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Abstract. A cofibrantly generated Quillen model structure on the category Bicats of bicat-
egories and strict homomorphisms is constructed. Another such structure on the category
2-Cat of 2-categories and 2-functors is described, correcting the construction given in an
earlier paper. The fully faithful inclusion of 2-Cat in Bicats is shown to be the right
adjoint part of a Quillen equivalence.
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In an earlier paper [6] I tried to describe a Quillen model structure on the
category 2-Cat of 2-categories and 2-functors. Unfortunately, as pointed out
to me by André Joyal, this contained an error. The purpose of this note is
to correct the error, and moreover to show that the Quillen model structure
extends to one on the category Bicats of bicategories and strict homomor-
phisms of bicategories. The fully faithful inclusion of 2-Cat in Bicats has a
left adjoint, and this adjunction turns out to be a Quillen equivalence.

The problem with the earlier definition is that the generating trivial cofi-
bration j1: 1 → E, defined on page 179, is not a weak equivalence. The
solution, also suggested by André, is to replace the “free-living equivalence
E”, by the “free-living adjoint equivalence”, defined below. This results in
a change in the definition of fibration and trivial cofibration, but not in the
definition of weak equivalence, trivial fibration, or cofibration. All other
results in the paper remain valid.

A bicategory [3], like a 2-category, contains objects, 1-cells (or mor-
phisms or arrows) between objects, and 2-cells between 1-cells, and these
can be composed as in a 2-category, except that the composition of 1-cells
is associative and unital only up to coherent isomorphism. The 2-categories
can be seen as those bicategories for which these isomorphisms are in
fact identities. A homomorphism of bicategories [3] – that is, a homomor-
phism between bicategories – does not preserve composition or identities
strictly, but only up to coherent isomorphism. The strict homomorphisms,
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in which these isomorphisms are identities, and so the structure is strictly
preserved, are rare in practice, but of theoretical importance, and it is these
which are considered here. A strict homomorphism between bicategories
which are actually 2-categories is precisely a 2-functor; while a homomor-
phism between 2-categories is also called a pseudofunctor. The reasons
for working with 2-functors rather than pseudofunctors were discussed in
[6, Section 4.1], and the reasons for working with strict homomorphisms
are precisely the same.

A homomorphism of bicategories (strict or otherwise) M:A→B is said
to be a biequivalence if the functors M:A(A,A′)→B(MA,MA′) are equi-
valences for all objects A and A′ of A; and if moreover for every object
B of B there is an object A of A and an equivalence MA�B in B; the
notion of equivalence in a bicategory is recalled in Section 2 below. In [6],
the weak equivalences in 2-Cat were defined to be the biequivalences – that
is, those 2-functors which are biequivalences; similarly, the weak equiva-
lences in Bicats will be the (strict homomorphisms which are) biequivalenc-
es. Thus a 2-functor will be a weak equivalence in 2-Cat if and only if it
is one in Bicats.

The reader is referred to the early sections and references of [6] for more
information about model categories and 2-categories.

1. Constructions Involving Bicategories

In this section, we describe various adjunctions involving the category
Bicats, summarized in the diagram at the end of the section. Some people
may choose to skim over this section on a first reading.

The structure of bicategory is essentially algebraic in the sense of Freyd,
and so the category Bicats is both complete and cocomplete, and in fact
locally finitely presentable. (There is a very short overview of locally finitely
presentable categories in [6, Section 1]; for more information on these and
on essentially algebraic categories see [1] for example.) The structure of
2-category, like that of bicategory, is essentially algebraic, and the category
2-Cat is locally finitely presentable. Moreover the fully faithful inclusion of
I : 2-Cat → Bicats is given by forgetting certain essentially algebraic struc-
ture (actually the property that certain isomorphisms are identities), and so
this inclusion has a left adjoint L. We shall describe the left adjoint below.

