectively.

(b) A relation u is a monorelation if and only if Def u = A and Annwu = 0.
(b*) A relation u is an epirelation if and only if Valu = B and Indu = 0.

(¢) A relation wu is invertible in RelAb if and only if it is invertible in
Ab, i.e. an isomorphism of abelian groups, in which case u? is the inverse
isomorphism.

(d) Every monomorphism (resp. epimorphism) in Ab is a monorelation
(resp. epirelation).
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(e) The relation u has a canonical factorisation u = (ng*).i.(pm!), as in the
lower part of the following diagram

A/Annu B/Indu
7 x m’ n' 7 ¢
A Defu | Valu B (A.49)
Annu i Indu
Defu Valu

where m,n are embeddings of subgroups, p, ¢ are projections on quotients
and 7 is an isomorphism; the latter relates a subquotient of A to a subquo-
tient of B. (Equivalently, one can use the factorisation u = (¢*n’).i.(m"p’),
in the upper part of the diagram.)

(f) This factorisation consists of an epirelation (ipm*) followed by a mo-
norelation (s = ng*): it is a factorisation epi-mono in RelAb, essentially
unique (since all monos and epis split).

Therefore the image of uw in this category should be defined as the sub-
quotient S = Valu/Ind u of B, which is a subobject of B in RelAb, via the
monorelation s = ng?: S—» B. Note that Valu = Vals and Indu = Ind s.

(¢) In the following diagram the monorelation s: S— B is presented, in
Ab, as a quotient of a subobject (s = ng'), and equivalently as a subobject
of a quotient (s = ¢'*n’)

B/Ind s
n'/'/ - 7

57 T 0B (A.50)

A4.3 Relations for p-exact categories

Every p-exact category E has an involutive ordered category of relations
RelE, which we now describe (the proofs can be found in [G8]). Let us
recall that E has pullbacks of monos and pushouts of epis along arbitrary
morphisms (see A2.5), and is assumed to be well powered (see A2.2).

A relation u: A-» B has a w-factorisation u = ngipm?, and a w*-
factorisation u = ¢"*n'm/%p’, each of them determined up to three coherent
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isomorphisms; they form two bicartesian squares (see A2.5(b))

NoA N A

The composition vu of relations is computed, on w-factorisations, by

(A.51)

pullbacks of monos (along arbitrary arrows) and pushout of epis along epis,
as in the following diagram; the relation u: A-> B appears in the upper
row, the relation v: B—-» C' in the right-hand column and vu: A= C along
the dashed diagonal

A¥ . . . B
RS

s ¢\ (A.52)

Dually, it can be computed on w*-factorisations, by means of pushouts
of epis along arbitrary arrows and pullbacks of monos along monos.

The involution v — u! is obvious; the order relation u < v is expressed by
the existence of a commutative diagram in E linking their w-factorisations
(or equivalently the w* ones)

A<<o —> ¢« =< o« >> B (u)
A<—<i—»l«—i>—>3 (v) o

The construction of RelE can be obtained by considering equivalence
classes of diagrams

Ac<<e—» e« or— B

in E, up to three coherent isomorphisms (as in diagram (A.53)); the com-
position is described above; the proof of associativity is not easy (see one
of the references [T2, BriP, G8]).

A commutative square of E is said to be exact if it is bicommutative
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in RelE, which means that it stays commutative when one reverses two
parallel sides of the square. To characterise this fact, first note that:

I (@ I T ® T I © I (A.54)

(i) a commutative square of monos (a) is exact if and only if it is a
pullback,

(i*) a commutative square of epis (b) is exact if and only if it is a pushout,

(ii) a commutative mized square (c) is exact if and only if it is a pullback,
if and only if it is a pushout.

As a consequence, every pullback of a mono (along any map) produces
a bicommutative square, and similarly every pushout of an epi. Finally, a
commutative square in E becomes bicommutative in RelE if and only if its
canonical factorisation is composed of four bicommutative squares of the
previous types

(A.55)

—> e >

Every p-exact functor F': E — E’ has a unique extension to a 2-functor
RelF': RelE — RelE’; every natural transformation ¢: F — G: E — E/
determines a lax transformation of 2-functors

Rely: RelF — RelG: RelE — RelE/,

whose components are precisely those of ¢ (and belong to E’).

AY4.4 Double categories of relations

Every p-exact category E produces an ultraflat double category RelE, with
E-morphisms as horizontal arrows and E-relations as vertical ones. Also
here a cell corresponds to an inequality

f

A ——= A

u < W gu < vf (& fuf <ofg) (A.56)
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and amounts to a commutative diagram of E based on w-factorisations,
where the three dashed arrows are uniquely determined, by induction on
subobjects and quotients

Ao

p P

(A.57)

Y

<
Q

LY
b
[

B ——
g

n n

/

Equivalently, one can use a dual diagram for w*-factorisations.
We also have double functors Rel(F): RelE — RelE’ (for F exact) and
horizontal transformations

Rel(¢): RelF — RelG: RelE — RelE/,

as in Al.6.

A4.5 Left exact functors

Let us take now, more generally, a left ezact functor S: E — E/, ie. a
functor which preserves kernels (whence the zero-object, monomorphisms
and their pullbacks).

Since S preserves pullbacks of monomorphisms, which become bicommu-
tative squares in RelE’, we can extend it to relations by using, equivalently,
the w- or w*-factorisation:

S (ngfpm#) = S(n)(Sq)*(Sp)(Sm?),

(A.58)
S'(q*n/m"p’) = (Sq')*(Sn’)(Sm/)*(Sp'),

even if S need mot preserve epis and the right-hand parts above are not w-
nor w*-factorisations, generally.

We obtain thus a lax double functor S’ = RelS: RelE — RelE’. The
fact that S’ preserves cells follows trivially by the fact that the cell (A.56)
amounts to a commutative diagram (A.57) in E, and factorises in four cells
of RelE, whose images are cells of E'.

Finally, the comparison special cells for vertical composition S'v.5'u <
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S’(vu) are an easy consequence of the composition vu as computed in
(A.52)

A\ . . o B
RUSNR I o N
\\JL .S>_> . (A.59)
=
Sl

Indeed the functor S preserves pullbacks of monos (along arbitrary ar-
rows), that are bicommutative in the category of relations; furthermore it
carries the pushout (r,s;7/,s") to a commutative square Ss’.Sr = Sr'.Ss,
which gives (Ss)(Sr) < (Sr)¢(Ss) in RelE/. Tt follows immediately that
S'v.8"u < S (vu).

Again, a natural transformation ¢: S — T: E — E’ of left exact functors
gives a horizontal transformation of lax double functors

Relp: RelS — RelT: RelE — RelE’,
with the same components as . (The coherence with the comparison cells
of RelS and RelT is here automatic, since our double categories are flat.)

Dually, a right ezact functor S: E — E’ (which preserves cokernels) can
be extended to a colaz double functor S’ = RelS: RelE' — RelE, by the
same definition as above, in (A.58).

Of course, if S is exact we get the functor already considered in A4.4.

A4.6 Adjoints between categories of relations

Let us start from an arbitrary adjunction F' 4 G between p-exact categories

F:E—FE, G:E - E,
n:1—GF: E—E, e: FG—1:E - E, (A.60)
eF.Fn=1p, GenG = 1g.

