Theorem 1. Let $Q : \mathbb{X} \parallel \mathbb{Y}$ and $R : \mathbb{A} \parallel \mathbb{B}$ be two-sided fibrations, and let $f : \mathbb{X} \mid \mathbb{A}$ and $g : \mathbb{Y} \mid \mathbb{B}$ be profunctors. Let $i : Q \mid R$ be a profunctor with transformations to f and g, i.e. a span of profunctors from Q to R.

Then the induced span of discrete two-sided fibrations $\int i$ is a two-sided fibration.

Proof. Let i:i(Q, R) lie over $f_1: f(X_1, A_1)$ and $g_0: g(Y_0, B_0)$. Let $(x, a): f_0 \to f_1$ be a morphism in $\int f$, i.e. a commutative square; and let $(y, b): g_0 \to g_1$ be a morphism in $\int g$.

Action by cartesian morphisms is functorial: there is a canonical morphism $(x, a)^*i : x^*Q \rightarrow a^*R$, forming a commutative square $(x, a)^*i \rightarrow i$ in $\int i$ over (x, a) in $\int f$.

Dually, action by opcartesian morphisms is functorial: there is a canonical morphism $(y, b)_! i : y_! Q \rightarrow b_! R$, forming a commutative square $i \rightarrow (y, b)_! i$ in $\int i$ over (y, b) in $\int g$.

This defines a left action of $\int f$ and right action of $\int g$ on $\int i$. Hence $\int i$ is a discrete two-sided fibration from $\int f$ to $\int g$.