A (directed) graph consists of a collection of vertices X,Y,Z, . . . , and
for each pair (X,Y ) of vertices a set G(X,Y ) of edges from X to Y .
A Cat-graph [8] consists of a collection of vertices, as above, and for
each pair (X,Y ) of vertices a category G(X,Y ). The Cat-graphs form the
objects of an evident category Cat-Graph, with an evident forgetful func-
tor U : Bicats →Cat-Graph. Once again the structure of Cat-graph is essen-
tially algebraic, so Cat-Graphis locally finitely presentable, and once again
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the forgetful functor U is given by forgetting certain essentially algebraic
structure, and so it has a left adjoint F . In fact Bicats is the category of
algebras for a 2-operad on Cat-Graph – see [2, Section 10] for the details.
(Of course 2-Cat is also the category of algebras for a 2-operad on Cat-
Graph.)

The left adjoint L: Bicats → 2-Cat may be described as follows. Given
a bicategory B, consider the underlying Cat-graph UB of B, and the free
2-category GUB on UB. (The free 2-category functor G: Cat-Graph →
2-Cat is of course the composite LF , but it may be described more sim-
ply than either L or F using the idea of paths in a Cat-graph – see [8]
for the details.) The 2-category LB is obtained as a quotient of GUB;
specifically, by the universal 2-functor GUB→LB for which the compos-
ite B→ IGUB→ ILB is a strict homomorphism of bicategories. Clearly
this B → ILB is the identity on objects and surjective on 1-cells. More-
over, since it only identifies 1-cells which are isomorphic, this quotienting
process does not result in the creation of new 2-cells, and so the functors
B(B,B ′)→ ILB(B,B ′) are full. They need not be faithful, as the follow-
ing example shows. (A bicategory is said to have strict identities if the iden-
tity law for composition of 1-cells holds, and the “identity isomorphisms”
f 1A∼=f ∼=1Bf are identities, for any 1-cell f :A→B.)

EXAMPLE 1. Consider the bicategory B with strict identities, with objects
A, B,C,D; with non-identity 1-cells j :A→B,f, g:B→C, q:C→D,fj =
gj = k:A→C,qf = qg = r:B →D, and rj, qk:A→D; and with the only
non-identity 2-cells being between rj and qk, these being freely generated
by α: rj ∼= qk and β: rj ∼= qk. The only non-trivial associativity isomor-
phisms are (qf )j= rj∼=qk=q(fj), given by α, and (qg)j= rj∼=qk=q(gj),
given by β. The monoid of 2-cells from rj to rj is clearly non-trivial. In
the 2-category LB, however, there is only one 1-cell (qf )j=q(fj)=q(gj)=
(qg)j from A to D and no non-identity 2-cells.

We summarize our results so far in the following proposition.

PROPOSITION 2. The strict homomorphism B→ILB is bijective on objects,
surjective on arrows, and locally full; it is not necessarily locally faithful, but
if it is locally faithful then it is a biequivalence.

Next we describe a different sort of structure underlying a bicategory. We
define a compositional graph to be a (directed) graph, with a chosen identity
1X:X→X for each object X, and a chosen composite gf :X→Z for each
composable pair (f :X→Y,g:Y →Z), but with neither the associative law
nor the identity laws assumed to hold. The compositional graphs are the
objects of an evident category CGraph, which once again is locally finitely
presentable, and once again the evident forgetful functor V : Bicats →CGraph
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has a left adjoint D. This time, however, the forgetful functor also has a right
adjoint, which sends a compositional graph G to the (unique) bicategory with
the same underlying compositional graph, and with a single (invertible) 2-cell
between any parallel pair of arrows. The counit of the adjunction V �C is
clearly invertible, so C is fully faithful; it follows that D is also fully faithful,
and that the unit of the adjunction D�V is invertible.

Finally observe that there is a further forgetful functor W : CGraph →
Graph from the category of compositional graphs to the category of
(directed) graphs, and that once again Graph is locally finitely presentable,
and W has a left adjoint H .

The various adjunctions described in this section are summarized in the
following diagram:

2-Cat
⊥
I

�� Bicats
⊥
⊥V

��

L
��

U�
��

CGraph ⊥
W

��

D
��

C

�� Graph

H
��

Cat-Graph

F

��

G

��

2. The Model Structure for Bicategories

As described in the introduction, we use the same notion of weak equiv-
alence in Bicats as was used in 2-Cat. Similarly, we use the same notion
of trivial fibration: a strict homomorphism F :A→B is a trivial fibration
if it is surjective on objects, and each functor F :A(A,A′)→B(FA,FA′) is
surjective on objects and an equivalence. Thus a 2-functor is a weak equiv-
alence or trivial fibration in 2-Cat if and only if it is one in Bicats.