F preserves the existing colimits and G the existing limits; we have thus
a colax and a lax extension, respectively

F' = RelF: RelE — RelE/ (colax),

) (A.61)
G’ = RelG: RelE’ — RelE (lax),
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which form a colax-lax adjunction of double categories (Chapter 4). The

unit is

A=A "1 GFA —— GFA
m GFm
P GFp
q GFq
ni GFn\L

A B GFB —— GFB

nB

where the right-hand inequality comes from the colax-property of G’ and
the definition of F’

(GFn)(GFq)*(GFp)(GFm*) < G'((Fn)(Fq)*(Fp)(Fm*)) = G'F'u.

The counit is defined dually. The coherence relations hold automatically,
by flatness.

A4.7 The abelian case

Working on an abelian category E, we get ‘the same’ relations as con-
structed in Section 2.5. Essentially, this is a consequence of Exercise A4.8(b).

Going on in the present framework, every relation has now a binary
factorisation v = gff: A= B. Such a factorisation will be said to be
strong if the pair (f, g) is jointly mono (corresponding to a monomorphism
with values in A @ B); this can be obtained from a w-factorisation of u, by
the pullback of the central epimorphisms (which is also a pushout):

L] L]
W\/_\/’{
N s
L]

(A.63)

Dually, there is a strong cobinary factorisation u = f"*¢’, where (f',g')
is jointly epi. Two cobinary factorisations yield the same relation u if
and only if they have the same pullback, which is then a strong binary
factorisation of w.
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A cell in RelE corresponds to a commutative E-diagram for strong binary
factorisations (as in the central diagram below), or equivalently, for strong
cobinary factorisations (as at the right)

!

Ao A 1o w AT
S S SRS S SRR S
l I T S
B B B — B B — B

A left exact functor S between abelian categories preserves arbitrary
pullbacks; its extension S’ = RelS can be equivalently computed over w-
factorisations, or w*-factorisations, or strong binary factorisations, or ar-
bitrary cobinary factorisations. We get a lax double functor, as we already
know from the more general p-exact case considered above. Dually for right
exact functors.

A4.8 Exercises and complements

(a) Starting from the following adjunction F' - G of abelian groups
F=—-—®A: Ab— Ab, G =Hom(A,—): Ab — Ab, (A.65)

show that both the extended ‘functors’ RelAb — RelAb fail to preserve
vertical composition of relations, for A = Z/2 (or any non-trivial finite
cyclic group).

*(b) Prove that a square of the abelian category E is bicommutative in the
category of relations constructed in Section 2.5 (as characterised in A3.9) if

and only if it is bicommutative in the present construction (as characterised
in A4.3).

A5 Homotopy quotients of topological spans and cospans

We end this appendix with a few hints of applications in Algebraic Topol-
ogy. The weak double category SpanTop of topological spans has a quotient
hoSpanTop where horizontal and vertical arrows are unchanged, but dou-
ble cells are identified up to homotopy, in a sense specified below (in A5.4).
Similarly the weak double category CospTop of topological cospan has a
quotient hoCospTop.

The interested reader is referred to [G2]-[G4], to see how these structures,
together with their higher dimensional extensions, can be used to study
higher cobordism.
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A continuous mapping is also called a map. The boolean variable « takes
values in {0, 1}, also written as {—, +}.

A5.1 Homotopy

As we mentioned in 2.2.4, the standard euclidean interval T = [0,1] is
exponentiable in Top. In other words the cylinder endofunctor

I: Top — Top, I(X)=XxI, I(f)=fxidl, (A.66)
has a right adjoint, the cocylinder, or path endofunctor
P: Top — Top, PY)=Y' P(g9)=4g"c— gc, (A.67)

where P(Y) is the set Top(I,Y") of paths ¢: I — Y, equipped with the
compact-open topology — also called the topology of uniform convergence
(since I is compact). The unit and counit are obvious

n: 1 — PI, nx (x)(t) = (z,1) (re X, tel),

(A.68)
e: IP —1, ey (e, t) = c(t) (ce PY,tel).

Each of these functors has a basic structure of two faces and a degeneracy,
that are mates under the adjunction, as in 2.3.3 (here a =0, 1)

.
X =EIX &)= (wa), clet)=w, ed®=1y, (A69)

PY % Y d*(c) =c(a), e(y)(t)=y, d%e=1y. (A.70)

Because of the adjunction, a homotopy ¢: f~ ~ fT between two maps
f¢: X — Y can be equivalently defined as

-amap ¢: [X — Y that coincides with f~, f™ on the faces (or bases) of
the cylinder, i.e. 9.d* = f<,
-amap ¢: X — PY such that d*.¢p = f¢.

There is a whisker composition of homotopies and maps

(koh) = k.p.Ih: IX' =Y’ (A.71)

f
X s x oy Ay
g
Homotopies have a defective ‘vertical structure’ (that would only give a

2-category up to higher homotopies):
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- trivial homotopies Of: f ~ f (represented by fe: IX — Y oref: X —
PY),
- reversed homotopies ¢*: g — f (for p: f ~g),
- concatenated homotopies ¢ +1: f ~ h (for ¢: f ~ g and ¢p: g ~ h).

All this is well-known and easily described directly — or can be produced
by further structure on the (co)cylinder functor, as in [G7].

We shall often write the ‘representative map’ ¢ (or ¢) of a homotopy as

o, provided this does not lead to ambiguity — as it certainly would above,
in formula (A.71).

A5.2 The homotopy category

As already recalled in 1.1.5, the homotopy relation f ~ g (given by the
existence of a homotopy ¢: f ~ g) is a congruence of categories in Top.
Tts quotient is called the homotopy category hoTop = Top/ ~.

We also recall that a map f: X — Y is a homotopy equivalence if there
exists a map ¢g: Y — X such that gf ~idX and fg ~ idY, which amounts
to saying that its homotopy class [f] is an isomorphism of hoTop.

A functor F': Top — C with values in any category is said to be ho-
motopy invariant if it takes homotopic maps f =~ g to the same morphism
F(f) = F(g), so that it induces a functor hoTop — C.

Many categories with a notion of homotopy have a structure of ‘cylinder-
path endofunctors’ as sketched above. An interested reader can see [G7]
and references therein.

A5.8 Proposition (Homotopies in pullbacks and pushouts)

(a) A commutative solid diagram of maps and homotopies, as in the left di-
agram below, can be uniquely completed with a homotopy w: w ~ w': W —
W' from the pullback W of (f,g) to the pullback W' of (f',g'), consistent
with the pullback-maps, in the sense that p'w = &p and ¢'w = nq

xr xT
X . X X & X
= s , = >
p /1fl/ z’ \Lf\;\ p u //fT z’ f/T N
e z AN il 2 RN
—> ’ — /
W\ Z I Z /W W Z I Z w
Z/ , ‘ Z/ /1
;\ 9 T{]/ 7 ’;\ 9 QI\L 7
N Y +q N Y s
Y In Y’ Y In Y’
y' '

(a*) A commutative solid diagram of maps and homotopies, as in the
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right diagram above, can be uniquely completed with a homotopy w: w =~
w': W — W' from the pushout W of (f,g) to the pushout W' of (f',q'),
consistent with the pushout-maps, so that wu = u'€ and wv = v'n.