Recall that an arrow b:B ′ →B in a bicategory is an equivalence if there
exist an arrow b∗:B→B ′ and invertible 2-cells bb∗ ∼= 1B and 1B ′ ∼= b∗b. A
strict homomorphism F :A→B is said to be a fibration if it satisfies the
following conditions:

(i) For every object A in A and every equivalence b:B ′ →FA in B there
is an equivalence a:A′ →A in A with FA′ =B ′ and Fa=b;

(ii) For every 1-cell a:A′ →A in A and every invertible 2-cell β:b′ →Fa in
B, there is an invertible 2-cell α:a′ →a in A with Fa′ =b′ and Fα=β.

We also say that F has the equivalence lifting property; note that this refers
both to the lifting of 1-cells which are equivalences, as in (i), and to the
lifting of 2-cells which are equivalences (actually isomorphisms), as in (ii).

We say that a 2-functor is a fibration if it has the equivalence lifting
property; this is not the same as the definition in [6], which involved the
lifting not just of the equivalence b, but also of the b∗ and the invert-
ible 2-cells. We shall see in Proposition 6 below how the current definition
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allows one to lift these other data as well, provided that one works with
adjoint equivalences.

It is straightforward to check that the biequivalences are closed under
retracts and satisfy the 2-out-of-3 property, and that the trivial fibrations
are precisely the biequivalences with the equivalence lifting property. We
define the cofibrations to be the arrows with the left lifting property with
respect to the trivial fibrations, and we define the trivial cofibrations to be
the arrows with the left lifting property with respect to the fibrations.

Next we show that the trivial cofibrations are weak equivalences, using
the existence of path objects in Bicats. Every bicategory B is clearly fibrant;
moreover we can factorize the diagonal map B→B×B as a weak equiv-
alence D:B→PB followed by a fibration

(
P

Q

)
:PB→B×B (such a PB is

called a path object for B). Explicitly, an object of PB is an equivalence
b:B ′ →B in B; a morphism from b:B ′ →B to c:C ′ →C consists of arrows
g:B→C and g′:B ′ →C ′ and an invertible 2-cell ψ : cg′ ∼=gb; a 2-cell from
(g,ψ, g′) to (f, ϕ, f ′) consists of 2-cells γ :g→ f and γ ′:g′ → f ′ satisfy-
ing the obvious condition expressing compatibility with ψ and ϕ. These
objects, arrows, and 2-cells form an evident bicategory PB, with strict
homomorphisms P,Q:PB→B sending b:B ′ →B to B ′ and to B, and with
a strict homomorphism D:B → PB sending an object B to the identity
1B :B → B. We omit the routine details, and the verification that D is a
weak equivalence and

(
P

Q

)
:PB→B×B is a fibration.

The fact that trivial cofibrations are weak equivalences now follows by
a standard argument: if F :A→B is a trivial cofibration, then since A is
fibrant there is a map G:B→A with GF =1; since

(
P

Q

)
is a fibration there

is now a fill-in H as in

A
F ��

DF

��

B

H�������������

( 1
FG)

��
PB

(PQ)
�� B×B.

Now PD=QD= 1 and D is a weak equivalence, so P and Q are weak
equivalences; thus H is a weak equivalence since PH = 1, and FG is a
weak equivalence since QH =FG. Finally the diagram

A
F ��

F

��

B

FG

��

G �� A

F

��
B

1
�� B

1
�� B

exhibits F as a retract of FG, and so F is a weak equivalence as required.
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In Section 6, we shall describe small (in fact finite) sets I and J of gen-
erating cofibrations and generating trivial cofibrations, so that the trivial
fibrations are the arrows with the right lifting property with respect to the
generating cofibrations, and the fibrations are the arrows with the right lift-
ing property with the generating trivial cofibrations. Since Bicats is locally
finitely presentable, and so every object is small, this guarantees the exis-
tence of the required factorizations, and by [5, Theorem 2.1.19] we have the
following theorem.