*Note. These results hold in any category with a cylinder-path adjunction,
as sketched above. They are dual to each other in this selfdual context —
not in Top.*

Proof The path (resp. cylinder) functor preserves all limits (resp. colimits).
It is thus sufficient to transform the diagrams above as follows and apply
the universal property of the pullback PW’ (resp. the pushout IW) to get
the homotopy w

X - px’ oy ., X S x )
/ /P; \ / \ \
WiPW/% / . \ /IW?W/
"y ey " Iy — v

A5.4 Spans and homotopy

In the weak double category SpanTop we introduce an equivalence relation
~ that is trivial (i.e. the identity) on all objects and arrows, and is defined
as follows on cells.

Consider two cells z,2': (u g v) with the same boundary. By abuse of
notation, we write as x,z’ also the central maps U — U’ that determine
these cells, once their boundary is given. We say that these cells are h-

equivalent, and write x ~ z’, if there exists a homotopy
Srx~adU—=U

which is consistent with the trivial homotopies 0¢ and 04, in the sense that:

XI

I

U’ (A.72)

"
\L’U

Y/

U
Y

l H l\

v'E=0pu" =04y, V"€ = 0gu” = 0gyrr.
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We prove below that this equivalence relation gives a weak double cate-
gory

hoSpanTop = (SpanTop)/ ~, (A.73)

with the same objects and arrows of SpanTop, and equivalence classes of
cells [z]: (u _3; v). It will be called the homotopy quotient of SpanTop.

Note that the homotopy category hoTop has few limits and colimits:
for instance, products and sums. In particular, it has no pullbacks nor
pushouts: one cannot form a weak double category of spans or cospans
on it. *But it is interesting to note that hoTop has weak pullbacks and
weak pushouts, produced — respectively — by the homotopy pullbacks and
homotopy pushouts of Top [Mat].*

A5.5 Theorem (Spans and homotopy)

The relation of h-equivalence is consistent with horizontal and vertical com-
position of double cells.

Proof Consistence with horizontal composition is shown in the diagram
below

X $ X/ fH X//

o P P
U 1 U n_ U (A.74)
u//l/ x’ ,U//\L y' \qu
Y Y/ Y//
g g’

In fact, composing the homotopies £,n ‘along the diagonal’, we get a
homotopy

pryr~ya U —U"
that proves that (z|y) ~ (2" |y’)

90(2715) = 77(5(27t)7t)7 o(—,0) = yz, o(—, 1) =y'a,
w'(n(&(z,1), 1)) = f'v'(&(2,t)
w"(n(€(z,1),t)) = g'v"(&(2,1)) = ¢'gu" (2).

For vertical composition we apply Proposition A5.3(a) to the central part
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of the concatenation of z,z’: (u g v) with y,y": (w t)

f
X — X
u’ v’
L
U 1 _ U
e ’
p 7 , X p
/u// xT YZAAN -
// g ~
w Y 10" Y’ w’
N —_— -
N w' 9 ¢
q \‘\ y l«/ ,
V i V!
w// y' t//
Z =7

This gives a homotopy w: w ~ w': W — W’ between the pullbacks
of (f,g) and (f’,g’'), consistent with the pullback-maps: p'w = &p and
q'w = ngq, so that

!

v'p'w =v"Ep = 05u'p, t"qdw=1t"ng = 0pw"q.

Finally we have proved that x @ y ~ 2’ @ /. |

A5.6 Cospans and homotopy

Similarly we have a weak double category hoCospTop = (CospTop)/ ~,
with the same objects and arrows as CospTop and equivalence classes
[2]: (u ] v) of cells.

Given two cells z, 2" (u g v) of cospans with the same boundary, as in the
diagram below (again we write as z,x’ also the associated maps U — U’),
we say that these cells are h-equivalent, and write x ~ x’, if there exists a
homotopy &: x ~ a': U — U’ of the associated maps, which is consistent
with the trivial homotopies 0¢ and 0,

X/

’

U’ (A.75)

TUH

X
U
Y Y’

&u' =0'0p =0y, Eu" =0"0, = 0yrry.

Also here one should distinguish the cell [z]: (u } v) from the associated
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central morphism [x]: U — U’ in hoTop, even though we use the same
notation [z] in both cases.

For instance, the morphism [z] is invertible whenever z: U — U’ is a
homotopy equivalence (i.e. there is some y: U’ — U such that yz ~ 1 and
zy ~ 1), but the horizontal invertibility of the cell [z]: (u 5 v) is a stronger
condition: the map y should be coherent with the cospans.



Appendix B

Symmetric cubical sets and cubical categories

Cubical sets are a classical topic of Algebraic Topology, introduced by Kan
[K1] and extensively studied by Brown and Higgins [BroH1, BroH2|; see
also [GM]. Strict cubical categories and their links with globular categories
are dealt with in [AIBS].

Weak cubical categories and their symmetric version were introduced
and studied in [G2]-[G6], as a basis for the study of cubical cospans in
Algebraic Topology and higher cobordism. We have seen in 6.4.5 that
these structures can be seen as weak multiple categories of cubical type.
Here they are treated as an independent subject.

As a basic example we use again the weak multiple category Cosp(C)
presented in 6.4.6. Its components, the ordinary categories Cosp,,(C) =
Cat(A™, C), form a cubical object in Cat, with obvious faces and degen-
eracies. The details of its construction are analysed here, in Section B4.

In fact Cosp(C) is a weak symmetric cubical category, when equipped
with the obvious action of the symmetric group S,, on Cat(A"™, C): namely,
the action of permuting the factors of A", i.e. the directions of n-cubical
cospans in C. These symmetries allow to only consider the faces, degen-
eracies and geometric compositions in a single direction (see B2.2), which
can help to simplify the coherence conditions.

The present appendix gives an analysis of the role of symmetries, based
on [G5], which goes much beyond the simplification of coherence properties.
In fact the category Cub of ordinary cubical sets has a Kan tensor product,
which is non symmetric and biclosed, with left and right internal homs
based on the right and left path functors (see B1.6, B1.7). On the other
hand, symmetric cubical sets have one path functor (see B2.3) leading to
one internal hom and form a symmetric monoidal closed category sCub.

Similar facts hold for cubical and symmetric cubical categories, and have
played a relevant role in the study of limits and adjunctions in these higher
dimensional categories [G6, G10].

434
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I still denotes the standard interval [0, 1] with euclidean topology, while
u will be the ‘elementary’ interval of Cub. Also here the boolean variables
a, B take values in {—,+} or {0,1}, as may be convenient.

B1 Cubical sets and internal homs

We start from the category Cub of ordinary cubical sets and their (non
symmetric) monoidal biclosed structure [K1, BroH2|. As in [G5] we stress
the role of the ‘transposer’ S, which reverses the order of faces; in particular,
we are interested in the external symmetry s: S(X @ V) — (SY) ® (SX),
which partially surrogates here the ‘internal’ symmetry of a symmetric
tensor product.

B1.1 Cubical sets

A cubical set X = ((X,), (0%), (e;)), in the usual sense [K1, K2, BroHI,
BroH2|, has faces (0%) and degeneracies (e;)

0 X2 X116 (t=1,.,n;a=4), (B.1)
satisfying the cubical relations:
0r0) = o0lor, (j <i), eje; = eip1e; (j <),

(B.2)
8?6]' = ejaf‘_l (] < 1)7 82061 =1, 85"ej = €j,18,? (] > Z)

Elements of X,, are called n-cubes; or vertices for n = 0 and edges for
n = 1. Every n-cube z € X,, has 2" vertices: 07" ... 09" (x).

The classical example is the singular cubical set 0(S) of a topological
space S, whose n-component is the set [0,(S) = Top(I",S) of singular
n-cubes x: I — S; faces and degeneracies are obvious.

A morphism f = (f,): X — Y of cubical sets is a sequence of mappings
fn: X, — Y, that commutes with faces and degeneracies.

Cubical sets and their morphisms form a category Cub, which has all
limits and colimits. In fact, as we already recalled in 6.2.3, it is the presheaf
category of functors X: I°? — Set, on the cubical site I. The latter is
the subcategory of Set consisting of the elementary cubes 2™ = {0,1}",
together with the maps {0,1}™ — {0,1}" which delete some coordinates
and insert some 0’s and 1’s, without modifying the order of the remaining
coordinates (see [GM]).

The terminal object T of Cub is freely generated by one vertex * and will
also be written as {*}; but note that each of its components is a singleton,
and all faces and degeneracies are identities.
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The initial object is empty, i.e. all its components are; the other cubical
sets have a non-empty component in each degree.

The category Cub has two (covariant) involutive endofunctors, which
we call reversor (R) and transposer (.S)

R: Cub — Cub, RX = X°P = ((X,,), (0; ™), (e:)), (B.3)

§:Cub— Cub,  SX = ((Xa), (0241 ), (1)) (BA)

If © € X, the corresponding element in (RX), = X, will often be
written as z°P, so that 9; (z°P) = (9;"2)°P. We say that a cubical set X is
reversive if RX = X and permutative if SX = X

B1.2 Tensor product

As any category of presheaves, Cub is cartesian closed (see 2.2.4(k)). But
we are interested in a different monoidal structure (see [K1, BroH2])

(X®Y)n = (Zpig=n XpxYy)/~n, (B.5)

where ~,, is the equivalence relation, in the previous sum of sets, generated
by correlating each pair (e,412,y) with (z,eyy), for all (z,y) € X, xY;
(where r + s =n—1).

Writing as ®y the equivalence class of (z,y), the faces and degeneracies
of X ® Y are defined as follows, when z is of degree p and y of degree ¢

o (Ofz) @y, if 1<i<p,
O (xz®y) = . _ (B.6)
@ (05 ,y), if p<i<mnm,

(e;7) ®y, if 1<i<p+
ei(z®@y) =
r® (ei—py), if p+1<i<n+1.
Note that
epr1(T®@y) = (epy17) @y = ® (e1y)

is well defined, because of the previous equivalence relation.
The identity of the tensor product is the terminal object T = {x}, which
is obviously reversive and permutative.
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B1.3 The external symmetry
The tensor product is not symmetric, but is related to reversor and trans-
poser by an identity and an external symmetry s
R(X®Y)=RX ® RY,

(B.8)
$(X,Y): S(X®Y) = (SY)® (SX), TRY — yQa.

The latter is a functorial isomorphism of functors Cub x Cub — Cub,
with inverse S(s(SY, SX)).

Therefore reversive objects are stable under tensor product while per-
mutative objects are stable under tensor power: if SX = X, then

S(XOm) = (SX)¥m = X®n,

B1.4 The standard interval

The standard interval u of Cub is the cubical set freely generated by one
cube u, of degree 1

051 0y (u) =0, 0 (u)=1. (B.9)

This cubical set is reversive and permutative. It is the representable
presheaf Y (2) = I(—,2): I°P — Set (see (1.14)).

The standard n-cube is its n-th tensor power u®" = u®...Q@u (for n > 0),
freely generated by its n-cube u®”. It is still reversive and permutative and
‘coincides’ with the representable presheaf Y (2") = I(—,2"): I°P — Set.

The standard square u ® u can be represented as follows, showing the
generator u ® u and its faces

00 —“®°% 1o . N
O®ul uURu il@u ¢ 2 (BlO)

01 —— 11
u®1

As usual the face 07 (u ® u) = 0® u is drawn as orthogonal to direction
1 (which can be done in every dimension). For each cubical object X we
have Cub(u®", X) = X,,, by the Yoneda Lemma (in 1.2.8).

Note that the cartesian power u x u has two non-degenerate 2-cubes,
namely (eju, esu) and (equ, eju).

B1.5 Left and right cylinder functors

Let us start from the standard interval u, and work with the monoidal
structure recalled above, with unit {*} and reversor R. Recall that u
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denotes the 1-dimensional generator of u, and u°P is the corresponding
edge of u°P (as in B1.1).
The cubical set u has a structure consisting of two faces (0°,0'), a de-
generacy (e) and a reflection or external reversion (r):
0%: {x} = u, 0 (%) = a,
e:u — {x}, e(a) =%,  e(u) =e1(x), (B.11)
r:u — u°P, r(0) = 1°P, r(1) = 0°P, r(u) = uP.
Since the tensor product is not symmetric, the elementary directed in-
terval yields a left (elementary) cylinder u ® X and a right cylinder X ® .

These functors are not isomorphic, but each of them determines the other,
using the transposer S, defined in (B.4), and the property S(u) = u

I: Cub — Cub, IX=u®X,

B.12
SIS: Cub — Cub, SIS(X)=8u®SX)=X ®u. ( )

The last relation is the canonical isomorphism s(u, SX) of (B.8).
The left cylinder /X = u® X inherits from the structure of u, in (B.11),
two faces, a degeneracy and a reflection, as follows
=0 X: X - IX, 0%(zr) =a®x,
e=e®X:IX = X,
e(u@x)=e1(x) ®x =*® e (x) = e (x), (B.13)
r=r®RX:IRX — RIX,
rla®zP) = ((1 — a) @ z)°P, r(u® z°P) = (u ® x)°P.

As a right cylinder functor we shall use SIS, rather then the isomorphic
functor — ® u.

B1.6 Left and right path functors
The category Cub has a left path functor P, right adjoint to the left cylinder
functor IX =u® X.
The functor P shifts down all components discarding the faces and de-
generacies of index 1; the latter are then used to build three natural trans-

formations, the faces and degeneracy of P
P: Cub — Cub, PY = ((Yn+1)7 (81-0;1), (61'_;,_1)), (B 14)
9% = 0%: PY =Y, e=e:Y — PY. '

The transposer S produces the right path functor P’ = SPS, right ad-
joint to the right cylinder S1.S. Explicitly, SPS shifts down all components
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and discards the faces and degeneracies of highest index (used again to build
faces and degeneracy)

SPS: Cub — Cub, SPS(Y) = (Y1), (82), (e1)),
9°: SPS(Y) = Y, 0% = (02,1 Yos1 = Ya)usos  (B.15)
e:Y — SPS(Y), e = (€n+12 Y, — Yn—i—l)nZO-

An elementary (or immediate) left homotopy f: f~ —p fT: X = Y is
defined as a map f: X — PY with 0¢f = f®. This leads to a simple
expression of f as a family of mappings satisfying the following conditions

fn: Xn_>Yn+1a aﬁ-lfn :fn—laiav
o fn = [, €it1fn—1 = fnei.
Similarly, an elementary right homotopy f: f~ —r fT: X = Y is a

map f: X — SPS(Y) with faces 0%f = f. This amounts to a family
(fn) such that

(B.16)

fn:Xn_>Yn+la 8?fn:fn,18f‘7
67?+1fn = [, €ifn—1 = fnei.