THEOREM 3. There is a cofibrantly generated model structure on the cat-
egory Bicats of bicategories and strict homomorphisms, for which the weak
equivalences are the biequivalences, and the fibrations are the strict homomor-
phisms with the equivalence lifting property.

Notice that PB is a 2-category if B is one, and so everything in this
section works with 2-Cat in place of Bicats . The generating cofibrations
and generating trivial cofibrations for 2-Cat are obtained by applying
L: Bicats → 2-Cat to those for Bicats ; this is also described in Section 6.
This gives the following theorem.

THEOREM 4. There is a cofibrantly generated model structure on the cat-
egory 2-Cat of 2-categories and 2-functors, for which the weak equivalences
are the biequivalences, and the fibrations are the 2-functors with the equiva-
lence lifting property.

This corrects the faulty definition in [6]. Note that everything in [6]
becomes correct if we replace the generating trivial cofibration j1: 1 →E

given on page 179 of [6] by the new generating trivial cofibration j ′
1: 1→E′,

described in Section 6 below, where in place of the free-living equivalence
E we have the free-living adjoint equivalence E′. The later sections of [6],
concerning cofibrations, the homotopy relation, properness, relations with
monoidal structure, and so on, can all be read unchanged, and we now
have two different proofs of the model category axioms for 2-Cat .

3. Fibrations

In this section, we look at an alternative characterization of the fibrations.
We defined a 1-cell b:B ′ → B in a bicategory B to be an equivalence
if there exist a 1-cell b∗:B → B ′, and invertible 2-cells β1: 1B ′ → b∗b and
β2:bb∗ → 1B . We say that (b, b∗, β1, β2) is an adjoint equivalence from
B ′ to B if moreover the triangle equations are satisfied: these assert the
commutativity of the diagrams
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b1B ′
bβ1 �� b(b∗b)

��

1B ′b∗ β1b
∗

�� (b∗b)b∗

��

b

		������



������ b∗

��������

��������

1Bb (bb∗)b
β2b

 b∗1B b∗(bb∗)
b∗β2



of 2-cells in B in which the unnamed arrows are associativity and unit iso-
morphisms in the bicategory.

Every equivalence b:B ′ →B is part of an adjoint equivalence; in fact we
have the following well-known result about adjoint equivalences:

LEMMA 5. Let b:B ′ →B and b∗:B→B ′ be 1-cells in a bicategory, and let
β2:bb∗ →1B ′ be an invertible 2-cell. If b∗b∼=1, then there is a unique invert-
ible 2-cell β1: 1→b∗b for which (b, b∗, β1, β2) is an adjoint equivalence.

The promised characterization of fibrations is:

PROPOSITION 6. A strict homomorphism F :A → B of bicategories is a
fibration if and only if it satisfies condition (ii) in the definition of fibration,
and also:

(i ′) for any object A of A and any adjoint equivalence (b, b∗, β1, β2) from
B ′ to FA in B, there exists an adjoint equivalence (a, a∗, α1, α2) from A′ to
A in A, with FA′ =B ′,Fa=b,Fa∗ =b∗,Fα1 =β1, and Fα2 =β2.
Similarly, a 2-functor F :A→B is a fibration if and only if it satisfies con-
ditions (i ′) and (ii).

Proof. We prove the statement involving strict homomorphisms; the case
of 2-functors is an immediate consequence.

Since every equivalence is part of an adjoint equivalence, (i ′) certainly
implies (i). Suppose conversely that F :A→B satisfies (i) and (ii), and let
A be an object of A, and (b, b∗, β1, β2) an adjoint equivalence in B from
B ′ to FA. By (i), there is an equivalence a:A′ →A in A with FA′ =B ′

and Fa= b. By Lemma 5 there is an adjoint equivalence (a, a′, α′
1, α

′
2) in

A from A′ to A. Since b is an equivalence and Fα′
2 is invertible, there is a

unique invertible 2-cell ζ :b∗ →Fa′ in B for which the composite

bb∗ bζ−→b.Fa′ =F(aa′)
Fα′

2−→1B

is equal to β2. By condition (ii), there is an invertible 2-cell ξ :a∗ →a′ with
Fa∗ =b∗ and Fξ = ζ . Let α2:aa∗ →1 be the (invertible) composite

aa∗ aξ−→aa′ α′
2−→1

in A, so that Fα2 =β2. Since a∗a∼=a′a∼=1, there is by Lemma 5 a unique
invertible 2-cell α1 with (a, a∗, α1, α2) an adjoint equivalence in A. Since
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Fa=b,Fa∗ =b∗, and Fα2 =β2, by the uniqueness aspect of Lemma 5 also
Fα1 =β1.

4. Cofibrations

In this section, we study the cofibrations and cofibrant objects in Bicats
using the adjunctions D�V �C and H �W described in Section 1, where
we also defined a compositional graph to be a directed graph with a com-
position law and “identity” morphisms, but not required to satisfy the asso-
ciative or identity laws.

We shall say that a morphism F :G→H of compositional graphs is full
if for all objects X and Y the map F :G(X,Y )→H(FX,FY ) is surjective,
and say that F is surjective if it is surjective on objects and full. Finally we
say that a compositional graph is projective if it is projective with respect
to the surjections in CGraph.

PROPOSITION 7. A strict homomorphism of bicategories M:A → B is a
cofibration if and only if VM:VA→ VB has the left lifting property with
respect to the surjections in CGraph.

Proof. If M is a cofibration and

VA
VM ��

S

��

VB

T

��
G

P
�� H

is a diagram in CGraph with P surjective, then the adjunction V � C
induces a diagram

A
M ��

S ′
��

B

T ′
��

CG
CP

�� CH

in Bicats with CP a trivial fibration. Since M is a cofibration, there exists
a fill-in R′:B→CG for the latter square, and so a fill-in R:VB→G for
the former square. This proves that VM has the left lifting property with
respect to the surjections in CGraph.

Suppose conversely that VM has the left lifting property with respect to
the surjections in CGraph and that

A
M ��

S

��

B

T

��
E

P
�� D
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is a diagram in Bicats with P a trivial fibration. Applying V gives a dia-
gram in CGraph with VP a surjection, and so a fill-in R0 as in

VA
VM ��

V S

��

VB

V T

��R0����������

VE
VP

�� VD.

Since DVB has the same objects, arrows, composition, and identities
as B, while P :E → D is locally fully faithful, there is a unique strict
homomorphism R:B→E with VR=R0 and PR=T . Moreover, V (RM)=
R0.VM = V S, so that RM agrees with S on objects and arrows, while
PRM=TM=PS ensures that RM agrees with S on 2-cells; thus RM=S,
and so R provides the desired fill-in to exhibit M as a cofibration.

We shall say that a compositional graph is free if it is in the image of
the left adjoint H : Graph→CGraph.

LEMMA 8. A bicategory is cofibrant if and only if it is a retract of a bicat-
egory whose underlying compositional graph is free.

Proof. By the proposition, a bicategory B will be cofibrant if VB is pro-
jective (with respect to the surjections in CGraph). But any free composi-
tional graph will clearly be projective. Since a retract of a cofibrant object
is cofibrant this proves one half of the lemma. Suppose conversely that B

is cofibrant, and consider its underlying compositional graph VB, which
by Proposition 7 will be projective. The canonical map HWVB→ VB is
bijective on objects and surjective on arrows, hence the same is true of
DHWVB →DVB, while the canonical DVB → B is bijective on objects
and bijective on arrows. Thus the composite DHWVB→B is bijective on
objects and surjective on arrows, and when we factorize this composite as

DHWVB
E−→QB

J−→B

where E is bijective on objects and bijective on arrows and J is locally fully
faithful, J will also be bijective on objects and surjective on arrows, and so
a trivial fibration. Since Bis cofibrant, J will have a section and so B is a
retract of QB. But VQB=VDHWVB=HWVB, hence the result.

Our final result for this section will be crucial in the proof that Bicats
and 2-Cat are Quillen equivalent.