The transposer can be viewed as an isomorphism S: Cub; — Cubpg

(B.17)

between the left and the right structure. One can define an external
transposition s: PP’ — P’P (replacing, from a formal point of view, the
transposition s: P? — P2 of topological spaces, which permutes the two
variables); it is actually an identity PP’ = P'P

s: PSPS — SPSP,  (sY)n = idY, s, (B.18)

since both functors PP’ and P’ P shift down all components of two degrees,
discarding the faces and degeneracies of least and greatest index.

B1.7 Internal homs

The category Cub has left and right internal homs [BroH2]. The right
internal hom CUB(A,Y) can be constructed with the left cocylinder functor
P and its natural transformations (which produce a cubical object P*Y in
Cub)

- ®A -4 CUB(A4, -), CUB,(4,Y) = Cub(A4, P"Y). (B.19)
The natural bijection

©(X,Y): Cub(X ® A,Y) — Cub(X,CUB(A,Y)), (B.20)
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is constructed as follows, on an arbitrary morphism f = (f,): X®@ A =Y.
Its n-component f, can be decomposed into a family of mappings

Jpa: XpxAg = Ypig (p+q=n), (B.21)

consistent with the equivalence relations ~,, (see (B.5)). By the exponential
law in Set, these mappings amount to mappings

pq: Xp = Set(Ag, Ypig).
Keeping p fixed, we get a mapping
9p = (9pg): X, — Cub(A, PPY) C 1, Set(A,, Ypiq), (B.22)

whose family forms a morphism of cubical sets g = (g,): X — CUB(4,Y).

B1.8 Higher path functors

We have seen that the two path functors P, P’: Cub — Cub commute
(in (B.18)). Therefore, every composition of n occurrences of them can be
written as

P =pri Pt =Pt SP'S: Cub — Cub (i=0,..,n). (B.23)

P X has p-component X,,,; its faces and degeneracies X1, & Xpi1pn—1
are those of X with indices n — i+ 1,...,n — i+ p (renumbered as 1, ..., p).
In particular, Py = P and P} = P'.

There are generalised faces linking higher path functors

(P19~ PJ).(SP*kS): Pititl gpkg — piti SpPkS,

o o w (B.24)
Pi.(SPigePkS): Pi §pithtlg _y piti Gpkg,

and similar generalised degeneracies.

B2 Symmetric cubical sets and their closed structure

We consider now symmetric cubical sets, equipped with transpositions. In
the singular cubical set of a topological space these mappings correspond
to transposing variables in the standard cubes I"™.

Lifting the previous left or right path functors (in B1.6) to the sym-
metric case, we get isomorphic functors, and essentially one path functor.
The latter produces one internal hom, and a symmetric monoidal closed
structure.

The real points of interest are the path functor and the internal hom.
On the other hand, the symmetric tensor product (of symmetric cubical
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sets) and the corresponding cylinder functor are complicated and not really
needed, here; they will only be sketched in Section B6.

B2.1 Symmetric cubical sets

As in [G2], a symmetric cubical set, or sc-set, is a cubical set which is
further equipped with mappings, called transpositions
sit X — X, (i=1,..,n—1n>2). (B.25)
These have to satisfy the Moore relations
8;.8; =1, 8;.85 = sjsl (Z <j- 1), (BQG)
5i.85.8; = 8;.8;.8; (i=7—1),

and the following conditions of coherence with faces and degeneracies:

j<i j=1i j=i+1 j>i+1
Si-€5 = €j.Si—1 €it1 €; €;.5;.

Assigning the mappings (B.25) under conditions (B.26) amounts to let-
ting the symmetric group S,, operate on X,,. Indeed, it is well known that
S, is generated, under the Moore relations, by the ‘ordinary’ transpositions
S1y.ey Sn—1, Where s;, acting on the set {1,...,n}, exchanges ¢ with ¢ + 1
(see Coxeter-Moser [CoM], 6.2; or Johnson [Jh], Section 5, Theorem 3).

A morphism f = (fn): X — Y of sc-sets is a sequence of mappings
fn: X — Y, that commutes with faces, degeneracies and transpositions.

The resulting category sCub, of small symmetric cubical sets and their
morphisms, is again a category of presheaves X : I.°°? — Set, for the sym-
metric cubical site I,. The latter can be defined as the subcategory of Set
consisting of the elementary cubes 2" = {0,1}" together with the maps
2™ — 2™ which delete some coordinates, permute the remaining ones and
insert some 0’s and 1’s. It is a subcategory of the extended cubical site of
[GM], which also contains the ‘connections’ (or higher degeneracies).

The reversor and transposer of cubical sets (in B1.1) have obvious liftings
to sCub

R:sCub — sCub, RX = X°? = ((X,), (83_0‘), (e:),(s:)), (B.28)
S: sCub > sCub, SX = ((X0), (0%41_)s (ens1)s ($ns1-1)). (B.29)

Here the transpositions make S isomorphic to the identity functor and
inessential, as we shall see in B2.6.
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Similarly one defines the category sCub(C) of symmetric cubical objects
over any category C.

B2.2 Reduced presentation of symmetric cubical sets

In a symmetric cubical set the presence of transpositions makes all faces
and degeneracies determined by the 1-directed ones, 9y, 9" and e;. In
fact, from 05 | = 0f*.s; and e; ;1 = s;.¢;, we deduce that:

(83 (6% /
oy = 07 .s;, € =8,

.e1 (1=2,...,n;a=4), (B.30)
where we are using the ‘permutations’ s, and s}, inverse to each other

/
S; = Si—1...51, S; =S81...85i—1- (B31)

This leads to a more economical presentation of our structure, as proved
in [G4]. Namely, an sc-set can be equivalently defined as a system

X = ((X’n)val_aaf_vela(si))a (B32)
under the Moore relations for transpositions, in (B.26), and the axioms:
6‘0‘.61 = ld, 804.6,3 = aﬁ.ﬁo‘.sl, eje; = sy.e1eq,
1 101 1-91 (B.33)
828? = 8?.Si+1, €1.5; = Sij+1-€1.

In other words, X can be presented as a system ((X,,),0; , 95, e1) where
each X,, is an S,-set (i.e. a set equipped with an action of the symmetric
group S,,) and the axioms (B.33) are satisfied.

B2.3 The symmetric path functor

We now define the path functor P of sc-sets, by lifting the left path functor
of ordinary cubical sets (see B1.6): P shifts down all the components,
discarding the faces, degeneracy and transpositions of index 1

P: sCub — sCub,
PX = ((Xn+1)7 (th'x-&-l)ﬂ (ei+1)ﬂ (Si+1))7 (Pf)n = fn+1~

Again, the discarded faces and degeneracy are used to build three natural

(B.34)

transformations, the faces and degeneracy of P (while the discarded s; will

give the transposition of P2, in B2.4)
0“: PX = X, 0% = (07 Xpg1 — Xn)n>o, (B.35)
GZX%PX, 6:(61:Xn4)Xn+1)n>0.

The transposer S, in (B.29), produces the right path functor P’ = SPS,
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which shifts down all components discarding the faces, degeneracies and
transpositions of highest index. However S = id and SPS = P (as we shall
see in B2.6), so that one path functor is sufficient.

B2.} The transposition of the path functor

The ‘second order’ path functor is computed as:
P?%: sCub — sCub,
P2X = ((Xnt2), (02), (€it2), (si42)),  (P?f)n = futo

It has two pairs of faces PO%, 0“P: P? — P and two degeneracies
Pe,eP: P — P?

P(0*X) = (01 Xnt2 = Xnt1)n>o0,
9*(PX) = (05': Xnt2 = Xnt1)n>o0,

(B.36)

(B.37)

P(eX) = (e1: Xn+1 = Xnt2)n>0,
* * (B.38)
G(PX) = (625 Xn+1 — Xn+2)n>0-

The important fact is that we have a transposition for the path functor
P

s: P> — P? x> s1(x). (B.39)
First, s: P2X — P2X is indeed a morphism of sc-sets, as it follows
immediately from the symmetric cubical relations (in B2.1)

S1 S1

Xn+2 _— Xn+2 Xn+2 _— Xn+2
8?+2l/Tei+2 8?+2\LT8H2 Si+2\L \Lsi+2

Second, because of other symmetric cubical relations (not applied above),
the involution s interchanges the faces of P? of type PO* and %P, and
the degeneracies of type Pe and eP

0%P.s = PO, s.eP = Pe. (B.40)

B2.5 Internal homs

We define the internal-hom functor of the category sCub as
sCUB: sCub®? x sCub — sCub,

(B.41)
sCUB,(4,Y) = sCub(4, P"Y).
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In particular
sCUB({x},Y) =Y, sCUB(w, Y) = PY, (B.42)

where u = Y(2) is now the representable symmetric cubical set freely gen-
erated by one 1-cube u.

This is the same as the cubical set u of Section B1, equipped with the
unique symmetric structure that permutes its (degenerate) cubes of degree
>2

sie1(u) = ea(u), s1ea(u) = ey (u),
sie1(v) = ea(v), s1ea(v) = e1(v), si1es(v) = ezs1(v),
sae1(v) = e151(v), saea(v) = e3(v), sae3(v) = ea(v), ...

where v is a 2-cube, namely e;(u) or ea(u).

B2.6 Ezxercises and complements

The results of the following exercises make clear how the structure of ordi-
nary cubical sets is simplified by the addition of symmetries in sCub.

(a) Construct a natural isomorphism ¢: 1 — S: sCub — sCub.
(b) Construct a natural isomorphism v: P — P’ = SPS between the left
and the right path functors.

(c) Show that the transposition s: P2 — P? defined in (B.39) can be
obtained combining the isomorphism ~ and its inverse.

B3 Weak cubical categories and the symmetric case

Weak cubical categories and their symmetric version were introduced in
[G2]. After reformulating the definition in a simpler way, we introduce the
path functor of these cubical structures, which plays an important role in
their theory — for instance for the study of cubical limits (cf. [G6]).

B3.1 Weak cubical categories

The present definition follows the same pattern of weak multiple categories,
in Section 6.4. Besides replacing a multiple object (in Cat) with a cubi-
cal one, the main difference is that — here — faces and degeneracies (the
operators that modify the dimension) carry a shift of indices, as already
remarked for cubical sets in 6.2.3.

(wee.l) A weak cubical category A is, first of all, a sequence of categories
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tv, (A), for n > 0, called the transversal categories, or transversal compo-
nents of A.

In tv,(A), the objects are called n-cubes and form a set A,; the mor-
phisms f: 2~ — z7 are called (transversal) n-maps and form a set M,
The categorical structure has faces 93 (f) = z* (a = %), identities ep(z) =
id(z) = 1, and a composition law ¢o(f, g) = f 409 = gf defined on the set
My, x M, of consecutive pairs (f, g) of n-maps (Of f=09y9)

Ay T= M, <% M,x M, (B.43)
€0
(wce.2) These categories form a cubical object in Cat. In other words, we
have functors of faces and degeneracies

O v (A) 2 tv—1(A) tey, (B.44)
that satisfy the cubical relations of (B.2).

(wce.3) Furthermore n-cubes and n-maps have a geometric i-concatenation
functor

40tV A X tv, A — tv, A (1<i<n), (B.45)
whose action we write in additive notation and diagrammatic order:
vy, fHig (Ofw=07y, 0ff=0;g)
(As a functor it commutes with the transversal faces, degeneracies and
composition of (B.43).)

(wee.4) The following ‘geometrical’ interactions with faces and degeneracies
are required, for i-consecutive n-cubes x, y:

O (e +iw) =0, (1), O (e +iw)=01(w) (1<i<n),

0% (x) +i—1 05 (y), for 1<j<i<n,
O (x+iy) =14 ’ o
05 () +: 95 (y), for 1<i<j<mn,
(& +:3) ej(z) +iy1e(y),  for 1<j<i<n,
€T TY)=
¢j(x) +iej(y), for 1<i<j<n+l.

The same holds for i-consecutive n-maps. Writing 08z, e;x, x +; y or
0> f, eif, f+i g it will be understood that such terms make sense.

An n-map f: x — y is said to be i-special, or special in direction i, if its
two i-faces are transversal identities

O f = eodi'x = €00;"y. (B.46)
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This implies that the n-cubes x,y have the same i-faces: 0fx = 0%y.
We say that f is ij-special if it is special in both directions ¢, j.
(wece.5-8) The geometric compositions are weakly categorical and satisfy
interchange, up to invertible transversal maps called comparisons, defined
for n-cubes x,y, z,u and i,j < n

Aiz: (6,07 x) +ix — (left i-unitor),
piz: x +i (€;0] 1) — x (right é-unitor),
ki(x,y,2): x4+, (y+i2) = (x+iy) +i 2 (i-associator),

Xig (€4, 2,u): (2 +iy) +5 (2 +iu) = (45 2) +i (Y +5 v)
(ij-interchanger, for i < j).

These comparisons are natural with respect to transversal maps; \;, p;
and k; are i-special and x;; is ¢j-special. The remaining faces df commute
with the comparisons up to the usual shifting of indices, which we now
express by a term iok whose value is ¢ — 1 or 4, when k£ < ¢ or k > 1,
respectively

O Ai(x) = Mo (Opx), O pi(x) = piok (05 ),
0 ki(z,y,2) = Kior(Ofx, 05y, Of 2),
e xij (@, Y, 2,u) = Xiok,jor(OF @, Oy, OF 2, O u).
(wce.9) Finally these comparisons must satisfy various conditions of coher-

ence, similar to those of weak multiple categories in 6.4.3, 6.4.4.

If all comparisons are identities, A is a (strict) cubical category.

B3.2 Weak symmetric cubical categories

Let us begin from the strict case.

A symmetric cubical category is a cubical category A equipped with an
action of the symmetric group S,, (non trivial for n > 2) on each category
tv, (A), generated by the transposition functors

st tvn(A) = tva(A),  i=1,..n—1 (n>2), (B.47)

under the Moore relations of (B.26).