LEMMA 9. If B is cofibrant, and M:B→C is a homomorphism of bicate-
gories, then there is a strict homomorphism M ′:B→C which is equivalent to
M; in particular, if M is a biequivalence then M ′ will be one.
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Proof. For an arbitrary bicategory B we have the strict homomorphism
ε:FUB→B, and we factorize this as

FUB
E �� B′ J �� B

where E and J are strict homomorphisms, with E bijective on objects and
arrows, and with J locally fully faithful. Since ε is bijective on objects and
surjective on arrows, the same is true of J , and so J is in fact a trivial fi-
bration.

Given a homomorphism of bicategories M:B → C, there is an under-
lying morphism UM:UB → UC of Cat-graphs, and so a strict homo-
morphism FUM:FUB → FUC. Consider the following (non-commuting)
square:

FUB
FUM ��

ε

��

FUC

ε

��
B

M
�� C.

The two paths around the square agree on objects, and on the arrows
which are the “generators” of the free bicategory FUB. They agree on all
arrows only if the homomorphism M is strict, but they will nonetheless
agree on all arrows up to isomorphism. In fact we may take these isomor-
phisms as the pseudonaturality isomorphisms of a pseudonatural equiva-
lence between the two paths around the square, with the components of the
pseudonatural transformation being identity arrows in C.

Since E:FUB→B′ is bijective on objects and bijective on arrows, and
J :C′ → C is locally fully faithful, there is now a strict homomorphism
M ′:B′ →C′ for which the upper square in the diagram

FUB
FUM ��

E

��

FUC

E

��
B′ M ′

��

J

��

C′

J

��

�

B
M

�� C

commutes and the lower square does so up to (pseudonatural) equivalence:
one uses FUM to define M ′ on objects and arrows, and uses M to define
M ′ on 2-cells. Finally if B is cofibrant, then there is a strict homomorphism
K:B→B′ with JK=1, so we may take F ′ =JM ′K.
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5. The Quillen Equivalence

We now compare the model structures on 2-Cat and Bicats, using the
adjunction L� I . Since I preserves weak equivalences and fibrations, this
is a Quillen adjunction. We shall show that it is in fact a Quillen equiva-
lence, so that the derived adjunction between the homotopy categories will
be an equivalence.

By [5, Proposition 1.3.13], the adjunction will be a Quillen equivalence
provided that the composites

B
ρ �� ILB

Ir �� IRLB

LQIC
Lq �� LIC C

are weak equivalences whenever B is a cofibrant bicategory and C is a
fibrant 2-category, where q:QIC→ IC is a cofibrant replacement in Bicats
of IC, and r:LB→RLB is a fibrant replacement of LB in 2-Cat . Since
every 2-category is fibrant, this amounts to proving that ρ:B→ ILB is a
weak equivalence if B is cofibrant, and that Lq:LQIC→LIC is a weak
equivalence for any C.

LEMMA 10. If B is a cofibrant bicategory then ρ:B → ILB is a trivial
fibration, and so in particular a biequivalence of bicategories.

Proof. By Proposition 2 it will suffice to show that ρ:B→ILB is locally
faithful. By the coherence theorem for bicategories [7], there is a biequiv-
alence M:B→ IC for some 2-category C. By Lemma 9, we can replace M
by an equivalent 2-functor M ′ which will still be a biequivalence. By the
universal property of LB there is a 2-functor N :LB→C with M ′ equal to
the composite of ρ and IN . Now M ′ is locally faithful since it is a biequiv-
alence, thus ρ is locally faithful, and so ρ is in fact a trivial fibration.

We are now ready to show:

THEOREM 11. Consider the model structures on the categories Bicats ,
of bicategories and strict homomorphisms, and 2-Cat, of 2-categories and
2-functors. The fully faithful inclusion of 2-Cat into Bicats is the right
adjoint part of a Quillen equivalence.

Proof. It remains to show that Lq:LQIC→LIC is a weak equivalence
for any 2-category C. Consider the diagram

ILQIC
ILq �� ILIC

QIC

ρ

��

q
�� IC

ρ

��
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which commutes by naturality of ρ. Now ρ: IC→ ILIC is invertible, and
q:QIC→C is a weak equivalence, while ρ:QIC→ILQIC is a weak equiv-
alence since QIC is cofibrant. Thus ILq is a weak equivalence, and so
finally Lq is one.