These actions must give a symmetric cubical object in Cat, which means
that the transpositions satisfy the relations (B.27), with faces and degen-
eracies. Moreover they are assumed to be coherent with concatenations: if
X and Y are n-cubes or n-maps, we have (for ¢,7 > 0 and j # 4,1+ 1)

SZ‘(X +; Y) =X +i+18:Y, Sl(X +; Y) =5,X +; s;Y. (B48)
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Equivalently, for every permutation s: [n] — [n] that takes i to i’ we
have:

s(X+;Y)=sX +4 sY. (B.49)

Finally, in a weak symmetric cubical category A, the symmetries are also
assumed to be coherent with the comparisons A;, ps, ki, Xi;. Namely, for
every permutation s: [n] — [n] that takes ¢ to ¢’ and j to j° we have
(introducing x;j; = (xi;) "', for i < j):

8N = NS, S.p; = pir-S, S.Ki = Kji’.S, (B.50)
$.Xij = Xa'j/-$ (i # 7).

Truncation works in the usual way, as in Chapter 6. Since the symmetric
groups Sy and S are trivial, a 2-dimensional truncated weak symmetric
cubical category has no transpositions and is the same as a weak double
category.

A weak symmetric cubical category A can be viewed as a weak multi-
ple category A? of symmetric cubical type (see 6.4.5) by letting, for every
positive multi-index i of degree n > 0:

(A =A,, (A% = M,, (B.51)

so that any i-cube (or i-map) of degree n of A? is an n-cube (or n-map) of
A.

A (strict) functor F: A — B of weak symmetric cubical categories, or
sc-functor, is a morphism of symmetric cubical objects that preserves all
compositions and comparisons.

B3.3 Path functors of cubical categories

We write as cbCat the 2-category of (small) cubical categories, their (strict)
functors and transversal transformations, and as Wsc the 2-category of
weak symmetric cubical categories, their functors and transversal transfor-
mations.

Cubical categories have a left and a right path 2-functor, which are ob-
vious liftings of the path functors of cubical sets

P: cbCat — cbCat, P’ = SPS: cbCat — cbCat,
(B.52)
tVp P = tvpt1, v P = tvpa.

In every degree P discards faces, degeneracies and concatenations in
direction 1 while P’ discards those in the last direction. Again, P and P’
are related to each other by the transposer S: cbCat — cbCat, which in
every degree reverses the order of faces, degeneracies and concatenations.
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Also here, P and P’ have isomorphic liftings to the symmetric case
(where S 2id), and we will only use the path 2-functor which discards
direction 1, written as

P: Wsc — Wsc, (B.53)

for the 2-category of weak sc-categories, sc-functors and their transversal
transformations.

B3.4 Ezxponentials

(a) First, for a small ordinary category X and a symmetric cubical category
A, we have the symmetric cubical category AX of level functors and their
natural transformations

tv, (AX) = Cat (X, tv,A). (B.54)

An n-cube is an ordinary functor F': X — tv, A, and will also be called
an n-level functor with values in A; an n-map is a natural transformation
f: F — G: X — tv,A. Their faces, degeneracies, transpositions and con-
catenations are obtained by post-composition with the structural functors
of A (in B3.1)

0 tvp, A 2 tv, 1A ey, 8i: tv, A 2 tvi, A,
(B.55)
4+ v A X tv, A = tv, AL

(b) If A is a weak symmetric cubical category, also AX is, with comparisons
obtained from those of A.

(c) Now, let X be a small weak sc-category and A a weak sc-category. We
define the weak symmetric cubical category AX of higher sc-functors from
X to A and their transversal transformations.

An n-cube is an sc-functor F': X — P™A, an n-map is a transversal
transformation of these functors. Faces, degeneracies, transpositions are
obtained by post-composition with the structure of the path functor P of
weak sc-categories, in (B.53)

of: P"A= P" 'A:e;,  s;: P"A — P"A. (B.56)

Similarly, one obtains concatenations and the comparisons of the weak
structure of AX.

B4 The weak symmetric cubical category of higher cospans

We give now a detailed description of the weak sc-category Cosp(C) of cubi-
cal cospans over a category C with pushouts, by a construction based on a
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formal structure on the cospan category A, taken from [G2]; a construction
that was only sketched in 6.4.6.

Bj.1 The models

Let us recall that the construction is based on the formal-cospan category
A, together with its cartesian powers; we use the notation of 6.4.6.

The category A has a basic structure of ‘formal symmetric interval’, with
respect to the cartesian product in Cat, which consists of two (co)faces 9%,
a (co)degeneracy e and a transposition s

0%: 1 =3 A, e: N —1, 51 A2 = A2,
(B.57)
8"(0) = Q, S(tl,tg) = (tg,tl) (OZZO,].)
The functors
(=) = A1 x — x A"7%: Cat — Cat, (B.58)

produce a symmetric cocubical object in Cat, with components A" (n > 0)
and the following structure (for 1 <i < nand a =0,1)

8{‘: AL A", 8?(t17...,tn,1) = (tl,...,a,...,tn,l),
ei: A" — AL ity etn) = (t1, oy tiy oy tn), (B.59)
sp0 ATTE 5 AL Si(t1y eeostni1) = (s e tigts tiy ooy tn).

Further structure on the formal interval A, that will not be used here,
comprises the reversion symmetry r: A — A and the connections (cf.

[GM]).

B4.2 The symmetric cubical object of cospans

Applying the contravariant functor Cat(—, C) we obtain, in Cat, a sym-
metric cubical object Cosp(C) with transversal components

tv (Cosp(C)) = Cosp,,(C) = Cat(A",C), (B.60)

so that an n-cube, or n-dimensional object, or n-cubical cospan, is a functor
z: A" — C, and an n-map is a natural transformation f: z — y: A — C.

Faces, degeneracies and transpositions are computed as in (B.59), on
cubes (and similarly on transversal maps)

af(x)(tl, ...,tnfl) = .’li(tl, vy tio1, @ ...,tnfl),
61'(.’13)(751, ...,tn) = x(tl, ...,tAi, veey tn), (B61)

si(x)(tl, ---;t71+1) = ZL‘(tl, -~~7ti+17tia ...,tn+1).
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B/.3 Formal concatenations

As in 6.4.6, the model of binary concatenation is the category As displayed
below at the left, with one marked square

Y N

a c o~ ¢ \Lk_ (B.62)
/ \ / \ A = As
kT
0 b 1
In the right-hand commutative square above we have:

k=(A) ={0 — a « b}, Et(A) ={b—c+ 1}.

The pushout in Cat of 9+ and 9~ is the subcategory A2 C Az lying at
the bottom of Aq

0 —2a<+b—oc+1 A2)- (B.63)
The relevant fact — however — is that, for our category C with a fixed

choice of pushouts, we have the following property of Aq

(a) given two consecutive cospans z,y: A — C (with 9]z = 9] y), there is
precisely one functor [z,y]: Ag — C such that:

-z, ylk™ ==, [z,y].kT =y,
- [z, y] takes the marked square of (B.63) to a distinguished pushout.
The concatenation x +; y: A — C is obtained by pre-composing [z, y]
with the embedding
E:N— Ny, k(t)=t (concatenation map), (B.64)

already displayed in (B.62) by the objects 0,¢,1 (named as in A).
Acting on Ay and k, the functors (—)? of (B.58) produce the model A%
of i-concatenation in dimension n

s (B.65)

AR = NI Agx APTE (i-concatenation model),

ki = ANTIXEX AT AT — ALY (i-concatenation map).
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The category A% has 3"~ ! marked squares, sitting in the following sub-
categories (isomorphic to Ag)

{(tlv~~-7ti—1)}x/\2x{(ti+1a-'-atn)} (ti € {O,Lvl})7 (B66)
and has a property extending property (a) above:

(b) given two functors z,y: A" — C with 9;"z = 9; y, there is precisely
one functor [z,y]: A} — C such that:

-z, ylk; ==, [z, 9.k =y,
- [z, 9] takes all the marked squares of A%’ to distinguished pushouts.