6. Generating Cofibrations and Trivial Cofibrations

In this section we describe the generating cofibrations and generating trivial
cofibrations for the model structure on Bicats , using the forgetful functor
U : Bicats →Cat-Graph and its left adjoint F .

We say that a morphism M:G→H of Cat-graphs is a trivial fibration if
it is surjective on objects and each M:G(X,Y )→H(FX,FY ) is a surjective
equivalence; clearly a strict homomorphism M:A→B of bicategories is a
trivial fibration in Bicats if and only if UM is a trivial fibration in Cat-
Graph. We shall describe “generating cofibrations” in Cat-Graph, and then
apply F : Cat-Graph→Bicats to obtain generating cofibrations in Bicats .

Let 0 denote the empty Cat-graph, and 1 the Cat-graph with a single
object ∗ and 1(∗,∗) equal to the empty category. To give a morphism
1 → G is to give an object of G, and so a morphism of Cat-graphs
is surjective on objects if and only if it has the right lifting property
with respect to the unique map !: 0 → 1. If C is a category, write 2C
for the Cat-graph with objects X and Y , and hom-categories 2C(X,X)=
2C(Y,Y ) = 2C(Y,X) = 0 and 2C(X,Y ) = C; this is obviously functorial
in C, so that a functor f :C → D induces a morphism 2f : 2C → 2D of
Cat-graphs. To give a morphism 2C → G is to give objects X and Y

of G, and a functor C → G(X,Y ). A morphism M:G → H of Cat-
graphs has each G(X,Y )→ H(MX,MY) a surjective equivalence if and
only if M has the right lifting property with respect to 2i ,2i ′ , and 2i ′′ ,
where i, i ′, and i ′′ are the three generating cofibrations for the model
structure on Cat[6, Example 1.1]. (Explicitly, i is the unique functor
from the empty category to the terminal category, i ′ is the identity-
on-objects functor from the discrete category with two objects to the
“arrow category” 2, and i ′′ is the identity-on-objects functor from the cat-
egory with two objects and two parallel non-identity arrows to the arrow-
category 2.) Thus we have four “generating cofibrations” !: 0 → 1,2i ,2i ′ ,
and 2i ′′ in Cat-Graph, and now applying the left adjoint F : Cat-Graph →
Bicats we obtain the desired generating cofibrations F !,F2i , F2i ′ , and F2i ′′
in Bicats .

Next we consider the fibrations and generating trivial cofibrations. Con-
dition (ii) in the definition of fibration can once again be expressed using
the adjunction F �U . If j is the generating trivial cofibration of [6, Exam-
ple 1.1] (from the terminal category to the “free-living isomorphism”), then
a strict homomorphism of bicategories has the right lifting property with
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respect to F2j if and only if it satisfies condition (ii). We now turn to con-
dition (i ′). Here we use the bicategory E with two objects x and y, freely
generated by 1-cells s:x→y and t :y→x, and invertible 2-cells 1→ ts and
st→1 satisfying the triangle equations. An explicit construction is compli-
cated by the fact that composition will not be strictly associative, but all
we really need is the existence of E, and about this there is no doubt. To
give an adjoint equivalence in B is now precisely to give a strict homomor-
phism E→B. The Cat-graph morphism 1 →UE picking out the object x
induces a strict homomorphism k:F1 → E, and the right lifting property
with respect to k is precisely condition (i ′). Thus the fibrations are precisely
the strict homomorphisms with the right lifting property with respect to the
generating trivial cofibrations F2j and k.

This completes the missing step in the proof of Theorem 3.
Finally we observe that applying the left adjoint L: Bicats → 2-Cat to

the generating cofibrations recovers the generating cofibrations in 2-Cat
given in [6]; and applying L to F2j recovers the generating trivial cofibra-
tion j2 of [6]. Applying L to k gives j ′

1: 1→E′, which is what “should” have
been taken as the final generating trivial cofibration. It is easier to describe
concretely than k; the domain is the terminal 2-category 1, and the codo-
main has objects x and y, 1-cells given 1x,1y , and all “alternating non-
empty words in s and t”, such as sts, tststs, and so on; there is a unique
2-cell between any parallel pair of 1-cells, and every 2-cell is invertible.

This completes the missing step in the proof of Theorem 4.
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