Now the i-concatenation x +; y of i-consecutive n-cubes is computed by
pre-composing [z, y] with the embedding k; of (B.65)

T4y =[x, ylki: AT — AN — C, (B.67)

and we work in the same way for i-consecutive n-maps.

Bj.4 Associativity comparisons

We extend now the basic structure of the formal interval with formal com-
parisons for associativity (and then for middle-four interchange).

The model of ternary compositions Az is the following preorder-category,
with five marked squares (as made explicit below)

/%LHL

\ 75X /

/ \/ ™~
NN \1

(B.68)

N3

The role of Az will come forth from the following commutative diagram, in
Cat

{x} 2= A
1

{x} == A (B.69)

TN

N ————> A3

Again, the cocone of vertex Az in this diagram is not a colimit in Cat:
the corresponding colimit-category only consists of the six (non-trivial)
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arrows in the bottom row A3y of the diagram of Az. Besides these arrows,
A3 contains:

- a symmetric construction of three marked squares, reaching the vertices
/U/, /UN7 L7

- two more marked squares, which attain the vertices ' and +”,

- three coherent isomorphisms ¢': ¢/ — ¢, ¢": ¢ — " and 1 = ¢"7".

The embeddings &/, k" : A — A3z with the following images
E: 0=+ 1 K 0=+ 1 (B.70)

correspond to two iterated concatenations of the three consecutive cospans
A — Az which ‘cover’ the bottom row A(3). They are linked by a functorial
isomorphism, the basic formal associator, whose components are identities,
except the central one

ki k= k' A= As, k() =1i:0/ =1, (B.71)

Applying the functor (—)? we have a natural transformation, for 1 < ¢ <
n

ki = (k)7 (K — ()2 A" — (A3)? = AT Agx AT (B.72)
(formal i-associator). ’
Given three i-consecutive n-cospans z,y,z: A" — C, pre-composing

with k; gives a transversal isomorphism for i-associativity
Ki(w,y,2) = [v,y, 2] ki @+ (y +i2) = (2 +iy) +i 2, (B.73)
where the functor [z,y, z]: (A3)? — C is defined ‘as’ in B4.3(b). (Let

us note that it also contains a regular ternary concatenation x +; y +; 2,
corresponding to the vertex ¢ of Az.)

B4.5 Interchange comparisons

Double cospans A? — C can be concatenated in two directions.

The model Agyy for the 2-dimensional interchange of concatenations is
constructed below, starting from the colimit in Cat of the following dia-
gram

QBfr 9 2
N =— N —= A

a;T Ta;
A A (B.74)
o5 | |ox

/\2 e_'_ VAN - /\2
a1 61
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The colimit is the pasting of four copies of A2, displayed in the solid
diagram below, and amounts to the product A2y X A(g) (see (B.63))

/7L0\
- |
00 ——= a0 =— b0 ——=> 0 =— 10
\
La
_-TEN
0a —— aa =— ba —— ca <=— la
OL 2 ‘b yz
L > at L cL
N N _ -7 s N (B.75)
v 0b —= ab =— bb ——= cb =—= 1b
\
///7LACV\
Oc—>acz—bc—‘>cc<—lc
//7L1\

01l — = al =— bl — > ¢l = 11

By definition, the category Ag is obtained by adding to Ag) x A(2)
two ‘constructions’, partially displayed above, which correspond to two
symmetric procedures: first composing in direction 1 and then in direction
2, or vice versa. Thus Aoy contains
(a) a copy of Agx A2) (adding in the dashed arrows above, pertaining to
five marked squares ending in (¢, j), with j =0, a, b, ¢, 1), together with the
marked square ending in ¢/, displayed below

N RN

-~y be (B.76)

\ / ™~ 7

(b) a symmetric construction, of which we only display in (B.75) some
dotted arrows: it is a copy of A(g)x Az (with five marked squares ending
n (4,¢)), together with the marked square ending in ", displayed above,
(c¢) a coherent isomorphism ¢: ¢/ — ¢/ which links these two objects, so
that each of them becomes a colimit of the inclusion A2y X A2y — Azxe.

The two symmetric procedures correspond to two functors m’, m”: A? —
Aa2x2, whose image is displayed below

00 — 0 =— 10 00 — 0 =— 10 « —
T N
00 — ¢ =— 1t 00 — " = 1. (B.77)

(R A A A N

01 — 1 =— 11 01 — 1 =— 11
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They are connected by a natural isomorphism, the basic formal inter-
changer, all of whose components are identities except the central one

x:m' = m": A% = Ao, x(w) =i =", (B.78)
Now a consistent matrix (£ ¥) of double cospans in C gives a functor
[z Z] Nayo — C

(which takes all marked squares to distinguished pushouts) and a transver-
sal isomorphism, the 12-interchange comparison

X(@,y, z,u) = [Z1]x: (@+1y) +2 (2 +1u) = (2 +22) +1 (y +2u). (B.79)
Applying the functor (—)? we get a natural transformation, for 1 < i <n

= 00" (M) — (M) A" — AT Ago x AL
Xi= (02 (007 = () B0
(formal i-interchanger),

which gives the interchange of the cubical compositions in directions ¢ and
i+ 1. Each ij-interchanger can be obtained by transpositions.

B/.6 Coherence

Finally the coherence axioms hold, as the terms of each diagram in 6.4.3,
6.4.4 are computed by different systems of pushouts, which end up with
various constructions of the same colimit in C, and therefore are linked by
coherent isomorphisms.

B5 Symmetries in weak multiple categories

We come back to examining weak multiple categories.

Making precise what we anticipated in Chapter 6, a weak multiple cate-
gory A is made symmetric by assigning an action of the group S of ‘finite
permutations’ of N. If this is possible, A is necessarily of symmetric cu-
bical type, up to isomorphism. With respect to weak symmetric cubical
categories, the present notion has the advantage that indices need not be
normalised and shifted.

The examples Span(C) and Cosp(C) are here revisited in this sense.
We end by showing that the chiral multiple category S_o,Coo(C) can be
equipped with a partial symmetric structure, which permutes separately
spans and cospans.
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B5.1 A group of permutations

We write as S the group of finite permutations of the set N pointed at 0.
In other words an element s € S is a bijection N — N which has a finite,
positive support

i, = {i € N|s(i) #£4} C N*. (B.81)

It follows that s induces a permutation §: iy, — iy with no fixed points,
and is the identity outside. (In fact, by the injectivity of s, if s(i) = j # ¢ it
follows that s(j) # j; therefore s has an injective restriction iy — is, which
must be a bijection of finite sets.)

S can also be defined as the subgroup of permutations of N generated by
the elementary transpositions s; for ¢ > 0, where s; € S is the transposition
that (only) interchanges ¢ and i+ 1. (For s € S, take a finite interval j of N
containing iy; then the restriction j — j of s is generated by the elementary
transpositions s; restricted to j, for ¢, 4+ 1 € j.)

B5.2 D